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1 Introduction

Complex scalar fields furnishing a general representation of the electroweak gauge group

SU(2) × U(1) of the standard model (SM) received increased interest in recent years. For

instance, they can provide a viable dark matter candidate in so-called minimal dark-matter

models [1].

The renormalization group (RG) evolution of coupling constants is an invaluable tool

in phenomenological analyses [2]. It plays a particularly important role when interpreting

and comparing the results of experiments performed at widely different energy scales, such

as dark matter direct detection and production of dark matter at particle colliders. A

framework for consistent RG analysis for fermionic dark matter in the context of effective

field theories has been presented in ref. [3]. The first consistent and complete basis of

effective operators for scalar dark matter up to mass dimension six has been written down

in ref. [4]; however, the RG evolution has not yet been calculated.

For scalar dark matter it is possible to write down self interactions, as well as inter-

actions with the SM, at the renormalizable level — the so-called Higgs-portal dark mat-

ter [5–7]. To our knowledge, the first classification of the self interactions of scalar fields with

electroweak charges has been given in ref. [8]. In this work, we rederive the scalar potential

in a slightly different form that is well suited for the calculation of radiative corrections.

We then calculate the beta functions for all scalar couplings, as well as the new scalar

contributions to all SM couplings, at the two-loop level. To this end, we prove a set of

algebraic relations that allows to express all two-loop matrix elements in terms of tree-

level matrix elements of the basis operators in the scalar potential. While these algebraic
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relations simply rely on the algebra of Clebsch-Gordan coefficients as well as SU(2) gauge

symmetry, many of them turn out to be quite non-trivial, and have not been derived before,

to the best of our knowledge. Among other results, we show how to express a product of

two SU(2) generators, contracted over their adjoint indices, in terms of Clebsch-Gordan

coefficients. The resulting relations can be used to manipulate general representations of

the SU(2) algebra in an algorithmic way.

Our results are valid for a scalar field furnishing an arbitrary irreducible representation

of SU(2) and for arbitrary hypercharge. While these results are known in principle [9, 10],

we present them in closed form and explicitly in terms of group invariants for the first

time. We believe that this form of the beta functions makes them more suitable for prac-

tical applications. Auxiliary files with our analytic results in computer-readable form are

available via a gitlab repository (see section 6).

As a cross check of our calculational setup, we also computed the two-loop beta function

for the SM Higgs, as well as the top, bottom, charm, and tau Yukawa couplings. We find a

result consistent with the SM beta function extracted from ref. [9], see ref. [11], if we take

into account the corrections pointed out in refs. [12, 13]. See also refs. [14–18] for recent

results at the three- and four-loop level.

Depending on the representation, the impact of the one- and two-loop contributions

to the running of the scalar as well as the SM couplings can be sizeable. We discuss a few

examples, focusing on a scalar septuplet (“minimal dark matter”) and the running of the

SM quartic Higgs and SU(2) gauge coupling.

This paper is organized as follows. In section 2 we define our setup and construct the

scalar potential. In section 3 we present our results for the beta functions. The required

algebraic relations are collected and proven in section 4. Section 5 contains numerical il-

lustrations of our results. We conclude in section 6. Supplementary material is presented

in two appendices. In appendix A we describe the various analytic checks that we per-

formed on our calculation, and derive explicit formal expressions for the beta functions. In

appendix B we provide all field and mass renormalization constants that are necessary in

intermediate steps of the calculation. For completeness, we also include all quadratic poles

of the coupling renormalization constants.

2 Construction of the operator basis

We consider a complex scalar field ϕ with mass Mϕ which furnishes a (2jϕ+1)-dimensional

irreducible representation of the Standard Model SU(2) × U(1) gauge group, where

jϕ = 0, 1/2, 1, . . . is any integer or half integer. The Lagrangian for this model is given by

Lϕ = (Dµϕ)†Dµϕ−M2
ϕϕ
†ϕ− 1

4
W a
µνW

aµν − 1

4
BµνB

µν − Vϕ . (2.1)

The summation convention over Lorentz and adjoint gauge indices is in use here and in

the following. The covariant derivative acting on the scalar field is given by

Dµϕk =
∑
l

(
δkl∂µ − ig2τ̃aklW a

µ + i
Yϕ
2
g1δklBµ

)
ϕl , (2.2)
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with the corresponding field strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν , Bµν = ∂µBν − ∂νBµ . (2.3)

Here, Bµ and W a
µ (with a = 1, 2, 3) are the U(1) and SU(2) gauge fields, respectively. The

τ̃akl are SU(2) generators in the (2jϕ + 1)-dimensional representation, defined by(
τ̃1 ± iτ̃2

)
kl

= δk,l±1

√
(jϕ ∓ l)(jϕ ± l + 1) ,

(
τ̃3
)
kl

= lδk,l , (2.4)

with k, l running over the values −jϕ,−jϕ + 1, . . . , jϕ − 1, jϕ, while Yϕ is the scalar

hypercharge.

We now derive the general form of the scalar potential Vϕ. Any Hermitian, renormal-

izable four-scalar operator has the general form

Oϕ =
∑
irks

ϕ∗iϕ
∗
kϕrϕsv

jϕ
irks . (2.5)

The form of the real coefficients v
jϕ
irks must be determined such that the operator Oϕ

is invariant under the SU(2) gauge group (the U(1) invariance is immediately apparent).

Ignoring all quantum numbers that do not transform under SU(2), the operator coefficients

can be written as

v
jϕ
irks ≡ 〈jϕ, r; jϕ, s|V |jϕ, i; jϕ, k〉 (2.6)

where V are the reduced matrix elements. Inserting two complete sets of states, we have

v
jϕ
irks =

∑
JJ ′

∑
MM ′

Cjϕjϕ(JM ; rs)Cjϕjϕ(J ′M ′; ik) 〈JM |V
∣∣J ′M ′〉

≡
∑
JJ ′

∑
MM ′

Cjϕjϕ(JM ; rs)Cjϕjϕ(J ′M ′; ik)vJJ
′

MM ′ ,
(2.7)

where Cjj′(JM ;mm′) are Clebsch-Gordan coefficients (we use the notation of ref. [19]).

Defining the composite field operator

Φ
(J)
M ≡

∑
mn

ϕmϕnCjϕjϕ(JM ;mn) , (2.8)

eq. (2.5) becomes

Oϕ =
∑
JJ ′

∑
MM ′

(
Φ
(J)
M

)∗
Φ
(J ′)
M ′ v

JJ ′
MM ′ . (2.9)

Writing a general SU(2) transformation as D(J) = exp
(
iθaτ̃ (J),a

)
, where τ̃ (J),a are here the

SU(2) generators in the 2J + 1-dimensional representation, gauge invariance requires

Oϕ →
∑
JJ ′

∑
MM ′NN ′

(
Φ
(J)
N

)∗
Φ
(J ′)
N ′

(
D

(J)
MN

)∗
D

(J ′)
M ′N ′v

JJ ′
MM ′ = Oϕ . (2.10)

Using the unitarity of the D matrices, this can be written as the condition∑
M ′

vJJ
′

MM ′D
(J ′)
M ′N ′ =

∑
N

D
(J)
MNv

JJ ′
NN ′ . (2.11)
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By Schur’s Lemma, v is either zero or has the form

vJJ
′

MM ′ =
λ
(J)
ϕ

4
δJJ

′
δMM ′ , (2.12)

where λ
(J)
ϕ is a constant. We define a set of “Sigma matrices” as

Σ(J),M
mn ≡ Cjϕjϕ(JM,mn) , (2.13)

(note that we regard the isospin jϕ of the scalar multiplet to be fixed in this work). We

then write the general potential as1

Vϕ[ϕ] =
∑
J

λ
(J)
ϕ

4

∑
M

∣∣∣∑
mn

ϕmΣ(J),M
mn ϕn

∣∣∣2 . (2.14)

The symmetry properties of the Clebsch-Gordan coefficients imply the corresponding prop-

erties of the Sigma matrices,

Σ
(J),a
mm′ = (−1)J−2jϕΣ

(J),a
m′m . (2.15)

This restricts the number of independent operators in the basis. Obviously, the coefficients

v
jϕ
irks in eq. (2.5) can be chosen symmetric under exchange of i↔ k and r ↔ s. Hence, the

only non-zero operators in our basis are those involving Sigma matrices that are symmetric

in their lower indices,

Σ
(J)a
mm′ = Σ

(J)a
m′m . (2.16)

This immediately tells us that there are Nϕ ≡ floor(jϕ + 1) operators in our basis. As a

related consequence, the sum over J in eq. (2.14) effectively runs only over even values for

integer jϕ, while for half-integer jϕ only terms with odd J contribute.

We illustrate this construction by the example of an electroweak doublet. The Sigma

matrices for jϕ = 1/2 are

Σ(0),0 =
1√
2

(
0 1

−1 0

)
; Σ(1),1 =

(
1 0

0 0

)
, Σ(1),0 =

1√
2

(
0 1

1 0

)
, Σ(1),−1 =

(
0 0

0 1

)
. (2.17)

The potential operator for J = 0 vanishes identically:

O(0) =

1/2∑
ikrs=−1/2

ϕ∗iϕrϕ
∗
kϕsΣ

(0),0
ik Σ(0),0

rs =
1

2

∣∣ϕ1/2ϕ−1/2 − ϕ1/2ϕ−1/2
∣∣2 ≡ 0 , (2.18)

and only the operator for J = 1 remains:

O(1) =

1/2∑
ikrs=−1/2

1∑
a=−1

ϕ∗iϕrϕ
∗
kϕsΣ

(1),a
ik Σ(1),a

rs

=
∣∣ϕ1/2

∣∣4 +
∣∣ϕ−1/2∣∣4 + 2

∣∣ϕ1/2

∣∣2∣∣ϕ−1/2∣∣2 ≡ (ϕ†ϕ)2 .

(2.19)

This is equivalent to the fact that we can, employing the more standard definition of

operators, express (ϕ†σaϕ)2 in terms of (ϕ†ϕ)2, using the Fierz relation σaijσ
a
kl = 2δilδkj −

δijδkl. Here, σaij are the usual Pauli matrices.

1We assume the invariance of the Lagrangian under a global U(1) symmetry under which only the scalar

fields transform non-trivially, so that we do not introduce additional “exotic” operators for special values

of Yϕ (cf. ref. [8]).

– 4 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
8

3 Beta function for a scalar multiplet

In this section, we present the beta function of the full SM extended by a scalar ϕ furnishing

a representation (0, jϕ, Yϕ) under the SM SU(3)c × SU(2)L × U(1)Y gauge group. The

Lagrangian we consider is given by

L = Lϕ + Lψ + LH + LY + LQCD + Lportal (3.1)

where Lϕ is given in eq. (2.1),

LQCD = −1

4
GAµνG

Aµν (3.2)

is the gluonic QCD Lagrangian, and

Lψ =
∑
k

QL,ki /DQL,k +
∑
k

uR,ki /DuR,k +
∑
k

dR,ki /DdR,k +
∑
k

LL,ki /DLL,k +
∑
k

`R,ii /D`R,k

(3.3)

are the kinetic terms for the SM fermions, where QL and LL denote the left-handed quark

and lepton doublets, and uR, dR, and `R the right-handed up-quark, down-quark, and

lepton fields. The sums run over the three fermion generations, k = 1, 2, 3. Furthermore,

LH = (DµH)†DµH + µ2H†H − λH
4

(
H†H

)2
(3.4)

is the Higgs doublet Lagrangian, and the Yukawa Lagrangian is given by

LY = −
∑
kl

QL,kY
kl
u H

cuR,l −
∑
kl

QL,kY
kl
d HdR,l −

∑
kl

LL,kY
kl
` H`R,l + h.c. , (3.5)

where Hc = iσ2H
∗ is the charge-conjugated Higgs field. In this work, we neglect the

Yukawa couplings of all light fermions, keeping only the top, bottom, charm, and τ Yukawas

yt, yb, yc, and yτ non-zero. This implies that we can assume the Yukawa matrices to be

diagonal and neglect CKM mixing. Finally, the Higgs-portal Lagrangian is given by

Lportal = −
λϕH

4

(
ϕ†ϕ

)(
H†H

)
−
λ′ϕH

4

(
ϕ†τ̃aϕ

)(
H†τaH

)
. (3.6)

Here, τa ≡ σa/2 in terms of the usual Pauli matrices. Note that the second term in eq. (3.6)

is absent in the case jϕ = 0.

The Lagrangian (3.1) is renormalized in the usual way by introducing field and coupling

renormalization constants. For instance, we express the unrenormalized scalar couplings

(denoted by the superscript “0”) in terms of renormalized couplings as

λ(J),0ϕ = Z
λ
(J)
ϕ
λ(J)ϕ =

(
1 + δZ

(1)

λ
(J)
ϕ

+ δZ
(2)

λ
(J)
ϕ

+ . . .

