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conditions, the bulk metric is necessarily time-dependent. This introduces a new class

of time-dependent solutions with the potential to address cosmological issues and provide

alternatives to conventional inflationary (or contracting) scenarios. We take a first step in

this paper toward such solutions. One important finding is that the resulting solutions can

be very succinctly described in terms of an effective action involving only the induced metric

on either one of the branes and the radion field. But the full geometry cannot necessarily

be simply described with a single coordinate patch. We concentrate here on the time-

dependent solutions but argue that supplemented with a brane stabilization mechanism

one can potentially construct interesting cosmological models this way. This is true both

with and without a brane stabilization mechanism.
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1 Introduction

Randall Sundrum (RS) brane worlds [1, 2] provide a very attractive phenomenological sce-

nario for physics beyond the Standard Model and for cosmology. They are also of great

interest to address more formal questions. Recently RS brane worlds have been employed

to understand the evaporation of black holes [3, 4] in the context of the AdS/BCFT cor-

respondence [5–7]. RS branes also play a crucial role in realizing accelerating universes in

string theory, both the classic KKLT construction [8, 9] as well as in the recent proposals

of [10–12]. In particular in the latter context one question that has been raised is that of

“mismatched” branes. It is this issue we wish to address in this work.
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Let us first introduce what exactly is meant by mismatched branes. The simplest

Randall Sundrum geometries are solutions to Einstein gravity with a negative cosmological

constant in the presence of a codimension one brane. Away from the brane the spacetime

is1 AdS5 with curvature radius L. The corresponding metric is written as a warped product

ds2 = e2A(z)
(
ds24 + dz2

)
(1.1)

where the 4d slice is taken to be a maximally symmetric space, that is Minkowski, de

Sitter (dS) or Anti-de Sitter (AdS) space of unit radius (in the latter two cases). The

corresponding warp factor eA is either L/z, 1/ sinh(z/L) or 1/ sin(z/L) depending on the

choice of slicing. Of course one can allow less symmetric spacetimes on the slice, but the

maximally symmetric slicings correspond to the vacuum solutions in the presence of a

brane with specific tension. For a positive tension brane the full solution corresponds to

two copies of the IR part of the geometry, z > z∗, glued together along the brane. For a

negative tension brane we keep the UV (z < z∗) of the geometry instead. In either case, the

jump in extrinsic curvature when connecting the two halves is compensated by the brane

tension. Which slicing to use is dictated by the tension of the brane. To get Minkowski

space on the brane the magnitude of the brane tension |λ| must take a critical value λc.

For larger |λ| one gets a de Sitter solution, for smaller |λ| an Anti-de Sitter solution. The

further away one is from the critical value, the smaller the effective 4d curvature radius l.

On the AdS side the smallest induced radius l is reached at zero tension in which case l

is just equal to L. On the dS side we can get l to be arbitrarily small by increasing the

magnitude of the tension.

When we dial the tension towards the critical value from either side the curvature

radius on the brane diverges. The topology of the branes changes discontinuously when

dialing the tension through λc. This is apparent from the embeddings in AdS5 as we display

them in figures 1a, 2a and 3a. The de Sitter brane touches the boundary of AdS5 only at

an instant; its boundary is spacelike. Minkowski branes have a lightlike boundary. Both

of them only have a finite lifetime in terms of a global time coordinate that covers all of

AdS5. In contrast, the AdS brane lives forever in global coordinates and its boundary is

timelike. This latter property makes the AdS brane the most interesting object for more

formal applications as it allows a simple holographic interpretation in the context of the

AdS/BCFT correspondence [5–7].

Of most interest in realistic constructions, as well as for cosmological applications, are

RS setups with two branes. Most of the literature on two-brane RS setups considers only

matched branes. That is the branes are either both critical, or both undercritical, or both

overcritical. Generally such setups require a positive and negative tension brane. Only in

the undercritical AdS case can we have two positive tension branes in causal contact with

each other. The warp factor in that case turns around and reaches two separate asymptotic

regions (at z = 0 and z = π) [6]. A positive tension brane can be located at each side. In

the other two cases the second brane, often referred to as the IR brane, must have negative

1For simplicity we discuss here the 5d case even though the discussion goes through unchanged in general

spacetime dimensions.
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tension, but its magnitude still has to be equal to the critical value in the Minkowski case

and larger than the critical value in the de Sitter case (and also larger in magnitude than

that of the UV brane). AdS allows such a possibility of a positive tension UV brane paired

with a negative tension IR brane as well; it is however not essential to a two-brane scenario.

The IR brane locations are arbitrary (without any additional fields) in the Minkowski case

but stable locations are determined by the brane tension in all other cases.

A question that had not been seriously addressed in the literature is what happens if

the second brane demands a different slicing than the first — that is if we were to add an

IR brane whose tension, in magnitude, is in a different regime compared to λc than the

UV brane. This is what we refer to mismatched branes.

After briefly reviewing the geometry and properties of the single brane RS setups,

we will study a variety of mismatched brane geometries to highlight some of their basic

features. Maybe most importantly, we confirm that all our solutions can be found using

a low energy effective action that only contains Einstein gravity and a single scalar, the

“radion”, whose expectation value sets the effective Newton constant. While the radion

action has been written down before, it has usually not been applied to scenarios like

the ones we consider, in which the worldvolume geometry has significant curvature. Our

geometries can be seen as solutions to the full non-linear radion-Einstein equations. The

fact that the radion has generically non-trivial couplings to the Einstein-Hilbert term is

absolutely crucial to make this work. This coupling allows cancellation of much of the back-

reaction of the radion dynamics. The curvature coupling introduces a new term on the

right hand side of Einstein’s equations proportional to the second derivative of the radion

field. For the special solutions we find, this contribution cancels the contribution from the

standard radion stress energy tensor. Such a cancellation will of course not happen for

general radion profiles.

We furthermore observe several new features not ordinarily part of the effective theory.

One is that this scenario depends on a new parameter, which is the relative creation time

of the two branes. As we will see, physics can depend very strongly on this parameter. In

addition such a scenario requires additional boundary conditions not usually present in the

usual effective theory.

We also note that such setups generally contain time-dependence that cannot be ne-

glected. In some cases Newton’s constant itself has strong time-dependence, showing that

constructions of the type presented in [11, 12] will need some refinement to be viable.

However, we also observe that precisely the time-dependence of the solutions might sug-

gest properties that have the potential to address outstanding cosmological issues. In

particular, one novel possibility is that the four-dimenional MPl itself changes dramati-

cally as the UV brane emerges from the boundary. Although such scenarios are generally

relegated to Brans-Dicke territory, the discontinuous change in the metric associated with

branes bouncing off the boundary is not readily adapted to this interpretation. While

intriguing, we have not yet realized this scenario in a realistic construction though we do

note our solutions naturally contain both expanding and contracting universes.

This note is organized as follows. In the next section we will review the cast of charac-

ters. We introduce the various mismatched brane configurations in section 3, starting for
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simplicity with the case of positive tension branes only. This, in particular, will introduce

us to the feature that dS UV branes can be born again when observed from a mismatched

IR brane. In section 4 we focus on born again branes with a negative tension IR brane

as they have many interesting features and will also serve as the template for much of the

following discussion. In section 5 we show how our solutions can also be obtained from the

point of view of the low energy effective action. Maybe the most important insight to be

gained from this analysis is that changing location of the observer in the higher dimensional

bulk from the lower dimensional point can be accounted for by a change of frame — that

is a redefinition of what we mean by the metric. In section 6 we succinctly summarize our

findings by casting them in the form of an Einstein frame action, laying the groundwork

for potential future cosmological applications.

2 The cast of characters

In order to describe solutions with multiple mismatched branes, let us first review the cast

of characters and their geometry. Since in all cases the spacetime is just (two copies) of a

portion of AdS5, the easiest way to depict these geometries is to indicate how the brane

is embedded in AdS5 together with a prescription of what part to keep. In this section

we will exclusively focus on the case of positive tension branes unless explicitly mentioned

otherwise. In order to understand negative tension branes one simply reverses the role of

the region excised and the region kept.

For each brane, there will be a special choice of coordinates on AdS5 in which the

position of the brane is time independent. In this coordinate system the metric takes

the form of (1.1). We will refer to this as the adapted coordinate system corresponding

to a particular brane tension regime and hence a particular 4d metric. Multiple branes

with different tensions can be represented as static branes in the same adapted coordinate

system (1.1) as long as they all demand the same slicing, that is they either have to all

have tension (in magnitude) larger than, equal to, or smaller than the critical value. In

order to understand how these branes are embedded in AdS5 it is easiest to transform these

“adapted” coordinates to standard global coordinates on AdS5. Since this will be a crucial

construction in understanding mismatched branes, let us be quite explicit about how this

is done.

The basic tool in order to work out any coordinate change in AdS5 is to use the

embedding space formalism, as is for example described in detail in the classic review [13].

That is, we think of AdS5 as a submanifold of R2,4 defined by the SO(2, 4) invariant

equation

X2
0 +X2

5 −
∑
i

X2
i = 1 (2.1)

where we set the AdS5 curvature radius L = 1. The index i runs from 1 to 4. Different

coordinate systems correspond to different parameterizations of the XI (where I runs over

the entire 0 to 5 range). To change from one coordinate system to another one simply

equates the different parameterization of XI .

