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aCERN, Theory Division, 1 Esplanade des Particules,

Geneva 23, CH-1211, Switzerland
bStanford Institute for Theoretical Physics, Department of Physics,

Stanford University, Stanford, CA 94305, U.S.A.

E-mail: a.belin@cern.ch, lewkow@stanford.edu, gabor.sarosi@cern.ch

Abstract: We study a T 2 deformation of large N conformal field theories, a higher di-

mensional generalization of the T T̄ deformation. The deformed partition function satisfies

a flow equation of the diffusion type. We solve this equation by finding its diffusion kernel,

which is given by the Euclidean gravitational path integral in d + 1 dimensions between

two boundaries with Dirichlet boundary conditions for the metric. This is natural given

the connection between the flow equation and the Wheeler-DeWitt equation, on which we

offer a new perspective by giving a gauge-invariant relation between the deformed partition

function and the radial WDW wave function. An interesting output of the flow equation

is the gravitational path integral measure which is consistent with a constrained phase

space quantization. Finally, we comment on the relation between the radial wave function

and the Hartle-Hawking wave functions dual to states in the CFT, and propose a way of

obtaining the volume of the maximal slice from the T 2 deformation.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence

ArXiv ePrint: 2006.01835

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2020)156

mailto:a.belin@cern.ch
mailto:lewkow@stanford.edu
mailto:gabor.sarosi@cern.ch
https://arxiv.org/abs/2006.01835
https://doi.org/10.1007/JHEP09(2020)156


J
H
E
P
0
9
(
2
0
2
0
)
1
5
6

Contents

1 Introduction 1

2 The T 2 flow and the bulk path integral 4

2.1 T 2 deformation and the WDW equation 5

2.2 First order versus second order equations, and need for counter terms 7

2.3 Diffusion kernel for the T 2 flow without potential 10

2.4 Diffusion kernel for the T 2 flow with Ricci potential 14

2.5 Gauge invariance and the path integral measure 17

3 Hartle-Hawking wave-functions and the extremal volume 20

3.1 Wave functions and metric eigenstates in AdS 21

3.2 York time and Lorentzian wave functions 23

3.3 Volume of the maximal slice 24

4 Discussion 25

4.1 Uniqueness of T 2 flow 25

4.2 A fake bulk? 25

4.3 Connection to the Freidel kernel 26

A Scaling Ward identity for the renormalized partition function 26

1 Introduction

The AdS/CFT correspondence [1] relates theories of quantum gravity in asymptotically

Anti-de Sitter space to conformal field theories in one less dimension. The conformal

field theory is often thought of as living on the conformal boundary of the asymptically

AdS spaces where asymptotic boundary conditions are imposed. Following the standard

extrapolate dictionary [2, 3], CFT sources and expectation values of local operators are

related to asymptotic values of bulk fields. The AdS setup nicely avoids the ordeal of trying

to define local observables in quantum gravity, since the observables (in this case the set

of CFT correlation functions) all live in a region where gravity is switched off and where

local operators are perfectly well-defined: the asymptotic boundary.

While this has been exploited to our great advantage in AdS/CFT, it is also a burden:

one would also like to understand how to define observables at some finite distance in

the bulk, which should make sense at least at the semi-classical level (for example, one

can formulate an approximate definition of local operators in the bulk by smearing CFT

operators [4]). More generally, one can ask how to define quantum gravity with boundary

conditions at some finite distance. The radial direction in AdS is related to a UV-cutoff in

the CFT providing an RG-perspective on bulk slices at different radial positions [5], which
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enabled early attempts at formulating a finite-cutoff holography [6, 7]. An important insight

of [6] was that the Wilsonian action in holographic RG necessarily contains double trace

couplings. These couplings are generated as one splits the path integral in the bulk along

some radial surface, because there is an extra integral for fields on the surface compared

to a conventional Wilsonian splitting in momentum space.

Recently, some further progress has been made on understanding holography and quan-

tum gravity with Dirichlet boundary conditions in the context of AdS3/CFT2 [8–10]. The

set-up is to consider an integrable irrelevant deformation of two-dimensional CFTs known

as a T T̄ deformation [11–13] (see for example [14] for a review), and apply it to holo-

graphic CFTs. Similar ideas have been pursued in other dimensions, for example for AdS2

in [15–18] or for d > 2 in [19–21]. For d > 2, it is still an open question how to define the

deformation outside the semi-classical large N limit and we will not attempt to answer this

question here.

In this paper, we study the RG flow equation under a T 2 deformation introduced in [21].

Because of its double-trace nature, the flow equation is of diffusion type (see [22, 23] in

the 2d case), namely it contains a first derivative with respect to the Wilsonian cutoff, but

second derivatives with respect to the sources. It can therefore be solved by a diffusion

kernel, which means the flow equation has a solution of the form

Z(λ)[γ] =

∫
Dγ′L[λ, γ, λ′, γ′]Z(λ′)[γ′], (1.1)

where the Z are generating functions for the deformed theories, λ is the flow parameter

and γ, γ′ are background metrics for the field theory. The solution depends on one piece of

initial data, which in the case of λ′ → 0, is a CFT generating function. In two dimensions,

the kernel is a very simple function which is known due to the work of Freidel [24] (see [8, 25]

in the context of the T T̄ flow).

The diffusion type smearing with a kernel as in (1.1) highlights the peculiar nature of

the cutoff in holographic RG. Instead of directly suppressing high frequency modes, the

cutoff is provided by smearing the background metric on a scale determined by λ. This

makes it impossible to resolve distances smaller than this scale in the deformed theory,1 and

explains the difficulty in defining the cherished observables of local quantum field theory

such as local correlation functions or entanglement entropy in the T 2 deformed theory.

Nevertheless, some progress has been achieved in this direction [28–31].

In higher dimensions, the kernel (1.1) only has a simple form when λ ≈ λ′, in which

case it is just a Gaussian, giving rise to a Hubbard-Stratonovich representation of the T 2

deformation [21]. We will proceed to write a formula for the kernel corresponding to finite

deformations by iterating the infinitesimal kernel. The number of iterations corresponds to

the radial depth in the bulk. Via a sequence of change of variables, we will show that the

iterated kernel is given by a path integral in Euclidean Einstein gravity in d+1 dimensions

between two surfaces with Dirichlet boundary conditions on the induced metric:

L[λ, γ, λ′, γ′] =

∫
qIR= γ

λ2/d

qUV= γ′

λ′2/d

Dm(g)e
1

16πGN
[
∫
M
√
g(R−2Λ)+2

∫
∂M
√
qK− 2(d−1)

`

∫
∂M
√
q]
, (1.2)

1This is related to the idea of regulating by a gradient flow [26, 27].
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whereM is a d+1 manifold with two boundaries, q is the induced metric on the boundaries,

with qUV and qIR corresponding to the two separate surfaces. We will comment on the

measure Dm(g) below. The formula (1.2) has a very simple dependence on λ, λ′, which

appear only in the dictionary between the induced metric and the QFT background metric.2

In particular, λ can be position dependent. Note that the action in (1.2) comes with the

“wrong” sign, a fact anticipated in [6]. This is necessary in order to interpret the left hand

side in (1.1) as a bulk path integral with a finite Dirichlet boundary, since in this case, the

role of the kernel is to “remove” part of the bulk path integral.

Of course, the appearance of the gravitational path integral is not surprising given

the connection of the T 2 flow equation to the Wheeler-DeWitt (WDW) equation [8, 21],

which follows from combining the flow equation with a scaling Ward identity. We will

revisit this connection from a new perspective by giving the precise (gauge independent)

relation between the WDW wave function and the deformed partition function. This will

trivialize the role of the conformal anomaly, and explain how initial data of the first order

flow equation and the second order Wheeler-DeWitt equation are related.

Let us return to the resulting measure Dm(g). In general, the question of the measure

for the gravitational path integral is a subtle problem. Even though this path integral can

only be regarded as defining an effective field theory, the effects of the measure show up in

loops that we are supposed to trust bellow the scale of new physics. A snapshot of different

proposals for the measure is [32–38]. In solving the flow induced by the T 2 deformation,

we find a measure Dm(g) that can be interpreted as coming from integrating out the

momentum from a Hamiltonian path integral with flat measure DqijDP ijDNDN i, where

qij and P ij are the conjugate variables in the ADM formulation [39], while N and N i are

the lapse and shift (we refer to [34, 35, 40] for discussions of the Hamiltonian path integral

in GR). As explained in [40], this measure is anomalous under radial diffeomorphisms but

invariant under gauge transformations generated by the constraints via the Poisson bracket.

These two only agree on-shell. In particular, Dm(g) is different than the diffeomorphism

invariant measure [37, 38], used e.g. on the string worldsheet.

While the gravitational path integral in (1.2) is appealing, its connection to AdS/CFT

is not completely clear. In particular, the form of the kernel just follows from the form of

the flow equation which is well defined whenever the T 2 operator can be defined, which

only requires large N and not strong coupling. Even at strong coupling, most holographic

theories (e.g. N = 4 SYM) have light fields interacting with the metric, dual to single trace

operators. In both of these cases, the bulk is not just Einstein gravity, nevertheless we

can still turn on the T 2 deformation and generate the path integral in (1.2). This suggests

that the bulk generated in (1.2) is “fake”, or at least that there are extra conditions on the

flow that must be satisfied in order for it to really describe the bulk. We will speculate on

possible answers to this question.

