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1 Introduction

The 4D Lorentz group SL(2,C) acts as the global conformal group on the celestial two-

sphere at null infinity where massless asymptotic scattering states are defined. Scattering

amplitudes are usually discussed in a momentum basis where translation invariance is man-

ifest but conformal properties are hidden. “Celestial amplitudes” which are obtained from

the usual momentum-space amplitudes by a Mellin transform over the external particle

energies obscure translation symmetry but render the conformal action trivial. In this con-

formal basis asymptotic states are labelled by their SL(2,C) Lorentz/conformal weights

(h, h̄) (or equivalently their total conformal dimension ∆ = h + h̄ and spin J = h − h̄)

rather than the usual energy-momentum four-vector.

In [1] a basis for flat space amplitudes was constructed in terms of conformal primary

wavefunctions with total conformal dimensions in the unitary principal series of the Lorentz

group ∆ = 1 + iλ with λ ∈ R. An important subtlety arises for the zero-modes (λ = 0)

which were not considered in [1] but were explicitly constructed in [2]; when these modes

are included the conformal primary wavefunctions on the unitary principal series form a

complete δ-function normalizable basis for flat space amplitudes.

A central feature of the usual scattering amplitudes in gravity or gauge theory is the

existence of a variety of (energetically) soft factorization theorems which put constraints

on the amplitudes. However, in the conformal basis the notion of a soft particle is lost.

SL(2,C) primary wavefunctions are not energy eigenstates and so the energy cannot be

taken to zero. Instead, we have the notion of a conformally soft particle for which the

conformal weight h or h̄ is taken to zero [2, 3]. The symmetries of the celestial sphere

imply that the scattering of such particles also obey special relations.

Recently, there has been considerable interest in studying scattering amplitudes in

the conformal basis. Celestial amplitudes for Yang-Mills theory at tree-level were recently

constructed in [4, 5]. In theories with sufficiently soft UV behavior, tree-level celestial

gluon scattering obeys conformally soft theorems [6–8] involving h→ 0 or h̄→ 0. This is
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both expected and suprising. MHV amplitudes obey soft theorems which are equivalent to

the Ward identities of spontaneously broken large gauge symmetries [9]. The generators

of these symmetries correspond to 2D Kac-Moody currents with (h, h̄) = (1, 0) or (0, 1)

on the celestial sphere [2, 9] which can be understood as the conformally soft λ→ 0 limit

of spin 1 primaries with conformal weights (h, h̄) = (1 + iλ
2 ,

iλ
2 ) or ( iλ2 , 1 + iλ

2 ) [2]. Hence

the insertion of conformally soft currents into celestial correlators is expected to give rise

to the celestial analogue of the soft theorems. On the other hand, it is suprising because

celestial amplitudes involve a superposition of all energies and so, unlike the energetically

soft theorems, the conformally soft theorems cannot be derived from low-energy effective

field theory [8]. Nevertheless, it was shown [6–8] that the λ → 0 limit of celestial gluon

amplitudes reproduces the well-known energetically soft factor of gluon scattering.

The situation is even more puzzling in gravity. Weinberg’s soft graviton theorem [10]

can be understood as the Ward identity of spontaneously broken BMS supertranslation

symmetry [11]. The generator of this symmetry, the 2D supertranslation current [12], can

be understood from the divergence of the λ→ 0 limit of a spin 2 primary operator on the

celestial sphere with conformal weights (h, h̄) = (3
2 + iλ

2 ,−
1
2 + iλ

2 ) or (−1
2 + iλ

2 ,
3
2 + iλ

2 ) [2].

Unlike the soft photon or gluon current in gauge theory, the supertranslation current is

not conformally soft as defined above, but instead has conformal weights (h, h̄) = (3
2 ,

1
2)

or (1
2 ,

3
2). Moreover, its OPE with another operator shifts the conformal weights of the

latter by (1
2 ,

1
2) [2]. Supertranslation invariance thus appears to provide an infinite number

of new constraints in the conformal basis which recursively relate operators with different

conformal dimension.

