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1 Introduction and summary

Einstein’s realization that gravity stems from geometrization of the Lorentz symmetry is

among the greatest achievements in the history of physics. In general relativity, the equiva-

lence principle is guaranteed by endowing spacetime with a (pseudo-)Riemannian structure

that ensures the local Lorentz invariance. This profound connection between geometry and

gravity is not unique to the laws of special relativity however, as an analogous connection

exists also for the Galilean invariance. A covariant treatment of Galilean symmetry was first

presented by Cartan [1–3] leading to the discovery of the Newton-Cartan (NC) geometry

as the underlying structure of classical Newtonian gravity. Subsequent work [4–7] clarified

the algebra of spacetime transformations and its representation theory that underlies the
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NC geometry. In particular it was shown in [8] that the NC geometry follows from gaug-

ing the Bargmann algebra,1 the U(1) central extension of the algebra of Galilean boosts,

translations and rotations. Finally, the structure of the Newton-Carton geometry has been

extended to include torsion [11, 12], and referred to as the “torsional Newton-Cartan”

(TNC) geometry.2 A crucial element in this geometry is the presence of the U(1) gauge

symmetry that corresponds to the aforementioned central charge and physically related to

the conservation of mass. Non-relativistic gravity has recently been studied in the context

of non-relativistic effective actions [13], non-relativistic holography [11], post-Newtonian

expansions of general relativity [14], and more recently in the context of string theory [15].

In this paper we ask the question whether the TNC geometry can be UV completed in

a consistent theory of quantum gravity and take a few first steps in answering this question

in the context of bosonic string theory.3 One of the triumphs of the ordinary (relativistic)

string theory has been the derivation of Einstein’s equations in the weak gravity limit by

demanding Weyl invariance of the world-sheet sigma model [16]. In our case of string

propagating on a manifold with local Galilean invariance, we similarly expect that the

demand of quantum Weyl invariance on the world-sheet yields the Newton’s law. This is

what we mean precisely by the consistency of the TNC geometry with quantum gravity.

Various proposals to realize the Galilean symmetries in string theory exist in the litera-

ture. The Newton-Cartan geometry has only recently been embedded in string theory at the

classical level, that is at the tree level of the world-sheet non-linear sigma model [15, 17, 18].

Nonrelativistic string theory on a TNC background with R×S2 topology has been studied

in [19–22]. A parallel and separate line of work [23–26] which started by the original paper

of Gomis and Ooguri [27] realized the Galilean symmetry in the context of closed string

theory in a particular contraction limit and continued by the very recent papers [28, 29]

that ask the same question we ask here but in the context of the Gomis-Ooguri theory.4

We will follow the route taken by the papers [15, 18] where a Polyakov type action for

a string propagating in the TNC geometry was constructed. Taking this Polyakov action

as our starting point, we extend it to include bosonic target space matter,5 i.e. the Kalb-

Ramond field B̄µν and dilaton φ, as well as an extra Kalb-Ramond 1-form ℵµ, and we

determine both the target space and worldsheet symmetries of this action at the classical

level. We then go beyond the tree level and construct the worldsheet perturbation theory

in powers of the string length ls, assuming that the target TNC space is weakly curved.

We then obtain the target space equations of motion from quantum Weyl invariance of the

non-linear sigma model proposed in [15] and its generalizations including the Kalb-Ramond

and the dilaton fields.

1It is also possible to follow a different approach and gauge the global symmetries rather than the

algebra [9, 10].
2See [12] for a discussion on necessity of including torsion in this theory.
3Eventually one may need superstrings to tame tachyonic instabilities but we expect this be a natural

extension of the calculations we present here.
4In spite of the various connections between the Gomis-Ooguri approach [27] and the TNC approach [17],

explained for instance in [15], one should view these two approaches separately. In some sense the former

is “top-down” a and the latter “bottom-up” approach to strings in Galilean invariant backgrounds.
5See also [30] for a discussion on the coupling of matter to non-relativistic gravity.

– 2 –



J
H
E
P
0
9
(
2
0
2
0
)
1
7
2

Here we summarise our main results, i.e. the equations of motion that follow from

the requirement of world-sheet Weyl invariance. Such equations are given in terms of

the Galilean invariant TNC background fields {τm, h̄mn, υ̂m,Φ}, the dilaton φ, the Kalb-

Ramond three form field strength H = dB̄, the Kalb-Ramond two form field strength

h = dℵ, and the acceleration and electric fields {am, em} defined via the twistlessness

constraints dτ = a∧ τ and dℵ = e∧ τ . In particular we find the equations of motion of the

TNC target space as

hrsDras + hrsaras = 2hrseres + 2hrsarDsφ ,

hrsDres = 2hrserDsφ ,

R(mn) −
Hrs(mHn)twh

rthsw

4
+ 2D(mDn)φ = htqh̄q(mDn)at +

aman
2

+ erh
rsυ̂tτ(mHn)ts

+
e2
(
2Φτmτn − h̄mn

)
− emen

2
− a2 Φτmτn ,

1

2
hrsDrHsmn − hrpHpmnDrφ = htqh̄q[mDn]et + υ̂rτ[mDn]er − a[men]

− 1

2
arh

rsHsmn +

(
υ̂tDtφ−

Dtυ̂
t

2

)
hmn

where the covariant derivative D and Riemann tensor Rmn are defined with respect to the

standard TNC connection

Γmrs ≡ −υ̂m∂rτs +
1

2
hmt

(
∂rh̄st + ∂sh̄rt − ∂th̄rs

)
. (1.1)

We follow the background field method to derive these equations. We start by splitting

the embedding coordinates fields Xm in a classical part Xm
0 and a quantum part lsȲ

m and

use a covariant expansion of the TNC background fields to rewrite the action in the form

of a perturbative series in quantum fluctuations parametrized by the string length ls. A

crucial step in this expansion is the construction of a set of normal coordinates Y m via a

solution to the TNC geodesic equation [23]

Ẍt + Γ̊tmnẊ
mẊn =

Ṅ

N
Ẋt , (1.2)

with N ≡ τmẊ
m, and boundary conditions Xµ(0) = Xm

0 and Xµ(1) = Xm
0 + lsȲ

m. The

normal coordinate Y m is defined as the tangent vector at the origin Ẋµ(0) = lsY
m. A new

connection Γ̊ naturally arises

Γ̊mrs = Γmrs + υ̂m∂[rτs] +
1

2
anh

mnh̄rs .

Connection Γ̊ turns out to be invariant under all TNC symmetries unlike the standard

connection Γ which is non-invariant under the TNC U(1) mass symmetry for non-vanishing

torsion dτ 6= 0. For the covariant expansion to exist a solution to the geodesic equation

must be constructed. We find this to be possible only when the twistlessness constraint

dτ = a ∧ τ is satisfied.
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Our paper is organized as follows. We begin, in section 2, by reviewing the Polyakov-

type action we used for the closed bosonic string moving in a TNC background and then

generalize it to include the Neveu-Schwarz background matter, i.e. the dilaton and the

Kalb-Ramond fields. We then discuss how the target space and worldsheet symmetries

are realized at the classical level. Section 3 constitutes the core of our paper where we

introduce the covariant background field expansion. This expansion coincides with the

derivative expansion in the target space. We truncate this series at the second order

both in the target-space derivatives and in the quantum fluctuations. Using this quantum

effective action at the quadratic level, we then compute the one loop contribution to the

Weyl anomaly and obtain the equations of motion for the TNC geometry arising from the

vanishing of the beta functions. Finally in section 4 we present a discussion of the results

and provide an outlook. Several appendices where we give details of our (quite lengthy)

calculations form a substantial part of this paper.

Notes addded. We became aware of a paper of Gomis, Oh and Yan [28] on the quantum

Weyl symmetry of the non-linear sigma model for the non-critical string theory in the final

stage of our work.

v2. The second version of the paper contains substantial improvements over the first one.

In particular here we use the aforementioned geodesic equation to define the covariant

expansion, which is consistent with the U(1) mass symmetry.

2 The string action and its symmetries

2.1 The Polyakov action without matter

The geometric data of the TNC geometry in the absence of matter fields is encoded in a

pair of vielbeins6 (τs, e
i
s) and a U(1) connection ms collectively referred as the TNC metric

complex. The vielbeins eis define a degenerate spatial metric through hmn = eime
j
nδij and

it is possible to use the inverse of the square matrix (τm, e
i
n), denoted as (−υm, eni ) with

υmτm = −1 and τme
m
i = 0, to define an independent spatial inverse metric hmn = emi e

n
j δ
ij .

These spatial metrics together with the temporal coframes, τm and υm, are subject to a

completeness relation δmn = −υmτn + hmrhrn.

Quite conveniently, the TNC geometry with this geometric data can be derived from

a higher dimensional relativistic spacetime with an isometry in the extra null direction

— which we will denote as the u-direction — via the procedure of null reduction [31].

In particular we consider the TNC manifold to be d+1-dimensional and the relativistic

one will be d+2-dimensional. The metric of such relativistic spacetimes can always be

written as

ḡMNdx
MdxN = 2τ (du−m) + hmndx

mdxn, (2.1)

with ∂u the corresponding null Killing vector. We label indices of the d+2 dimensional

space as M = {u,m}. We also define τ = τmdx
m, m = msdx

s with xm the coordinates of

6We will use letters {m,n, . . .} to denote curved TNC indices and {i, j, . . .} to denote flat TNC indices.
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the (d+1)-TNC manifold. It is now possible to derive the world-sheet action for a string

moving in the TNC geometry [15, 18] starting from the ordinary Polyakov action in the

relativistic target space (2.1):

L = −
√
−γ

4πl2s
γαβ (hαβ − τrms −mrτs)−

√
−γ

2πl2s
γαβτα∂βX

u, (2.2)

where γ is the determinant of the worldsheet metric γαβ , and where hαβ = h̄rs∂αX
r∂βX

s

and τα = τm∂αX
m are the pullbacks of hrs and τr respectively.7

We consider a closed string without winding, i.e. Xm(σ0, σ1 + 2π) = Xm(σ0, σ1), and

with non zero momentum P along Xu

P =

∫ 2π

0
dσ1P 0

u , (2.3)

with the momentum current

Pαu =
∂L

∂∂αXu
= −
√
−γγαβτβ

2πl2s
. (2.4)

Following [15] it is possible to rewrite (2.2) in a dual formulation where the conservation

of the momentum current (2.4) is implemented off-shell through the classically equivalent

Lagrangian

L = −
√
−γγαβh̄αβ

4πl2s
− 1

2πl2s

(√
−γγαβτβ − εαβ∂αη

)
Aβ , (2.5)

where Aα is a Lagrange multiplier that enforces conservation of Pαu =
εαβ∂βη

2πl2s
off-shell and

we defined the combination

h̄αβ ≡ hαβ − ταmβ −mατβ . (2.6)

The significance of this combination will become clear when we discuss the symmetries of

the theory below. Our convention for the Levi-Civita symbol is ε01 = −ε01 = 1.