)
λ(J)ϕ , (3.7)

and similarly for all other couplings and fields. The superscripts (1) and (2) denote the one-

and two-loop contributions, respectively. The ellipsis stands for higher-order terms. We

extract the beta function in the MS scheme from the 1/ε poles of the coupling counterterms,

as explained in appendix A. We employ dimensional regularization in d = 4−2ε space-time

dimensions, and we can treat all particles as massless in our calculation.
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(a) (b)

Figure 1. Feynman diagrams corresponding to the contributions from the scalar field ϕ to the

one-loop standard model beta function. Figure (a) shows the contribution to the gauge boson field

counterterms which must be subtracted when gauge bosons appear in external states in Green’s

functions. Figure (b) shows the ϕ loop contributing to the one-loop Higgs quartic coupling beta

function.

Figure 2. Sample one-loop Feynman diagrams for the calculation of the quartic scalar coupling

and the Higgs-portal couplings.

We determine all renormalization constants by calculating the divergent parts of

Green’s functions with suitably chosen external states (sample Feynman diagrams are

shown in figures 1–4). In the calculation of the coupling counterterms, it is necessary

to subtract field counterterms corresponding to the external fields. For this reason, all

field renormalization constants are calculated in addition to the coupling renormalization

constants (the results are collected in appendix B).

In order to isolate the ultraviolet poles, we employ the infrared (IR) rearrangement

described in ref. [20], to which we refer for more details. In short, the method amounts

to an exact decomposition of all propagators in terms of propagators with a common IR

regulator mass, which we call MIRA. Effectively, we introduce a common mass MIRA for

the scalar, the gauge-boson, and the ghost fields,

LIRA =
1

2
M2

IRAW
a
µW

aµ +
1

2
M2

IRABµB
µ −M2

IRAϕ
†
iϕi −M

2
IRAū

a
Wu

a
W . (3.8)

These masses get renormalized at higher orders, and we introduce corresponding mass

counterterms ZMIRA,i, i = W,B,ϕ, in the usual way (M2
bare = ZM2M2). The explicit

results needed for our work are collected in appendix B. We explicitly verified that all our

results are independent of the regulator mass MIRA, as it should be.

All O(10 000) Feynman diagrams were calculated using self-written FORM [21] routines,

encoding the algorithm presented in ref. [22]. The Feynman diagrams were generated using

qgraf [23]. The SU(2) group algebra and renormalization was performed independently

by the two authors; the results are in complete agreement. We describe further analytic

checks of our calculation in appendix A.
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The beta functions are defined as the logarithmic derivatives of the couplings with

respect to the renormalization scale,

µ
d

dµ
gi = βgi . (3.9)

They are given in terms of the coupling counterterms by

βgi = gi
∑
k

akgk
∂Zgi,1
∂gk

(3.10)

for all couplings, denoted here collectively by gi = g1, g2, gs, λ
(J)
ϕ , λϕH , λ

′
ϕH , λH , yt, yb, yc, yτ .

Here, Zgi,1 is the residue of the 1/ε pole of the counterterm and ak = 1 when gk is a gauge

or Yukawa coupling while ak = 2 when gk is a quartic scalar coupling. Expanding the beta

function by loop order as βgi = β
(1)
gi + β

(2)
gi + . . ., we find for the one-loop contributions

β(1)g1 =
g31

16π2

(
Y 2
ϕ

12
D(jϕ)+

1

6
+

20

9
ng

)
, (3.11)

β(1)g2 =
g32

16π2

(
1

9
J (jϕ)D(jϕ)− 43

6
+

4

3
ng

)
, (3.12)

β(1)gs =
g3s

16π2

(
4

3
ng−11

)
, (3.13)

β(1)yt =
yt

16π2

(
−17g21

12
− 9g22

4
−8g2s+

9y2t
2

+3y2c+
3y2b
2

+y2τ

)
, (3.14)

β(1)yb
=

yb
16π2

(
−5g21

12
− 9g22

4
−8g2s+

3y2t
2

+3y2c+
9y2b
2

+y2τ

)
, (3.15)

β(1)yc =
yc

16π2

(
−17g21

12
− 9g22

4
−8g2s+3y2t +

9y2c
2

+3y2b+y2τ

)
, (3.16)

β(1)yτ =
yτ

16π2

(
−15g21

4
− 9g22

4
+3y2t +3y2c+3y2b+

5y2τ
2

)
, (3.17)

β
(1)
λH

=
g21

16π2

(
3g21
2
−3λH

)
+

g22
16π2

(
9g22
2
−9λH

)
+

3g21g
2
2

16π2

− 1

2π2
(
3y4t +3y4c+3y4b+y4τ

)
+
λH
4π2

(
3y2t +3y2c+3y2b+y2τ

)
+

3λ2H
8π2

+
λ2ϕH
64π2

D(jϕ)+
λ′2ϕH

768π2
D(jϕ)J (jϕ) ,

(3.18)

β
(1)
λϕH

=
g21

16π2

[
3g21Y

2
ϕ−

3λϕH
2

(
1+Y 2

ϕ

)]
+

g22
16π2

[
12g22J (jϕ)−λϕH

(
9

2
+6J (jϕ)

)]
+
λϕH
8π2

(
3y2t +3y2c+3y2b+y2τ

)
+

3λHλϕH
16π2

+
λ2ϕH
16π2

+
λ′2ϕH
64π2

J (jϕ)+
λϕH
8π2

∑
J

′
λ(J)ϕ

D(J)

D(jϕ)
,

(3.19)
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β
(1)
λ′ϕH

=−
3g21λ

′
ϕH

32π2
(
1+Y 2

ϕ

)
−
g22λ
′
ϕH

16π2

(
9

2
+6J (jϕ)

)
+

3g21g
2
2

2π2
Yϕ

+
λ′ϕH
8π2

(
3y2t +3y2c+3y2b+y2τ

)
+
λ′ϕHλH

16π2
+
λ′ϕHλϕH

8π2

+
λ′ϕH
16π2

∑
J

′
λ(J)ϕ

D(J)
(
J (J)−2J (jϕ)

)
J (jϕ)D(jϕ)

,

(3.20)

β
(1)

λ
(J)
ϕ

=

(
λ
(J)
ϕ

4π

)2

+
3g22
8π2

(
g22
[(
J (J)−2J (jϕ)

)2
+
(
J (J)−2J (jϕ)

)]
−2λ(J)ϕ J (jϕ)

)
+

1

4π2

∑
J1,J2

′
λ(J1)ϕ λ(J2)ϕ K (J1,J2,J)+

λ2ϕH
32π2

+
λ′2ϕH

256π2
(
J (J)−2J (jϕ)

)
+

3g41
32π2

Y 4
ϕ−

3g21λ
(J)
ϕ

16π2
Y 2
ϕ +

3g21g
2
2

8π2
(
J (J)−2J (jϕ)

)
Y 2
ϕ .

(3.21)

Here and in the following, a prime on the summation sign indicates a restricted sum over

indices, defined by ∑
J

′
. . . ≡

2jϕ∑
J=0

1 + (−1)2jϕ−J

2
. . . . (3.22)

The sum effectively runs over even or odd values of J only, if the weak isospin jϕ of

the scalar multiplet is integer or half-integer, respectively. (For instance, for a SU(2)

septuplet with jϕ = 3 we have J = 0, 2, 4, 6.) The group-theory functions are defined as

J (jϕ) ≡ jϕ(jϕ + 1), D(jϕ) ≡ 2jϕ + 1, and

K(J1, J2, J3) ≡ D(J1)D(J2)


J1 jϕ jϕ
jϕ J2 jϕ
jϕ jϕ J3

 , (3.23)

in terms of the Wigner 9j symbol [24] — see section 4 for more details. Moreover, ng = 3

denotes the number of SM fermion generations. Our one-loop results for the pure SM

contributions agree with those in ref. [11]. The scalar contribution to β
(1)
g2 agrees with the

expression given in ref. [8]. The remaining results are new.

We note here that, at one-loop, the only beta functions which receive contributions

from the complex scalar are the gauge and quartic scalar couplings. The contributions

to the gauge coupling beta functions arise in our calculation from the gauge boson field

counterterms (figure 1a). In addition to SM terms, the Higgs quartic coupling beta function

gains two terms from diagrams with scalar loops, shown in figure 1b.

The beta functions for the Higgs-portal couplings and quartic scalar couplings are

subdivided into three classes: scalar only terms, mixed scalar-gauge terms, and gauge-only

terms. Sample diagrams of each of these classes are shown in figure 2. The Higgs-portal

coupling beta functions also receive contributions from Yukawa couplings, coming from the

field counterms for the external Higgs fields in the four-point Green’s functions.

– 8 –
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(a) (b)

Figure 3. Sample Feynman diagrams showing two-loop contributions from the scalar field ϕ to

gauge and Yukawa coupling beta functions. Figure (a) shows contributions to gauge coupling beta

functions from gauge boson self-energies as well as ϕ insertions to the three-point Green’s function

with a single external gauge boson. Here, ψ represents any fermion which couples to the gauge

fields. Figure (b) shows a diagram from the two-loop Higgs self-energy which contributes to the

Yukawa coupling beta functions.

In order to express these contributions in terms of the operators in the scalar poten-

tial (2.14), we rewrite all SU(2) generators appearing in the W -boson vertices in terms of

the Sigma matrices defined in eq. (2.13), and use completeness relations for the Clebsch-

Gordan coefficients to simplify the terms. A similar strategy is applied for the “mixed”

contributions involving both gauge and scalar interactions. The detailed relations that we

use are discussed in section 4. In several cases, particular care has to be taken, as the

sum over indices in the completeness relations runs over all possible values of the J spin

quantum number, while the local scalar interactions can only involve the restricted sums

over odd or even values. Gauge invariance ensures that the final result can be expressed in

terms of restricted sums only.

A comment on our treatment of γ5 is in order. Diagrams containing fermion triangles

can contribute terms with an odd number of γ5 matrices to the gauge-boson field coun-

terterm and gauge coupling counterterms. We took the corresponding contributions to the

gauge coupling beta functions from the literature [9, 11], and calculated only the addi-

tional scalar contributions at one- and two-loop (sample Feynman diagrams showing these

contributions are given in figure 3a). For all other (scalar and Yukawa) beta functions, we

performed the two-loop calculation including also the full set of SM particles. We verified

explicitly that, in our calculation, only traces with an even number of γ5 matrices in closed

fermion loops appeared. According to common lore [25], we evaluated these traces using

naive anticommuting γ5. We find the following two-loop results:

β(2)g1 =
g51

(16π2)2

(
Y 4
ϕ

4
D(jϕ)+

95

27
ng+

1

2

)
+

g31g
2
2

(16π2)2

(
Y 2
ϕD(jϕ)J (jϕ)+ng+

3

2

)
+

g31g
2
s

(16π2)2
44

9
ng

− g31
(16π2)2

(
17

6

(
y2t +y2c

)
+

5

6
y2b+

5

2
y2τ

)
,

(3.24)
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J
H
E
P
0
9
(
2
0
2
0
)
1
5
8

β(2)g2 =
g52

(16π2)2

(
4

3
D(jϕ)J (jϕ)2+

4

9
D(jϕ)J (jϕ)− 136

3
+

49

3
ng+

13

6

)
+

g21g
3
2

(16π2)2

(
Y 2
ϕ

3
D(jϕ)J (jϕ)+

1

3
ng+

1

2

)
+

g2sg
3
2

(16π2)2
4ng

− g32
(16π2)2

(
3

2

(
y2t +y2c+y2b

)
+

1

2
y2τ

)
,

(3.25)

β(2)gs =
g5s

(16π2)2

(
76

3
ng−102

)
+

g21g
3
s

(16π2)2
11

18
ng+

g22g
3
s

(16π2)2
3

2
ng

−2
g3s

(16π2)2
(
y2t +y2c+y2b

)
,

(3.26)

β(2)yt =
ytg

4
1

(16π2)2

(
1

8
+

145

81
ng+

5

27
D(jϕ)Y 2

ϕ

)
+

ytg
4
2

(16π2)2

(
ng+

1

3
J (jϕ)D(jϕ)− 35

4

)
− 3

4

ytg
2
1g

2
2

(16π2)2

+
ytg

4
s

(16π2)2

(
80

9
ng−

404

3

)
+

ytg
2
1

(16π2)2

(
131

16
y2t +

7

48
y2b+

85

24
y2c+

25

8
y2τ

)
+

19

9

ytg
2
1g

2
s

(16π2)2

+
ytg

2
2

(16π2)2

(
225

16
y2t +

99

16
y2b+

45

8
y2c+

15

8
y2τ

)
+9

ytg
2
2g

2
s

(16π2)2

+
ytg

2
s

(16π2)2

(
36y2t +4y2b+20y2c

)
− y3t

(16π2)2

(
12y2t +

11

4
y2b+

27

4
y2c+

9

4
y2τ+3λH

)
+

yt
(16π2)2

(
1

32
D(jϕ)λ2ϕH+

1

128
J (jϕ)D(jϕ)

(
λ′ϕH

)2
+

3

8
λ2H

)
− yt

(16π2)2

(
1

4
y4b+

27

4
y4c+

9

4
y4τ−

15

4
y2by

2
c−

5

4
y2by

2
τ

)
,

(3.27)

