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1 Introduction

The textbook T-duality symmetry of string theory that applies in backgrounds with Abelian

isometries is a cornerstone of the duality web that ultimately leads to M-theory [1, 2]. Less

standard is the application of T-duality to backgrounds whose isometry group is non-

Abelian [3]. While its status as a precise duality in either α′ and gs expansions is not

fully resolved, at the very least non-Abelian T-duality (NATD) is a useful tool as a solu-

tion generating symmetry of Type II supergravity (for a review see [4]). More exotic still

are applications of T-duality to backgrounds which have no isometries at all. Poisson-Lie

(PL) T-duality, introduced by Klimč́ık and Severa [5, 6], provides situations where such

a non-isometric duality can be realised. This is made possible when the target spaces
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have a certain Poisson-Lie symmetry property giving rise to an unexpectedly rich alge-

braic structure encoded by a Drinfeld double, d [7].1 Despite this lack of isometry, the

corresponding non-linear sigma models can actually exhibit classical (and quantum) inte-

grability [8]. Close connections between integrability and Poisson-Lie duality have come

under renewed focus with holographic motivation following the development of the inte-

grable η [8] and related λ [9] deformations applied to the AdS5 × S5 superstring in [10]

and [11] respectively.

Poisson-Lie geometries (i.e. those for which PL T-duality can be realised) can at first

sight seem convoluted, especially when presented in terms of the regular geometric data

consisting of the metric and Kalb-Ramond two-form. However, when viewed using gener-

alised geometry the situation is radically improved; the PL property of the target space

is encapsulated [12] by a generalised parallelisation [13, 14]. This consists of a set of gen-

eralised frame fields that span the generalised tangent bundle, TM ⊕ T ?M , and which

furnish the Drinfeld double algebra under the generalised Lie derivative. Moreover there

is a natural candidate for the extended target space that appears in both the world-sheet

doubled sigma-model [15, 16] and in the Double Field Theory approach [12, 17], namely

the group D = exp d.2

The U-duality symmetry of M-theory can also be viewed as a generalisation of

T-duality, arising when one combines the perturbative T-duality symmetry with non-

perturbative S-dualities. Until recently, there has been no hint of whether U-duality admits

non-Abelian or generalised versions. A proposal for the algebraic structure that would un-

derlie such dualities has been introduced in [20, 21] and called the Exceptional Drinfeld

Algebra (EDA).

Roughly an EDA is an algebra dn, defined by a bracket, [•, •] : dn ⊗ dn → dn, which

is need not be antisymmetric but obeys the Leibniz identity, and which admits a Lie

subalgebra g, of dimensions n or n−1. Moreover g can be considered a maximally isotropic

subalgebra in a sense we shall make more precise later. For the case of n ≤ 4, that

shall be our concern here, the data of an EDA can be interpreted as consisting of a Lie-

algebra g together with a three-algebra g̃ that are restricted to obey a cocycle compatibility

condition. A key point of [20, 21] was that the EDA can be realised by a generalised Leibniz

parallelisation for the exceptional tangent bundle TG⊕ ∧2T ?G thus echoing the set up of

Poisson-Lie T-duality and allowing this framework to be used to generate solutions using

the ideas of generalised Scherk-Schwarz reductions. Some features of the geometry, and

the membrane interpretation, were then given in [22], while a classification of all possible

EDAs for the case of n = 3 was made in [23].

In this paper, we shall explore the geometry associated to this new M-theoretic alge-

braic structure in a number of explicit examples. These examples reveal intriguing con-

1The Drinfeld double d is an even-dimensional Lie algebra that can be decomposed into two sub-algebras

d = g+ g̃ that are maximally isotropic with respect to an ad-invariant inner product of split signature. The

Jacobi identity of d enforces a cocycle compatibility condition between g and g̃.
2The discussion here is adapted to the case where the physical target space M is a group manifold

M = G ∼= D/G̃ with G = exp g and G̃ = exp g̃. However, when M can be constructed as a double coset,

M = H\D/G̃, similar ideas apply both from the world-sheet [18] and target space [19] perspectives.
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nections to several topics. We study geometries which encode the structure constants of

three-algebras, which naturally show up amongst the structure constants of the Exceptional

Drinfeld Algebra. Here we can also connect with a class of CSO gaugings of 7-dimensional

maximal supergravity. Hence, we get for free out of our construction some simple new up-

lifts for these gaugings. These uplifts could be regarded as “non-Abelian U-duals”, in some

sense, of spheres with flux. We will also describe the embedding of Poisson-Lie T-duality

into this set-up in some detail, revealing a construction whereby the Exceptional Drinfeld

Algebra involves augmenting the Drinfeld double with a spinor representation.

Our presentation will make frequent usage of some technical results within Exceptional

Field Theory which, to allow for completeness but avoid distraction, have been included

as appendix material here. (For a detailed review, see [24].)

2 The SL(5) Exceptional Drinfeld Algebra

2.1 The algebra

We begin by specifying the Exceptional Drinfeld Algebra in the case of the group E4(4) =

SL(5). We introduce five-dimensional fundamental SL(5) indices A,B = 1 . . . , 5. The

generators of the Exceptional Drinfeld Algebra live in the ten-dimensional antisymmetric

representation, and we can label these with a pair of antisymmetric five-dimensional indices,

TAB = −TBA. The brackets of the generators are

[TAB, TCD] =
1

2
FAB,CD

EFTEF , (2.1)

(where the factor of 1/2 is inserted to avoid overcounting) and these need not be antisym-

metric. We do require the Leibniz identity[
TBB′ , [TCC′ , TDD′ ]

]
=
[
[TBB′ , TCC′ ], TDD′

]
+
[
TCC′ , [TBB′ , TDD′ ]

]
, (2.2)

which in terms of the structure constants leads to

1

2
FBB′,EE ′

AA′FCC′,DD′
EE ′ − 1

2
FCC′,EE ′

AA′FBB′,DD′
EE ′ =

1

2
FBB′,CC′

EE ′FEE ′,DD′
AA′ . (2.3)

If the bracket is antisymmetric, this reduces to the usual Jacobi identity.

More generally, the constraint (2.3) is the same as the quadratic constraint of gauged

supergravity. This link — or equivalently the fact that we are restricting to Leibniz algebras

which can arise from a generalised parallelisation of SL(5) exceptional geometry — also

motivates the assumption that the structure constants can be decomposed into irreducible

representations as

FAB,CD
EF = 4FAB[C

[Eδ
F ]
D] , FABC

D = ZABC
D +

1

2
δD[ASB]C −

1

6
τABδ

D
C −

1

3
δD[AτB]C , (2.4)

where τAB = −τBA, SAB = SBA and ZABC
D = Z[ABC]

D, ZABC
C = 0. This means that the

only SL(5) irreducible representations appearing in the structure constants of our Leibniz

algebra are those specified by the linear constraint of gauged maximal supergravity in

seven-dimensions [25].
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Now we impose the further conditions that make this SL(5) Leibniz algebra into an

Exceptional Drinfeld Algebra. We require that there is a Lie subalgebra g ⊂ d4 which is

isotropic in the sense that3

εABCDETAB ⊗ TCD
∣∣∣
g

= 0 , (2.5)

and we further require this isotropic to be maximal in the sense that appending any extra

generator to g will violate (2.5). This means that it will have either dimension 4 or 3, and so

can be interpreted (borrowing terminology from Exceptional Field Theory) as the physical

subalgebra in either an M-theory or type IIB background, respectively. To articulate this

condition in a more invariant fashion we can say that alongside dn we must specify a “pure

spinor” Λ in an appropriate representation4 of En(n) which acts linearly on the dn vector

space schematically as Λ • T . We then demand that the kernel of this action, g = ker(Λ)

be a Lie subalgebra. There are different choices for Λ that will result in a subalgebra g

of dimension n, which we call an M-theory section, and dimension n − 1 which we shall

call a IIB-theory section. This pure spinor approach is essentially the same as that used

to define solutions to the so-called section condition of Exceptional Field Theory [27, 28].

For the case of SL(5), in the IIB-theory section the pure spinor Λ is in the 10 and the

purity condition is that Λ[ABΛCD] = 0. The linear action is defined by

Λ • T := ΛACTCB −
1

5
ΛCDTCDδ

A
B.

As an example consider Λ45 = −Λ54 = 1 with the other components zero. Evidently this

is pure and it is such that it defines

ker(Λ) = span{T12, T13, T23} . (2.6)

In the M-theory section the pure spinor Λ is in the 5, the purity constraint is automatic

and no further conditions are placed on Λ. The action on generators is

Λ • T := Λ[ATBC] . (2.7)

Consider taking ΛA = δA,5, in which case

ker(Λ) = span{Ta5|a = 1 . . . 4} . (2.8)

We will continue now in this M-theory section, and decompose indices as A = (a, 5), where

a = 1, . . . , 4 such that the physical subalgebra is generated by the generators ta ≡ Ta5,

with Lie algebra structure constants fab
c.

In terms of the irreducible representations, the Exceptional Drinfeld Algebra is wholly

defined in terms of the Lie algebra structure constants fab
c along with Sab, τab and τa5,

3Note that a systematic construction of generalised frames corresponding to a given set of generalised

fluxes was set out in [26] in which a similar condition plays a necessary role: it really just ensures that the

section condition of Exceptional Field Theory is satisfied.
4In DFT this would actually be a spinor representation, in ExFT it is not generically spinorial but will

obey a purity constraint projecting out certain representations in the tensor product of Λ with itself.
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with:

S55 = 0 , Zabc
5 = 0 , Zab5

5 =
2

3
τab , Zabc

d = −τ[abδ
d
c] ,

Sa5 = −2

3
τa5 −

4

3
fab

b , Zab5
c = −fabc −

2

3
δc[afb]d

d .