This procedure introduces a novel degree of freedom, a scalar field η on the world

sheet. To see that (2.5) and (2.2) are equivalent one uses the equation of motion for η

which gives Aα = ∂αχ for some world sheet scalar χ and identifies the latter with the

u-direction χ = Xu recovering the original Lagrangian (2.2). Following [15] we introduce

the worldsheet zweibein eaα and its inverse eαa = εαβebβεba, satisfying eaαe
b
βηab = γαβ and

eαae
β
b ηab = γαβ , to rewrite the constraints as

εαβ
(
e0
α + e1

α

)
(τβ + ∂βη) = 0 ,

εαβ
(
e0
α − e1

α

)
(τβ − ∂βη) = 0 .

(2.7)

A final field redefinition

Aα = mα +
1

2
(λ+ − λ−) e0

α +
1

2
(λ+ + λ−) e1

α (2.8)

7We use the first few greek and latin indices {α, β . . .} and {a, b, . . .} to denote the curved and flat

worldsheet indices respectively.
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yields the Lagrangian

L = − 1

4πl2s

[
2εαβmα∂βη + eηabeαae

β
b hαβ − eλ+e

β
− (∂βη + τβ)− eλ− (∂βη − τβ)

]
, (2.9)

where eα± = eα0 ± eα1 . This is the Polyakov-type Lagrangian for a string moving in a TNC

geometry proposed in [15]. We further use the constraints to rewrite (2.9) in a way more

convenient for quantization8

L =
e

4πl2s

[
eα+e

β
−h̄αβ + λ+e

β
− (∂βη + τβ) + λ−e

β
+ (∂βη − τβ)

]
, (2.10)

We will examine the quantum path integral defined by this Lagrangian in the rest of the

paper, but we will first extend it to include Neveu-Schwarz matter, i.e. the Kalb-Ramond

field and dilaton and then discuss the symmetries of this generalized action both on the

worldsheet and in the target space.

2.2 The Polyakov action with matter

It is straightforward to generalize the action (2.10) to include standard Neveu-Schwarz

matter, i.e. a Kalb-Ramond field BMN and a dilaton φ. Let us first consider the B-field.

Once again, to derive the corresponding Lagrangian we can start from its null lifted version.

We then obtain the following action by rearranging the terms that follow from the null

reduction of the relativistic d+2 dimensional bosonic Polyakov action with the B-field:

L = − 1

4πl2s

(√
−γγαβh̄αβ + εαβB̄αβ

)
− 1

4πl2s

(√
−γγαβτα − εαβℵα

)
∂βX

u (2.11)

where we defined

ℵα ≡ Buα = −Bαu , (2.12)

B̄αβ ≡ Bαβ . (2.13)

Following the same procedure as in [15] described in section 2 we compute the momentum

along Xu

Pαu = − 1

2πl2s

(√
−γγβατβ − εβαℵβ

)
(2.14)

and implement its conservation off-shell via

L = − 1

4πl2s

(√
−γγαβh̄αβ + εαβB̄αβ

)
− 1

2πl2s

(√
−γγαβτα − εαβℵα − εαβ∂αη

)
Aβ . (2.15)

Making, once again, the field redefinition

Aα = mα +
1

2
(λ+ − λ−) e0

α +
1

2
(λ+ + λ−) e1

α , (2.16)

8One should think of implementing these constraints inside the Polyakov path integral to ensure equiv-

alence of the quantum path integrals based on the lagrangians (2.9) and (2.10).

– 6 –
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integration over the worldsheet fields λ± now impose the constraints

εαβ
(
e0
α + e1

α

)
(τβ + ℵβ + ∂βη) = 0 ,

εαβ
(
e0
α − e1

α

)
(τβ − ℵβ − ∂βη) = 0 .

(2.17)

we can cast (2.15) in the Polyakov form

L =
1

4πl2s
e
[
eα+e

β
−
(
h̄αβ + B̄αβ

)
+ λ+e

β
− (∂βη + ℵβ + τβ) + λ−e

β
+ (∂βη + ℵβ − τβ)

]
, (2.18)

where just as in (2.10) the constraints (2.17) have been used. Lagrangian (2.18) is still

invariant under (2.35) and the contribution of the B-field to the anomaly can in principle

be computed in a similar manner as performed for (2.10).

When the world-sheet is non-flat, in addition to the B-field, it is also possible to include

a dilaton contribution of the form

Lφ =
1

16π

√
−γRφ , (2.19)

where R is the worldsheet Ricci scalar. The Polyakov path integral then involves a sum

over world-sheet topologies that is organized in powers of exp(φ) as usual.

2.3 Symmetries of the Polyakov action

We will now discuss both the target space and world-sheet symmetries of the world-sheet

action (2.18) and (2.19).

2.3.1 Space-time symmetries

The fields in the TNC metric complex, without matter, transform under diffeomorphisms

ξ, local Galilean boosts λi, local rotations λij and local U(1) gauge transformation σ and

the Lagrangian (2.5) is invariant under these transformations [15]. These transformations

are easily generalized in the presence of matter. All in all, the transformations of all the

objects that enter the calculations read

δτs = £ξτs,

δeis = £ξe
i
s + λiτs + λije

j
s,

δυs = λiesi ,

δesi = £ξe
s
i ,

δms = £ξms + λie
i
s + ∂sσ,

δB̄mn = £ξB̄mn + 2ℵ[m∂n]σ ,

δℵm = £ξℵm ,
δφ = £ξφ .

(2.20)

In particular, the combination h̄mn defined in (2.6) and (2.13) is invariant under local

Galilean boosts and transforms under local U(1) mass transformations as

δσh̄mn = −2τ(m∂n)σ (2.21)

– 7 –
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Now, it is straightforward to check that the actions based on (2.18) and (2.19) are

invariant under diffeomorphisms, local Gallilean boosts, local rotations and local U(1)

transformations. When starting with the explicitly Galilean boost invariant form (2.18)

it is crucial to use the constraints (2.17) to show invariance under local U(1) mass trans-

formations. However, the classical equations of motion will not be invariant under this

U(1) symmetry, see (B.12). To fix this we will ask that the Lagrange multipliers transform

under the symmetry as

δλ+ = −eα+∂ασ , δλ− = eα−∂ασ. (2.22)

Taking this into account, both the action and the equations of motion can be shown to be

U(1) mass invariant off-shell. In what follows, in addition to h̄mn and B̄mn defined in (2.6)

and (2.13), it will prove useful to introduce the following combinations

υ̂m ≡ υm − hmsms , (2.23)

Φ ≡ −υsms +
1

2
hrsmrms , (2.24)

that are invariant under local Galilean boost and rotations as one can easily check us-

ing (2.20). They do transform under a local U(1) mass transformation:

δσυ̂
m = −hmn∂mσ (2.25)

δσΦ = −υ̂n∂nσ . (2.26)

Even though they do not appear in the action at the classical level, we have introduced υ̂m

as the local Galilean boost and rotations invariant version of υm the inverse of τm, and the

target space scalar Φ which will play the role of the Newton’s gravitational potential below.

They will become important when we discuss quantum corrections in the theory. We note

that υ̂m, τm, h̄mn and hmn are subject to the completeness relation δrs = −υ̂rτs + hrmh̄ms.

Finally, we note that because of the non-trivial U(1) mass transformation of B̄mn in (2.20),

i.e. δσB̄ = ℵ ∧ dσ, the field strength, H = dB̄ will transform under mass U(1) as

δσHmnp = hmn∂pσ + hnp∂mσ + hpm∂nσ , (2.27)

with

hmn ≡ ∂mℵn − ∂nℵm (2.28)

being the field strength of ℵ. Notice in particular that setting Hmnp = 0 would not be a

U(1) mass invariant condition unless hmn = 0.

2.3.2 U(1)B one-form symmetry

In the presence of the Kalb-Ramond field there is also a U(1) one-form symmetry. It is

well-known that the transformation

δΛBMN = ∂MΛN − ∂NΛM , (2.29)

where ∂M is the partial derivative in the target space, is a symmetry of the d+2 dimensional

world-sheet action with the relativistic target space.

– 8 –
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After null reduction the resulting TNC geometry with Kalb-Ramond matter has a

U(1) one-form symmetry of the form:

δΛB̄mn = ∂mΛn − ∂nΛm, (2.30)

δΛℵm = ∂mΛu . (2.31)

We see that in the TNC geometry ℵ acquires a new local U(1) symmetry, whereas B

transforms under a local one-form symmetry. It is now straightforward to check that the

action (2.18) is invariant under (2.30) upon use of the constraint equations (2.17). Invari-

ance of (2.18) under (2.31) however requires a non-trivial transformation of the worldsheet

field η:

δΛη = −Λu , (2.32)

which is a trivial shift in the quantum path integral where η is path integrated. Therefore,

we conclude that the action, at least at the tree-level, is invariant under both the local

one-form symmetry Λm and the new local U(1) symmetry Λu. The fact that η is charged

under the U(1) that comes from the B-field, i.e. eq. (2.32), is expected as one can think of

η as the direction dual to u, [15]. In this sense the gauge fields m and ℵ can be considered

as dual to each other.

In passing, we note that for ℵ = 0 the action (2.18) enjoys an additional symmetry for

B̄mn given by

δB̄mn = 2Ω(X) ∂[mτn] , (2.33)

with Ω an arbitrary spacetime function satisfying ∂α∂
αΩ(X) = 0. To show that (2.33) is

a symmetry it is necessary to use the constraint equations (2.17).

2.3.3 Local worldsheet symmetries

The actions (2.10) and (2.18) are clearly invariant under the worldsheet diffeomorphisms.

These symmetries allow us to cast the worldsheet metric in a diagonal form γab = e−2ρηab

where the conformal factor ρ determines the Ricci curvature of the worldsheet R (locally) as

√
−γR = −2∂2ρ . (2.34)

We will refer to this choice of gauge as the conformal gauge. The reparametrization gauge-

fixed Polyakov Lagrangians (2.10) and (2.18) further exhibit a residual Lorentz/Weyl gauge

invariance of the form (as can be checked straightforwardly)

eα± → f±e
a
±, λ± → f±λ±, (2.35)

for any worldsheet function f±. For f+ = f− the transformation is a local Weyl trans-

formation and for f+ = −f− it constitutes a local Lorentz transformation. Once we have

used diffeomorphism invariance to go to conformal gauge it is possible to use local Weyl

invariance to fix the mode ρ and completely fix the worldsheet metric γαβ .