β(2)yb
=− ybg

4
1

(16π2)2

(
29

72
+

5

81
ng−

7

216
D(jϕ)Y 2

ϕ

)
+

ybg
4
2

(16π2)2

(
ng+

1

3
J (jϕ)D(jϕ)− 35

4

)
− 9

4

ybg
2
1g

2
2

(16π2)2

+
ybg

4
s

(16π2)2

(
80

9
ng−

404

3

)
+

ybg
2
1

(16π2)2

(
91

48
y2t +

79

16
y2b+

85

24
y2c+

25

8
y2τ

)
+

31

9

ybg
2
1g

2
s

(16π2)2

+
ybg

2
2

(16π2)2

(
99

16
y2t +

225

16
y2b+

45

8
y2c+

15

8
y2τ

)
+9

ybg
2
2g

2
s

(16π2)2

+
ybg

2
s

(16π2)2

(
4y2t +36y2b+20y2c

)
−

y3b
(16π2)2

(
11

4
y2t +12y2b+

27

4
y2c+

9

4
y2τ+3λH

)
+

yb
(16π2)2

(
1

32
D(jϕ)λ2ϕH+

1

128
J (jϕ)D(jϕ)

(
λ′ϕH

)2
+

3

8
λ2H

)
− yb

(16π2)2

(
1

4
y4t +

27

4
y4c+

9

4
y4τ−

15

4
y2t y

2
c−

5

4
y2t y

2
τ

)
,

(3.28)

– 10 –



J
H
E
P
0
9
(
2
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0
)
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β(2)yc =
ycg

4
1

(16π2)2

(
1

8
+

145

81
ng+

5

27
D(jϕ)Y 2

ϕ

)
+

ycg
4
2

(16π2)2

(
ng+

1

3
J (jϕ)D(jϕ)− 35

4

)
− 3

4

ycg
2
1g

2
2

(16π2)2

+
ycg

4
s

(16π2)2

(
80

9
ng−

404

3

)
+

ycg
2
1

(16π2)2

(
85

24
y2t +

25

24
y2b+

131

16
y2c+

25

8
y2τ

)
+

19

9

ycg
2
1g

2
s

(16π2)2

+
ycg

2
2

(16π2)2

(
45

8
y2t +

45

8
y2b+

225

16
y2c+

15

8
y2τ

)
+9

ycg
2
2g

2
s

(16π2)2

+
ycg

2
s

(16π2)2

(
20y2t +20y2b+36y2c

)
− y3c

(16π2)2

(
27

4
y2t +

27

4
y2b+12y2c+

9

4
y2τ+3λH

)
+

yc
(16π2)2

(
1

32
D(jϕ)λ2ϕH+

1

128
J (jϕ)D(jϕ)

(
λ′ϕH

)2
+

3

8
λ2H

)
− yc

(16π2)2

(
27

4
y4t +

27

4
y4b+

9

4
y4τ−

3

2
y2t y

2
b

)
,

(3.29)

β(2)yτ =
yτg

4
1

(16π2)2

(
17

24
+

55

9
ng+

13

24
D(jϕ)Y 2

ϕ

)
+

yτg
4
2

(16π2)2

(
ng+

1

3
J (jϕ)D(jϕ)− 35

4

)
+

9

4

yτg
2
1g

2
2

(16π2)2

+
yτg

2
1

(16π2)2

(
85

24
y2t +

25

24
y2b+

85

24
y2c+

179

16
y2τ

)
+

yτg
2
2

(16π2)2

(
45

8
y2t +

45

8
y2b+

45

8
y2c+

165

16
y2τ

)
+

yτg
2
s

(16π2)2

(
20y2t +20y2b+20y2c

)
− y3τ

(16π2)2

(
27

4
y2t +

27

4
y2b+

27

4
y2c+3y2τ+3λH

)
+

yτ
(16π2)2

(
1

32
D(jϕ)λ2ϕH+

1

128
J (jϕ)D(jϕ)

(
λ′ϕH

)2
+

3

8
λ2H

)
− yτ

(16π2)2

(
27

4
y4t +

27

4
y4b+

27

4
y4c−

3

2
y2t y

2
b

)
,

(3.30)

β
(2)
k =

1

(16π2)2

(
g61Bk,60+g41g

2
2Bk,42+g22g

4
2Bk,24+g62Bk,06+Bk,00

+g41Bk,40+g21g
2
2Bk,22+g42Bk,04+g21Bk,20+g22Bk,02

)
,

(3.31)

where the coefficients are given, for k = λ
(J)
ϕ , λϕH , λ

′
ϕH , λH , by

B
(J)
ϕ,60 =−

Y 6
ϕ

4

(
7

3
D(jϕ)+15

)
−Y 4

ϕ

(
7

6
+

80

9
ng

)
, (3.32)

B
(J)
ϕ,42 =Y 4

ϕ

[
J (jϕ)

(
7

3
D(jϕ)+15

)
−J (J)

(
7

6
D(jϕ)+15

)]
−Y 2

ϕ

(
7

3
+

160

9
ng

)(
J (J)−2J (jϕ)

)
,

(3.33)
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H
E
P
0
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(
2
0
2
0
)
1
5
8

B
(J)
ϕ,24 =Y 2

ϕ

[
J (jϕ)

(
60J (jϕ)+

28

9
D(jϕ)J (jϕ)− 218

3
+

64

3
ng

)
−J (J)

(
15J (J)+

14

9
D(jϕ)J (jϕ)− 109

3
+

32

3
ng

)]
,

(3.34)

B
(J)
ϕ,06 =

(
J (J)

2
−J (jϕ)

)(
J (J)

2
−J (jϕ)+

1

2

)
×
(

584

3
− 112

9
J (jϕ)D(jϕ)−240J (jϕ)− 256

3
ng

)
+216J (jϕ)2 ,

(3.35)

B
(J)
ϕ,20 =Y 2

ϕ

(
8
∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ −

(
λ(J)ϕ

)2)
+

1

8

(
λ′ϕH

)2(J (J)−2J (jϕ)
)

+λ2ϕH ,

(3.36)

B
(J)
ϕ,02 =

(
λ(J)ϕ

)2(
8J (jϕ)−3J (J)

)
−16J (jϕ)

∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ

+12
∑
J1,J2

′∑
J3,J4

(−1)J4−2jλ(J1)ϕ λ(J2)ϕ J (J4)K(J1,J2,J3)K(J3,J4,J)+3λ2ϕH ,
(3.37)

B
(J)
ϕ,40 =Y 4

ϕ

9

8
λ(J)ϕ +

11D(jϕ)

24
λ(J)ϕ +5

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)


+Y 2

ϕλ
(J)
ϕ

(
11

12
+

50

9
ng

)
+

5λϕH
2

Y 2
ϕ ,

(3.38)

B
(J)
ϕ,22 =Y 2

ϕ

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

[
10
J (J1)J (J)

J (jϕ)
−20

(
J (J1)+J (J)

)
+40J (jϕ)

]
+Y 2

ϕλ
(J)
ϕ

(
2J (J)+J (jϕ)

)
+

5

2
Yϕλ

′
ϕH

(
J (J)−2J (jϕ)

)
,

(3.39)

B
(J)
ϕ,04 =λ(J)ϕ

[
J (jϕ)

(
18J (jϕ)+

22

9
D(jϕ)J (jϕ)− 275

3
+

40

3
ng

)
+J (J)(J (J)−4J (jϕ)+2)

]
+10λϕHJ (jϕ)

+4
∑
J1,J2

′
λ(J2)ϕ K(J1,J2,J)

(
J (J1)

2−4J (J1)J (jϕ)
)

+
∑
J1

∑
J2

′
λ(J2)ϕ K(J1,J2,J)

(
18J (J1)

2−72J (J1)J (jϕ)
)

+
∑
J1

′ λ
(J1)
ϕ

D(jϕ)

[
80D(J1)J (jϕ)2+40D(J1)J (jϕ)

−20D(J1)J (J1)−20D(J1)J (J)+10
J (J)J (J1)D(J1)

J (jϕ)

]
,

(3.40)
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B
(J)
ϕ,00 =λ(J)ϕ

∑
J1

′(
λ(J1)ϕ

)2D(J1)

D(jϕ)
−4
∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ

(
λ(J1)ϕ +λ(J)ϕ

)
−8

∑
J1,J2,J3

′∑
J4

(−1)J4−2jK(J1,J2,J4)K(J4,J3,J)λ(J1)ϕ λ(J2)ϕ λ(J3)ϕ

−
λ
(J)
ϕ

(
λ′ϕH

)2
16

(
2J (J)−3J (jϕ)

)
+
λϕH

(
λ′ϕH

)2
8

(J (jϕ)−J (J))

−
(
λ′ϕH

)2
8

(
3y2t +3y2t +3y2t +y2τ

)(
J (J)−2J (jϕ)

)
−λ2ϕH

(
3y2t +3y2b+3y2c+y2τ+

5

4
λ(J)ϕ

)
−
λ3ϕH

2
.

(3.41)

For the Higgs-portal couplings we find

BϕH,60 =−Y 4
ϕ

(
7

6
D(jϕ)+

15

4

)
−Y 2

ϕ

(
73

12
+

160

9
ng

)
, (3.42)

BϕH,42 =−Y 2
ϕ

(
15J (jϕ)+

45

4

)
, (3.43)

BϕH,24 =−15J (jϕ)
(
1+Y 2

ϕ

)
, (3.44)

BϕH,06 =J (jϕ)

(
1129

3
− 128

3
ng−60J (jϕ)− 56

9
J (jϕ)D(jϕ)

)
, (3.45)

BϕH,40 =Y 2
ϕ

(
15

2
λH−

(
19y2t −5y2b+19y2c+25y2τ

)
+5
∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

)
+Y 2

ϕλϕH

(
23

24
+

11

48
D(jϕ)

)
+Y 4

ϕλϕH

(
5

16
+

71

48
D(jϕ)

)
+λϕH

[
157

48
+

25

9
ng
(
1+Y 2

ϕ

)]
,

(3.46)

BϕH,22 =YϕJ (jϕ)λ′ϕH+λϕH

(
15

8
+

5

2
J (jϕ)Y 2

ϕ

)
, (3.47)

BϕH,04 =J (jϕ)

(
30λH−4

(
3y2t +3y2b+3y2c+y2τ

)
+20

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

)
−λϕH

[
385

16
−5ng+J (jϕ)

(
263

6
− 20

3
ng−

11

12
D(jϕ)

)
−J (jϕ)2

(
5+

71

9
D(jϕ)

)]
,

(3.48)

BϕH,20 =

(
λ′ϕH

)2
16

J (jϕ)
(
1+Y 2

ϕ

)
+
λ2ϕH

4

(
1+Y 2

ϕ

)
+
λϕH
12

(
85y2t +25y2b+85y2c+75y2τ

)
+6λϕHλH+4Y 2

ϕλϕH
∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)
,

(3.49)

BϕH,02 =

(
λ′ϕH

)2
16

J (jϕ)
(
15+4J (jϕ)

)
+
λ2ϕH

4

(
3+4J (jϕ)

)
+

15λϕH
4

(
3y2t +3y2b+3y2c+y2τ

)
+18λϕHλH+16λϕH

∑
J1

′
λ(J1)ϕ

D(J1)J (jϕ)

D(jϕ)
,

(3.50)
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(
2
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0
)
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8

BϕH,00 =−
((

λ′ϕH
)2

4
J (jϕ)+6λϕHλH+λ2ϕH

)(
3y2t +3y2b+3y2c+y2τ

)
+40λϕHg

2
s

(
y2t +y2b+y2c

)
−
λϕH

2

(
27y4t +27y4b+27y4c+9y4τ+42y2t y

2
b

)
− 5J (jϕ)

8

(
λ′ϕH

)2
λH−

15

4
λϕHλ

2
H−λϕH

(
λ′ϕH

)2(13

32
+
D(jϕ)

64

)
J (jϕ)

− 9

2
λ2ϕHλH−λ3ϕH

(
5

8
+
D(jϕ)

16

)
−

5λϕH
2

∑
J1

′(
λ(J1)ϕ

)2D(J1)

D(jϕ)
−
(
λ′ϕH

)2
4

∑
J1

′
λ(J1)ϕ

D(J1)
(
J (J1)−J (jϕ)

)
D(jϕ)

−3λ2ϕH
∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)
;

(3.51)

B′ϕH,60 = 0 , (3.52)

B′ϕH,42 =−Y 3
ϕ

(
14

3
D(jϕ)+30

)
−Yϕ

(
118

3
+

640

9
ng

)
, (3.53)

B′ϕH,24 =Yϕ

(
346

3
− 128

3
ng−120J (jϕ)− 56

9
D(jϕ)J (jϕ)

)
, (3.54)

B′ϕH,06 = 0 , (3.55)

B′ϕH,40 =
11

48
Y 2
ϕ

(
1+Y 2

ϕ

)
λ′ϕHD(jϕ)+

5

16
Y 4
ϕλ
′
ϕH+λ′ϕH

[
37

48
+

23Y 2
ϕ

24
+

25

9
ng
(
1+Y 2

ϕ

)]
, (3.56)