(2.9)

To write down the algebra explicitly, we combine Sab and τab into a “dual” structure

constant with three upper antisymmetric indices given by

f̃abcd =
1

4
εabce(Sde + 2τde) . (2.10)

If we further define the “dual” generators t̃ab ≡ 1
2ε
abcdTcd, then the Exceptional Drinfeld

Algebra can then be written as

[ta, tb] = fab
ctc ,

[ta, t̃
bc] = 2fad

[bt̃c]d − f̃ bcdatd −
1

3
Lat̃

bc ,

[t̃bc, ta] = 3f[de
[bδ

c]
a]t̃

de + f̃ bcdatd + Ldδ
[b
a t̃
cd] ,

[t̃ab, t̃cd] = 2f̃ab[cet̃
d]e ,

(2.11)

in which we introduced the combination La = τa5 − fadd. With La = 0 this presentation

closely resembles the structure of a Drinfeld double. However crucially this bracket has a

symmetric part that vanishes if and only if

2

3
δ[b
a L[dδ

c]
e] + δ[b

a fde
c] = 0 , τab = 0 . (2.12)

In addition to the Jacobi identity on g, the Leibniz closure conditions (2.3) enforce

that the dual structure constants obey the fundamental identity of a three-algebra

f̃abgcf̃
def

g − 3f̃g[decf̃
f ]ab

g = 0 . (2.13)

There are also a set of compatibility equations between f̃abcd and fab
c which include in

particular a condition

6ff [a
[cf̃de]f b] + fab

f f̃ cdef +
2

3
f̃ cde[aLb] = 0. (2.14)

When La = 0 this last condition states that the dual structure constants, viewed as a map

f̃ : g→ ∧3g define a ∧3g∗ valued one-cochain.

2.2 The generalised geometry realisation

A geometric realisation of this algebra can be achieved using as data the left-invariant

forms la and dual vector fields va, obeying ιva l
b = δba, of a group manifold G, together with

a trivector λabc and a scalar α that are required to obey differential conditions:

dla =
1

2
fbc

alb ∧ lc , Lvavb = −fabcvc , (2.15)

dλabc = f̃abcdl
d + 3fed

[aλbc]dle +
1

3
λabcLdl

d , (2.16)
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Lva lnα =
1

3
La ≡

1

3
(τa5 − faf f ) . (2.17)

Below, we will often write the trivector λabc in its dualised form

λabc = εabcdλd , λa =
1

3!
εbcdaλ

bcd . (2.18)

These data can be naturally understood in terms of a generalised frame field using SL(5)

exceptional generalised geometry or SL(5) exceptional field theory [29–33]. We provide

the necessary background material in appendix A, and will only summarise the key details

here. A generalised frame is a section of the generalised tangent bundle TM ⊕ Λ2T ∗M ,

where M denotes a four-dimensional manifold, and so we can write EAB = (eAB, ω(2)AB)

in terms of vector field eAB and a two-form ω(2)AB. Under the generalised Lie derivative

(for more see appendix A.1) which acts as

LEABECD = (LeABeCD, LeABω(2)CD − ιeCDdω(2)AB) , (2.19)

the frames are constructed such that they obey

LEABECD = −1

2
FAB, CD

EFEEF , (2.20)

where in general the quantities FAB, CD
EF give non-constant “generalised fluxes” defined

as in appendix A. We are interested in the case where a set of frames can be found with

constant fluxes, in which case their generalised Lie derivatives (2.20) furnish a geometric

realisation of a Leibniz algebra.

We can achieve such a realisation of our Exceptional Drinfeld Algebra. First, we

decompose our 10-dimensional generalised frame as

Ea ≡ Ea5 , Eab ≡ 1

2
εabcdEcd , (2.21)

and specify that, in terms of pairs of vectors and two-forms, these are given by

Ea = (va, 0) , Eab = (λabcvc, αl
a ∧ lb) . (2.22)

The differential conditions (2.15), (2.16) and (2.17) ensure that the algebra of frames (2.20)

reproduces the Exceptional Drinfeld Algebra (2.11) subject to the imposition of some

algebraic constraints which take the form:

0 = f[ab
dλc] + 6λ[aLbδ

d
c] , 0 = τ[abλc] . (2.23)

These constraints ensure that the structure constants of the EDA are invariant under an

adjoint action of G = exp g [20, 21]. They are also what is needed to ensure that the

structure constants are indeed constant.

In what follows, it will be convenient to package the same data into a frame field ẼA
in the 5 representation i.e. as sections of the bundle (R⊕Λ3T ∗M)⊗ (detT ∗M)−3/10. Here

– 6 –
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the weight factor is such that the frame has unit determinant when viewed as a five-by-five

matrix (see appendix A for more details). This matrix is given by

ẼMA = ∆−
1
2

(
l
1
2α

1
2 via 0

l−
1
2α−

1
2λa l

− 1
2α−

1
2

)
, (2.24)

where l ≡ det lai and ∆ = α
3
5 l

1
5 is a corrective weight whose interpretation in terms of the

determinant of the external 7-dimensional metric is explained in appendix A.

2.3 The geometry

In the En(n) Exceptional Generalised Geometry (EGG) / Exceptional Field Theory (ExFT)

approach to supergravity an artificial splitting is made into n internal directions (coordi-

nates of which we denote x) and D = 11− n external directions (coordinates of which we

denote X). This splitting allows the field content5 of the supergravity to be reassembled

into appropriate representations of the En(n).

In the case at hand, n = 4, the degrees of freedom associated to the “internal” four-

dimensional metric, gij , and three-form, Cijk, parametrise the coset SL(5)/SO(5). This

coset can be described using a generalised frame or equivalently a SO(5)-invariant matrix

mMN called the generalised metric. The technical details of how to extract the conventional

geometric data from a generalised metric are presented in the appendix. In particular note

that we have one extra piece of geometric data, namely the scalar ∆ ≡ ∆(x) (or equivalently

α), which is related to the determinant of the external metric.

Here we will consider generalised metrics admitting a particular factorised form using

the generalised frame field (2.24), such that

mMN (X,x) = ẼAM(x)ẼBN (x)m̄AB(X) , (2.25)

where m̄AB(X) denotes an SL(5)/SO(5) coset element depending only on the external co-

ordinates X. This factorised form of eq. (2.25) is known as a generalised Scherk-Schwarz

reduction ansatz. It is now well-established that, starting with EGG/ExFT, such an ansatz

gives rise to lower-dimensional maximal gauged supergravities [34, 35] (this idea was pi-

oneered in the half-maximal case in DFT in [36–38]). The structure constants of the

Exceptional Drinfeld Algebra are interpreted as the embedding tensor which specifies the

gauging of this theory, and the matrix m̄AB contains the scalars of the gauged supergravity.

One can regard two separate generalised frames EA and E′A producing the same

Exceptional Drinfeld Algebra, up to some SL(5) transformation acting on the indices A,

but possibly depending on different choices of the physical coordinates, as being generalised

U-dual in the sense that they will both reduce to the same 7-dimensional theory.

A key point here is that to complete the geometries given by the EDA frame fields as

fully-fledged solutions of 11-dimensional supergravity one needs to determine the external

sector by solving the equations of the resulting lower dimensional gauged supergravity.

5More precisely the bosonic field content is packaged into representations of En(n) while the fermions

(which play no role in the discussion here) form representations of the maximal compact subgroup.
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Conversely, given a solution of the gauged supergravity whose embedding tensor matches

the form of an EDA, then the ansatz (2.25) provides an uplift. Our immediate aim however

is not to construct full supergravity solutions, instead we wish simply to gain some intuition

for the sort of geometries that arise when the generalised frame fields of the EDA are used

to construct the internal metric. To this end let us simply set m̄AB(X) = δAB and set to

zero off-diagonal components of fields i.e. those with mixed four-dimensional and seven-

dimensional indices. Using the dictionary reproduced in full in appendix A.3, we can, as

in [22], work out the geometry giving rise to the Exceptional Drinfeld Algebra

ds2
11 = α2/3(1 + λcλ

c)1/3

(
ds2

7 +
1

1 + λcλc
(δab + λaλb)l

a ⊗ lb
)

= α2/3(1 + λcλ
c)1/3ds2

7 + ds2
4 ,

C(3) = −1

6

α

1 + λcλc
λbcdl

b ∧ lc ∧ ld ,

(2.26)

where we use δab to contract Lie algebra indices.

3 Three-algebra geometries

We will start by exploring geometries with

fab
c = 0 , f̃abcd 6= 0 , (3.1)

which we shall refer to as three-algebra geometries. The analogue of such cases in terms

of non-Abelian T-duality would be the geometries that one obtains after dualising from a

geometry with a group manifold symmetry, fab
c 6= 0, f̃abc = 0.

The corresponding Exceptional Drinfeld Algebra is most transparently expressed in

terms of the undualised generators

[Ta5, Tb5] = 0 ,

[Ta5, Tbc] =
1

2
(Sa[b + 2τa[b)Tc]5 = −[Tbc, Ta5] ,

[Tab, Tcd] = −τabTcd + (Sc][b + 2τc][b)Ta][d .