In this work, we restricted our attention to the T 2 deformation while sourcing only

the background metric. Following [6, 9, 21], we expect that turning on appropriate double-

2We have suppressed some holographic counter terms in (1.2) for simplicity. In odd boundary dimensions,

these also depend only on q but in even dimensions they introduce extra dependence on λ, related to the

conformal anomaly. We will discuss this in the main text.
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trace deformations for other single-trace operators gives rise to diffusion kernels calculated

by path integrals involving gravity coupled to matter. We leave this for future work.

Finally, we will offer some thoughts on a related object, the Hartle-Hawking wave

function [41] of states in AdS gravity. The Hartle-Hawking wave function is a wave function

on the intrinsic geometry of initial data (Cauchy) slices. It is calculated by a Euclidean

path integral, and in the case of asymptotically AdS gravity, the Euclidean manifold has a

boundary. Therefore, one calculates this wave function by putting boundary conditions on

both the initial data surface and the asymptotic Euclidean boundary. The latter correspond

to sources in the CFT preparation of the state, so these wave functions are dual to Euclidean

path integral states [42–45] in the CFT. We will argue that the radial wave function has

built in knowledge of these HH wave functions and that the HH wave functions can be

thought of as overlaps between Euclidean path integral states and metric “eigenstates”.

The metric eigenstates are defined from linear combinations of boundary path integral

states using the diffusion kernel (1.2). Using this picture, we propose a formula for the

volume of the extremal slice from the T 2 deformation.

The paper is organized as follows: we discuss the T 2 flow equation, its connection to

the WDW equation and its solution in terms of a diffusion kernel in section 2. We sketch

the connection to the Hartle-Hawking wave functions and the volume of the maximal slice

in section 3. We end with a discussion of some open problems in section 4.

2 The T 2 flow and the bulk path integral

In this section, we will analyse the flow equation introduced in [21]. This flow equation

describes a purely field theoretic deformation in terms of an effective field theory operator

for large N CFTs, even though [21] derives it from the bulk. The strategy in [21] to obtain

the deforming operator is to relate its expectation value to the trace of the stress tensor via

a scaling Ward identity, and then express this trace using the holographic stress tensor [46]

and the Hamiltonian constraint. Because of this, the flow equation encodes bulk equations

of motion for gravity, and contains explicit dependence on background fields (sources) and

this dependence is partially encoded by holographic counter terms.

We will start by reciting the flow equation from [21], with a slight modification in

the treatment of counter terms and the conformal anomaly, after which we derive the

WDW equation from it. In some sense, this is running the argument of [21] backwards,

but the process will highlight that the relation between the deformed partition function

and the radial WDW wave function is gauge invariant, even though the deformation was

originally obtained in the Fefferman-Graham gauge. We will then analyse this relation via

a simple toy example, explaining how initial data for the flow and the WDW equation

are related, and giving a new perspective on holographic counter terms. After this, we

move on to derive the diffusion kernel for the flow equation. We do this in several steps of

increasing complexity.

For most of what follows, we will use the convention 16πGN = 1 except when explic-

itly mentioned.
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2.1 T 2 deformation and the WDW equation

We wish to analyze flow equations of the form considered in [21].

d

dλ
logZ(λ)

ren(γ) =

∫
ddx
√
γ〈X〉, (2.1)

where the deforming operator is

X = G
(γ)
ijkl

(
T ij +

2
√
γ

δSc.t
δγij

)(
T kl +

2
√
γ

δSc.t
δγkl

)
+

1
√
γ

(
ad

1

λ

√
qRq +

δSc.t
δλ

)
(2.2)

where G
(γ)
ijkl = 1

2(γikγjl +γjkγil)− 1
d−1γijγkl and qij = λ−2/dγij and Rq is the Ricci scalar of

qij . We will leave the constant ad unspecified for now and we will see how it is determined

shortly. The action Sc.t is the holographic counter term action [46–48], but without the

boundary cosmological constant. That is, we only include terms in our definition of Sc.t
that contain derivatives of the metric. In odd dimensions, it depends only on qij = λ−2/dγij
but in even dimensions it includes an anomaly term [47, 48]

Sc.t.[γ, λ] = S̃c.t.[λ
−2/dγ] +

1

d

∫
log λ

√
γAd[γ], (2.3)

where Ad[γ] is the local conformal anomaly.3

This flow equation applies for the usual partition function, that we denote by Z
(λ)
ren [γ],

standing for “renormalized”. The CFT partition function corresponds to zero deformation,

i.e. ZCFT [γ] = Z
(λ=0)
ren [γ]. Let us also introduce a bare partition function

Z(λ)[γ] = eSc.t[γ,λ]Z(λ)
ren [γ]. (2.4)

This bare partition function is finite for λ 6= 0, and it is a natural object from an RG

perspective when a UV regulator is present, for example if we flow to the continuum with a

lattice system. In such cases, the bare partition function usually diverges in the continuum

limit and needs counter terms to be well-defined, but it is the natural object to consider

in the presence of the regulator (see [49] for a similar discussion).

The flow equation for the bare partition function is simpler, since it does not contain

the counter term variations anymore4

δ

δλ
Z(λ)(γ) =

4
√
γ
G

(γ)
ijkl

δ

δγij

δ

δγkl
Z(λ)(γ) + ad

1

λ

√
qRqZ

(λ)(γ). (2.5)

In this equation we have now allowed for a spatially varying deformation parameter λ(x).

This is a diffusion equation with potential, which can be solved formally by a diffusion

kernel that we will explicitly determine in this paper.

It is clear that the bare partition function Z should be related to the (radial) WDW

wave function [5], but the latter should only depend on the metric γ and not the flow

3Note that ref. [21] has a slightly different flow equation than our equation (2.2) in the treatment of

counter terms. We will explain this difference at the end of this section.
4We note that similar equations have appeared before in the holographic RG context in [6, 50].
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parameter λ. Introducing λ is kind of a useful redundancy, since the diff-invariant quantity

that naturally keeps track of the radial position is the scale
√
γ, see e.g. [9]. To go to

the WDW wave function Ψ, we notice that eq. (2.5) preserves the non-anomalous scaling

Ward identity

Z(α−dλ)[α−2γ] = Z(λ)[γ]. (2.6)

Crucially, (2.6) is satisfied by conformal initial data to the flow, since near the conformal

point λ ≈ 0, the conformal anomaly cancels in the bare partition function (2.4) with the

contribution from the counter term (2.3), see appendix A. This suggests to make a scaling

ansatz for Z along the lines of [24]:

Z(λ)[γ] = Ψ[γ/λ
2
d ] (2.7)

This fixes the notation for the three main objects of interest in this paper, namely the

bare and renormalized partition functions Z and Zren, as well as the WDW radial wave-

function Ψ.

Putting this ansatz into the flow equation (2.5), the λ dependence cancels and we get[
2

d
qij

δ

δqij
+

4
√
q
G

(q)
ijkl

δ

δqij

δ

δqkl
+ ad
√
qRq

]
Ψ[qij ] = 0. (2.8)

This is the WDW equation in slight disguise. We can put it back into more conventional

form following [8]. We first need to do a rescaling of the metric (so that it matches the

induced metric that will later come out from the path integral derivation), qij 7→
(

4d
`

)2/d
qij .

The new equation for Ψ as a function of this rescaled q is[
2

`
qij

δ

δqij
+

1
√
q
G

(q)
ijkl

δ

δqij

δ

δqkl
+

1

4
ad

(
4d

`

)2 d−1
d √

qRq

]
Ψ[qij ] = 0. (2.9)

Now we want to complete squares in the derivatives. Introducing

π̂ij =
δ

δqij
− d− 1

`

√
qqij , (2.10)

we have that[
1
√
q
G

(q)
ijklπ̂

ij π̂kl +
1

4
ad

(
4d

`

)2 d−1
d √

qRq +
d(d− 1)

`2
√
q + contact terms

]
Ψ[qij ] = 0, (2.11)

and we must choose ad so that 1
4ad

(
4d
`

)2 d−1
d = 1 in order to recover the WDW equation.

The part “contact terms” refers to things proportional to [π̂(x), q(x)] ∼ δ(0). These are

ordering ambiguities in the WDW equation from a canonical quantization point of view.

One might be tempted to say that the T 2 deformation fixes these ambiguities (so that we

need to quantize the WDW equation in a way that we get (2.9) without contact terms), but

since the point splitting regularization of the T 2 operator is not completely understood,

there could in principal be other contact terms induced by it.
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Note that there is nothing special in the shifted identification (2.10), it is only there

because we equated Z with Ψ without stripping the leading counter term, that is, the

boundary cosmological constant. We could equivalently just use the identity

δ

δqij
= e2 d−1

`

∫ √
q

(
δ

δqij
+
d− 1

`

√
qqij

)
e−2 d−1

`

∫ √
q, (2.12)

set π̂ij = δ
δqij

and regard the flow equation for the rescaled wave function Ψ 7→ e−2 d−1
`

∫ √
qΨ.

