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1 Introduction

1.1 The multi-monopole point of SU(N) N = 2 gauge theory

Since the work of Seiberg and Witten [1, 2], non-perturbative N = 2 gauge dynamics has
been a topic of central importance in quantum field theory (QFT), with deep connections to
string theory and mathematics. In [1] the authors solved for the low-energy effective QFT
on the Coulomb branch of pure SU(2) N = 2 gauge theory in four dimensions. At generic
points on the Coulomb branch, this low-energy theory is described by a single U(1) N = 2
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vector multiplet, whose leading interactions are encoded by its complexified gauge cou-
pling τ(u). Here u ∼ trφ2 is a gauge-invariant coordinate on the Coulomb branch, with φ
the complex SU(2) adjoint Lorentz scalar residing in the N = 2 vector multiplet. Crucially,
τ(u) may undergo L (2,Z) electric-magnetic duality transformations as u traverses closed
loops in the u-plane.

The function τ(u) was constructed by identifying it with the modular parameter of an
auxiliary, u-dependent Riemann surface Σ of genus one — the Seiberg-Witten curve. This
function is closely related to the special Coulomb-branch coordinates a(u), aD(u), which
are determined by period integrals of a suitable meromorphic one-form (the Seiberg-Witten
differential) along canonical A- and B-cycles of Σ. Once the special coordinates are known,
the gauge coupling can be computed via τ = −daD

da .1 The choice of canonical A- and B-
cycles is arbitrary, and different choices are related by L (2,Z) duality transformations
of the special coordinates and τ . The special coordinates also determine the masses of
heavy BPS particles. A BPS particle with electric and magnetic charges (qe, qm) ∈ Z has
massMBPS ∼ |qea+qmaD|. Note that the electric special coordinate a is the scalar residing
in the low-energy U(1) N = 2 vector multiplet.

An important feature of the SU(2) Seiberg-Witten solution [1] is that the curve Σ
degenerates at two points u ∼ ±Λ2 of the u-plane. These two points are related by a
discrete Z8 R-symmetry, which maps u → −u. Here Λ is the strong-coupling scale of
the SU(2) N = 2 gauge theory. At these points the gauge coupling diverges and there
are additional massless particles: a magnetic monopole with (qe, qm) = (0, 1) at u ∼ Λ2,
and a dyon with (qe, qm) = (2, 1) at u ∼ −Λ2. These points are, respectively, known as
the monopole and dyon points of the SU(2) theory. Since these points are exchanged by
the spontaneously broken Z8 R-symmetry, the low-energy physics at the two points is the
same. As is customary, we will focus on the monopole point. Near this point, this theory is
most conveniently described in terms of S-dual magnetic variables: a U(1)D N = 2 vector
multiplet, with scalar component aD and gauge coupling

τD = da

daD
. (1.1)

The unit monopole is a BPS state of mass MBPS ∼ aD, so that the monopole point is given
by aD = 0. There the monopole can be described by coupling the U(1)D vector multiplet
to a massless hypermultiplet carrying unit electric charge under U(1)D. This renders the
dual magnetic gauge coupling IR free and drives it to zero logarithmically, which implies
the following behavior for τD near the monopole point,

τD(aD) = − i

2π log aD + (regular) as aD → 0 . (1.2)

The coefficient of the logarithm is fixed by the unit charge of the massless monopole, while
its branch cut ensures the correct L (2,Z) monodromy around the monopole point. The

1We use conventions in which τ = − daD
da

and τD = − 1
τ

= da
daD

. This differs by an overall sign from the
more familiar conventions (e.g. used in [1]) in which τ = daD

da
and τD = − 1

τ
= − da

daD
. This difference arises

because our a-periods differ from those in [1] by a minus sign, while our aD-periods agree.
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same phenomenon occurs at the dyon point, except that the simple IR free description
occurs in a different duality frame.

The monopole and dyon points of the SU(2) N = 2 theory play a crucial role in
many applications of Seiberg-Witten theory. For instance, it was shown in [1] that they
describe the two confining vacua of the pure SU(2) N = 1 gauge theory obtained by
adding the N = 2 → N = 1 breaking superpotential

∫
d2θ u ∼

∫
d2θ trφ2 via Higgsing in

the IR free U(1)D gauge theory described above. In applications of N = 2 gauge theory
to four-manifold topology, the monopole and dyon points give rise to the Seiberg-Witten
equations [3].

In this paper we are interested in the generalization of the SU(2) monopole and dyon
points to pure SU(N) N = 2 gauge theories. A systematic study of these points was
initiated in [4], building on the SU(N) generalization of the Seiberg-Witten solution found
in [5–8]. The Coulomb branch is now N − 1 complex dimensional and described by the
gauge-invariant coordinates un ∼ trφn (n = 2, . . . , N), collectively denoted by u. (As
before, φ is the complex SU(N) adjoint and Lorentz scalar in the N = 2 vector multiplet.)
The low-energy effective theory at generic points is a U(1)N−1 gauge theory, and there
are N−1 dual pairs of special coordinates ak(u), aDk(u) (k = 1, . . . , N−1). They are the A-
and B-cycle periods of a suitable meromorphic differential λ on the u-dependent Seiberg-
Witten curve Σ, which now has genus N − 1. As before, the special coordinates determine
the matrix τk` of complexified U(1)N−1 gauge couplings via τk` = −∂aDk

∂a`
, and the masses

of BPS states with charges (qek, qm`) ∈ Z2(N−1) via MBPS ∼
∣∣∑N−1

k=1 (qekak + qmkaDk)
∣∣.

Changing the choice of canonical A- and B-cycles on Σ acts on the special coordinates and
the matrix of couplings via an Sp(2N − 2,Z) electric-magnetic duality transformation.

As was explained in [4], the Coulomb branch of the SU(N) gauge theory has many
interesting singular points, at which the Seiberg-Witten curve Σ degenerates in various
ways. The BPS dyons that become massless at such points are typically mutually non-
local, i.e. they have non-vanishing Dirac pairing ∑N−1

k=1 (qekq′mk − q′ekqmk). In particular,
this means that there is no electric-magnetic duality frame in which all of them carry electric
charges. Such mutually non-local massless dyons describe interacting superconformal field
theories [9, 10].

By contrast, the singular points that generalize the monopole and dyon points of
the SU(2) theory arise when N −1 (i.e. the maximal number of) mutually local BPS dyons
simultaneously become massless [4]. This happens at precisely N distinct points on the
Coulomb branch, which are related by a spontaneously broken Z4N R-symmetry, which
rotates the Coulomb branch coordinates un by N -th roots of unity. We will collectively
refer to these N points on the Coulomb branch as the multi-dyon points of the SU(N)
theory. As before, it is sufficient to focus on one such point, and we choose the multi-
monopole point. At the multi-monopole point the N − 1 mutually local massless dyons
are electrically neutral and carry unit magnetic charge in precisely one U(1) factor of the
low-energy gauge group.

As in the SU(2) theory, it is useful to pass to an S-dual magnetic description, which
is a U(1)N−1

D N = 2 gauge theory with vector-multiplet scalars aDk and gauge coupling
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matrix
τDk` = ∂ak

∂aD`
, (k, ` = 1, . . . , N − 1) . (1.3)

The k-th unit monopole is a BPS state of massMBPS ∼ aDk, and hence the multi-monopole
point is given by aDk = 0 for all k. There each monopole is described by a massless
hypermultiplet that carries unit electric charge under the k-th U(1)D gauge factor, and
is neutral with respect to the N − 2 other U(1)D factors. As in (1.2), this completely
determines the singular behavior of τDk` near the multi-monopole point,

τDk` = − i

2πδk` log aDk + (regular) as aDk → 0 . (1.4)

As before, the addition of the N = 2 → N = 1 preserving superpotential
∫
d2θ u2 ∼∫

d2θ trφ2 collapses the Coulomb branch of the N = 2 theory to the N multi-dyon points,
correctly capturing the N vacua of the pure SU(N) N = 1 gauge theory [4]. Moreover,
the N − 1 massless monopoles Higgs the U(1)N−1

D gauge theory, leading to confinement.
These conclusions do not depend on the structure of the regular terms in (1.4). They only
rely on the massless matter content of the U(1)N−1

D gauge theory at the multi-monopole
point (which is reflected in the logarithmic terms in (1.4)), as well as on the fact that
the ak special coordinates at the multi-monopole point are all non-zero.2 These were first
computed in [4],

ak(aD` = 0) ∼ NΛ sin kπ
N

, (1.5)

and they are indeed all non-vanishing. We will recover this result below, including a scheme-
dependent prefactor that we omit here.3 We now turn to applications of Seiberg-Witten
theory that are sensitive to the regular terms in (1.4).

1.2 Motivation and summary of results

The computations described in this paper were motivated by applications of Seiberg-Witten
theory that require more detailed information about the multi-monopole point than the
leading logarithmic running of the couplings in (1.4) or the value of the ak-periods in (1.5).
(Two such applications are mentioned below.) Our primary interest will be the leading
regular terms in (1.4), which we parametrize as follows,4

τDk` = i

(
− 1

2πδk` log
(−iaDk

Λ
)

+ 2πtk`
)

+O(aD) , tk` = t`k ∈ R . (1.6)

2To see this, recall from [2, 4] that the monopole vev responsible for Higgsing the k-th U(1)D factor of
the gauge group is set by ∂u2

∂aDk
at the multi-monopole point aDk = 0. To evaluate this, it is convenient to

use the renormalization group equation u2(aD) ∼ (
∑N−1

k=1 akaDk − 2FD(aD)) derived in [11–16]. (See [17]
for a simple derivation that involves promoting Λ to an N = 2 chiral background superfield.) Here FD is
the dual prepotential, so that ∂FD

∂aDk
= ak. Using (1.3), we then find that

∂u2

∂aDk
∼
N−1∑
`=1

τDk`aD` − ak .

It follows from (1.4) that the first term vanishes at the multi-monopole point, leaving only the term ∼ ak.
3Rescaling Λ by a constant amounts to a change of renormalization scheme.
4Since τDk` has non-trivial Sp(2N − 2,Z) monodromy around the multi-monopole point, we must pick a

branch of the logarithm to render the matrix tk` in (1.6) well defined. As explained below, we will mostly
work with configurations aDk that are positive imaginary, so that −iaDk > 0. We can then choose the
principal branch of the logarithm, so that log(−iaDk) is real.

– 4 –
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Here tk` is a real, symmetric matrix that accounts for the leading threshold corrections due
to massive particles that have been integrated out in the low-energy effective description
on the Coulomb branch. As such we will often refer to tk` as the threshold matrix. Clearly
the imaginary part of (1.6), which describes the matrix of gauge coupling constants at
low energies, is positive definite as long as the aDk are sufficiently close to the multi-
monopole point. Note that the off-diagonal elements of the matrix tk` can be accessed by
taking aDk → 0 in (1.6), since the corresponding τDk` has a finite limit.5 By contrast, the
diagonal matrix elements tkk are finite threshold corrections to the divergent logarithms
in τDkk. Thus computing them is more challenging; any such computation must regularize
the logarithms by perturbing away from the multi-monopole point.

As was emphasized in [4], the structure of the threshold matrix tk` encodes important
information about the SU(N) N = 2 gauge theory near the multi-monopole point — in
particular its massive spectrum there. Upon softly breaking N = 2→ N = 1 (as reviewed
below (1.4)) the threshold matrix is needed to determine the spectrum of light particles,
as well as the confining string tensions. Roughly speaking, this is due to the fact that tk`
is the matrix of gauge-kinetic terms in the low-energy U(1)N−1

D gauge theory that couples
to the N − 1 massless monopole hypermultiplets at the multi-monopole point.