(3.2)

When τab = 0, this is the Lie algebra CSO(p, q, r + 1), p + q + r = 4, as is clear from

diagonalising Sab such that SAB ∼ diag(+1, · · ·+ 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

, 0, . . . , 0︸ ︷︷ ︸
r+1

). When τab 6= 0 we

have a genuine Leibniz algebra. The conditions for closure are

Sa[bτcd] = 0 , τ[abτcd] = 0 , (3.3)

which are also what are required for the final equation of (2.23) to hold. The only solutions

can be organised according to the rank of Sab assuming the latter has been diagonalised:6

• Sab has rank 4 or 3, then τab = 0,

6If Sab is not diagonal then the constraints on τab will be different, as will the form of the algebra, but

this will be related by a similarity transform.
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• Sab has rank 2, say S11 6= 0, S22 6= 0, then we can have τ12 6= 0,

• Sab has rank 1, say S11 6= 0, then we can have τ12, τ13, τ14 6= 0,

• Sab has rank 0, then we can have either τ12, τ13, τ14 6= 0 or τ12, τ13, τ23 6= 0 (or other

choices related by relabellings of the indices).

In order to realise this algebra using a generalised frame, we introduce 4-dimensional

coordinates xi and take

lai = δai , λabc = f̃abcdx
d , α = constant , (3.4)

(where xa ≡ δai xi). To extract the geometry, we note that

λa =
1

6
εbcdaf̃

bcd
ex
e =

1

4
(Sab − 2τab)x

b , (3.5)

which we can use in the general formulae (2.26).

If we choose the coordinates xi to be periodic, then this corresponds to a U-fold, as to

make the space globally well-defined we have to patch via a shift of the trivector. This is

a non-geometric U-duality transformation, and we can then further view the flux f̃abcd as

an M-theory non-geometrc Q-flux [39]. This is the generalisation of the interpretation of

non-Abelian T-dual geometries as T-folds [40].

We note that the paper [20] considered an example where f̃234
1, f̃

234
2, f̃

134
1, f̃134

2 are

all non-zero, in which case Sab has rank two (but is not diagonal in this basis), while for τab
only τ12 6= 0. For f̃234

1 = f̃234
2 = 0 this allowed other isotropic subalgebras corresponding

to the embedding of the non-Abelian T-dual of the Bianchi VI algebra.

3.1 Non-Abelian T-duality revisited and CSO(3, 0, 2)

As a first example, let’s consider CSO(3, 0, 2), for which we set

Sab = 4 diag(1, 1, 1, 0) , τab = 0 . (3.6)

We will show now how this set up actually provides an embedding for the non-Abelian

T-dual (NATD) of the three-sphere S3 with respect to an SU(2)L isometry sub-group. In

the M-theory section the four-dimensional geometry with coordinates (xi, x4), i = 1, 2, 3,

is given by

ds2
4 = (1 + δmnx

mxn)−2/3
(
(δij + xixj)dx

idxj + (dx4)2
)
,

C(3) = − 1

2!

εijk4x
k

1 + δmnxmxn
dxi ∧ dxj ∧ dx4 .

(3.7)

With x4 taken to be periodic and identified with the M-theory circle, we can reduce to give

a IIA configuration for which the 3-dimensional internal part is:

ds2
3 =

1

1 + δmnxmxn
(δij + xixj) dx

idxj ,

B(2) = − 1

2!

εijkx
k

1 + δmnxmxn
dxi ∧ dxj ,

eΦ = (1 + δmnx
mxn)−1/2 .

(3.8)

This is indeed the aforementioned NATD geometry.
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This prompts the obvious question: how does the geometry prior to T-dualisation (i.e.

that of the S3 with round metric) manifest itself within the EDA setting? To address this

we will need to consider the EDA in the IIB-theory section.7

To see this, let’s look at the Exceptional Drinfeld Algebra more closely. Let’s relabel

our indices such that now a = 1, 2, 3. Then the only non-zero components of the three-

algebra structure constants in this case are

f̃ab4c = −εabc (3.9)

where εabc ≡ εabdδdc.
Adapted to this we assemble the generators of the EDA as ta ≡ Ta5, t4 ≡ t45, t̃a ≡

1
2ε
abcTbc and sa = Ta4 such that the algebra is given by

[ta, tb] = 0 , [t̃a, t̃b] = −εabct̃c , [ta, t̃
b] = −εbcatc , (3.10)

0 = [t4, ta] = [t4, sa] = [t4, t̃
b] , (3.11)

[ta, sb] = +δabt4 , [sa, sb] = 0 , [sa, t̃
b] = −2εa

bcsc , (3.12)

The original M-theory section physical subalgebra is U(1)4 generated by ta, t4. In IIA,

we have a U(1)3 generated by ta. In this presentation we now see an additional SU(2)

subalgebra generated by t̃a4 ≡ 1
2ε
abcTbc. This non-Abelian algebra is indeed a maximal

isotropic in the IIB-theory section specified by the pure spinor with non-zero components

Λ45 = −Λ54 = 1.

Working now in this IIB-theory section it is easy to establish a set of generalised frame

fields that realise this EDA. As detailed in the appendix, here the relevant generalised

tangent bundle is E = TM ⊕ T ?M ⊕ T ?M ⊕ Λ3T ?M and we use the notation A =

(a, α(1), α̃(1), α(3)) to denote its sections (the generalised vectors). Using the type IIB

generalised Lie derivative (A.10), this algebra can be realised using the following generalised

frame:

Ea =
1

2
εabcEbc = (va, 0, 0, 0) ,

Ea = Ea5 = (0, la, 0, 0) ,

Ea4 = (0, 0, la, 0) ,

E45 = (0, 0, 0, vol) ,

(3.13)

where la are the left-invariant one-forms on SU(2), va the dual vector fields, and vol is the

corresponding volume form.

Here we see that there is a natural block diagonal decomposition of the generalised

frame field. Let us consider the top left block i.e. the projections of Ea and Ea to the O(3, 3)

generalised tangent bundle TM ⊕ T ?M . These are exactly of the form of the generalised

frames for Poisson-Lie duality [12] in the case that the Drinfeld double is semi-Abelian

of the form given in eq. (3.10). This is precisely what is required to realise non-Abelian

7This is natural; non-Abelian T-duality will change the chirality from IIB to IIA if three isometry

generators are dualised as is the case for SU(2).
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T-duality starting with the round metric on the S3.8 The bottom right block, i.e. the

projections of Ea5 and E45 to T ?M ⊕ Λ3T ?M can be understood as defining a spinor

representation of the O(3, 3) generalised frame field given by the top left block. We shall

discuss this feature in more detail when we return to the full Poisson-Lie duality context.

Relationship to Hohm-Samtleben frame. We would like now to relate the EDA

generalised frame described above to previous constructions of SL(5) generalised frames

realising the same CSO(3, 0, 2) gaugings. A particular class of generalised frames realising

CSO(p, q, r) gaugings were constructed by Hohm and Samtleben in [35]. For q = 0, this

frame depends on the coordinates yi, where i = 1, . . . , p − 1, which are coordinates on an

Sp−1,9 and we let u ≡ δijyiyj . Then, the frame involves both a three-form and a trivector

Ea = (ua,−ιuaC(3)) , Eab = (0, αua ∧ ub) + λabcEc , (3.14)

with a vielbein uia ≡ (1 − u)1/2δia, a function α = (1 − u)1/6, and (writing the dualised

forms) both a trivector and three-form, given by

λa = ((1− u)−1/2δiky
k, 0) , Ci = ((1− u)−1/2yiK(u), 0) . (3.15)

For p = 3, q = 0, r = 2, K(u) obeys the differential equation 2(1−u)u∂uK = (−2+u)K−1,

and the solution is K(u) = −1/u.

For CSO(3, 0, 2), the four-dimensional physical geometry encoded in this frame is

R2 × S2 equipped with

ds2
4 = (dy3)2 + (dy4)2 +

(
δij +

yiyj

1− u

)
dyjdyj ,

C(3) = −εikyk(1− u)−1/2

(
1− 1

u

)
dyi ∧ dy3 ∧ dy4 .

(3.16)

Although the three-form looks rather complicated, the field strength is just F(4) = Vol(S2)∧
dy3 ∧ dy4.

Compactifying the coordinates y3, y4, this trivially reduces (on y4, say) to a IIA con-

figuration with S1 × S2 internal space

ds2
3 = (dy3)2 +

(
δij +

yiyj

1− u

)
dyjdyj ,

B(2) = −εikyk(1− u)−1/2

(
1− 1

u

)
dyi ∧ dy3 ,

(3.17)

8What is used here is only an SU(2)L isometry group, so the considerations here do not directly impose

the bi-invariant metric on S3. This comes about because of the assumption made earlier in the generalised

Scherk-Schwarz ansatz that m̄AB = δAB. Choosing other constant m̄AB will give non-Abelian T-duals and

their lifts of the S3 equipped with metric ds2 = gabla ⊗ lb and two-form B = babla ∧ lb with gab and bab
constant.

9Generalised frames describing sphere reductions in general have been constructed [14] and can be

checked also to involve both a three-form and a trivector.
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IIB on S3 (3.19)
IIA geometry of

EDA frame (3.8)

IIA geometry of

HS frame (3.17)

M-theory ge-

ometry of HS

frame (3.16)

M-theory ge-

ometry of EDA

frame (3.7)

T on Hopf fibre

NATD on S3

Dual within EDA

reduce/upliftreduce/uplift

Postulated generalised U-dual

Figure 1. Duality chains involving the NATD of S3 and alternative CSO(3, 0, 2) frames.

and a constant dilaton. This can be T-dualised on y3, in order to produce a solely metric

configuration:

ds2
3 =

(
dỹ3 +

1

u
(1− u)+1/2εijy

jdyi
)2

+

(
δij +

yiyj

1− u

)
dyjdyj . (3.18)

Taking our sphere coordinates to be y1 = sin θ cosφ, y2 = sin θ sinφ, where θ ∈ (0, π),

φ ∈ (0, 2π), then u = sin2 θ, 1 − u = cos2 θ, and dy1y2 − dy2y1 = − sin2 θdφ. As a result,

the geometry becomes

ds2
3 = (dỹ3 − cos θdφ)2 + dΩ2

2 . (3.19)

This is the three-sphere S3 described as a Hopf fibration.