This completes the square the same way, therefore we still have the same contact terms in

going from (2.9) to (2.11).

Of course the above derivation is just running backwards the main argument of ref. [21].

The key new point we will need later is that the WDW wave function is related to the bare

partition function via the scaling relation (2.7), which is now a gauge invariant statement,

since the wave function Ψ obeys the constraints5 and only depends on the intrinsic geometry

of the surface.

Let us return to comment on how our flow equation (2.2) slightly differs from the one

written in [21]. In [21], only the anomaly free counter term action S̃c.t appears in (2.2)

via C̃ij = 2√
q
δS̃c.t.
δqij

and δS̃c.t
δλ expressed via C̃ii , in other words, their flow equation does not

include the variations of the log λ terms in (2.3). For the γij variations this is harmless,

since the γij variation of the anomaly action is zero in d = 2, and scheme dependent in

d = 4, 6 as explained in [48]. Here we choose a scheme such that these variations are

included in (2.2) so that we can treat every dimension in a unified manner and work with a

non-anomalous Ward identity for our bare stress tensor. On the other hand, the λ variation

of the log λ term does make a difference compared to [21], for example in d = 2 (with the

choice of ad defined after (2.11)) we have X = G
(γ)
ijklT

ijT kl ≡ T T̄ because the Ricci term

cancels with the counterterm variation in (2.2). Note that for the holographic Brown-York

stress tensor to be finite, these log divergences must be subtracted [48].

2.2 First order versus second order equations, and need for counter terms

We have seen that solutions of the T 2 flow equation (2.5) that obey the scaling relation (2.6)

also solve the WDW equation. This suggests that we can generate solutions to the WDW

equation by solving a diffusion type equation. A confusing point is that the diffusion

equation has one initial data, while a second order equation like the WDW equation has

two independent solutions, typically with two different type of growths as we take the scale

factor to infinity [24]. Let us start by understanding this issue via a toy example, that will

also highlight the importance of the counter terms.

The toy example will be the 1d the diffusion equation

∂tZ(t, x) = ∂2
xZ(t, x). (2.13)

The equation preserves the scaling property Z(α2t, αx) = Z(t, x), which is analogous to

the Ward identity (2.6). This suggests that there are special solutions Z(t, x) = ψ(x/
√
t).

5The momentum constraint is trivially equivalent with the conservation of the bare stress tensor, or

coordinate invariance of (2.4).
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Of course, not all solutions are of this form. The scaling property puts constraint on the

initial data

Z(0, αx) = Z(0, x) → Z(0, x) = c1 + c2Θ(x) or Z(0, x) =∞. (2.14)

Indeed, one can plug Z(t, x) = ψ(x2/t) into the diffusion equation to obtain

a

2
ψ′(a) + ψ′′(a) = 0 (2.15)

which is a second order equation, and in our example is analogous to the WDW equation.

The general solution is ψ = c1 + c2Erf(a/2), which as a solution of the diffusion equation,

indeed corresponds to the initial data Z(0, x) = c1 + c2Θ(x).

For gravity, we will want to think about x as the metric and t as some “radial co-

ordinate” that is redundantly introduced to keep track of the scale factor. In that case,

the situation where the scaling symmetry ψ(0, αx) = ψ(0, x) enforces ψ(0, x) =∞ will be

more relevant: we can only give initial data for the diffusion in an asymptotic sense, i.e.

at the conformal boundary. To handle this, it is convenient to introduce a “counter term

formalism”. Let us illustrate this via a slight generalization of the toy example. We want

to consider diffusion with the scale invariant potential

∂tZ = ∂2
xZ −

1

t
V

(
x2

t

)
Z. (2.16)

This equation still preserves the scaling property Z(α2t, αx) = Z(t, x). On the scale in-

variant ansatz Z(t, x) = ψ(x/
√
t) we get again a second order equation for ψ(a). Writing

ψ(a) = e−a
2/8g(a) to eliminate the first derivative, in analogy to the canonical transforma-

tion between the two forms of the WDW equation (2.9) and (2.11), the equation becomes

g′′(a)− 1

16
[4 + a2 − 16V (a2)]g(a) = 0. (2.17)

To be very concrete, let us pick a potential that gives an equation relevant for a mini

superspace WDW equation [49, 51], V (a2) = 1/4− a+ a2/16. This results in the equation

ag(a)− g′′(a) = 0, (2.18)

whose solutions are the Airy functions

g(a) = C1Ai(a) + C2Bi(a). (2.19)

Since a = x/
√
t, the small t regime means a → ∞, where the above solution has asymp-

totic form

g(a) =
C1

2
√
π
a−1/4e−

2
3
a3/2 +

C2√
π
a−1/4e

2
3
a3/2 , (2.20)

i.e. there is a decaying and a growing mode. This gives the small t asymptotics of the

solution to the corresponding diffusion equation. The key point is that this solution cannot

be reproduced from the original diffusion equation (2.16) with regular initial data at t = 0.

– 8 –
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We can however obtain each branch of the two solutions from a diffusion equation by

introducing “counter terms”. That is, we reintroduce a2 = x2/t and define

ZIR
ren(t, x) = (x2/t)

1
8 e

1
8
x2

t
− 2x3/2

3t3/4 Z(t, x) = (x2/t)
1
8 e
− 2x3/2

3t3/4 Bi(x/
√
t)

ZUV
ren (t, x) = (x2/t)

1
8 e

1
8
x2

t
+ 2x3/2

3t3/4 Z(t, x) = (x2/t)
1
8 e

2x3/2

3t3/4 Ai(x/
√
t).

(2.21)

These functions have regular initial data at t = 0 and give regular solutions for t > 0. The

allowed scale invariant initial data is just a constant, ZIR(0, x) = Θ(x)/
√
π, ZUV(0, x) =

Θ(x)/(2
√
π).

Rescaling Z(t, x) by such counter terms changes the diffusion equation that Zren solves,

but it is only a sort of canonical transformation. The Zren functions satisfy a diffusion

equation similar to that of Z, but with a modified potential, and ∂x replaced by “covariant”

derivatives. More generally, if the original equation is (2.16) and we put Zren(t, x) =

e−Sc.t.(x2/t)Z(t, x), the new equation is

∂tZren = [∂x + ∂xSc.t.]
2Zren − [

1

t
V (

x2

t
) + ∂tSc.t.]Zren. (2.22)

The Zren functions in (2.21) each solve such a modified diffusion equation on the half line6

x > 0 with regular boundary condition at t = 0. These equations are the mini superspace

analogues of the T 2 flow equation (2.5) of [21].

This example illustrates that in order to translate the WDW equation into a diffusion

type RG-flow equation with meaningful initial data, we are forced to introduce counter

terms and consider the field theoretic flow equation of [21]. There is a different “renormal-

ized” flow equation for the two different branches of the solution to the WDW equation,

and they differ by the choice of Sc.t.(x
2/t). In the above example, we should think of g(a)

(or ψ(a)) as the radial WDW wave function, Z(x, t) as the bare partition function, and

ZIR
ren as the renormalized partition function.

Turning to the full WDW equation (2.11), Freidel shows in [24] that a generic solution

to this equation in Euclidean AdS has the asymptotic form

Ψ[γ/λ
2
d ] ≈ eSc.t.Z+[γ] + e−Sc.t.Z−[γ] (2.23)

as we take λ→ 0. Here, Z± are functionals satisfying the anomalous scaling Ward identi-

ties. The possible anomaly arises because the allowed asymptotics to the WDW equation

break the scaling Ward identity (2.6).

Sc.t. is the same holographic counter term action as in (2.3)7

Sc.t. = S̃c.t.[γ/λ
2
d ] +

1

d

∫
log λ

√
γAd[γ], (2.24)

6The variable x would correspond to the volume density in a WDW equation, so it is natural to restrict

to positive values.
7In the analysis of (2.11) following [24], S̃c.t must also include the boundary cosmological constant. It is

understood that after we do the canonical transformation (2.12), the WDW equation is (2.9), we no longer

include the boundary cosmological constant in S̃c.t. The price is that the two asymptotics in (2.23) are no

longer the inverse of each other. See the transition between g(a) and ψ(a) in the mini-superspace example.
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where S̃c.t. is the counter term action that only depends on curvature invariants of its single

argument, while Ad is the local conformal anomaly. The role of the anomaly piece is to

make sure that the bare partition function is invariant under the operation (2.6). This

counter term action is the same as the one derived in [47, 48], but we emphasize that [24]

obtains this by analysing the asymptotic form of the solutions of the WDW equation for

large scale factor, which does not require fixing a gauge.