Our primary interest in the threshold matrix tk` comes from the recent observation [19]
that the dynamics of non-supersymmetric adjoint QCD with gauge group G and two adjoint
quarks can be analyzed by adding a certain soft supersymmetry-breaking mass term for
the adjoint scalars to the pure N = 2 supersymmetric gauge theory with the same gauge
group G.6 The case G = SU(2) was analyzed in [19], where it was found that the expected
confining and chiral-symmetry breaking phase of adjoint QCD emerged from the dynamics
of the monopole and dyon points in the presence of the soft supersymmetry-breaking scalar
mass. In upcoming work [18] we extend this to G = SU(N) for all N , where the soft
supersymmetry-breaking mass deformation leads to a rich structure of phases and phase
transitions that can be analyzed by focusing on the multi-dyon points. This analysis
crucially depends on the detailed properties of the threshold matrix tk` in (1.6).

A procedure for computing tk` was outlined in [4], where the authors considered a
particular one-parameter family aDk(s) that approaches the multi-monopole point as s→
0. However, this procedure was ultimately only carried out for the elements of tk` that
dominate in the ’t Hooft large-N limit of the theory emphasized in [4]. Exact results
for N = 2 and N = 3 were obtained in [8]. Subsequently, the authors of [20] developed
a systematic method to compute higher-order corrections to τDk` for all N , starting with
the O(aD) terms in (1.6), but they did not compute tk`. A formula for the off-diagonal
elements of tk` was conjectured in [21, 22], and subsequently confirmed in [23] (see also [24]),
using the relationship of Seiberg-Witten theory to integrable hierarchies. More recently, the
authors of [25] presented a computation of tk` based on (partially conjectural) topological
string and matrix model machinery. While their formula agrees with previous results for
the off-diagonal part of tk`, they noted disagreements with previous statements about the
diagonal part. See section 1.3 below for further comments on the literature.

5The physical importance of these off-diagonal terms was first stressed in [4]. They also play an important
role in [18].

6In this embedding, the adjoint quarks are simply the two gauginos of the N = 2 gauge theory.
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In the supersymmetry-breaking analysis [18] we rely on the quantitative details of the
threshold matrix tk` — not just its qualitative or large-N features. For this reason we
present a detailed and direct calculation of tk` using standard Seiberg-Witten technology.
As explained below (1.6), a full calculation of tk` requires regularizing the logarithmic
singularities in (1.6) by perturbing away from the multi-monopole point. Here we will
follow and extend the regularization method of [20], which we review in section 2.7

Our main result (derived in section 3) is a computation of the ak periods near the
multi-monopole point,8

ak (aD`) = ak (aD` = 0) + i

2πaDk
(
− log −iaDkΛ + 1

)
+ 2πi

N−1∑
`=1

tk`aD` +O(a2
D) . (1.7)

We find that the ak periods at the multi-monopole point are given by9

ak (aD` = 0) = −2NΛ
π

sin πk
N

, (1.8)

while our result for the elements of the threshold matrix tk` is given by

tkk = 1
4π2 log

(
16N sin3 πk

N

)
, tk` = 1

4π2 log
sin2 (k+`)π

2N

sin2 (k−`)π
2N

(k 6= `) . (1.9)

Note that in addition to the symmetry tk` = t`k that is necessarily present (see (1.6)), the
threshold matrix also satisfies

tk` = tN−k,N−` . (1.10)

This follows from the charge conjugation symmetry of the underlying SU(N) gauge theory,
which is preserved at the multi-monopole point. (This will play an important role in [18].)
It is tempting to speculate that the special form of tk` in (1.9) — a logarithm of sine
functions — can be explained by appealing to the spectrum of heavy BPS states at the
multi-monopole point, whose masses are determined by the ak ∼ sin πk

N at that point
(see (1.8)).10 However, we do not know of such an explanation.11

7See section 1.3 and appendix A for more details on the regularization method used in [4].
8Note that substituting (1.7) into (1.3) leads to (1.6).
9These were first computed in [4] (see the discussion around (1.5)). Here we include a scheme-dependent

prefactor that depends on our normalization conventions for the strong-coupling scale Λ. Our conventions
are spelled out in section 2.1, and the differences between our conventions and those used in [4] are described
in appendix A.

10An interpretation of tk` in terms of the massive BPS spectrum near the multi-monopole point must
contend with the fact that this point lies on a wall of marginal stability across which the BPS spectrum
jumps [1, 4], while tk` is wall-crossing invariant. This suggests an approach along the lines of [26], where a
similar puzzle was encountered and resolved.

11As another possible hint, we record the following interesting, exact formula (inspired by [4] and ap-
pendix A) for the off-diagonal elements of tk` in (1.9),

tk` = 1
4π2 log

sin2 (k+`)π
2N

sin2 (k−`)π
2N

= 1
4π2

∞∑
p=1

4
p

sin pkπ
N

sin p`π
N

(k 6= `) . (1.11)

To show this, we write the sum over p as
∑∞

p=1
2
p

(
cos p(k−`)π

N
− cos p(k+`)π

N

)
, which can be evaluated

using
∑∞

p=1
cos px
p

= − log
(
2 sin x

2

)
, valid for x ∈ R − 2πZ. In turn, the latter formula follows from

writing cos px in terms of exponentials and using
∑∞

p=1
zp

p
= − log(1− z), with z = e±ix.

– 6 –
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1.3 Comparison with the literature

In this subsection we compare our results (1.7), (1.8), and (1.9) to the existing literature
in more detail. Along the way, we clarify some lingering inconsistencies.

Using Picard-Fuchs equations, the authors of [8] found an expansion of the dual pre-
potential FD(aD) around the multi-monopole point for SU(2) and SU(3) gauge theories.
The prepotential for SU(2) is given above equation (2.11) in [8]. From it we can com-
pute a = FD ′(aD),12

a(aD) = −2Λ̂
π

+ iaD
2π

(
− log −iaD

16Λ̂
+ 1

)
+O(a2

D) , (1.12)

where we use Λ̂ to denote the strong coupling scale in the conventions of [8]. Comparing
the constant term a(aD = 0) in (1.12) with (1.8), we find agreement if Λ̂ = 2Λ. By
comparing (1.12) with (1.7), we then read off 4π2t11 = log 32, in agreement with our
result (1.9) for N = 2.

In the SU(3) case the prepotential FD(aD) around the multi-monopole point is given
in equations (6.13) and (6.14) of [8]. From it we can compute

a1 = ∂FD
∂aD1

= −22/3 3
√

3 Λ̂
π

+ i

2πaD1

(
− log −iaD1

25/3 35/2 Λ̂
+ 1

)
+ i

2πaD2 log 4+O(a2
D) , (1.13)

and an analogous formula for a2, which can be obtained by exchanging aD1 ↔ aD2
in (1.13).13 Again we use Λ̂ to denote the strong coupling scale in the conventions of [8].
We proceed as above: by comparing the constant term a(aD = 0) in (1.13) with (1.8), we
find agreement if Λ̂ = 2−2/3Λ. Substituting back into (1.13) and comparing with (1.7),
we can then read off 4π2t11 = log 2 + 5

2 log 3 and 4π2t12 = log 4, in agreement with our
result (1.9) for N = 3.

We now compare our results to those of [4], which apply to SU(N) gauge theories in
the large-N limit. In order to keep the present discussion brief, we defer a more detailed
review of [4] to appendix A, which also contains some new results (see below). As was
already mentioned above, the authors of [4] considered a one-parameter scaling trajec-
tory aDk(s) (with real parameter s) that approaches the multi-monopole point as s → 0
(see appendix A),14

aDk(s) = 2iΛs
N

sin πk
N

+O(s2) . (1.14)

Substituting this into (1.6) and using our answer for the threshold matrix tk` in (1.9), we
find that

τDk`(s) = i

2π


− log s+ log

(
8N2 sin2 πk

N

)
if k = ` ,

log
sin2 (k+`)π

2N

sin2 (k−`)π
2N

if k 6= `

. (1.15)

12More precisely, the authors of [8] use a = −F ′D(aD) and τD = − da
daD

, but the two minus signs cancel
in τD = F ′′D(aD). Thus our a-periods differ from theirs by a sign, while the gauge couplings agree. The
same comment applies to the SU(3) case described around (1.13).

13Note that the prepotential in equations (6.13) and (6.14) of [8] is invariant under the charge-conjugation
symmetry aD1 ↔ aD2.

14Here we describe the results of [4] in our conventions; see appendix A for further details.
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We will now compare this answer to the calculations in [4]. Although the approach outlined
there in principle allows one to calculate all s-independent terms in (1.15), the authors of [4]
only explicitly evaluated those terms that grow without bound in the N → ∞ limit. As
reviewed in appendix A, it follows from the results of [4] that the elements of τDk`(s) that
have such growing large-N contributions are15

τDk`(s) = i

2π

(
−δk` log s+ log N2

(k − `)2

)
+O(1) +O(s) , k, ` = O(N) , k − `

N
→ 0 .

(1.16)
Here the O(1) terms in τDk`(s) are constant as s → 0 and remain bounded at large N .
This precisely agrees with (1.15) for those k, ` indicated in (1.16).16 It was argued in [4]
that the ∼ logN2 threshold corrections in (1.16) are due to light particles of mass ∼ Λ

N2 ,
which impose a cutoff on the low-energy effective theory that vanishes in the large-N limit.
In appendix A we show how to explicitly extend the computations in [4] to finite N , and
we recover the full answer in (1.15).

By combining elements of [4] with insights from integrable hierarchies, the authors
of [21, 22] conjectured an exact (but complicated) formula for the off-diagonal elements
of the threshold matrix tk`.17 A simpler expression for these off-diagonal elements was
subsequently obtained in [23], where they were recomputed (again within the framework
of integrable hierarchies) and used to numerically verify the conjecture of [21, 22] for low
values of N . The off-diagonal elements in equations (6.11) and (6.12) of [23] are easily
seen to match our off-diagonal elements of τDk` in (1.6) and (1.9), as well as (1.15). The
off-diagonal elements of τDk` were also examined in [24], where they were expressed in a
form (see their equation (169)) that exactly agrees with our (1.15), and shown to agree
with the conjecture of [21, 22].

The only complete result for the threshold matrix tk` (including its diagonal elements)
that we are aware of was recently put forward in [25], using a dual matrix model that was
motivated by appealing to conjectures in topological string theory. While the authors found
agreement with [21–23] for the off-diagonal elements of tk`, they also noted disagreement
for the diagonal elements tkk. We will now compare the matrix-model results of [25] to
ours. Their results are expressed in terms of a matrix-model (MM) prepotential FMM

D (Tk),
where the Tk are the dimensionless ’t Hooft couplings of the matrix model, which are to
be identified with the aDk periods (see equation (4.7) of [25]). We would like to convert
to a prepotential FD(aD) from which we can compute ak = ∂FD/∂aDk and compare to
our formulas (1.7), (1.8), and (1.9). By examining the logarithmic terms, we are led to
identify18

Tk = −iaDk
Λ̂

, FD(aD) = iΛ̂2

2π F
MM
D (Tk) . (1.17)

15As explained in appendix A, (1.16) also applies when k = ` if we omit the factor (k − `)2 in the
logarithm.

16Some formulas in [4] have subsequently been extrapolated beyond the regime in (1.16), where they no
longer apply. For instance, the authors of [20–22] appealed to [4] to argue that the diagonal elements tkk
of the threshold matrix are proportional to log sin πk

N
, rather than our result in (1.9). Note that these two

expressions do not agree in the large-N limit.
17As was pointed out in footnote 16, the diagonal elements tkk are not correct in these papers.
18Note that our relation between Tk and aDk involves a factor of −i that is absent in equation (4.7)

of [25].
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Here Λ̂ is a strong-coupling scale introduced for dimensional reasons, whose relation to
our Λ will be fixed below. By substituting the matrix-model prepotential in equations
(4.14) and (4.15) of [25] into (1.17), we find that the results of [25] imply that

ak = ∂FD
∂aDk

= − Λ̂
2π

sin πk
N

sin π
N

+ iaDk
2π

(
− log

−iaDk sin π
N

4Λ̂ sin3 πk
N

+ 1
)

+ i

2π
∑
6̀=k
aD` log

sin2 π(k+`)
2N

sin2 π(k−`)
2N

.

