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1 Introduction

Nontrivial spacetime topologies, and in particular change in the topology of space, have

long been considered to be a possible feature of dynamical gravity. Topology-changing

processes were particularly intensively studied in the late 1980s, in the context of the

question of their contribution to possible loss of quantum coherence [1–5]. Specifically,

one can consider processes where space branches into two disconnected components; one

of these may typically be comparatively small, and was called a “baby universe” (BU).

In the “free BU” approximation where multiple BUs can be emitted, or rejoin, a bigger

“parent universe”, but where the BUs don’t interact or create other large universes, it was

found that the leading effect of such processes is not to induce an ongoing loss of quantum

coherence [4, 5].1 Instead, these processes lead to an effective probability distribution for

coupling constants that multiply operators describing the effect of the BUs on the fields in

the parent universe.

There has been a recent resurgence of interest in topology change, arising from sugges-

tions that nontrivial topologies may help explain how black hole evolution can be reconciled

with unitary quantum mechanical evolution [8–10].2 Specifically, [9, 10] have argued that

nontrivial topological contributions can produce expressions for BH entropies that behave

as expected for unitary evolution [15, 16]. This work builds on earlier discussion [17–19]

about the role of quantum extremal surfaces, and that of [8] on topologies and ensem-

bles of couplings in Jackiw-Teitelboim gravity (see also the related work [20–24]). The

topologies studied in [9, 10] involve spacetime wormhole connections, but of a somewhat

1Effects beyond this approximation were discussed in [6], and recently in [7].
2For earlier work in this direction, see [11, 12]. For a different but possibly related approach see [13, 14].
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different kind than those studied in the 1980s. Specifically, entropies are calculated by the

replica method [25], in which multiple copies of the spacetime geometry are considered.

One then makes the Ansatz that wormholes, or more general nontrivial topologies, con-

nect these replicas. While the replica wormhole contributions have not yet been shown to

correspond to quantum amplitudes describing unitary evolution, they have been argued to

produce entropy formulas that reflect unitary behavior, giving an appropriate form of a

“Page curve”[15, 16].

The obvious possible connection between replica wormholes and the spacetime worm-

holes considered previously was noted in [9, 10], and further developed in [7]. However,

an important question in the discussion is to better understand the precise connection,

and to test and understand the correct rules for replica calculations in the presence of

euclidean wormholes/BU emission. Specifically, [4, 5] previously developed a set of rules

for incorporating topology change, respecting certain general quantum properties such as

the composition of amplitudes; this is sometimes called the “wormhole calculus”. Given

the wormhole calculus, one can then perform standard quantum-mechanical calculations

— such as of entropies, e.g. using replicas — and ask what the combined set of rules tells

us about the contribution of nontrivial topologies connecting replicas, and regarding the

question of summing over all such replica geometries.

That is one of the goals of this paper. Specifically, we find that the previously-developed

rules of the wormhole calculus, which have been well studied in a framework consistent

with quantum mechanics, together with basic quantum-mechanical rules for computing

entropies, imply specific limited patterns of wormhole connections in replica geometries.

These do not include sums over all connections between replicas. This runs contrary to

the prevalent Ansatz that one should generally sum over all such replica topologies [9, 10],

and calls into question the meaning of calculations based on such a sum. Specifically this

suggests that if there is a role for replica wormholes in certain calculations, it needs to be

more carefully understood; alternatively it may also be that including such contributions

represents a modification of usual quantum-mechanical rules for calculating entropies, or

somehow gives an effective description summarizing the contribution of other effects.

In outline, the next section gives a brief review of the wormhole calculus. Section three

then turns to the question of calculating some simple entropies, as well as correlators, in

the presence of nontrivial spacetime topologies and ensembles of BUs, showing that the

wormhole calculus together with the usual rules dictate only certain patterns of worm-

hole connections between replicas. Section four discusses a related question, namely that

of understanding the effects of BUs as providing a probability distribution for coupling

constants, and the way in which subsequent experiments determine these couplings; this

provides a generalization of the analysis of [4, 5] of these questions. Section five closes with

some further discussion.