B′ϕH,22 =λ′ϕH

[
47

8
+Y 2

ϕ

(
10

3
J (jϕ)D(jϕ)+

5

2
J (jϕ)−1

)]
+4Yϕ (λϕH+5λH)

+4Yϕ
(
42y2t +18y2b+42y2c+22y2τ

)
+20Yϕ

∑
J1

′
λ(J1)ϕ

(
J (J1)−2J (jϕ)

)
D(J1)

J (jϕ)D(jϕ)
,

(3.57)

B′ϕH,04 =λ′ϕH

[
5ng−

457

16
+J (jϕ)

(
20

3
ng−

287

6
+

11

12
D(jϕ)+J (jϕ)

(
5+

11

9
D(jϕ)

))]
, (3.58)

B′ϕH,20 =
3Yϕ

4

(
λ′ϕH

)2
+

1

2
λϕHλ

′
ϕH

(
1+Y 2

ϕ

)
+
λ′ϕH
12

(
85y2t +25y2b+85y2c+75y2τ

)
+2λ′ϕHλH+2Y 2

ϕλ
′
ϕH

∑
J1

′
λ(J1)ϕ

(
J (J1)−2J (jϕ)

)
D(J1)

J (jϕ)D(jϕ)
,

(3.59)

B′ϕH,02 =
15λ′ϕH

4

(
3y2t +3y2b+3y2c+y2τ

)
+λ′ϕHλϕH

(
15

2
+2J (jϕ)

)
+

(
8J (jϕ)−6

)
λ′ϕH

∑
J1

′
λ(J1)ϕ

(
J (J1)−2J (jϕ)

)
D(J1)

J (jϕ)D(jϕ)
,

(3.60)
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B′ϕH,00 =−
(
λ′ϕHλH+λϕHλ

′
ϕH

)(
6y2t +6y2b+6y2c+2y2τ

)
+40λ′ϕHg

2
s

(
y2t +y2b+y2c

)
−
λ′ϕH

2

(
27y4t +27y4b+27y4c+9y4τ−54y2t y

2
b

)
−5λϕHλ

′
ϕHλH−

7

4
λ′ϕHλ

2
H−λ′ϕHλ2ϕH

(
13

8
+
D(jϕ)

16

)
+
(
λ′ϕH

)3(5J (jϕ)D(jϕ)

192
− 5J (jϕ)

32
+

3

16

)
−
λ′ϕH

2

∑
J1

′(
λ(J1)ϕ

)2(
2
J (J1)D(J1)

J (jϕ)D(jϕ)
−3
D(J1)

D(jϕ)

)
−2λϕHλ

′
ϕH

∑
J1

′
λ(J1)ϕ

(
J (J1)D(J1)

J (jϕ)D(jϕ)
−D(J1)

D(jϕ)

)
.

(3.61)

Our results for the quartic Higgs self coupling are

BH,60 = − 7

12
Y 2
ϕD(jϕ)− 59

12
− 80

9
ng , (3.62)

BH,42 = − 7

12
Y 2
ϕD(jϕ)− 239

12
− 80

9
ng , (3.63)

BH,24 = −7

9
J (jϕ)D(jϕ)− 97

12
− 16

3
ng , (3.64)

BH,06 = −7

3
J (jϕ)D(jϕ) +

497

4
− 16ng , (3.65)

BH,40 =
1

24
λH
(
11Y 2

ϕD(jϕ) + 229
)

+
5

4
λϕHY

2
ϕD(jϕ)

+
50

9
ngλH −

(
19y2t − 5y2b + 19y2c + 25y2τ

)
,

(3.66)

BH,22 =
39

4
λH +

5

6
λ′ϕHYϕJ (jϕ)D(jϕ) + 2

(
21y2t + 9y2b + 21y2c + 11y2τ

)
, (3.67)

BH,04 = 5λϕHJ (jϕ)D(jϕ)− 3
(
3y2t + 3y2b + 3y2c + y2τ

)
+ λH

(
10ng −

313

8
+

11

6
J (jϕ)D(jϕ)

)
,

(3.68)

BH,20 = 9λ2H +
1

2
λ2ϕHY

2
ϕD(jϕ) +

1

24

(
λ′ϕH

)2
Y 2
ϕJ (jϕ)D(jϕ)

+
λH
6

(
85y2t + 25y2b + 85y2c + 75y2τ

)
− 4

3

(
8y4t − 4y4b + 8y4c + 12y4τ

)
,

(3.69)

BH,02 = 27λ2H + 2λ2ϕHJ (jϕ)D(jϕ) +
(
λ′ϕH

)2J (jϕ)D(jϕ)

(
J (jϕ)

6
− 1

8

)
+

15

2
λH
(
3y2t + 3y2b + 3y2c + y2τ

)
,

(3.70)

BH,00 = −39

2
λ3H −

D(jϕ)

4
λ3ϕH −

5

8
λ2ϕHλHD(jϕ)− 7

96

(
λ′ϕH

)2
λHJ (jϕ)D(jϕ)

− 5

48

(
λ′ϕH

)2
λϕHJ (jϕ)D(jϕ)

− 12λ2H
(
3y2t + 3y2b + 3y2c + y2τ

)
+ 80λHg

2
s

(
y2t + y2b + y2c

)
− λH

(
3y4t + 3y4b + 3y4c + y4τ + 42y2t y

2
b

)
+ 120

(
y6t + y6b + y6c

)
+ 40y6τ − 24

(
y2t y

4
b + y4t y

2
b

)
− 128g2s

(
y4t + y4b + y4c

)
;

(3.71)
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Figure 4. Sample Feynman diagrams which give contributions to quartic scalar couplings λH ,

λϕH , λ′ϕH , and λ
(J)
ϕ from ϕ. These diagrams divide into four classes: zero (top left), one (top

right), two (bottom left), and three (bottom right) gauge boson insertions.

Our pure SM results agree with those in refs. [9, 11], apart from three terms which are

consistent with the corrections made in ref. [13]. All other analytic results are presented

here in closed form for the first time.2

For the two-loop calculation, we use the same strategy to express all SU(2) generators

in terms of Sigma matrices and to simplify the expressions using the relations given in

section 4. It is again possible to express all results in terms of the operators in the scalar

potential (2.14), as required by gauge invariance.

At two-loops, all beta functions receive contributions from scalar fields. In the Yukawa

beta functions, the only additional terms from scalar fields arise from the external Higgs

field counterterm (figure 3b). The Feynman diagrams required to extract the quartic scalar

coupling beta functions again split into different classes: those including zero, one, two, or

three internal gauge bosons. In figure 4, we give sample diagrams from each class which

give contributions to the quartic scalar coupling beta functions.

4 Group theory relations

To express all results in terms of matrix elements of our basis operators, and to check the

gauge-parameter independence and locality of our two-loop counterterms explicitly, we had

to use a number of algebraic relations. These relations arise from the gauge invariance of

the underlying theory as well as the properties of the Clebsch-Gordan coefficients, and are

collected and proven below. For clarity, the summation convention is suspended in this

section. All summations are indicated explicitly.

2As a cross check, we compared all our one- and two-loop beta functions with the results obtained using

the code PyR@TE3 [26] for the two cases jϕ = 1, Yϕ = 0 and jϕ = 1, Yϕ = 1, and find complete agreement.
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To begin, we collect some orthogonality properties of the Sigma matrices that follow

directly from the corresponding standard properties of the Clebsch-Gordan coefficients:∑
km

Σ
(J),M
km Σ

(J ′),M ′

km = δJJ
′
δMM ′

, (4.1)

∑
Mm

Σ
(J),M
km Σ

(J),M
k′m =

2J + 1

2jϕ + 1
δkk′ , (4.2)∑

JM

Σ
(J),M
km Σ

(J),M
k′m′ = δkk′δmm′ . (4.3)

The exchange of W gauge bosons introduces explicit SU(2) generators that need to

be rewritten in terms of Sigma matrices. Since the Clebsch-Gordan coefficients describe a

transformation between two complete sets of orthonormal state vectors, they are used to

rewrite the product of two SU(2) generators:∑
a

τ̃air τ̃
a
kl =

∑
JM

C(J)Σ
(J),M
ik Σ

(J),M
rl , (4.4)

where the coefficient C(J) is a function of J . The relation (4.4) is convenient since it can

be applied recursively. Consider, for instance, the product of four generators:∑
ab

∑
lk

τ̃ail τ̃
b
lr τ̃

a
mk τ̃

b
kn =

∑
JM

∑
J ′M ′

∑
lk

C(J)C(J ′)Σ
(J),M
im Σ

(J),M
lk Σ

(J ′),M ′

lk Σ(J ′),M ′
rn . (4.5)

After applying the orthogonality relations, this becomes a linear combination of the basis

operators, ∑
ab

∑
lk

τ̃ail τ̃
b
lr τ̃

a
mk τ̃

b
kn =

∑
JM

C(J)2 Σ
(J),M
im Σ(J),M

rn . (4.6)

In fact, for a product of 2n generators eq. (4.4) implies∑
a1a2...an

(τ̃a1 τ̃a2 . . . τ̃an)ir (τ̃a1 τ̃a2 . . . τ̃an)mq =
∑
JM

C(J)n Σ
(J),M
im Σ(J),M

rq . (4.7)

Diagrams with multiple scalar couplings likewise need to be expressed in terms of the

basis operators. This is facilitated by the following “sum rule” for Sigma matrices:∑
M1M2

∑
mn

Σ
(J1),M1

im Σ(J1),M1
rn Σ

(J2),M2

kn Σ
(J2),M2

lm =
∑
J3,M3

K(J1, J2, J3)Σ
(J3),M3

ik Σ
(J3),M3

rl . (4.8)

In the following, we give explicit expressions for C(J) and K(J1, J2, J3). We then

derive further relations between these quantities that can be used to simplify the results of

our calculation. Our general strategy is to express all results in terms of our operator basis

and the group theory invariants J (jϕ) ≡ jϕ(jϕ + 1), the eigenvalue of the SU(2) Casimir

operator, ∑
l

τ̃ail τ̃
a
lk = J (jϕ)δik , (4.9)

and D(jϕ) ≡ 2jϕ + 1, the dimension of the SU(2) multiplet representation with isospin jϕ.

– 17 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
8

We begin by showing

K(J1, J2, J3) = D(J1)D(J2)


J1 jϕ jϕ
jϕ J2 jϕ
jϕ jϕ J3

 (4.10)

in terms of the Wigner 9j symbol [24]. Starting with eq. (4.8), we multiply both sides by

Σ
(J),M
rl and sum over r, l, to obtain

∑
M1,M2

∑
mnrl

Σ
(J1),M1

im Σ(J1),M1
rn Σ

(J2),M2

kn Σ
(J2),M2

lm Σ
(J),M
rl = K(J1, J2, J)Σ

(J),M
ik . (4.11)

The Sigma matrices can be written in terms of the Wigner 3j symbols as [24]

Σ
(J),M
mm′ = (−1)M

√
D(J)

(
jϕ jϕ J

m m′ −M

)
. (4.12)

In this way, eq. (4.11) becomes

K(J1,J2,J)

(
jϕ jϕ J

i k −M

)
=
∑

M1,M2

∑
mnrl

(−1)−2M1−2M2D(J1)D(J2)

×

(
jϕ jϕ J1
i m −M1

)(
jϕ jϕ J1
r n −M1

)

×

(
jϕ jϕ J2
k n −M2

)(
jϕ jϕ J2
l m −M2

)(
jϕ jϕ J

r l −M

)
.

(4.13)

Since M1,M2 ∈ Z, the factor of −1 disappears. We can also freely change −M1,−M2 →
M1,M2 since these indices are summed over. We also take M → −M on both sides. Now,

we use the symmetry properties of the 3j symbols(
j1 j2 j3
m1 m2 m3

)
=

(
j2 j3 j1
m2 m3 m1

)
= (−1)j1+j2+j3

(
j1 j3 j2
m1 m3 m2

)
(4.14)

to rewrite

K(J1,J2,J)

(
jϕ jϕ J

i k M

)
=
∑

M1,M2

∑
mnrl

(−1)2J1+2J2+8jϕD(J1)D(J2)

×

(
J1 jϕ jϕ
M1 n r

)(
jϕ J2 jϕ
m M2 l

)

×

(
J1 jϕ jϕ
M1 m i

)(
jϕ J2 jϕ
n M2 k

)(
jϕ jϕ J

r l M

)
.

(4.15)
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The Wigner 9j symbols are written in terms of the 3j symbols as [24]

(
J13 J24 J

M13 M24 M

)
j1 j2 J12
j3 j4 J34
J13 J24 J


=

∑
m1m2m3m4
M12M34

(
j1 j2 J12
m1 m2 M12

)(
j3 j4 J34
m3 m4 M34

)

×

(
j1 j3 J13
m1 m3 M13

)(
j2 j4 J24
m2 m4 M24

)(
J12 J34 J

M12 M34 M

)
.

(4.16)

Comparison of the last two equation yields eq. (4.10). Note that, as expected, K(J1, J2, J3)

is symmetric in its first two indices.