– 4 –
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Standard global coordinates on AdS5 correspond to the parameterization

X0 = cosh ρ cos τ

Xi = sinh ρΩi

X5 = cosh ρ sin τ (2.2)

where Ωi is a parameterization of a unit 3-sphere,
∑

i Ω2
i = 1. In these coordinates the

AdS5 metric reads

ds2 = − cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3 (2.3)

where dΩ2
3 is the metric on the unit 3-sphere. All our diagrams will use these global

coordinates in which AdS5 looks like a cylinder. In particular we will display “vertical

cross sections” of AdS5 corresponding to

Vertical cross section : Ω1,2,3 = 0, Ω4 = ±1 (2.4)

as well as “horizontal cross sections” at

Horizontal cross section : Ω1,2 = 0, τ = 0, Ω3 = cosα, Ω4 = sinα. (2.5)

In order to be able to draw the entire spacetime we plot a re-scaled radial coordinate Θ with

cosh ρ = (cos Θ)−1, sinh ρ = tan Θ (2.6)

which ranges from 0 to π/2. For the purposes of the vertical cross section we effectively

get Θ to range all the way from −π/2 to π/2 in order to account for Ω4 = ±1, the two

poles of the S3.

2.1 The Minkowski brane

If we dial the brane tension to be equal to the critical value we are looking at a Minkowski

brane. In this case, the adapted coordinates (1.1) correspond to the standard Poincare

patch slicing given by

X0 =
1

2z

(
z2 + x2 − t2 + 1

)
Xa =

x

z
ωa

X4 =
1

2z

(
z2 + x2 − t2 − 1

)
X5 =

t

z
(2.7)

Here a = 1, 2, 3 and, in analogy with the Ωi, we defined ωa to be a parameterization of the

unit 2-sphere,
∑

a ω
2
a = 1. x and ωa are the standard spherical coordinates on R3. In these

coordinates the AdS5 metric reads

ds2 =
1

z2
(
−dt2 + dx2 + x2dω2

2

)
(2.8)

– 5 –
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(a) Vertical cross section of a single

positive tension Minkowski brane.

(b) Standard RS setup.

Figure 1. Vertical cross section of branes in Minkowski slicing.

where dω2
2 is the metric on the unit 2-sphere. The Minkowski brane is living on a slice given

by z = z0. Unlike all the other cases, z0 is not fixed by Einstein’s equations but is a modulus

of the solution. The geometry of this standard RS brane is depicted2 in figure 1a. In this,

and all our plots, the shaded region is excised and the full spacetime consists of two copies

of the un-shaded spacetime glued together across the brane. Lines of constant τ would be

horizontal lines. We explicitly displayed lines of constant z. The leftmost “constant” z

line, corresponding to z =∞, is the horizon of the Poincare patch. No causal signal can be

communicated from beyond the horizon in finite adapted time. Clearly it is inconsistent

to have two positive tension Minkowski branes within a given Poincare patch: the brane

at the larger z0 will simply excise the entire part of the spacetime containing the second

brane. We can, however, have a negative tension and a positive tension brane, retaining

the spacetime between the two. This is the standard RS1 setup depicted in figure 1b.

One important fact to note is that the entire history of the Minkowski brane world

occupies only a finite time interval in global time, which we chose to run from −π to π.

2To calculate this embedding note that for the vertical cross section with X1,2,3 = 0 we have x = 0 and

tan τ =
X5

X0
=

2t

z2 + 1− t2 (2.9)

tan Θ = X4 =
1

2z

(
z2 − t2 − 1

)
(2.10)

allowing us to translate a curve of constant z into global coordinates.
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There exists a whole one parameter family of solutions for a brane with critical tension,

labeled by the “creation time” τ∗ for the brane, which we here chose τ∗ = −π. Since

the global AdS metric is τ translation invariant we can make this choice without loss

of generality. However once we include two (or more) branes, the relative choice of τ∗
matters. We could, for example, have an RS like spacetime with two positive tension

Minkowski branes coexisting with different τ∗ — the second brane would look like a copy

of the first one translated “up” on the cylinder. We will discuss this freedom in more detail

later. Suffice it to say for now that branes appear as static only in the adapted coordinates

of (1.1) if they are created at the same τ∗.

2.2 The de Sitter brane

If we increase the tension of the RS brane above its critical value, we are dealing with a de

Sitter brane. For de Sitter branes, the radial position in the adapted coordinates (1.1) is set

by the tension. The larger the tension, the deeper in the IR the de Sitter brane is located

and the smaller its worldvolume curvature radius becomes (corresponding to larger Hubble

parameter). On the other hand, as the tension approaches its critical value from above the

de Sitter brane moves closer to the boundary and its worldvolume metric becomes flatter,

approaching that of Minkowski space.3

For the purposes of finding the change of variables from adapted de Sitter coordinates to

global coordinates we find it convenient to work with a redefined adapted radial coordinate

rS in which the adapted warped product metric of (1.1) for de Sitter now reads

ds2 = sinh2(rS)ds2dS4 + dr2S . (2.12)

That is, the warp factor in front of dz2 got absorbed into dr2S . To work out the change

of coordinates we need to parameterize the embedding space coordinates in terms of de

Sitter slices. This is easily accomplished by noting that unit radius de Sitter4 itself can be

written as an embedding in R1,4 given by the equation

x25 − x2i = −1. (2.13)

Correspondingly we can get adapted coordinates with dS4 slices of curvature radius

sinh(rS), and hence Hubble parameter

H ≡ 1

l
=

1

sinh(rS)
, (2.14)

by choosing the de Sitter embedding

X0 = cosh(rS), X2
I −X2

5 = sinh(rS)2 (2.15)

3In terms of the adapted radial coordinate introduced in eq. (2.12) the exact relation between the radial

position rS,0 of a static dS brane and its tension is [14–17]

coth rS,0 =
|λ|
λc
. (2.11)

– 7 –
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(a) Standard de Sitter. (b) Alternate de Sitter.

Figure 2. Vertical cross section of de Sitter branes with different τ∗ together with the lines of

constant Poincare z.

or, equivalently the alternate de Sitter embedding

X5 = cosh(rS), X2
I −X2

0 = sinh(rS)2. (2.16)

Of course, taken in isolation, de Sitter and alternate de Sitter embeddings are completely

equivalent. They do, however, correspond to de Sitter universes born at a different time τ∗.

As such the difference becomes meaningful when we compare them to any other embedding,

such as the Minkowski embedding of the last subsection, which we chose to be created at

τ∗ = −π. This sets the overall origin of the τ coordinate. With this convention, the de

Sitter universe is born at τ∗ = −π/2, whereas the alternate de Sitter universe is born at

τ∗ = −π. The two scenarios, together with the horizons of the corresponding adapted

coordinates, are displayed4 in figure 2. Of course any other value of τ∗ can also be realized

this way by setting linear combinations of X0 and X5 equal to cosh(rS), but the two

choices we displayed will be the ones we are mostly working with. Note that the standard

de Sitter has the feature that its time coordinate has the same time reversal symmetry as

the Minkowski coordinate. The alternate de Sitter universe on the other hand is natural

as it is born at the same instant as the Minkowski universe.

4For readers more familiar with representing AdS5 in the Poincare coordinates of (2.8) we want to note

that figure 8c shows the Poincare patch embedding of a dS brane. We’ll defer the details on how this plot

is obtained to that latter section.
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To be explicit about the change of coordinates into these de Sitter adapted coordinates

from any of the other coordinate systems discussed in this work we need to commit to a

coordinate system to use on the slice. These various coordinate systems on dS4 can be

derived in the very same spirit as what we are doing for AdS5 itself and are nicely reviewed

in [18]. We will either use global dS

ds2dS4 = cosh2(τS)dΩ2
3 − dτ2S (2.17)

or flat sliced de Sitter

ds2dS4 = e2tS
(
dx2S + x2Sdω

2
2

)
− dt2S . (2.18)

Note that xS is the radial coordinate of a spherical coordinate system for the Minkowski

space on the slice. The corresponding parameterizations for the standard de Sitter embed-

ding are5

X0 = cosh rS

Xi = sinh rS cosh τS Ωi

X5 = sinh rS sinh τS (2.19)

and

X0 = cosh rS

Xa = sinh rS xSe
tSωa

X4 = sinh rS

(
cosh tS −

x2S
2
etS
)

X5 = sinh rS

(
sinh tS −

x2S
2
etS
)
. (2.20)

To obtain the corresponding expressions for the alternate embedding we simply exchange6

X0 and X5. Note that it is straightforward to obtain the vertical cross section pictures of

figure 2 for a brane sitting at a constant rS from these expressions. Setting X1,2,3 = 0 and

using global de Sitter coordinates we see that we have

tan τ =
X5

X0
= tanh rS sinh τS

tan Θ = X4 = sinh rS cosh τS (2.21)

for the standard de Sitter and the X0 ↔ X5 reversed expressions for the alternate de Sitter.

5Note that we could have equivalently chosen X0 = − cosh(rS). According to (2.2) a positive X0

corresponds to |τ | < π/2, which is exactly what we want for our standard dS brane that is born at

τ∗ = −π/2 and terminates at τ = +π/2. The solution with negative X0 corresponds to a dS brane born

at τ∗ = +π/2 which terminates at τ = 3π/2 or one that was created at τ = −3π/2 and terminates

at τ = −π/2.
6To be precise, the alternate dS we are displaying here uses X5 = − cosh(rS). According to (2.2) negative

X5 corresponds to negative τ , so this brane has τ∗ = −π and terminates at τ = 0 as described in the text.

Using X5 = + cosh(rS) gives an alternate dS brane that is created at τ∗ = 0 and terminates together with

the Minkowski brane at τ = π.

– 9 –



J
H
E
P
0
9
(
2
0
2
0
)
1
6
6

One very interesting aspect of the de Sitter embeddings is that they last only for half

as long as a Minkowski embedding. After what appears to be a finite amount of time from

the point of view of not just the global AdS5 observer, but also as seen from the point

of view of a Poincare slice observer, the de Sitter brane hits the boundary. In figure 2

we let the de Sitter universe terminate once it hits the boundary. But here the boundary

conditions must be imposed. For example, we could also allow it to bounce back, maybe

even with a different tension: the universe would be born again. We will explore such

scenarios further below when we discuss multiple branes.