2 Review of the wormhole calculus

We begin by reviewing the basics of the wormhole calculus, developed in [4, 5]. This was

based on assuming the existence of topology-changing interactions in which a universe can
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|ψi, ni = 4〉

|ψf , nf = 3〉

Figure 1. To compute the amplitude to go from an initial state of the parent universe, plus some

number of BUs, to a similar final state, we integrate over all intermediate geometries. In this

figure we sketch one particular geometry contributing to the transition amplitude between four and

three BUs.

split, emitting a disconnected baby universe (BU). A simple instanton describing such

processes, in the presence of a massless axionic field, was found in [3]; similar processes

were also considered by [1, 2, 11, 26–31].

Specifically, suppose that we work in the free BU approximation where BUs can be

emitted and absorbed by a single parent universe, but do not interact among themselves

or create other large universes; going beyond this approximation can be described in a

third-quantized framework [6]. For simplicity, consider the case where the parent universe

has an asymptotic region where time can be defined, such as asymptotically flat or AdS

space. Then, we can consider finite-time transitions between states of the parent universe,

but at the same time there can be transitions in the number of BUs.

In general, the BUs can have different internal states, but for simplicity consider the

case where there is a single internal state, or “species”, of BU. Then, one can consider

transitions between an initial state of the parent universe, together with some number of

BUs, and a final state of the parent universe together with some typically different number

of BUs. The amplitudes for such processes can be calculated by summing over geometries

such as in figure 1, in analogy to other instanton sums in physics.

As shown in [4, 5], at scales large as compared to the typical BU size (which may be

set by a microscopic scale), these amplitudes can be reproduced from a simple hamiltonian.

This takes the form

H = H(φi) +

∫
d3xO(x)(a+ a†) . (2.1)

Here φi are the fields on the parent universe (which may also include the metric), H(φi)

is their hamiltonian, and O(x) is an operator that describes the effect of the BU emission

on these fields. The operators a† and a act on a BU Fock space, to create/annihilate BUs;

– 3 –
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for example, an n BU state is given by

|n〉 =
1√
n!

(a†)n|0〉 (2.2)

where |0〉 is the BU vacuum. The form of the hamiltonian (2.1) is dictated by various con-

siderations: the fact that BU emission conserves energy/momentum, since BUs are closed

and carry no net energy/momentum, indistinguishability of BUs, and the requirement that

the basic amplitudes, of the form

〈ψf , nf |e−iHT |ψi, ni〉 , (2.3)

satisfy a composition law,∑
n,ψI

〈ψf , nf |e−iHT2 |ψI , n〉〈ψI , n|e−iHT1 |ψi, ni〉 = 〈ψf , nf |e−iH(T1+T2)|ψi, ni〉 (2.4)

where the sum includes that over a basis ψI of intermediate parent universe states. The

discussion readily generalizes to multiple species of BUs, and can be summarized by in-

troducing operators ai, a
†
i for the different species, together with different operators Oi

summarizing their couplings to the parent.

The form of the BU couplings (2.1) implies that, in the free BU approximation, there

is a simple relation between BU states and couplings. Specifically, consider the states

|α〉 = N e−
1
2

(a†−α)2 |0〉 ; (2.5)

these diagonalize a+ a†, with eigenvalue α, and if we normalize them as N 2 = eα
2/2/
√

2π

then they satisfy the normalization convention

〈α|α′〉 = δ(α− α′) . (2.6)

Such a state is then an eigenstate of the hamiltonian (2.1), which takes the form

Hα = H(φi) + α

∫
d3xO(x) . (2.7)

Thus, the evolution is that of a theory with a new coupling constant multiplying the

operator O(x). A more general BU state can be written as a superposition of the α

eigenstates, and so can be thought of as describing an ensemble of such couplings. This,

together with weighting factors arising from disconnected parent universes, was for example

proposed in [29] to solve the (then) cosmological constant problem, by arguing that the

weighting factors overwhelmingly prefer Λ = 0.

3 Renyis, replicas, and wormhole connections

We next turn to a discussion of what the rules of the wormhole calculus, combined with

basic rules of quantum mechanics, imply in the context of computing quantities such as en-

tropies that characterize the distribution of information in the system, as well as correlators.
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1

1̄

2

2̄

3

3̄
n

Figure 2. Shown is a sketch of the geometry used in a replica method calculation of the nth Renyi

entropy of the density matrix (3.2). Time runs upwards (downwards) in the lower (upper) copies.