2.3 Diffusion kernel for the T 2 flow without potential

Hubbard-Stratonovich representation. Let us first discuss a simplified flow equation

that we get from (2.5) by omitting the Ricci potential:

δ

δλ
Z(λ)(γ) =

4
√
γ
G

(γ)
ijkl

δ

δγij

δ

δγkl
Z(λ)(γ). (2.25)

As shown in [21] (and [8, 22] in the 2d case), the deformation by the G
(γ)
ijklT

ijT kl oper-

ator can be represented as a coupling to a random background metric, via a Hubbard-

Stratonovich (HS) transformation. The precise way to think about this representation is

that it gives the evolution of Z(λ) under an infinitesimal change in λ. That is, (2.25) is

equivalent with the recursive rule8

Z(λ+δλ)[γ] =
1

N [γ]

∫
Dhe

1
16δλ

∫
ddx
√
γ(h2−hijhij)Z(λ)[γ + h],

N [γ] =

∫
Dhe

1
16δλ

∫
ddx
√
γ(h2−hijhij).

(2.26)

The factor of N [γ] is necessary to make sure that the l.h.s. and the r.h.s. agree in the

δλ→ 0 limit. The hij is the random HS metric.

Let us first show that (2.26) is indeed equivalent to (2.25). To obtain δ
δλZ

(λ), we need

to take δλ → 0 limit in (2.26). In this limit, we can evaluate the h integral by saddle

point. It turns out that to evaluate the λ derivative exactly, we need to care about the one

loop determinant. Let us spell this calculation out in a little more detail because of this

subtlety. We start by rescaling the integration variable h→ 4δλh in (2.26) and write it as

Z(λ+δλ)[γ]

Z(λ)[γ]
=

∫
Dhe−δλh·Γ·h+δλS1·h+ δλ2

2
h·S2·h+O(δλ3)∫

Dhe−δλh·Γ·h
. (2.27)

Here, · refers to integral kernel plus matrix index product, and we have defined the

shorthand

Γ = δ(x− y)
√
γ

[
1

2
(γikγjl + γjkγil)− γijγkl

]
,

S1 = 4
δ logZ(λ)

δγij
= 2
√
γ〈T ij〉,

S2 = 16
δ2 logZ(λ)

δγij(x)δγkl(y)
= 4
√
γx
√
γy〈T ij(x)T kl(y)〉γ,conn.

(2.28)

8Note that the covariance matrix of the Gaussian bellow is not positive definite. This is related to

the usual conformal mode problem of the Euclidean gravitational path integral. We will not analyse this

problem in this paper, just simply assume that one can pick complex contours such that the integrals can

be evaluated.
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We can evaluate the Gaussian approximation to the integral as δλ→ 0 as

Z
(λ+δλ)
QFT [γ]

Z
(λ)
QFT[γ]

=

√
det Γ

det(Γ− δλ
2 S2)

exp

[
1

4
δλS1 · Γ−1 · S1 +O(δλ2)

]
(2.29)

The subtlety is that while S2 only contributes to quadratic order in δλ in the exponent, it

has a linear order contribution from the one loop determinant, which we can expand as√
det Γ

det(Γ− δλ
2 S2)

≈ 1 +
1

4
δλTr(Γ−1 · S2) +O(δλ2), (2.30)

which leads to the result

Z
(λ+δλ)
QFT [γ]

Z
(λ)
QFT[γ]

= 1 +
δλ

4
[S1 · Γ−1 · S1 + Tr(Γ−1 · S2)] +O(δλ2)

= 1 + δλ

∫
ddx
√
γ

(
γikγjl −

1

d− 1
γijγkl

)
〈T ij(x)T kl(x)〉+O(δλ2),

(2.31)

where we have used that Γ−1 = 1√
γG

(γ)
ijklδ(x−y) = 1√

γ [1
2(γikγjl+γjkγil)− 1

d−1γijγkl]δ(x−y).

The two point function entering is the non-connected one, the effect of the S2
1 terms is to

cancel the disconnected piece from S2 ∼ 〈T 2〉 − 〈T 〉2. This leads to the flow equation

d

dλ
logZ

(λ)
QFT[γ] =

∫
ddx
√
γ(γikγjl −

1

d− 1
γijγkl)〈T ij(x)T kl(x)〉. (2.32)

which is equivalent to (2.25).

Iterating the kernel: constant λ. Given the recursive relation (2.26), we can formally

construct the diffusion kernel, by simply iterating it.9 For simplicity, let us first assume

that λ is a constant, and we iterate with the same constant δλ steps. That is, instead

of (2.25), we are solving the integrated version of the equation

d

dλ
Z(λ)(γ) =

∫
ddx

4
√
γ
G

(γ)
ijkl

δ

δγij

δ

δγkl
Z(λ)(γ). (2.33)

Let us set δλ = λ/N for some large number N . We can iterate (2.26) N times to get

Z(λ)[γ] =

∫ N∏
k=1

Dhk
N (γ +

∑k−1
l=0 hl)

× exp

 1

16

N

λ

N∑
k=1

∫
ddx

√√√√∣∣∣∣γ +

k−1∑
l=0

hl

∣∣∣∣[h2
k − (hk)ij(hk)

ij ]

Z(0)

[
γ +

N∑
k

hk

]
.

(2.34)

The Z(0) is the initial data of the flow. As we have discussed in the previous section, there

will be no healthy initial data for this simplified flow that is consistent with the scaling

9Related ideas and calculations can be found in [25, 52–55].
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property (2.6). Such initial data only exists for the renormalized flow equation, so we

imagine for now that we stop at some finite small λ. We then define the rescaled integral

variable via

(hk)ij =
λ

N
Hij

(
λ
k

N

)
. (2.35)

Note that we interpret Hij as having an extra variable η ≡ λ k
N , hence living in one

dimension higher than hij . With this reparametrization, all the scalings work out nicely

and we can turn all the sums into integrals in the N →∞ limit, giving

Z(λ)[γ] =

∫ ∏
0<η<λ

DH(η)

N (γ +
∫ η

0 dµK(µ))

× exp

(
1

16

∫ λ

0
dη

∫
ddx

√∣∣∣∣γ +

∫ η

0
dµH(µ)

∣∣∣∣[H(η)2 −H(η)ijH(η)ij ]

)

× Z(0)

[
γ +

∫ λ

0
dηH(η)

]
.

(2.36)

The final step is to change variable in the path integral to

γ(η)ij = γij +

∫ η

0
dµH(µ)ij . (2.37)

We have

H(η)ij = ∂ηγ(η)ij , (2.38)

and the Jacobian is
δγ(η)ij
δH(µ)kl

= δikδjlθ(η − µ), (2.39)

which is field independent, so there is no Jacobi determinant in the path integral measure.

This way, we arrive at

Z(λ)[γ] =

∫
γ(0)=γ

∏
0≤η≤λ

Dγ(η)

N [γ(η)]

× exp

(
1

16

∫ λ

0
dη

∫
ddx
√
|γ(η)|[(∂ηγ(η))2 − ∂ηγ(η)ij∂ηγ(η)ij ]

)
Z(0)[γ(λ)]

=

∫
Dγ0L[γ, γ0]Z(0)[γ0],

(2.40)

where in the last line we have defined the kernel

L[γ, γ0] =

∫
γ(0)=γ,γ(λ)=γ0

∏
0≤η≤λ

Dγ(η)

N [γ(η)]

× exp

(
1

16

∫ λ

0
dη

∫
ddx
√
|γ(η)|[(∂ηγ(η))2 − ∂ηγ(η)ij∂ηγ(η)ij ]

)
.

(2.41)

Notice that the combination in the exponential is K2 −KijK
ij , where Kij is the extrinsic

curvature for the constant η slices of a geometry dη2 +γij(η)dxidxj . This is a path integral
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in d + 1 dimension, but not a covariant one: it only includes the kinetic terms of the

Einstein action. To obtain a gravitational path integral, we need to include the Ricci

potential as in (2.5), to which we turn in section 2.4. This potential will be fixed by

requiring a consistent solution to (2.5) in the case where λ = λ(x) is allowed to depend on

the x coordinates.

Iterating the kernel: position dependent λ. We can repeat the above exercise when

λ(x) depends on the d-dimensional coordinates x, and in this case we can choose an iteration

scheme, where each step is a different function δλk(x) such that

λ(x) =

N∑
k=1

δλk(x). (2.42)

We want to turn sums into integrals as before, therefore let us introduce the variable

η = k/N , dη = 1/N , η ∈ [0, 1], such that

δλk(x) =
1

N
µ

(
k

N
, x

)
≡ dηµ(η, x),

λ(x) =

∫ 1

0
dηµ(η, x),

(2.43)

where µ(η, x) is now a d + 1 dimensional function parametrizing the path in λ space. As

before, we first change variable to Hij via

(hk)ij = δλkHij

(
k

N
, x

)
≡ dηµ(η, x)Hij(η, x), (2.44)

and then to

γij(η, x) = γij(x) +

∫ η

0
dη′µ(η′, x)Hij(η

′, x). (2.45)

One can easily check that while the independent Jacobians depend on µ(η, x), the combined

Jacobian is independent of it. Repeating the manipulations leading to (2.40), we arrive at

Z(λ(x))[γ] =

∫
γ(0)=γ

∏
0≤η≤1

Dγ(η)

N [µ(η), γ(η)]

× exp

(
1

16

∫ 1

0
dη

∫
ddx

√
|γ(η)|

µ(η, x)
[(∂ηγ(η))2 − ∂ηγ(η)ij∂ηγ(η)ij ]

)
Z(0)[γ(1)]

=

∫
Dγ0L[µ, γ, γ0]Z(0)[γ0]. (2.46)

This new kernel L[µ, γ, γ0] depends on µ(η, x), i.e. the path that we took to build the iter-

ation. This is a highly undesirable situation, since it should only depend on the endpoints

of the path

λ(η, x) =

∫ η

0
dη′µ(η′, x), (2.47)

that we are taking in coupling space. This path dependence is due to the lack of d + 1

dimensional diffeomorphism invariance in the path integral, and is related to the failure
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of (2.25) to satisfy certain Wess-Zumino consistency conditions, see e.g. [56, 57]. We will see

in the following section that adding the Ricci potential as in (2.5) with a specific coefficient

solves part of the problem, namely it turns the exponential into a path-independent diff-

invariant object.