All these backgrounds produce seven-dimensional gaugings which are equivalent up to

global SL(5) transformations acting on the generalised fluxes. The complete duality chain

between the Hohm-Samtleben frame (3.14) and our EDA frame (3.8) consists of: reduction

from M-theory to IIA, T-duality on the Hopf fibre to IIB, non-Abelian T-duality on S3

back to IIA, followed by uplift to M-theory. This can be interpreted as a “generalised

U-duality” however one that consists of a chain of ordinary plus non-Abelian T-dualities.

Part of this duality chain takes place entirely within the EDA setting, but that involving the

frame (3.14) uses a different construction of generalised frames. We depict the relationships

between these geometries and different SL(5) frames in figure 1.

Non-metric 3-algebras. A variant of the situation above is to consider the non-metric

3-algebras considered in [41–43] for which

f̃ab4c = f̃abc , f̃abcd = f̃ab44 = f̃abc4 = 0 , (3.20)

with f̃abc the structure constants of a Lie algebra. In terms of the embedding tensor

components we have equivalently

S44 = S4c = τ4c = 0 , Sab = −2εcd(af̃
cd
b) , τab = −εabcf̃ cdd , (3.21)
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which for τab = 0 requires that f̃ define a uni-modular algebra. In this case the EDA

is as in (3.10)–(3.12) after the replacement of εabc → −f̃abc, and the construction of the

IIB-theory section generalised frames goes through unchanged. This then provides an EDA

embedding of non-Abelian T-duality of uni-modular group manifolds G with respect to a

GL isometry.

For instance, with Sab = diag(1, 1,−1, 0), such that we describe CSO(2, 1, 2) gaugings,

we have that the non-metric three algebra is built from SL(2), and that the story above will

go through. Recall that we are using δab to contract algebra indices (i.e. not the indefinite

Killing form) and hence the IIB NATD geometry above will be based on H3 rather than S3.

3.2 Euclidean 3-algebra and CSO(4, 0, 1)

We now consider the case where Sab is of maximal rank:

Sab = 4 diag(1, 1, 1, 1) , τab = 0 . (3.22)

The corresponding three-algebra structure constants are totally anti-symmetric

f̃abcd ≡ f̃abceδed = εabcd . (3.23)

This is well known as the unique solution of the fundamental identity for three-algebra

structure constants for Euclidean three-algebras.

The four-dimensional geometry in this case is, with xi = (x1, x2, x3, x4),

ds2
4 = (1 + δmnx

mxn)−2/3(δij + xixj)dx
idxj ,

C(3) = − 1

3!

1

1 + δmnxmxn
εijklx

ldxi ∧ dxj ∧ dxk .
(3.24)

The field strength is:

F(4) = − 1

4!

4 + 2δmnx
mxn

(1 + δmnxmxn)2
εijkldx

i ∧ dxj ∧ dxk ∧ dxl ,

= −(4 + 2δmnx
mxn)(1 + δmnx

mxn)−7/6Vol(4) .

(3.25)

If we assume our coordinates are non-compact, we can write xi = rx̂i with x̂ix̂jδij = 1

parametrising a three-sphere, hence

ds2
4 = (1 + r2)1/3

[
dr2 +

r2

1 + r2
dΩ2

3

]
,

F(4) = − 4 + 2r2

(1 + r2)2
r3dr ∧Vol(S3) .

(3.26)

Observe that the form of this geometry is very similar to that of the NATD geometry (3.7),

except now as seen in spherical coordinates we have an SO(4) rather than SO(3) isometry.
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Algebra and IIB isotropics. Relabelling such that a = 1, 2, 3 as before, we have

f̃abc4 = εabc , f̃ab4c = −εabc . (3.27)

The Exceptional Drinfeld Algebra is given explicitly by the following antisymmetric brack-

ets which indeed describe the algebra CSO(4, 0, 1) (i.e. ISO(4)):

[ta, tb] = 0 = [ta, t4] , (3.28)

[ta, t̃
bc] = +εbcat4 , [ta, t̃

b4] = −εbcatc , [t4, t̃
bc] = −εbcdtd , [t4, t̃

b4] = 0 , (3.29)

[t̃ab, t̃cd] = −2εcd[at̃b]4 , [t̃ab, t̃c4] = −2εc[adt̃
b]d , [t̃a4, t̃b4] = −εabct̃c4 , (3.30)

We now want to find all four- and three-dimensional subalgebras of this algebra, and check

which of these are isotropic in the sense of (2.5). For the Poincaré group in four-dimensions,

the classification of all subalgebras was done in [44]. From their results we can extract that

the only real isotropic subalgebras of ISO(4) (up to relabelling of the indices) turn out to be

the four-dimensional Abelian subalgebra generated by ta, along with the following three-

dimensional subalgebras: SU(2) generated by t̃a4, and ISO(2) generated either by ta, tb, t̃
c4

with a 6= b 6= c or by ta, t4 and t̃bc with a 6= b 6= c. In terms of the undualised generators,

these correspond to {T12, T13, T23}, {Ta5, Tb5, Tab} and {Ta5, T45, Ta4} respectively. All of

these are IIB isotropics.

Now we encounter a puzzling feature; there are no geometric IIB uplifts of this

CSO(4, 0, 1) gauging [45]. So it seems that despite the presence of a IIB isotropic we

are unable to geometrically furnish this EDA within type IIB exceptional generalised ge-

ometry. This does not preclude the possibility of there being non-geometric gaugings i.e.

ones which depend on both the IIB coordinates and their duals as mentioned in [45]. If

this is the case, this suggests the natural home for a “dual” version of this frame would be

in some “deformed” version of IIB. This may be analogous to, or perhaps coincide with,

the so-called generalised IIB theory [46, 47], which necessarily arises when carrying out

certain generalised T-dualities, and which can be realised in double or exceptional field

theory by introducing explicit dual coordinate dependence [48, 49], for instance see the

DFT implementation of such dualities in [50, 51]. Although this would be interesting to

develop further, we would prefer to first understand the possibility of generalised U-duality

transformations between the usual 10- and 11-dimensional theories, so we leave this for

future work.

Relationship to IIA on S3. Instead, let us investigate the relationship to the known

CSO(4, 0, 1) gauging arising from reduction of type IIA on S3, or 11-dimensional super-

gravity on R×S3 [52]. Again, the idea is that any alternative frame giving rise to the same

gaugings ought to provide a version of generalised U-duality.

Let us again focus on the general CSO(p, q, r) frame of [35], which we wrote down in

the previous subsection in (3.14) and (3.15). For the case p = 4, q = 0, r = 1 we have

coordinates yi = (yi, yz) where i = 1, 2, 3, and we again define u ≡ δijy
iyj . The function

K(u) appearing in the three-form (3.15) is now

K = −2F1[1, 1; 1/2; 1− u] = −u−3/2(u1/2 + (1− u)1/2 arcsin(1− u)1/2) (3.31)
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obeying

2(1− u)u∂uK = (−3 + 2u)K − 1 . (3.32)

This corresponds to the following four-dimensional geometry:

ds2
4 = (dyz)2 +

(
δij +

yiyj

1− u

)
dyidyj ,

C(3) =
1

2
εijky

k(1− u)−1/2(1 +K(u))dyi ∧ dyj ∧ dyz ,
(3.33)

The coordinates yi are now seen to parametrise the three-sphere S3, while the isometry

direction yz parametrises R (or S1 if compact). Thanks to the equation (3.32) we can show

that the four-form flux is constant, and this background is:

ds2
4 = (dyz)2 + dΩ2

3 ,

F(4) = 2 Vol(S3) ∧ dyz ,
(3.34)

where dΩ2
3 is the metric on S3. If one reduces on yz, this gives IIA on S3 with H-flux.

We therefore have two constructions of CSO(4, 0, 1) frames. The one based on the

Exceptional Drinfeld Algebra corresponds to the geometry (3.24). This generalised frame

consists of a trivial four-dimensional vielbein and a linear trivector. This geometry therefore

has an alternative description as R4 (or T 4 if compact) carrying M-theory Q-flux, Qa
bcd ∼

f̃ bcda. The second construction is based on the geometry (3.34), that is R×S3 (or S1×S3)

carrying flux of the four-form. Unlike the case of the CSO(3, 0, 2) gauging discussed above,

there does not appear to be any easy duality chain involving conventional dualities and

non-Abelian T-dualities (as in figure 1) that relates the two. Hence we believe them to be

related by a novel sort of generalised U-duality transformation.

3.3 A Leibniz geometry: τab 6= 0

For an example where the EDA is not an Lie algebra, take the non-zero components of τab
to be

ταβ = εαβγn
γ , α = 1, 2, 3 . (3.35)

The geometry is easily seen to be

ds2
4 =

(
1 +

1

4
(n2x2 − (n · x)2)

)−2/3(
(dx4)2 + δijdx

idxj +
1

4
(εijkn

ixjdxk)2

)
,

C(3) =
1

2

1

1 + 1
4(n2x2 − (n · x)2)

nixjdx
i ∧ dxj ∧ dx4 ,

(3.36)

where ni ≡ δiαnα, i = 1, 2, 3, n2 ≡ δijninj , x2 ≡ δijxixj , n · x ≡ δijnixj . This three-form is

pure gauge.

To explore the algebra, we define uα ≡ εαβγ t̃βγ , vα ≡ t̃α4, wα ≡ tα and φ ≡ t4. In this

basis the M-theory section isotropic that we are considering (specified by the pure spinor

– 15 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
1

ΛA = δA,5) is the subgroup generated by wα and φ with uα and vα the ‘dual’ generators.