Also note that the difference in lifetime also means, as already pointed out in [6], that

the limit of λ → λc is not smooth. Locally the physics of the de Sitter brane approaches

the physics of the Minkowski brane as we approach the critical tension. But the global

properties are discontinuous. The total lifetime of the brane jumps from π to 2π at the

critical tension. As we will see, the limit is also discontinuous when approaching the critical

value from below. In the subcritical regime the lifetime of the brane is in fact infinite.

2.3 The Anti-de Sitter brane

Last but not least let us explore the case of the subcritical or AdS brane with |λ| < λc.

This is the case relevant for the AdS/BCFT correspondence [5–7]. In analogy with the

metric (2.12) we used for the de Sitter brane, the physics of the AdS brane is easiest to

analyze in adapted coordinates with a redefined radial coordinate so that (1.1) now reads:

ds2 = cosh2(rA)ds2AdS4 + dr2A. (2.22)

The zero tension AdS brane sits at rA,0 = 0. As we increase |λ| towards the critical value,

the brane moves towards larger values7 of cosh(rA). What is special this time is that the

warp factor has a turnaround at rA = 0 and, for any value of |λ|, there are correspondingly

two allowed positions of the brane, one at positive and the other at negative r. Both

asymptotic regions of the spacetime at rA → ±∞ correspond to the AdS5 boundary,

which appears as the union of two copies of AdS4 (one from each asymptotic regions) with

transparent boundary conditions: as a signal hits the boundary of the left AdS4 it simply

gets transmitted to the right AdS4. This is just the conformally transformed statement that

when using spherical coordinates for the full boundary S4, which is conformal to the two

copies of AdS4, the equator is by no means special and signals get transmitted right through

it. This can maybe most easily be seen in the horizontal cross section picture of figure 4.

To map the adapted AdS coordinates of (2.22) to global coordinates we once again

need to find the corresponding parameterization of the embedding space coordinates, this

time in terms of AdS4 slices. As in the dS case, this is easily accomplished by noting that

if we chose

X2
5 +X2

0 −X2
1 −X2

2 −X2
3 = cosh2(rA), X4 = sinh(rA) (2.24)

7In close analogy with (2.11) this time the exact relation between the static AdS brane position rA,0
and the brane tension is given by [14–17]

tanh rA,0 =
|λ|
λc

(2.23)

.

– 10 –
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we automatically get a foliation with an AdS4 of curvature radius cosh(rA) on each slice.

The geometry of this brane is most easily visualized if we chose a global coordinate system

for the AdS4 on the slice as well so that its metric reads

ds2AdS4 = − cosh2 ρA dτ2A + dρ2A + sinh2 ρA dω2
2. (2.25)

In terms of these adapted coordinates the embedding XI read

X0 = cosh rA cosh ρA cos τA

Xa = cosh rA sinh ρA ωa

X4 = sinh rA

X5 = cosh rA cosh ρA sin τA. (2.26)

Here we used the standard parameterization of global AdS4 in terms of ρA, τA and ωa. This

makes it clear that the vertical cross section of the AdS branes is really simple. We have

tan τ =
X5

X0
= tan τA ⇒ τ = τA (2.27)

tan Θ = X4 = sinh rA. (2.28)

That is, an AdS brane located at a fixed value of rA in the vertical cross section simply sits

at a fixed Θ in global coordinates. The AdS brane does not have a creation time τ∗ and

no end time. We display a vertical cross section of an AdS brane in figure 3a. The dashed

line going vertically down the middle is the location of the turnaround point.

As mentioned above, the presence of the turnaround point allows us in the AdS case,

and only in the AdS case, to include a second positive tension brane consistent with the

same slicing by placing it on the other side of the turnaround. This is displayed in figure 3b.

Placing both branes on the same side of the turnaround faces the same obstacles one

encountered in the de Sitter and Minkowski case: the smaller tension brane excises the

region of space that would have contained the higher tension brane to begin with.

Given that the vertical cross section of the Anti de-Sitter branes does not display its

interesting geometry, it is useful to also work out the horizontal cross section in this case,

which highlights the interpretation in terms of the AdS/BCFT correspondence. Recall that

for the horizontal cross section we set τ = 0, Ω3 = cosα and Ω4 = sinα with Ω1,2 = 0.

In our AdS adapted coordinates this is achieved by setting τA = ω1,2 = 0 and ω3 = 1,

which follows from comparing (2.2) and (2.26). Matching between global and AdS adapted

coordinates for the horizontal cross section then yields

tan Θ =
X4

sinα
=

sinh rA
sinα

. (2.29)

This makes it easy to display the horizontal cross section Θ(α) for an AdS brane, which

is located at a fixed value of rA. We display the horizontal cross section for a single AdS

brane and for two positive tension AdS branes with different tensions, separated by the

turnaround point, in figure 4.
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(a) Single AdS brane. (b) Two positive tension AdS branes.

Figure 3. Vertical cross sections of Anti-de Sitter branes.

(a) Single AdS brane. (b) Two positive tension AdS branes.

Figure 4. Horizontal cross sctions of Anti-de Sitter branes.

2.4 Euclidean solutions

For many applications, most notably in the context of AdS/BCFT, it is also useful to study

these branes in a Euclidean setting. This is also required if one wants to understand how the

geometry can be created by an instanton. For reasons that will become clear momentarily,

we will study Euclidean RS spacetimes in 4 instead of 5 spacetime dimensions. As before,

the formulas for the coordinate changes hold in any dimension to begin with so this is

simply to be able to cut down on the number of indices and can be done without loss of
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(a) Horizontal cross section of Minkowski

brane.

(b) Horizontal cross section of de Sitter

brane.

Figure 5. Euclidean embeddings of critical and supercritical brane. This is equivalent to the

horizontal cross sections of Minkowski and de Sitter branes.

generality. In Euclidean signature AdS4 has the geometry of the interior of a ball with an

S3 boundary. The metric is given by

ds2 = dρ2 + sinh2 ρ dΩ2
3. (2.30)

Note that this is identical to the spatial part of eq. (2.2). In fact, we can use this to derive

the Euclidean embeddings from the Lorentzian counterparts in one dimension up. We

simply set τ = 0 in all the geometries discussed so far, that is we focus on the “horizontal

cross section”. For the subcritical branes with |λ| < λc we already worked out the horizontal

cross sections in the previous subsection in figure 4a. Once again, it is obvious from these

pictures that these branes are the ones that play a role in AdS/BCFT. The horizontal cross

sections for the supercritical |λ| > λc and critical |λ| = λc branes are displayed in figure 5.

To obtain these plots we use the embeddings (2.19) in the dS case and (2.7) in the

Minkowski case. Comparing to (2.2) we see that for dS the horizontal cross sections cor-

responds to rS = ρ, and so lines of constant rS are simply spheres at constant ρ. For the

Minkowski brane the horizontal cross section is more complicated. At τ = 0 we can write

cos Θ =
1

X0
=

2z

z2 + x2 + 1
, tanα =

X4

X3
=
z2 + x2 − 1

2x
. (2.31)

This gives a parameterization of the Θ(α) curve in terms of x.

Note that while the critical brane touches the boundary at exactly one point, the

supercritical brane does not touch the boundary at all. Once again, the transition from the

subcritical brane, which cuts the boundary in half, to the supercritical brane, which doesn’t

touch the boundary at all, is not smooth globally. Locally the two become indistinguishable

as the tension approaches the critical value.
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3 Mix and match

Having carefully laid out the known brane constructions for the dS, Minkowski and AdS

brane in the previous subsection together with coordinate changes that get us from each

of them to global coordinates, it is now straightforward to find solutions corresponding to

mismatched branes. Recall that for an RS brane the geometry is unaffected by the brane

except at its location. The brane simply includes a local instruction of how to cut and

paste spacetime together. Furthermore, in the full 5d theory with no additional matter,

the matching across one brane is not affected by the presence of a second brane, so we can

freely combine the basic building blocks from the last section. Here we assume that the

bulk solution is locally AdS5. That is, we have no matter present and have not turned

on a finite temperature corresponding to radiation on the brane. Otherwise the branes

communicate by modifying the bulk solution.

In many of our figures branes appear to overlap. One should keep in mind that

the apparent brane overlaps are not real but are just a consequence of plotting 2d cross

sections. The branes do however intersect and one may wonder what is happening at these

intersections. In our action we do not include any terms that would allow branes to interact,

even if they are close. Each brane is minimizing its worldvolume and is curving spacetime

around it with its tension. But we do not include any direct cross-talk between the branes.

Of course one would expect that this prescription breaks down near the points where branes

intersect. Usually new light degrees of freedom are localized at such brane intersection.

In string theory these could be strings stretching from one brane to the next. So while,

as they stand, the solutions we describe are complete solutions to Einstein equations with

two decoupled branes, we would expect our description to break down near the locus of

brane intersections.

If we have two branes in the same tension regime (meaning subcritical, critical or

supercritical), we can put them at two different radial positions in the adapted metric (1.1).

This is what we referred to as “matched” brane tensions. The tensions do not have to be

the same, but have to have the same relation to λc. For a dS or an AdS brane the location

is determined by the tension, whereas for the Minkowski brane it was a free parameter

to begin with. As noted in the previous section, only in the AdS case can we have two

positive tension branes sitting at a time-independent position when viewed from the point

of view of the adapted coordinate system.

For mismatched brane tensions, we can still combine the basic ingredients from the last

section. Each brane independently solves the jump equation irrespective of the presence

of the second brane. The price is that the brane positions can no longer both be static in

any coordinate system. We will describe several examples of such mismatched pairs in the

next few subsections, together with a few important lessons to be learned from them.

We will, for concreteness, focus on brane worlds with positive tension only in this entire

section. As we will see, in the mismatched brane case this is not nearly as restrictive as in

the matched case. If one wants to take one of the branes to have negative tension, one is

again instructed to interchange which part of spacetime is cut out and which part is kept

due to that brane.
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(a) Minkowski and AdS brane. (b) dS and AdS brane.