In the language of amplitudes, one would expect to find a celestial analogue of Wein-

berg’s soft theorem in the conformal basis. However, in Einstein gravity, the Mellin trans-

forms diverge and hence the classical four-graviton celestial amplitudes do not exist [13].

This uncontrollable growth becomes supersoft, exponentially suppressed at high energies,

in string theory. Having to resort to string theory for the purpose of studying the con-

formally soft behavior of amplitudes appears superfluous. On the other hand, the Mellin

transforms do involve a superposition of all energies and thus mix the UV and the IR in

the conformal basis.

The purpose of this paper is two-fold. First, I will argue that a certain analytic

continuation in λ of the conformal dimensions of some external gravitons away from the

principal continuous series effectively regulates classical celestial graviton amplitudes.1 The

reason for analytically continuing λ is not ad hoc but is implied by conformal covariance

of the amplitude. Moreover, in [2] we showed that a conformally soft spin 2 mode with

dimension ∆ = 2 is related to the 2D stress tensor for 4D gravity [15]. This mode is

obtained from a general spin 2 conformal primary in the construction of [1] by setting

λ = −i. Hence, primaries away from the principal continuous series may have to be

included for a complete holographic description of 4D quantum gravity.2

1I would like to thank Agnese Bissi for collaboration on a related project [14] from which this argument

arose.
2It is conceivable that these primaries may be obtainable by a suitable contour deformation of a con-

volution of primaries on the principal continuous series; a thorough understanding of this point is left for

future work. I would like to thank Sabrina Pasterski and Andy Strominger for discussion.
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Second, I will show that the celestial analogue of Weinberg’s soft theorem can be

understood as the λ→ 0 limit of celestial graviton amplitudes with the feature that higher-

point correlators are related to lower-point correlators with shifted conformal dimensions.

This limit is not conformally soft as defined above. Nevertheless, I will refer to the celestial

version of Weinberg’s soft theorem as the conformally soft graviton theorem. This is only

a slight abuse of language as the combined action of the insertion of the supertranslation

current with weights ( 3
2 ,

1
2) or (1

2 ,
3
2) and the shift in weights by ( 1

2 ,
1
2) that it induces may

be thought of as conformally soft.

This paper is organized as follows. In section 2, I introduce celestial amplitudes for

gravity and argue that analytic continuation of λ to complex values allows to interpret

the otherwise divergent energy integral as a distribution. I review celestial three- and

four-graviton amplitudes constructed first in [13] in sections 2.2 and 2.3 respectively. In

section 3, I present a general argument that translates Weinberg’s soft factor into the con-

formal basis. The conformally soft theorem is explicitly verified in section 3.1 for the known

tree-level celestial four-graviton amplitudes, and for four-graviton heterotic string ampli-

tudes in section 3.2. In section 3.3, I present an argument that extends the conformally

soft theorem to n-graviton MHV amplitudes.

Note added. While this paper was being prepared for submission the preprint [16]

appeared which studies celestial amplitudes using ambitwistor strings and has overlap-

ping results. After accounting for different conventions their formula for the conformally

soft limit of celestial gravity amplitudes appears to agree with (3.3) below.

2 Celestial amplitudes

2.1 Celestial n-gluon and n-graviton amplitudes

Consider an n-point scattering amplitude

A`1...`n(ωi; zi, z̄i) = A`1...`n(ωi; zi, z̄i)δ
(4)

(
n∑
i=1

pµi

)
, (2.1)

where `i labels the helicity, and I parametrize a null four-momentum by a sign εi = ±1 (for

outgoing and ingoing particles respectively), a positive frequency ωi and a point (zi, z̄i) on

the celestial sphere such that pµi = εiωiq
µ
i (zi, z̄i) with

qµi (zi, z̄i) = (1 + ziz̄i, zi + z̄i,−i(zi − z̄i), 1− ziz̄i) . (2.2)

The “celestial amplitude” is obtained from the standard momentum-space amplitude (2.1)

by a Mellin transform on each of the external particles

ÃJ1...Jn(λi; zi, z̄i) =
n∏
k=1

(∫ ∞
0

dωkω
iλi
k

)
A`1...`n(ωi; zi, z̄i) . (2.3)