Notice however that there is also a residual dependence on the field µ(η, x) in the

measure factor N [µ(η), γ(η)]. This dependence comes directly from writing δλ = dηµ in

the definition (2.26) and it will turn out to be crucial as we explain in section 2.5.

For the remainder of this paper, we will assume we are working with a spatially varying

coupling λ(x), but we will often not write the x-dependence explicitly to avoid cluttering

expressions. We will also sometimes use λ for the path in coupling space λ(η, x) of (2.47),

which should be clear from context.

2.4 Diffusion kernel for the T 2 flow with Ricci potential

We will now show that there is a simple way to restore path-independence in the kernel

derived in the previous section. This section will focus on the exponential and we will see

that adding the appropriate potential to the diffusion equation will restore diffeomorphism

inviarance in an elegant way: the kernel will simply become the path-integral with the

d+ 1-dimensional Einstein-Hilbert action.

We want to iterate the flow equation (2.5). To do so, we consider the slight modification

of the Hubbard-Strotonovich trick

Z(λ+δλ)[γ] =
e
∫
ddxδλV (λ,γ)

N [γ]

∫
Dhe

∫
ddx 1

16δλ

√
γ(h2−hijhij)Z(λ)[γ + h] . (2.48)

Repeating the steps after (2.26), we find that this recursion relation is equivalent to the

flow equation

δ

δλ
Z(λ)(γ) =

4
√
γ
G

(γ)
ijkl

δ

δγij

δ

δγkl
Z(λ)(γ) + V (λ, γ)Z(λ)(γ). (2.49)

For this potential to preserve the scaling symmetry (2.6) of the flow equation, we must

demand that

V (α(x)dλ, α(x)2γ) = α(x)−dV (λ, γ) . (2.50)

The following Ricci potential preserves this symmetry

V (λ, γ) = adλ
−1
√
γ/λ2/dRγ/λ2/d (2.51)

where the prefactor of λ−1 was chosen precisely for this purpose. Adding this Ricci potential

clearly has no impact on the path-integral measure, so the only thing left to do is track its

effect on the exponential as we iterate. It is convenient in what follows to work with what

will become an induced metric

qij(x) = γij(x)/λ(x)2/d . (2.52)

The iteration yields the following contribution to the action

ad

∫
dη∂η log λ(η, x)

∫
ddx
√
q(η)Rq(η) , (2.53)
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where

qij(η) =
γij +

∫ η
0 dη

′µ(η′)Hij(η
′)

(λ0 +
∫ η

0 dη
′µ(η′))2/d

(2.54)

We will now see that this term can be recombined with the rest of the action into the

Einstein-Hilbert action, up to terms that will have a nice interpretation. This will also

make the action manifestly path-independent. To see this, consider the following metric

ansatz

ds2 = N2(η, x)dη2 + Ω2(η, x)γij(η, x)dxidxj ≡ gabdxadxb . (2.55)

With this gauge choice, we have on a fixed η surface

√
g(K2 −KijKij) =

√
γ

N

(
d(d− 1)Ωd−2(Ω̇)2 + (d− 1)Ωd−1Ω̇γ̇ +

Ωd

4

(
γ̇2 − γ̇ij γ̇ij

))
,

(2.56)

where Kij is the extrinsic curvature tensor. We can use this relation to eliminate γ̇ij

in (2.46). We therefore obtain the total action to be

∫
dη

∫
ddx

√
g

µ
[
N

4Ωd
(K2−KijKij)]+ad

∫
dη∂η log λ

∫
ddx
√
γ/λ2/dRγ/λ2/d+Srest , (2.57)

with

Srest = −1

4

∫
dη

∫
ddx

√
γ

µ

(
d(d− 1)

(Ω̇)2

Ω2
+ (d− 1)

Ω̇γ̇

Ω

)

= −1

4

∫
dη

∫
ddx

√
γ

µ

(
d(d− 1)

(Ω̇)2

Ω2
+ 2(d− 1)

Ω̇∂η
√
γ

Ω
√
γ

) (2.58)

Analyzing (2.57), demanding that the λ and µ dependence disappears from the action

leads to the following parametrization

Ω(η, x) = bλ(µ, x)−1/d , N(η, x) = cµ(η, x)λ(η, x)−1 , (2.59)

where b, c are constants that are undetermined at this point. Note that this way, the

induced metric on a constant η surface is simply b2q with q defined in (2.54). With this

choice of parametrization, the action then becomes

c

4bd

∫
dη

∫
ddx
√
g(K2 −KijKij) +

ad
bd−2c

∫
dη

∫
ddx
√
gRb2q + Srest (2.60)

Note that each of the first two terms are separately invariant under diffeomorphism of the

form η → f(η), but they are not invariant under diffeomorphism of the form η → f(η, x).

To restore full d + 1-dimensional diff-invariance we require a non-zero ad which satisfies
c

4bd
= ad

bd−2c
. We will denote c

4bd
= ξ, which together with the Gauss-Codazzi equation,
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gives us10

S = ξ

∫
dη

∫
ddx
√
gRg + 2ξ

∫
ddx
√
b2qK

∣∣∣∣
endpoints

+ Srest . (2.62)

We have thus recovered the Einstein-Hilbert action with the Gibbons-Hawking term,

for now without the cosmological constant. We will see that in fact it comes from Srest.

Plugging (2.59) into the definition of Srest, we find

Srest =
1

4bdc

d− 1

d

∫
dη

∫
ddx
√
g +

1

2bd
d− 1

d

∫
ddx
√
b2q

∣∣∣∣
endpoints

=
ξ

c2

d− 1

d

∫
dη

∫
ddx
√
g +

2ξ

c

d− 1

d

∫
ddx
√
b2q

∣∣∣∣
endpoints

. (2.63)

We can now set c = `AdS
d and ξ = 1 which fixes all the free parameters. Note that this

precisely matches the choice of ad obtained below (2.11). Reinstating the factor of 16πGN ,

we obtain

Stot =
1

16πGN

∫
dηddx

√
g(R− 2Λ) +

[
1

8πGN

∫
ddx
√
b2q

(
K +

d− 1

`AdS

)]
endpoints

, (2.64)

namely the Euclidean Einstein-Hilbert action with cosmological constant, along with the

Gibbons-Hawking term and the leading holographic counterterm. The overall sign of the

action is the opposite of the usual Euclidean path integral whose weight is e−SE and we will

comment on this fact below. Also note that we obtain the action with the right prefactor

due to our choice of ξ, which was an overall free-parameter and not imposed on us by first

principles. The choice of ξ enters only in the dictionary between the bulk induced metric

and the QFT background metric.

The formal solution of the flow equation (2.5) is therefore

Z(λ(x))[γ] =

∫
q(0)=γ/λ2/d

DM(q)eStot[g]Z(λ′(x))[λ′
2/d
q(1)]

≡
∫
Dγ0L[µ, γ/λ2/d, γ0/λ

′2/d]Z(λ′(x))[γ0],

(2.65)

where the equation defines the final diffusion kernel, which is the Euclidean gravitational

path integral with Dirichlet condition between two boundaries.

As explained above, we obtain the gravitational action with an overall minus sign.

While this may seem surprising at first sight, it is in fact expected. The CFT (λ = 0)

10More precisely, we are using the relation

Rg = Rb2q +K2 −KijKij − ∂η
[
2
√
|b2q|K

]
− 2

N
∇i∇iN, (2.61)

which can be derived from the Gauss-Codazzi equations for metrics in the gauge (2.55). After using this

identity, we have dropped the term
∫
dη
[∫

ddx
√
|b2q|2∇i∂iN

]
from the action because it is a boundary

term on the transverse manifold where the field theory is defined. We are interested in two situations, one

where this manifold is compact (corresponding to usual radial flow), and the other is when we keep the flow

parameter λ = 0 at the boundary of this manifold (corresponding to flowing e.g. in Euclidean York time).

In both cases, dropping this term is justified.
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partition function matches the bulk path integral weighted by e−SE . To move into bulk, we

need to “undo” the path integral between the conformal boundary and the bulk radial slice,

which is accomplished by path-integrating with the opposite sign (on some complex contour

for convergence). This is exactly what our kernel accomplishes. A similar observation was

made in [6].