Figure 6. Vertical cross sections of mismatched branes involving an AdS brane.

We will start the discussion with the case where one of the branes is an AdS brane. This

introduces the basic mix and match procedure. We will then describe positive tension pairs

including dS branes, which will exhibit two interesting new features: the setup crucially

depends on a new parameter, the time of birth of the universe, and entire universes can be

born again at a finite time when viewed from an observer sitting on a different brane.

In general the brane separation in all these mixed brane scenarios will depend on both

space and time. There exists however one special coordinate system in which AdS, dS

and Minkowski branes (with specially tuned creation times τ∗) can all coexist with their

separation only depending on time. While interesting that such a choice of coordinates

exists, we have not found any practical use for it so far and hence relegated it to appendix A.

3.1 Pairs including an AdS brane

Vertical cross sections of spacetimes with an AdS/Minkowski pair and an AdS/dS pair are

displayed in figure 6.

A few general lessons can be extracted from this. First note that in both exam-

ples we mixed two positive tension branes. This is much easier in the mismatched case.

The turnaround of the AdS adapted coordinate system allows us to put either a dS or a

Minkowski brane with positive tension on the other side of the turnaround. The limitations

of the purely Minkowski or purely dS setup do not constrain the mismatched system.

A second obvious fact to note is that the brane separation, the “expectation value of

the radion”, in both cases is time dependent, so is the volume of the warped spacetime.
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A time dependent radion means that we have a time dependent Newton constant. This

is in general problematic for any real application. Unless one is very careful about how

one exactly sets up the branes, one will in general not get a viable cosmology. We will

comment more on that in the next section. This is certainly a problem to be addressed

in scenarios such as the one laid out in [11, 12] which want to get a dS cosmology out

of a mismatched brane system. Last but not least the construction also makes it obvious

that any mechanism that effectively stabilizes the radion, as is implied e.g. in the KKLT

construction [8], has to do so by leading to matched branes. This can be accomplished by

either directly affecting the brane tensions, or by affecting the bulk cosmological constant

(which sets λc). For a detailed discussion of the viability of KKLT and the insights one

can glimpse from rephrasing it in the language of an RS construction see [9].

Note that one would in general expect that the brane separation is not just time but

also space dependent. Not only is Newton’s constant time dependent, it also depends on

the location in the universe. In some special cases of mismatched branes the radion only

depends on time, not space. But there are also examples where this is not possible. We

will encounter examples of both kinds below.

3.2 Born again: pairs including a dS brane

Vertical cross sections of spacetimes with a dS/Minkowski pair as well a an

dS/dS/Minkowski triple are displayed in figure 7. Once again all branes in this figure

have positive tension.

In addition to the general lessons extracted from the mismatched branes involving an

AdS brane, there is something qualitatively new happening in the setups mixing Minkowski

and dS branes. As explained in the previous section, both dS and Minkowski branes only

have a finite lifetime from the point of view of the global AdS5 time. Correspondingly,

they are characterized by a creation time τ∗. As before, we fix the creation time for the

Minkowski brane to be τ∗ = −π. This leaves the creation time of the dS brane as a free

parameter. In figure 7a we display a Minkowski brane together with a dS brane created at

τ∗ = −π/2. We can move the dS brane up and down relative to the Minkowski brane by

adjusting its τ∗. Since the universe is created at the boundary of AdS5 τ∗ should presumably

be viewed as a parameter set by boundary conditions.

While the freedom in choosing τ∗ gives us a much richer possibility for constructing

2-brane brane worlds, this new freedom does not give rise to any new scenarios with static

radion. In order to be able to include two branes with time independent positions in the

same adapted coordinate system (1.1) they do not just need matched tensions, they also

need to be created at the same τ∗.

In figure 7b we added a third brane, another dS brane but this time created at

τ = −3π/2 and with a smaller tension. Since the lifetime of the dS brane is π, the two

dS brane nicely meet at the boundary: the second dS universe starts when the first one

ends. This is what we call a “born again” brane. From the point of view of the dS observer

on the first dS brane, this rebirth happens at t = +∞, that is after the entire history of

the dS universe. What makes these born again scenarios interesting is that the rebirth is
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(a) Minkowski and dS brane. (b) Minkowski and two dS branes.

Figure 7. Vertical cross sections of mismatched branes involving dS branes.

happening at a finite time when viewed from the Minkowski observer’s point of view and

so we can explore the physics of witnessing the rebirth of a different universe in finite time.

As an aside, note that one more thing we can learn from figure 7b is that using the

freedom in the creation time of the dS universes we can even construct brane worlds with

two positive tension dS branes after all. Let us indicate the creation time as a subscript.

We see from 7b that a brane world with a dSτ∗=−π/2 brane and a dSτ∗=−3π/2 brane all by

itself is a perfectly respectable GR solution. In this case the branes are completely outside

each others horizon and so an observer on either one of the branes would not notice the

other brane in this special case. Only an observer using global time, or an observer on the

Minkowski brane (which after all had a lifetime of 2π) in the full setup of 7b involving three

branes, would be able to see both. But this is special to the case of having the creation time

of the two dS branes being separated exactly by π, the lifetime of the dS universe. Clearly

a brane world with two positive tension dS branes with creation times separated by less

than π is perfectly consistent and has the branes in causal contact. In fact, they intersect.

4 Born again branes

One very interesting class of mismatched RS setups involves dS UV-branes. For the pur-

poses of this section we will return to the basic RS1 type setup with a negative tension IR

brane and a positive tension UV brane. The only difference is that we slightly detune the

UV brane to be supercritical. There are several interesting aspects to this setup. First of
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(a) Reborn Universe (b) Alternate reborn scenario. (c) Poincare.

Figure 8. Reborn Universes. Unlike other embeddings displayed in this work, panel c) is not

showing a cross section of global AdS, but instead is displaying the same branes as panel b) but

using standard Poincare Patch coordinates.

all, since the lifetime of the dS universe is half of that of the Minkowski universe, we do

have strong dependence on the creation time τ∗ of the de Sitter universe. Second, since

the dS brane hits the boundary at a finite Minkowski time, we do need to specify what

happens with the brane at this instant. For this section, we chose to always have de Sitter

universes born again: they bounce back from the boundary whenever they hit it. From the

point of view of the Minkowski brane this means we are describing a very curious event:

there exists an instant in time where Newton’s constant vanishes. These born again branes

describe very interesting cosmological scenarios, albeit apparently quite different from what

we need to describe the universe we live in. We’ll describe some of their most interesting

features below. For now we will simply lay out the geometry of these reborn universes as

they will prove to be very useful in order to construct and understand the effective action

describing mismatched branes.

In this spirit, let us study a slight variation of the standard RS setup of figure 1b where

we replace the UV brane with two or three dS branes as depicted in figure 8. Recall that

in the standard RS setup the IR brane is a negative tension Minkowski brane. We retain

this IR brane, but replace the UV brane (which used to be a positive tension Minkowski

brane) with either 3 dS branes with τ∗ = −3π/2, τ∗ = −π/2 and τ∗ = 3π/2 or with 2

dS branes with τ∗ = −π and τ∗ = 0. We will refer to the brane world in figure 8a as the

standard reborn universe, and the one in figure 8b as the alternate reborn universe. It is

the latter that will prove the most useful in constructing effective actions.
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We already understand how to relate both the Minkowski adapted and the de Sitter

adapted coordinates to the global AdS5 coordinates. But for the purposes of understanding

the physics of the reborn branes we would prefer yet a different piece of information: what

is the radial position of the UV brane as a function of space and time as viewed from the

Minkowski brane observer? That is, we need to translate the condition that a brane is

living at a constant rS in the de Sitter adapted coordinates of (2.12) into a z(t, x) in terms

of the standard Poincare Patch coordinates of (2.8). This map is very easy in the case of

the alternate scenario of figure 8b. In this alternate scenario the UV and IR branes are

never even approximately parallel, so in this scenario one would see strong space and time

dependence of Newton’s constant throughout. But the geometry is very illuminating and

easy. The parameterization (2.7) agrees with the X5 ↔ X0 reversed (2.20) if we set

x = xS , z = e−tS csch rS , t = e−tS coth rS (4.1)

or in other words

z = (sech rS) t =
t√
l2 + 1

, (4.2)

the radial position of the dS brane depends only on the Minkowski time coordinate and

grows linearly with it. Here l is the curvature radius on the brane, which is related to rS
via (2.14). As expected this yields a phenomenologically unacceptably large time depen-

dence of the brane separation. Given the simple form of this embedding, we chose to also

display the alternate embedding in the Poincare Patch coordinates of (2.8) in figure 8c.

The horizontal direction is z and time t runs vertically. The x and ω2 directions are sup-

pressed. Since these are the coordinates adapted to the Minkowski brane it just turns into

a vertical line in this figure. The simple soltion (4.2) means that the de Sitter branes are

diagonal lines.