This calculation produces only wormholes that connect different replicas in the pattern 1̄−2, 2̄−3,

· · · , n̄ − 1. We also indicate how the parent universes are identified at time T . The wormhole

joining at 1 is emitted from n̄ while the one emitted from 3̄ joins 4, etc. . Wormholes connecting

1− 1, 1̄− 1̄, 2− 2, etc. are present, but not shown. The right panel shows a rearrangement of the

diagrams making the purity of (3.2) manifest.

3.1 Entropies

Suppose that one begins with an initial state |Ψi〉 for the combined parent/BU system,

which in time T then evolves by the hamiltonian (2.1) to

|Ψ, T 〉 = e−iHT |Ψi〉 , (3.1)

with corresponding density matrix

ρ(T ) = |Ψ, T 〉〈Ψ, T | . (3.2)

A first simple problem is to compute Renyi entropies of this density matrix. These are

given by the standard formula

Sn =
1

1− n
log Tr(ρn) , (3.3)

with the trace (over both parent and BU Hilbert spaces) given by

Tr(ρn) = Tr (|Ψ, T 〉〈Ψ, T | · · · |Ψ, T 〉〈Ψ, T |) = 1 , (3.4)

if states are properly normalized.

This seemingly trivial calculation already carries an important lesson regarding replicas

and wormholes. In the replica method [25], each factor of |Ψ, T 〉〈Ψ, T | may be represented

in terms of a functional integral involving a replica copy of the geometry; the replica parent

universes are pictured in figure 2. Then, when we calculate Tr(ρn), that implies a cyclic

identification of final time slices of each factor, in the pattern 1̄− 2, 2̄− 3, · · · , n̄− 1. This

also applies for the identification of the BUs of figure 1. That is: The rules of the wormhole

calculus, combined with the standard quantum-mechanical rules for calculating the entropy

Sn, imply wormhole connections only between neighboring replicas, in the preceding pattern

— they do not imply that one should sum over geometries with wormhole connections

between all replicas, in the way that is commonly conjectured [9, 10].
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1

1̄

2

2̄

3

3̄

Figure 3. Shown is a sketch of the replica method calculation of the nth Renyi entropy of the

reduced density matrix ρp = TrBU ρ. Time runs upwards (downwards) in the lower (upper) copies.

Here there are no wormholes connecting different replicas, and the connections have the pattern

1̄ − 1, 2̄ − 2, · · · , n̄ − n. We also indicate how the parent universes are identified. Wormholes

connecting 1− 1, 1̄− 1̄, 2− 2, etc. are present, but not shown.

The wormhole calculus, together with standard quantum mechanical rules, dictate

where replicas should be connected by wormholes. Specifically, the wormhole connections

follow from the contraction of indices between bra and ket factors, arising from either

taking traces, or multiplying density matrices. This principle is expected to generalize to

restrict replica topologies in cases where one has more complicated geometries contributing

to amplitudes than simple BU emission/absorption. This conclusion does not change if we

trace over a subregion of the parent universe (we comment on this below).

As one simple check, we show in figure 2 the pattern above allows us to rearrange the

diagrams in a way that makes manifest that Tr(ρn) = (Trρ)n. This implies that ρ is pure,

which is consistent with the fact that we started from a pure state in the total Hilbert

space (parent plus BUs) and the evolution is unitary.

The preceding principle can be illustrated by a different calculation. Suppose that we

instead consider the density matrix of the parent universe,

ρp = TrBU|Ψ, T 〉〈Ψ, T | , (3.5)

and consider its Renyi entropies, given in terms of Tr(ρnp ). The BU trace in (3.5) connects

BUs in the bra and ket. Then, when one calculates Tr(ρnp ), the final time slices on the

parent universes are identified in the preceding pattern. The BU connections instead form

the pattern 1̄ − 1, 2̄ − 2, · · · , n̄ − n, as illustrated in figure 3, but once again one does

not sum over topologies with BUs connecting all replicas. One also sees that, from the

perspective of usual quantum mechanical rules, the latter kind of sum would appear rather

unusual — that would correspond to contracting various BU indices in a product such

as (3.4) between all different factors. Figure 3 also shows that due to the way the parent

universe degrees of freedom are identified, now Tr(ρnp ) 6= (Trρp)
n. This implies that ρp is

not pure, consistent with the QM interpretation.