Next, we show

C(J) =
1

2
J (J)− J (jϕ) (4.17)

First, we contract eq. (4.4) with two Sigma matrices and use the orthogonality rela-

tion (4.1) to arrive at

D(J)C(J) =
∑
a

∑
M

∑
irkl

τ̃air τ̃
a
klΣ

(J),M
ik Σ

(J),M
rl . (4.18)

We find C(J) by writing eq. (4.18) explicitly in terms of Clebsch-Gordan coefficients as

D(J)C(J) =
∑
a

∑
M

∑
mnm′n′

Cjϕjϕ(JM ;mn)Cjϕjϕ(JM ;m′n′)

× 〈jϕm| τ̃ (jϕ),a
∣∣jϕm′〉 〈jϕn| τ̃ (jϕ),a ∣∣jϕn′〉 . (4.19)

Noting that, by definition, τ̃ (jϕ),a are the spin-jϕ generators, we introduce the notation

τ̃amn ≡ 〈jϕm| τ̃ (jϕ),a |jϕn〉, i.e. we label the generators with jϕ as well as a = 1, 2, 3, and the

states by jϕ and their “magnetic” quantum numbers m,n,m,′ n′ = −jϕ, . . . , jϕ. Using the

symmetry relation of the Clebsch-Gordan coefficients

Cjj(JM ;mn) = (−1)j+m

√
D(J)

D(j)
CjJ(j,−n;m,−M) , (4.20)

eq. (4.19) becomes

D(J)C(J) =
D(J)

D(jϕ)

∑
a

∑
M

∑
mm′nn′

(−1)2jϕ−n−n
′

× CjϕJ(jϕ,−n;mM)CjϕJ(jϕ,−n′;m′M)

× 〈jϕm| τ̃ (jϕ),a
∣∣jϕm′〉 〈jϕn| τ̃ (jϕ),a ∣∣jϕn′〉 ,

(4.21)

where we use m = M − n and m′ = M − n′, as well as the fact that M is always integer,

to rewrite the phase factor. We also take −M → M using the symmetry of the sum over
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M . Now, we artificially regard each spin-jϕ state as belonging to the spin-jϕ subspace of

the Clebsch-Gordan decomposition of the tensor product of a spin-jϕ and a spin-J state.

For instance, 〈jϕm| =
∑

nN CjϕJ(jϕm;nN) 〈jϕn; JN | and analogous relations lead to

〈jϕm| τ̃ (jϕ),a
∣∣jϕm′〉

=
∑
nN

∑
n′N ′

CjϕJ(jϕm;nN)CjϕJ(jϕm
′;n′N ′)〈jϕn,JN |

(
τ̃ (jϕ),a⊗1J+1jϕ⊗τ̃ (J),a

)∣∣jϕn′,JN ′〉 .
(4.22)

Hence, we find the explicit tensor decomposition for the generators

τ̃
(jϕ),a
mn =

∑
M̃

∑
m̃ñ

CjϕJ(jϕm; m̃M̃)CjϕJ(jϕn; ñM̃)τ̃
(jϕ),a
m̃ñ

+
∑
M̃Ñ

∑
m̃

CjϕJ(jϕm; m̃M̃)CjϕJ(jϕn; m̃Ñ)τ̃
(J),a

M̃Ñ
.

(4.23)

Inserting this identity into eq. (4.21) gives

D(J)C(J)

=
D(J)

D(jϕ)

∑
a

∑
nn′

(−1)2jϕ−n−n
′
τ̃
(jϕ),a
−n,−n′ τ̃

(jϕ),a
nn′

− D(J)

D(jϕ)

∑
a

∑
m̃

∑
MM ′nn′

(−1)2jϕ−n−n
′
CjϕJ(jϕ,−n; m̃M)CjϕJ(jϕ,−n′; m̃M ′)τ̃ (J),aMM ′ τ̃

(jϕ),a
nn′

=
D(J)

D(jϕ)

∑
a

∑
nn′

(−1)2jϕ+n+n
′
τ̃
(jϕ),a
−n,−n′ τ̃

(jϕ),a
nn′

−
∑
a

∑
m̃

∑
MM ′nn′

(−1)2J+M+M ′
Cjϕjϕ(J,−M ; m̃n)Cjϕjϕ(J,−M ′; m̃n′)τ̃ (J),aMM ′ τ̃

(jϕ),a
nn′

(4.24)

where we again use eq. (4.20) and rewrite the phase in the second term noting that

m̃ = −n−M = −n′ −M ′ and (−1)2J = 1. We then use an identity analogous to (4.23),

namely,

τ̃
(J),a
MN =

∑
m̃

∑
m′n′

Cjϕjϕ(JM ;m′m̃)Cjϕjϕ(JN ;n′m̃)τ̃
(jϕ),a
m′n′

+
∑
m̃

∑
m′n′

Cjϕjϕ(JM ; m̃m′)Cjϕjϕ(JN ; m̃n′)τ̃
(jϕ),a
m′n′ ,

(4.25)

to obtain ∑
m̃

∑
m′n′

Cjϕjϕ(JM ; m̃m′)Cjϕjϕ(JN ; m̃n′)τ̃
(jϕ),a
m′n′ =

1

2
τ̃
(J),a
MN , (4.26)

and so

D(J)C(J) =
D(J)

D(jϕ)

∑
a

∑
nn′

(−1)2jϕ+n+n
′
τ̃
(jϕ),a
−n,−n′ τ̃

(jϕ),a
nn′

− 1

2

∑
a

∑
MM ′

(−1)2J+M+M ′
τ̃
(J),a
−M,−M ′ τ̃

(J),a
MM ′ .

(4.27)
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A straightforward calculation using the explicit expressions for the spin-jϕ generators,

eq. (2.4), gives

(−1)2jϕ+n+n
′
τ̃
(jϕ),1
−n,−n′ τ̃

(jϕ),1
nn′ = (−1)2jϕ+n+n

′
τ̃
(jϕ),2
−n,−n′ τ̃

(jϕ),2
nn′

=−1

4

[
δ2n,n′+1(jϕ+n′+1)(jϕ−n′)+δ2n,n′−1(jϕ−n′+1)(jϕ+n′)

]
,

(−1)2jϕ+n+n
′
τ̃
(jϕ),3
−n,−n′ τ̃

(jϕ),3
nn′ =−n2δ2nn′ . (4.28)

Comparing these to the analogous expressions

τ̃
(jϕ),1
n′n τ̃

(jϕ),1
nn′ = τ̃

(jϕ),2
n′n τ̃

(jϕ),2
nn′

=
1

4

[
δ2n,n′+1(jϕ + n′ + 1)(jϕ − n′) + δ2n,n′−1(jϕ − n′ + 1)(jϕ + n′)

]
τ̃
(jϕ),3
n′n τ̃

(jϕ),3
nn′ = n2δ2nn′ ,

(4.29)

we see that∑
a

∑
nn′

(−1)2jϕ+k+lτ̃
(jϕ),a
−n,−n′ τ̃

(jϕ),a
nn′ = −

∑
a

∑
nn′

τ̃
(jϕ),a
n′n τ̃

(jϕ),a
nn′ = −jϕ(jϕ + 1)(2jϕ + 1) . (4.30)

This yields the desired result (4.17).

In the following, we collect several sum rules involving the coefficient C(J). The first is

∑
J

C(J)D(J) = 0 (4.31)

It is derived by summing eq. (4.18) over J and using the orthogonality relations, to obtain∑
J

C(J)D(J) =
∑
a

∑
irkl

τ̃air τ̃
a
klδirδkl = 0 , (4.32)

where we use the fact that the generators are traceless. In practice, the interchange of

indices in the Sigma matrices gives rise to additional phase factors, hence we also need the

relation ∑
J

(−1)J−2jϕC(J)D(J) = D(jϕ)J (jϕ) (4.33)

To prove this relation, we again sum eq. (4.18) over J , now taking into account the sym-

metry properties of the Clebsch-Gordan coefficients∑
J

(−1)J−2jϕC(J)D(J) =
∑
a

∑
irkl

τ̃air τ̃
a
klδilδkr =

∑
a

∑
ir

τ̃air τ̃
a
ri = D(jϕ)J (jϕ) . (4.34)

We note in passing that this relation can be used to calculate the “restricted” sum over J , as

∑
J

′
C(J)D(J) ≡

∑
J

1 + (−1)J−2jϕ

2
C(J)D(J) =

1

2
D(jϕ)J (jϕ) . (4.35)
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A similar sum rule, quadratic in C(J), reads

∑
J

D(J)C(J)2 =
J (jϕ)2D(jϕ)2

3
(4.36)

To see this, we rewrite the left-hand side as∑
J

D(J)C(J)2 =
∑
ab

∑
JM

∑
irklmn

τ̃aimτ̃
b
mr τ̃

a
knτ̃

b
nlΣ

(J),M
ik Σ

(J),M
rl =

∑
ab

∑
imkn

τ̃aimτ̃
b
miτ̃

a
knτ̃

b
nk .

(4.37)

Now, we use the SU(2) relation∑
im

τ̃aimτ̃
b
mi =

J (jϕ)D(jϕ)

3
δab (4.38)

to find eq. (4.36). The analogous sum rule with phase factor reads∑
J

(−1)J−2jϕD(J)C(J)2 = J (jϕ)D(jϕ) (J (jϕ)− 1) (4.39)

The proof proceeds similar to the above, except we must use the (anti-)symmetry of the

Clebsch-Gordan coefficients:∑
J

(−1)J−2jϕD(J)C(J)2 =
∑
ab

∑
imkn

τ̃aimτ̃
b
mk τ̃

a
knτ̃

b
ni . (4.40)

We then use the SU(2) algebra to re-write∑
ab

∑
imkn

τ̃aimτ̃
b
mk τ̃

a
knτ̃

b
ni =

∑
ab

∑
imkn

τ̃aimτ̃
a
mk τ̃

b
knτ̃

b
ni +

∑
abc

∑
imn

iεbacτ̃aimτ̃
c
mnτ̃

b
ni

= J (jϕ)2D(jϕ)− J (jϕ)D(jϕ) ,

(4.41)

which gives the relation (4.39). Again, we use this to calculate the restricted sum over J , as∑
J

′
D(J)C(J)2 =

∑
J

1 + (−1)J−2jϕ

2
D(J)C(J)2

=
1

6
J (jϕ)D(jϕ) (J (jϕ)D(jϕ) + 3J (jϕ)− 3) .

(4.42)

Another pair of rules cubic in C(J) is necessary to reduce the algebra in diagrams

involving the SM Higgs. The first is given by

∑
J

D(J)C(J)3 = −J (jϕ)2D(jϕ)2

6
(4.43)

Rewriting the left-hand side and using the appopriate orthogonality relations for the

Clebsch-Gordan coefficients gives∑
J

D(J)C(J)3 =
∑
abc

Tr
[
τ̃aτ̃ bτ̃ c

]
Tr
[
τ̃aτ̃ bτ̃ c

]
. (4.44)

– 22 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
8

The trace of three generators is expressed as

Tr
[
τ̃aτ̃ bτ̃ c

]
=

1

2

(
Tr
[{
τ̃a, τ̃ b

}
τ̃ c
]

+ Tr
[[
τ̃a, τ̃ b

]
τ̃ c
])

=
1

2
Tr
[[
τ̃a, τ̃ b

]
τ̃ c
]
, (4.45)

where we make use of the definition of the totally symmetric tensor,

dabc ∝ Tr
[{
τ̃a, τ̃ b

}
τ̃ c
]
, (4.46)

which vanishes for SU(2). Next, we simply use the group algebra to find

Tr
[
τ̃aτ̃ bτ̃ c

]
=
iJ (jϕ)D(jϕ)

6
εabc . (4.47)

Squaring this expression and using ∑
abc

εabcεabc = 6 (4.48)

gives the result in eq. (4.43). The second relation cubic in C(J) is∑
J

(−1)J−2jϕD(J)C(J)3 = J (jϕ)D(jϕ) (J (jϕ)− 1) (J (jϕ)− 2) (4.49)

As before, we re-write the left-hand side of this expression and use orthogonality relations∑
J

(−1)J−2jϕD(J)C(J)3 =
∑
abc

Tr
[
τ̃aτ̃ bτ̃ cτ̃aτ̃ bτ̃ c

]
. (4.50)

The product in the trace simplifies using the SU(2) algebra∑
a

τ̃aτ̃ bτ̃ cτ̃a =
∑
a

(
τ̃aτ̃ bτ̃aτ̃ c + iεcadτ̃aτ̃ bτ̃d

)
. (4.51)

Then, using ∑
a

τ̃aτ̃ bτ̃a = (J (jϕ)− 1) τ̃ b (4.52)

the trace is reduced to∑
abc

Tr
[
τ̃aτ̃ bτ̃ cτ̃aτ̃ bτ̃ c

]
= Tr

[
J (jϕ) (J (jϕ)− 1)2 1− J (jϕ) (J (jϕ)− 1)1

]
(4.53)

which, when the trace is performed over the identity, gives eq. (4.49).