– 9 –
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The main purpose of our paper is to discuss the fate of these residual gauge invariances

at the quantum level. Here it suffices to note that, in the case without matter, the condition

for invariance of the Polyakov action S(e, λ,X) under the gauge transformations (2.35) at

the classical level takes the form

δS

δf±
= eγc τ

c
γ + C+λ+ + C−λ− = 0, (2.36)

where the energy momentum one form9 τ cγ and constraint functions C± are defined as

τ cγ ≡−
2πl2s
e

δS

δeγc

=
2πl2sL
e

ecγ +
1

2

[
2eβb η

cbh̄γβ−λ+ (δc0−δc1) (∂γη+τγ)−λ− (δc0 +δc1) (∂γη−τγ)
]
, (2.37)

C± ≡−2πl2s
e

δS

δλ±
=−1

2
eβ∓ (∂βη±τβ) . (2.38)

The condition (2.36) is nothing but a constrained traceless condition for the energy

momentum tensor, and from (2.37) and (2.38) it is clear that this conditions holds for the

Polyakov action (2.10). The rest of our work will concern the computation of (2.36) at the

quantum level, in particular, at the one-loop level in the perturbative expansion in l2s .

3 Quantum weyl invariance of string in the TNC geometry

3.1 Background field quantization

The quantum partition function that follows from the action (2.10) is defined by the

Polyakov path integral.10 As for the bosonic strings [16], it will be very helpful to in-

troduce the background field formalism to organize the perturbative l2s expansion to study

the quantum properties of the worldsheet sigma model. To this end, we expand the world-

sheet fields {Xm, λ±, η} around a classical configuration Ψ0 ≡ {Xm
0 , λ

0
±, η0} as

Xm = Xm
0 + lsȲ

m,

λ± = λ0
± + lsΛ̄±,

η = η0 + lsH̄,

(3.1)

where Ψ ≡ {Ȳ m, Λ̄±, H̄} below will collectively denote the quantum fields. Using this

expansion, the one loop effective action Γ[Ψ0] for the background fields can be expressed [32]

as a path integral over the quantum fields as

eiΓ̄[Ψ0](0) =

∫
DΨ eiS̄[Ψ0,Ψ](0), (3.2)

9Even though it is possible to define an energy momentum tensor from τ cγ via Tαβ = ηcde
d
ατ

c
β it is more

natural to define the traceless condition in terms of the energy momentum one form.
10It is crucial to include the contribution from the Faddeev-Popov ghosts that come from the gauge fixing

but we will not explicitly show them here. The gauge fixing procedure is discussed in appendix E.
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where S̄[Ψ0,Ψ](0) is the O
(
l0s
)

term that arises from substituting (3.1) in (2.10). In (3.2)

the zweibeins are completely fixed by the Faddeev-Popov procedure, see appendix E, using

the reparametrization invariance and Weyl symmetry. This, in particular, fixes the function

ρ. If the symmetry (2.35) is to be consistent at the one loop level then any change of ρ

should leave the effective action invariant, this means that the Weyl invariance (2.36) at

the one loop level becomes11

δψΓ̄ [Ψ0] (0) = 0, δψρ = ψ (3.3)

3.2 Covariant background expansion

The goal of this section is to express S̄[Ψ0,Ψ](0) as an action over TNC covariant fields,

for this we first note that Ȳ m does not transform as a vector under general coordinate

transformations. To get covariant expressions we first need to rewrite Ȳ m covariantly.

This is achieved [32] by considering a geodesic connecting Xm
0 and Xm

0 + Ȳ m to rewrite

Ȳ m as

Ȳ m = Y m − ls
2

(Γmrs +Gmrs)0 Y
rY s +O

(
l2s
)
, (3.4)

where Y m is the tangent vector along the geodesic, ()0 indicates the corresponding expres-

sion is evaluated at X0, Γmrs is the TNC connection characterising the non-covariant part

of Ȳ m, and Gmrs is a tensor symmetric in its lower indices and the solution to the tensor

equation12

τ(rG
t
mn) = τsG

s
(mnδ

t
r) −

1

2
h̄(mnFr)sh

st , (3.5)

with

F ≡ dτ , (3.6)

characterising the spacetime torsion. The derivation of (3.4) and (3.5) from the geodesic

equation of a particle evolving in a TNC background is shown in appendix A. We reproduce

below the connection for a generic TNC geometry [12, 33]

Γmrs ≡ −υ̂m∂rτs +
1

2
hmt

(
∂rh̄st + ∂sh̄rt − ∂th̄rs

)
. (3.7)

It is compatible with the metrics τm and hmn and exhibits a torsion component Tmrs ≡
2Γm[rs] = −2υ̂m∂[rτs] = −v̂mFrs. While it is of course possible to proceed in the computation

by using the connection Γtmn, the solution to the geodesic equation (3.4) suggests that a

more natural connection to consider will be the one given by

Γ̊tmn ≡ Γtmn +
1

2
υ̂tFmn +Gtmn. (3.8)

11We are assuming that a path integral measure invariant under the target spacetime symmetries exists.
12A solution to (3.5) exists as long as the torsion is taken to be twistless, namely as long as

Fmnh
mthnw = 0.
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This new connection is symmetric and U(1) mass invariant. Although it is not compat-

ible with τm and hmn, the action of the new covariant derivative on these two tensors is

quite simple:

D̊mτn =
1

2
Fmn, D̊rh

mn = ath
t(mδn)

r . (3.9)

Where D̊ denotes a covariant derivative with respect to the symmetric U(1) mass invariant

connection Γ̊, the symbol D will be reserved for the covariant derivative with respect to

the standard TNC connection Γ.

From (3.1) and (3.4) it follows that

∂αX
m = ∂αX

m
0 + ls∇̊αY m − ls

(
Γ̊mts

)
0
Y s∂αX

t
0 − l2s

(
Γ̊mrs

)
0
∇̊αY rY s

− l2s
2

[
∂tΓ̊

m
rs − 2Γ̊mnsΓ̊

n
tr

]
0
Y rY s∂αX

t
0 +O

(
l3s
)
,

(3.10)

where ∇̊α ≡ ∂αXn
0 D̊nY

m = ∂αY
m +

(
Γ̊mrs

)
0
∂αX

r
0Y

s is the pullback of the TNC spacetime

covariant derivative D̊n onto the worldsheet. To compute S̄[Ψ0,Ψ](0) we will also need the

quantum expansion of the non-linear couplings h̄mn(X), B̄mn(X),ℵm(X) and τm(X). This

can be achieved by noting that any vector Vm(X) and tensor Wmn(X) can be expanded as

Wmn = (Wmn)0 + (∂rWmn)0 lsY
r +

1

2

(
∂r∂sWmn − Γ̊trs∂tWmn

)
0
l2sY

rY s ,

Vm = (Vm)0 + (∂rVm)0 lsY
r +

1

2

(
∂r∂sVm − Γ̊trs∂tVm

)
0
l2sY

rY s ,

(3.11)

where we have made use of (3.4). It is also straightforward to show that the pullback of

any vector Vm(X) and tensor Wmn(X) can be written in the TNC covariant form

Wαβ

l2s
= Wmn∇̊αY m∇̊βY n + D̊sWmn∇̊αY mY s∂βX

n
0 + D̊sWmn∇̊βY nY s∂αX

m
0

+
1

2

(
D̊rD̊sWmn + R̊tsrmWtn + R̊tsrnWmt

)
Y rY s∂αX

m
0 ∂βX

n
0 +O (ls) ,

(3.12)

Vα
l2s

=
Vm∇̊αY m + D̊rVmY

r∂αX
m
0

ls

+

[
D̊mVnY

m∇̊αY n +
1

2

(
D̊rD̊sVm + R̊tsrmVt

)
Y rY s∂αX

m
0

]
+O (ls) ,

(3.13)

where R̊tsrm ≡ ∂rΓ̊
t
ms − ∂mΓ̊trs + Γ̊trwΓ̊wms − Γ̊tmwΓ̊wrs is the Riemann tensor defined in the

usual way from the connection (3.8) and where to avoid cluttering we have dropped the

zero index on the background tensor fields. Making use of (3.12) and (3.13) we can rewrite

– 12 –
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the Polyakov action (2.10) in the TNC covariant way, see apendix C for its derivation,

S̄0 =−
∫
d2σe

4π

[
h̄mn∇̊αY m∇αY n−Λ̄+e

β
−

(
∇̊βĤ+∇̊β (τmY

m)
)
−Λ̄−e

β
+

(
∇̊βĤ−∇̊β (τmY

m)
)]

−
∫
d2σe

4π

[
Λ̄+Y

r (Fmr+hmr)e
β
−∂βX

m
0 −Λ̄−Y

r (Fmr−hmr)eβ+∂βXm
0

]
−
∫
d2σe

4π

[(
γαβAsmn+εαβĀsmn

)
Y s∇̊αY m∂βX

n
0 +

1

2

(
∆λβFmn−Σλβhmn

)
Y m∇̊αY n

]
−
∫
d2σe

4π

[(
γαβCrsmn+εαβC̄rsmn

)
Y rY s∂αX

m
0 ∂βX

n
0 +
(
∆λαBrsm+ΣλαB̄rsm

)
Y rY s∂αX

m
0

]
,

(3.14)

where Ĥ = H̄+ℵmY m, H = dB̄, F = dτ , h = dℵ, ∆λβ ≡ λ0
−e

β
+−λ0

+e
β
−, Σλα ≡ λ0

−e
β
++λ0

+e
β
−

and where the coefficients {A, Ā,B, B̄, C, C̄} are given by

Asmn = 2D̊sh̄mn ,

Āsmn = Hsmn ,

Crsmn =
1

2
D̊rD̊sh̄mn + R̊t(rs)(mh̄n)t ,

C̄rsmn =
1

2
D̊rHsmn ,

Brsm =
1

2
D̊rFsm ,

B̄rsm = −1

2
D̊rhsm .

(3.15)

We note that (3.14) is manifestly invariant under the U(1)B zero and one form trans-

formations as it is written exclusively in terms of h and H instead of ℵ and B̄. Ideally

one would like to do the same for the U(1) mass symmetry, i.e. express the action in terms

of the field strength of m, however this would give us an action which is manifestly U(1)

mass invariant, but not manifestly Galileian invariant. Although the action will be kept

in its explicit Galilean invariant form, as written in (3.14), it can be shown that it is still

invariant under the U(1) mass symmetry after making use of the classical equations of

motion (B.12) as well as the transformation rules for the quantum Lagrange multipliers,

derived from (2.22):

δΛ± = ∓eα±
(
D̊rσ∇̊αY r + D̊rD̊sσY

r∂αX
s
0

)
. (3.16)

The preservation of this symmetry at the quantum level is then expected to be non-trivial.