It is also informative to examine the corresponding expressions written in terms of the

α vacua. Consider, for example, an initial uncorrelated (product) state of the BUs and
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parent; after evolution by T , (3.1) then gives

|Ψ, T 〉 =

∫
dαψ(α)Uα(T )|ψi〉|α〉 , (3.6)

where Uα(T ) = exp{−iHαT} is the evolution operator for a given α. Then ρp becomes

ρp =

∫
dα|ψ(α)|2 Uα(T )|ψi〉〈ψi|U †α(T ) (3.7)

and the nth Renyi entropy is given by

Tr(ρnp ) =

∫ n∏
k=1

dαk|ψ(αk)|2 〈ψi|U †αk(T )Uαk+1
(T )|ψi〉 , (3.8)

where we identify αn+1 = α1.

In contrast, a sum over all possible wormhole connections between replicas (as sug-

gested by [9, 10]) would correspond to the expression

Tr(ρnp ) =

∫
dα|ψ(α)|2

(
〈ψi|U †α(T )Uα(T )|ψi〉

)n
, (3.9)

or, for evolution of an initial parent density matrix ρp,i,

Tr(ρnp ) =

∫
dα|ψ(α)|2Tr

(
Uα(T )ρp,iU

†
α(T )

)n
. (3.10)

While this behaves like an average over an ensemble of couplings with probability distri-

bution |ψ(α)|2, it does not follow in a straightforward way from combining the rules for

summing over topologies in amplitudes with a standard quantum-mechanical calculation.

To reiterate, when the connections involved in the replica trick are of the form de-

scribed as in (3.4) or (3.8), the expressions can still be interpreted as quantum-mechanical

calculations where the parent Hilbert space is enlarged with a baby universe Hilbert space.

However, the calculations corresponding to the rule that one should sum over all connec-

tions, through (3.10), are not of standard quantum-mechanical form and instead behave as

an ensemble average

〈Tr(ρn)〉 =

∫
dα P (α)Tr(ρnα), (3.11)

where P (α) = |ψ(α)|2 is the probably distribution in the ensemble and ρα indicates, within

a member of the ensemble, the state evolved with a definite Hamiltonian Hα.

We can use a similar analysis to treat the entropy calculation for density matrices

after tracing over excitations in a region R inside the parent universe. Specifically, we can

compute the Renyi entropy associated to two different types of density matrix,

ρR = TrR ρ , and ρRp = TrR ρp . (3.12)

The first option does not include a trace over the BU Hilbert space while the second option

does. When describing the wormhole connections coming from the sum over intermediate

states, the nth Renyi entropy for the first and second options correspond to the connections

– 7 –
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Ψ

Ψ̄

Figure 4. In this diagram we show the in-in calculation of a two point function (represented by

the black dots). The bottom (top) represent the time evolution upwards (downwards) creating the

bra (ket) at time T along the dashed line, in a diagram like those described in [32]. The state is

glued at the dashed line including the operator insertions and the rules of QM would require us to

include wormholes between them. We depict one of these wormholes.

shown in figure 2 and 3 respectively. The only difference in the calculation is that now we

will also identify the parent universe degrees of freedom corresponding to region R between

the ith and īth copies, with i = 1, . . . , n. The third option in which we sum over all possible

wormholes (which is different from the quantum-mechanical rules we have been describing)

is again given by a sum over a single α parameter weighted by |ψ(α)|2, analogous to (3.10).

One further comment is that the results in this section can be also reproduced using the

methods of [26]. This is based on the fact that one can replace microscopic wormholes by a

bilocal coupling between local operators inserted at their mouths. This interaction can be

made local by introducing α parameters, which act as random coupling of local operators.

In the cases studied above, when a wormhole is present between replicas, one can check

(keeping track of combinatorics and phases) that the effect is to identify their α parameters.

In the extreme case described last, where one includes all possible wormholes between any

copies, the end result is to identify all α parameters, reproducing equation (3.10).