In order to derive the necessary algebraic relations involving the factor K, we first

prove the following useful relation:∑
M

∑
kl

Σ
(J),M
ik Σ

(J),M
rl τ̃alk =

D(J)C(J)

J (jϕ)D(jϕ)
τ̃air (4.54)

To derive this, we note that the only object in our basis with a single adjoint representation

index and two isospin-jϕ representation indices is the generator τ̃air (any other objects with

only these free indices can be reduced to this generator). Therefore, we make the ansatz∑
M

∑
kl

Σ
(J),M
ik Σ

(J),M
rl τ̃alk = G(J)τ̃air . (4.55)
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Multiplying both sides by τ̃ari, summing over a, i, r, and using eq. (4.18) gives the rela-

tion (4.54). Using this result, we now prove

∑
J1

C(J1)K(J1, J2, J3) =
D(J2)C(J2)C(J3)

J (jϕ)D(jϕ)
(4.56)

To this end, we consider the product∑
a,mn

∑
M

τ̃air τ̃
a
mnΣ

(J),M
kn Σ

(J),M
lm =

D(J)C(J)

J (jϕ)D(jϕ)

∑
a

τ̃air τ̃
a
kl

=
D(J)C(J)

J (jϕ)D(jϕ)

∑
J1M1

C(J1)Σ
(J1),M1

ik Σ
(J1),M1

rl ,

(4.57)

making use of eqs. (4.54) and (4.4). However, this is alternatively written as∑
a,mn

∑
M

τ̃air τ̃
a
mnΣ

(J),M
kn Σ

(J),M
lm =

∑
mn

∑
J1,M1,M

C(J1)Σ
(J),M
kn Σ

(J),M
lm Σ

(J1),M1

im Σ(J1),M1
rn

=
∑

J1,J2,M2

C(J1)K(J1, J, J2)Σ
(J2),M2

ik Σ
(J2),M2

rl .
(4.58)

Equating these expressions and using the orthogonality relations, the result (4.56) follows.

A further important relation incorporates the condition of gauge invariance:∑
J1

(−1)J1−2jϕ
(
1+(−1)J−2jϕ(−1)J2−2jϕ

)
C(J1)K(J,J1,J2) = (J (j)+C(J))δJ,J2 (4.59)

All interaction vertices must be gauge-invariant. A scalar SU(2) spin-jϕ field multiplet

transforms as ϕi → ϕ′i = ϕi + δϕi under an infinitesimal gauge transformation, where

δϕi =
∑
a,k

iεaτ̃aikϕk −
1

2

∑
ab,lk

εaεbτ̃ail τ̃
b
lkϕk +O(ε3) , (4.60)

while

δϕ∗i = −
∑
a,k

iεaτ̃akiϕ
∗
k −

1

2

∑
ab,lk

εaεbτ̃aklτ̃
b
liϕ
∗
k +O(ε3) . (4.61)

Hence, we have the relation

0 =
∑
mM

(
τ̃amiΣ

(J),M
mk Σ

(J),M
rl + τ̃amkΣ

(J),M
im Σ

(J),M
rl

− τ̃armΣ
(J),M
ik Σ

(J),M
ml − τ̃almΣ

(J),M
ik Σ(J),M

rm

)
,

(4.62)

which leads, upon contraction with a SU(2) generator, to

J (jϕ)
∑
M

Σ
(J),M
ik Σ(J),M

rn

=
∑

lm,a,M

(
τ̃anlτ̃

a
miΣ

(J),M
mk Σ

(J),M
rl +τ̃anlτ̃

a
mkΣ

(J),M
im Σ

(J),M
rl −τ̃anlτ̃armΣ

(J),M
ik Σ

(J),M
ml

)
.

(4.63)
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We use eqs. (4.4) and (4.8) to rewrite this condition as

J (jϕ)
∑
M

Σ
(J),M
ik Σ(J),M

rn =
∑
J1

∑
M,M1

∑
ml

C(J1)
(

Σ
(J),M
mk Σ

(J),M
rl Σ(J1),M1

nm Σ
(J1),M1

li

+ Σ
(J),M
im Σ

(J),M
rl Σ(J1),M1

nm Σ
(J1),M1

lk

− Σ
(J),M
ik Σ

(J),M
ml Σ(J1),M1

nr Σ
(J1),M1

lm

)
=

∑
J1,J2,M2

(−1)J1−2jϕC(J1)K(J, J1, J2)
[
(−1)J−2jϕΣ

(J2),M2

ik Σ(J2),M2
nr + Σ

(J2),M2

ik Σ(J2),M2
rn

]
− C(J)

∑
M

Σ
(J),M
ik Σ(J),M

rn . (4.64)

Multiplying both sides by
∑

M3
Σ
(J3),M3

ik Σ
(J3),M3
rn and summing over i, k, r, n yields eq. (4.59).

We now derive a few relations involving K and two powers of C. The first is

∑
J1,J2

(−1)J1−2jϕ(−1)J2−2jϕC(J1)C(J2)K(J1,J2,J
′) = (−1)J

′−2jϕC(J ′)(C(J ′)+1) (4.65)

For a proof, consider the product of generators{
τ̃a, τ̃ b

}
ir

{
τ̃a, τ̃ b

}
kl

= 2
∑
mn

(
τ̃aimτ̃

b
mr τ̃

a
knτ̃

b
nl + τ̃aimτ̃

b
mr τ̃

b
knτ̃

a
nl

)
. (4.66)

Using SU(2) commutation relations and eq. (4.4), it is easy to see that this becomes∑
ab

{
τ̃a, τ̃ b

}
ir

{
τ̃a, τ̃ b

}
kl

= 2
∑
JM

C(J) (2C(J) + 1) Σ
(J),M
ik Σ

(J),M
rl , (4.67)

but it is also expressed as

2
∑
J1,J2

∑
M1,M2

∑
m,n

C(J1)C(J2)

×
(

Σ
(J1),M1

ik Σ(J1),M1
mn Σ(J2),M2

mn Σ
(J2),M2

rl + Σ
(J1),M1

in Σ
(J1),M1

ml Σ
(J2),M2

mk Σ(J2),M2
rn

)
= 2

∑
J1,M1

C(J1)
2Σ

(J1),M1

ik Σ
(J1),M1

rl

+ 2
∑

J1,J2,J3

∑
M3

(−1)J1+J2+J3−6jϕC(J1)C(J2)K(J1, J2, J3)Σ
(J3),M3

ik Σ
(J3),M3

rl .

(4.68)

Equating these two expressions, multiplying both sides by
∑

M ′ Σ
(J ′),M ′

ik Σ
(J ′),M ′

rl and sum-

ming over i, k, r, n yields eq. (4.65). A variant of this relation involving only one phase

factor reads ∑
J1,J2

(−1)J1−2jϕC(J1)C(J2)K(J1, J2, J3) = C(J3)(J (jϕ)− 1) (4.69)
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To prove it, we perform the sum over J2 using eq. (4.56) and the fact that K is symmetric

in its first two indices to find∑
J1,J2

(−1)J1−2jϕC(J1)C(J2)K(J1, J2, J3)

=
∑
J1

(−1)J1−2jϕ
D(J1)C(J1)

2C(J3)

J (jϕ)D(jϕ)
= C(J3)(J (jϕ)− 1) ,

(4.70)

where in the last equality we used eq. (4.39). The relation without phase factors∑
J1,J2

C(J1)C(J2)K(J1, J2, J3) =
1

3
J (jϕ)D(jϕ)C(J3) (4.71)

is shown similar to the above, performing the sum over J2 and using eq. (4.36).

Finally, we prove the following symmetry relation for a contraction of two K factors:∑
J4

K(J1, J2, J4)K(J4, J3, J5) =
∑
J4

K(J1, J3, J4)K(J4, J2, J5) (4.72)

First, consider the sum∑
imsl

∑
LMN

Σ
(J1),L
im Σ

(J1),L
sl Σ(J2),M

qs Σ
(J2),M
ri Σ(J3),N

nm Σ
(J3),N
kl . (4.73)

This simplifies to∑
J4

∑
lm

∑
MN

K(J1, J2, J4)Σ
(J3),N
nm Σ

(J3),N
kl Σ(J4),M

mq Σ
(J4),M
lr

=
∑
J4,J5

∑
M

K(J1, J2, J4)K(J4, J3, J5)Σ
(J5),M
nr Σ

(J5),M
kq .

(4.74)

However, eq. (4.73) also reduces in a different way∑
J4

∑
is

∑
MN

K(J1, J3, J4)Σ
(J2),N
qs Σ

(J2),N
ri Σ

(J4),M
ik Σ(J4),M

sn

=
∑
J4,J5

∑
M

K(J1, J3, J4)K(J4, J2, J5)Σ
(J5),M
nr Σ

(J5),M
kq .

(4.75)

Equating these two expressions gives the final result (4.72).

5 Numerics

In this section, we present numerical results for the running of the scalar and gauge cou-

plings. All the numerical inputs are taken from ref. [27], see table 1. We employ the

expressions given in ref. [28] to determine the initial conditions for the strong coupling

gs(MZ) = 1.1626, the top Yukawa coupling yt(MZ) = 0.9320, and the quartic Higgs cou-

pling λH(MZ) = 0.5040. We determine g1(MZ) and g2(MZ) directly via the relation

sin2 θw(µ) ≡ g21(µ)

g21(µ) + g22(µ)
(5.1)
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Figure 5. One-loop running of scalar quartic couplings for jϕ = 3 with Yϕ = 0 (“Minimal Scalar

Dark Matter”). The dashed and dash-dotted lines denote the Higgs-portal couplings λϕH and

λ′ϕH , respectively, while the solid lines denote the four scalar couplings λ
(J)
ϕ , for J = 0, 2, 4, 6. The

running at one-loop exhibits a Landau pole around µ = 105 GeV. Left panel: all initial conditions

are set to 0.5 at µ = MZ . Right panel: vanishing initial conditions at µ = MZ .

mt(pole) = 172.4(7) GeV mb(mb) = 4.18+0.03
−0.02 GeV mc(mc) = 1.27(2) GeV

mτ = 1.77686(12) GeV Mh = 125.10(14) GeV MZ = 91.1876(21) GeV

α(5)(MZ)−1 = 127.952(9) sin2 θ(MZ) = 0.23121(4) αs(MZ) = 0.1179(10)

GF = 1.11663787(6)× 10−5 GeV−2

Table 1. Numerical input used to determine the initial conditions of the coupling constants. All

values are taken from ref. [27].

to find g1(MZ) = 0.3574, g2(MZ) = 0.6517. To determine yτ (MZ) = 0.0102 we used

mτ = 1.77686(12) GeV, and the relations

yτ =

√
2mτ

vEW
, GF =

1√
2v2EW

. (5.2)

Note that GF is RG invariant, and we neglect the QED running of mτ . We obtain

yc(MZ) = 0.0036 and yb(MZ) = 0.0164 in the six-flavor theory by four-loop QCD run-

ning and decoupling of the corresponding quark masses and subsequent conversion using

an expression analogous to eq. (5.2). As we are only interested in the qualitative behaviour

of our results, we neglect uncertainties throughout. We solve the coupled system of RG

equations numerically, using the python package pywigxjpf [29] and the Mathematica code

found in ref. [30] for the numerical evaluation of the Wigner 9j symbols.

In figure 5 we show the one-loop running of all scalar couplings for jϕ = 3, with scalar

hypercharge Yϕ = 0. This case corresponds to the “minimal scalar dark matter” (MSDM)

scenario in ref. [31], amended by the two Higgs-portal couplings λϕH and λ′ϕH . In the

left panel, we assumed an initial condition of λi(MZ) = 0.5 for all four scalar couplings

and the two Higgs-portal couplings. The high-energy behaviour is largely independent of
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Figure 6. Two-loop running of scalar quartic couplings for jϕ = 3 with Yϕ = 0. The notation is

the same as in figure 5.
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Figure 7. Running of the SU(2) gauge coupling g2 at one-loop (left panel) and two-loop (right

panel), for Yϕ = 0. The black dashed line shows the SM result. The brown lines correspond to

different representations of the complex scalar. Here, we assumed vanishing initial conditions for

all non-SM scalar couplings at µ = MZ .

these assumptions; in fact, even if the couplings are all zero at the weak scale, large values

get generated via weak gauge-boson exchange (with the exception of λ′ϕH). The couplings

quickly enter a non-perturbative regime and run into a Landau pole around 105 GeV.

Next, we study the impact of the two-loop corrections to the RG evolution of the

scalar couplings in the same scenario, see figure 6. Again, we display the results for the

two sets of initial conditions. Note that the Landau pole around µ = 105 GeV is shifted to

the higher scale µ = 107 GeV, with a plateau-like behaviour in between. However, these

features appear at non-perturbative values for the coupling constants and should therefore

not be taken too literally. The only significant change is that the “triplet” Higgs-portal

coupling λ′ϕH turns out to be asymptotically free.