The algebra is

[uα, uβ ] = 0 = [wα, wβ ] = [φ, d] = [d, φ] , [vα, vβ ] = v[αnβ] , (3.37)

[wα, v
β ] = −[vβ , wα] =

1

2
(δβαn

γwγ − nβwα) , [wα, uβ ] =
1

2
εαβγn

γφ , (3.38)

[uα, v
β ] = −1

2
(δβαn

γuγ − nβuα) , [vβ , uα] = −1

2
(δβαn

γuγ + nβuα) . (3.39)

Notice the non-skew (i.e. Leibniz) nature of the algebra is contained entirely in the [u, v]

and [v, u] relations, with [uα, v
β ] + [vβ , uα] = −δβαnγuγ .

A second M-theory section isotropic sub-algebra is generated by uα and φ, which is

again Abelian (this isotropic is that specified by the pure spinor ΛA = δA,4). Although

this simply implements interchange of the 4 and 5 directions, there is no way that this new

isotropic can qualify as an EDA. To see this consider the fluxes (2.9) which imply

Zαβ4
4 = −1

3
ταβ , Zαβ5

5 =
2

3
ταβ . (3.40)

To interpret this new isotropic as an EDA we must be able to find a τ ′αβ such that

Zαβ4
4 =

2

3
τ ′αβ , Zαβ5

5 = −1

3
τ ′αβ , (3.41)

and there is no such τ ′αβ . This can be traced to the fact that the [w, v] bracket is skew

whilst the [u, v] is not. The fact that we can find M-theory isotropics for which the EDA

conditions are not satisfied seems to point towards a possible relaxation of some of the

constraints of EDA.

The sub-algebra given by vi and φ does not correspond to an M-theory section isotropic

but that given by the vi alone does correspond to a IIB-theory section isotropic.

4 Embedding Drinfeld doubles

4.1 Decomposing the Embedding Drinfeld Algebra

The embedding of Drinfeld doubles inside the exceptional Drinfeld algebra has been out-

lined already in [20]. Here we expand on the discussion in that paper by systematically

explaining how the Drinfeld double algebra is extended using a spinor representation, in-

cluding the explicit form of the generalised frames and constraints that are needed to realise

this in generalised geometry. Then, we describe explicitly how this works for the example

of the Bianchi II - Bianchi V Drinfeld double, which in [21] was found to be a solution to a

coboundary ansatz in the EDA. This realises an explict example where both fab
c and f̃abcd

are non-zero, and demonstrates as well one useful feature of the EDA approach which is

that it geometrises the dilaton of Poisson-Lie duality.

We can describe the embedding of Drinfeld doubles by restricting to four-dimensional

algebras containing a three-dimensional Lie subalgebra such that, setting a = 1, 2, 3,

[Ta5, Tb5] = fab
cTc5 , [Ta5, T45] = fa4

4T45 , (4.1)
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and by further restricting

f̃ab4c ≡ f̃abc 6= 0 , f̃abcd = f̃abc4 = 0 = f̃ab44 , τ45 = 0 . (4.2)

Geometrically, we assume that va and la obey the defining group manifold relations with

the three-dimensional structure constants fab
c, while we take

λab4 = −πab , λabc = 0 , v4 = α∂4 , l4 = α−1dx4 , (4.3)

where we now require that α be a function of the three-dimensional coordinates xi such

that Lva lnα ≡ −fa4
4 which ensures starting with (2.16) that πab obeys the condition

satisfied by the Poisson-Lie bivector:

dπab = −f̃abclc − 2lcfcd
[aπb]d . (4.4)

Starting from (2.26), the above restrictions lead to the following NSNS sector geometry:

ds2
10 = ds2

7 +
1

1 + λcλc
(δab + λaλb)l

a ⊗ lb ,

B(2) =
1

2

1

1 + λcλc
εabcλ

alb ∧ lc ,

eφ = α−1(1 + λcλ
c)−1/2 .

(4.5)

Extracting Gab and Bab, the coefficients of the left-invariant forms, it is quick to check that

[(G−B)−1]ab = δab + πab , (4.6)

which is exactly the form required for a Poisson-Lie geometry [5]. (Again, we could extend

this beyond the case gab = δab by taking a more general matrix m̄AB in (2.25).)

We now turn to the decomposition of the exceptional Drinfeld algebra (2.11). We group

the generators as tA = (ta, t
a4), t̂α = (t4, t

ab). In terms of O(3, 3) representations, the set

tA form a vector and the set t̂α form a Majorana-Weyl spinor. The isotropy condition (2.5)

is equivalent to:

ηABtAtB
∣∣
g

= 0 , ΓAαβtAt
β
∣∣
g

= 0 , (4.7)

where ηAB is the usual O(3, 3) metric with components ηa
b = ηba = δba, ηab = ηab = 0, and

ΓA is an O(3, 3) gamma matrix, see appendix B.3.

After decomposing the EDA brackets (2.9) using (4.1) and (4.2) (see the explicit details

in appendix B.3), and regrouping into SO(3, 3) covariant quantities, we find the algebra is

[tA, tB] = FAB
CtC ,

[tA, t̂
α] =

1

4
FAB

C(ΓBC)αβ t̂
β − 1

2
τAt̂

α ,

[t̂α, tA] = −[tA, t̂
α] +

1

4

(
1

6
FBCD(ΓAΓBCD)αβ − (ΓAΓB)αβτB

)
t̂β ,

[t̂α, t̂β ] = 0 ,

(4.8)
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where the Drinfeld double structure constants FAB
C , which obey FABC ≡ FAB

DηCD =

F[ABC], have the expected non-zero components

Fab
c = fab

c , F abc = f̃abc , (4.9)

and we also have10

τa = −2fa4
4 + fac

c , τa = −f̃acc . (4.10)

Observe that in the second line of (4.8) we have the natural action of the Drinfeld double

generators in the spinor representation. Then in the third line we have a novel action of

the spinor representation on the algebra generators tA, which makes this extension of the

Drinfeld double into a Leibniz algebra in general.

This is not always possible due to the closure condition, as already noted in this context

in [20], which requires

fab
cf̃abd = 0 . (4.11)

This also follows from the general condition for a half-maximal gauging to admit an uplift

to the maximal theory [53], see appendix B.1.

Next, we can write down the corresponding generalised frames. Formally, we should

decompose the exceptional tangent bundle into IIA language. Letting M denote the three-

dimensional manifold, we introduce the doubled tangent bundle E ∼= TM ⊕ T ∗M , whose

sections pair vectors and one-forms, plus a bundle S ∼= R ⊕ Λ2T ∗M , whose sections pair

functions and two-forms. The former bundle gives the O(3, 3) vector representation while

the latter gives a four-dimensional spinor representation. These appear in the decomposi-

tion 10 = 6⊕ 4 of the antisymmetric representation of SL(5).

Given V = (v, λ(1)) ∈ E and S = (σ(0), σ(2)) ∈ S the generalised Lie derivative inherited

from the exceptional geometry is:

LV V ′ = (Lvv
′, Lvλ

′
(1) − ιv′dλ(1)) ∈ E , (4.12)

LV S = (Lvσ(0), Lvσ(2) + dλ(1)σ(0)) ∈ S , (4.13)

LSV = (−Lvσ(0),−ιvdσ(2) − λ(1) ∧ dσ(0)) ∈ S , (4.14)

while LSS′ = 0.

We now reorganise our SL(5) frame EAB into an O(d, d)-vector valued frame EA =

(Ea, E
a), where Ea = 1

2ε
abcEbc, and a spinor-valued frame, Êα = (Ê0, Êab), where Ê0 ≡

E45, Êab ≡ 1
2ε
abcEc4.

The vector-valued frame EA gives as sections of TM ⊕ T ∗M

Ea = (va, 0) , Ea = (πabvb, l
a) , (4.15)

which is what we expect for the Drinfeld double [12], while the spinor frame gives as sections

of R⊕ Λ2T ∗M

Ê0 = α(1, 0) , Êab = α(πab, la ∧ lb) . (4.16)

10This corresponds to the usual O(d, d) trombone defined using the generalised dilaton d via τA =

EM
A∂M (−2d) +∂ME

M
A, where EM

A is the O(d, d) generalised vielbein (corresponding to (4.15)). For us,

e−2d = α2 det l.
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8In the IIB case, the only change we need to make is to take the spinors to have opposite

chirality, i.e. the spinor bundle now consists of odd p-forms, S̄ ∼= T ∗M⊕Λ3T ∗M . Given S =

(σ(1), σ(3)) ∈ S̄ the corresponding generalised Lie derivatives are (inherited from (A.10)):

LV S = (Lvσ(1), Lvσ(3) − dλ(1) ∧ σ(1)) ∈ S̄ , (4.17)

LSV = (−ιvdσ(1), dσ(1) ∧ λ(1)) ∈ S̄ , (4.18)

and again LSS′ = 0. The IIB spinor frame is then

Êa = α(la, 0) , Êabc = α(3π[ablc], la ∧ lb ∧ lc) . (4.19)

Although we can always construct the vector and spinor frames for a given Drinfeld double,

they will not always obey the Leibniz algebra (4.8). Indeed, we have to ensure that the

algebra generates constant structure constants, which leads to constraints:

π[abf̃ c]dd = 0 , fbc
aπbc + 2fb4

4πab = 0 , (4.20)

which also follow from the constraints (2.23) from the point of view of the Exceptional

Drinfeld Algebra. In addition, the closure condition (4.11) must hold.

In this way we have also recovered a result directly from an M-theory perspective

that the RR fields compatible with PL T-duality are essentially constant O(d, d) spinors

dressed by the spinor representation of the generalised frame field. This was seen from a

DFT perspective in [12, 17] and from a Courant algebroid approach [54].