To describe the reborn branes of figure 8a we need to once more take the parame-

terization (2.7) of the Poincare Patch, but this time equate it with (2.19) as written.8

Unfortunately the result is quite a bit more cumbersome. Let us introduce an angle β with

Ω4 = cosβ, Ωa = sinβωa. With this we get

z=
csch(rS)sech(τS)sec2(β)(coth(rS)sech(τS)−sin(β))

sec2(β)
(
csch2(rS)sech2(τS)−tanh2(τS)

)
+1

t=
2cosh(rS)tanh(τS)sec(β)−2sinh(rS)sinh(τS)tan(β)

2sinh(rS)cosh(τS)cos(β)−2sinh(rS)sinh(τS)tanh(τS)sec(β)+2csch(rS)sech(τS)sec(β)

x=
coth(rS)sech(τS)sec(β)−tan(β)

sec2(β)
(
csch2(rS)sech2(τS)−tanh2(τS)

)
+1

(4.3)

Our task should be to get the UV brane position z(t, x) from this. This seems to be

impossible to obtain in closed form. However, expanding around τS = 0 and β = π/2,

the point at which the two branes are almost parallel, we find, dropping terms beyond

8Of course we could also once again compare to (2.20), but this time without reversing X5 and X0,

which takes away all the simplifications of this case.
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quadratic order,

z = e−rS −
τ2S
2
e−2rS sinh rS +

(π
2
− β

)2 e−2rS
2

sinh rS

t = τS e
−rS sinh rS

x =
(π

2
− β

)
e−rS sinh rS . (4.4)

To leading (linear) order the dS time and space coordinates τS and β are essentially just

the Minkowski coordinates t and x, up to rescaling, and the z position is constant. To find

the leading time and space dependent correction to z we find at quadratic order that a dS

brane at a constant rS corresponds to z(t, x) of

z = e−rS +
1

2 sinh rS

(
x2 − t2

)
. (4.5)

Note that the coordinates x and t of the Poincare slicing are not quite the correct space

and time coordinate of the IR brane. The induced metric on the IR brane is (recall that

we used x as the radial direction of spherical coordinates on Minkowski space)

ds2IR =
1

z20

(
−dt2 + dx2 + x2dω2

2

)
. (4.6)

To get properly normalized coordinates we need to rescale by the IR warp factor, tIR = t/z0,

xIR = x/z0. In terms of these variables the position of the planck brane of (4.5) expanded

to quadratic order near x = t = 0 reads

z = e−rS +
z20

2 sinh rS

(
x2IR − t2IR

)
. (4.7)

The hope here might be to find a solution with small space and time dependence at large

t so that we can generate a phenomenologically acceptable solution, even without any

additional stabilizing ingredients. However, this is not so simple. As long as the energy

mismatch of the UV brane is small, sinh(rS) is exponentially large, but this doesn’t help

in terms of suppressing time dependence as leading and subleading term have the same

exponential suppression. Furthermore, the IR warp factor z0 seems to be working against

us as it enhances the spatial variation. As it stands, this scenario also yields unacceptably

large spatial and temporal dependence of the brane separation.

Another interesting expansion we can look at in this case is around τ → −∞, the point

at which the UV brane bounces off the boundary. In this limit it is straightforward to see

that z once more becomes independent of x and is very well approximate by exactly the

same linear dependence z = (t + 1)/
√
l2 + 1 as in eq. (4.2) up to an irrelevant constant

shift in t. While the full solution strongly depends on τ∗, the solution near the rebirth is

universal.

5 Low energy effective action

5.1 Basic strategy

In this section we will use the alternate reborn scenario of figure 8b to discuss one more

important issue: what is the low energy description of the brane worlds we constructed?
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With one dS and one Minkowski brane, what is the metric dominating the low energy

world? Is it Minkowski or dS? What is the action from which these solutions follow? Note

that an effective action for the low energy dynamics of the coupled metric/radion system

had already been worked out previously [19]. They find9

S =
1

16πG

∫
d4x
√
−g

[(
1− ϕ2

RS

)
R− 6(∂ϕRS)2 − 2V (ϕRS)

]
(5.1)

with

V (ϕRS) = (ΛUV − ΛIR ϕ
4
RS) (5.2)

where ΛUV/IR are the effective cosmological constants on the brane related to the curvature

radius l of the vacuum (A)dS solution on the respective branes via |Λ| = 3/l2. Note that

the radion couples non-trivially to the Einstein Hilbert term. For the particle physics

applications considered in [19] this effect was negligible; they were mostly interested in small

fluctuations around flat space. Clearly if we want to reproduces the cosmological solutions

with genuinely mismatched branes this coupling will be crucial. In fact, the strategy we

would like to pursue here is to construct the low energy action of the mismatched branes

by engineering an action that allows for the solutions we found. As always when coupling

a scalar to gravity an important question is the choice of frame. This frame choice is

arbitrary, but we will see that the most useful frame choice is often dictated by whether

we want to describe the physics from the point of view of the IR or the UV observer.

Reassuringly we will find that in one of our frames the action we construct this way indeed

perfectly agrees with the one of [19] in (5.1).

Before we proceed, a quick word on conventions. The effective action we are after

describes a system of a single scalar, the radion, coupled to gravity. We will, however,

use several different parameterizations for the scalar. We’ve already encountered one, ϕRS,

which is the radion variable most commonly used in the literature on braneworlds, for

example [19]. This parameterization however is not very useful when seriously taking into

account the couplings of the radion to the Ricci scalar. In general theories of this scalar

tensor type it is common, as we’ll review below, to use a scalar field variable that couples

via φR directly to the Ricci scalar. We will introduce a scalar φ that couples like this in

a frame adapted to an observer on the IR brane, and a separate scalar φ̃ that plays the

same role in a frame adapted to the UV brane. The relations between these three scalars

are given by (5.20) and (5.21). Last but not least we will use the scalar X̃ which is the

canonically normalized scalar in the Einstein frame. Its relation to the other variables used

for the radion is given by (5.26) and (5.27).

The point of departure for our study will be the basic observation that in RS brane

worlds the 4d Planck scale M4 can be calculated in terms of the 5d Planck scale M5 via

M2
4 = VM3

5 . (5.3)

9We found it convenient to rescale the field ϕRS of [19] by a factor of
√

12κ with κ = 2M3
5 /k = (16πG)−1

in order to have an overall factor of κ2 in front of the action rather than a canonically normalized scalar as

in their work.
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Here V is the warped volume of the internal space. Using the standard Poincare patch

coordinates of (2.8) one finds

V =

∫
dz e3A ∼ z−2UV − z

−2
IR . (5.4)

The explicit solutions for z as a function of space and time in the various coordinate

systems we constructed in the previous sections hence can be seen as solutions of a coupled

metric/scalar system. We can reverse engineer the action by requiring that these solutions

are reproduced.

5.2 dS-UV brane: simplified scenario with zIR → ∞

The first scenario we discuss is the alternate reborn universe with a positive tension dS

brane in the UV and a negative tension Minkowski IR brane. From the point of view of

the known radion potential (5.1) we can see that a Minkowski IR brane is particularly

simple since it does not involve the ϕ4
RS term in the potential. For the purpose of finding

the action the alternate scenario of figure 8b will be easier since we only have to deal with

time dependent position z(t).

In order to lay out the basic framework for the effective action, let us first drop the small

contribution from the IR brane to M2
4 = (16πG)−1, which is predominantly dependent on

zUV. Formally this means we first analyse the zIR →∞ limit. Since zUV is time dependent

we effectively have a time dependent Newton constant G, as we emphasized several times

before. The Newton constant is set by the vacuum value of a scalar field, the radion,

which encodes the separation of the branes. This means the low energy effective action

describing these two branes is of the generalized Brans-Dicke or scalar-tensor form.10 This

immediately brings up the question of frames. We can redefine the metric by powers of the

radion to shuffle time dependence from G into the metric. The metric and the action both

depend on our choice of frame.

Let us first start with a frame that describes the experience of a Minkowski brane

observer. This is the “Minkowski” frame, which in the Brans Dicke language would corre-

spond to the Jordan frame. In this frame the action is

SBD =
1

16πG

∫
d4x
√
−g

[
φR− wBD(φ)

φ
(∂φ)2 − 2V (φ)

]
. (5.5)

Here φ is the radion field setting Newton’s constant. From comparison to eq. (5.4) we see

that, in the zIR →∞ limit we decided to tackle first, we have

φ = α z−2UV. (5.6)

We will determine the functions wBD(φ) and V (φ) as well as the constant α from the

requirement that we reproduce the known solutions from the previous sections. In partic-

ular, we know from (4.2) that the alternate reborn scenario requires a solution in which

the spacetime is simply Minkowski space and

φ =
α(l2 + 1)

t2
≡ a2

t2
. (5.7)

10For a recent review see, for example, [20].
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The equations of motion that follow from the action (5.5) are

Gµν =
wBD

φ2

[
∂µφ∂νφ−

1

2
gµν(∂φ)2

]
− gµν

V

φ
+

1

φ

(
∇µ∇ν − gµν∇2

)
φ

∇2φ =
2

3 + 2wBD
(φ∂φV − 2V )−

∂φwBD

3 + 2wBD
(∂φ)2. (5.8)

Here Gµν = Rµν − 1
2Rgµν is the Einstein tensor (and not the 5d metric, which sometimes

is also denoted as such). It is easy to see that gµν = ηµν (and hence Gµν = 0) together

with φ given by (5.7) is a solution if we chose

wBD = −3

2
, V (φ) =

3φ2

a2
. (5.9)

That is, the action is already fixed up to an overall constant a by requiring that we repro-

duce the known solution.

We now change frame to that of a de Sitter observer. To do so, we perform a field

redefinition

gµν → Ω−2gµν (5.10)

where we chose

Ω2 = φ. (5.11)

The physics of the system can not change since this was solely a field redefinition, but it

changes what we mean by the metric. In this new “de Sitter frame” the metric reads

ds2 =
a2

t2
(−dt2 + d~x2). (5.12)

This is indeed dS space with curvature radius a. Since we want a = l to agree with what

we see on the dS brane we can fix our last parameter

a = l, ⇒ α =
l2

l2 + 1
. (5.13)

The action in the de Sitter frame then reads

SdS
BD =

1

16πG

∫
d4x
√
−g

[
R−

wBD + 3
2

φ2
(∂φ)2 − 2

V (φ)

φ2

]
=

=
1

16πG

∫
d4x
√
−g

[
R− 6

l2

]
(5.14)

where in the last step we used our identifications of wBD and V from (5.9).

G is constant in this new frame in which the potential is just a positive cosmological

constant and the radion has completely dropped out of the action. Clearly this action allows

for a dS solution with curvature radius l. We apparently lost all time dependence in the

solution. This is of course not the case. The radion is still given by the same solution (5.7).