Finally, we examine the impact of the new scalar degrees of freedom on the running of

the SM couplings. We keep assuming vanishing hypercharge for the new scalars, Yϕ = 0,
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Figure 8. Running of the quartic Higgs coupling λH at one-loop (left panel) and two-loop (right

panel), for Yϕ = 0. The black dashed line shows the SM result. The brown lines correspond to

different representations of the complex scalar. Here, we assumed vanishing initial conditions for

all non-SM scalar couplings at µ = MZ .

and focus on the evolution on the gauge coupling g2 first. The running of g2 is displayed

in figure 7. In the left panel, we show the one-loop evolution. We see that, at one-loop,

the SU(2) gauge coupling exhibits a Landau pole at around 1015 GeV for jϕ = 3 (MSDM),

while for higher representations the Landau pole appears close to or below the TeV scale.

This behaviour has been qualitatively described in, for instance, ref. [8]. Looking at the

two-loop results in the right panel in figure 7, we see that the Landau pole for jϕ = 3

is significantly shifted down to 107 GeV, while all other poles lie below the TeV scale.

Apparently, the SM extended by MSDM cannot be perturbative up to the Planck scale.

As our last example, we show the evolution of the quartic Higgs coupling in figure 8.

Again we display the one-loop results in the left panel, and the two-loop results in the right

panel. While the SM evolution of λH (black dashed line) is only marginally affected by

the presence of an additional scalar multiplet with jϕ = 1, higher representations lead to

a drastic departure from this picture. For jϕ = 3 (MSDM), the Higgs quartic runs into a

Landau pole around 105 GeV, while the pole lies at the TeV scale for jϕ = 5. Interestingly,

the two-loop results show that this pole is in fact negative.

We relegate a more detailed discussion of the phenomenological implications of these

results to future work.

6 Conclusions

In this work, we constructed the form of the potential involving four-point interaction of

a complex scalar field furnishing a general irreducible representation of the electroweak

gauge group SU(2)×U(1), in terms of Clebsch-Gordan coefficients. We presented the beta

functions determining the RG evolution of the scalar as well as the SM couplings explicitly

in terms of SU(2) group invariants, up to the two-loop level. As an important ingredient of

our calculation we proved a set of algebraic relations that we used to express the results for
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the one- and two-loop Green’s functions in terms of our basis operators. For convenience,

auxiliary files containing the analytic results of the beta functions in the form of a python

module, as well as a mathematica package, are available at

https://gitlab.com/complex-beta-function .

Our results are completely general and might have applications in many fields. As one

example, we studied the RG flow of the self interactions of scalar dark matter in minimal

dark matter models [1], and the impact of the scalar fields on the RG evolution of the SM

couplings. Moreover, the beta functions will be a necessary ingredient in the RG analysis

of scalar dark matter interacting via higher dimension operators [3, 4].

A generalization of our results in this direction would be to consider the self interactions

of fermionic dark matter. This case is more complicated since the interactions start at mass

dimension six, and additional Fierz relations associated with the Dirac-matrix structure

restrict the form of all possible operators. This investigation is relegated to future work.
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A Analytic checks of our calculation

As a check of our results we used a generalized Rξ gauge for the W , B and G fields and

verified that all beta functions are gauge-parameter independent. For completeness, we

provide here the gauge-fixing and ghost terms in our Lagrangian:

Lgf + Lghost = − 1

2ξW
(∂µW

aµ)2 − 1

2ξB
(∂µB

µ)2 − 1

2ξG

(
∂µG

Aµ
)2

+ ∂µū
a
W∂

µuaW + g2ε
abc(∂µūaW )W b

µu
c
W

+ ∂µū
A
G∂

µuAG − gsfABC(∂µūAG)GBµ u
C
G .

(A.1)

As a second consistency check of our calculation, we verified that all two-loop coun-

terterms are local, i.e. they do not contain any explicit logarithms of the renormalization

scale µ. As a third check of our calculation, we derive the explicit expressions of the beta

function in terms of the coupling counterterms (see below). The finiteness of the beta

function as ε→ 0 yields consistency relations that allow to calculate the quadratic pole of

the two-loop coupling renormalization constants in terms of the one-loop results. These

quadratic poles are in full agreement with the results of our calculcation. For completeness,

we provide the expressions for the quadratic poles in appendix B.

In the remainder of this section, we derive the relation between the beta function

and the residua of the coupling renormalization constants, as well as the relation between

the linear one-loop poles and the quadratic two-loop poles. As above, we denote the all

couplings generically by a coupling vector gi. The bare couplings gi,0 are expressed in terms
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of the renormalized couplings gi as gi,0 = µaiεZgigi, where ai = 1 if gi is a gauge or Yukawa

coupling, and ai = 2 if gi is a scalar coupling (the coefficients ai are chosen such that all

couplings remain dimensionless in d space-time dimensions). Here, µ is the renormalization

scale, and the Zgi are the coupling renormalization constants. We expand the Zgi by order

of pole as

Zgi = 1 +
∞∑
l=1

1

εl
Zgi,l , (A.2)

and use standard methods [32] to express the beta function in terms of the derivatives of

the linear poles of the coupling counterterms:

βi(gj , ε) = −aigiε+ gi
∑
k

akgk
∂Zgi,1
∂gk

. (A.3)

The fact that the 1/ε contributions to the beta function have to cancel leads to the following

consistency condition on the counterterms:∑
k

akgk
∂Zgi,2
∂gk

=
∑
k

akgkZgi,1
∂Zgi,1
∂gk

+
∑
km

akgkgm
∂Zgm,1
∂gk

∂Zgi,1
∂gm

. (A.4)

Further conditions can be derived by requiring the cancelation of the higher poles; however,

they do not lead to additional constraints on the two-loop counterterms. The relation (A.4)

is made more explicit by expanding the counterterms by loop-order,

Zgi = 1 +
∑
n

δZ(n)
gi = 1 +

∑
n

∑
l

1

εl
δZ

(n)
gi,l

. (A.5)

Keeping only terms at two-loop order, and using the fact that the counterterms are poly-

nomials in the couplings, we arrive at

∑
k

akgk
∂(δZ

(2)
gi,2

)

∂gk
= 4δZ

(2)
gi,2

,
∑
k

akgk
∂(δZ

(1)
gi,2

)

∂gk
= 2δZ

(1)
gi,2

. (A.6)

We then rewrite eq. (A.4) as

δZ
(2)
gi,2

=
1

2

(
δZ

(1)
gi,1

)2
+

1

2

∑
k

gkδZ
(1)
gk,1

∂(δZ
(1)
gi,1

)

∂gk
. (A.7)

We checked explicitly that this relation is satisfied for all our coupling counterterms.

B Renormalization constants

In this appendix we collect all renormalization constants that were needed in intermedi-

ate steps of the calculation, namely, all field and artificial-mass counterterms. The 1/ε

pole parts of the coupling counterterms give rise to the beta functions, as explained in

appendix A, and are not repeated here. For completeness, however, we show the 1/ε2 pole
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parts. The MS scheme is used throughout. For the one-loop field renormalization constants

we find

δZ(1)
ϕ =

g21
16π2ε

Y 2
ϕ

4
(3− ξB) +

g22
16π2ε

J (jϕ)(3− ξW ) , (B.1)

δZ
(1)
H =

g21
16π2ε

1

4
(3− ξB) +

g22
16π2ε

3

4
(3− ξW )− 1

16π2ε

[
3
(
y2t + y2b + y2c

)
+ y2τ

]
, (B.2)

δZ
(1)
B = − g21

16π2ε

(
Y 2
ϕ

12
D(jϕ) +

20

9
ng +

1

6

)
, (B.3)

δZ
(1)
W =

g22
16π2ε

(
13

3
− 1

6
− ξW −

1

9
J (jϕ)D(jϕ)− 4

3
ng

)
, (B.4)

δZ
(1)
G =

g2s
16π2ε

(
13

2
− 3

2
ξG − ng

)
, (B.5)

δZ(1)
uW

=
g22

16π2ε

1

2
(3− ξW ) , (B.6)

δZ
(1)
QL,i

= − g21
16π2ε

ξB
36
− g22

16π2ε

3ξW
4
− g2s

16π2ε

4ξG
3
− 1

16π2ε

(
y2ui
2

+
y2di
2

)
, (B.7)

δZ(1)
uR,i

= − g21
16π2ε

4ξB
9
− g2s

16π2ε

4ξG
3
−

y2ui
16π2ε

, (B.8)

δZ
(1)
dR,i

= − g21
16π2ε

ξB
9
− g2s

16π2ε

4ξG
3
−

y2di
16π2ε

, (B.9)

δZ
(1)
LL,i

= − g21
16π2ε

ξB
4
− g22

16π2ε

3ξW
4
− 1

16π2ε

y2`i
2
, (B.10)

δZ
(1)
`R,i

= − g21
16π2ε

ξB −
y2`i

16π2ε
. (B.11)

At one-loop, the artificial-mass counterterms are

δZ
(1)

M2
IRA,ϕ

=
1

16π2ε

∑
J

′
λ(J)
D(J)

D(jϕ)
+

1

16π2ε

λϕH
2

, (B.12)

δZ
(1)

M2
IRA,H

=
λϕH

16π2ε

D(jϕ)

4
+

λH
16π2ε

3

2
− 3

16π2ε

[
3
(
y2t + y2b + y2c

)
+ y2τ

]
, (B.13)

δZ
(1)

M2
IRA,B

=
g21

16π2ε

(
Y 2
ϕ

12
D(jϕ)− 40

9
ng +

1

6

)
, (B.14)

δZ
(1)

M2
IRA,W

=
g22

16π2ε

(
1

9
J (jϕ)D(jϕ)− 1

2
ξW −

29

6
− 8

3
ng +

1

6

)
, (B.15)

δZ
(1)

M2
IRA,G

=
g2s

16π2ε

(
−3

4
− 9

4
ξG − 3ng

)
, (B.16)

δZ
(1)

M2
IRA,uW

=
g22

16π2ε

1

2
(ξW − 3) . (B.17)
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We find the following quadratic poles for the two-loop contributions to the scalar and gauge

coupling counterterms:

δZ(2)
g1 =

g41
(16π2)2ε2

(
Y 4
ϕ

384
D(jϕ)2 +

Y 2
ϕ

96
D(jϕ) +

5

36
Y 2
ϕD(jϕ)ng

)
, (B.18)

δZ(2)
g2 =

g42
(16π2)2ε2

(
1

216
D(jϕ)2J (jϕ)2 +

1

72
D(jϕ)J (jϕ)

(
8ng − 43

))
, (B.19)

δZ(2)
yt = − 17

576

g41
(16π2)2ε2

D(jϕ)Y 2
ϕ −

1

16

g42
(16π2)2ε2

J (jϕ)D(jϕ) , (B.20)

δZ(2)
yb

= − 5

576

g41
(16π2)2ε2

D(jϕ)Y 2
ϕ −

1

16

g42
(16π2)2ε2

J (jϕ)D(jϕ) , (B.21)

δZ(2)
yc = − 17

576

g41
(16π2)2ε2

D(jϕ)Y 2
ϕ −

1

16

g42
(16π2)2ε2

J (jϕ)D(jϕ) , (B.22)

δZ(2)
yτ = − 5

64

g41
(16π2)2ε2

D(jϕ)Y 2
ϕ −

1

16

g42
(16π2)2ε2

J (jϕ)D(jϕ) , (B.23)

λ
(J)
i δZ

(2)

λ
(J)
i

=
1

(16π2)2ε2

(
+ g61Λ

(J)(2)
i,60 + g41g

2
2Λ

(J)(2)
i,42 + g22g

4
2Λ

(J)(2)
i,24 + g62Λ

(J)(2)
i,06

+ g41Λ
(J)(2)
i,40 + g21g

2
2Λ

(J)(2)
i,22 + g42Λ

(J)(2)
i,04

+ g21Λ
(J)(2)
i,20 + g22Λ

(J)(2)
i,02 + Λ

(J)(2)
i,00

)
,

(B.24)

with λi = λ
(J)
ϕ , λϕH , λ

′
ϕH , λH , and coefficients

Λ
(J)(2)
ϕ,60 =Y 6

ϕ

(
D(jϕ)

16
− 9

16

)
+Y 4

ϕ

(
1

8
+

5

3
ng

)
, (B.25)

Λ
(J)(2)
ϕ,42 =Y 4

ϕ

[
J (jϕ)

(
9

4
− 1

4
D(jϕ)

)
−J (J)

(
9

4
− 1

8
D(jϕ)

)]
+Y 2

ϕ

(
1

4
+

10

3
ng

)(
J (J)−2J (jϕ)

)
,

(B.26)

Λ
(J)(2)
ϕ,24 =Y 2

ϕ

[
J (jϕ)

(
9J (jϕ)− 1

3
D(jϕ)J (jϕ)+26−4ng

)
−J (J)

(
9

4
J (J)− 1

6
D(jϕ)J (jϕ)+13−2ng

)]
,

(B.27)

Λ
(J)(2)
ϕ,06 =

(
J (J)

2
−J (jϕ)

)(
J (J)

2
−J (jϕ)+

1

2

)
×
(

4

3
J (jϕ)D(jϕ)−36J (jϕ)−86+16ng

)
,

(B.28)

Λ
(J)(2)
ϕ,40 =

Y 4
ϕ

4

9λ(J)ϕ −
D(jϕ)