(1.18)
Comparing with (1.7) and (1.9), we see that the last term in (1.18) correctly accounts
for the off-diagonal elements of our tk` matrix. In order to find the scheme change that
relates Λ̂ to our Λ, we compare the constant term a(aD = 0) in (1.18) with (1.8), finding
agreement if Λ̂ = 4NΛ sin π

N .19 Substituting back into (1.18), we see that the remaining
terms correctly account for their counterparts in (1.7) and (1.9), including an exact match
for the diagonal elements tkk of our threshold matrix.

2 Setup and review

2.1 The SU(N) Seiberg-Witten solution

In this section we briefly review aspects of the Seiberg-Witten solution of the pure SU(N)
gauge theory, as determined in [1, 5, 6]. The Seiberg-Witten curve Σ is a hyperelliptic
Riemann surface of genus N − 1. It can be presented in many ways that are useful for
various purposes. These presentations may differ by coordinate changes, as well as by
an overall rescaling of the strong-coupling scale Λ (i.e. by a scheme change). Using this
freedom, we can express the Seiberg-Witten curve in the following form,

y2 =
(
CN (x)

)2 − 1 . (2.1)

Here x, y are dimensionless complex coordinates, while CN (x) is a degree N polynomial in
x whose dimensionless coefficients depend on the gauge-invariant Coulomb-branch order
parameters un = trφn = ∑N

i=1 φ
n
i (where φi are the eigenvalues of φ),

CN (x) = 2N−1 det
(
x− φ

2Λ

)
= 2N−1

N∏
i=1

(
x− φi

2Λ

)
. (2.2)

Since trφ = ∑N
i=1 φi = 0, the O(xN−1) term in CN (x) vanishes, so that

CN (x) = 2N−1
(
xN − u2

8Λ2 x
N−2 + · · ·

)
, (2.3)

where the ellipsis denotes terms of order xN−3 or lower in x.
The Seiberg-Witten differential (which has mass-dimension one) is given by

λ = (2Λ) xC
′
N (x)dx
y

= (2Λ) xC ′N (x)dx√(
CN (x)

)2 − 1
. (2.4)

19Note that this is an N -dependent change of scheme, though both Λ and Λ̂ are O(1) in the large-N
limit.
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It is a meromorphic one-form on Σ. Once we fix a set of a canonical A- and B-cycles on
Σ, we can determine the special Coulomb-branch coordinates ak and aDk by integrating λ
over these cycles,

ak = 1
2πi

∮
Ak

λ , aDk = 1
2πi

∮
Bk

λ (k = 1, . . . , N − 1) . (2.5)

Different choices of A- and B-cycles lead to special coordinates that differ by Sp(2N−2,Z)
electric-magnetic duality transformations of the low-energy U(1)N−1 gauge theory on the
Coulomb branch.

Unless stated otherwise, we set the strong-coupling scale Λ (which is the only dimen-
sionful parameter in the problem) to Λ = 1

2 , so that the Seiberg-Witten differential (2.4)
simplifies to

λ = xC ′N (x) dx√(
CN (x)

)2 − 1
. (2.6)

2.2 The multi-monopole point

As we reviewed in section 1.1, there are N multi-dyon points on the Coulomb branch of
the SU(N) gauge theory, and we focus on the multi-monopole point. It was shown in [4]
that this point occurs when CN (x) in (2.1) and (2.2) is given by a degree N Chebyshev
polynomial,20

CN (x)
∣∣
multi-monopole ≡ C

(0)
N (x) = cos(N arccosx) . (2.7)

Here and throughout the paper we use the superscript (0) to denote quantities evaluated
at the multi-monopole point. The leading terms in C(0)

N (x) are given by

C
(0)
N (x) = 2N−1

(
xN − N

4 x
N−2 + · · ·

)
, (2.8)

in accord with the general form of CN (x) in (2.3). By differentiating (2.7) we can derive a
useful functional relation obeyed by C(0)

N (x) and its first derivative C(0)
N (x)′,

(
C

(0)
N (x)

)2 − 1 = x2 − 1
N2

(
C

(0)
N (x)′

)2
. (2.9)

This relation can be used to analyze the branch and singular points of the Seiberg-Witten
curve (2.1) at the multi-monopole point, which occur when y2 =

(
C

(0)
N (x)

)2
− 1 vanishes.

To this end we use the following product representation for C(0)
N (x)′,21

C
(0)
N (x)′ = 2N−1N

N−1∏
k=1

(x− ck) . (2.10)

20This definition of the Chebyshev polynomials is valid for −1 ≤ x ≤ 1, but it can be analytically
continued to all x ∈ C.

21This formula can be derived by using the defining relation (2.7) for C(0)
N (x) to argue that the N − 1

zeroes of C(0)
N (x)′ must be at x = ck = cos

(
kπ
N

)
, and then fixing the overall coefficient by comparing

with (2.8).
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•
+1−1

Bk Bk−1Âk

• • •
. . .

. . .

. . .

. . .

ck ck−1

Σ

x0

+1−1
x−

k x+
k

Bk

x−
k−1 x+

k−1
xN

Bk−1Âk

• • • • • •+ ++ ++
. . .

. . .

. . .

. . .
ck ck−1ξ

Σ

Figure 1. The figure in the lower panel represents the singular hyperelliptic Seiberg-Witten curve
at the multi-monopole point, with branch cuts (−∞,−1) ∪ (+1,+∞), singular points c1, . . . , cN−1
(where the two Riemann sheets touch), and a choice of homology basis. The figure in the upper panel
represents the regular hyperelliptic Seiberg-Witten curve away from the multi-monopole points,
with branch cuts (−∞, xN ) ∪ (x−

N−1, x
+
N−1) ∪ · · · ∪ (x−

1 , x
+
1 ) ∪ (x0,∞), and a choice of homology

basis that degenerates to the homology basis of the singular curve in the lower figure. Each branch
cut (x−

k , x
+
k ) of the regular curve degenerates to the corresponding singular point ck of the multi-

monopole curve. For later use in subsection 3.2, an arbitrary point ξ ∈ (x+
k , x

−
k−1) that is well

separated from the endpoints of the interval has also been indicated.

Here, and for future use, we define the following shorthands,

ck = cos
(
kπ

N

)
, sk = sin

(
kπ

N

)
, k ∈ Z . (2.11)

Note that k can be any integer, though it will typically lie in the range 1 ≤ k ≤ N − 1.
Substituting (2.10) into (2.9), we see that y2 has N − 1 double zeroes at x = ck and two
simple zeroes at x = ±1. The simple zeroes correspond to non-singular branch points of
the curve, while the double zeroes indicate that the curve has N − 1 singular degeneration
points reflecting the N−1 massless monopoles, as represented in the lower panel of figure 1.

As we will review in section 2.3 below, the branch cuts of the non-singular Seiberg-
Witten curve in the vicinity of the multi-monopole point can be chosen so that the singular
points x = ck of the multi-monopole curve y2 =

(
C

(0)
N (x)

)2
− 1 arise from N − 1 branch

cuts that collapse to zero length. The only remaining branch cuts of the multi-monopole
curve run from +1 to +∞ and from −1 to −∞ along the real axis (see figure 1). Up to an
overall choice of sign (which amounts to a choice of Riemann sheet on the Seiberg-Witten
curve), this specification of the branch cuts allows us to define the square root of (2.9) as a
well-defined, holomorphic function on the cut x-plane (i.e. x ∈ C− {(−∞,−1) ∪ (1,∞)}).
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We choose the overall sign so that the following identity holds,√(
C

(0)
N (x)

)2 − 1 = − i

N

√
1− x2C

(0)
N (x)′ , −1 ≤ x ≤ 1 . (2.12)

In other words, the sign of the square root on the left-hand side varies with the sign of the
polynomial C(0)

N (x)′. The identity (2.12) extends to the entire cut x-plane, on which both
sides are holomorphic functions defined by analytic continuation. Throughout the remain-
der of the paper we will define all square roots we encounter by ensuring compatibility
with (2.12).

2.3 The vicinity of the multi-monopole point

In order to explore the neighborhood of the multi-monopole point, we deform (2.7) by
adding to the Chebyshev polynomial C(0)

N (x) a degree (N − 2) polynomial PN−2(x),22

CN (x) = C
(0)
N (x) + PN−2(x) . (2.13)

The N − 1 complex coefficients of PN−2(x) describe the N − 1 Coulomb branch directions
along which we can approach the multi-monopole point by taking these coefficients to be
sufficiently small (we will make this precise below). It is convenient to trade these N − 1
coefficients for the values Pk of PN−2(x) atN−1 distinct points, which we take to be x = ck,

Pk = PN−2(ck) , (k = 1, . . . , N − 1) . (2.14)

Conversely, we can express PN−2(x) in terms of the constants Pk using the Lagrange inter-
polation formula, which we can in turn write in terms of the Chebyshev polynomial C(0)

N (x),

PN−2(x) =
N−1∑
k=1

Pk

N−1∏
`=1
6̀=k

x− c`
ck − c`

=
N−1∑
k=1

Pk C
(0)
N (x)′

(x− ck)C(0)
N (ck)′′

. (2.15)

The addition of PN−2(x) in (2.13) deforms the zeroes of the curve y2 = (CN (x))2 − 1.
Recall from the discussion below (2.11) that the singular curve y2 =

(
C

(0)
N (x)

)2
− 1 at

the multi-monopole point has simple zeroes at x = ±1 and double zeroes at x = ck. The
effect of PN−2(x) is to shift the location of the simple zeroes, while the double zeroes split
into pairs of simple zeroes. Explicitly, and to leading order in PN−2(x), the zeroes of the
Seiberg-Witten curve occur at the following values of x,23

x0 = 1− δ0 , δ0 = PN−2(1)
N2 ,

x±k = ck ± δk , δ2
k = (−1)k2s2

kPk
N2 , (k = 1, . . . , N − 1) ,

xN = −1 + δN , δN = (−1)NPN−2(−1)
N2 .

(2.16)

22Recall from (2.3) that the O(xN ) and O(xN−1) terms in CN (x) are fixed (and in particular, that the
latter vanishes).

23To see this, we approximate the curve as y2 ' (C(0)
N (x))2−1+2C(0)

N (x)PN−2(x) and use the identity (2.9)
to expand (C(0)

N (x))2 − 1 around its zeroes at x = ck,±1. This requires evaluating C(0)
N (x) and its first two

derivatives at these zeroes, which can be done using the defining relation (2.7).
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If all Pk are non-zero, every one of these zeroes is simple and corresponds to a branch point
of the (everywhere non-singular) Seiberg-Witten curve. We choose the branch cuts to run
from +∞ to x0, from x+

k to x−k , and from xN to −∞ in the complex x-plane, as shown in
figure 1.

If we scale towards the multi-monopole point by taking all Pk → 0, then all δ’s in (2.16)
vanish, i.e. the simple zeroes at x0, xN approach +1,−1 respectively, while the branch cuts
connecting the simple zeroes x+

k and x−k collapse to singular double zeroes at ck. The length
of these cuts tracks the vanishing monopole masses as we approach the multi-monopole
point (see section 2.5 below). Below, we will always choose the Pk to be non-vanishing, but
sufficiently small to ensure that the cuts from x+

k to x−k (whose length is 2|δk|) are much
shorter than their distance to the nearest branch point.

We will evaluate the special Coulomb-branch coordinates ak and aDk as a function of
the Pk, to leading order in small Pk, by explicitly integrating the Seiberg-Witten differ-
ential λ in (2.6) over suitable A- and B-cycles (specified below) as in (2.5). Since λ is a
holomorphic one-form, the periods ak and aDk are locally holomorphic functions of the Pk.
(Globally they may be branched and can undergo monodromy.) We can therefore simplify
our computations by taking the Pk = (−1)k|Pk| to be small real numbers of alternating
sign, so that the δk in (2.16) are small, real, and positive, i.e. δk > 0. Using (2.15) we can
further check that these sign choices imply δ0, δN < 0. In summary,

Pk = (−1)k|Pk| , δk > 0 (k = 1, . . . , N − 1) , δ0 < 0 , δN < 0 . (2.17)

This leads to the simplified cut complex x-plane depicted in the upper panel of figure 1,
since all branch cuts now run along the real axis.