One may show [1, 4] that under SL(2,C) Lorentz transformations

ÃJ1...Jn

(
λi,

azi+b

czi+d
,
āz̄i+b̄

c̄z̄i+d̄

)
=

n∏
j=1

[
(czj+d)∆j+Jj (c̄z̄j+d̄)∆j−Jj

]
ÃJ1...Jn(λi;zi, z̄i) , (2.4)
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with conformal dimensions ∆i = 1 + iλi and spins Ji ≡ `i, which in turn are related

to (hi, h̄i) by (hi, h̄i) = 1
2(∆i + Ji,∆i − Ji). Celestial amplitudes therefore share confor-

mal properties with correlation functions on the celestial sphere. The momentum space

amplitudes are conventionally normalized with inner product

(p1`1; p2`2) = (2π)32p0
1δ

(3)(~p1 + ~p2)δ`1,−`2 , (2.5)

which implies the celestial inner product

(λ1, z1, z̄1, J1;λ2, z2, z̄2, J2) = (2π)4δ(λ1 + λ2)δ(2)(z1 − z2)δJ1,−J2 . (2.6)

Celestial amplitudes for Yang-Mills theory have been constructed at tree-level for three

and four gluons in [4] and were generalized to n gluons in [5]. In theories with sufficiently

soft UV behavior, tree-level celestial gluon scattering obeys conformally soft theorems [6–8]

involving h→ 0 or h̄→ 0. Here I will be interested in tree-level celestial graviton scattering

amplitudes, which I will denote by H to distinguish them from gluon amplitudes A, and

their conformally soft behavior. In the following, powers of the gauge/gravitational (or

string) coupling are absorbed into the wave function normalization.

In momentum-space the general n-point graviton amplitude is given by

H`1...`n(ωi; zi, z̄i) = H`1...`n(ωi; zi, z̄i) δ
(4)

(
n∑
i=1

εiωiqi(zi, z̄i)

)
. (2.7)

The spinor-helicity formalism is a convenient and powerful framework for expressing am-

plitudes. I use the notation

〈ij〉 = −2εiεj
√
ωiωjzij , [ij] = 2

√
ωiωj z̄ij , (2.8)

where zij ≡ zi − zj and z̄ij = z̄i − z̄j and scalar products are defined as

sij ≡ −2 pi · pj = −〈ij〉[ij] = 4εiεjωiωjzij z̄ij . (2.9)

A by now celebrated result is that the stripped amplitude H`1...`n can be conveniently

expressed by sums of squares of stripped gluon amplitudes A`1...`n [17, 18] weighted by

the kinematic invariants. The general formula for the stripped n-point MHV Yang-Mills

amplitude in momentum space (`1 = `2 = −1 and `3 = · · · = `n = +1) is [19]

A−−+···+(ωi; zi, z̄i) =
〈12〉3

〈23〉 · · · 〈n1〉
≡ An(1−2−3+ . . . n+) .

(2.10)

The stripped MHV n-graviton amplitude in momentum space can be expressed as [20]

H−−+···+(ωi; zi, z̄i)
n≥4
=

∑
P(i3...in)

s1 in

(
n−1∏
m=4

βm

)[
An(1−2−i+3 . . . i

+
n )
]2

≡ Hn(1−2−3+ . . . n+) ,

(2.11)
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where the sum is over all permutations P(i3 . . . in) of the external positive helicity labels

{3, . . . , n} and

βm = −〈im im+1〉
〈2 im+1〉

〈2|i3 + · · ·+ im−1|im] , (2.12)

where

〈i|k|j〉 = 〈ik〉[kj] . (2.13)

The celestial n-graviton amplitude is obtained by the following Mellin transform

H̃−−+···+ =

(
n∏
k=1

∫ ∞
0

dωkω
iλk
i

)
H−−+···+

=
1

(−2)2n−8

(
n∏
k=1

∫ ∞
0

dωkω
iλk−Jk
k

) ∑
P(i3...in)

s1in

(
n−1∏
m=4

βm

)(
z3

12

z2i3 . . . zin1

)2


× δ(4)

(
n∑
i=1

εiωiqi

)
. (2.14)

In section 3.1, I will present the details of Weinberg’s soft theorem in the conformal basis

for celestial three- and four-graviton amplitudes, first constructed in [13], which I will

now review.