However, it no longer couples to the gravitational sector. This is due to the fact that we

are working with zIR → ∞ and so the energy of the Minkowski brane is warped down to
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zero. Matter living on the Minkowski brane would see this time-dependence through the

φ(t) appearing in its coupling constants.11

So already in this simple scenario we see that we can describe one and the same physics

in two very different ways. We either can describe our branes as a Minkowski space with a

strongly time dependent Newton’s constant (due to the motion of the UV brane) or as a dS

space with a constant G but strong time dependence in the couplings of any IR localized

matter sector. In order to account for the gravitational backreaction of the latter we need

to work at a finite zIR. We will turn to this next.

5.3 Finite zIR

To study the full effective action, we redo the analysis of the previous subsection in the

presence of a finite zIR. In RS scenarios zIR is usually thought of as an exponentially large

IR warp factor that leads to a large hierarchy of scales between the Planck physics on the

UV brane and TeV scale physics on the IR brane. Our analysis will not rely on zIR as

being large; the effective action we derive is valid for all zIR. But the language we use to

interpret the results will assume a large zIR. The results of the previous subsection follow

in the zIR →∞ limit.

The upshot of this analysis will be that there are actually three different frames that

are useful to describe the physics of the reborn scenarios:

• the Minkowski frame from above, where the spacetime is Minkowski space and we

have a strongly time dependent G from the relative motion of the UV dS brane

• the de Sitter frame from above in which the spacetime is dS and we retain a weak (that

is zIR suppressed) time variation of G from the relative motion of the IR Minkowski

brane

• the genuine Einstein frame in which G is constant, but the four-dimensional spacetime

metric is neither Minkowski nor dS but some “average” of the two though deviations

from dS are zIR suppressed.

As in the previous subsection, let us start with the Minkowski frame. Once again we

want to write a general scalar tensor action of the form (5.5), but this time we require a

Minkowski space solution when the solution of φ takes the form

φ = α
(
z−2UV − z

−2
IR

)
=
l2

t2
− c0 (5.15)

where we defined

c0 =
l2

l2 + 1
z−2IR . (5.16)

11Matter on the IR brane couples to the Minkowski frame gµν without any powers of φ, so that after

the field redefinition into the dS frame it now couples to the dS frame metric with additional powers of φ,

inheriting strong explicit time dependence.
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The zIR →∞ limit corresponds to c0 = 0. It is straightforward to confirm that this metric

and scalar field are solutions to the BD equations of motion (5.8) only if we choose

wBD = −3

2

φ

φ+ c0
, V (φ) =

3(φ+ c0)
2

l2
. (5.17)

This has the right c0 = 0 limit in which it reduces to (5.9). Note that, despite appearances,

c0 should be thought of as an integration constant rather than a parameter in the action.

But we found that if we study fluctuations around the zIR solution, the radion ended up

without a kinetic term in the de Sitter frame. Here we effectively introduced a shifted radion

that describes fluctuations around the IR brane whose location at t = 0 is parameterized by

c0. The integration constant c0 now appears in the potential of the shifted radion. As we

will see in the end if we go to the genuine Einstein frame any c0 dependence will disappear

from the action.

Next let us turn to the dS frame. For the metric to be dS we need to do the same

conformal transformation that gave us the metric (5.12). That is we need to choose

Ω2 =
l2

t2
= φ+ c0. (5.18)

Note that this means that the dS frame is no longer the Einstein frame. The 4d G is

dominated by the UV brane position, which in the dS frame this is effectively constant.

Nonetheless, according to (5.3) there is a mild dependence on zIR as well so the motion of

the IR brane imprints a small variation of G even in the dS frame. To get rid of all time

dependence of G we would need to continue using Ω2 = φ. We will do this later. The

action in the dS frame reads

SdS
BD =

1

16πG

∫
d4x
√
−g

[
φ

φ+ c0
R− 3c0

2

(∂φ)2

(φ+ c0)3
− 6

l2

]
=

=
1

16πG

∫
d4x
√
−g

[
φ̃R+

3

2

φ̃

φ̃− 1

(∂φ̃)2

φ̃
− 6

l2

]
(5.19)

where we introduced

φ̃ = φ/(φ+ c0) (5.20)

to bring the action back into the standard scalar-tensor form of (5.5). It is in this form

that we can recognize our action to be identical to the one of [19] as written in (5.1) above

using the substitution

φ̃ = 1− ϕ2
RS. (5.21)

It is reassuring that we recover this known result from our orthogonal approach. Our

analysis also serves to put the action (5.1) of [19] in the right perspective. We should think

of this action as written in a frame appropriate for an observer on the UV brane with

the field ϕRS setting the position of the infrared brane, ϕRS ∼ z−1IR . This perspective will

be important when deriving the radion mass. Most importantly, the field configuration

ϕRS = 0 corresponds to an IR brane at the horizon, zIR →∞. Static 2-brane systems with

matched tensions are solved with constant, finite ϕRS.
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Note that in the c0 → 0 limit φ̃ remains close to 1 for almost the full range of φ.

That is as expected since in the dS frame the radion dynamics almost decouples. There

is however a small time dependence of the Planck scale owing to the motion of the IR

brane. Moreover, as before, if additional matter is localized on the IR brane, it sees strong

time dependence from φ. It is straightforward to confirm12 that the equations of motion

following from the action (5.19), which once again take the form of (5.8), indeed are solved

by a metric that is dS with curvature radius l and a scalar given by

φ̃ =
φ

φ+ c0
= 1− c0

t2

l2
. (5.23)

Last but not least we can go to the actual Einstein frame. That is, we start again

with (5.5) and this time we indeed choose

Ω2 = φ (5.24)

instead of (5.18) above. In the Einstein frame the action becomes

SEBD =
1

16πG

∫
d4x
√
−g

[
R− 3c0

2φ2
(∂φ)2

(φ+ c0)
− 6

l2
(φ+ c0)

2

φ2

]

=
1

16πG

∫
d4x
√
−g

R− (∂X̃)2 − 6

l2
cosh

(
X̃√

6

)4
 (5.25)

where in the second step we introduced

X̃ =

√
3

2
log

(√
φ+ c0 +

√
c0√

φ+ c0 −
√
c0

)
(5.26)

in order to work with a canonically normalized scalar in the Einstein frame. Note that the

c0 dependence has scaled out from the action. It is useful to note that the relation (5.26)

implies a very simple relation between X̃ and ϕRS:

ϕRS = tanh

(
X̃√

6

)
. (5.27)

In the Einstein frame the metric is neither dS nor Minkowski, but instead is given by

ds2 =

(
l2

t2
− c0

)
(−dt2 + d~x2). (5.28)

As expected from the previous subsection, this reduces to the dS metric in the c0 = 0 limit,

but in general this metric deviates from dS at late times. It is reassuring to confirm that

12Note that the 2nd derivative in dS is non-trivial due to the Christoffel symbols,

∇t∇tf(t) =
ḟ

f
+ f̈ , ∇i∇jf(t) = δij

ḟ

f
. (5.22)
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the standard Einstein equations with a cosh4 potential for the scalar X̃ are indeed solved

by the metric (5.28) together with the scalar profile

X̃ =

√
3

2
log

(
l +
√
c0t

l −√c0t

)
(5.29)

which we inherit from the solution for φ in (5.15).

There are additional consistency checks we can perform to confirm that this effective

action is indeed correct. For example, one can generalize the scenario to dimensions other

than 4d branes in 5d AdS. While we haven’t checked all the order 1 factors, it is assuring

that the obvious scaling with dimensions works out fine. Working with a parent AdSd+1

the warped volume of equation (5.4) now will be dominated by z2−dUV and correspondingly

the solution for φ + c0 will scale as (φ + c0) ∼ t2−d. The conformal transformation to the

dS frame picks up a factor of Ω−d+2 = (φ+ c0)
−d+2

2 ∼ t2 and we find that indeed in any d

a Minkowski metric in the Minkowski frame turns into a dS metric in the dS frame.

5.4 Detuned IR branes

One of the interesting aspects of the action (5.1) that we haven’t touched upon yet is the

presence of a ϕ4
RS potential for detuned IR branes. In this subsection we would like to

show that when we detune the IR brane this term is indeed required in the action in order

to reproduce our non-trivial brane configurations.

In order to analyze this scenario we will reverse the role of the UV and IR branes. That

is, we use the Minkowski adapted coordinates of (2.8) in which the position of the dS brane

with τ∗ = 0 is still given by (4.2). But this time the dS brane is taken to be the IR brane

zIR =
t√
l2 + 1

(5.30)

and we place an additional Minkowski brane at a constant zUV < zIR. That is, this time

our radion solution is given by

φ = C0 −
l2

t2
(5.31)

instead of (5.15). Here C0 ∼ z−2UV. Using a frame adapted to the UV Minkowski brane this

is now supposed to be a solution to the equations of motion following from the action that

now includes an extra ϕ4
RS term, which in terms of the φ̃ variable reads

SUV
BD =

1

16πG

∫
d4x
√
−g

[
φ̃R+

3

2

φ̃

φ̃− 1

(∂φ̃)2

φ̃
+

6C0

l2
(1− φ̃)2

]
. (5.32)

This is to be compared with the de Sitter frame action from the reborn universes (5.19).

The only difference is that the positive constant potential from the detuned UV brane has

been replaced by a negative ϕ4
RS = (1 − φ̃)2 potential from the detuned IR brane. The

extra factor of C0 ∼ z−2UV in the potential appears since we here write the IR cosmological

constant in terms of the curvature radius l of the UV-brane dS space. The time dependence

of the Newton constant implied by (5.31) as seen from the UV brane reads

φ̃ = 1− l2

C0t2
. (5.33)
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It is straightforward to confirm that this scalar profile together with a Minkowski metric

is, in fact, a solution to the equations of motion following from (5.32). This is a highly

non-trivial check of the framework laid out here and in [19].