4.2 Example: Bianchi II and V

Bianchi II + to U(1) in M-theory. This example of an Exceptional Drinfeld Algebra

was found in [21] by requiring the three-algebra structure constants to be determined

as a coboundary ansatz. This gives an M-theory solution where the physical subalgebra

is Bianchi II + U(1). The Bianchi II algebra, or Heisenberg algebra, can be described

in a basis {t1, t2, t3} where the single non-vanishing structure constant is f23
1 = 1. The

corresponding group data, including the trivial U(1) factor with generator t4, and α = 1, is:

la = (dx1 − x3dx2, dx2, dx3, dx4) , va = (∂1, ∂2 + x3∂1, ∂3, ∂4) . (4.21)

A trivector obeying (2.16) is

λa = (0, x3,−x2, 0) , (4.22)

with f̃124
2 = f̃134

3 = 1. From the above, this describes an embedding of a dual three-

dimensional subalgebra with structure constants f̃12
2 = f̃13

3 = 1, corresponding to the

known Bianchi II / Bianchi V Drinfeld double (see [55] for a classification of six dimensional

doubles).

The M-theory geometry is

ds2
4 =

1

(1 + (x2)2 + (x3)2)2/3

(
(dx1 − x3dx2)2 + (1 + (x3)2)(dx2)2 + (1 + (x2)2)(dx3)2

− 2x2x3dx2dx3 + (dx4)2
)
,

C(3) =
1

1 + (x2)2 + (x3)2

(
1

2
d((x2)2 + (x3)2) ∧ dx1 ∧ dx4 + (x3)2dx2 ∧ dx3 ∧ dx4

)
,

(4.23)
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where dC(3) = 0. Reducing on the U(1) direction gives a IIA geometry with

ds2
3 =

1

1 + (x2)2 + (x3)2

(
(dx1 − x3dx2)2 + (1 + (x3)2)(dx2)2 + (1 + (x2)2)(dx3)2

− 2x2x3dx2dx3
)
,

H(3) = 0 ,

eφ = (1 + (x2)2 + (x3)2)−1/2 ,

(4.24)

which matches the known geometry of a Drinfeld double based on the groups Bianchi II and

Bianchi V. It is worth remarking that the physical dilaton that arises here was implicitly

constrained by the EDA. In conventional T-duality the Buscher procedure can be used to

ascertain the form of the dilaton (from the determinant produced by Gaussian elimiantion

of gauge fields). However there is no similar technique for PL duality, and determining

the form of the dilaton requires either some heavy work [56] or DFT techniques [17]. The

answer here was mandated by the EDA and is in agreement with these approaches.

Bianchi V in IIB. We now have to supply the embedding of the dual Bianchi V de-

scription, in type IIB. Now the dual structure constants are f̃23
1 = 1 while the physical

ones are f12
2 = f13

3 = 1. A choice of group data is

la = (dx̃1, ex̃
1
dx̃2, ex̃

1
dx̃3) , va = (∂1, e

−x̃1∂2, e
−x̃1∂3) . (4.25)

We have to pick a bivector that not only satisfies the usual Poisson-Lie condition (4.4) but

also the conditions (4.20) that ensure the IIB vector plus spinor frame embeds into the

Exceptional Drinfeld Algebra. With fa4
4 = 0, this requires that π12 = π13 = 0. Then

from (4.4) we find that π23 must obey dπ23 = (−1 + 2π23)l1, and the solution vanishing at

the origin is

π23 =
1

2
(1− e2x̃1) . (4.26)

The corresponding physical geometry with string frame metric is

ds2
3 = (dx̃1)2 +

e2x̃1

1 + (π23)2

(
(dx̃2)2 + (dx̃3)2

)
,

B(2) = − π23e2x̃1

1 + (π23)2
dx̃2 ∧ dx̃3 ,

eφ = (1 + (π23)2)−1/2 .

(4.27)

5 Discussion

The goal of this paper was to make geometrically concrete the algebraic structures intro-

duced in [20, 21]. These “exceptional Drinfeld geometries” provide generalised parallelis-

able spaces with a non-trivial relationship between the more complicated geometry and

the simpler generalised frame based on a group manifold and the trivector. We have now

developed an interesting first set of examples where the exceptional Drinfeld algebra can

be explicitly connected to geometries.
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A primary motivation for the introduction of the Exceptional Drinfeld Algebras was

to generalise the Drinfeld double algebras that appear in generalised T-duality. As a

confidence-building measure, we have described in detail how to embed O(3, 3) Drinfeld

doubles and Poisson-Lie T-duality into the SL(5) Drinfeld algebras. We saw that not all

Drinfeld doubles can be embedded; that there are constraints that must be obeyed by their

structure constants and by the explicit choice of Poisson-Lie bivector; and furthermore that

the extension of the Drinfeld double requires introducing a “spinor” representative of the

Drinfeld double and defining a non-trivial Leibniz algebra in which this acts in turn on the

vector representation.

We also studied simple EDA examples where we only allowed the three-algebra struc-

ture constants to be non-zero, f̃abcd. These can all be realised by a simple trivector ansatz,

linear in the coordinates. In some sense, these geometries are the analogues of what should

be obtained after non-Abelian T-duality, and indeed here we could reproduce the usual

non-Abelian T-dual pair involving an S3.

In addition, this class of geometries can be seen to produce CSO(p, q, r) gaugings

of seven-dimensional maximal supergravities (with r ≥ 1, due to the fact that at least

one component of the symmetric gauging vanishes thanks to the definition of the EDA,

S55 = 0). Thus we have in effect a very simple construction of new uplifts for such gaugings.

We saw how in the CSO(3, 0, 2) case, there was a duality chain relating our geometry to

the alternative uplift due to [35], involving Hopf T-duality, non-Abelian T-duality, and

M-theory uplifts. In the CSO(4, 0, 1) case, there appears not to be such a chain using

existing notions of generalised T-dualities.

We therefore have in this example a novel four-dimensional geometry, which encodes

the Euclidean 3-algebra with f̃abcd = εabcd, and which we propose to identify as a gener-

alised U-dual of M-theory on R× S3. The form of this background is strikingly similar to

that of the usual non-Abelian T-dual of S3, suggesting that the various subtleties with the

construction (for instance, how do we determine the range of the coordinates? Should we

regard it as U-fold?) can be interpreted similarly as in this familiar case.

The structure of the Exceptional Drinfeld Algebra is based on the existence of isotropic

subalgebras. We had hoped to find examples in which multiple four-dimensional isotropics

would be present, which could then be used as the basis for M-theory to M-theory gener-

alised U-dualities within the EDA set-up. Unfortunately, in the cases we have looked at,

the conditions of the EDA appear to be very restrictive. Not only does one have to have

an isotropic subalgebra (and our experience shows that they are limited in number), the

whole EDA is further constrained exactly such that it admits a geometric realisation in

terms of just a trivector. The example of section 3.3 shows that even when there can be

multiple M-theory isotropics, not all of them can be compatible with an EDA. Equally we

saw in the CSO(4, 0, 1) example that one can find dual IIB isotropics that do not appear

to admit a geometric generalised frame description

Note that from the IIB perspective, we have not systematically reproduced the EDA

from the IIB side but starting with M-theory examples considered IIB descriptions only

for those cases. One therefore needs to interpret the full set of EDA structure constants in

terms of a IIB construction and check whether all are geometrically realisable using a three-
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dimensional group manifold plus bivectors, or whether additional geometric ingredients are

needed. (Similarly one might also wonder whether any information is lost in going from

M-theory to IIA.)

Perhaps ultimately it may be fruitful to consider relaxing some of the axioms we used

to define the EDA. By comparison, the relaxation of the Drinfeld double (which we recall

has two isotropic sub-algebras) to having only one isotropic subalgebra is vital to describe

certain models with H-flux including the λ-deformed WZW [57]. It is likely one can also

here find interesting algebras by either relaxing the group structure on g or the three-algebra

structure on dual generators.

Another limitation we may have been dealing with was simple our choice of dimension.

When one goes beyond SL(5) to higher-rank groups (one of us will soon report on the E6(6)

case [58]), it is likely that the number of possible constructions and transformations will

be much greater. Other restrictions that we would hope to relax in the future would be

to consider cases corresponding to less SUSY and to generalise to coset spaces rather than

group manifolds.

There are also open questions related to the mathematical description of exponentiation

of an EDA, when not a Lie algebra, and the precise formulation of the extended geometry

in these cases. This would likely make contact with the approach of [59] in which the

physical space is identified with the quotient of an enlarged group manifold by a subgroup.

The algebraic structure of the exceptional Drinfeld algebra necessitated the introduc-

tion of a trivector in the generalised parallelisation. It would be interesting to compare

this with some other approaches in the literature. For instance, given that the idea of gen-

eralised U-duality relies on relating alternative frames giving rise to equivalent gaugings,

it would be interesting to compare to the approach of [26] which provides a systematic

method for constructing frames given a set of generalised fluxes. This might also provide

a method to carry out some of the generalisations mentioned above. Further, it would be

interesting to compare this construction with that of [60, 61] where the trivector is viewed

as a deformation of a pre-existing geometry.
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A SL(5) exceptional geometry

A.1 Generalised Lie derivative and generalised frames

Here we describe some of the technology of SL(5) exceptional generalised geometry / ex-

ceptional field theory [29–33]. We will use capital calligraphic indices M,N , · · · = 1, . . . 5
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to label quantities transforming in the 5, and use antisymmetric pairs of such indices to

label quantities transforming in the 10.

We start with the definition of the generalised Lie derivative, which captures the

bosonic local symmetries (diffeomorphisms and gauge transformations) of supergravity.