2.2 Celestial three-graviton amplitude

To study the three-graviton amplitude one resorts to (2, 2) signature where the amplitude

is non-vanishing. Lorentz transformations act as SL(2,R)×SL(2,R) on zi and z̄i which now

are independent real variables. The MHV graviton three-point amplitude (`1 = `2 = −1

and `3 = +1) is given by

H−−+(pi) = H−−+ δ
(4)

(
3∑
i=1

εiωiqi

)
, (2.15)

where

H−−+ = A2
−−+ =

(
ω1ω2

ω3

z3
12

z23z31

)2

, (2.16)

and a convenient way of writing the momentum-conserving δ-function is [8]

δ(4)

(
3∑
i=1

εiωiqi

)
=

1

4ω2
3

sgn(z23z31)

z23z31
δ

(
ω1−

ε3
ε1

z23

z12
ω3

)
δ

(
ω2−

ε3
ε2

z31

z12
ω3

)
δ(z̄23)δ(z̄31) ,

(2.17)

where I assumed zij 6= 0. The celestial amplitude is

H̃−−+(λi; zi, z̄i) = sgn(z23z31)
z6

12

z3
23z

3
31

δ(z̄23)δ(z̄31)

(
ε2
ε1

z23

z12

)iλ1+2(ε3
ε1

z31

z12

)iλ2+2

×Θ

(
ε3
ε1

z23

z12

)
Θ

(
ε3
ε2

z31

z12

)∫ ∞
0

dω3ω
i
∑3

i=1 λi
3 .

(2.18)
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Writing it in the form [13]

H̃−−+(λi; zi, z̄i) =
sgn(z23z31)δ(z̄23)δ(z̄31)

z
−2+i(λ1+λ2)
12 z1−iλ1

23 z1−iλ2
31

Θ

(
ε3
ε1

z23

z12

)
Θ

(
ε3
ε2

z31

z12

)∫ ∞
0

dω3ω
i
∑3

i=1 λi
3 ,

(2.19)

we see that the celestial amplitude has conformal transformation properties of a three-point

correlation function of conformal primaries with weights3

h1 = −1

2
+
iλ1

2
, h̄1 =

3

2
+
iλ1

2
,

h2 = −1

2
+
iλ2

2
, h̄2 =

3

2
+
iλ2

2
,

h3 = 1− i(λ1 + λ2)

2
, h̄3 = −1− i(λ1 + λ2)

2
.

(2.20)

in agreement with J1 = −2, J2 = −2, J3 = +2 and ∆1 = 1 + iλ1, ∆2 = 1 + iλ2. If we

analytically continute λ3 by shifting it by i, namely λ3 = λ′3 + i with λ′3 ∈ R, then we can

interpret the energy integral in (2.18) as a distribution similar to the case of Yang-Mills

amplitudes [4, 13]: ∫ ∞
0

dω3ω
i(λ1+λ2+λ′3)−1
3 = 2πδ

(
λ1 + λ2 + λ′3

)
. (2.21)

This imposes λ3 = i− (λ1 + λ2) and therefore yields

h3 =
3

2
+
iλ3

2
, h̄3 = −1

2
+
iλ3

2
, (2.22)

in agreement with ∆3 = 1 + iλ3. The reason for this analytic continuation is not ad hoc.

In fact conformal covariance of the δ-functions in (2.19) imposes the constraint

3∑
i=1

h̄i =
5

2
+

3∑
i=1

iλi
2
, (2.23)

which is precisely satisfied for (2.22). As alluded to in the introduction, an example of

a graviton with complex λ is the conformal primary h̃2 discussed in [2] which is related

to the 2D stress tensor for 4D gravity [15] and can be understood as the λ = −i limit of

a general spin 2 conformal primary with dimension ∆ = 1 + iλ. Another example is its

shadow transform which is a ∆ = 0 primary with λ = i.