3.2 Correlators

As another application of these ideas we can analyze the computation of real time in-in

correlators when summing over wormholes. We want to compute the expectation value of

some operator O(φi) acting on the parent universe degrees of freedom (but not acting on

BU Hilbert space) at some time T . Then the rules of QM applied to this problem would give

〈O(φi)〉 = 〈Ψ, T |O(φi)|Ψ, T 〉,

=

∫
dα|ψ(α)|2〈ψi|U †α(T )O(φi)Uα(T )|ψi〉 (3.13)

where we wrote the initial state as a linear combination of α-states as in the previous

section. The sum over intermediate states at time T , including BUs, imposes that the

alpha parameters are the same for the bra and the ket, giving the final formula above.

Geometrically this comes from including wormholes between the bra and the ket as shown

in figure 4 (it is important in deriving this result that the operator does not act on the BU

– 8 –
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Hilbert space). Wormholes of a similar type that arise in calculating the density matrix

were considered in [33] (and more recently also in [20]).

In this example we see that thanks to the wormhole connecting the bra and ket the

norm of the state is preserved under time evolution (if we set O(φi) = 1 then the evolution

operators cancel). This would fail had we not included these wormholes, giving instead∫
dαdα′ ψ∗(α)ψ(α′) 〈ψi|U †α(T )O(φi)Uα′(T )|ψi〉 (3.14)

which does not preserve the norm under time evolution.

Some models of natural inflation are based on a non-perturbative axion potential gen-

erated by Euclidean wormholes [28, 34, 35]. The considerations above would be relevant

to compute, for example, the power spectrum or non-gaussianities in these models.

4 Determination of wormhole-induced couplings

In [4, 5] it was argued that the growth of entropy that we see from the perspective of

a parent universe if we begin in a generic BU state is not a good model for the kind of

information loss originally proposed by Hawking to arise from black holes [36]. Specifically,

models in [4, 5] showed that this information loss is not repeatable: if repeated experiments

are performed, the entropy increase per experiment declines as their number increases.

This, together with the superselection rule for the α vacua, tell us that the entropy growth

is associated with lack of knowledge of the specific value of the eigenvalue α, or effec-

tive coupling constant, within the effective ensemble with probability distribution |ψ(α)|2.

We can use the preceding discussion to extend this argument, generalizing the argument

of [4, 5], and also making contact with the question of replica wormholes.

Specifically, consider the evolution (3.6), in the case where the parent universe wave-

function describes a number s of independent systems, so

|ψi〉 = |ψ̃i〉⊗s . (4.1)

Suppose that these evolve as independent noninteracting systems (aside from wormhole

connections), in which case (3.6) takes the form

|Ψ, T 〉 =

∫
dαψ(α)

(
Ũα(T )|ψ̃i〉

)⊗s
|α〉 (4.2)

with independent evolution operators Ũα(T ), and the parent density matrix becomes

ρp,s =

∫
dα|ψ(α)|2

(
Ũα(T )|ψ̃i〉

)⊗s (
〈ψ̃i|Ũ †α(T )

)⊗s
. (4.3)

The Renyi entropies are now given by

Trρnp,s =

∫ n∏
k=1

dαk|ψ(αk)|2
(
〈ψ̃i|Ũ †αk(T )Uαk+1

(T )|ψ̃i〉
)s

. (4.4)
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At this stage, we again find that the underlying wormhole connections have a pattern like

in (3.5) and in figure 3, once again connecting 1− 1̄, · · · , n− n̄.

To evaluate the Renyi entropies for large s, note that the inner products in (4.4) can

be written

〈ψ̃i|Ũ †α(T )Ũα′(T )|ψ̃i〉 = eγ(α,α′)+iδ(α,α′) , (4.5)

with real functions γ and δ; we have γ(α, α) = δ(α, α) = 0, δ(α′, α) = −δ(α, α′), and

generically γ(α, α′) < 0 for α 6= α′. This means that the integrals in (4.4) become in-

creasingly sharply peaked at αk = αk+1 for large s. Near α = α′, we have expansions