So far, we have left the resulting measure DM(q) unspecified, we analyse it further in

section 2.5. Ideally, one would hope that it is a gauge fixed version of a diffeomorphism

invariant measure for the d + 1 metric gab. This would be required for the kernel L to be

independent of the iteration path µ(η, x). We left the µ dependence explicit in the kernel

for now.

The kernel for the renormalized partition function. Finally, let us comment on the

diffusion kernel for the renormalized partition function. As explained in section 2.2, one

may obtain it by conjugating with the canonical transformation introducing the counter

terms, which is given by

Lren[q, q′] = e−Sc.t[λ,q]L[q, q′]eSc.t[λ
′,q′], (2.66)

where Sc.t. was discussed around (2.3) and we remind the reader that qij ∝ γij/λ
2/d. The

explicit λ dependence enters only in even dimensions due to the conformal anomaly.

In summary, in this section we showed that adding a Ricci-potential to the flow equa-

tion restores diffeomorphism-invariance in the action and the kernel, which then no longer

depends on the choice of path. With this parametrization, we also obtain the leading holo-

graphic counter-term with the right coefficient. This concludes the section and we now

turn to the path integral measure.

2.5 Gauge invariance and the path integral measure

We have seen that the iteration procedure produces the Einstein-Hilbert action in the

diffusion kernel solving the T 2 flow equation. However, we cannot claim that the kernel is

a d + 1 dimensional diffeomorphism invariant path integral, since we only integrate over

the spatial metric qij in the special gauge (2.55). Our aim here will be to argue that

this is indeed a gauge fixed version of the d + 1 dimensional path integral. This involves

examining the formal path integral measure that is induced by the iteration which will

yield a small surprise.

Retracing our iteration steps deriving the action for the kernel, we find that the path

integral measure we get is

DM(q) =
∏
η

∏
x,i≤j dγij∫ ∏

x,i≤j dhije
−

∫
1

16dηµ(η,x)
hΓγh

(2.67)

As mentioned during the derivation, the Jacobians arising when changing integration vari-

able to γ are field independent. Now we change to the variable q = γ/λ2/d. Under this

transformation, Γγ = λ1−4/dΓq. We change variable in the denominator ĥ = λ1/2−2/dh/
√
µ
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to absorb this change. The result is

∏
η

∏
x,i≤j dγij∫ ∏

x,i≤j dhije
−

∫
1

16dηµ(η,x)
hΓγh

∼
∏
x,η

√
det Γq

∏
i≤j

d

[√
λ

µ
qij

] , (2.68)

where we have dropped a power of dη. We recognise the lapse N = µ/λ. Pulling it out

from the product over independent components gives

DM(q) =
∏
x,η

√
det Γq

N− d(d+1)
4

∏
i≤j

dqij

 . (2.69)

Now we proceed to interpret this measure. We start with the most obvious interpretation

which will turn out to fail.

Geometric measure. A very natural measure [37, 38], also used on the string world-

sheet, comes from considering an invariant inner product on metric variations (δg, δg) =

δg ·Γg · δg, where Γg = δ(x− y)
√
g(2gabgcd− gacgbd− gbcgad)/2 as before. As in usual finite

dimensional geometry, an invariant measure of integration is obtained by considering the

normalized top form in this inner product, that is∏
x,η

√
det Γg

∏
a≤b

dgab. (2.70)

The first thought would be to try to interpret (2.69) as a gauge fixed version of this measure.

Let us try to do this. We would like to replace the integral over qij by the total d+1 metric

gab. We may write the measure (2.69) as

∏
x,η

√
det Γq

N− d(d+1)
4

∏
i≤j

dqij


=
∏
x,η

∏
a≤b

dgab

√det Γg

[
N−

d(d+1)
4

√
det Γq√
det Γg

∏
i

δ(giη)δ(gηη −N2)

] (2.71)

In order to reproduce (2.70), we need the expression in the big brackets to be the product of

a gauge fixing functional (the delta functions) and the corresponding Faddeev-Popov deter-

minant [58] (the rest). In other words, we would need to show that ∆FP = N−
d(d+1)

4

√
det Γq√
det Γg

for the choice of gauge fixing.

Now one can check that √
det Γq ∝ (

√
q)(d+1)(d/4−1). (2.72)

One way to see this is to note that due to diff invariance properties det Γq must be propor-

tional to some power of det q, and then work out how det Γq changes under rescaling qab
using the Gaussian integral representation of the determinant. Since in our chosen gauge

gij ≡ qij and
√
g = N

√
q, one ends up with

N−
d(d+1)

4

√
det Γq√
det Γg

∝ N
3−d2

2 (
√
q)

1−d
2 . (2.73)
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This is impossible to get from the FP determinant that is a determinant of a (d+1)×(d+1)

matrix. The main problem is the scaling of N , we will never get a power that goes like d2.

We thus conclude that the measure we have obtained cannot be viewed as a gauge-fixed

version of the geometric measure.

Interpretation as Hamiltonian path integral. On the other hand, (2.69) has a nat-

ural interpretation as a measure in a Hamiltonian path integral. We may write it as

DM(q) =
∏
x,η

√
det

Γq
N

∏
i≤j

dqij

 . (2.74)

The idea is to interpret the determinant as coming from a Gaussian integral with a kernel

NΓ−1
q where Γ−1

q = 1
2
√
q [ 2
d−1qijqkl− qikqjl− qjkqil]δ(x− y). Such a new integration variable

can be interpreted as a gravitational canonical momentum, as we will now explain. In the

ADM decomposition [39], the bulk part of the Lagrangian can be written as

L = P ij∂ηqij +N iHi +NH, (2.75)

where for us N i = 0 and P ij is the canonical momentum. The Hamiltonian constraint

contains the P dependence∫
ddxNH = P ·N(Γq)

−1 · P + terms only depending on qij (2.76)

and the canonical momentum P ij is determined in terms of qij by solving the equations

of motion coming from variations of (2.75) with respect to P ij . Now since the action is

Gaussian in P ij , we may equivalently write the path integral as having an extra independent

integral over the P ij , and this Gaussian integral enforces the equation of motion for P and

in addition precisely produces the prefactor in the measure (2.74) as a one loop determinant.

Therefore, the (bare) diffusion kernel has the schematic form

L =

∫
DqijDP ije−

∫
(P ij∂ηqij+NH[P,q])+bndy terms, (2.77)

where now the measure is flat (i.e. translationally invariant) for both qij and P ij . As

argued in the previous section, this cannot be turned into the full diff invariant d + 1

dimensional measure. However, it is part of a natural measure for the Hamiltonian path

integral explored in [40] (see also [34, 35] for earlier discussions of the Hamiltonian path

integral in gravity). This reference shows that the flat measure

DqijDP ijDN iDN (2.78)

is gauge invariant under the gauge transformations generated by the first class constraints

of GR via the Poisson bracket. The enveloping algebra of these constraints is called the

Bergmann-Komar group, which is actually only a group on-shell, in which case it coin-

cides with usual spacetime diffeomorphisms. Off-shell, the measure is anomalous under
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diffeos mixing η and xi, but instead of diffeos, the full BK-group is a non-anomalous gauge

symmetry of it.

In our case, we are missing the N and N i integrals in (2.77), so we want to interpret

the integral in the kernel as being gauge fixed. As usual, the gauge fixed path integral

DqijDP ij
∫
DN iDN∆FP δ(N

i)δ(N − c∂η log λ). (2.79)

is equivalent with the non-gauge fixed one provided the Faddeev-Popov determinant ∆FP =
δ(N,N i)
δεa is included. It is important that the variation is with respect to the BK gauge

transformations considered in [40], which for the lapse and shift are always related to

regular diffeos ξa via ξη = ε/N and ξi = εi − εN i/N , where (ε, εi) are the parameters of

the BK gauge transformation. One has [40]

δN = εj∂jN −N j∂jε+ ∂ηε

δN i = εk∂kN
i − (∂kε

i)Nk + qik(ε∂kN −N∂kε) + ∂ηε
i,

(2.80)

leading to the Faddeev-Popov determinant

∆FP =
−∂η (∂jN)

qik[(∂kN)−N∂k] δij∂η
, (2.81)

where N = c∂η log λ. In order for the diffusion kernel L for the T 2 flow to be given by a

d + 1 dim path integral that is gauge invariant in the sense of [40], one needs ∆FP to be

field independent. In general this does not seem to be the case, but it is the case when

the lapse is independent of the xi coordinates, ∂iN = 0, since in this case we get a lower

triangular FP matrix and ∆FP = (det ∂η)
d+1 which is field independent. Having ∂iN = 0

is equivalent with

∂i∂η log λ = 0 ⇒ λ(η, x) = f(η)λ0(x). (2.82)

Therefore it seems like we cannot trace an arbitrary path in coupling space, but it is

possible to start from an arbitrary profile and flow along that. This seems to be sufficient,

since the profile λ0(x) only carries information at the conformal end of the flow; on the

other end it is redundant with the scale factor
√
|q|.

For such paths, we may therefore write the diffusion kernel in the un-gauge fixed form

schematically as

L =

∫
DqijDP ijDN iDNe−

∫
(P ij∂ηqij+NH+N iHi)+bndy terms, (2.83)

where Hi are the momentum constraints.