2.3 Celestial four-graviton amplitude

The MHV four-graviton amplitude is given by

H−−++(pi) = H−−++ δ
(4)

(
3∑
i=1

εiωiqi

)
, (2.24)

3For fixed spin hi − h̄i we may determine the h̄i from the hi.

– 6 –
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where the stripped amplitude is

H−−++ = s14

[
A4(1−2−3+4+)

]2
+ s13

[
A4(1−2−4+3+)

]2
= −s12A4(1−2−3+4+)A4(1−2−4+3+)

= 4ε1ε2
ω3

1ω
3
2

ω2
3ω

2
4

z7
12z̄12

z13z14z23z24z2
34

.

(2.25)

Here I used the well-known relation s13A4(1−2−4+3+) = s14A4(1−2−3+4+) and s12 +s13 +

s14 = 0 which follows from energy-momentum conservation. A convenient way for writing

the δ-function for the latter is [8]

δ(4)

(
4∑
i=1

εiωiqi

)
=

1

4ω3
δ

(
ω1 −

ε3
ε1

z23z̄34

z12z̄14
ω3

)
δ

(
ω2 −

ε3
ε2

z13z̄34

z12z̄42
ω3

)
δ

(
ω4 −

ε3
ε4

z23z̄13

z42z̄14
ω3

)
× δ(z12z34z̄13z̄24 − z13z42z̄12z̄34) ,

(2.26)

where I assumed zij 6= 0. The celestial amplitude is

H̃−−++ = ε1ε2
z7

12z̄12

z13z14z23z24z2
34

(
ε3
ε1

z23z̄34

z12z̄14

)iλ1+3(ε3
ε2

z13z̄34

z12z̄42

)iλ2+3(ε3
ε4

z23z̄13

z42z̄14

)iλ4−2

×Θ

(
ε3
ε1

z23z̄34

z12z̄14

)
Θ

(
ε3
ε2

z13z̄34

z12z̄42

)
Θ

(
ε3
ε4

z23z̄13

z42z̄14

)
δ(z12z34z̄13z̄24 − z13z24z̄12z̄34)

×
∫ ∞

0
dω3ω

i
∑4

i=1 λi+1
3 .

(2.27)

This expression can be brought into a more familiar form

H̃−−++ = ε1ε2

 4∏
i<j

z
h
3
−hi−hj

ij z̄
h̄
3
−h̄i−h̄j

ij

z 10
3 (1−z)−

2
3 δ(z−z̄)Θ(z−1)

∫ ∞
0

dω3ω
i
∑4

i=1λi+1
3 ,

(2.28)

where I introduced the conformal cross ratios

z =
z12z34

z13z24
, 1− z =

z14z23

z13z24
, (2.29)

and with similar expressions for z̄ and 1 − z̄ replacing zij → z̄ij . This representation

reveals that the celestial four-graviton amplitude has conformal transformation properties

of a four-point correlation function of primary conformal fields with weights [13]

h1 = −1

2
+
iλ1

2
, h̄1 =

3

2
+
iλ1

2
,

h2 = −1

2
+
iλ2

2
, h̄2 =

3

2
+
iλ2

2
,

h3 =
3

2
+
iλ3

2
, h̄3 = −1

2
+
iλ3

2
,

h4 =
3

2
+
iλ4

2
, h̄4 = −1

2
+
iλ4

2
,

(2.30)

– 7 –
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in agreement with ∆i = 1 + iλi, J1 = J2 = −2 and J3 = J4 = +2 and where I followed a

similar line of reasoning as above and analytically continued λ3 by shifting it by 2i. This

again allows us to write the energy integral in (2.27) as a distribution yielding the relation

λ3 = 2i − (λ1 + λ2 + λ4). While this provides an argument for the existence of regulated

classical celestial graviton amplitudes, it is not crucial in deriving the conformally soft

graviton theorem for n ≥ 4 gravitons. Moreover, one can resort to string theory where

graviton amplitudes are well-behaved in the UV.