4
λ(J)ϕ +3

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

−Y 2
ϕ

(
1

8
+

5

3
ng

)
+

3λϕH
8

Y 2
ϕ , (B.29)

Λ
(J)(2)
ϕ,22 =Y 2

ϕ

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

[
3

2

J (J1)J (J)

J (jϕ)
−3
(
J (J1)+J (J)

)
+6J (jϕ)

]
+Y 2

ϕλ
(J)
ϕ

(
6J (jϕ)+3J (J)

)
+

3

8
Yϕλ

′
ϕH

(
J (J)−2J (jϕ)

)
,

(B.30)
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Λ
(J)(2)
ϕ,04 =λ(J)ϕ

[
J (jϕ)

(
37

2
+36J (jϕ)−4ng−

1

3
D(jϕ)J (jϕ)

)
+J (J)

(
3+

3

2
J (J)−6J (jϕ)

)]
+
∑
J1,J2

′
K(J1,J2,J)λ(J2)ϕ

[
6J (J1)

2−24J (jϕ)J (J1)
]
+

3λϕH
2
J (jϕ)

+
∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

[
6J (jϕ)+12J (jϕ)2−3J (J)−3J (J1)+

3

2

J (J1)J (J)

J (jϕ)

]
, (B.31)

Λ
(J)(2)
ϕ,20 =−

9Y 2
ϕ

8

4
∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ +

(
λ(J)ϕ

)2
− 3

128

(
λ′ϕH

)2(J (J)−2J (jϕ)
)(

1+2Y 2
ϕ

)
−

3λ2ϕH
16

(
1+2Y 2

ϕ

)
,

(B.32)

Λ
(J)(2)
ϕ,02 =−J (jϕ)

[
18
∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ +

9

2

(
λ(J)ϕ

)2]

− 3

16

(
λ′ϕH

)2(J (jϕ)+
3

8

)(
J (J)−2J (jϕ)

)
−

3λ2ϕH
2

(
J (jϕ)+

3

8

)
,

(B.33)

Λ
(J)(2)
ϕ,00 =

(
λ
(J)
ϕ

)3
4

+
∑
J1,J2

′
K(J1,J2,J)λ(J1)ϕ λ(J2)ϕ

(
λ(J1)ϕ +λ(J)ϕ

)
+4

∑
J1,J2,J3,J4

′
K(J1,J2,J3)K(J3,J4,J)λ(J1)ϕ λ(J2)ϕ λ(J4)ϕ

+
λ
(J)
ϕ

(
λ′ϕH

)2
32

(
J (J)−J (jϕ)

)
+

(
λ′ϕH

)2
32D(jϕ)

∑
J1

′
λ(J1)ϕ

(
J (J)J (J1)D(J1)

J (jϕ)

−2
(
J (J1)+J (J)

)
D(J1)+4D(J1)J (jϕ)

)
+

(
λ′ϕH

)2
64

(
λH+6y2t +6y2t +6y2t +2y2τ

)(
J (J)−2J (jϕ)

)
+
λϕH

(
λ′ϕH

)2
32

(
J (J)−J (jϕ)

)
+

3

8
λϕHλH+

λ3ϕH
8

+
λ2ϕH

4

(
3λ

(J)
ϕ

2
+3y2t +3y2b+3y2c+y2τ

)
+
λ2ϕH

2

∑
J1

′
λ(J)ϕ

D(J)

D(jϕ)
.

(B.34)

For the Higgs-portal couplings we find

Λ
(2)
ϕH,60 =Y 4

ϕ

(
1

8
D(jϕ)− 9

16

)
−Y 2

ϕ

(
5

16
− 10

3
ng

)
, (B.35)

Λ
(2)
ϕH,42 =−Y 2

ϕ

(
9

4
J (jϕ)+

27

16

)
, (B.36)

Λ
(2)
ϕH,24 =−9

4
J (jϕ)

(
1+Y 2

ϕ

)
, (B.37)

Λ
(2)
ϕH,06 =−J (jϕ)

(
199

4
−8ng+9J (jϕ)− 2

3
J (jϕ)D(jϕ)

)
, (B.38)
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Λ
(2)
ϕH,40 =Y 2

ϕ

(
9

8
λH+

1

4

(
9y2t +9y2b+9y2c+3y2τ

)
+

3

4

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

)

+Y 2
ϕλϕH

(
5

4
−D(jϕ)

32

)
+
Y 4
ϕ

32
λϕH

(
15+5D(jϕ)

)
+λϕH

[
25

32
− 5

6
ng
(
1+Y 2

ϕ

)]
,

(B.39)

Λ
(2)
ϕH,22 =

3J (jϕ)

2
λ′ϕHYϕ+λϕH

(
45

16
+

27

16
Y 2
ϕ +

9

4
J (jϕ)+

15

4
J (jϕ)Y 2

ϕ

)
, (B.40)

Λ
(2)
ϕH,04 =J (jϕ)

(
9

2
λH+3

(
3y2t +3y2b+3y2t +y2τ

)
+3
∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

)
+λϕH

[
393

32
− 3

2
ng+J (jϕ)

(
19−2ng−

1

8
D(jϕ)

)
+

15

2
J (jϕ)2+

5

6
J (jϕ)2D(jϕ)

]
,

(B.41)

Λ
(2)
ϕH,20 =−

9
(
λ′ϕH

)2
64

J (jϕ)
(
1+Y 2

ϕ

)
−

9λ2ϕH
16

(
1+Y 2

ϕ

)
−
λϕH

8

(
35y2t +23y2b+35y2c+21y2τ

)
−

3λϕH
4

Y 2
ϕ

(
3y2t +3y2b+3y2c+y2τ

)
− 9

8
λϕHλH

(
2+Y 2

ϕ

)
− 3

4

(
1+2Y 2

ϕ

)
λϕH

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)
,

(B.42)

Λ
(2)
ϕH,02 =−

(
λ′ϕH

)2
64

J (jϕ)
(
27+36J (jϕ)

)
−
λ2ϕH
16

(
27+36J (jϕ)

)
−λϕH

(
9y2t +9y2b+9y2c+3y2τ

)(9

8
+J (jϕ)

)
− 1

4
λϕHλH

(
27+18J (jϕ)

)
−
(

9

4
+6J (jϕ)

)
λϕH

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)
,

(B.43)

Λ
(2)
ϕH,00 =

(
3
(
λ′ϕH

)2
16

J (jϕ)+3λϕHλH+
3λ2ϕH

4
+λϕH

∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)

)(
3y2t +3y2b+3y2c+y2τ

)
−12λϕHg

2
s

(
y2t +y2b+y2c

)
+
λϕH

4

(
9y4t +9y4b+9y4c−5y4τ

)
+6λϕHy

2
τ

(
y2t +y2b+y2c

)
+
λϕH

2

(
27y2t y

2
b+36y2t y

2
c+36y2by

2
c

)
+

5J (jϕ)

32

(
λ′ϕH

)2
λH+

27

8
λϕHλ

2
H+λϕH

(
λ′ϕH

)2(13

64
+
D(jϕ)

128

)
J (jϕ)

+
9

8
λ2ϕHλH+5λ3ϕH

(
1

16
+
D(jϕ)

32

)
+λϕH

(
3

4

∑
J1

′(
λ(J1)ϕ

)2D(J1)

D(jϕ)
+
∑
J1,J2

′
λ(J1)ϕ λ(J2)ϕ

D(J1)D(J2)

D(jϕ)2

)

+

(
λ′ϕH

)2
16

∑
J1

′
λ(J1)ϕ

(
J (J1)−J (jϕ)

)
D(J1)

D(jϕ)

+

(
3

2
λϕHλH+

3

4
λ2ϕH

)∑
J1

′
λ(J1)ϕ

D(J1)

D(jϕ)
; (B.44)
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Λ
′(2)
ϕH,60 = 0 , (B.45)

Λ
′(2)
ϕH,42 =Y 3

ϕ

(
1

2
D(jϕ)− 9

2

)
−Yϕ

(
7

2
− 40

3
ng

)
, (B.46)

Λ
′(2)
ϕH,24 =−Yϕ

(
113

2
−8ng+18J (jϕ)− 2

3
D(jϕ)J (jϕ)

)
, (B.47)

Λ
′(2)
ϕH,60 = 0 , (B.48)

Λ
′(2)
ϕH,40 =− 1

32
Y 2
ϕ

(
1+Y 2

ϕ

)
λ′ϕHD(jϕ)+

15

32
Y 4
ϕ +λ′ϕH

[
13

32
+

5

4
Y 2
ϕ−

5

6
ng
(
1+Y 2

ϕ

)]
, (B.49)

Λ
′(2)
ϕH,22 =λ′ϕH

[
33

16
+

9

4
J (jϕ)+Y 2

ϕ

(
1

2
J (jϕ)D(jϕ)+

15

4
J (jϕ)+

3

16

)]
+3Yϕ (λH+2λϕH)

+Yϕ
(
18y2t +18y2b+18y2c+6y2τ

)
+3Yϕ

∑
J1

′
λ(J1)ϕ

(
J (J1)−2J (jϕ)

)
D(J1)

J (jϕ)D(jϕ)
, (B.50)

Λ
′(2)
ϕH,04 =λ′ϕH

[
501

32
− 3

2
ng

+J (jϕ)

(
13− 1

8
D(jϕ)−2ng+J (jϕ)

(
15

2
− 1

6
D(jϕ)

))]
,

(B.51)

Λ
′(2)
ϕH,20 =−

λ′ϕH
8

(
35y2t +23y2b+35y2c+21y2τ

)
−

3λ′ϕH
4

Y 2
ϕ

(
3y2t +3y2b+3y2c+y2τ

)
− 3

8
λ′ϕHλH

(
2+Y 2

ϕ

)
− 9

8
λ′ϕHλϕH

(
1+Y 2

ϕ

)
− 3

8

(
1+2Y 2

ϕ

)
λ′ϕH

∑
J1

′
λ(J1)ϕ

(
J (J1)−2J (jϕ)

)
D(J1)

J (jϕ)D(jϕ)
,

(B.52)

Λ
′(2)
ϕH,02 =−

λ′ϕHλϕH

8
J (jϕ)

(
27+36J (jϕ)

)
−
λ′ϕHλH

4

(
9+6J (jϕ)

)
−λ′ϕH

(
9y2t +9y2b+9y2c+3y2τ

)(9

8
+J (jϕ)

)
−λ′ϕH

(
9

8
+3J (jϕ)

)∑
J1

′
λ(J1)ϕ

(J (J1)−2J (jϕ))D(J1)

J (jϕ)D(jϕ)
,

(B.53)

Λ
′(2)
ϕH,00 =

[
λ′ϕHλH+

3λϕHλ
′
ϕH

2
+

1

2

∑
J1

′
λ(J1)ϕ

(
J (J1)D(J1)

J (jϕ)D(jϕ)
−2
D(J1)

D(jϕ)

)]
×
(
3y2t +3y2b+3y2c+y2τ

)
−12λ′ϕHg

2
s

(
y2t +y2b+y2c

)
+

3λ′ϕH
4

(
11y4t +11y4b+11y4c+y4τ

)
+6λ′ϕHy

2
τ

(
y2t +y2b+y2c

)
+
λ′ϕH

2

(
27y2t y

2
b+36y2t y

2
c+36y2by

2
c

)
+

5

4
λϕHλ

′
ϕHλH+

7

8
λ′ϕHλ

2
H+λ′ϕHλ

2
ϕH

(
13

16
+
D(jϕ)

32

)
+
(
λϕH

)3(J (jϕ)D(jϕ)

128
+

5J (jϕ)

64
− 1

64

)
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+
λ′ϕH

4

∑
J1

′(
λ(J1)ϕ

)2(J (J1)D(J1)

J (jϕ)D(jϕ)
−D(J1)

D(jϕ)

)

+
λ′ϕH

4D(jϕ)2

∑
J1,J2

′
λ(J1)ϕ λ(J2)ϕ

(
J (J1)D(J1)J (J2)D(J2)

J (jϕ)2

−2

(
J (J1)+J (J2)

)
D(J1)D(J2)

J (jϕ)
+4D(J1)D(J2)

)
+
λ′ϕHλH

4

∑
J1

′
λ(J1)ϕ

(
J (J1)D(J1)

J (jϕ)D(jϕ)
−2
D(J1)

D(jϕ)

)

+
λϕHλ

′
ϕH

2

∑
J1

′
λ(J1)ϕ

(
J (J1)D(J1)

J (jϕ)D(jϕ)
−D(J1)

D(jϕ)

)
. (B.54)

Our results for the quartic Higgs self coupling are

Λ
(2)
H,60 =

1

16
Y 2
ϕD(jϕ)− 7

16
+

5

3
ng , (B.55)

Λ
(2)
H,42 =

1

16
Y 2
ϕD(jϕ)− 43
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ng , (B.56)

Λ
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16
+ng , (B.57)

Λ
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The full two-loop contributions to the fermion, scalar, and Higgs field renormalization

constants are
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For the two-loop contributions to the electroweak gauge-boson field renormalization con-

stants we consider only contributions of the scalar multiplet. We find
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