Finally, we would like to mention that the WDW equation has ordering ambiguities

which are capable of affecting the path integral measure [59, 60], and the T 2 flow only

partially resolves factor ordering. It would be interesting to understand this better.

3 Hartle-Hawking wave-functions and the extremal volume

Here we will discuss some possible applications of a position dependent T 2 flow.
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Figure 1. Three different Dirichlet problems.

3.1 Wave functions and metric eigenstates in AdS

As we have reviewed, the flow equation (2.5) originates from the WDW equation (2.9)

by introducing an auxiliary scale λ(x) such that Z(λ)[γ] = Ψ[γ/λ2/d], where Z is a bare

partition function and Ψ is related to a solution of the WDW equation (2.11) by a canonical

transformation. It is common to think about Ψ as a radial wave function. However, as

explained e.g. in [9, 24], there is no built in radial coordinate in Ψ, the radial dependence

of Ψ is determined roughly by the scale factor of the metric, with
√
|γ/λ2/d| → ∞ or

λ→ 0 corresponding to the AdS boundary. This implies that Ψ can also be appropriately

regarded as a bulk wavefunction describing states in the CFT. Let us outline how this

interpretation works.

First, recall that the partition function of the CFT with position dependent sources

turned on, can be regarded as an overlap of two states, see left of figure 1. We will restrict

attention to the case where we only source the stress tensor with a background metric. In

this interpretation, the metric on the lower hemisphere prepares a state and the metric on

the upper hemisphere prepares the conjugate of a state. To obtain arbitrary bulk initial

data, one must complexify this metric [44, 45, 61]. Such overlaps are therefore related to

the (renormalized) partition function

〈γ1|γ2〉 = ZCFT
ren [Θ(up)γ∗1 + Θ(down)γ2], (3.1)

where the ∗ includes an Euclidean time reflection along with the conjugation of the source.

Here we denote by |γ〉 an unnormalized Euclidean path integral state and γ1,2 are metrics

on the hemisphere. In order to define finite energy states in the CFT, we need to require

certain falloff conditions near the t = 0 slice where the overlap is glued. Since (up to

conformal anomaly) only the conformal class matters, we may enforce this by requiring

γ1,2 to be asymptotically Hd. The vacuum corresponds to the standard hyperbolic metric

on Hd and gives rise to Euclidean AdSd+1 in the bulk in the slicing

ds2 = dτ2 + cosh2 τdΣ2
Hd , (3.2)

where τ → ±∞ are the northern/southern hemispheres of the boundary. The asymptotic

boundary of the Hd slices is the t = 0 slice in the CFT where we glue the overlap.
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Let us denote the Hartle-Hawking wavefunction associated to the state |γ〉 by Φγ [q].

This wavefunction is computed in the bulk by performing the Euclidean path integral

between half of the conformal boundary with metric γij and another co-dimension one

surface with metric qij , see the middle figure on figure 1. These are both Dirichlet boundary

conditions. In addition, we should include holographic counter terms for the boundary

condition imposed at conformal infinity in order to obtain a finite result. This prescription

makes it clear that the “radial” wavefunction encodes the wave functions of path integral

states in the CFT via

Φγ [qij ] ∝ lim
λ→0

e−Sc.t[γ/λ
2/d]Ψ[Θ(up)qij + Θ(down)γij/λ

2/d], (3.3)

where the counter term action Sc.t is integrated only over the lower hemisphere.11 We may

also interpret this formula as having a single λ(x) = Θ(up) + Θ(down)λ that is position

dependent and therefore we can also express the r.h.s. with the bare partition function (2.7)

Φγ [qij ] ∝ lim
λ→0

e−Sc.t[γ/λ
2/d]Z(Θ(up)+Θ(down)λ)[Θ(up)qij + Θ(down)γij ]. (3.4)

It is also possible to formally define bulk “metric eigenstates” as linear combinations

of the path integral states |γ〉. Let us denote such a metric eigenstate |q〉〉 in order to

distinguish it from a path integral state. We define these states via

Φγ [qij ] = 〈〈qij |γ〉. (3.5)

Because of (3.3) and (3.1), this wave function can be though of as a hybrid bare-

renormalized partition function that has been flowed with the T 2 flow equation (2.5) only on

the northern hemisphere, hence it is related to a CFT partition function by the application

of a diffusion kernel

〈〈qij |γ〉 =

∫
Dγ′L̃[q, γ′]ZCFT

ren [Θ(up)γ′ + Θ(down)γ]

≡
∫
Dγ′L̃[q, γ′]〈γ′|γ〉.

(3.6)

Here, L̃ is related to the diffusion kernel solving (2.5) and described in sections 2.3, 2.4, by

a dressing with counter terms on the right

L̃[q, γ′] = lim
λ→0

L[q, γ′/λ2/d]eSc.t.[γ′/λ2/d] (3.7)

so that it acts on renormalized partition functions, transforming them into bare ones.

Formally, (3.6) is equivalent with writing

|qij〉〉 =

∫
Dγ′L̃[q, γ′]|γ′〉, (3.8)

11Here and bellow we restrict formulas to odd boundary dimensions where Sc.t. is a function of γ/λ2/d.

In even dimensions, there is a log λ term encoding the conformal anomaly. As usual, for us, Sc.t. contains

only the counter terms involving derivatives.
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which is the announced linear relation between path integral states and metric eigenstates.

There is a very important point to stress regarding this formula. The path integral calcu-

lating the overlap (3.6) is dominated by a classical saddle solving bulk equations of motion

in the GN → 0 limit. This is certainly not true for equation (3.8). Saddles may dominate

in calculating the overlap of (3.8) with certain states, but the saddle will highly depend on

which states we are calculating the overlap with.

3.2 York time and Lorentzian wave functions

The wave function (3.3) is still an intrinsically Euclidean object and one may wonder how

it is related to Lorentzian wave functions. In particular, since the slice on which Φγ is

defined is determined by the scale argument, we should really think about it as being

analogous to a time dependent Schrödinger wave function, that requires Wick rotation.12

A natural approach that we will use here is based on York time [62]. York time is defined

via slicing a geometry into constant mean curvature (CMC) slices, parametrized by their

constant trace of extrinsic curvature K ≡ Kijq
ij = const. This is expected to be a well

defined slicing of the causal diamond anchored at a fixed boundary time slice in the case of

Lorentzian asymptotically AdS geometries, with K being a well-defined notion of time in

the diamond [63]. For empty AdS, this slicing is given by Wick rotating (3.2). Therefore,

it seems natural to Wick rotate wave functions along the extremal slice K = 0 by sending

K → iK. Of course, the wave function (3.3) depends on the metric instead of the extrinsic

curvature. It is better therefore to switch representation and consider the Laplace transform

with respect to the scale [41]

Φγ [K, q̄ij ] ∼
∫ ∞

0
D[
√
q]e−

1
d

∫ √
qθΦγ [qij ] (3.9)

where q̄ij = |q|1/dqij is the conformal metric and θ = 2(1− d)[K + d/`] is the trace of the

bare stress tensor.13 Notice that the inverse Laplace transform to (3.9) is naturally over

Lorentzian values of K. In the semiclassical limit, Φγ [K, q̄ij ] is calculated by an on-shell

action with Dirichlet condition on K instead of
√
q, which is arguably a better defined

problem in Euclidean signature [64]. Note that this object is related to the Laplace trans-

form of the T 2 flowed partition function with respect to the inverse of the flow parameter

12For example, under λ → iλ, the T 2 flow equation (2.5) becomes a Schrödinger type equation. This

continuation is not relevant for AdS/CFT but might be relevant for wave functions in de Sitter.
13We mean here the stress tensor coming from the bare partition function. As explained, this still contains

the leading holographic counter term, so the formula is T ijbare = 2(Kij −Kqij) − 2 d−1
`
qij , where we have

set 16πGN = 1 as before. The role of the shift in the exponent compared to K is to remove the leading

holographic counter term from Φγ [qij ], since as we have defined it, Φγ [qij ] solves the canonically transformed

WDW equation (2.9).
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u = 1/λ restricted to the upper hemisphere, since

lim
udown→∞

∫
Duupe

−
∫ √

γupuupθZ(1/u)[γ]

= lim
udown→∞

∫
Duupe

−
∫ √

γupuupθΨ[Θ(up)γupu
2/d
up + Θ(down)γdownu

2/d
down]

∝
∫
D
( √

q

d
√
γup

)
e−

1
d

∫ √
qθΦγdown

[qij ],

∝ Φγdown
[K, q̄ij ],

(3.10)

where we used (2.7), (3.3) and changed integration variable. Therefore this wave function

will be related to solutions of the Laplace transformed flow equation (2.5). In the spirit of

the CMC slicing, we imagine evaluating Φγ [K, q̄ij ] for constant K and thinking about it as

a Schrödinger wave function with time K.