Before we can compute the ak and aDk periods we must choose a set of canonical A-
and B-cycles. Since we would like to associate the aDk with the light monopoles, we choose
the cycles Bk (k = 1, . . . , N − 1) to encircle the short branch cuts connecting x±k once,
in the counterclockwise direction (see figure 1).24 Note that these cycles do not cross any
branch cuts, so that the aD-periods aDk = 1

2πi
∮
Bk
λ in (2.5) can be evaluated on a single

sheet. This computation was carried out in [20] and will be reviewed in section 2.5.
In order to define a suitable basis of A-cycles Ak (k = 1, . . . , N − 1) conjugate to

the Bk defined above, we first define a simpler basis Âk of one-cycles that encircle the
first N−1 pairs of branch points in a counterclockwise direction, i.e. Â1 encircles x0 and x+

1 ,
while Âk (k = 2, . . . , N−1) encircles x−k−1 and x+

k .25 (Note that the cycle ÂN encircling the
final pair of branch points x−N−1 and xN is not linearly independent since ∑N

k=1 Âk = 0.)
The way in which the Âk cycles traverse the first and second sheets, as well as their
intersections with the Bk cycles, are shown in figure 1. Explicitly, Â1 intersects B1 in a
negative sense, while Âk (k = 2, . . . , N − 1) intersects Bk−1 in a positive sense and Bk in a
negative sense. Thus the Âk cycles are not themselves conjugate to the Bk cycles. However
they can be used to construct a basis of conjugate Ak cycles as follows,

Ak =
k∑
`=1

Â` . (2.18)

24This matches the conventions of the Bk cycles in [20], which agree with the αk cycles in [4].
25These Âk agree with the γk cycles in [4].
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This cycle intersects Bk in a negative sense, without intersecting any of the other B-cycles.26

We can therefore compute the a-periods ak = 1
2πi
∮
Ak
λ in (2.5) as follows,

ak =
k∑
`=1

â` , âk = 1
2πi

∮
Âk

λ (k = 1, . . . , N − 1) . (2.19)

The computation of the âk, and hence the ak, will be described in section 3.

2.4 Rewriting the Seiberg-Witten differential

The expansion of the a- and aD-periods around the multi-monopole point is substantially
complicated by the fact that the point around which we are expanding is singular. Fol-
lowing [20], this problem can be alleviated by a judicious rewriting of the Seiberg-Witten
differential, which involves stripping off a locally exact one-form. To this end, we first
introduce a family C(µ)

N (x) of degree N polynomials that linearly interpolate between the
Chebyshev polynomials C(0)

N (x) and the polynomial C(1)
N = CN (x) in (2.13),

C
(µ)
N (x) = C

(0)
N + µPN−2(x) , 0 ≤ µ ≤ 1 . (2.20)

We can then decompose the Seiberg-Witten differential λ in (2.6) as follows,

λ = λ̃+ dS . (2.21)

Here λ̃ is a locally defined meromorphic one-form given by the parametric integral

λ̃ = −
∫ 1

0
dµ

PN−2(x)dx√(
C

(µ)
N (x)

)2 − 1
, (2.22)

while S is a locally defined scalar function,

S(x) = x log

C(1)
N (x) +

√(
C

(1)
N (x)

)2 − 1

C
(0)
N (x) +

√(
C

(0)
N (x)

)2 − 1

− iN√1− x2 . (2.23)

Neither λ̃ nor S are globally well defined on the Seiberg-Witten curve. (In particular, λ̃ is
not a valid Seiberg-Witten differential.) The reason is that both λ̃ and S involve functions
whose branch points do not coincide with the zeroes (2.16) of the Seiberg-Witten curve.
We must therefore carefully define the branch cuts of the functions appearing in (2.22)
and (2.23), which we will do below.

Let us outline the derivation of the decomposition (2.21). It is straightforward to verify
the identity

∂

∂µ

 xC
(µ)
N (x)′dx√(

C
(µ)
N (x)

)2 − 1

 = − PN−2(x)dx√(
C

(µ)
N (x)

)2 − 1
+ d

 xPN−2(x)√(
C

(µ)
N (x)

)2 − 1

 . (2.24)

26Our Ak cycles agree with the βk cycles of [4].
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Integrating from µ = 0 to µ = 1 and recalling the definitions of λ, λ̃ in (2.6), (2.22) gives

λ− xC
(0)
N (x)′dx√(

C
(0)
N (x)

)2 − 1
= λ̃+ d

∫ 1

0
dµ

xPN−2(x)√(
C

(µ)
N (x)

)2 − 1

 . (2.25)

Note that the second term on the left-hand side is (minus) the Seiberg-Witten differential
of the multi-monopole curve.

We pause here to discuss the branch cuts of the functions appearing in (2.24) and (2.25).
The zeroes of the function

(
C

(µ)
N (x)

)2−1 can be obtained from the zeroes of
(
C

(1)
N (x)

)2−1
in (2.16) via a rescaling of PN−2(x) by µ. Explicitly, they occur at the following values of x,

x
(µ)
0 = 1−µδ0 , x

(µ)±
k = ck±

√
µδk (k = 1, . . . , N −1) , x

(µ)
N = −1 +µδN , (2.26)

with the δ’s given in (2.16). We therefore choose the branch cuts of
√(

C
(µ)
N (x)

)2 − 1 in

direct analogy with those of
√(

C
(1)
N (x)

)2 − 1 (see the discussion below (2.16)), i.e. running
from +∞ to x(µ)

0 , from x
(µ)+
k to x

(µ)−
k , and from x

(µ)
N to −∞ in the complex x-plane. As µ

varies, these cuts continuously interpolate between those of the singular multi-monopole
curve at µ = 0 and those of the non-singular Seiberg-Witten curve of interest at µ = 1 (see
both panels of figure 1).

We now continue to simplify (2.25), starting with the Seiberg-Witten differential of
the multi-monopole curve on the left-hand side. Using (2.12), we obtain

xC
(0)
N (x)′dx√(

C
(0)
N (x)

)2 − 1
= iNxdx√

1− x2
= d

(
−iN

√
1− x2

)
, |x| < 1 . (2.27)

Note that our choice of branch cuts in (2.12) implies that the branch cuts of (2.27) run
from ±1 to ±∞, with no branch cut between −1 and 1. Finally, we can carry out the
definite µ integral in (2.25) by changing variables to µ̃ = C

(0)
N + µPN−2,

∫ 1

0
dµ

xPN−2(x)√(
C

(µ)
N (x)

)2 − 1
= x

∫ C
(1)
N

C
(0)
N

dµ̃√
µ̃2 − 1

= x log

C(1)
N (x) +

√(
C

(1)
N (x)

)2 − 1

C
(0)
N (x) +

√(
C

(0)
N (x)

)2 − 1

 .

(2.28)
It follows from the discussion below (2.26) that the branch cuts of this function lie entirely
within the intervals (1,+∞), (x−k , x

+
k ), and (−∞,−1).

Substituting (2.27) and (2.28) into (2.25), we obtain the decomposition λ = λ̃ +
dS in (2.21), with λ̃ and S as defined in (2.22) and (2.23). Along the way we have
seen that λ̃ and S are not globally well defined on the Seiberg-Witten curve. They can
however be defined in the cut x-plane, and we have chosen the cuts to lie entirely inside
the intervals (1,+∞), (x−k , x

+
k ) and (−∞,−1). Most of our calculations below will stay

away from these cuts. An exception occurs in section 3.5.

2.5 Expanding the aD-periods around the multi-monopole point

We now review the computation of the periods aDk = 1
2πi
∮
Bk
λ in (2.5) to leading order in

small PN−2(x), as described in [20], where the calculation was also carried out to higher
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orders. Along the Bk-cycles the one-form λ̃ and the scalar function S in (2.22) and (2.23)
are single valued. (Recall the discussion at the end of section 2.4.) We are therefore
free to use the decomposition λ = λ̃ + dS in (2.21) and drop the exact term dS in the
computation of aDk. Substituting the explicit form of λ̃ in (2.22), and working to leading
order in PN−2(x), we thus find

aDk = 1
2πi

∮
Bk

λ̃ = − 1
2πi

∮
Bk

PN−2(x)dx√(
C

(0)
N (x)

)2 − 1
. (2.29)

We now use (2.12) to simplify the square root in the denominator,

1√(
C

(0)
N (x)

)2 − 1
= iN

C
(0)
N (x)′

√
1− x2

. (2.30)

Since C(0)
N (x)′ has simple zeroes at x = c` (` = 1, . . . , N − 1) (see e.g. (2.10)), and only

the zero at x = ck is encircled by the cycle Bk, we can use (2.30) to evaluate (2.29) by
residues,27

aDk = − iNPk

C
(0)
N (ck)′′sk

= i(−1)k skPk
N

. (2.31)

As expected, aDk vanishes as Pk → 0. Note that the alternating sign choices for Pk
in (2.17) translate into the statement that all aDk ∈ iR+.

For future reference, we substitute (2.31) into (2.15) (and use footnote 27) to express
the polynomial PN−2(x) in terms of the aDk,

PN−2(x) = i

N
C

(0)
N (x)′

N−1∑
k=1

skaDk
x− ck

. (2.32)

We can similarly express δk in (2.16) directly in terms of aDk,

δ2
k = (−1)k2s2

kPk
N2 = −2i

N
skaDk . (2.33)

3 Expanding the a-periods around the multi-monopole point

3.1 Setting up the computation of the ak

In this section we present a direct calculation of the periods ak = 1
2πi
∮
Ak
λ in (2.5) to leading

order in small PN−2. As described around equation (2.19) our strategy is to calculate the
periods âk = 1

2πi
∮
Âk
λ, from which the ak-periods are readily obtained. This calculation is

substantially more involved than the calculation of the aD-periods reviewed in section 2.5.
The reason is that Âk cycles necessarily cross branch cuts as they traverse the two sheets
of the Seiberg-Witten curve (see the upper panel of figure 1). Consequently, they cannot
be evaluated using residues. A related complication is that the decomposition λ = λ̃+ dS

27As in footnote 23, we evaluate C(0)
N (ck)′′ = (−1)k+1N2

s2
k

by differentiating (2.7).
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introduced in (2.21) is more delicate, because λ̃ and S are not single valued along the Âk
cycles. In particular, the differential dS (though locally exact) contributes to the integral.

We begin by converting the period integral over Âk into an ordinary real integral
connecting neighboring branch points of the Seiberg-Witten curve. Taking into account
the counterclockwise orientation of the Âk cycles (see figure 1), which leads to a minus
sign, and the fact that both the cycles and the Seiberg-Witten differential λ are odd under
the hyper-elliptic involution (x, y)→ (x,−y), which leads to a factor of 2, we can write

â1 = − 1
πi

∫ x0

x+
1

λ , âk = − 1
πi

∫ x−
k−1

x+
k

λ (k = 2, . . . , N − 2) . (3.1)

The locations of the branch points x0, x
±
k are given by (2.16) (see also the upper panel of

figure 1). In the remainder of the paper, we explain how to evaluate the definite integrals
in (3.1) to leading order in small PN−2.

Despite the aforementioned subtleties, it is useful to decompose λ = λ̃+dS as in (2.21),
with λ̃ and S given by (2.22) and (2.23). This leads to a corresponding decomposition of âk,

âk = ãk + a
(S)
k . (3.2)

Here ãk is the contribution obtained by replacing λ in (3.1) with λ̃ defined in (2.22),

ã1 = − 1
πi

∫ x0

x+
1

λ̃ = 1
πi

∫ 1

0
dµ

∫ x0

x+
1

dx
PN−2(x)√(
C

(µ)
N (x)

)2 − 1
,

ãk≥2 = − 1
πi

∫ x−
k−1

x+
k

λ̃ = 1
πi

∫ 1

0
dµ

∫ x−
k−1

x+
k

dx
PN−2(x)√(
C

(µ)
N (x)

)2 − 1
.

