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1 Introduction

Complex scalar fields furnishing a general representation of the electroweak gauge group
SU(2) x U(1) of the standard model (SM) received increased interest in recent years. For
instance, they can provide a viable dark matter candidate in so-called minimal dark-matter
models [1].

The renormalization group (RG) evolution of coupling constants is an invaluable tool
in phenomenological analyses [2]. It plays a particularly important role when interpreting
and comparing the results of experiments performed at widely different energy scales, such
as dark matter direct detection and production of dark matter at particle colliders. A
framework for consistent RG analysis for fermionic dark matter in the context of effective
field theories has been presented in ref. [3]. The first consistent and complete basis of
effective operators for scalar dark matter up to mass dimension six has been written down
in ref. [4]; however, the RG evolution has not yet been calculated.

For scalar dark matter it is possible to write down self interactions, as well as inter-
actions with the SM, at the renormalizable level — the so-called Higgs-portal dark mat-
ter [5-7]. To our knowledge, the first classification of the self interactions of scalar fields with
electroweak charges has been given in ref. [8]. In this work, we rederive the scalar potential
in a slightly different form that is well suited for the calculation of radiative corrections.

We then calculate the beta functions for all scalar couplings, as well as the new scalar
contributions to all SM couplings, at the two-loop level. To this end, we prove a set of
algebraic relations that allows to express all two-loop matrix elements in terms of tree-
level matrix elements of the basis operators in the scalar potential. While these algebraic



relations simply rely on the algebra of Clebsch-Gordan coefficients as well as SU(2) gauge
symmetry, many of them turn out to be quite non-trivial, and have not been derived before,
to the best of our knowledge. Among other results, we show how to express a product of
two SU(2) generators, contracted over their adjoint indices, in terms of Clebsch-Gordan
coefficients. The resulting relations can be used to manipulate general representations of
the SU(2) algebra in an algorithmic way.

Our results are valid for a scalar field furnishing an arbitrary irreducible representation
of SU(2) and for arbitrary hypercharge. While these results are known in principle [9, 10],
we present them in closed form and explicitly in terms of group invariants for the first
time. We believe that this form of the beta functions makes them more suitable for prac-
tical applications. Auxiliary files with our analytic results in computer-readable form are
available via a gitlab repository (see section 6).

As a cross check of our calculational setup, we also computed the two-loop beta function
for the SM Higgs, as well as the top, bottom, charm, and tau Yukawa couplings. We find a
result consistent with the SM beta function extracted from ref. [9], see ref. [11], if we take
into account the corrections pointed out in refs. [12, 13]. See also refs. [14-18] for recent
results at the three- and four-loop level.

Depending on the representation, the impact of the one- and two-loop contributions
to the running of the scalar as well as the SM couplings can be sizeable. We discuss a few
examples, focusing on a scalar septuplet (“minimal dark matter”) and the running of the
SM quartic Higgs and SU(2) gauge coupling.

This paper is organized as follows. In section 2 we define our setup and construct the
scalar potential. In section 3 we present our results for the beta functions. The required
algebraic relations are collected and proven in section 4. Section 5 contains numerical il-
lustrations of our results. We conclude in section 6. Supplementary material is presented
in two appendices. In appendix A we describe the various analytic checks that we per-
formed on our calculation, and derive explicit formal expressions for the beta functions. In
appendix B we provide all field and mass renormalization constants that are necessary in
intermediate steps of the calculation. For completeness, we also include all quadratic poles
of the coupling renormalization constants.

2 Construction of the operator basis

We consider a complex scalar field ¢ with mass M, which furnishes a (25,4 1)-dimensional
irreducible representation of the Standard Model SU(2) x U(1) gauge group, where
Jo=0,1/2,1,... is any integer or half integer. The Lagrangian for this model is given by

L, = (Dup)' Dl — M2plp —

1 1
TV = BB = V. (21)

The summation convention over Lorentz and adjoint gauge indices is in use here and in
the following. The covariant derivative acting on the scalar field is given by

. Y,
Dupr =Y (51@18“ — igaT W + Z;gl5k13u) @1 s (2.2)
l



with the corresponding field strength tensors
We, = 0,Wg — 0,Wi + goe®™WIWS, By =0,B, — 0,B,. (2.3)

Here, B, and Wy (with a = 1,2,3) are the U(1) and SU(2) gauge fields, respectively. The
74, are SU(2) generators in the (2j, 4+ 1)-dimensional representation, defined by

(71 +07) = O G F DU £1+1), (7) = n, (24)

with k,[ running over the values —j,,—j, + 1,...,7, — 1,J,, while Y, is the scalar
hypercharge.

We now derive the general form of the scalar potential V,,. Any Hermitian, renormal-
izable four-scalar operator has the general form

090 = Z SDISOZ()OTSOS/UZJ‘:;[{;S . (2.5)

irks

The form of the real coefficients vffks must be determined such that the operator O,
is invariant under the SU(2) gauge group (the U(1) invariance is immediately apparent).
Ignoring all quantum numbers that do not transform under SU(2), the operator coefficients
can be written as

Je

Uirks = <j503’r;j5073|v|jtpai;j50’k> (26)

where V' are the reduced matrix elements. Inserting two complete sets of states, we have

=3 Cjj (IM;1s)Cj 5, (I M'sik) (JM|V | M')

fw‘k’s
JJ MM’ , (2.7)
=D Crio(IMir9)Cij, (J M5 k)i
JJ" MM’

where Cj;/(JM;mm') are Clebsch-Gordan coefficients (we use the notation of ref. [19]).
Defining the composite field operator

87 =" nenCy s, (JM;mn), (2.8)

mn

eq. (2.5) becomes

0, =33 (o) @i uinr (2.9)

JJ MM’
Writing a general SU(2) transformation as D) = exp (i@“%(J)’“), where 7(/):¢ are here the
SU(2) generators in the 2J + 1-dimensional representation, gauge invariance requires

D\ & (I D\
0,4% X (#) o) (b)) it =0, @10
JJ' MM'NN'
Using the unitarity of the D matrices, this can be written as the condition
JJ!

it Dy = ZDMN NN - (2.11)
M/



By Schur’s Lemma, v is either zero or has the form

JJ 2 JJ
vniae = =07 e (2.12)
where )\EDJ) is a constant. We define a set of “Sigma matrices” as
27(”;L]7’)Z’M = Cjtpj(p(']M? mn) s (213)

(note that we regard the isospin j, of the scalar multiplet to be fixed in this work). We
then write the general potential as!