γ(α, α′) = −C(α−α′)2 + · · · and δ(α, α′) = D(α−α′) +E(α−α′)3 + · · · . Inserting these

in (4.4), the D terms cancel, the E terms contribute at subleading order in 1/s, and we find

Trρnp,s ≈
∫ n∏

k=1

dαk|ψ(αk)|2e−sC(αk−αk+1)2 . (4.6)

For a large number s of experiments, the form of the integrals is determined by the n− 1

gaussian factors with width ∼ 1/
√
s (excluding an overall “center of mass” integral), and

so the entropies become

Tr ρnp,s ≈
(

1√
s

)n−1

F (n), (4.7)

for some function F (n) with F (1) = 1. The Renyi entropies (3.3) then are

Sn(s) ≈ 1

2
log s+

1

1− n
logF (n) , (4.8)

and the change of a given Renyi entropy per experiment is

d

ds
Sn(s) ≈ 1

2s
. (4.9)

The fact that the entropy grows slower than linearly with s can be traced back to the

expression of the density matrix (4.3), which is neither a pure state nor a product of s

density matrices. Finally, the approximation leading to (4.8) assumes the spectrum of α’s

is continuous. For a discrete spectrum, the entropy Sn(s) would saturate for s larger than

the inverse level spacing of the α’s.3

In summary, there is a “loss of information” in subsequent experiments conducted in

the parent universe, which is associated with the lack of information about the state of the

BUs. However, since the BU state effectively mimics a probability distribution for coupling

constants, successive experiments better and better determine the a-priori uncertain values

of these couplings. In the limit of a large number of experiments, s→∞, the indeterminacy

vanishes, and there is no further growth of entropy/loss of information.

3More precisely, if the spectrum of α’s is discrete, then at large s the expression (4.6) would be dominated

by αk = αk−1 for all k. This gives an answer independent of s up to corrections of order e−sCδα
2

, where

δα is the average level spacing. Then the entropy saturates for s � 1/(Cδα2). This saturation is not seen

for a strictly continuous spectrum.
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5 Discussion and lessons

As was first shown in [4, 5], the effect of BUs is to contribute to coupling constants multi-

plying operators that summarize the effect of a given kind of BU on the fields of a parent

universe. A generic state of BUs leads to a probability distribution for such couplings. We

have shown here, generalizing arguments in [4, 5], that successive experiments lead to an

increasingly precise determination of such couplings, such that in the limit of a large num-

ber of experiments, additional experiments experience no further loss of information. One

can think of this determination process as a “collapse of the wavefunction” into an α state

of the BUs corresponding to a particular set of couplings. There is a well-developed set of

rules, the wormhole calculus, [4, 5] that were overviewed in section two and underpin this

set of observations. There are effects that go beyond the simple free BU approximation

used there, and account for interactions between BUs and with other parent universes;

an initial account of such effects in a more general third-quantized approach was given

in [6], and some such effects were argued to lead to specific distributions effectively fixing

couplings such as the cosmological constant in [29].

One may calculate quantities such as entropies and correlators, in the presence of

topology change/BUs, and within the framework of the wormhole calculus, using standard

quantum-mechanical rules for doing so. In particular, the wormhole calculus may be com-

bined with replica methods [25]. When one does this, the standard quantum mechanical

rules applied to the entropies or correlators we consider lead to a limited pattern of worm-

hole connections between replicas. These for example only produce a connection between

replicas that are “nearest neighbors”, and do not produce connections between different

“bra” copies or “ket” copies.

The work of [9, 10] considers even more general topologies that go outside of these

nearest neighbor and bra-ket constraints. An important question is how to justify such

connections, based on an underlying consistent set of rules for computing amplitudes in-

cluding topology change, and following standard quantum rules, e.g. based on tracing over

appropriate states, for sewing amplitudes. In fact, given that the replica wormhole config-

urations of [9, 10] involve even more complicated topological connections between replicas

than combinations of single-wormhole connections, their interpretation in terms of traces

of appropriate density matrices seems even more obscure. There seem to be at least three

different possibilities for explaining a role for such extended rules for replica connections.