3.3 Weyl invariance at one loop

From (3.14) we observe that Γ[Ψ0](0) is a free theory with a background dependent normal-

ization for the kinetic and mass terms. Nevertheless, since we are looking at contributions

up to O
(
D2
)

in target spacetime derivatives we can treat (3.2) perturbatively as long as

we can renormalize the O
(
D0
)

appropriately. One can move these background dependent
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norms to terms higher order in spacetime derivatives through the following coordinate

transformation

Y m = −υ̂m (τsY
s) + emi

(
δijerj h̄rsY

s
)
≡ −υ̂m Y 0

√
2Φ

+ emi Y
i ≡ emI Y I ,

Ĥ =
H√
2Φ

, Λ̄± =
√

2ΦΛ± ,

(3.17)

with Φ defined in (2.24), Y I = {Y 0, Y i} and the normalizations are judiciously chosen

such that the normalization of the first term in (3.14) becomes canonical, i.e. it yields

the first two terms in the zeroth order action below. To see this one needs to use the

identity h̄mnυ̂
n = 2Φτm and in particular we can identify the spacetime inverse vielbeins

emI = {−υ̂m√
2Φ
, emi } satisfying h̄mne

m
I e

n
J = ηIJ . We remark that (3.17) is simply a field a

redefinition and not an expansion around flat space. This field redefinition looks singular

when Φ = 0, but one should keep in mind that Φ = 0 is not a U(1) invariant condition.

The effective action S0 is now expressed in terms of flat indices and can be expanded as

S0 = S
[0]
0 + S

[1]
0 + S

[2]
0 , (3.18)

with S
[a]
0 denoting the O (Da) in target spacetime derivatives. In particular the O

(
D0
)

action is given by the free action with constraints

S
[0]
0 = −

∫
d2σe

4π

[
γαβηIJ∂αY

I∂βY
J − Λ+e

β
−
(
∂βH + ∂βY

0
)
− Λ−e

β
+

(
∂βH − ∂βY 0

)]
.

(3.19)

Assuming a diffeomorphism invariant measure the path integration over the fields

{Y m, Λ̄, H̄} can be changed to an integration over {Y 0, Y i,Λ, H}. After this change of

coordinates, the following propagators for S
[0]
0 can be constructed

〈Y I(σ)Y J(σ′)〉0 = ∆2

(
ηIJ + δI0δ

J
0

)
ln
(
|∆σ|2

)
,

〈Y I(σ)Λ±(σ′)〉0 = δI0
∓2∆2

(σ − σ′)±
,

〈H(σ)Λ±(σ′)〉0 =
−2∆2

(σ − σ′)±
,

〈Λ±(σ)Λ±(σ′)〉0 =
4∆2

(σ − σ′)±
,

〈Λ+(σ)Λ−(σ′)〉0 = −4π∆2δ(σ − σ′) ,

(3.20)

where 〈〉0 denotes the correlation function computed with respect to the action S
[0]
0 and

∆2 = i/2. At first and second order in covariant derivatives we can perform the further

decomposition

S
[1]
0 = S1 + S̃1 ,

S
[2]
0 = S2 + S̃2 ,

(3.21)
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where we make a distinction between the contributions coming directly from coefficients

{A, Ā, C, C̄, B, B̄} and the contributions coming from the non-compatibility of the vielbeins

{−υ̂m√
2Φ
, emi } by considering the former in S and the latter in S̃. In detail we find for the

S components

S1 = −
∫
d2σe

4π

[
Λ̄+Y

IerI (Fmr + hmr) e
β
−∂βX

m
0 − Λ̄−Y

IerI (Fmr − hmr) e
β
+∂βX

m
0

]
(3.22)

−
∫
d2σe

4π

[(
γαβAsmn + εαβĀsmn

)
esIe

m
J Y

I∂αY
J∂βX

n
0

]
−
∫
d2σe

4π

[
1

2

(
∆λβFmn − Σλβhmn

)
emI e

n
JY

I∂αY
J

]
,

S2 = −
∫
d2σe

4π

[(
γαβCrsmn + εαβC̄rsmn

)
erIe

s
JY

IY J∂αX
m
0 ∂βX

n
0

]
(3.23)

−
∫
d2σe

4π

[(
∆λαBrsm + ΣλαB̄rsm

)
erIe

s
JY

IY J∂αX
m
0

]
,

and for the S̃ components

S̃1 = −
∫
d2σe

4π

[
Λ+e

β
−H+ + Λ−e

β
+H−

2
∂αX

m
0 D̊m ln Φ +

(
2h̄rse

r
ID̊me

s
J

)
Y I∂αY

J∂αXm
0

]
,

(3.24)

S̃2 = −
∫
d2σe

4π

[(
h̄rsD̊me

r
ID̊e

s
J

)
Y IY J∂αX

m
0 ∂

αXn
0

]
(3.25)

−
∫
d2σe

4π

[(
Asrnγ

αβ + Āsrnε
αβ
)
esID̊me

r
JY

IY J∂αX
m
0 ∂βX

n
0

]
−
∫
d2σe

4π

[(
∆λαFsr

2
− Σλαhsr

2

)
esID̊me

r
JY

IY J∂αX
m
0

]
,

where we have explicitly broken the covariance by using ∇̊αY I = ∂αY
I + ωIJαY

J with

ωIJα the spin connection,13 and where the covariant derivative D̊me
t
I is taken only with

respect to the curved spacetime indices. The effective action (3.2) can be now be treated

perturbatively and its corresponding Weyl variation, (3.3), can be computed as

δψΓ̄[Ψ0](0) = δψ

〈
S[1] + S[2]

〉
0

+
i

2
δψ

〈
S[1]S[1]

〉
0

− iδψ
〈
S[1]
〉

0

〈
S[1]
〉

0
− iδψ log(Z0ZFP ) +O

(
D3
)
,

(3.26)

where ZFP is the partition function for the Fadeev-Popov ghosts arising from the gauge

fixing procedure, see appendix E, and where Z0 denotes the partition function with respect

to the action S
[0]
0 . By dimensional considerations we expect δψ log(Z0ZFP ) = cTR with

cT a proportionality constant.14 The coefficient cT is independent of the background fields

and depends only on the dimensionality of the TNC spacetime. Therefore, as in the case

of the ordinary string, the requirement cT = 0 fixes the dimensionality of the background

13The spin connection is not gauge invariant and consequently it will not contribute to the beta functions.
14At one loop level this is the only contribution to the anomaly proportional to R.
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geometry. This is the requirement of invariance under conformal reparametrizations, hence

the quantum consistency of the theory in the absence of extra dynamical fields. We find

that the requirement cT = 0 fixes the critical dimension of the d + 1 dimensional TNC

geometry to be

dc + 1 = 25 . (3.27)

The details of this calculation are presented in appendix F. This result is somewhat ex-

pected, as quantum consistency of the ordinary bosonic string sets d + 2 = 26 and we

obtain the TNC geometry by reduction of this 26 dimensional background on a null direc-

tion. Nevertheless, it is still a non-trivial result, as we cannot find a simple argument as to

why quantization and null reduction should commute. Taking the dimension to be critical,

we expect the right hand side of (3.26) to take the form

δψΓ̄[Ψ0](0) = −
∫
d2σ

ψ

4π

[
βrsη

αβ∂αX
r∂βX

s + β̄rsε
αβ∂αX

r∂βX
s

+βm∆λβ∂βX
m
0 + β̄mΣλβ∂βX

m
0 + βλ0

+λ
0
−

]
.

(3.28)

where {β, βrs, β̄rs, βm, β̄m} will correspond to the beta functions. We will exemplify the

computation of the beta functions by taking the background solution to be ∂αX
m
0 = 0 so

that we can easily compute the scalar beta function β. Under this assumption and making

use of (3.26), (3.19), and (3.21) we find

−δψΓ̄ [Ψ0] (0) = δψ

∫
d2σe

4π

[
1

2

(
∆λβFmn − Σλβhmn

)]
∆mn (3.29)

+ δψ

∫
d2σd2σ′ie2

64π2

[
(FrsFtw − hrshtw) γαβ + Frshtwε

αβ
]
λ+λ−γ

αβ∆rstw
αβ ,

where for simplicity we have defined

∆mn
α (σ) ≡ emI enJ〈Y I(σ)∂αY

J(σ)〉0 , (3.30)

∆rstw
αβ (σ, σ′) ≡ erIesJetKewL〈Y I(σ)∂αY

J(σ)Y K(σ′)∂βY
L(σ′)〉0 . (3.31)

The propagators in (3.30) can be computed by making use of the zeroth order ac-

tion (3.19), and in particular the following identities follow from it

δψ

∫
d2σJαrs∆

rs
α (σ) = −1

2

∫
d2σeψ∂α (hrsJαrs) ,

δψ

∫
d2σd2σ′Jαβrstw∆rstw

αβ (σ, σ′) = (−2πi)

∫
d2σeψJαβrstwh

rthswγαβ ,

(3.32)

where {Jαrs, J
αβ
rstw} are arbitrary tensors. By using (3.32) and (3.29) we finally find β to be

β =
1

4
(hrshtw − FrsFtw)hrthsw . (3.33)

Our analysis depends on the existence of a solution Gtrs to the geodesic equation (3.5).

It is easy to show that such solution exists as long as the torsion is twistless, namely that

it satisfies the constraint

Frsh
rthsw = 0 , (3.34)
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with corresponding solution to the geodesic equation given by

Gtmn =
1

2
h̄mnFrsυ̂

rhst . (3.35)

For the rest of this work we will use (3.35) and assume (3.34) holds for the TNC

background. This requirement together with the Weyl invariance condition β = 0 implies

that, just as F , the field strength h is forced to be twistless. This condition can be made

explicit by expressing F and h in terms of the decomposition [14]

Frs ≡ arτs − τras ,
hrs ≡ erτs − τres ,

(3.36)

with ar = υ̂tFtr the acceleration and er = υ̂thtr an electric field, and where both vectors

satisfy atυ̂
t = etυ̂

t = 0. For simplicity and from now on we will assume (3.36) holds

for the computation of the remaining beta functions. It is important to note we should

think of (3.34) not as an equation of motion arising from Weyl invariance but rather as a

constraint to ensure both general covariance and U(1) mass invariance at the quantum level.

Taking ∂αX
m
0 satisfying (B.12) and following a similar procedure as the one just out-

lined for the computation β, the remaining beta functions are found to be

βm =

[
1

2
D̊ · a+

(
dc
4

+
1

2

)
a2 − e2 − a · D̊φ

]
τm , (3.37)

β̄m = −
[

1

2
D̊ · e +

dc
4
a · e− e · D̊φ

]
τm , (3.38)

βmn = −R̊mn +
1

4
Hrs(mHn)twh

rthsw − 2D̊(mD̊n)φ− erh
rs (∆T )t(mHn)ts (3.39)

+
e2
(
2Φτmτn + h̄mn

)
− emen

2
− βtυ̂th̄mn ,

β̄mn =
1

2
hrsD̊rHsmn +

dc
4
arh

rsHsmn − (∆S)t[m D̊n]et + (∆T )r[m D̊n]er + a[men] (3.40)

+
D̊tυ

t

2
hmn − (υ̂rhmn + hrpHpmn) D̊rφ ,

with a2 = arash
rs, e2 = eresh

rs, R̊mn the Ricci tensor, · denoting an inner product with

respect to hrs, and where the time projector (∆T )tm and the space projector (∆S)tm are

defined as

(∆T )tm = −υ̂tτm , (∆S)tm = htph̄pm , (3.41)

satisfying the projector identities

(∆T )tm + (∆S)tm = δtm(
∆T/S

)t
m

(
∆T/S

)m
w

=
(
∆T/S

)t
w

(∆T )tm (∆S)mw = 0

(3.42)

The details of the derivation of (3.37)–(3.40) can be found in appendix D. The Weyl

invariance of the theory at one loop will follow from the vanishing of the beta functions.
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These constraints will be interpreted as the gravitational equations of motion for the TNC

background, such equations are discussed in the following section. Before finalizing this

section we comment on the U(1) mass covariance of the beta functions (3.37)–(3.40) by

noting that

δσβ = 0 ,

δσβm = 0 ,

δσβ̄m = 0 ,

δσβmn = 2
(
βtυ̂

t
)
τ(mD̊n)σ ,

δσβ̄mn = 2
(
β̄tυ̂

t
)
τ[mD̊n]σ ,

(3.43)

where the transformation rules (2.21), (2.25), (2.26), and (2.27) have been used. From (3.43)

we can note that the vanishing of the beta functions is a U(1) mass invariant condition.