(7)
Volel = % > ‘ > omZiMen . (2.14)
J M mn

The symmetry properties of the Clebsch-Gordan coefficients imply the corresponding prop-
erties of the Sigma matrices,

2(J),SL _ (_1)J72j¢27(7{)7a ) (215)

mm 'm
This restricts the number of independent operators in the basis. Obviously, the coefficients
vffk s in eq. (2.5) can be chosen symmetric under exchange of i <+ k and r <+ s. Hence, the
only non-zero operators in our basis are those involving Sigma matrices that are symmetric
in their lower indices,
I A (2.16)
This immediately tells us that there are N, = floor(j, 4+ 1) operators in our basis. As a
related consequence, the sum over J in eq. (2.14) effectively runs only over even values for
integer j,, while for half-integer j, only terms with odd J contribute.
We illustrate this construction by the example of an electroweak doublet. The Sigma

matrices for j, = 1/2 are

1 (01 10 1 (01 (00
2(0%0:\@(_1 0); 2(1%1:(0 0), 2(1)’0:\&(1 0>, » ), 1:<0 1). (2.17)

The potential operator for J = 0 vanishes identically:
1/2

.« 0),0 1 2 _

0 = Z ©; SOrSOkSOsESk) SO0 = §|<P1/280—1/2 —p120-1/2] =0, (2.18)
tkrs=—1/2
and only the operator for J = 1 remains:
1/2 1
* * 1),
oW =S N grorpres nbe
ikrs=—1/2a=-1 (219)
4 4 2 2
= |e1ja]” + |o—12|” +2|01/2| |o-1/2|” = (0Tp)?.

This is equivalent to the fact that we can, employing the more standard definition of
operators, express (pfo%p)? in terms of (pfp)?, using the Fierz relation 05500 = 20u0k; —

0i;0k;. Here, oj; are the usual Pauli matrices.

1We assume the invariance of the Lagrangian under a global U(1) symmetry under which only the scalar
fields transform non-trivially, so that we do not introduce additional “exotic” operators for special values
of Y, (cf. ref. [8]).



3 Beta function for a scalar multiplet

In this section, we present the beta function of the full SM extended by a scalar ¢ furnishing
a representation (0, j,,Y,) under the SM SU(3). x SU(2)r, x U(1)y gauge group. The
Lagrangian we consider is given by

L=L,+Ly+Ly+ Ly + Lycp + Lportal (3.1)

where L, is given in eq. (2.1),

Locp = —ZGZ‘VGA’W (3.2)

is the gluonic QCD Lagrangian, and

Ly = Z QriiPQr i+ ZHR,kilDuR,k + Z dpkilDdR ) + ZILJ{UDLLJC + Z lriilDlR
k k K k k

(3.3)
are the kinetic terms for the SM fermions, where Q1 and Ly, denote the left-handed quark
and lepton doublets, and ug, dg, and £ the right-handed up-quark, down-quark, and
lepton fields. The sums run over the three fermion generations, k = 1,2, 3. Furthermore,

AH

Ly = (D,H)'D'"H + *H'H — T H (gtE)? (3.4)

is the Higgs doublet Lagrangian, and the Yukawa Lagrangian is given by

Ly == QpiY'Houpy =Y QpiYy'Hdpy— Y  LppY/ Hlpy+he., (3.5)
Kl Kl Kl
where H¢ = io9H™ is the charge-conjugated Higgs field. In this work, we neglect the
Yukawa couplings of all light fermions, keeping only the top, bottom, charm, and 7 Yukawas
Yt, Yb, Ye, and yr non-zero. This implies that we can assume the Yukawa matrices to be
diagonal and neglect CKM mixing. Finally, the Higgs-portal Lagrangian is given by

!/

)\
Loonr =~ (1) (HH) — "2 (pl7%) (B r"H). (36)

Here, 7% = 0% /2 in terms of the usual Pauli matrices. Note that the second term in eq. (3.6)
is absent in the case j, = 0.

The Lagrangian (3.1) is renormalized in the usual way by introducing field and coupling
renormalization constants. For instance, we express the unrenormalized scalar couplings
(denoted by the superscript “0”) in terms of renormalized couplings as

A0 = 2, = (1 + 52(1?,) + 5Z<2?]> +. ) 2D (3.7)

and similarly for all other couplings and fields. The superscripts (1) and (2) denote the one-
and two-loop contributions, respectively. The ellipsis stands for higher-order terms. We
extract the beta function in the MS scheme from the 1/e poles of the coupling counterterms,
as explained in appendix A. We employ dimensional regularization in d = 4 — 2¢ space-time
dimensions, and we can treat all particles as massless in our calculation.
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Figure 1. Feynman diagrams corresponding to the contributions from the scalar field ¢ to the
one-loop standard model beta function. Figure (a) shows the contribution to the gauge boson field
counterterms which must be subtracted when gauge bosons appear in external states in Green’s
functions. Figure (b) shows the ¢ loop contributing to the one-loop Higgs quartic coupling beta

function.
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Figure 2. Sample one-loop Feynman diagrams for the calculation of the quartic scalar coupling
and the Higgs-portal couplings.

We determine all renormalization constants by calculating the divergent parts of
Green’s functions with suitably chosen external states (sample Feynman diagrams are
shown in figures 1-4). In the calculation of the coupling counterterms, it is necessary
to subtract field counterterms corresponding to the external fields. For this reason, all
field renormalization constants are calculated in addition to the coupling renormalization
constants (the results are collected in appendix B).

In order to isolate the ultraviolet poles, we employ the infrared (IR) rearrangement
described in ref. [20], to which we refer for more details. In short, the method amounts
to an exact decomposition of all propagators in terms of propagators with a common IR
regulator mass, which we call Mra. Effectively, we introduce a common mass Miga for
the scalar, the gauge-boson, and the ghost fields,

1 1 _
Lira = §MI2RAW3WW + §M12RABMB“ — MEaplor — MEyalyusy . (3.8)
These masses get renormalized at higher orders, and we introduce corresponding mass

= Zy2M?). The explicit
results needed for our work are collected in appendix B. We explicitly verified that all our

counterterms Zygp, i, ¢ = W, B, p, in the usual way (]\4]5&‘re
results are independent of the regulator mass Mira, as it should be.