5.5 Radion mass

Another very interesting application of the action (5.1) is to return to the case of matched

branes — that is two de Sitter or two Anti-de Sitter branes. Let us denote the corresponding

curvature radii lIR and lUV. In this case we know that solutions should exist with constant

ϕRS. The radion mass for two matched branes had been analyzed in [21] with the result that

m2 = − 4

l2IR
for dS, m2 = +

4

l2IR
for AdS. (5.34)

At first sight this appears puzzling since the −Rϕ2
RS in the action (5.1) indicates that a

positive scalar curvature gives the radion a positive mass squared and vice versa for a neg-

ative curvature, which appears to be direct contradiction with the results quoted in (5.34).

The resolution of this puzzle is that ϕRS = 0 is the wrong extremum of V . Recall that

for us to have two dS or two AdS branes the IR brane is necessarily detuned and hence

we have a non-vanishing ϕ4
RS term. In the dS case (with R = +12/l2UV) the full radion

dependent part of the potential reads:

V = 3

(
2
ϕ2
RS

l2UV

−
ϕ4
RS

l2IR

)
, (5.35)

and V → −V for the AdS case.

In the dS case, ϕRS = 0 is a metastable minimum. But this is not the point describing

the standard two-brane scenario; instead it describes the case where one brane fell into the

z →∞ horizon. The standard case places the IR brane at the unstable maximum. Indeed

we can verify that13

V ′((ϕRS)∗) = 0 for (ϕRS)2∗ =
l2IR
l2UV

, m2 =
1

6
V ′′ ((ϕRS)∗) = − 4

l2UV

. (5.36)

For two AdS branes we similarly have an unstable maximum at ϕRS = 0. Here the true two-

brane solution corresponds to the stable minima at (ϕRS)∗ with m2 = +4l−2UV. This result

at the stable minimum now looks almost consistent with (5.34) except for the lUV ↔ lIR
exchange. To understand this rescaling, one should note that the work of [21], in contrast

to [19], was done in a frame adapted to the IR brane. The rescaling of the metric from

the UV-frame to the IR-frame introduces exactly a factor of l2UVl
−2
IR . Once again, it is

very reassuring to see known results pop out of the radion action in a highly non-trivial

fashion.14

13The prefactor of 6 in the relation between m2 and V ′′ comes from the unconventional normalization of

the kinetic term in (5.1).
14Note that when we want to calculate the effective cosmological constant the potential as written is

not helpful. The quadratic term is the curvature coupling, so it is not part of the potential energy that

backreacts on the metric. Furthermore, we also need to include the constant 3l−2
UV contribution. The full

potential at the unstable maximum hence is 3l−2
UV(1 − l2IRl−2

UV), which is exactly what is needed to support

a dS space with curvature radius lUV with the reduced (1− ϕ2
RS)R Einstein-Hilbert term.
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5.6 Generalizations

Having demonstrated the power of the radion effective action in describing the full non-

linear structure of mismatched brane setups, we can explore other (and in some cases more

physical) setups. One important generalization is to replace the bulk AdS5 background

with an AdS5 Schwarzschild black hole. This corresponds to giving a finite temperature to

the dual CFT. Here we want to demonstrate that the radion effective action still suffices

to describe the brane geometry.

The full 5d brane geometries are known. The analysis for a single brane has been done

in all generality a long time ago in [22]. The 5d geometry is given by

ds2 = −f(R)dt2 +
dR2

f(R)
+R2dΣ2

k (5.37)

where dΣ2
k describes the metric on the three dimensional unit sphere, flat space or hy-

perboloid respectively depending on whether k = +1, k = 0 or k = −1. The blackening

function F is given by

F (R) = k +R2 − µ

R2
. (5.38)

For µ = 0 these are just yet different coordinate systems for AdS5. Non-zero µ in-

troduces a bulk black hole (and hence non-zero temperature). From the holographically

dual perspective µ is proportional to the energy density. Assuming the branes respect the

spatial symmetry of the background, their embedding is given by a function R(t) leading

to an induced metric

ds2 = −dτ̃2 +R2dΣ2
k (5.39)

where [22] reparameterized time to make sure that the metric takes an FRW form. R(τ̃)

obeys the standard Friedmann equation with the brane tension mismatch providing a

cosmological constant and the bulk black hole a radiation component. In fact, for our

purposes here we will need to use yet another time coordinate, so that the metric reads

ds2 = R2
(
−dt2FRW +R2dΣ2

k

)
(5.40)

with

RdtFRW = dτ̃ . (5.41)

The equations of motion for R(tFRW) are less familiar, and in many interesting cases there

is no simple closed form solution to the coordinate transformation of (5.41). What is im-

portant though about the metric (5.40) is that the induced metric on separate branes with

embeddings RUV(tFRW) and RIR(tFRW) are simply related to each other by a conformal

transformation. In particular, the τ̃ variable is different for the UV and IR brane, whereas

both branes use the same conformal time tFRW. The form (5.41) makes it easy to read off

the radion profile, given a known solution of the Einstein equations. In fact, we claim that

the correct identification is

ϕRS =
RIR(tFRW)

RUV(tFRW)
. (5.42)
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This formula is the precise implementation of our previous intuitive identification of the

radion from the warped volume of the internal space. The correct, general rule is that

the radion corresponds to the conformal factor relating the worldvolume metrics of the

two branes.

It is straightforward to check that this prescription indeed allows us to rediscover

our old solution and construct many new solutions of the radion effective action (5.1).

For example

• For two Minkowski branes with k = 0 RIR and RUV are constants and hence so is

the radion.

• For a dS UV brane we have RUV = leτ̃ /l for k = 0 and RUV = l sinh(τ̃ /l) for

k = −1. The corresponding FRW metrics solve the coupled Einstein-radion equations

of motion for ϕRS = lIR/l if the IR brane is dS as well, ϕRS = a0e
−τ̃ /l if the IR brane

is Minkowski and k = 0, ϕRS = a0 cosh−2(τ̃ /(2l)) if the IR brane is Minkowski and

k = −1, and ϕRS = lIR/(l cosh(τ̃ /l)) when the IR brane is AdS and k = −1. a0 in

these expressions is an integration constant associated with the IR brane position.

Here we used the ratio of RIR and RUV in terms of tFRW to calculate ϕRS, but then

translated the final answer back into a function of the τ̃ coordinate of the UV brane.

While the coordinate system used here is very different from what we worked with

so far, these are just our old mismatched solutions in yet another form.

• If we turn on a finite temperature, µ 6= 0, and study two critical tension branes we

find a solution with RUV =
√
b20 + 2µ2t and constant ϕRS. b0 is again an integration

constant, this time associated with the UV brane position.

In the last case we need to include the contribution of a diagonal traceless stress tensor

with spatial entry p = µR−4UV in the Einstein equations as appropriate for radiation. What

is important here is that we did not need to include any µ dependent corrections to the

potential of ϕRS. The effects of finite temperature give rise only to the extra radiation

and do not modify the radion potential in this case of two critical branes (where the zero

temperature potential vanishes identically).

In fact we can understand the above result by considering the limits of large and small

temperature. Any temperature depedence can correct the potential only through terms

of the form T lIR/UV for one or the other cosmological constants or on the inverse of this

function. For flat tuned branes there would be no such terms. With detuned branes, we

can rule out such dependence as well. The latter possibility which wouldn’t have sensible

T = 0 behavior. The first terms don’t have sensible flat space behavior. It would be nice

to see this explicitly in our formalism. Unfortunately in this case the change of coordinates

from τ̃ to tFRW involves inverses of hypergeometric functions and it is difficult to extract

information about the potential from the known solutions.

5.7 Implications

Perhaps the most important lesson to be learned from our construction is that a fact that

appears obvious from a 5d perspective — that observers on the IR brane and UV brane
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would describe one and the same brane setup very differently — is nicely accounted for

in terms of the 4d effective action. The different 5d perspectives correspond to different

choices of frame in the 4d description. The analysis also drives home our previous point

that the time dependence signals trouble for the scenario of [11, 12]. Unlike our reborn

universes, the authors of these papers have a UV Minkowski brane and a dS IR brane. So

the choices are either to work in a frame in which one has the desired dS metric, but at

the cost of a very strong time dependence of G due to the moving UV brane, or to work in

a frame with a mild time dependence of G, but a metric that is simply Minkowski space.

Another important point is that to eliminate time dependence today, a realistic cosmol-

ogy based on mismatched branes almost certainly needs implementation of a Goldberger

Wise (GW)-type mechanism [23] to stabilize the branes. This is clearly an important next

step and we will describe some attempts in this direction in the next section. The radion

effective action will be instrumental in doing so.

To genearate more conventional inflationary scenarios, the universe would start away

from the boundary. Notably however, the solutions we have presented introduce another,

more speculative possiblity, namely that the reborn scenarios of figure 8 could address some

cosmological puzzles by crucially making use of the time-dependent Newton constant. As

we laid out, the full time-dependent solution can be completely captured by a low energy ef-

fective action for the radion-metric system. As such, one may expect that one can always go

to the Einstein frame, with simply the cosmology of a single scalar field coupled to gravity.

This procedure fails however near the point at which the de Sitter brane hits the

boundary. For realistic applications, we can always think of z−1IR as an exponentially small

quantity and hence the frame adapted to the UV de Sitter brane in which the action (5.1)

is valid is a very close approximation to the Einstein frame. In this frame the metric is

dS. The rebirth happens at tS = +∞ from the point of the dying dS universe and at

tS = −∞ from the point of the newly created dS brane. The metric at this point from

either perspective is infinite.