(3.3)

Analogously, the contribution a(S)
k in (3.2), which is due to the exact differential dS, reduces

to a set of boundary contributions from the limits of the definite integrals in (3.1),

a
(S)
1 = 1

πi

(
S(x+

1 )− S(x0)
)
, a

(S)
k≥2 = 1

πi

(
S(x+

k )− S(x−k−1)
)
. (3.4)

3.2 The integrals ãk≥2

We start by evaluating ãk≥2 in (3.3),

ãk≥2 = 1
πi

∫ 1

0
dµ

∫ x−
k−1

x+
k

dx
PN−2(x)√(
C

(µ)
N (x)

)2 − 1
, (3.5)

to leading order in small PN−2. For convenience, we recall some formulas from (2.16)
and (2.20),

x+
k = ck + δk , x−k−1 = ck−1 − δk−1 , C

(µ)
N (x) = C

(0)
N + µPN−2(x) . (3.6)

Although the quantity PN−2 in which we would like to expand appears in the numerator
of the integrand, it is not legal to set it to zero in the limits of the integral and under the
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square root in the denominator. To see this, and to get some intuition for how to proceed,
we study the singularities of the integral (3.5) in more detail.

The polynomial
(
C

(µ)
N (x)

)2 − 1 has simple zeroes, which are listed in (2.26). Together
with the product representation for

(
C

(0)
N (x)

)2 − 1 (implied by (2.9), (2.10)), we deduce

(
C

(µ)
N (x)

)2 − 1 = 22N−2(x− 1 + µδ0)(x+ 1− µδN )
N−1∏
k=1

(
(x− ck)2 − µδ2

k

)
. (3.7)

This shows that the denominator of the integrand in (3.5) is non-singular as long as 0 ≤ µ <
1. At the endpoint µ = 1 of the µ-integral, one simple zero of the polynomial (3.7) collides
with the endpoint at x+

k of the x-integral, while another simple zero of (3.7) collides with
the other endpoint at x−k−1. Although the resulting square root singularities are integrable,
they modify the expansion of the integral in the small perturbation PN−2.

In order to treat these two singularities, it is convenient to temporarily separate them
by introducing a midpoint ξ ∈ (x+

k , x
−
k−1) (which is arbitrary but chosen to be well separated

from either endpoint, as shown in the upper panel of figure 1) and splitting the x-integral
in (3.5) as follows,

ãk≥2 = 1
πi

∫ 1

0
dµ

∫ ξ

x+
k

dx
PN−2(x)√(
C

(µ)
N (x)

)2 − 1
+ 1

πi

∫ 1

0
dµ

∫ x−
k−1

ξ
dx

PN−2(x)√(
C

(µ)
N (x)

)2 − 1
. (3.8)

In the first integral (over x ∈ [x+
k , ξ]) only the singularity at x+

k = ck + δk is relevant, so
that we can set all other δ’s in (3.7) to zero,

(
C

(µ)
N (x)

)2 − 1 ' 22N−2(x2 − 1)
(
(x− ck)2 − µδ2

k

)N−1∏
`=1
` 6=k

(x− c`)2

= (x2 − 1)
(
(x− ck)2 − µδ2

k

)
N2(x− ck)2

(
C

(0)
N (x)′

)2
.

(3.9)

Here we have used (2.10) to obtain the second line. Analogously, only the singularity
at x−k−1 = ck−1 − δk−1 is relevant in the second x-integral (over x ∈ [ξ, x−k−1]) in (3.8),
which can therefore be evaluated by approximating

(
C

(µ)
N (x)

)2 − 1 ' 22N−2(x2 − 1)
(
(x− ck−1)2 − µδ2

k−1

) N−1∏
`=1

` 6=k−1

(x− c`)2

=
(x2 − 1)((x− ck−1)2 − µδ2

k−1)
N2(x− ck−1)2

(
C

(0)
N (x)′

)2
.

(3.10)

We must now take the square roots of (3.9) and (3.10), whose sign is fixed by comparing
with (2.12). Since x−ck > 0 and x−ck−1 < 0 have opposite signs on the interval [x+

k , x
−
k−1],

we obtain the following two approximations,√(
C

(µ)
N (x)

)2 − 1 ' − i

N

C
(0)
N (x)′
x− ck

√
(1− x2)((x− ck)2 − µδ2

k)

' i

N

C
(0)
N (x)′

x− ck−1

√
(1− x2)((x− ck−1)2 − µδ2

k−1) .
(3.11)
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We can use the approximations on the first and second line to simplify the first and second
integrals in (3.8), respectively. Substituting the representation (2.32) for PN−2(x) into
these integrals, we find that the polynomial C(0)

N (x)′ cancels, so that

ãk≥2 =− 1
πi

∫ 1

0
dµ

∫ ξ

ck+δk
dx

skaDk + (x− ck)
∑N−1
`=1,` 6=k

s`aD`
x−c`√

(1− x2)((x− ck)2 − µδ2
k)

+ 1
πi

∫ 1

0
dµ

∫ ck−1−δk−1

ξ
dx

sk−1aD,k−1 + (x− ck−1)∑N−1
`=1,` 6=k−1

s`aD`
x−c`√

(1− x2)((x− ck−1)2 − µδ2
k−1)

.

(3.12)

In order to further simplify this integral, we collect terms I(aDk) whose numerators are
proportional to aDk, terms J(aD,k−1) whose numerators are proportional to aD,k−1, and a
remainder R(aD,` 6=k,k−1),28

ãk≥2 ≡ I(aDk) + J(aD,k−1) +R(aD,` 6=k,k−1) . (3.13)

We now proceed to define, simplify, and evaluate the integrals I(aDk), J(aD,k−1),
and R(aD,` 6=k,k−1):

(1) The integral I(aDk) in (3.13) contains all terms in (3.12) whose numerator is propor-
tional to aDk,

I(aDk) =− 1
πi

∫ 1

0
dµ

∫ ξ

ck+δk
dx

skaDk√
(1− x2)((x− ck)2 − µδ2

k)

+ 1
πi

∫ 1

0
dµ

∫ ck−1−δk−1

ξ
dx

skaDk
x−ck−1
x−ck√

(1− x2)((x− ck−1)2 − µδ2
k−1)

.

(3.14)

Since the numerator of the second integral has a simple zero at x = ck−1, and we are
only working to leading order in small aD`, it is permissible to take δk−1 → 0 in the
upper limit of this integral, while approximating its integrand as follows,

x−ck−1
x−ck√

(x− ck−1)2 − µδ2
k−1

' − 1
x− ck

' − 1√
(x− ck)2 − µδ2

k

. (3.15)

To leading order in small aD`, the two integrals in (3.14) thus combine into a single
integral, which no longer depends on the auxiliary midpoint ξ,

I(aDk) = − 1
πi

∫ 1

0
dµ

∫ ck−1

ck+δk
dx

skaDk√
(1− x2)((x− ck)2 − µδ2

k)
. (3.16)

As explained in appendix B.2, this integral can be evaluated explicitly,29 with the
following result,

I(aDk) = −aDk
πi

(
log 4s2

k(ck−1 − ck)
(1− c2k−1)δk

− 1
2

)
. (3.17)

28Below we will see that the integrals I(aDk), J(aD,k−1), and R(aD,` 6=k,k−1) do in fact only depend on
the indicated variables to leading order in small aD`. This is no longer the case at higher orders.

29It is shown in appendix B.2 that the integrand of (3.16) can be expanded in an absolutely convergent
power series as long as 0 ≤ µ < 1. This power series can then be integrated term-by-term in x and µ. Note
the crucial role played by the auxiliary parameter µ in this approach.
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(2) The integral J(aD,k−1) in (3.13) consists of all terms in (3.12) whose numerator is
proportional to aD,k−1,

J(aD,k−1) = − 1
πi

∫ 1

0
dµ

∫ ξ

ck+δk
dx

sk−1aD,k−1
x−ck
x−ck−1√

(1− x2)((x− ck)2 − µδ2
k)

+ 1
πi

∫ 1

0
dµ

∫ ck−1−δk−1

ξ
dx

sk−1aD,k−1√
(1− x2)((x− ck−1)2 − µδ2

k−1)
.

(3.18)

In exact analogy with the discussion around (3.15), we take δk → 0 in the first integral
and rewrite its integrand so that it can be combined with the second integral. In total,

J(aD,k−1) = 1
πi

∫ 1

0
dµ

∫ ck−1−δk−1

ck

dx
sk−1aD,k−1√

(1− x2)((x− ck−1)2 − µδ2
k−1)

. (3.19)

By comparing with (3.16), we see that the integrals J(aD,k−1) and I(aD,k) are re-
lated by a suitable redefinition of parameters. This redefinition is explained in ap-
pendix B.3, where we show that

J(aD,k−1) = aD,k−1
πi

(
log

4s2
k−1(ck−1 − ck)

(1− c2k−1)δk−1
− 1

2

)
. (3.20)

(3) The remainder R(aD,` 6=k,k−1) in (3.13) consists of all terms in (3.12) whose numerators
do not contain aDk or aD,k−1. Making approximations analogous to those we applied
to I(aDk) and J(aD,k−1) above, we can express

R(aD,` 6=k,k−1) = − 1
πi

N−1∑
`=1
6̀=k,k−1

∫ ck−1

ck

dx√
1− x2

s`aD`
x− c`

. (3.21)

It is straightforward to evaluate this integral using substitution (see appendix B.1),

R(aD,` 6=k,k−1) = − 1
πi

N−1∑
`=1
6̀=k,k−1

aD` log (ck−1 − c`)(1− ck+`)
(ck − c`)(1− ck+`−1) . (3.22)

Finally, we substitute (3.17), (3.20), (3.22) into (3.13) to obtain a formula for ãk≥2,

ãk≥2 =− aDk
πi

(
log 4s2

k(ck−1 − ck)
(1− c2k−1)δk

− 1
2

)
+ aD,k−1

πi

(
log

4s2
k−1(ck−1 − ck)

(1− c2k−1)δk−1
− 1

2

)

− 1
πi

N−1∑
`=1

` 6=k,k−1

aD` log (ck−1 − c`)(1− ck+`)
(ck − c`)(1− ck+`−1) .

(3.23)
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3.3 The integral ã1

We now evaluate ã1 in (3.3),

ã1 = 1
πi

∫ 1

0
dµ

∫ x0

x+
1

dx
PN−2(x)√(
C

(µ)
N (x)

)2 − 1
, (3.24)

to leading order in small PN−2. Recall from (2.16), (2.17) that

x+
1 = c1 + δ1 , δ1 > 0 , x0 = 1− δ0 , δ0 = PN−2(1)

N2 < 0 , (3.25)

and from (3.7) that
(
C

(µ)
N (x)

)2 − 1 has a simple zero at x = 1 − µδ0 that does not collide
with any other zeros in the limit PN−2(x) → 0. To the order of interest to us, we can
therefore evaluate the integral (3.24) by approximating the upper limit of the x-integral
as x0 ' 1. Following the same logic as for the ãk≥2 in section 3.2 above, we can now
approximate the square root in the denominator using the first line of (3.11) for k = 1 and
all x ∈ [x+

1 , 1]. As before, we then substitute (2.32) for PN−2(x) to obtain the following
simplification of the integral (3.24),

ã1 = − 1
πi

∫ 1

0
dµ

∫ 1

c1+δ1
dx

s1aD1 +∑N−1
`=2 s`aD`

x−c1
x−c`√

(1− x2)((x− c1)2 − µδ2
1)

. (3.26)

We can set δ1 → 0 in the second term, so that

ã1 =− 1
πi

∫ 1

0
dµ

∫ 1

c1+δ1
dx

s1aD1√
(1− x2)((x− c1)2 − µδ2

1)

− 1
πi

∫ 1

0
dµ

∫ 1

c1

dx√
1− x2

N−1∑
`=2

s`aD`
x− c`

.