All O(10000) Feynman diagrams were calculated using self-written FORM [21] routines,
encoding the algorithm presented in ref. [22]. The Feynman diagrams were generated using
qgraf [23]. The SU(2) group algebra and renormalization was performed independently
by the two authors; the results are in complete agreement. We describe further analytic
checks of our calculation in appendix A.



The beta functions are defined as the logarithmic derivatives of the couplings with

respect to the renormalization scale,

Hap%i = By, -

They are given in terms of the coupling counterterms by

=9 Z kgk g“

(3.9)

(3.10)

for all couplings, denoted here collectively by ¢; = g1, 92, gs, /\557), ApH, /\fp 1 AH > Yty Ybs Yoo Yr-

Here, Z,, 1 is the residue of the 1/e pole of the counterterm and a; = 1 when g, is a gauge

or Yukawa coupling while ax = 2 when g; is a quartic scalar coupling. Expanding the beta

(3.11)

(3.12)
(3.13)
(3.14)
(3.15)
(3.16)

(3.17)

(3.18)

function by loop order as 8, = Bg(h.l) + ﬁg) + ..., we find for the one-loop contributions
3 [Y2 1 20
m__%N YD -
9= 1672 (12 Ue)+ 5+ ) -
3
9 (1 , 43 4
3 /4
1) _
55 = 162 <3ng—11> ’
2 2
W_ Y (1798 995 o o 9 3y;
By, 167T2< o 4 %9t 2 L3y + 5 +yr ),
2 2
(1) Yo f%f%fg 3 97
Yo 167‘(’2 < 12 4 gs+ Jr yc+ +y7— ’
2 2
) _ Ye (1797 995 ¢ 2 40 W2 oo, o
B 167r2< 12 4 TNt ’
2 2 2
W_ Y (1591 995 o2 50 o2 5Yr
b 16772< 1 1 +3y; +3y; +3y; + A
2 2 2 2 2
(1) 91 371_ 93 992 39195
BAH_167T2< y >+16 2( 9)\H>+167T2
1 i
— 5 (83U +3ue + 3y +yr) + 5 (37 43y +3y5 +u7)
2 2
3\2,  Aom A

D(je)+ =8 5DUe) T ().

+ 82 +64 2

2 2
1 _ 91 9v2  SApH 2 95 2 . 9 .
Bron = 16,2 [3911@, 5 (1+Y¢)] +16 [mggj(gg,)—m <2+6j(]@)

NoH (o2 a2 a2 2y SAENH | Mon
ZeH (34243243

B R O D A g T

2

A Aot 5~y (1) )

H .
+ =T (Go)+ —,
2T Ut 5 208 ()

(3.19)
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5&}) =20t (g ey 9o (2+6j(j@)>+ 9192Yw

eH 3272 ® 1672 272
N Nodn N dom
OH (5 2 2 2,2 ol pH”¢ 3.20
=+ ]2 (Syt +3yc+3yb +y7’)+ 16772 ]2 ( )
4 )\ZDH /)\(J)D(J) (jFJ)_Q.j(]‘so)) :
1672 7 v J(3o)D(jy)
2
W _ (XY 34, )2 : ) 70
B0 = 5 ) +52 (BLT(D=-27G0) "+ (T (D27 ()] =227 ()
»
LS~y 0\ () Nor . Now : (3.21)
T 2 NINPE (e, Dt g5 4 5065 (T (1) =29 () '

J1,J2

J
391 <4 39%*("))/2 39193

toon2e T T1gn2 Yo gn2

(T () =27 ()Y

Here and in the following, a prime on the summation sign indicates a restricted sum over
indices, defined by

2j¢ 2p—J
r 1+ (=1)%
Y=y (3.22)
J J=0

The sum effectively runs over even or odd values of J only, if the weak isospin j, of
the scalar multiplet is integer or half-integer, respectively. (For instance, for a SU(2)
septuplet with j, = 3 we have J = 0,2,4,6.) The group-theory functions are defined as
T (Je) = Jeljp + 1), D(j,) = 2j, + 1, and

Jl jtp jgo
K(J1,J2,J3) = D(J1)D(J2) § Jo J2 Jo ¢ (3.23)
j«p jgo J3
in terms of the Wigner 95 symbol [24] — see section 4 for more details. Moreover, ny = 3

denotes the number of SM fermion generations. Our one-loop results for the pure SM
contributions agree with those in ref. [11]. The scalar contribution to ﬁ!%) agrees with the
expression given in ref. [8]. The remaining results are new.

We note here that, at one-loop, the only beta functions which receive contributions
from the complex scalar are the gauge and quartic scalar couplings. The contributions
to the gauge coupling beta functions arise in our calculation from the gauge boson field
counterterms (figure 1a). In addition to SM terms, the Higgs quartic coupling beta function
gains two terms from diagrams with scalar loops, shown in figure 1b.

The beta functions for the Higgs-portal couplings and quartic scalar couplings are
subdivided into three classes: scalar only terms, mixed scalar-gauge terms, and gauge-only
terms. Sample diagrams of each of these classes are shown in figure 2. The Higgs-portal
coupling beta functions also receive contributions from Yukawa couplings, coming from the
field counterms for the external Higgs fields in the four-point Green’s functions.



4 \ .7 £ N
B/W . B/W " KN "
B/ Vi , ____’___t____)_____f___>___
\\‘ ///50 \\\ o ///
(a) (b)

Figure 3. Sample Feynman diagrams showing two-loop contributions from the scalar field ¢ to
gauge and Yukawa coupling beta functions. Figure (a) shows contributions to gauge coupling beta
functions from gauge boson self-energies as well as ¢ insertions to the three-point Green’s function
with a single external gauge boson. Here, 1 represents any fermion which couples to the gauge
fields. Figure (b) shows a diagram from the two-loop Higgs self-energy which contributes to the
Yukawa coupling beta functions.

In order to express these contributions in terms of the operators in the scalar poten-
tial (2.14), we rewrite all SU(2) generators appearing in the W-boson vertices in terms of
the Sigma matrices defined in eq. (2.13), and use completeness relations for the Clebsch-
Gordan coefficients to simplify the terms. A similar strategy is applied for the “mixed”
contributions involving both gauge and scalar interactions. The detailed relations that we
use are discussed in section 4. In several cases, particular care has to be taken, as the
sum over indices in the completeness relations runs over all possible values of the J spin
quantum number, while the local scalar interactions can only involve the restricted sums
over odd or even values. Gauge invariance ensures that the final result can be expressed in
terms of restricted sums only.