3.4 TNC equations of motion

The gravitational equations for the TNC background will arise from the condition (3.34),

and by setting (3.33), (3.37)–(3.40) to zero. The resulting equations can be categorized

into two twistless constraints:

Frs = arτs − τras , (3.44)

hrs = erτs − τres , (3.45)

two scalar equations:

D · a+ a2 = 2e2 + 2 (a ·Dφ) , (3.46)

D · e = 2 (e ·Dφ) , (3.47)

and two tensor equations:

R(mn)−
Hrs(mHn)twh

rthsw

4
+2D(mDn)φ=

e2
(
2Φτmτn−h̄mn

)
−emen

2
−erhrs (∆T )t(mHn)ts

+(∆S)t(mDn)at+
aman

2
−a2 Φτmτn , (3.48)

1

2
hrsDrHsmn−hrpHpmnDrφ= (∆S)t[mDn]et−(∆T )r[mDn]er−a[men]

− 1

2
arh

rsHsmn+

(
υ̂tDtφ−

Dtυ
t

2

)
hmn . (3.49)

In (3.44)–(3.49) we have used the original TNC connection (3.7) and used D to denote

its corresponding covariant derivative. The Ricci tensor associated to the standard TNC

connection can be read off from the following relation

R̊mn −Rmn = −1

2
aman −Dnam +

1

2

(
D · a+ a2

)
h̄mn + (∆T )r[mDran] + (∆T )r(mDn)ar

− 1

2
Drυ̂

rFmn + a2Φτmτn. (3.50)
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Notice that it is not symmetric in the presence of torsion and, as discussed earlier, the

TNC connection is not U(1) mass invariant when torsion is non-vanishing. Consequently

the U(1) mass invariance of equations (3.44)–(3.49) is harder to verify in this form, how-

ever from (3.43) we know they are indeed invariant. We can also note that unlike the

expressions (3.37)–(3.40), where the U(1) mass invariant connection has been used, equa-

tions (3.44)–(3.49) have no explicit dependence on the critical dimension dc. At this point

it is convenient to introduce the extrinsic curvature tensor Kmn as [34]

Kmn ≡ −
1

2
Lυ̂h̄mn = −1

2

[
υ̂tDth̄mn + h̄mtDnυ̂

t + h̄ntDmυ̂
t − 4Φa(mτn)

]
, (3.51)

and use the TNC identity

Dmh̄rs = 2τ(rh̄s)pDmυ̂
p − 2τrτsDmΦ , (3.52)

to derive the following contractions of the extrinsic curvature

hrsKrs = −Dtυ̂
t ,

KrsKtwhrthsw = Dmυ̂
nDnυ̂

m ,
(3.53)

We can then see that Krshrs shows up in the antisymmetric beta function (3.49). To further

show the role of Kmn in equations (3.44)–(3.49) it is instructive to look at the time-time

projection of equation (3.48) to write down Newton’s law in a general TNC spacetime. For

this it will be necessary to use the υ̂mυ̂n projection of the TNC Bianchi identity (D.5)

υ̂nDnυ̂
t = hts (DsΦ + 2asΦ) , (3.54)

the scalar equation (3.46), and the extrinsic curvature contractions (3.53) to find that

Newton’s law takes the form

D2Φ + 3 (a ·DΦ) +m2
Φ Φ = ρκ + ρm , (3.55)

with D2 ≡ hrsDrDs, and where the Newton’s potential mass m2
Φ, matter density ρm, and

curvature density ρK are defined as

m2
Φ ≡ a2 + 2 e2 + 4 a ·Dφ , (3.56)

ρK ≡ KrsKtwhrthsw − υ̂nDn (Krshrs) , (3.57)

ρm ≡
1

4
υ̂mυ̂nhrthswHrsmHtwn − 2υ̂mυ̂nDmDnφ . (3.58)

From (3.55) we can observe that the extrinsic curvature enters Newton’s law in the

form of a matter density distribution. In contrast we can note that the presence of torsion

modifies considerably the classical gravitational equation of motion by adding both a mass

term15 via its coupling with matter through (3.46), and an advection term via the coupling

15From (3.46) we note that whenever torsion vanishes the electric field e also vanishes and cose-

quently m2
Φ = 0.
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a ·DΦ. Equation (3.55) is nothing but the temporal trace of the Ricci tensor, however it

is also instructive to compute its spatial trace RS ≡ Rmnhmn to find that

RS =
1

4
H2
S − 2D2φ+

m2
Φ

2
− (dc − 1) e2

2
− a2 , (3.59)

with H2
S ≡ HrsmHtwnh

rthswhmn. In addition the electric Maxwell equation (3.47) reduces

to Gauss’ law only for a vanishing dilaton while the two-form Maxwell equation (3.49) is

not only sourced by φ and e but also by torsion via the coupling arh
rsHsmn.

Finally we mention a few properties of torsion and what role it plays in the equations

of motion. First of all we recall that the conditions Γt[mn] = 0 and am = 0 are completely

equivalent as long as torsion is forced to be twistless. In the torsionless case (i.e. when

the acceleration vanishes) we notice that the electric field e is also forced to vanish. On

the other hand, a non vanishing electric field forces torsion and the Kalb-Ramond field

strength to be non-zero. The first property can be read off explicitly from (3.46), while the

second one is a consequence of the U(1) mass transformation (2.27). Hence in the absence

of torsion the mass and advection terms in Newton’s law vanish, yelding the more familiar

Poisson equation

D2Φ = ρκ + ρm . (3.60)

Lastly we notice that for vanishing torsion the TNC equations of motion assume the same

form as the usual equations derived from bosonic string theory.

4 Discussion and outlook

We studied the non-linear sigma model for a bosonic string moving in torsional Newton-

Cartan geometry at one-loop. Demanding Weyl invariance at this level yields the critical

dimension of space-time and the equations of motion of the TNC background. We found

dc = 25 for the critical dimension. The equations of motion for non vanishing torsion, three

form field strength H, electric field e, and dilaton φ are given in (3.44)–(3.49).

Our result for the critical dimension is not surprising as the classical TNC geometry

is obtained by reduction of an ordinary Riemannian background on a null direction, and

quantum Weyl invariance of a bosonic string on a Riemannian background requires d = 26.

However it is still non-trivial, as there is, a priori, no guarantee that the argument of null

reduction carries over to the quantum regime. As seen from the calculation in appendix F,

the number 25 arises from quite a non-trivial calculation that involves the TNC ghost

sector and the constraint equations. Our result, therefore is somewhat non-trivial and

implies that null reduction and quantization are commuting operations.

To compute the beta functions of the theory we used the TNC geodesic equation to

derive a system of normal coordinates Y m such that covariant results could be obtained.

For this local coordinates to exist we needed the twistlessness constraint τ ∧ dτ = 0 which

also guarantees causality in this non-relativistic space-time [26]. Moreover we introduced

a new connection with the useful properties of being both symmetric and U(1) mass in-

variant. The latter property was especially useful when checking the invariance of the
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beta functions. In fact, the U(1) mass symmetry was used as a guiding principle to find

the correct set of equations, as the beta functions would otherwise be dependent on some

arbitrary coefficients, see (D.11). Intuitively these coefficients are related to a choice of

renormalization scheme and are uniquely fixed by requiring the U(1) mass symmetry to be

conserved at the quantum level.

It would be interesting to derive the beta functions without imposing the U(1) mass

invariance via the introduction of the coefficients in (D.11), however within our approach

this is the best we can do. Moreover notice that this approach is justified by the fact that

the equations of motion for Type I TNC can in principle be derived from a Double Field

Theory perspective, see [35, 36] for the embedding of TNC geometry into double geometry,

on which the U(1) symmetry is expected to be preserved explicitly. This means that one

should be able to derive the same (U(1) invariant) equations from the computation of

the Weyl anomaly; we are currently exploring the Double Field Theory approach [37]. In

other words, one of the basic assumptions in our approach was the existence of a set of

U(1) invariant beta functions and we found this to be true, so we expect our procedure to

be consistent. The other basic assumptions of our approach was the existence of a Path

Integral measure which is invariant under all the symmetries of our theory. While we were

not able to construct such a measure, a hint that it exists is given by the fact that the

equations of motions do in fact exist. It might also be possible to build such a measure

by using known results from Double Field Theory [35]; we will explore this possibility in

future work [37].

The resulting equations of motion (3.44)–(3.49) for the TNC target spacetime are

invariant under all TNC transformations as well as the corresponding 1-form and 2-form

symmetries of the Kalb-Ramond fields. In the absence of torsion they take the form of

the usual bosonic string equations of motion and yield the expected Newton’s law for the

gravitational potential Φ. Once torsion is turned on Newton’s law is modified accordingly

with a mass term and an advection term for the gravitational potential Φ being generated.