(3.27)

Comparing with (3.16), we see that the first integral in (3.27) is exactly I(aD1), while
comparing with (3.21) shows that the second integral in (3.27) is R(aD,` 6=1), i.e. both
can be obtained by setting k = 1 in (3.16) and (3.21). Evaluating these integrals by
setting k = 1 in (3.17) and (3.22), we find that

ã1 = −aD1
πi

(
log

(
4s2

1
δ1

)
− 1

2

)
− 1
πi

N−1∑
`=2

aD` log 1− c`+1
c1 − c`

. (3.28)

Note that this coincides with (3.23) evaluated at k = 1, as long as we declare that aD0 = 0.

3.4 The boundary terms a
(S)
k≥2

We begin by evaluating the boundary contributions a(S)
k≥2 in (3.4),

a
(S)
k≥2 = 1

πi

(
S(x+

k )− S(x−k−1)
)
. (3.29)
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The function S(x) was defined in (2.23), which we repeat here,

S(x) = x log

C(1)
N (x) +

√(
C

(1)
N (x)

)2 − 1

C
(0)
N (x) +

√(
C

(0)
N (x)

)2 − 1

− iN√1− x2 , (3.30)

where C(1)
N (x) = C

(0)
N (x)+PN−2(x). The location of the branch points x±k is given by (2.16)

(see also (2.17)),

x±k = ck ± δk , δk > 0 , (k = 1, . . . , N − 1) . (3.31)

Since the x±k are zeros of
(
C

(1)
N (x)

)2 − 1, it follows that C(1)
N (x±k ) = ±1. We can also

use (2.7) to show that C(0)
N (ck) = (−1)k. Since these expressions must agree as PN−2 → 0,

we obtain the following exact statement,

C
(1)
N (x±k ) = C

(0)
N (ck) = (−1)k . (3.32)

Substituting into (3.30), we find that

S(x±k ) = fk(x±k ) , (3.33)

where the function fk(x) is defined as follows,

fk(x) = −x log
(

(−1)k
(
C

(0)
N (x) +

√(
C

(0)
N (x)

)2 − 1
))
− iN

√
1− x2 . (3.34)

Here we must use (2.12) to fix the branch of the square root. It is now straightforward to
expand this function around x = ck,30 which in turn gives

S(x±k ) = fk(ck ± δk) = −iNsk −
iN

2sk
δ2
k + · · · . (3.35)

Substituting into (3.29) and using δ2
k = − 2i

N skaDk (see (2.33)), we obtain

a
(S)
k≥2 = −N

π
(sk − sk−1) + i

π
(aDk − aD,k−1) . (3.36)

3.5 The boundary term a
(S)
1

The last contribution we will need is a(S)
1 in (3.4),

a
(S)
1 = 1

πi

(
S(x+

1 )− S(x0)
)
. (3.37)

In (3.35) we have already evaluated

S(x+
1 ) = −iNs1 −

iN

2s1
δ2

1 . (3.38)

We must now calculate S(x0), where x0 = 1 − δ0, with δ0 = 1
N2PN−2(1) < 0, is a simple

zero of
(
C

(1)
N (x)

)2− 1 (see (2.16) and (2.17)). Since it follows from (2.33) that PN−2(x) —
30We use (2.7) to compute derivatives of C(0)

N (x), yielding fk(ck) = −iNsk, f ′k(ck) = 0, and f ′′k (ck) = − iN
sk

.
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and hence δ0 — is linear in the aDk, we are free to drop terms beyond first order in δ0. In
fact, we will show that S(x0) vanishes to this order,

S(x0) ' 0 . (3.39)

To see this we must — for the first and only time in this paper — explicitly contend
with the branch cuts of S(x). As explained below (2.28), these branch cuts lie entirely inside
the intervals (1,+∞), (x−k , x

+
k ) and (−∞,−1),31 but so does the point x0 = 1 − δ0 > 1.

If we naively proceed as in section 3.4 above and attempt to evaluate S(x0) by expanding
the function S(x) in (3.30) around x = 1, we find32

S(1− δ0) naive' −N
√
−2δ0 − iN

√
2δ0 . (3.40)

As we are evaluating S(x) on one of its branch cuts, it is not surprising that we encounter
sign ambiguities. Since δ0 < 0, we choose the first square root in (3.40) to be positive,√
−2δ0 > 0. As we will see, the relative sign between the two square roots in (3.40) is

then fixed so that the second square root
√

2δ0 = i
√
−2δ0 exactly cancels the first one,

leading to (3.39).
Importantly, this cancellation must occur on physical grounds: the contributions to

the a-periods computed in (3.23) and (3.28) already saturate the required monodromies
around the multi-monopole point (see (1.7)). Therefore all other contributions must be
analytic in the aDk, which would not be the case if the square roots in (3.40) did not
cancel. To see how this cancellation comes about explicitly, we must reexamine the origins
of the two square roots in turn.

The first square root term −N
√
−2δ0 < 0 in (3.40) comes from expanding the logarith-

mic term in (3.30). As explained in section 2.4, this term arises from the integral in (2.28).
It follows that the square root that appears in the denominator of that integral must be
positive. To see this explicitly, we examine the first integral

∫ 1
0 dµ

xPN−2(x)√(
C

(µ)
N (x)

)2
−1

in (2.28)

at x = x0 = 1− δ0. Since PN−2(x0) ' PN−2(1) < 0 (see (2.17)), it follows that the square
root in the denominator of the integral must be positive. Equivalently, we can analyze the
second form of the integral x

∫ C(1)
N (x)

C
(0)
N (x)

dµ̃√
µ̃2−1

in (2.28) at x = x0 = 1−δ0. Since C(1)
N (x0) = 1

and C(0)
N (x0) ' 1−N2δ0 > 1 (see footnote 32), the limits of integration render the integral

negative as long as the square root in the denominator is positive.
The second square root −iN

√
2δ0 in (3.40) comes from expanding the pure square

root term in (3.30). As was also explained in section 2.4, this term ultimately arises
from integrating the total x-derivative in (2.27) and picking up the boundary contribution
at x = x0. We can isolate this boundary contribution by integrating (2.27) from x = 1

31In (3.35) we evaluated S(x) at the branch points x = x±k , which lie at the boundary of these intervals.
Hence S(x) is single valued there.

32We use (3.32) for k = 0 to compute C(1)
N (x0) = C

(0)
N (1) = 1, as well as (2.7) to find C(0)

N (1)′ = N2. In
particular, we have C(0)

N (1− δ0) ' 1−N2δ0.
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to x = x0 = 1− δ0 > 1, since the boundary contribution at x = 1 vanishes,

− i
√

2δ0 ' −iN
√

1− x2
0 =

∫ x0

1
dx

xC
(0)
N (x)′√(

C
(0)
N (x)

)2 − 1
. (3.41)

Since C(0)
N (x)′ is positive over the integration region (which can be shown using footnote 32),

we conclude that the sign of (3.41) is set by the sign of the square root in the denominator
of the integrand on the right-hand side. However, this sign is not independent. Rather, it
must coincide with the signs of the square roots that appear in the integrands of the two
integrals in (2.28). (This ultimately follows from the identity (2.24), from which all results
in section 2.4 follow.) As we explained above, the latter signs must be positive to render
the first term in (3.40) negative. We thus conclude that the square root in the integrand
of (3.41), and hence the whole integral, is in fact positive. This completes the proof that
the second square root −iN

√
2δ0 = N

√
−2δ0 > 0 in (3.40) is positive and cancels the

negative first square-root term, which leads to (3.39).
Finally, we can substitute (3.38), (3.39) into (3.37) and use δ2

1 = − 2i
N s1aD1 (see (2.33))

to express our final answer for a(S)
1 as follows,

a
(S)
1 = −N

π
s1 + i

π
aD1 . (3.42)

Note that this coincides with (3.36) evaluated at k = 1, as long as we set aD0 = 0.

3.6 Final result for the ak

We will now combine our preceding results to determine the a-periods via (2.19) and (3.2),

ak =
k∑
`=1

â` , âk = ãk + a
(S)
k , (k = 1, . . . , N − 1) . (3.43)

We begin by assembling the answer for âk. As explained below (3.28) and (3.42), we can
use (3.23) for ãk and (3.36) for a(S)

k for all k = 1, . . . , N − 1, as long as we set aD0 = 0 in
these formulas. Substituting into (3.43) and simplifying, we find

âk = ãk + a
(S)
k

= −N
π

(sk − sk−1) + aDk
2πi

(
log

(
δ2
k

16s4
k

)
− 1

)
− aD,k−1

2πi

(
log

(
δ2
k−1

16s4
k−1

)
− 1

)

+ 1
2πi

N−1∑
`=1
` 6=k

aD` log (ck − c`)2

(1− ck+`)2 −
1

2πi

N−1∑
`=1

`6=k−1

aD` log (ck−1 − c`)2

(1− ck+`−1)2 .

(3.44)

Therefore the sum for ak in (3.43) telescopes, so that

ak = −N
π
sk + aDk

2πi

(
log

(
δ2
k

16s4
k

)
− 1

)
+ 1

2πi

N−1∑
`=1
6̀=k

aD` log (ck − c`)2

(1− ck+`)2 . (3.45)
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Finally, we substitute δ2
k = − 2i

N skaDk from (2.33) to obtain the final answer,

ak = −N
π
sk + aDk

2πi

(
log

(
−iaDk
8Ns3

k

)
− 1

)
+ 1

2πi

N−1∑
`=1
`6=k

aD` log (ck − c`)2

(1− ck+`)2 . (3.46)

In order to make contact with the formulas in the introduction, we restore the strong
coupling scale Λ by suitably inserting 1 = 2Λ into (3.46),33 and by using trigonometric
identities to simplify the argument of the second logarithm in (3.46),

ak = −2NΛ
π

sk + aDk
2πi

(
log

(
−iaDk

16NΛs3
k

)
− 1

)
+ 1

2πi

N−1∑
`=1
` 6=k

aD` log
sin2 (k+`)π

2N

sin2 (k−`)π
2N

. (3.47)
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A Comparison with Douglas and Shenker

In this appendix we review some of the results obtained in [4] in our conventions. We then
extend these results to obtain an alternative derivation of the threshold matrix tk` in (1.9).

A.1 Review

First, we show that our Seiberg-Witten curve, as well as our strong-coupling scale Λ, are
identical to those used in [4]. By contrast, our Seiberg-Witten differential λ differs from
their differential λ̃ by a sign, i.e. λ̃ = −λ. Since our A- and B-cycles agree with theirs (see
footnotes 24–26), this means that their ãk- and ãDk-periods differ from our ak- and aDk-
periods by an overall sign, i.e. (ãk, ãDk) = (−ak,−aDk). Note that these signs cancel
in τDk` = ∂ak

∂aD`
= τ̃Dk`, so that our gauge couplings agree.