A comment on our treatment of 75 is in order. Diagrams containing fermion triangles
can contribute terms with an odd number of 5 matrices to the gauge-boson field coun-
terterm and gauge coupling counterterms. We took the corresponding contributions to the
gauge coupling beta functions from the literature [9, 11], and calculated only the addi-
tional scalar contributions at one- and two-loop (sample Feynman diagrams showing these
contributions are given in figure 3a). For all other (scalar and Yukawa) beta functions, we
performed the two-loop calculation including also the full set of SM particles. We verified
explicitly that, in our calculation, only traces with an even number of 5 matrices in closed
fermion loops appeared. According to common lore [25], we evaluated these traces using
naive anticommuting v5. We find the following two-loop results:
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By = Yj%j’xgo DEJJS [10*7 (;1()5 )(J ) _20(7(n)+T(D) +4oy(j¢)}
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3.49)
D(J (
A p A +4Y 2 A D).
7 D(]«p)
(Non)” A |
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Our results for the quartic Higgs self coupling are
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B2 = *%Yjp(ﬁp) - % - %ngv
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Figure 4. Sample Feynman diagrams which give contributions to quartic scalar couplings Ap,

ApH, /\;H, and )\EDJ) from ¢. These diagrams divide into four classes: zero (top left), one (top

right), two (bottom left), and three (bottom right) gauge boson insertions.

Our pure SM results agree with those in refs. [9, 11], apart from three terms which are
consistent with the corrections made in ref. [13]. All other analytic results are presented

here in closed form for the first time.2

For the two-loop calculation, we use the same strategy to express all SU(2) generators
in terms of Sigma matrices and to simplify the expressions using the relations given in
section 4. It is again possible to express all results in terms of the operators in the scalar
potential (2.14), as required by gauge invariance.

At two-loops, all beta functions receive contributions from scalar fields. In the Yukawa
beta functions, the only additional terms from scalar fields arise from the external Higgs
field counterterm (figure 3b). The Feynman diagrams required to extract the quartic scalar
coupling beta functions again split into different classes: those including zero, one, two, or
three internal gauge bosons. In figure 4, we give sample diagrams from each class which
give contributions to the quartic scalar coupling beta functions.

4 Group theory relations

To express all results in terms of matrix elements of our basis operators, and to check the
gauge-parameter independence and locality of our two-loop counterterms explicitly, we had
to use a number of algebraic relations. These relations arise from the gauge invariance of
the underlying theory as well as the properties of the Clebsch-Gordan coefficients, and are
collected and proven below. For clarity, the summation convention is suspended in this
section. All summations are indicated explicitly.

2As a cross check, we compared all our one- and two-loop beta functions with the results obtained using
the code PyRQTE3 [26] for the two cases j, =1, Y, =0 and j, =1, Y, = 1, and find complete agreement.
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To begin, we collect some orthogonality properties of the Sigma matrices that follow
directly from the corresponding standard properties of the Clebsch-Gordan coefficients:

szm SOMT_ g7 MM (4.1)
2J +1
MM 2T s (4.2)
Z krm 2jp+1
J),M
Zz MM ks G - (4.3)

The exchange of W gauge bosons introduces explicit SU(2) generators that need to
be rewritten in terms of Sigma matrices. Since the Clebsch-Gordan coefficients describe a
transformation between two complete sets of orthonormal state vectors, they are used to
rewrite the product of two SU(2) generators:

Z vTh = ZC S e (4.4)

where the coefficient C'(.J) is a function of J. The relation (4.4) is convenient since it can
be applied recursively. Consider, for instance, the product of four generators:

71l7lr mk7kn C(J (J) ME(J)’ME(J/)’ /25.}];)’ " (4.5)
zm Ik Ik
ab

JM J'M" 1k

After applying the orthogonality relations, this becomes a linear combination of the basis

> Z T Th Tk Thom = Z C(I? s M e (4.6)
ab

In fact, for a product of 2n generators eq. (4.4) implies

S (FHER L), (PR Z Cm i eDM (4

aiaz...an

operators,

Diagrams with multiple scalar couplings likewise need to be expressed in terms of the
basis operators. This is facilitated by the following “sum rule” for Sigma matrices:

> ot M R = N K (e J) SRR g
My Mo mn J3,M3

In the following, we give explicit expressions for C(J) and K(Ji,J2,J3). We then
derive further relations between these quantities that can be used to simplify the results of
our calculation. Our general strategy is to express all results in terms of our operator basis
and the group theory invariants J(j,) = j,(j, + 1), the eigenvalue of the SU(2) Casimir

operator,

Z it = J (J )ik (4.9)

and D(j,) = 2j, + 1, the dimension of the SU(2) multiplet representation with isospin j.
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We begin by showing

Jl jtp jso
K(Ji,J2,J3) = D(J1)D(J2)  Jo J2 Jo (4.10)
jcp jL,D JS

in terms of the Wigner 95 symbol [24]. Starting with eq. (4.8), we multiply both sides by
(J),M
E7’l

and sum over r, [, to obtain

Z Z Z(Jl Mlz(Jl Mlz(«fz) M2Z(J2) M2E( )M K(Jl,Jg,J)EEkJ)’M. (4.11)
M1,M2 mnrl

The Sigma matrices can be written in terms of the Wigner 3j symbols as [24]

257;77 — M / (]SO .790 > (412)

mm' —M

In this way, eq. (4.11) becomes

K(J1,Jo,J) (‘7;0 Je ) ST N (-1 M RED () D( )

My,M> mnrl

« jcp jgo Ji japjcp J1 (4‘13)
i m —M; r n —M;

> jcp jgo J2 jap jcp J2 jgo jap J
k n —Ms Il m —Ms r 1l =M |
Since My, Ms € 7, the factor of —1 disappears. We can also freely change —My, —Msy —

My, My since these indices are summed over. We also take M — —M on both sides. Now,
we use the symmetry properties of the 35 symbols

Jur g2 gz \ _ | J2 Js o1 — (1)t JiJ3 J2 (4.14)
mi me mg ma m3 mq mi mgz ma ‘

to rewrite

K(Jl,JQ,J) (.7(,0 .74,0 ) Z Z 2J1+2J2+8j*"D(J1>D<J2)

¢ My ,M2 mnrl
» J1 Jo Jo Jo J2 Jp (4.15)
My n r m My 1

v J1 jso jgo jap Jo jgo jso jgo J
My m i n My k r 1l M|’
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The Wigner 95 symbols are written in terms of the 35 symbols as [24]