Our work can be improved and generalized in a number of ways. First, it is desirable

to obtain the O(l2s) contributions to the dilaton beta function. As mentioned above, this

requires two-loop calculations on the worldsheet which can be done in the case of the bosonic

string with relative ease but in our case there exist more than 20 contributions with different

structures and this computation becomes a formidable task. Yet, it is a straightforward

task and should be done in the near future. It is curious to compare our equations with

the ones obtained from other effective approaches, such as the action principle proposed

in [34], and the large c expansion of general relativity equations in [14]. It is also very

interesting to ask whether one can obtain Weyl invariant sub-critical TNC backgrounds

with dimensionality less than 25 by searching for analogs of the linear-dilaton type geometry

in the ordinary bosonic string case. In that case the slope of the linear dilaton cancels the

O(l0s) contribution to the dilaton beta function hence lifting the condition d = 26 and

allowing for non-Lorentz invariant backgrounds with an arbitrary 2 < d < 26. Since we

already gave up Lorentz invariance in the target spacetime, it is natural to ask if one can

obtain subcritical TNC geometries with an analogous mechanism. To see if this is possible

one will need the O(l2s) contributions to the dilaton beta function.
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A Geodesic equation and normal coordinates in TNC geometry

The action of a particle moving in a TNC background is given by [23]

Spart =

∫
dλ
m

2

h̄mnẋ
mẋn

τsẋs
. (A.1)

The geodesic equation can be obtained by minimising such action, the corresponding equa-

tions of motion are found to be[
1

2
∂sh̄mn − ∂mh̄sn −

(
h̄mnFsr − τs∂rh̄mn

)
ẋr

2N
− Ṅ h̄mnτs

N2

]
ẋmẋn

+
Ṅ h̄snẋ

n − τsh̄mnẍmxn

N
= h̄snẍ

n ,

(A.2)

where we have defined N ≡ τpẋp. Contracting (A.2) with hst give us the geodesic equation

ẍt + Γtmnẋ
mẋn =

Ṅ

N
ẋt − h̄mnFsrh

st

2N
ẋmẋnẋr . (A.3)

We want to construct a solution of (A.3) such that xm(0) = Xm
0 and xµ(1) = Xm

0 +

lsȲ
m where we can identify the vector ẋm(0) = lsY

m. The following expansion on ls
satisfying the previously mentioned conditions can be constructed

xm = Xm
0 + λlsY

m +
λ2

2
l2sY

m
2 +O(l3s) , (A.4)

substituting (A.4) in (A.3) it follows that

(
Y t

2 + ΓtmnY
mY n

)
=
τnY

n
2 Y

t + ∂mτnY
mY nY t − 1

2 h̄mnh
tsFsrY

rY mY n

τpY p
, (A.5)

where all the geometric background functions are evaluated at Xm
0 . Equation (A.5) has a

solution of the form

Y t
2 = −ΓtmnY

mY n −GtmnY mY n , (A.6)

with Gtmn a tensor satisfying

τ(rG
t
mn) = τsG

s
(mnδ

t
r) −

1

2
h̄(mnFr)sh

st . (A.7)
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For (A.7) to have a solution it is necessary to impose Frsh
rthsw = 0, obtaining Gtmn =

1
2 h̄mnash

st, meaning that the quantum field Ȳ m can be written in terms of the covariant

vector Y m as

Ȳ m = Y m − ls
2

(
Γmrs +

1

2
h̄rsanh

mn

)
Y rY s +O

(
l2s
)
. (A.8)

B Tree level contributions from the Dilaton

In this appendix we will compute the tree level contributions to the beta functions. To this

end we will need the contribution to the energy-momentum tensor coming from (2.19) and

then compute its (classical) trace. Notice that the energy-momentum tensor will receive a

contribution from this term even when the worldsheet is flat. The result is given by(
−2π

α′

)
γαβTDilαβ = −�σφ = −�σX

m∂mφ− γαβ∂αXm∂βX
n∂m∂nφ, (B.1)

where �σ is the d’Alembertian on the worldsheet, �σ = γαβ∂α∂β . To rewrite this in a

useful way we need the equations of motion for the classical fields. These are found by

varying the Lagrangian (2.18):

0 =−γαβ
(
∂ph̄mn−2∂mh̄np

)
∂αX

m∂βX
n+2h̄mp�σX

m−εαβ
(
∂pB̄mn−2∂mB̄pn

)
∂αX

m∂βX
n

+2∆λα∂αX
m∂[mτp]+τp∂α∆λα−2Σλα∂αX

m∂[mℵp]−ℵp∂αΣλα (B.2)

0 = eα−∂αX
mτm+eα− (∂αη+∂αX

mℵm) (B.3)

0 = eα+∂αX
mτm−eα+ (∂αη+∂αX

mℵm) (B.4)

0 = ∂αΣλα, (B.5)

where

∆λβ ≡ λ−eβ+ − λ+e
β
−, Σλβ ≡ λ−eβ+ + λ+e

β
− . (B.6)

We now multiply the first equation by 1
2h

pr, the second equation by eβ+∂β and the third

one by eβ−∂β to find

−�σX
r = (Γrmn + υ̂r∂mτn) ∂αX

m∂βX
nγαβ − 1

2
hrpHpmn∂αX

m∂βX
nεαβ

+ υ̂rτm�σX
m + hrp∆λα∂αX

m∂[mτp] − hrpΣλα∂αXm∂[mℵp] (B.7)

(τm + ℵm)�Xm = eα+e
β
− (∂mτn + ∂mℵn) ∂αX

m∂βX
n −�ση (B.8)

(τm − ℵm)�Xm = eα+e
β
− (∂nτm − ∂nℵm) ∂αX

m∂βX
n + �ση (B.9)

where we have also used (B.5) to simplify (B.7). By adding and subtracting (B.8) and (B.9)

we find

τm�σX
m = eα+e

β
−
(
∂(mτn) + ∂[mℵn]

)
∂αX

µ∂βX
ν = −

(
γαβ∂mτn + εαβ∂mℵn

)
∂αX

m∂βX
n

(B.10)

ℵm�σX
m = −

(
εαβ∂mτn − γαβ∂mℵn

)
∂αX

m∂βX
n −�ση (B.11)
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Substituting (B.10) in (B.7) we finally have

−�σX
r =

(
Γrmnγ

αβ − υ̂r∂mℵnεαβ −
1

2
hrpHpmnε

αβ

)
∂αX

m∂βX
n

+ hrp∆λα∂αX
m∂[mτp] − hrpΣλα∂αXm∂[mℵp]. (B.12)

Now that we have an expression for �σX
r in terms of ∂αX

r we can rewrite (B.1) as

γαβTDilαβ =− l2s
2π

[
−γαβDmDnφ−εαβ

(
υ̂rDrφ∂mℵn+

1

2
hrpDrφHpmn

)]
∂αX

m∂βX
n

− l2s
2π
hrpDrφ∂[mτp] ∆λ

α∂αX
m+

l2s
2π
hrpDrφ∂[mℵp] Σλα∂αXm (B.13)

=− l2s
4π

[
βφrs∂αX

r
0∂βX

s
0γ

αβ+β̄φrs∂αX
r
0∂βX

s
0ε
αβ+βφm∆λα∂αX

m+β̄φmΣλα∂αX
m
]
,

from which one can easily read the dilaton contributions to the beta functions (3.44)–(3.49):

βφmn = −2D̊(mD̊n)φ− 2GtmnD̊tφ

β̄φmn = −hmnυ̂rD̊rφ− hrpD̊rφHpmn

βφm = hrpD̊rφFmp

β̄φm = −hrpD̊rφhmp

(B.14)

For completeness we mention that the time projection of (B.7) is given by

∂α∆λα =
[
υ̂p
(
Dph̄mn − 2Dmh̄np

)
γαβ + (υ̂pHpmn + 2Φhmn) εαβ

]
∂αX

m
0 ∂βX

n
0

+ am∆λα∂αX
m
0 − emΣλα∂αX

m
0 . (B.15)

C Covariant expansion of one loop effective action

We will make use of (3.1), (3.10) and (3.11) to write down the covariant expansion of the

couplings appearing on the Polyakov action (2.10). Starting with the λ− η coupling∫
d2σ

l2s
e
[(
λ+e

β
− + λ−e

β
+

)
∂βη

]
=

∫
d2σe

[
ΣΛ̄β∇̊βH̄

]
+O (ls) , (C.1)

where we have defined ΣΛ̄β ≡
(

Λ̄+e
β
− + Λ̄−e

β
+

)
. We can then look at the h̄αβ coupling

∫
d2σ

l2s
eγαβh̄αβ(X) =

∫
d2σe

[
h̄mn∇̊αY m∇̊αY n

]
+

∫
d2σe

[
2
(
D̊sh̄mn

)
∇̊αY mY s∂αXn

0

]
+

∫
d2σe

[(
1

2
D̊rD̊sh̄mn + R̊trsmh̄nt

)
Y rY s∂αX

m
0 ∂βX

n
0

]
+O (ls) ,

(C.2)
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where we can recall that H = dB̄, F = dτ , h = dℵ, ∆λβ ≡ λ0
−e

β
+ − λ0

+e
β
−, and Σλβ ≡

λ0
−e

β
+ + λ0

+e
β
−. Moving into the vector couplings we have∫

d2σ

l2s
e
[
λ±e

α
∓τα(X)

]
=

∫
d2σe

[
Λ̄±e

α
∓

(
∇̊α (τmY

m)− FmrY r∂αX
m
0

)]
+

∫
d2σe

[
1

2
(Fmn)λ0

±e
α
∓Y

m∇̊αY n

]
+

∫
d2σe

[
1

2

(
D̊rFsm

)
Y rY sλ0

±e
α
∓∂αX

m
0

]
+O (ls) ,

(C.3)

∫
d2σ

l2s
e [Σλαℵα(X)] =

∫
d2σe

[
ΣΛ̄α

(
ℵm∇̊αY m + D̊rℵmY r∂αX

m
0

)]
+

∫
d2σe

[
1

2
(hmn) ΣλαY m∇̊αY n

]
+

∫
d2σ

[
1

2

(
D̊rhsm

)
Y rY sΣλα∂αX

m
0

]
+O (ls) ,

(C.4)

where we have used (3.9) as well as the identity

R̊tsrmℵt = −D̊rD̊mℵs + D̊mD̊rℵs . (C.5)

We can finally move to the last coupling∫
d2σ e

l2s
εαβB̄αβ(X) =

∫
d2σeεαβ

[
(Hsmn) ∇̊αY mY s∂βX

n
0

]
+

∫
d2σeεαβ

[
1

2

(
D̊rHsmn

)
Y rY s∂αX

m
0 ∂βX

n
0

]
+O (ls) ,

(C.6)

where we have used the identity∫
d2σeεαβ

[
B̄mn∇̊αY m∇̊βY n

]
=

∫
d2σeεαβ

[(
D̊nB̄sm

)
Y s∇̊αY m∂βX

n
0

+
1

2

(
R̊trmnB̄ts

)
Y rY s∂αX

m∂βX
n

]
.