To see this explicitly, let us denote the strong-coupling scale of [4] by Λ̃. In units
where Λ̃ = 1, the Seiberg-Witten curve and differential used in [4] take the following form
(see the discussion around (2.5) in [4]),

y2 = P̃ (x̃)2 − 1 , P̃ (x̃) = 1
2 x̃

N +O(x̃N−2) , λ̃ = x̃dP̃

y
. (A.1)

We now change variables by writing x̃ = 2x. Comparing with (2.1) and (2.3) we see that
our conventions for the Seiberg-Witten curve match if we identify CN (x) = P̃ (x̃ = 2x).
Substituting into (A.1) we see that λ̃ = 2xC ′N (x)dx/y appears to match our Seiberg-Witten

33Recall that we set Λ = 1
2 around (2.6), and that both ak and aDk have mass-dimension one.
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differential λ in (2.4) if we set Λ = 1, so that the strong-coupling scales Λ and Λ̃ also agree.
In fact, the two differentials differ by a sign, λ̃ = −λ, because the authors of [4] choose the
opposite branch of the square root in equation (2.12) (see their equation (2.9)), and hence
the opposite sign for y. For the remainder of this appendix we work in our conventions,
i.e. we use our Seiberg-Witten differential λ, and we set Λ = 1

2 unless otherwise indicated.
The scaling trajectory of [4] is given by P̃ (s)(x̃) = esP̃ (0)(e−s/N x̃), where P̃ (0)(x̃) =

cos(N arccos x̃2 ). (See the discussion below equation (5.1) in [4].) Comparing with (2.7)
and the discussion above, we see that the scaling trajectory in our conventions is given by

C
(s)
N (x) = esP̃ (0)

(
e−

s
N 2x̃

)
= esC

(0)
N

(
e−

s
N x
)
. (A.2)

Here C(0)
N (x) = cos(N arccosx) is the Chebyshev polynomial in (2.7) that describes the

singular curve at the multi-monopole point. Expanding (A.2) to first order in s and com-
paring with (2.13), we find that the degree-(N − 2) polynomial describing the approach to
the multi-monopole point as s→ 0 is given by

PN−2(x) = s

(
C

(0)
N (x)− x

N
C

(0)
N (x)′

)
+O(s2) . (A.3)

Note that the leadingO(xN ) term cancels out, so that PN−2(x) does indeed have degreeN−
2. From this we compute Pk = PN−2(ck) = (−1)ks. Substituting into (2.31), we find that

aDk = isk
N
s+O(s2) = 2iΛsk

N
s+O(s2) . (A.4)

Here we have restored Λ, which was previously set to Λ = 1
2 . This establishes the for-

mula (1.14) quoted in the introduction.34

The authors of [4] compute the magnetic gauge coupling matrix τDk`(s) along their
scaling trajectory. They show that this matrix is exactly diagonalizable in a basis of sine
functions, so that35

τDk`(s) = 2
N

N−1∑
p=1

τD(p, s)spksp` (A.5)

Here the eigenvalues τD(p, s) are given in (5.12) of [4] (up to the overall factor of i, which
is missing there),

τD(p, s) = i

2 sin πp
2N

F (p, s)
G(p, s) , (p = 1, . . . , N − 1) , (A.6)

where the functions F (p, s) and G(p, s) are defined via the following integrals in (5.9)
and (5.10) of [4],

F (p, s) = 1
π

∫ b

−b
dθ

cos
(
(1− p

N )θ
)

√
e−2s − sin2 θ

, b = arcsin e−s ,

G(p, s) = 1
π

∫ a

−a
dθ

cos
(
(1− p

N )θ
)

√
cos2 θ − e−2s

, a = arccos e−s .
(A.7)

34Note that setting Λ = 1 in (A.4) should reduce to minus equation (5.4) in [4]. It does so up to an
overall factor of (−2) that is missing in [4].

35Here we invert equation (5.11) in [4] using
∑N−1

p=1 spksp` = N
2 δk`.
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In [4] these integrals were only evaluated for small s and small p
N ,

F (p, s) = 1
π

sin πp

2N (− log s) + 1 +O
(
p

N

)
+O(s) , G(p, s) = 1 +O(s) . (A.8)

Substituting into (A.6) gives

τD(p, s) = − i

2π log s+ iN

πp
+O(1) +O(s) , (A.9)

whereO(1) refers to the expansion in small p
N . This agrees with (5.14) in [4] once the answer

there is consistently expanded in small p
N (and again including a missing factor of i).

To compute τDk`(s), we substitute (A.9) back into (A.5) (and use footnote 35),36

τDk`(s) = − i

2πδk` log s+ 2
N

N−1∑
p=1

(
iN

πp
+O(1)

)
spksp` +O(s) . (A.10)

The leading logarithm exactly agrees with the one in (5.16) of [4]. We must now analyze
the subleading terms in (A.10), which approach a finite constant as s → 0. Following [4]
we show that the sum over p can be reliably evaluated in the large-N limit. To this end,
we let ρ = p

N and convert the sum over p to an integral over ρ,

2
N

N−1∑
p=1

(
iN

πp
+O(1)

)
spksp` ' 2

∫ 1− 1
N

1
N

dρ

(
i

πρ
+O(1)

)
sin πkρ sin π`ρ . (A.11)

We distinguish two cases:

(1) If either k
N or `

N vanish as N →∞ then the corresponding sine functions in the inte-
grand of (A.11) vanish at the lower limit of the integral and can be Taylor expanded
there. This cancels the 1

ρ pole and renders the integral finite in the large-N limit. A
reliable computation of this finite contribution requires knowledge of the O(1) terms
in (A.11).

(2) If both k and ` are O(N) then both sine functions in (A.11) approach non-zero O(1)
constants at ρ = 1

N . The integral is therefore dominated by the 1
ρ divergence there,

which can be reliably computed without knowing the O(1) terms in (A.11),

2i
π

∫ 1− 1
N

1
N

dρ

ρ
sin πkρ sin π`ρ ' − i

π

∫ 1
N dρ

ρ

(
cos

(
πρ(k − `)

)
− cos

(
πρ(k + `)

))
' − i

π
Ci
(
π(k − `)

N

)
+ i

π
Ci
(
π(k + `)

N

)
. (A.12)

Here Ci(x) =
∫ x
∞

dt
t cos t is the cosine integral function, which is bounded away from

x = 0, but diverges as Ci(x) = log x + O(1) when x → 0. Here we have performed
36Note that some of the formulas below, e.g. (A.10) or (A.12), are similar to (1.11) in footnote 11.

However, the latter formula for the off-diagonal elements of tk` is exact, while the former equations are only
large-N approximations.

– 27 –



J
H
E
P
0
9
(
2
0
2
1
)
0
0
3

the computation for k > `; the answer for k < ` can be inferred by symmetry, and
when k = ` the first cosine integral function in (A.12) is replaced by log 1

N .

Since k and ` are both O(N) (see above), the second cosine integral function in (A.12)
is O(1) in the large-N limit. The only way the first cosine integral function can avoid
a similar fate is if k−`

N vanishes at large N , so that Ci
(
π(k−`)
N

)
= log k−`

N + O(1).
Substituting back into (A.10) we thus find that

τDk`(s) = − i

2πδk` log s+ i

2π log N2

(k − `)2 +O(1) +O(s) . (A.13)

Here the O(1) terms are s-independent and finite in the large-N limit. The second
logarithm in (A.13) is only reliable if k−`

N → 0 as N → ∞. (As explained above, a
special case is k = `, where we retain the logN2 but omit the factor (k − `)2 in the
denominator of the logarithm.) If instead k−` = O(N), then this logarithm becomes
part of the O(1) terms, which were not computed in [4].37

A.2 Some new results

We now explain how to extend the results of [4] reviewed above to exactly compute the
constant terms in τDk`(s) at small s. To this end, we must expand the function F (p, s)
in (A.7) at small s, but work exactly in p. To this end we expand

b = arcsin e−s = π

2 −
√

2s+O(s3/2) . (A.14)

To get our bearings, we begin by substituting this into (A.7) and naively expanding both
the limits of the integral and the integrand,

F (p, s) ' 2
π

∫ π
2−
√

2s

0
dθ

cos
(
(1− p

N )θ
)

√
e−2s − sin2 θ

' 2
π

∫ π
2−
√

2s

0
dθ cos

((
1− p

N

)
θ

)
×
( 1

cos θ + s

cos3 θ
+ s2

( 3
2 cos5 θ

− 1
cos3 θ

)
+O(s3)

) (A.15)

Note that all cosines in the denominators of the integrand diverge at the upper endpoint
of the integral when s→ 0. Let us estimate this divergence by considering

∫ π
2−
√

2s

0
dθ

cos
((

1− p
N

)
θ
)

cosd θ = −
∫ √2s

π
2

dχ
sin
(
πp
2N +

(
1− p

N

)
χ
)

sind χ
, (A.16)

37Note that (A.13) should agree with equation (5.16) in [4] as long as k = αN + k̂ and ` = αN + ̂̀
with α = O(1) and k̂

N
, ̂̀
N
→ 0 as N →∞. Expanding (5.16) in [4] in this regime yields

τDk`(s) = − i

2π δk` log s+ i

2π log
(

cos2 πα
(k − `)2

N2

)
+O(1) +O(s) .

This only agrees with (A.13) if we flip the sign of the second logarithm and restrict α 6= 1
2 .
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where we have changed variables to χ = π
2 − θ. Since the divergence arises from the

vanishing sine in the denominator as s → 0, we can extract the leading divergence by
Taylor expanding the integrand around χ = 0, so that (A.16) reduces to

− sin πp

2N

∫ √2s dχ

χd
= sin πp

2N


1

d− 1
1

(2s) d−1
2

if d 6= 1

−1
2 log 2s if d = 1

. (A.17)

This shows that all terms in the integrand of (A.15) that are of the form sn(cos θ)−2n−1

contribute either ∼ log s (if n = 0) or O(1) (if n ≥ 1) as s → 0, while all other terms are
subleading.

In order to resum all leading terms, we expand the square root in (A.15) using (B.12)
from appendix B.2,

1√
cos2 θ − 2s+O(s2)

= 1
cos θ +

∞∑
n=1

Γ(n+ 1
2)

Γ(1
2)n!

(2s)n
cos2n+1 θ

+ · · · , (A.18)

where the ellipsis denotes all subleading terms of the form sn(cos θ)−k with k < 2n + 1.
Substituting back into (A.15), we can carry out the χ integral over all n ≥ 1 terms in (A.18)
using (A.17),

F (p, s) ' 2
π

∫ π
2−
√

2s

0
dθ

cos
((

1− p
N

)
θ
)

cos θ + 2
π

sin πp

2N

∞∑
n=1

Γ(n+ 1
2)

Γ(1
2)n! 2n

. (A.19)

The sum over n can be performed using Mathematica and evaluates to log 2.38

The remaining integral in (A.19) must be expanded up to and including O(1) for
small s. (Note that evaluating its leading divergence using (A.17) only captures the loga-
rithmically divergent piece of the integral.) This can also be done using Mathematica,

2
π

∫ π
2−
√

2s

0
dθ

cos
((

1− p
N

)
θ
)

cos θ

= 2
π

sin πp

2N

(
−1

2 log s− 3
2 log 2− γ − ψ

(
p

2N

)
− π

2 cot πp2N

)
. (A.20)

Here γ is Euler’s constant and ψ(x) is the digamma function. Using Gauss’ digamma
theorem (see for instance equation (29) on page 19 of [27]), we can evaluate

ψ

(
p

2N

)
= −γ − 2 log 2− logN − π

2 cot πp2N + 2
N−1∑
q=1

cpq log sin πq

2N , (A.21)

38To see this analytically, we can again use (B.12) to express
∞∑
n=1

Γ(n+ 1
2 )

Γ( 1
2 )n!2n

=
∫ 1

0

dx

x

(
1√

1− x2
− 1
)

= log 2 .