One is that they correspond to calculating other more general mathematical quantities

than the simple entropies one usually considers. A second is that they represent some

modification of the usual quantum-mechanical rules for composing amplitudes. A third

is that they give an effective parameterization of other effects that are directly described

without invoking such extended rules. It does appear, as seen in (3.9), (3.10), that some

such expressions can describe certain ensemble averages for BU couplings.

If topological or BU effects do help in resolving the unitarity crisis associated with BH

evolution, a key question is to understand the underlying transition amplitudes describing

how they do so. In particular, as discussed in section four, one may perform a large

number of experiments, after which evolution in our parent universe should be unitary,
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with no further loss of information. Once we have “collapsed the BU wavefunction” in

this fashion, we can then consider subsequent scattering experiments where BHs form and

decay, and those processes should be described by unitary amplitudes. However, at this

stage the net effect of the BUs is, at least neglecting higher-order effects (e.g. as in [6]),

simply to contribute to various coupling constants. In the resulting effective theory, we

can then ask how BH formation and decay evades the standard information-loss arguments

going back to Hawking’s original work [37].

It has been argued that what is needed for such a unitary description are interac-

tions that, when viewed from the perspective of an effective field theory description of BH

evolution, transfer information or entanglement from the internal state of the BH to the

environment of the BH [38–43]. In particular, refs. [13, 14] give a parameterization of such

interactions in an effective theory. One possibility is that the topology-changing processes

somehow contribute to such interactions, which appear to be nonlocal from the effective

field theory perspective. We have seen that simple connections, via a small spacetime

wormhole, between two different points do not induce the right kind of nonlocal transfer of

information, but possibly contributions of larger wormholes, say comparable to the BH size,

could, as has been suggested in [8, 9] and [7]. If this were the case, such interactions could

likely be parameterized in the general framework of [13, 14]. However, in order to justify

such a picture, and even more importantly, to give a precise description of such interac-

tions that allows one to calculate the effects on outgoing fields (and on possibly observable

quantities), one needs a description of how the topology-changing processes contribute to

amplitudes. This might, for example, involve finding instanton-like or other similar pro-

cesses operating on scales comparable to a BH’s size. A preliminary investigation reveals

a number of subtleties in giving any systematic description of such effects [44], but it is

worth determining whether progress can be made in this direction.
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A Puzzles for replica wormholes

In [9, 10], it has specifically been argued that replica wormholes make important contribu-

tions to the entropy, such that it follows the Page curve corresponding to unitary evolution.

It is important to better understand these arguments, and in particular the question of

how they might relate to underlying unitary quantum amplitudes describing black hole

formation and evaporation. Since the main body of the paper has shown how amplitudes

including wormholes may be combined into density matrices, and then entropies may be

computed from density matrices, following basic quantum-mechanical rules for composing

amplitudes and taking traces, a specific question is whether one can “reverse engineer” the
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Figure 5. (a) Penrose diagram of a Schwarschild black hole. We indicate two Cauchy slices in the

two-sided spacetime, Σ1 and Σ2. (b) Euclidean no-boundary preparation of the two-sided state on

the surface Σ2.

geometries of [9, 10] to infer the structure of underlying quantum amplitudes. In particular,

this can be asked in the context of the specific rules we have found for replica geometries.

One new ingredient of this discussion is that it goes beyond the free approximation. We

find some interesting puzzles regarding possible connection to underlying amplitudes.

As a warmup, first consider amplitudes corresponding to states of the two-sided black

hole, as shown in figure 5; for simplicity we focus on a Schwarzschild black hole. We can

for example describe a state on the Cauchy surface Σ2 by evolving from another surface

Σ1 at a previous time. This state is a functional ΨΣ2(g, φ, . . .), of the metric g on Σ2, with

φ denoting possible matter fields. A particularly simple state is prepared on Σ2 through

the Hartle-Hawking prescription, as pictured in figure 5(b). If the latter is viewed as a

contribution to the sum over geometries, it can be thought of describing production of a

two-sided black hole from “nothing”. A more clearly motivated version of this geometry

is when the two-sided black hole is magnetically charged; instantons that describe the

Schwinger pair production of such black holes in a background magnetic field have been

described in [45–47], and have near-horizon structure of precisely the same form (see, e.g.,

figure 1 of [47]).