. T
<J13 Jo J) JoJ2 Ji2

J3 Ja J3u
Mqg Moy M
13 Moy Ta Ton T
= > Jid2 e ) (s i s (4.16)
mi mz m3my mi1 m2 M12 ms3 1y M34

My M3y
o[ 9 Js s J2 Ja J2 Jiz Jza J
ma mg Mg ma my Moy My M3y M
Comparison of the last two equation yields eq. (4.10). Note that, as expected, K (Jy, J2, J3)

is symmetric in its first two indices.
Next, we show

W) = 37() = TGp) (117)

First, we contract eq. (4.4) with two Sigma matrices and use the orthogonality rela-
tion (4.1) to arrive at

~a ~a v(J),M(J),M
DW= 33 D A e (4.18)
a M irkl
We find C(J) by writing eq. (4.18) explicitly in terms of Clebsch-Gordan coefficients as

DCT) =D Y Cjj . (JM;mn)Cjj, (JM;m'n)
a M mnm/n’ (419)

x (jom| 79 | jom') (jon| 700 |jon') .

Noting that, by definition, 7¢)% are the spin-j,, generators, we introduce the notation
~a

n = (jom| FUe)a

T2, Jon), i.e. we label the generators with j, as well as a = 1,2, 3, and the
states by j, and their “magnetic” quantum numbers m,n,m,’n’ = —j,, ..., j,. Using the

symmetry relation of the Clebsch-Gordan coefficients
Cj;(JM;mn) = (=1)7t™ —jcjj(j, —nym,—M), (4.20)

eq. (4.19) becomes

D(‘]) jo—n—n'
D(jy) 2 2 (-1

a M mm/nn’

D(J)C(J) =

4.21

> <j<pm]7~'(j"’)’“ j(pm,> <j<pn|%(j¢)’a ‘jcpn,> ’

where we use m = M —n and m' = M — n/, as well as the fact that M is always integer,
to rewrite the phase factor. We also take —M — M using the symmetry of the sum over
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M. Now, we artificially regard each spin-j, state as belonging to the spin-j, subspace of
the Clebsch-Gordan decomposition of the tensor product of a spin-j, and a spin-.J state.
For instance, (jom| =), Cj, 1(jom;nN) (jon; JN| and analogous relations lead to

< '@m‘ ~(jLP)7a ‘] ml>

_ZZCJW (jominN)C;, 1 (jom'sn' N') (jon, JN|( ®1J+].J¢®T ) |jon’, JN').
nN n/N’

(4.22)
Hence, we find the explicit tensor decomposition for the generators
Flde) ZZC’M 7 (Gom; mM)C] 7(jpom; M) T(hff)
_ ) ) (4.23)
+ ZZCM Jomy; mM)C'jW](jwn;m]\f)TM]\7 .
MN ™
Inserting this identity into eq. (4.21) gives
D(J )C (J)
2 - "’( ) "’( )7
joonenl0e e
a nn'
—*zz S (i )G i ML
]¢J j<p7 n;m jng ]507 ni;m )TMM/T
m MM'nn/
ZZ 2]¢+n+n ~(Jso) a 7:(3%)
—-n, —n' ‘nn’
a nn/
/ ~ J
_ZZ Z 1)/ Cipip(J,=M;mn)Cjj, (J, —M's i )71(\41)\4'77(1]75)
a m MM'nn'
(4.24)

where we again use eq. (4.20) and rewrite the phase in the second term noting that
m=-n—M=-n'—M" and (—1)?/ = 1. We then use an identity analogous to (4.23),
namely,

%](\;[]])\}“ = Z Z Cj,j,(JM;m'm)C; ;. (JN; n'ﬁz)ﬁ(g}‘g/a

"2 (4.25)
+ Z Z C]¢]<P JM mm )Cjcp]w(JN mn )T(J;D)/ ,
to obtain
! o ne=le)a _ 1 o(D)a
Z Z Cjsza(JM’ mm )Cjwjap(‘]Nﬂ mn )Tm/n/ - ETMN ’ (426)
and so
D(J)C( 23<p+n+n ~(J<p) (]A,a) a
© R (4.27)
2J MM ~(J ~(J),
—52 D G ) R A YL v VB
a MM’
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A straightforward calculation using the explicit expressions for the spin-j, generators,
eq. (2.4), gives

(— 1)2J¢+n+n ~(Jp) 1 7~_(Jw) 1 = (- 1)23¢+n+n ~(Jp),2 7~.(J<p) 2

7TL —n’ ‘nn’ 7’!1 —n' ‘nn’

1 . ) . .
=1 [5721 n’+1(]<,0+n/+1)(]¥>_n/)_'_(sr%,n’fl(]ip_n/—i_l)(]kp_‘_n,)} )

( 1)2j¢+n+n 7~_(J<p) 3 ,7_(]@) 3 26nn’ ) (4.28)

-n, —n/'nn/

Comparing these to the analogous expressions

A = et
1 ) ) ) )
= 4 [52 n’+1(]4,0 +n' + 1)(] ) + 5721 n'—l(]cp —n' + 1)(]<p + n')] (4-29)
P =

we see that

3 S A A 5 S A = o+ D4 ). (40

a nn'

This yields the desired result (4.17).
In the following, we collect several sum rules involving the coefficient C(.J). The first is

Y (D) =0 (4.31)
J

It is derived by summing eq. (4.18) over J and using the orthogonality relations, to obtain
S CIDI) =D Fiibiudu =0, (4.32)
J a qrkl

where we use the fact that the generators are traceless. In practice, the interchange of
indices in the Sigma matrices gives rise to additional phase factors, hence we also need the
relation

Y (=170 (N)D(J) = D(jp)T (j) (4.33)

J

To prove this relation, we again sum eq. (4.18) over J, now taking into account the sym-
metry properties of the Clebsch-Gordan coefficients

Z( 1>J 2](‘00 ZZ i ThiOilOkr = ZZ TirTri = )j(JSO) : (434)

J a irkl
We note in passing that this relation can be used to calculate the “restricted” sum over J, as
1)7 -2

! 1 —
XJ: cp) =3 “2

J

CU)DW) = 5DGTGy). (439)
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A similar sum rule, quadratic in C(J), reads

To see this, we rewrite the left-hand side as

ZD(‘]> ZZ Z Tim mr%kn nZE(J) Z(J Z Z Tim szkn nk
J

ab JM irklmn ab imkn
(4.37)
Now, we use the SU(2) relation
~a ~b )D(]SO) ab

= 7(5 4.38
Z TimTmi 3 ( )

to find eq. (4.36). The analogous sum rule with phase factor reads
Y (=1)77HeD(N)CI)? = T(j)Dlip) (T () = 1) (4.39)

J

The proof proceeds similar to the above, except we must use the (anti-)symmetry of the
Clebsch-Gordan coefficients:

Z(_l)J_QjWZD Z Z mekan nz (440)
J ab tmkn
We then use the SU(2) algebra to re-write

E:E 2:2: E:E:baca~c
mekan m kaTkn n ; + e TimTmnTni

ab imkn ab imkn abc imn (441)
- j(jw)zp(jeo) - j(jgo)D(jcp) )

which gives the relation (4.39). Again, we use this to calculate the restricted sum over J, as

, _1\/—2j,
Y Do) => 1+(21)1>(J)C(J)2
. - (4.42)

— TGPl (TG DU) +3TG) —3).