To show that the integral indeed evaluates to log 2, we replace its lower limit by ε > 0 and take ε → 0 at
the end. Using (B.2) and (B.7), we evaluate

∫ 1
ε

dx

x
√

1−x2
= log 2

ε
+O(ε), while −

∫ 1
ε
dx
x

= log ε. Combining
the two integrals and taking ε→ 0 we obtain log 2.
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where cpq = cos πpqN , following the notation of (2.11). Substituting back into (A.20), we
find that (A.19) simplifies to

F (p, s) ' 2
π

sin πp

2N

(
− 1

2 log s

8N2 − 2
N−1∑
q=1

cpq log sin πq

2N

)
. (A.22)

We now substitute (A.22) into (A.6) to obtain

τD(p, s) = − i

2π log s

8N2 −
2i
π

N−1∑
q=1

cpq log sin πq

2N +O(s) . (A.23)

Finally we are in a position to substitute this into (A.5) and compute τDk`(s). To this end
we need the sum in footnote 35, as well as the following more complicated sum,

N−1∑
p=1

spksp`cpq = N

4
(
δq,|k−`| − δq,k+` − δq,2N−k−`

)
, 1 ≤ k, `, q ≤ N − 1 . (A.24)

This leads to

τDk`(s) = − i

2πδk` log s

8N2 −
i

2π

N−1∑
q=1

(
δq,|k−`| − δq,k+` − δq,2N−k−`

)
log sin2 πq

2N . (A.25)

The remaining sum over q evaluates to

N−1∑
q=1

(
δq,|k−`| − δq,k+` − δq,2N−k−`

)
log sin2 πq

2N =


− log sin2 πk

N
if k = ` ,

log
sin2 π(k−`)

2N

sin2 π(k+`)
2N

if k 6= ` .

(A.26)

Substituting back into (A.25), we find perfect agreement with (1.15), which we repeat here,

τDk`(s) = i

2π


− log s+ log

(
8N2 sin2 πk

N

)
if k = ` ,

log
sin2 (k+`)π

2N

sin2 (k−`)π
2N

if k 6= `

. (A.27)

B Evaluating some definite integrals

B.1 Evaluating R(aD,` 6=k,k−1)

We begin by evaluating the integral (3.21), which we repeat here,

R(aD,` 6=k,k−1) = − 1
πi

N−1∑
`=1

`6=k,k−1

∫ ck−1

ck

dx√
1− x2

s`aD`
x− c`

. (B.1)

We need the following basic integral,

I(a, b; c) =
∫ b

a

dx√
1− x2

1
x− c

, −1 < a < b < 1 , c ∈ (−1, 1)− [a, b] . (B.2)
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Let us define the following sign factor,

σ =

+1 if c < a

−1 if c > b
. (B.3)

By comparing with the integral (B.2), we see that σ = sign(I). We proceed to evaluate
this integral using several substitutions:

• Substituting u = 1
x−c , we find that

I(a, b; c) = σ

∫ 1
a−c

1
b−c

du√
s2u2 − 2cu− 1

, s =
√

1− c2 > 0 . (B.4)

• Changing variables to w = s2u− c, we find that

I(a, b; c) = σ

s

∫ 1−ac
a−c

1−bc
b−c

dw√
w2 − 1

. (B.5)

• Note that the sign of the integration variable w in (B.5) is given by sign(w) = σ. We
can thus change variables one more time, to w = σ cosh η with η > 0, and evaluate

I(a, b; c) = 1
s

(
cosh−1

(1− ac
|a− c|

)
− cosh−1

(1− bc
|b− c|

))
. (B.6)

We can further simplify (B.6) by using the fact that cosh−1 v = log(v +
√
v2 − 1), as long

as v ≥ 1. Since this is indeed the case for the arguments of the cosh−1 functions in (B.6),
we can finally express the integral in the following form,

I(a, b; c) = 1
s

log
(b− c)

(
1− ac+ s

√
1− a2

)
(a− c)

(
1− bc+ s

√
1− b2

) , s =
√

1− c2 > 0 . (B.7)

We can now apply this to evaluate R(aD,` 6=k,k−1) = − 1
πi

∑
6̀=k,k−1 s`aD`I(ck, ck−1; c`)

in (B.1), for which we need

I(ck, ck−1; c`) = 1
s`

log (ck−1 − c`)(1− ck+`)
(ck − c`)(1− ck+`−1) , ` 6= k, k − 1 . (B.8)

Here we have used the addition formula ckc` − sks` = ck+` for cosines. Substituting
into (B.1), we obtain

R(aD,` 6=k,k−1) = − 1
πi

N−1∑
`=1

` 6=k,k−1

aD` log (ck−1 − c`)(1− ck+`)
(ck − c`)(1− ck+`−1) . (B.9)
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B.2 Evaluating I(aDk)

We now compute the integral I(aDk) in (3.16),

I(aDk) = − skaDk
πi

Î(aDk) , (B.10)

where the integral Î(aDk) that we must evaluate is given by

Î(aDk) =
∫ 1

0
dµ

∫ ck−1

ck+δk
dx

1√
(1− x2)((x− ck)2 − µδ2

k)
. (B.11)

Note that this integral is manifestly positive. We will not retain terms in I(aDk) that vanish
faster than aDk. For this reason, we can drop terms in Î(aDk) that vanish when aDk → 0,
or equivalently when δk → 0 (see (2.33)).

We will directly evaluate the integral (B.11) by expanding both inverse square roots in
absolutely convergent power series and integrating term by term.39 To this end, we expand
the first inverse square root via

1√
1− x2

=
∞∑
n=0

Γ(n+ 1
2)

Γ(1
2)n!

x2n , (B.12)

and similarly for the second inverse square root. After substituting into (B.11), we can
carry out the µ integral. We then simplify the x integral by shifting x → x + ck and
expanding the numerator using the binomial formula, so that

Î(aDk) =
∞∑

m,n=0

Γ(m+ 1
2)Γ(n+ 1

2)
Γ(1

2)2m!(n+ 1)!
δ2n
k

2m∑
`=0

(
2m
`

)
c`k

∫ ck−1−ck

δk

dxx2m−`−2n−1 . (B.13)

The remaining x-integral is trivial,∫ ck−1−ck

δk

dxx2m−`−2n−1

=


log ck−1 − ck

δk
if 2m− `− 2n = 0

1
2m− `− 2n

(
(ck−1 − ck)2m−`−2n − δ2m−`−2n

k

)
if 2m− `− 2n 6= 0

.

(B.14)

Substituting back into (B.13), we now drop all terms that vanish as δk → 0. The only
remaining terms are the n = 0 logarithmic terms and the n = 0 polynomial terms from
the upper limit of the x-integral (B.14), as well as the ` = 2m polynomial terms from the
lower limit of the same integral. Paying attention to the restrictions on summation indices
that result from (B.14), we can now express (B.13) as a sum of three terms,

Î(aDk) = f1 + f2 + f3 , (B.15)
39The expansion of the first square root is absolutely convergent in the entire integration region, while

the expansion of the second square root is absolutely convergent as long as µ < 1.
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where f1,2,3 are given by the following series expressions,

f1 = log ck−1 − ck
δk

∞∑
m=0

Γ(m+ 1
2)

Γ(1
2)m!

c2m
k ,

f2 =
∞∑
m=1

Γ(m+ 1
2)

Γ(1
2)m!

2m−1∑
`=0

(
2m
`

)
c`k(ck−1 − ck)2m−`

2m− ` ,

f3 =
∞∑
m=0

∞∑
n=1

Γ(m+ 1
2)Γ(n+ 1

2)
Γ(1

2)2m!n!
c2m
k

2n(n+ 1) .

(B.16)

The sums over m in f1 and f3 can be evaluated using (B.12), while the remaining sum
in f3 can be performed using Mathematica. This gives

f1 = 1
sk

log ck−1 − ck
δk

, f3 = 1
sk

(
log 2− 1

2

)
. (B.17)

To evaluate f2 in (B.16), we define the function f2(x) via

f2(x) =
∞∑
m=1

Γ(m+ 1
2)

Γ(1
2)m!

2m−1∑
`=0

(
2m
`

)
c`k(x− ck)2m−`

2m− ` , (B.18)

so that
f2(ck−1) = f2 , f2(ck) = 0 . (B.19)

Differentiating (B.18) term by term and summing the resulting series using (B.12), we find

f ′2(x) = 1√
1− x2 (x− ck)

− 1
sk(x− ck)

. (B.20)

We now integrate this equation from a to x, where ck < a, x < ck−1. The first term on the
right-hand side leads to an integral of the form (B.2), while the second term integrates to
a logarithm,

f2(x) = f2(a) + I(a, x; ck)−
1
sk

log x− ck
a− ck

. (B.21)

If we evaluate I(a, x; ck) using (B.7) and fix the integration constant f2(a) by imposing
the boundary condition f2(ck) = 0 in (B.19), we find that

f2(x) = 1
sk

log 2s2
k

1− xck + sk
√

1− x2
. (B.22)

Note that the arguments of the square root and the logarithm in this formula are strictly
positive for ck−1 ≤ x ≤ ck, so that f2(x) is indeed real analytic on that interval. We can
now use (B.19) and (B.22) to evaluate the second sum f2 in (B.16),

f2 = f2(ck−1) = 1
sk

log 2s2
k

1− c2k−1
. (B.23)

Here we have used the cosine addition formula ckck−1 − sksk−1 = c2k−1.
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We are now ready to assemble the answer: substituting f1,3 in (B.17) and f2 in (B.23)
into (B.15), we find that

Î(aDk) = 1
sk

log 4s2
k(ck−1 − ck)

(1− c2k−1)δk
− 1

2sk
. (B.24)

As expected (see the comment below (B.11)), this expression is positive in the limit δk → 0,
where Î(aDk) ' − 1

sk
log δk > 0. Finally, the original integral (B.10) evaluates to

I(aDk) = − aDk
πi

(
log 4s2

k(ck−1 − ck)
(1− c2k−1)δk

− 1
2

)
. (B.25)

B.3 Evaluating J(aD,k−1)

Here we evaluate the integral J(aD,k−1) in (3.19),

J(aD,k−1) = sk−1aD,k−1
πi

Ĵ(aD,k−1) , (B.26)

where the integral Ĵ(aD,k−1) that we must evaluate is given by

Ĵ(aD,k−1) =
∫ 1

0
dµ

∫ ck−1−δk−1

ck

dx
1√

(1− x2)((x− ck−1)2 − µδ2
k−1)

. (B.27)

Note that this integral is manifestly positive. Comparing with (B.11) makes it clear that it
should be possible to evaluate Ĵ(aD,k−1) by carefully continuing the parameters that enter
the definition of Î(aDk).40 We initially proceed as in appendix B.2, and derive for Ĵ(aD,k−1)
the same series representation that we obtained for Î(aDk) in (B.13),

Ĵ(aD,k−1) =
∞∑

m,n=0

Γ(m+ 1
2)Γ(n+ 1

2)
Γ(1

2)2m!(n+ 1)!
δ2n
k−1

2m∑
`=0

(
2m
`

)
(−ck−1)`

∫ ck−1−ck

δk−1
dxx2m−`−2n−1 .

(B.28)
Comparing this with (B.13), we see that we can compute Ĵ(aD,k−1) from Î(aDk) by sub-
stituting ck → −ck−1, ck−1 → −ck, and δk → δk−1.41 Substituting these replacements
into (B.24), we find that42

Ĵ(aD,k−1) = Î(aDk)
∣∣∣∣ck→−ck−1
ck−1→−ck
δk→δk−1

= 1
sk−1

log
4s2
k−1(ck−1 − ck)

(1− c2k−1)δk−1
− 1

2sk−1
. (B.29)

Note that this is positive in the limit δk−1 → 0, where Ĵ(aD,k−1) ' − 1
sk−1

log δk−1 > 0,
in agreement with the comment below (B.27). Substituting (B.29) into (B.26), we finally
obtain

J(aD,k−1) = aD,k−1
πi

(
log

4s2
k−1(ck−1 − ck)

(1− c2k−1)δk−1
− 1

2

)
. (B.30)

40A naive continuation that gives wrong answers is Ĵ(aD,k−1) = −Î(aDk)
∣∣
ck↔ck−1,δk→−δk−1

. (One way
to see that this cannot be correct is that the two sides have opposite signs.) This continuation fails because
flipping the sign of δ extends the x-integral past a branch point of the square root in the denominator.

41Note that these continuations do not run afoul of the same problems as the ones in footnote 40.
42Note that ck−1 − ck, as well as sk =

√
1− c2

k, sk−1 =
√

1− c2
k−1, and c2k−1 = ckck−1 − sksk−1 are

invariant under the substitutions ck → −ck−1, ck−1 → −ck.
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