Having prepared a state by one of these methods, we can calculate the entropy of a

subregion R outside the black hole, with corresponding density matrix ρR = TrRc |Ψ〉〈Ψ|,
where Rc is the complement of the region R and contains the black hole. The growth of

entropy with time in this region follows the original “Hawking” curve even past the Page

time, when the calculation is done in the spacetimes shown in figure 5. This density matrix

can be represented by the diagram figure 6(a), where we used the Lorenzian preparation

of the state shown in figure 5(a). The Renyi entropy calculation is described by figure 6(b)

with the identifications shown, sewing the boundaries along the identified copies of R.

Bearing these preliminary examples in mind, we would like to understand the inter-

pretation of the replica wormholes of [9, 10] which were argued to correct the Hawking

curve and produce the Page curve. An important contribution was from the “pinwheel

geometry,” which for the third Renyi entropy is drawn in figure 7(a). Since we have seen

how black hole geometries may be sewn to calculate entropies, the question is how this

diagram may be unstitched to describe underlying amplitudes.
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ρR ∼ R Rsew
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1

3

1’
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1

2’
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3

2

3’

2’
Trρ3R ∼

(b)

Figure 6. (a) Using the Lorenzian preparation of the state (region between Σ1 — green curve —

and Σ2 — black and red line) on slice Σ2 this picture denotes the operation that computes the

partial trace of the density matrix ρR (where R ⊂ Σ2 are the segments in red) after tracing over

the complementary region Rc. (b) Computation of the third Renyi entropy. The states on the red

segments corresponding to the copies of R are identified as indicated by the numbers.

(a)

R R

P P ′

B C

A

(b)

Figure 7. (a) Pinwheel amplitude for three replicas. The green lines are taken to be constant

time slices. The replicas are connected through a branch cut along R that we do not draw to avoid

clutter. (b) Building block. Constant time slice is the parent universe (green slice); the possible

interpretation of the red segment is discussed in the text. We also indicate the region R where

radiation is collected.

There are two ways to try to interpret the pinwheel geometry, and both seem to

be incompatible with a quantum mechanical treatment of a parent plus baby universe

Hilbert space. One approach is to view this geometry as arising from a baby universe

interaction. In this interpretation each replica creates its own baby universe and the

central part of the picture represents their interaction vertex. But, interactions between

all replicas simultaneously are not consistent with the rules developed in section 3, even

outside the free approximation.

A second possibility arises from cutting the pinwheel along the green lines in figure 7(a).

This is analogous to unstitching the previous figures, figure 6(a) and (b), along the corre-

sponding black lines, to return to the underlying amplitudes. If we do this, for each replica,

then the pinwheel can be understood as gluing six copies of the building block shown in

figure 7(b).

The upper green boundary in figure 7(b) is identified with the corresponding bra

amplitude, i.e. 1̄ − 1, 2̄ − 2, etc., inside the region Rc. The red boundary is identified

instead with a different replica. Note that, if one is summing over all geometries, this

identification can be to a different replica than the corresponding replica identifications on
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region R, analogous to those of figure 6(b). This could be made more consistent with the

rules given in section 3 if the connections are given between consecutive replicas.

Even with this assumption, puzzles remain. Specifically, the interpretation of the un-

derlying geometry of figure 7(b), is unclear; it is not obvious what lorentzian amplitude

this contributes to. First, ignoring the red segment, it appears that this describes a tran-

sition from a two-sided black hole, with spatial geometry labeled A (bottom green line),

to two separate spatial components B and C (top separate green segments). That leaves

the question of interpreting the red segment, which is glued to a different replica. If it

is not interpreted as part of the geometry of the final slice, the latter geometry remains

disconnected. If, instead, it is interpreted as part of that geometry, it is not clear how to

understand these gluing conditions. Indeed, the points P, P ′ at the junction between this

segment and the components B and C are common to all the replicas, as seen in figure 7(a).

It is not clear how such a gluing prescription is compatible with the rules of section 3.

We believe it is important to understand what unitary amplitudes, if any, underly

the formal entropy calculations of [9, 10], if the underlying calculational rules can be

understood without modifying quantum mechanics. The present work outlines a näıve

attempt to interpret these, which leads to puzzles. We leave other efforts to understand

these to future work.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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