(C.7)

Before combining (C.1), (C.2), (C.3), (C.4) and (C.6) to write down the action S̄0 we

will take a look at the transformation properties of H̄ inherited from the Kalb-Ramond

U(1) transformation, namely if the transformation of the original fields are

δΛℵm = ∂mΛu(X) ,

δΛη = −Λu(X) ,
(C.8)

the quantum field H̄ will transform as

δH̄ = −DrΛuY
r +O (ls) . (C.9)
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It is then convenient to define a new field Ĥ as

Ĥ = H̄ + ℵmY m (C.10)

such that δĤ = O (ls), making it invariant under the Kalb-Ramond U(1) transformation at

the level of the action S̄0. By making use of this field redefinition the action S̄0 is written as

S̄0 =−
∫
d2σe

4π

[
h̄mn∇̊αY m∇αY n−Λ̄+e

β
−

(
∇̊βĤ+∇̊β (τmY

m)
)
−Λ̄−e

β
+

(
∇̊βĤ−∇̊β (τmY

m)
)]

−
∫
d2σe

4π

[
Λ̄+Y

r (Fmr+hmr)e
β
−∂βX

m
0 −Λ̄−Y

r (Fmr−hmr)eβ+∂βXm
0

]
−
∫
d2σe

4π

[(
γαβAsmn+εαβĀsmn

)
Y s∇̊αY m∂βX

n
0 +

1

2

(
∆λβFmn−Σλβhmn

)
Y m∇̊αY n

]
−
∫
d2σe

4π

[(
γαβCrsmn+εαβC̄rsmn

)
Y rY s∂αX

m
0 ∂βX

n
0 +
(
∆λαBrsm+ΣλαB̄rsm

)
Y rY s∂αX

m
0

]
,

(C.11)

where the coefficients {A, Ā, C, C̄, B, B̄} are given by

Asmn = 2D̊sh̄mn

Āsmn = Hsmn

Crsmn =
1

2
D̊rD̊sh̄mn + R̊t(rs)(mh̄n)t

C̄rsmn =
1

2
D̊rHsmn

Brsm =
1

2
D̊rFsm

B̄rsm = −1

2
D̊rhsm .

(C.12)

D Beta functions derivation

Making use of decomposition (3.21) and assuming we are working on the critical spacetime

dimension the Weyl variation of the effective action can be written as

δψΓ̄[Ψ0](0) = δψ〈S1 + S̃1 + S2 + S̃2〉0 +
i

2
δψ〈
(
S̃1S̃1 + 2S̃1S1

)
+ S1S1〉0 +O

(
D3
)

(D.1)

where we have also made use of the Ward identity

∫
d2σJαIJ〈Y I(σ)∂αY

J(σ)〉 = −1

2

∫
d2σ〈Y I(σ)Y J(σ)〉∂αJαIJ (D.2)
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with JαIJ an arbitrary spacetime tensor to move the disconnected part of the variation to

one order higher in derivatives. We will start by computing the S two point correlations

δψ〈S1 + S2〉 = −
∫
d2σψ

4π

[
−R̊mn +

(
1

2
D̊ · a+ a2

(
dc
4

+
3

4

))
h̄mn

]
γαβ∂αX

m
0 ∂βX

n
0

−
∫
d2σψ

4π

[
1

2
hrsD̊rHsmn − D̊men +

(
dc + 2

4

)
arh

rsHsmn +
D̊tυ̂

t

2
hmn

]
× εαβ∂αXm

0 ∂βX
n
0

−
∫
d2σψ

4π

[
1

2
D̊ · a+

(
dc
4

+
3

4

)
a2

]
τn∆λα∂αX

n
0

−
∫
d2σψ

4π

[
−1

2
D̊ · e−

(
dc
4

+
3

4

)
a · e

]
τnΣλα∂αX

n
0 + . . . (D.3)

where we have neglected terms that will not contribute to the final result, · denotes an

inner product with respect to hrs and where we have used that

δψ

∫
d2σJIJ〈Y I(σ)Y J(σ)〉 =

∫
d2σJijδ

ijψ , (D.4)

with JIJ an arbitrary tensor, this last identity follows from the renormalization of the

propagators (3.20). In deriving (D.3) we have introduced a total derivative16
∫
d2σ∂αe

α,

made use of the Ward identity (D.2), the background equation (B.12), the Bianchi identity

(
D̊mh̄sn + D̊nh̄sm − D̊sh̄mn + h̄mnas

)
hts = 0 , (D.5)

and the TNC identities

hrs
(

1

2
D̊rD̊sh̄mn − D̊rD̊(mh̄n)s

)
=

1

2

(
D̊ · a+ a2

)
h̄mn + D̊(mh̄n)sarh

rs , (D.6)

D̊mh̄nsh
rsas = (∆T )rn D̊mar −

1

2
aman −

1

2
a2h̄mn , (D.7)

hrsR̊t(mn)rh̄st = −R̊mn −
1

4
aman −

1

2
(∆S)t(m D̊n)at , (D.8)

hrsυ̂tD̊rh̄st = −D̊tυ̂
t , (D.9)

where (∆T )rm and (∆S)rm are the usual TNC temporal and spatial projectors

(∆T )rm ≡ −υ̂
rτm ,

(∆S)rm ≡ h
rth̄tm .

(D.10)

16If this total derivative is not included then the U(1) mass variation of the antisymmetric beta func-

tion will not be zero but rather a total derivative, leaving the effective action invariant but not the beta

function itself.
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To compute the four point functions arising from 〈S1S1〉0 we will need the non-

vanishing four point function variations identities

δψ

∫
d2σd2σ′JIJKL〈Y I(σ)∂αY

J(σ)Y K(σ′)∂βY
L(σ′) = (−2πi)

∫
d2σψJijklδ

ikδjlγαβ

δψ

∫
d2σd2σ′JIJ〈Λ+(σ)Y I(σ)Λ−(σ′)Y J(σ′)〉 = (−4πi)

∫
d2σψJijδ

ij

δψ

∫
d2σd2σ′JIJK〈Y I(σ)eβ∓∂βY

J(σ)Λ±(σ′)Y K(σ′)〉 = c0

∫
d2σψ

Jitj υ̂
tδij√

2Φ
+O

(
D3
)

(D.11)

with {JIJKL, JIJ , JIJK} arbitrary O
(
D2
)

tensors, and c0 an arbitrary constant.17 The

presence of c0 might seem like a problem to the uniqueness of the resulting beta functions,

however by noting that the U(1) mass symmetry is non-compatible with the derivative

expansion18 we find that constants of the c0 type will be completely fixed by asking for

U(1) mass invariance at second order in covariant derivatives. The ambiguity in defining

the O (D) can also be seen from the two point function Ward identity (D.2) as well as from

the four point function identity∫
d2σd2σ′

(
V α

(IJ)V
β

(KL)

)
〈Y I(σ)∂αY

J(σ)Y K(σ′)∂βY
L(σ′)〉 = O

(
D3
)
, (D.12)

with V α
IJ an arbitrary tensor. Making use of (D.11) it is found that

i

2
δψ〈S1S1〉 = −

∫
d2σψ

4π

[
1

4
HrsmHtwnh

rthsw + c1 (∆T )tm D̊nar + c4erh
rs (∆T )tmHnts

+
e2
(
2Φτmτn + h̄mn

)
− emen

2
− h̄mn

(
e2 +

a2

4

)
− a2Φτmτn

(
c1 +

5

2

)]
γαβ∂αX

m
0 ∂βX

n
0

−
∫
d2σψ

4π

[
−arh

rsHsmn

2
+

(
c3 −

1

2

)
arh

rs (∆T )tmHsnt

+ c2 (∆T )rm D̊ner + amen

]
εαβ∂αX

m
0 ∂βX

n
0

−
∫
d2σψ

4π

[(
c5a

2 + c6e
2
)

∆λα + (c7a · e) Σλα
]
τn∂αX

n
0 (D.13)

To derive (D.13) we made use of the Bianchi identity (D.5) as well as its contraction

with hmr

hmrhns
(
D̊rh̄st − D̊sh̄rt −

1

2
arh̄st +

1

2
ash̄rt

)
= 0 , (D.14)

the TNC identities

D̊mh̄nsh
rsas = (∆T )rn D̊mar −

1

2
aman −

1

2
a2h̄mn ,

D̊mh̄nsh
rses = (∆T )rn D̊mer −

1

2
eman −

1

2
(e · a) h̄mn ,

(D.15)

17This identity can be derived through integration by parts and making use of propagators (3.20).
18A U(1) mass transformation changes the O (D) of the actions S

[a]
0 .
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and where we have used the Ward identity (D.11) to introduce the O
(
D2
)

zeros∫
d2σ

4π

[(
aman−emen+

(
a2−e2

)(
h̄mn+2Φτmτn

)
2

)
γαβ

]
∂αX

m
0 ∂βX

n
0 (D.16)

+

∫
d2σ

4π

[
(amen) εαβ

]
∂αX

m
0 ∂βX

n
0 =O

(
D3
)
,∫

d2σ

4π

[
aman+a2

(
h̄mn+2Φτmτn

)]
∂αX

m
0 ∂

αXn
0 =O

(
D3
)
. (D.17)

Following an analogous procedure we can compute the contributions from S̃, in par-

ticular we find that

δψ

〈
S̃1 + S̃2 +

i

2
S̃1

(
S̃1 + S1

)〉
= −

∫
d2σψ

4π

[
(∆T )tm D̊nat

2
+ c̃0Φ (a · e) τmτn

+ (c0 − 1) a2Φτmτn

]
∂αX

m
0 ∂

αXn
0

−
∫
d2σψ

4π

[
−
arh

rs (∆T )tmHsnt

2

]
εαβ∂αX

m
0 ∂βX

n
0

−
∫
d2σψ

4π

[
a · e

4
Σλα − a2

4
∆λα

]
τn∂αX

n
0 , (D.18)

where we have used the identities(
h̄rs − h̄rph̄sqhpq

)
D̊me

r
i D̊ne

s
jδ
ij = −1

2
a2τmτnΦ ,(

δts − htqh̄qs
)
eri D̊me

s
jδ
ij =

1

2
ash

rs (∆T )tm ,

(D.19)

We can note that the analogous S̃ computation in the standard bosonic string will re-

sult in a vanishing result, however in our case this is no longer true as hrsh̄st 6= δrt as

well as due to the presence of a non-trivial coupling with the Lagrange multipliers. Com-

bining (D.3), (D.13), (D.18), and the classical dilaton contribution (B.14) results in the

beta functions

βm =

[
1

2
D̊ ·a+

(
dc
4

+
1

2
+c5

)
a2 +c6e

2−a ·D̊φ
]
τm , (D.20)

β̄m =−
[

1

2
D̊ ·e+

(
dc
4

+
1

2
−c7

)
a ·e−e ·D̊φ

]
τm , (D.21)

βmn =−R̊mn+
1

4
HrsmHtwnh

rthsw+

[
1

2
D̊ ·a+

(
dc
4

+
1

2

)
a2−e2−a ·D̊φ

]
h̄mn (D.22)

+

[
c1 +

1

2

]
(∆T )tm D̊nat+c4erh

rs (∆T )tmHnts+

[
c̃0a ·e+

(
c0−c1−

7

2

)
a2

]
Φτmτn

+
e2
(
2Φτmτn+ h̄mn

)
−emen

2
−2D̊mD̊nφ,

β̄mn =
1

2
hrsD̊rHsmn+

dc
4
arh

rsHsmn−D̊men+c2 (∆T )rm D̊ner+amen+
D̊tυ

t

2
hmn

+(c3−1)arh
rs (∆T )tmHsnt−(υ̂rhmn+hrpHpmn) D̊rφ. (D.23)
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The free coefficients in (D.20)–(D.23) can be fixed by asking for {β, β̄m, βmn, β̄mn} to be

gauge invariant, this condition fixes the coefficients to c0 = 3, c̃0 = 0, c1 = −1
2 , c2 = 2, c3 =

1, c4 = −1, c5 = 0, c6 = −1, c7 = 1
2 resulting in the beta functions (3.37)–(3.40) presented

in the main text.