Let A ∈ 10 be a generalised vector of weight λA and Λ ∈ 10 be a generalised vector of

weight λΛ = −ω ≡ 1/5. The generalised Lie derivative of V with respect to Λ is

LΛA
MN =

1

2
ΛPQ∂PQA

MN + 2∂PQΛP[MAN ]Q +
1

2
(1 + λA + ω)∂PQΛPQAMN . (A.1)

Meanwhile a generalised tensor C ∈ 5 of weight λC has generalised Lie derivative

LΛC
M =

1

2
ΛPQ∂PQC

M − CP∂PQΛMQ +
1

2
(λC + 1 + 3ω)∂PQΛPQCM . (A.2)

The actual coordinate dependence of all quantities in the theory is restricted by the formally

SL(5) covariant section condition

∂[MN ⊗ ∂KL] = 0 , (A.3)

which has independent “solutions” [62] that break SL(5) covariance and correspond to

underlying M-theory, type IIA or type IIB geometries.

M-theory generalised geometry. For the M-theory solution of the section condition,

we label the SL(5) indices as M = (i, 5), with i = 1, . . . , 4, and impose that ∂ij = 0 acting

on all quantities in the theory. Then in terms of the underlying M-theory generalised

geometry we find that quantities in the 10 decompose as a pair consisting of a vector and

a two-form, which are sections of (perhaps weighted) generalised tangent bundles

Λ = (v, λ(2)) ∈ TM ⊕ Λ2T ∗M , (A.4)

A = (a, α(2)) ∈ (TM ⊕ Λ2T ∗M)⊗ (detT ∗M)(λA+ω)/2 , (A.5)

and the generalised Lie derivative acts as:

LΛA = (Lva, Lvα(2) − ιadλ(2)) , (A.6)

where the ordinary Lie derivative Lv acts on the vector v and two-form α(2) which are of

weight λA + ω.

Meanwhile, a generalised tensor C in the fundamental corresponds to a scalar plus a

three-form:

C = (c(0), c(3)) ∈ (R⊕ Λ3T ∗M)⊗ (detT ∗M)(λC+3ω)/2 , (A.7)

and

LΛC = (Lvc(0), Lvc(3) + dλ(2)c(0)) (A.8)

in which the ordinary Lie derivative acts on the scalar c(0) and three-form c(3) which are

of weight λC + 3ω.
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Type IIB generalised geometry. The type IIB solution of the section condition splits

M = (i, α) with i = 1, 2, 3 the spacetime index and α = 4, 5 an SL(2) S-duality index. We

impose ∂iα = ∂αβ = 0 acting on all fields in the theory, and identify the natural derivatives

with respect to the spacetime coordinates as ∂i ≡ 1
2ε
ijk∂k. The positions of spacetime

indices therefore naturally come out reversed.

A generalised vector A of weight λA can now be decomposed in terms of vectors, a

doublet of one-forms and a three-form:

A = (a, α(1), α̃(1), α(3)) ∈ (TM ⊕ T ∗M ⊕ T ∗M ⊕ Λ3T ∗M)⊗ (detT ∗M)(λA+ω)/2 (A.9)

and with Λ = (v, λ(1), λ̃(1), λ(3)) of weight λΛ = 1/5, the generalised Lie derivative acts as

LΛA = (Lva, Lvα(1)− ιadλ(1), Lvα̃(1)− ιadλ̃(1), Lvα(3)−dλ(1)∧ α̃(1) +dλ̃(1)∧α(1)) , (A.10)

with the spacetime Lie derivative Lv acting on the tensors here which are of spacetime

weight λA + ω.

A generalised tensor C of weight λC in the fundamental is equivalent to a one-form

and a doublet of three-forms, all of spacetime weight λC + 3ω:

C = (c(1), c(3), c̃(3)) ∈ (T ∗M ⊕ Λ3T ∗M ⊕ Λ3T ∗M)⊗ (detT ∗M)(λC+3ω)/2 (A.11)

with

LΛC = (Lvc(1), Lvc(3) − c(1) ∧ dλ(1), Lv c̃(3) − c(1) ∧ dλ̃(1)) . (A.12)

A.2 Generalised frames and their algebra

The physical fields describing the geometry live in the coset SL(5)/SO(5), which is

parametrised by a unit determinant (inverse) generalised vielbein ẼMNAB = 2Ẽ[M
AẼ
N ]
B.

The generalised vielbein ẼMA in the 5 and that ẼMNAB in the 10 have weight 0. In or-

der to construct the algebra of frame fields, we have to instead use a generalised vielbein

EMNAB of weight −ω = 1/5. This parametrises the coset R+×SL(5)/SO(5). TO describe

the R+ factor, we introduce a scalar ∆ of weight 1/5:

LΛ∆ =
1

2
ΛPQ∂PQ∆ +

1

2

1

5
∂PQΛPQ∆ (A.13)

and define

EMA = ∆1/2ẼMA EMNAB = 2E[M
AE
N ]
B = ∆ẼMNAB . (A.14)

Hence EMA is a set of 5 generalised tensors of weight λEA = 1/10, so λEA + 3ω = −1/2.

Using these quantities, the algebra of generalised frames under the generalised Lie derivative

can be written

LEABE
M
C = −FABCDEMD , (A.15)

hence

LEABE
MN

CD = −1

2
FAB, CD

EFEMNEF = 2FAB[C
EED]E , (A.16)

where

FAB, CD
EF = 4FAB[C

[Eδ
F ]
D] . (A.17)

– 24 –



J
H
E
P
0
9
(
2
0
2
0
)
1
5
1

The form of the generalised Lie derivative means that the generalised flux FABC
D can be

decomposed in terms of irreducible representations of SL(5)

FABC
D = XABC

D − 1

6
τABδ

D
C −

1

3
δD[AτB]C (A.18)

with

XABC
D = ZABC

D +
1

2
δD[ASB]C . (A.19)

Here τAB ∈ 10 is the so-called trombone gauging [63], SAB ∈ 15 and ZABC
D ∈ 40 obeys

ZABC
D = Z[ABC]

D, ZABC
C = 0. Explicit expressions in terms of the unweighted and

weighted vielbeins are:

τAB = ∆
(

6ẼMAẼ
N
B∂MN ln ∆ + ∂MN (ẼMAẼ

N
B)
)

= 5EMAE
N
B∂MN ln ∆ + ∂MN (EMAE

N
B)

(A.20)

SAB = 4∆ẼM(A|∂MN Ẽ
N
|B) = 4EM(A|∂MNE

N
|B) (A.21)

ZABC
D = ∆

(
3ẼM[AẼ

N
BẼ
P
C]∂MN Ẽ

D
P − 2δD[A|∂MN Ẽ

M
|BẼ

N
C]

)
= 3

(
EM[AE

N
BE
P
C]∂MNE

D
P −

1

2
δD[A∂|MN|(E

M
BE
N
C])

)
+

1

2
δD[AτBC] .

(A.22)

A.3 Dictionary to 11- and 10-dimensional geometries

The SL(5) generalised geometry splits the full 11- or 10-dimensional geometry into a

seven-dimensional “external” part and a four-dimensional “internal” part. The 11- or

10-dimensional Einstein frame metric is decomposed as:

ds2
11 = g−1/5GµνdX

µdXν + gij(dx
i +Aµ

idXµ)(dxj +Aν
jdXν) , (A.23)

where Gµν , µ, ν = 0, . . . , 6, corresponds to a seven-dimensional Einstein frame U-duality

invariant metric, and has weight 2/5 under generalised Lie derivatives. It is consistent to

then identify

∆ = (detGµν)1/14 . (A.24)

The fields carrying both external and internal indices (such as the Kaluza-Klein vector

Aµ
i) appear in the SL(5) ExFT as n-dimensional p-forms in various representations of

SL(5). However, we will assume that these all vanish in our set-up. We therefore have

just to describe the internal metric and three-form, which together parametrise the afore-

mentioned coset SL(5)/SO(5).

M-theory parametrisation. Start with the M-theory solution of the section condition,

with physical coordinates xi ≡ xi5. A conventional representation of the SL(5)/SO(5) coset

in terms of a (unit determinant) generalised vielbein, consistent with the diffeomorphism

and gauge transformations generated by the generalised Lie derivative, is

ẼAM = g1/20

(
g−1/4eam −g−1/4eanC

n

0 g1/4

)
, (A.25)
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leading to a generalised metric mMN = ẼAMẼ
B
N δAB in a five-dimensional representation

mMN = g1/10

(
g−1/2gmn −g−1/2gmpC

p

−g−1/2gnpC
p g1/2 + g−1/2gpqC

pCq

)
, (A.26)

where the four-dimensional metric is written as gmn = eame
b
nδab and the three-form Cm =

1
6ε
mnpqCnpq, where ε1234 = 1 is the alternating symbol.

IIB parametrisation. The IIB solution of the section condition identifies the three-

dimensional coordinates as x̃i ≡ 1
2εijkx

jk. In this case, denote the (Einstein frame) space-

time metric by gij , the vielbein by ea
i, and their determinants by g ≡ det(gij), e ≡ det(ea

i).

The alternating symbol in spacetime is εijk, and has weight −1, and εijk has weight +1.

Also let hᾱα denote a vielbein for the coset SL(2)/SO(2) parametrised by the axio-dilaton,

with Hαβ = hᾱαh
ᾱ
αδᾱβ̄ . Then the IIB geometric parametrisation takes

EAM = e1/10

(
e1/2ei

a 0

e−1/2hᾱαC
α
i e−1/2hᾱα

)
, hᾱα = eΦ/2

(
1 C0

0 e−Φ

)
,

(A.27)

mMN = g1/10

(
g1/2gij + g−1/2HαβCαi C

β
j g−1/2HβγCγi

g−1/2HαγCγj g−1/2Hαβ

)
, (A.28)

with

Cαi =
1

2
εijk(C

jk, Bjk) , Hαβ = eΦ

(
1 C0

C0 C
2
0 + e−2Φ

)
. (A.29)

B Embedding Drinfeld doubles in SL(5)

B.1 Half-maximal truncation

In order to describe an embedding of a Drinfeld double, we can truncate the Exceptional

Drinfeld Algebra. This means reducing from SL(5) to SO(3, 3), along the lines of [30, 45].