Another pair of rules cubic in C(J) is necessary to reduce the algebra in diagrams
involving the SM Higgs. The first is given by

S DO = —W (4.43)

Rewriting the left-hand side and using the appopriate orthogonality relations for the
Clebsch-Gordan coefficients gives

Z D(J)C( Z Tr {Ta’l'b’]'c} [Ta’l'b’i'c] i (4.44)
J

abc
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The trace of three generators is expressed as

Tr 79777 = %(Tr {7 o] v |77 7)) = fTr 777 @)

where we make use of the definition of the totally symmetric tensor,

ae oy {70,701 7] (4.46)
which vanishes for SU(2). Next, we simply use the group algebra to find
Tr |: a~ bTC] — Zj(jﬂaép(]@) eabc . (447)

Squaring this expression and using
D erteette = 6 (4.48)
abc

gives the result in eq. (4.43). The second relation cubic in C(J) is

Y (D)TTHD)C(I)? = T(jp)Pip) (T () = 1) (T () — 2) (4.49)

J

As before, we re-write the left-hand side of this expression and use orthogonality relations
> (1) THeDC) = 3T [Frtrerashe) (4.50)
J abc

The product in the trace simplifies using the SU(2) algebra
Z Forbrere = Z <7‘a7'b7'a7'c + ZﬁcadTaTde) : (4.51)

Then, using
D = (T () — 1) (4.52)
the trace is reduced to
ST [ = T [TG,) (TGe) = 1D’ 1= TG) (TG - D] (453)
abc

which, when the trace is performed over the identity, gives eq. (4.49).
In order to derive the necessary algebraic relations involving the factor K, we first
prove the following useful relation:

i, _ DU
% ; Ezk rl Tk = 7G.)DG,) (4.54)

To derive this, we note that the only object in our basis with a single adjoint representation
index and two isospin-j, representation indices is the generator 7;%. (any other objects with
only these free indices can be reduced to this generator). Therefore, we make the ansatz

SN MM E = 7. (4.55)

M Kl
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Multiplying both sides by 7,
tion (4.54). Using this result, we now prove

7%, summing over a,i,7, and using eq. (4.18) gives the rela-

D(J2)C(J2)C(J3)
C(J1)K(J1, J2, J: , : 4.56
2 ORI T2 T3 = =500 ) (430
To this end, we consider the product
zaza (DM _ DI)CU)
ir ’mnz E 7_
GEm:n%: j(]g&)D(]@ Z M (457)
)
D(J)C(J) Z C(J J1 Mlz(Jl)Ml
j(]ip)p(]@ Jy My
making use of eqgs. (4.54) and (4.4). However, this is alternatively written as
S S =5 s s s g
a,mn M mn Jy,My,M
(4.58)
Z C Jl J1>J JQ) (J2) M2E(J2)
J1,J2,M2

Equating these expressions and using the orthogonality relations, the result (4.56) follows.
A further important relation incorporates the condition of gauge invariance:

D (=)o (14 (=1) 72 (=1) 2750 ) O (1) K (J, 01, J2) = (T (7)+C(])) 6772 | (4.59)
J1

All interaction vertices must be gauge-invariant. A scalar SU(2) spin-j, field multiplet
transforms as ¢; — ¢} = ¢; + d¢p; under an infinitesimal gauge transformation, where

0pi = ZZE TPk~ 5 Z TR + O(e%), (4.60)
ab lk
while .
Oy ==Y ic"Fiph — 5 D " TiTiph + O(€). (4.61)
ab,lk

Hence, we have the relation

. ~a (J),M (J),M ~a (J),M«(J),M
O—Z(T (). My LM g,

mi—mk rl rl

ml Im“~ik

which leads, upon contraction with a SU(2) generator, to

Iy Zz Mx().M

~aq ~ J),M (J - DM J),M (J),M
= Z (Faa S DM raze, S DM —raze DM R0,

n
Ilm,a,M

(4.63)

— 24 —



We use egs. (4.4) and (4.8) to rewrite this condition as

I ZE (), M s J)M Z Z ZC ( J)M (J)ME%),Mlzl(ih),Ml

1 MM1 ml
+ Zgrn/): Z(J)7 E%{rll)yMlzl(l‘jl)le

rl

_ E(.J)7M2gl)’ME(J1)’M1E(Jl)’Ml)

— Z (_1)J1—2j¢c(J1)K(J’ J17 JQ) |:(_ )J 2‘7502(']2) M2E(J2) M2 + Z( )M2E(J2) M2:|
J1,J2, M2

D) smDMear, (4.64)
M

Multiplying both sides by 3~ ;. J3) Ms 5 (73):Ms and summing over 7, k, 7, n yields eq. (4.59).
We now derive a few relat1ons involving K and two powers of C. The first is

Y (=) ()22 O () O () K (1, Jo, T') = (1) 722 C(I)(C () +1) | (4.65)
J1,J2

For a proof, consider the product of generators
~b ~a ~b b ~b ~
{Ta T }zr {Ta T }kl - 22( Tim mern nl +7 zm mernTsl> : (466)

Using SU(2) commutation relations and eq. (4.4), it is easy to see that this becomes