3.3 Volume of the maximal slice

The Hamiltonian conjugate to York time which moves between CMC slices is the vol-

ume [62]. In the semiclassical limit, the wave function (3.9) will be given by an on-shell

action which is a boundary term appropriate for fixing K

Φγ [K, q̄ij ] ∼ e
2
d

∫ √
qK , (3.11)

where the volume density
√
q is some functional of K, q̄ij and γij determined by solving

the equation of motion. It follows that

∂K log Φγ [K, q̄ij ]|K=0 =
2

d
Vex, (3.12)

where Vex is the volume of the extremal slice. Since Φγ [K, q̄ij ] may be interpreted as

a certain Laplace transform of a T 2 flowed bare partition function via (3.10), one may

formally interpret this as an expression solely in terms of boundary data:

lim
udown→∞

∂θlog

[∫
Duupe

−
∫ √

γupuupθZ(1/u)[γ]

]
θ=2(1−d)d/`

=
1

d(1− d)
Vex. (3.13)

Of course, in practice we do not find this particularly useful, since the only way we know

how to evaluate such an object is via solving the gravity equations of motion. It also

requires some definition of a local T 2 deformation that is only available at large N . For

finite N , we only know examples of such well defined deformations for 2d CFTs, and even

in that case not for arbitrary background metric, see however [25, 65, 66] for progress in

this direction.

Nevertheless, it would be interesting to try to interpret (3.13) in terms of the complex-

ity=volume proposal [67, 68], perhaps by trying to interpret the Laplace transformed T 2

flow equation as a solution to some optimization problem. It would also be interesting to

see if there is a connection to the tensor network interpretation of T T̄ put forward in [69]

(see also [70]). We leave these questions for future work.
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4 Discussion

In this section, we briefly discuss some open questions that were raised along the way.

4.1 Uniqueness of T 2 flow

Unlike in d = 2 on a flat geometry, it is unclear whether the T 2 deformation makes sense

at the full-blown quantum level. The definition of the T 2 operator which induces the flow

relied crucially on the large N limit and can be defined in the 1/N expansion. From

an abstract CFT point of view, the key feature used in [21] was large N -factorization,

namely that

〈: T 2 :〉|ψ〉 = 〈T 〉|ψ〉 〈T 〉|ψ〉 +O
(

1

N

)
. (4.1)

It is important to note that this property will be obeyed in any large N CFT with a ’t

Hooft expansion, irrespective of whether the theory is actually dual to Einstein gravity

(i.e. a 2-derivative theory) or not. Said differently, the factorization property of the T 2

operator will hold even if the CFT does not have a large gap [71–74], in which case higher

derivative corrections become important.

This immediately suggests that the flow into the bulk should not be unique in any

dimension d > 2, and the details of the deformation operator should encode the nature of

the gravitational theory. To the best of our knowledge, the flow equation corresponding to

a higher derivative theory has not been worked out and it would be interesting to do so. A

connection to this question has already appeared in our derivation of the kernel: to obtain

a d + 1-dimensional diff-invariant action, we added a Ricci-potential that combined with

the extrinsic curvature squared into the d + 1-dimensional Ricci scalar, i.e. the Einstein

Hilbert action. One can ask whether this was the unique way to produce a scalar? In

particular, it is clear that there are other potentials preserving the symmetry (2.50). We

believe that without adding higher order terms in the extrinsic curvature, it is (up to just

changing the cosmological constant), and that adding higher order extrinsic curvatures

would precisely amount to higher derivative theories. This suggests that higher-derivative

flows would correspond to having higher powers of the stress-tensor in the deformation,

which sounds intriguing. We hope to return to this question in the future.

4.2 A fake bulk?

A related puzzle arises from noticing that we have nowhere used any assumption about

the boundary CFT besides that the : T 2 : operator is well defined, i.e. large N . So what

happens if we take a large N theory, and flow with the wrong operator? For example, we

could deform weakly-coupled N = 4 SYM with the Einstein gravity T 2 operator. Even at

strong coupling, if there are single trace operators besides the stress tensor, the appropriate

double traces must be added to the deforming operator to generate the right bulk [9]. In

the absence of these, one will just generate the pure gravitational path integral. So a

natural question is how to tell if we are using the right double trace deformation, or that
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the bulk we are flowing into is not “fake”.14 We have no definite answer to this question,

but we offer some speculation.

A practical condition is to require that the generated path integral is consistent with

GKPW [2, 3]. If we put the CFT on a manifold with spherical topology, the diffusion kernel

will be given by a gravitational path integral between two spheres. In order to recover that

the CFT partition function is a gravity path integral with only one spherical boundary,

we must require that at the limit of zero scale
√
q → 0 the radial wave function is trivial

Ψ → 1. This is the limit of large flow parameter λ → ∞ for the partition function. In

general, we could land on any functional of the conformal metric q̄ij in this limit. Where

we land depends on the initial condition at
√
q →∞, i.e. the CFT partition function that

we deform. Having limλ→∞Ψ[γij/λ
2/d] ∝ 1 seems to be a nontrivial condition on this

initial data. It would be interesting to explore this (and other possible answers to this

question) further.

4.3 Connection to the Freidel kernel

As mentioned in the introduction, the solution of the T T̄ flow in d = 2 in terms of a

diffusion kernel is known. This kernel was first obtained by Freidel in [24] in the context of

the WDW equation and was later utilized for the T T̄ flow in [8, 25]. However, the Freidel

kernel is a simple exponential of a local functional of the veilbeins of the initial and final

2d metrics, as opposed to being given by a path integral in 3d gravity. Note that in d = 2

our deforming operator (2.2) is just X = T T̄ without any potential terms, therefore we

are solving the same flow equation as [8, 25], which implies that our kernel (1.2) (with the

log counter term included) must agree with the Freidel kernel. It is known that the path

integral of 3d gravity in AdS, formulated as a Chern-Simons theory [76], localizes on the

boundary, essentially because the temporal component of the Chern-Simons field acts as a

Lagrange multiplier [77, 78]. Using this, it might be possible to explicitly confirm that our

result reduces to the simple form of the Freidel kernel in d = 2. It would be interesting

to do so.
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A Scaling Ward identity for the renormalized partition function

Here we argue that the anomaly free Ward identity (2.6) for the bare partition function

is consistent with the usual anomalous Ward identity for the renormalized stress tensor in

14Another way of changing the deforming operator is by adding an extra 1
λ2

√
|γ| term to the potential

in (2.49), which is also consistent with the scaling property (2.50). This will change the cosmological

constant generated in the kernel, in particular, one can use this to flip its sign. For the d = 2 case this was

explored in [75]. One may worry that the bulk generated this way is “fake” in the same sense as the AdS

bulk is fake when we flow from a weakly coupled theory.
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even dimensions. In other words, when the T 2 coupling is upgraded to a local background

field λ(x) on which Weyl rescalings act, the Weyl anomaly may be removed by a local

counterterm.

In terms of the renormalized partition function, using (2.3) and (2.4), the Ward iden-

tity (2.6) reads as

Z(α−dλ)
ren [α−2γ] = eA[α−dλ,α−2γ]−A[λ,γ]Z(λ)

ren [γ]. (A.1)

where

A[λ, γ] =
1

d

∫
log λ

√
γAd[γ]. (A.2)

The usual form of the identity is obtained by taking an α(x) variation of the log of (A.1),

setting α = 1 and using (2.1):

(∆X − d)λ〈X〉+ 〈T ii 〉 =
1
√
γ

[
dλ
δA
δλ

+ 2γij
δA
δγij

]
= Ad[γ] + (TA)ii,

(A.3)

where ∆X = 2d and (TA)ij = 2√
γ
δA
δγij

is a stress tensor arising from the action A. When λ

is constant, (TA)ij = d−1(log λ)T aij , where T aij is the anomaly stress tensor defined in [48],

in particular it is proportional to the coefficient of the log term in the FG expansion of the

bulk metric, which is denoted in [48] by h(d)ij . It is shown in [48] that this term is traceless

when contracted with the coefficient of the leading term, i.e. the CFT background metric,

so we have γijh(d)ij = 0. This implies that for constant λ, (TA)ii = 0 in (A.3), and the

anomaly is given by the usual holographic Weyl anomaly [47]. In the case of non-constant

λ, (TA)ij contains terms proportional to ∂k log λ in addition to d−1(log λ)T aij . These terms

are coming from integrating by parts derivatives of δγij . The trace of these terms gives

a possibly nonzero contribution to (TA)ii which must be included in (A.3) away from the

conformal point λ = 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a

boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]

[INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802150
https://doi.org/10.1103/PhysRevD.73.086003
https://arxiv.org/abs/hep-th/0506118
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0506118


J
H
E
P
0
9
(
2
0
2
0
)
1
5
6

[5] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group,

JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

[6] I. Heemskerk and J. Polchinski, Holographic and Wilsonian renormalization groups, JHEP

06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

[7] T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG

and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

[8] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT , JHEP 04

(2018) 010 [arXiv:1611.03470] [INSPIRE].

[9] P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the TT deformation, JHEP 07 (2018)

027 [arXiv:1801.02714] [INSPIRE].

[10] M. Guica and R. Monten, T T̄ and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].

[11] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two-dimensional quantum

field theory, hep-th/0401146 [INSPIRE].

[12] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.

Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
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