E Fadeev-Popov gauge fixing

The gauge symmetries of the theory are

δeβ± = −ω±eβ± + ξµ∂µe
β
± − e

µ
±∂µξ

β

δλ± = −ω±λ± + ξµ∂µλ±
(E.1)

with ω± parametrizing local worldsheet Weyl/Lorentz transformations and ξµ parametriz-

ing worldsheet diffeomorphisms. Following the Faddeev-Popov procedure we can first com-

pute the Faddeev-Popov determinant

∆FP =

∫
DaDāDb∗Db̄∗DcDd+Dd−

[
eiSFP

]
SFP =

∫
d2σe

2πl2s

[
b∗β

(
cα∂αe

β
+ − eα+∂αcβ − d+e

β
+

)
+ b̄∗β

(
cα∂αe

β
− − eα−∂αcβ − d−e

β
−

)
+aα

(
êα+ − eα+

)
+ āα

(
êα− − eα−

) ]
(E.2)

where {c, d±, b∗, b̄∗} are Faddeev-Popov ghosts and anti-ghosts and {aµ, āµ} are bosonic

Lagrange multipliers enforcing the gauge condition ê. The remaining BRST symmetry of

the theory is given by

sXm = cα∂αX
m, sη = cα∂αη (E.3)

seβ± = cα∂αe
β
± − eα±∂αcβ − d±e

β
± (E.4)

sλ± = −d±λ± + cα∂αλ± (E.5)

scβ = cα∂αc
β (E.6)

scβ± = cα∂αc
β
± (E.7)

sb∗β = aβ , saβ = 0 (E.8)

sb̄∗β = āβ , sāβ = 0 (E.9)

Integrating over {a, ā, d±} imposes the constraints

eα± = êα±

b∗βe
β
+ = 0

b̄∗βe
β
− = 0

(E.10)

and the action simplifies into

SFP =

∫
d2σe

2πl2s

[
cαeβ+∂αb

∗
β − b∗βeα+∂αcβ + cαeβ−∂αb̄

∗
β − b̄∗βeα−∂αcβ

]
≡
∫
d2σe

2πl2s
LFP (E.11)
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where we have omitted the hat on the vielbeins for simplicity. By considering the ac-

tion (E.2) (after gauge-fixing), it is now possible to define the ghost energy momentum one

form as in (2.37)

τ cγFP = −2πl2s
e

δSFP
δeγc

= LFP eaγ +
[
(δc0 + δc1)

(
b∗γ∂−c

− + ∂αb
∗
γ c

α + b∗−∂γc
−)

+ (δc0 − δc1)
(
b̄∗γ∂+c

+ + ∂αb̄
∗
γ c

α + b̄∗+∂γc
+
)] (E.12)

where we anticipated going to conformal gauge, i.e. the vielbeins are constant.

It is important to note that the anti-ghosts {b∗, b̄∗} will not be neutral under local

Weyl transformations, meaning that we will need to supplement the theory with the trans-

formation

b∗β → f−b
∗
β , b̄∗β → f+b̄

∗
β (E.13)

this implies the full condition for Weyl invariance is not (2.36) but rather〈
eγc τ̄

c
γ + C+λ+ + C−λ− + b∗βB

β + b̄∗βB̄
β
〉

= 0, (E.14)

where τ̄ cγ = τ cγ + τ cγFP is the total energy momentum one form and {Bβ , B̄β} are the

equations of motion for the anti-ghosts defined as

Bβ = −2πα

e

δSFP
δb∗β

, B̄β = −2πα

e

δSFP
δb̄∗β

(E.15)

In conformal gauge the ghost action takes the dimensionally extended form

SFP = −
∫
dnσ

2π

[
b∂+c̄+ b̄∂−c

]
e(n−1)ρ (E.16)

where we have defined {b̄ ≡ b∗−, c̄ ≡ c−, b ≡ b̄∗+, c ≡ c+} and we have rescaled the ghosts such

that the normalizaion of the action is −1/2π. The non vanishing real space propagators

are given by 〈
b(σ)c(σ′)

〉
=

2e−ρ∆2

(σ − σ′)+〈
b̄(σ)c̄(σ′)

〉
=

2e−ρ∆2

(σ − σ′)−

(E.17)

where ∆2 = i/2. To find these propagators we used the identity

∂2 log
(
|∆σ|2

)
= 4π δ(∆σ) . (E.18)

F Critical dimension

The condition for local Weyl invariance for the system Z0 + ZFP as described in (3.26) is

given by

〈T̂ 〉 ≡ 〈T γγ + T γγFP + C+Λ+ + C−Λ− +Bβb∗β + B̄β b̄∗β〉 = 0 (F.1)

– 31 –



J
H
E
P
0
9
(
2
0
2
0
)
1
7
2

where we have defined T γδ ≡ e
γ
c τ cδ and T γδFP

≡ ecγτ cδFP
and where we should do the substitu-

tion {X,λ, η} → {Y,Λ, H} in the energy momentum one forms given by (2.37) and (E.12)

as well as in the constraints (2.38) and (E.15). To analyze (F.1) we can use the following

identity ∫
d2σδψ〈T̂ (σ)〉 =

∫
d2σ

∫
d2σ′ψ(σ′)〈T̂ (σ)T̂ (σ′)〉 . (F.2)

It is now our goal to compute the two point function of traces T̂ . We can now note

that in conformal gauge the following holds∫
d2σd2σ′〈T̂ T̂ ′〉=

∫
d2σd2σ′

〈(
T+

+ +T−− +C+Λ++C−Λ−

)(
T

′+
+ +T

′−
− +C

′+Λ′++C
′−Λ′−

)〉
+

∫
d2σd2σ′

〈(
T+

+FP+T−−FP+b̄B−+bB̄+
)(
T

′+
+FP+T

′−
−FP+b̄′B

′−+b′B̄
′+
)〉

=

∫
d2σd2σ′

[〈
T+

+ T
′+
+

〉
+2
〈
T+

+ T
′−
−

〉
+
〈
T−− T

′−
−

〉
+
〈
T+

+FPT
′+
+FP

〉
+2
〈
T+

+FPT
′−
−FP

〉
+
〈
T−−FPT

′−
−FP

〉
−
〈
C+Λ+C

′+Λ′+

〉
−2
〈
C+Λ+C

′−Λ′−

〉
−
〈
C−Λ−C

′−Λ′−

〉
−
〈
b̄B−b̄′B

′−
〉
−2
〈
b̄B−bB̄+

〉
−
〈
bB̄+b′B̄

′+
〉]

(F.3)

where we have denoted the dependence on σ′ by priming the variable itself and where

T±± = 2eρΛ±
(
∂∓η ± ∂∓Y 0

)
T+
− = −2ηmn∂−Y

m∂−Y
n − 2eρΛ−

(
∂−η − ∂−Y 0

)
T−+ = −2ηmn∂+Y

m∂+Y
n − 2eρΛ+

(
∂+η + ∂+Y

0
)

T+
+FP = −4eρb∂−c T−−FP = −4eρb̄∂+c̄

T+
−FP = 4eρ

(
∂+b̄ c̄+ 2b̄∂−c̄+ ∂−b̄ c̄

)
T−+FP = 4eρ (∂−b c+ 2b∂+c+ ∂+b c)

C± = −2eρ
(
∂∓η ± ∂∓Y 0

)
B− = 4eρ∂+c̄

B̄+ = 4eρ∂−c .

(F.4)

To compute these correlators we will need the following real space propagators (that can

be read from (3.20)): 〈
Y i (σ)Y j

(
σ′
)〉

= δij∆2 ln
(
|∆σ|2

)
〈
Y 0 (σ) Λ±

(
σ′
)〉

=
∓2e−ρ∆2

(σ − σ′)±〈
H (σ) Λ±

(
σ′
)〉

=
−2e−ρ∆2

(σ − σ′)±〈
Λ± (σ) Λ±

(
σ′
)〉

=
4e−2ρ∆2

(σ − σ′)2
±〈

Λ+ (σ) Λ−
(
σ′
)〉

= −4π∆2e
−2ρδ(σ − σ′)

(F.5)
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where ∆2 = i/2. The contribution to the two point function from the constraints can then

be computed to be 〈
C+Λ+C

′+Λ′+

〉
= −16∆2

2∂−

(
1

∆σ+

)
∂′−

(
1

∆σ+

)
〈
C+Λ+C

′−Λ′−

〉
= 0〈

C−Λ−C
′−Λ′−

〉
= −16∆2

2∂+

(
1

∆σ−

)
∂′+

(
1

∆σ−

)
〈
b̄B−b̄′B

′−
〉

= 16∆2
2∂+

(
1

∆σ−

)
∂′+

(
1

∆σ−

)
〈
b̄B−b′B̄

′+
〉

= 0〈
bB+b′B

′+
〉

= 16∆2
2∂−

(
1

∆σ+

)
∂′−

(
1

∆σ+
.

)

(F.6)

Notice that the sum of these contributions is zero. From (F.6) then we see that (F.3)

reduces to∫
d2σd2σ′〈T̂ T̂ ′〉 =

∫
d2σd2σ′

[〈
T+

+ T
′+
+

〉
+ 2

〈
T+

+ T
′−
−

〉
+
〈
T−− T

′−
−

〉
+
〈
T+

+FPT
′+
+FP

〉
+ 2

〈
T+

+FPT
′−
−FP

〉
+
〈
T−−FPT

′−
−FP

〉] (F.7)

To further compute this in a consistent way we will need the conservation equation for T δγ

∂δT
δ
γ = 0

∂−T
−
− = −∂+T

+
−

∂+T
+
+ = −∂−T−+

(F.8)

We can then note 〈
T+

+ T
′+
+

〉
=

∆3∆2
2 (4d+ 8)

3
∂′+∂

′
−δ(σ − σ′)〈

T+
+ T

′−
−

〉
= 0〈

T−− T
′−
−

〉
=

∆3∆2
2 (4d+ 8)

3
∂′+∂

′
−δ(σ − σ′)〈

T+
+FPT

′+
+FP

〉
=

∆3∆2
2 (−104)

3
∂′+∂

′
−δ(σ − σ′)〈

T+
+FPT

′−
−FP

〉
= 0〈

T−−FPT
′−
−FP

〉
=

∆3∆2
2 (−104)

3
∂′+∂

′
−δ(σ − σ′)

(F.9)

where ∆3 is another overall factor that does not change the final result. We can finally

see that the central charge vanishes when d = 24 and hence the critical dimension of TNC

spacetime is D = d+ 1 = 25.

– 33 –
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