S {rA) {FA) =2 e o) +psPNEPM e
JM

ab

but it is also expressed as

22 Z ZC(J1)C(J2)

J1,J2 M1,Mz m,n
» <E(J1),M1E(JILMIE(JQ),MQE(&),MQ +E%1),M125;17;)7M12£;11]2€)7M22%2),M2>

4.68)
-9 Z C Jl M12(J1)M1 (
J1,M1
) Z Z(_1)J1+J2+J3—6j¢0(J1)C(J2) (J1, Ja, J3) %! (J3) M3E(J3)
J1,J2,J3 M3

Equating these two expressions, multiplying both sides by >,/ ZE,;]I)’M/E&{ M and sum-
ming over i, k,r,n yields eq. (4.65). A variant of this relation involving only one phase

factor reads

S ()T C(R)C(R)K (1, Ja, J5) = C(J3)(T (G) = 1) (4.69)
J1,J2
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To prove it, we perform the sum over J; using eq. (4.56) and the fact that K is symmetric
in its first two indices to find

> (1) THC(I)C(J2) K (i, Ta, J5)

J1,J2
) (4.70)
J1 2jp (Jl)C(Jl) C(J3) . C(J )(J( _
= - . - 3 J ) 1)7
Z I (Je)D () v
where in the last equality we used eq. (4.39). The relation without phase factors
.. .
> CUNC(R)K (1, T, Js) = 2.7 (jo)Plip) C(J3) (4.71)
J1,J2

is shown similar to the above, performing the sum over Jo and using eq. (4.36).
Finally, we prove the following symmetry relation for a contraction of two K factors:

S K (1, Jay J)K (Jay T3, J5) = Y K (1, Ja, Ja) K (Ja, o, J5) (4.72)
J4 J4

First, consider the sum
(J1).Ls J2),M 5~(J2),M 5~(J3),N 2(J3),N
Z Z Sim 25132) 5 =5 S (4.73)
imsl LM N

This simplifies to
SOSTS K (e, J) RN N (M g0 M

Js lm MN
(4.74)
= 3 S K (D o T K (Ja, T, J) S MR
Ja,Js M
However, eq. (4.73) also reduces in a different way
55K S s
is MN
(4.75)
=N ST K (N, Js, Ja)K (Ja, Jo, J5) S
Ja,Js M

Equating these two expressions gives the final result (4.72).

5 Numerics

In this section, we present numerical results for the running of the scalar and gauge cou-
plings. All the numerical inputs are taken from ref. [27], see table 1. We employ the
expressions given in ref. [28] to determine the initial conditions for the strong coupling
gs(Mz) = 1.1626, the top Yukawa coupling y;(Mz) = 0.9320, and the quartic Higgs cou-
pling Ay (Mz) = 0.5040. We determine g1 (Mz) and go(My) directly via the relation

sin2 g% (1)
ulst) 97 (1) + g3 (1) (51)
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Figure 5. One-loop running of scalar quartic couplings for j, = 3 with Y, = 0 (“Minimal Scalar
Dark Matter”). The dashed and dash-dotted lines denote the Higgs-portal couplings A,y and
)\:0 1+ respectively, while the solid lines denote the four scalar couplings /\50‘]), for J =0,2,4,6. The
running at one-loop exhibits a Landau pole around p = 10° GeV. Left panel: all initial conditions
are set to 0.5 at p = My. Right panel: vanishing initial conditions at u = M.

my(pole) = 172.4(7) GeV

my(myp) = 4.1870 03 GeV

me(me) = 1.27(2) GeV

m,; = 1.77686(12) GeV

M), = 125.10(14) GeV

My = 91.1876(21) GeV

a® (Mz)~! =127.952(9)

sin?0(Mz) = 0.23121(4)

as(Myz) = 0.1179(10)

Gr = 1.11663787(6) x 107° GeV 2

Table 1. Numerical input used to determine the initial conditions of the coupling constants. All
values are taken from ref. [27].

to find ¢g1(Mz) = 0.3574, g2(Mz) = 0.6517. To determine y,(Mz) = 0.0102 we used
m, = 1.77686(12) GeV, and the relations

i \/Qm‘r Gr— 1
yT - 9 F = ﬂv%w .

VEW
Note that Gr is RG invariant, and we neglect the QED running of m,. We obtain
ye(Mz) = 0.0036 and yp(Mz) = 0.0164 in the six-flavor theory by four-loop QCD run-
ning and decoupling of the corresponding quark masses and subsequent conversion using

(5.2)

an expression analogous to eq. (5.2). As we are only interested in the qualitative behaviour
of our results, we neglect uncertainties throughout. We solve the coupled system of RG
equations numerically, using the python package pywigxjpf [29] and the Mathematica code
found in ref. [30] for the numerical evaluation of the Wigner 9; symbols.

In figure 5 we show the one-loop running of all scalar couplings for j, = 3, with scalar
hypercharge Y, = 0. This case corresponds to the “minimal scalar dark matter” (MSDM)
scenario in ref. [31], amended by the two Higgs-portal couplings A,z and )\:0 - In the
left panel, we assumed an initial condition of \;(Mz) = 0.5 for all four scalar couplings
and the two Higgs-portal couplings. The high-energy behaviour is largely independent of
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Figure 6. Two-loop running of scalar quartic couplings for j, = 3 with Y, = 0. The notation is

the same as in figure 5.
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Figure 7. Running of the SU(2) gauge coupling g» at one-loop (left panel) and two-loop (right
panel), for Y, = 0. The black dashed line shows the SM result. The brown lines correspond to
different representations of the complex scalar. Here, we assumed vanishing initial conditions for
all non-SM scalar couplings at = M.

these assumptions; in fact, even if the couplings are all zero at the weak scale, large values
get generated via weak gauge-boson exchange (with the exception of )\fp 7). The couplings
quickly enter a non-perturbative regime and run into a Landau pole around 10° GeV.

Next, we study the impact of the two-loop corrections to the RG evolution of the
scalar couplings in the same scenario, see figure 6. Again, we display the results for the
two sets of initial conditions. Note that the Landau pole around i = 10° GeV is shifted to
the higher scale y = 107 GeV, with a plateau-like behaviour in between. However, these
features appear at non-perturbative values for the coupling constants and should therefore
not be taken too literally. The only significant change is that the “triplet” Higgs-portal
coupling )\fp g turns out to be asymptotically free.