So in this frame the physics of the rebirth we wish to describe is problematic, not just

because it happens at infinite time (and so we really can’t describe the transitions to what

happens after tS =∞), but also because the metric in this region is singular. Maybe more

to the point, the geometric interpretation in terms of branes moving in AdS5 makes it clear

that at the moment of rebirth when ϕRS = 1, we need to supplement the action with extra

boundary conditions. This is interesting in that it is something that is not obvious in the

four-dimensional description. In the 5d geometric setup, we need to specify what happens

to the dS brane when it hits the boundary. It is of interest to note that the universe

bouncing back from the boundary is a contracting universe. Whether this freedom allows

for interesting new cosmological solutions is a question we leave for future investigation.

6 The Einstein frame action and inflation

As we’ve seen in all our solvable examples, mismatched branes contain some of the key

ingredients for cosmological models. But the strong time dependence of all our solutions

means that any realistic model needs eventually to be stabilized, presumably via the Gold-
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berger Wise (GW) mechanism [23] or a variant thereof. GW stabilizes the branes by

introducing an extra scalar field, the Goldberger Wise field χ, with non-trivial bound-

ary conditions on both branes. The corresponding gradient energy depends on the brane

separation and hence gives an extra contribution to the radion potential.

One thing to note is that we are assuming zero temperature throughout our analysis.

We also assume the presence of both branes in our initial conditions. In both these critical

respects our analysis differs from ref. [24]. Note that from the point of view of the CFT

our initial condition is not an equilibrium state and the presence of the second brane in the

UV seems very unnatural. Yet from the perspective of the five-dimensional theory there is

no issue.

A full analysis of a complete cosmological scenario with mismatched branes coupled

to a GW field is beyond the scope of this current work, even though we hope to return to

it in the near future. But one important last step we want to take in this work is to recast

our final answer for the effective action in the Einstein frame. This way the mismatched

brane scenario is framed in the language suited to most cosmological discussions: a single

scalar coupled to standard Einstein gravity.15

To translate our effective action to the Einstein frame we need to use the map-

ping (5.27)

ϕRS = tanh

(
X̃√

6

)
≡ tanhX. (6.1)

The Einstein frame potential for the radion is

V =
3

l2UV

cosh4X − 3

l2IR
sinh4X. (6.2)

Here the sign choices are for supercritical branes. For subcritical branes we would send

l → il for the corresponding brane. Note that what appeared as a constant plus a quartic

in (5.2) turned into exponentially growing terms. This is due to the fact that as the

branes approach each other (corresponding to ϕRS → 1 or X →∞), the effective Newton

constant grows and so all energies backreact more strongly. In the Einstein frame this

explicitly appears in the potential.

The most interesting scenario that can serve as a starting point for a discussion of

standard inflation has both branes are supercritical. As discussed in section 5.5, the po-

tential generated by the cosmological terms on the branes has a local minimum at X = 0

and a maximum at a finite value of X given by (5.36). As lIR → lUV (with lUV > lIR being

implied by the ordering of the branes) the maximum gets pushed to larger values of X and

to higher values of the potential. Beyond the maximum the potential is unbounded from

below due to the negative contribution of the IR brane potential. In figure 9 we plot the

potential for lUV = 10 and lIR = 9.9

This potential is tantalizing from the perspective of inflationary dynamics, since in

principle the radion can start with high energy and roll down to a stable minimum with

15This is true with the caveat that any cosmological scenario where the branes hit the boundary has to

be done more carefully with additional parameters and boundary conditions.
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Figure 9. Einstein frame radion potentials for lUV = 10 and lIR = 9.9.

small cosmological constant. Furthermore there could in principle be a natural explanation

for the higher energy initially since Newton’s constant initially can be much smaller if the

cosmological constants on the two branes are close in value. This can be consistent with

perturbativity if the AdS scale of the five-dimensional theory is much smaller than the

cutoff scale. One interesting aspect of this scenario is that it is natural for the two branes

to have similar parameters if they are created at the same time.

We can study this scenario with the standard tools. For example, the scalar could start

just to the left of the peak and subsequently roll towards its minimum. As it stands, the

potential has several shortcomings. For one, the minimum at zero is troublesome; as the

IR brane keeps falling towards the horizon matter couplings on the brane will experience

strong time dependence. A GW-like scalar is needed to stabilize the brane at a small but

finite value. Furthermore, this potential does not allow for standard slow roll. While V ′/V

can be arbitrarily small by starting the scalar near the top of the potential, V ′′/V is not

small near the peak due to the exponential nature of the potentials.

These are not necessarily unsurmountable obstacles. The rolling of the field could

in principle be slowed through additional friction terms since the radion couples to many

other fields. As alluded to above, the field can in principle stop for small but nonzero ϕRS

in the presence of a GW field. This also raises issues with the formulation of the GW

potential, which pins down boundary conditions in the UV and the IR. This obscures any

correspondence to the dual theory, in which boundary conditions are specified solely in the

UV. The introduction of a GW field seems to destroy the unstable maximum in the simplest

models. Yet the GW mechanism should have significant effects on in the IR. Furthermore,

higher order terms in the GW potential can significantly affect the GW potential shape —

something we don’t usually consider when just focusing on a GW minimum in the IR.

Notice also that in any model based on GW, the constraint that if the UV energy

doesn’t decay, the UV energy would (almost) cancel the energy of the GW field requires

that the UV energy density is no greater than the IR scale, which means that the reheat

temperature after inflation would also be expected to be of order the IR scale. This may

or may not lead to cosmological issues of the sort considered in ref. [24].
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7 Conclusion

In this paper we have considered an interesting new class of time-dependent brane solutions

in AdS space. We have shown explicit solutions and how they are realized in an effective

lower-dimensional theory. We have also highlighted some interesting unanticipated fea-

tures of the low-energy theory — in particular the decoupling of gravity, the necessity to

specify brane creation time, and boundary conditions for branes that hit the boundary

in a finite time from the perspective of an IR brane observer. We have also pointed out

some interesting potential cosmological applications but leave the completion and study of

a successful model to the future.
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A Hyperbolic slicing

Clearly no static solutions exist in the case of mismatched tensions, so we will be forced to

look at solutions with time dependent branes. In general this isn’t sufficient: for generic

mismatched branes the position will be both time and space dependent. In this appendix

we want to show that there exists a special coordinate system in which all three, the

Minkowski brane, the AdS brane as well as the dS branes with τ∗ = −π/2 can be realized

as branes with a time but not space dependent position.

If the position of the brane is time dependent, the induced metric on the brane will

be an FRW universe whose scale factor is induced by the time dependent brane position.

In order to accommodate all three types of branes in a single coordinate system we need

to use an hyperbolical spatial slice for the FRW universe since this is the only slicing that

allows us to write all 3 maximally symmetric spaces in FRW form. AdS is the troublemaker

here: with a negative cosmological constant as the only matter, only a hyperbolic sliced

FRW universe is possible. Correspondingly we write the bulk AdS5 metric as

ds2 =
1

z2
(
−dt2h + t2hdH

2 + dz2
)
. (A.1)

Here dH2 denotes the metric on the unit 3d hyperbolic space. The metric in (A.1) is just

the standard Poincare slicing with Minkowski space on each z = const. slice. But the

Minkowski space is written in a peculiar form, basically Wick rotated spherical coordinates

in which the radial direction is timelike. This way Minkowski space appears as a particular

FRW universe.
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A Minkowski RS brane in this geometry still simply sits at a constant

zM (th) = z0. (A.2)

Our claim is that both the AdS and the dS branes can be written in these coordinates as

well by allowing z to be time dependent. No spatial dependence of z is required, allowing

a unified treatment.

The hyperbolic Poincare patch (A.1) corresponds to a parameterization of the form:

X0 =
z

2

(
1 +

1− t2h
z2

)
(A.3)

Xa =
t

z
sinh(θ)ωa (A.4)

X4 =
z

2

(
1−

1 + t2h
z2

)
(A.5)

X5 =
th
z

cosh(θ) (A.6)

in terms of which the metric on the hyperboloid reads

dH2
3 = dθ2 + sinh2(θ)dω2

2. (A.7)

The standard AdS4 slicing of AdS5 still corresponds to

X4 = sinh(rA) = const. (A.8)

which in terms of our original metric (A.1) reads

zAdS,1(th) =
√
l2 + t2h −

√
l2 − 1 (A.9)

or

zAdS,2(th) =
√
l2 + t2h +

√
l2 − 1. (A.10)

The two solutions correspond to an AdS4 brane at positive or negative X4 respectively.

These are the branes located at different sides of the turning point at X4 = 0. Either way,

an AdS brane comes in from infinite z, reaches a minimum value of

zmin
AdS = l ∓

√
l2 − 1 (A.11)

at th = 0 and moves back to infinity. It can peacefully coexist with a Minkowski brane at

a fixed z beyond the minimal value zmin
AdS. Reassuringly, the induced metric on this brane

takes the form

ds2 = −dτ2h + a(τh)dH2 (A.12)

with

a(τh) = l sin(τh/l) (A.13)

which is, in fact, the correct FRW parameterization of AdS4.

– 35 –



J
H
E
P
0
9
(
2
0
2
0
)
1
6
6

To get the standard dS brane we use that this time

X0 = cosh(rS) = const. (A.14)

which translates into16

zdS,1(th) =
√
l2 + t2h +

√
l2 + 1, zdS,2(th) =

√
l2 + 1−

√
l2 + t2h (A.15)

describing the two parts of the dS brane intersecting the Poincare patch, see figure 2a The

induced metric on this brane is again of the FRW form (A.12) with

a(τh) = l sinh(τh/l) (A.16)

which is indeed the correct FRW parameterization of dS4.

To get a more intuitive understanding of these brane embeddings, we can always switch

back to standard Minkowski coordinates x and t on the brane. In particular, our FRW

time can be expressed in terms of these as

t2h = t2 − x2 (A.17)

where the sign ambiguity is resolved by noting that positive th corresponds to positive t

and negative th to negative t. It also shows clearly that the coordinate we use only cover

the t2 ≥ x2 part of Minkowski space.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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