The 5 of SL(5) produces one of the four-dimensional Majorana-Weyl spinor representations

of (the double cover of) SO(3, 3) plus a singlet. In terms of the five-dimensional indices,

we writeM = (I, 4) where I = 1, 2, 3, 5 is the spinorial index. We break ∂MN = (∂IJ , ∂I4)

and impose ∂I4 = 0. The bispinorial derivative ∂IJ in fact transforms in the vector repre-

sentation 6 of SO(3, 3).

We can compute the O(3, 3) generalised Lie derivative acting on the 5 = 4 ⊕ 1, us-

ing (A.2). The singlet component transforms as a scalar of weight λC+1+3ω under O(3, 3)

diffeomorphisms with parameter ΛIJ

LΛC
4 =

1

2
ΛIJ∂IJC

4 +
1

2
(λC + 1 + 3ω)∂IJΛIJC4 . (B.1)

The spinor in the 4 transforms as:

LΛC
I =

1

2
ΛJK∂JKC

I +
1

2
(λC + 1 + 3ω)∂JKΛJKCI − CJ∂JKΛIK , (B.2)
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defining an SO(3, 3) spinorial generalised Lie derivative [30]. Now, the generalised frame

field EMA has weight λEA = 1/10. Hence E4
A gives SO(3, 3) scalars of weight 1/2, and

EIA gives SO(3, 3) spinors. After truncating out the RR sector (by projecting out all

components of the generalised vielbein carrying a single index M = 4 or A = 4), we are

left with:

EMA =

(
EIα 0

0 e−d

)
, (B.3)

where EIα is an SO(3, 3)/SO(3) × SO(3) coset element in the Majorana-Weyl spinor

representation (and so has unit determinant), and e−2d denotes the SO(3, 3) generalised

dilaton, which is a scalar of weight 1.

We can now compute the algebra (A.15) of generalised frames of the form (B.3) and

interpret these in O(3, 3) terms. The non-zero components of FABC
D turn out to be:

Fαβγ
δ = M̃αβγ

δ +
1

2
δδ[αSβ]γ , Fαβ4

4 = −1

2
ταβ , Fα4β

4 =
1

2
ταβ −

1

4
Sαβ , (B.4)

where the irreducible fluxes have decomposed to give non-vanishing components:

ταβ = EIαE
J
β∂IJ(−2d) + ∂IJ(EIαE

J
β) , Sαβ = 4EI (α|∂IJE

J
|β) , (B.5)

Zαβγ
δ = M̃αβγ

δ +
1

2
δδ[ατβγ] , Zαβ4

4 = −1

3
ταβ , (B.6)

with an SO(3, 3) irreducible representation

M̃αβγ
δ = 3

(
EI [αE

J
βE

K
γ]∂JKE

δ
I −

1

2
∂JK(EJ [αE

K
β)δδγ]

)
, (B.7)

obeying Mαβγ
γ = 0. We can more conveniently define

M̃αβ =
1

3!
εγδεαMγδε

β =
1

2
εIJKL∂IJE

(α
KE

β)
L (B.8)

which is symmetric.

The two irreducible symmetric representations Sαβ and M̃αβ can be related to the

self-dual and anti-self-dual parts of the usual SO(3, 3) generalised flux fIJK [53] (using

gamma matrices or equivalently ’t Hooft symbols), and a half-maximal theory uplifts to

the maximal theory if [53]

SαβM̃
αβ = 0 . (B.9)

B.2 Drinfeld doubles

So far this is a standard exercise in determining the particular fluxes of the half-maximal

theory. Now let’s specialise to Drinfeld doubles. We break up our indices further as

I = (i, 5) and α = (a, 5).
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Drinfeld double: IIA frame. To describe type IIA we take ∂i5 6= 0 and ∂ij = 0. Our

data are the group manifold vector fields va, one-forms la and the Poisson-Lie bivector πab.

We also define λa ≡ 1
2εabcπ

bc. Then a type IIA choice of spinorial frame and generalised

dilaton is:

EIα =

(
(det l)1/2via 0

(det l)−1/2λa (det l)−1/2

)
, e−2d = e−2Φ̃ det l . (B.10)

It can be checked that the following flux components are turned on:

τab = εcd[af̃
cd
b] , τa5 = −2∂aΦ̃ + fac

c ,

Sab = −2εcd(af̃
cd
b) , Sa5 = −2fac

c ,

M̃ab =
1

2
εcd(afcd

b) , M̃a5 =
1

2
f̃acc .

(B.11)

(This requires using the constraints (4.20), and taking the “dilaton” Φ̃ to obey ∂aΦ̃ = fa4
4.

This is not the physical dilaton but should be thought of as an extra function appearing in

the definition of the frame (B.10). To match with section 4, take α = e−Φ̃, and in (4.10)

we have τa ≡ τa5 and τa ≡ 1
2ε
abctbc.)

The SL(5) frame in the 10 consists of a part in 6 and a part in the 4 of SO(3, 3).

The part in the 6 is obtained from the antisymmetrisation of the spinorial frame, EMA ≡
2EI [αE

J
β]. The part in the 4 is just the spinor frame weighted by e−d. Let’s denote

this by ÊIα ≡ e−dEIα. Translating these into differential form language leads to the

expressions (4.15) and (4.16).

Drinfeld double: IIB frame. To describe type IIB we take: ∂i5 = 0, ∂ij 6= 0. The

natural partial derivatives are thus ∂i = 1
2ε
ijk∂jk. Our data are now vector fields va, one-

forms la and Poisson-Lie bivector πab, with all indices in the opposite positions. A type

IIB choice of spinorial frame and generalised dilaton is:

EIα =

(
(det l)−1/2la

i −(det l)−1/2lb
iλb

0 (det l)1/2

)
, e−2d = e−2Φ̃ det l (B.12)

where λa = 1
2ε
abcπbc. It can be checked that the following flux components are turned on:

τab = εabc(−2∂cΦ̃ + f cdd) , τa5 = −f̃abb ,
Sab = −2εcd(af

cd
b) , Sa5 = −2f̃ac

c ,

M̃ab =
1

2
εcd(af̃cd

b) M̃a5 =
1

2
facc .

(B.13)

(Again this used the constraints (4.20).)

We can again translate the frame into differential form language, leading to the ex-

pressions (4.15) and (4.19) (with indices in the opposite placement).

Uplift condition. The condition SαβM̃
αβ = 0 can be easily seen to imply that a Drinfeld

double uplifts to an Exceptional Drinfeld Algebra only if:

f̃abcfab
c = 0 , (B.14)

which is indeed the condition found in [20] by checking closure.
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B.3 Spinors and gamma matrices

Let ea denote a vielbein basis of one-forms, and ea the inverse. We can represent an O(d, d)

spinor as a polyform, C =
∑

pC(p) and the gamma matrices using the wedge and interior

products:

Γa =
√

2ea∧ , Γa =
√

2ιea , (B.15)

obeying the O(d, d) Clifford algebra {Γa,Γb} = 2δba, {Γa,Γb} = 0, {Γa,Γb} = 0.

The Majorana-Weyl representations correspond to even and odd polyforms. For d = 3,

we can write these as:

Ceven = C0 +
1

2
Cabe

a ∧ eb , Codd =
1

6
εabc(C

0ea ∧ eb ∧ ec + 3Cabec) , (B.16)

or in index notation Cα = (C0, Cab), C
α = (C0, Cab). Acting with a single gamma matrix

maps between these representations. Acting with two gamma matrices on Ceven we obtain

the antisymmetric combination (ΓAB)α
β with non-zero components

(Γab)0
cd = −4δ[c

a δ
d]
b , (Γab)cd

0 = +4δ[a
c δ

b]
d ,

(Γa
b)0

0 = δba , (Γa
b)cd

ef = 2δbaδ
[e
c δ

f ]
d + 8δb[cδ

[e
d]δ

f ]
a .

(B.17)

Similarly, acting on Codd we obtain the components of (ΓAB)αβ :

(Γab)
cd

0 = −4δc[aδ
d
b] , (Γab)0

cd = +4δa[cδ
b
d] ,

(Γa
b)0

0 = −δba , (Γa
b)cdef = −2δbaδ

[c
e δ

d]
f − 8δb[eδ

[c
f ]δ

d]
a .

(B.18)

For convenience, let us record here also the reduction of the EDA relations that can be

encoded in the algebra (4.8) using these gamma matrices. We have vector on vector brackets

[ta, tb] = fab
ctc , [ta4, tb4] = f̃abct

c4

[ta, t
b4] = (−facbtc4 + f̃ bcatc) = −[tb4, ta] ,

(B.19)

vector on spinor brackets

[ta, t4] = fa4
4t4 , [ta, t

bc] = (2fad
[btc]d − f̃ bcat4 + fa4

4tbc) ,

[ta4, t4] =
1

2
fbc

atbc , [ta4, tbc] = −2f̃a[b
dt̃
c]d ,

(B.20)

and the spinor on vector brackets

[t4, ta] = −fa4
4t4 , [tbc, ta] = (3f[de

[bδ
c]
a]t

de + f̃ bcat4 − 3fd4
4δ[b
a t
cd]) ,

[t4, t
a4] = fb4

4t̃ab , [tbc, ta4] = −f̃ bcdtad ,
(B.21)

while the spinor on spinor brackets vanish.
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