Finally, we examine the impact of the new scalar degrees of freedom on the running of
the SM couplings. We keep assuming vanishing hypercharge for the new scalars, Y, = 0,
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Figure 8. Running of the quartic Higgs coupling Ay at one-loop (left panel) and two-loop (right
panel), for Y, = 0. The black dashed line shows the SM result. The brown lines correspond to
different representations of the complex scalar. Here, we assumed vanishing initial conditions for
all non-SM scalar couplings at = M.

and focus on the evolution on the gauge coupling gs first. The running of g5 is displayed
in figure 7. In the left panel, we show the one-loop evolution. We see that, at one-loop,
the SU(2) gauge coupling exhibits a Landau pole at around 10'® GeV for j, = 3 (MSDM),
while for higher representations the Landau pole appears close to or below the TeV scale.
This behaviour has been qualitatively described in, for instance, ref. [8]. Looking at the
two-loop results in the right panel in figure 7, we see that the Landau pole for j, = 3
is significantly shifted down to 107 GeV, while all other poles lie below the TeV scale.
Apparently, the SM extended by MSDM cannot be perturbative up to the Planck scale.

As our last example, we show the evolution of the quartic Higgs coupling in figure 8.
Again we display the one-loop results in the left panel, and the two-loop results in the right
panel. While the SM evolution of Ay (black dashed line) is only marginally affected by
the presence of an additional scalar multiplet with j, = 1, higher representations lead to
a drastic departure from this picture. For j, = 3 (MSDM), the Higgs quartic runs into a
Landau pole around 10° GeV, while the pole lies at the TeV scale for j, = 5. Interestingly,
the two-loop results show that this pole is in fact negative.

We relegate a more detailed discussion of the phenomenological implications of these
results to future work.

6 Conclusions

In this work, we constructed the form of the potential involving four-point interaction of
a complex scalar field furnishing a general irreducible representation of the electroweak
gauge group SU(2) x U(1), in terms of Clebsch-Gordan coefficients. We presented the beta
functions determining the RG evolution of the scalar as well as the SM couplings explicitly
in terms of SU(2) group invariants, up to the two-loop level. As an important ingredient of
our calculation we proved a set of algebraic relations that we used to express the results for
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the one- and two-loop Green’s functions in terms of our basis operators. For convenience,
auxiliary files containing the analytic results of the beta functions in the form of a python
module, as well as a mathematica package, are available at

https://gitlab.com/complex-beta-function .

Our results are completely general and might have applications in many fields. As one
example, we studied the RG flow of the self interactions of scalar dark matter in minimal
dark matter models [1], and the impact of the scalar fields on the RG evolution of the SM
couplings. Moreover, the beta functions will be a necessary ingredient in the RG analysis
of scalar dark matter interacting via higher dimension operators [3, 4].

A generalization of our results in this direction would be to consider the self interactions
of fermionic dark matter. This case is more complicated since the interactions start at mass
dimension six, and additional Fierz relations associated with the Dirac-matrix structure
restrict the form of all possible operators. This investigation is relegated to future work.

Acknowledgments

We thank Emmanuel Stamou and Jure Zupan for suggestions and comments on the
manuscript, and Jared Evans and Florian Hanisch for discussions. JB acknowledges sup-
port in part by DOE grant DE-SC0020047.

A Analytic checks of our calculation

As a check of our results we used a generalized R¢ gauge for the W, B and G fields and
verified that all beta functions are gauge-parameter independent. For completeness, we
provide here the gauge-fixing and ghost terms in our Lagrangian:

1 1 1 2
ap\2 w2 Ap
+ Oty 0 ufy + goe™ (0" ushy )W sy

+ 0, uG0" ug — gs fPC (M) GRuG .

ﬁgf + cghost = -
(A1)

As a second consistency check of our calculation, we verified that all two-loop coun-
terterms are local, i.e. they do not contain any explicit logarithms of the renormalization
scale p. As a third check of our calculation, we derive the explicit expressions of the beta
function in terms of the coupling counterterms (see below). The finiteness of the beta
function as € — 0 yields consistency relations that allow to calculate the quadratic pole of
the two-loop coupling renormalization constants in terms of the one-loop results. These
quadratic poles are in full agreement with the results of our calculcation. For completeness,
we provide the expressions for the quadratic poles in appendix B.

In the remainder of this section, we derive the relation between the beta function
and the residua of the coupling renormalization constants, as well as the relation between
the linear one-loop poles and the quadratic two-loop poles. As above, we denote the all
couplings generically by a coupling vector g;. The bare couplings g; o are expressed in terms
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of the renormalized couplings g; as g; 0 = u*“Zgy,g;, where a; = 1 if g; is a gauge or Yukawa,
coupling, and a; = 2 if g; is a scalar coupling (the coefficients a; are chosen such that all
couplings remain dimensionless in d space-time dimensions). Here, p is the renormalization
scale, and the Z,, are the coupling renormalization constants. We expand the Z,, by order
of pole as

_ le Zy1. (A.2)

and use standard methods [32] to express the beta function in terms of the derivatives of
the linear poles of the coupling counterterms:

0Z
Bi(gj, €) = —aigie + gi Z axgk 65’:1 (A.3)

The fact that the 1/e contributions to the beta function have to cancel leads to the following
consistency condition on the counterterms:

Z kgk Zakgkz i1

Further conditions can be derived by requiring the cancelation of the higher poles; however,

0Zg,,1 024,10

A4

they do not lead to additional constraints on the two-loop counterterms. The relation (A.4)
is made more explicit by expanding the counterterms by loop-order,

Zoy =14 6z =1+ éazﬁf} . (A.5)
n n l

Keeping only terms at two-loop order, and using the fact that the counterterms are poly-
nomials in the couplings, we arrive at

52(2) 52(1)
Zakgk 9i.2 ) =462\, Zakgk 9i.2 ) =202.)),. (A.6)
We then rewrite eq. (A.4) as
7
@ _lroomy2, 1 ) 000241)
52, = 2(52%1) + 2%:%5 T (A7)

We checked explicitly that this relation is satisfied for all our coupling counterterms.

B Renormalization constants

In this appendix we collect all renormalization constants that were needed in intermedi-
ate steps of the calculation, namely, all field and artificial-mass counterterms. The 1/e
pole parts of the coupling counterterms give rise to the beta functions, as explained in
appendix A, and are not repeated here. For completeness, however, we show the 1/¢? pole
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parts. The MS scheme is used throughout. For the one-loop field renormalization constants

we find
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At one-loop, the artificial-mass counterterms are

1 / D(J) 1 A H
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We find the following quadratic poles for the two-loop contributions to the scalar and gauge
coupling counterterms:
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Our results for the quartic Higgs self coupling are
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The full two-loop contributions to the fermion, scalar, and Higgs field renormalization
constants are
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For the two-loop contributions to the electroweak gauge-boson field renormalization con-
stants we consider only contributions of the scalar multiplet. We find
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