3 Conformally soft theorem in gravity

Weinberg’s soft theorem [10] is the statement that an n-particle scattering amplitude fac-

torizes in the limit where the energy of an external graviton is taken to zero:4

lim
ωn→0

Hn(ω1, . . . , ωi, . . . , ωn) = S(0)Hn−1(ω1, . . . , ωi, . . . , ωn−1) + . . . , (3.1)

where . . . denote subleading corrections.5 The soft factor S(0), expressed in a spinor-helicity

basis, is given by [21] (taking the n-th graviton to have positive helicity)

S(0) = −
n−1∑
i=1

[ni]

〈ni〉
〈xi〉〈yi〉
〈xn〉〈yn〉

=

n−1∑
i=1

εiωi
εnωn

z̄ni
zni

zxizyi
zxnzyn

, (3.2)

where x and y refer to reference spinors that are judiciously chosen.

Celestial amplitudes obey the corresponding conformally soft factorization

lim
λn→0

iλnH̃n(λ1, . . . , λi, . . . , λn) =

n−1∑
i=1

S̃
(0)
i H̃n−1(λ1, . . . , λi − i, . . . , λn−1) , (3.3)

relating the celestial n-graviton amplitude (2.14) to a sum of celestial (n − 1)-graviton

amplitudes with shifted conformal weights via the conformally soft factor (again taking

the n-th graviton to have positive helicity)

S̃
(0)
i =

εi
εn

z̄ni
zni

zxizyi
zxnzyn

. (3.4)

The shift in λi in the (n−1)-graviton amplitudes is explained as follows. The soft graviton

theorem (3.1) can be understood as the Ward identity for the supertranslation current [12].

As explained in [2] the OPE of the supertranslation current with an operator Oω in the

momentum-basis

PzOω(w) ∼ ω

z − w
Oω(w) , (3.5)

implies in the conformal basis that its OPE with an operator O(h,h̄) shifts the conformal

weights of the latter:

PzO(h,h̄)(w) ∼ 1

z − w
O(h+ 1

2
,h̄+ 1

2
)(w) . (3.6)

4In this section I suppress the explicit dependence of the amplitudes on zi, z̄i.
5Universal formulae for the subleading and sub-subleading soft factors S(1) and S(2) also exist [21].
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In the language of celestial amplitudes the conformally soft limit is thus expected to relate

amplitudes with shifted conformal weights: the explicit appearance of ωi in the momentum-

space soft factor (3.2) implies that in the conformal basis the ith external particle has its

conformal dimension ∆i = hi + h̄i shifted by 1. This corresponds to the shift in λi by −i
in (3.3).

3.1 Conformally soft four-graviton amplitude

I will now verify the conformally soft factorization (3.3) explicitly for the four-graviton

amplitude

lim
λ4→0

iλ4H̃−−++(λ1, λ2, λ3, λ4) =
3∑
i=1

S̃
(0)
i H̃−−+(λ1, . . . , λi − i, . . . , λ3) , (3.7)

and derive the conformally soft factor

S̃
(0)
i =

εi
ε4

z̄4i

z4i

zxizyi
zx4zy4

. (3.8)

Recalling the celestial four-graviton amplitude (2.27), the conformally soft limit (3.7) is

lim
λ4→0

iλ4H̃−−++ =−ε1ε2ε3ε4
z7

12

z13z14z2
23z

2
34

z
z̄14z̄24

z̄34

(
ε3
ε1

z23z̄34

z12z̄14

)iλ1+3(ε3
ε2

z13z̄34

z12z̄42

)iλ2+3

×Θ

(
ε3
ε1

z23z̄34

z12z̄14

)
Θ

(
ε3
ε2

z13z̄34

z12z̄42

)
δ(z12z34z̄13z̄24−z13z24z̄12z̄34)

× lim
λ4→0

iλ4

(
ε3
ε4

z23z̄13

z42z̄14

)iλ4−1

Θ

(
ε3
ε4

z23z̄13

z42z̄14

)∫ ∞
0

dω3ω
i
∑4

i=1λi+1
3 ,

(3.9)

where I made use of the δ-function to replace a factor z̄12z̄34
z̄13z̄24

by the conformal cross ratio

z. The term in the last line becomes

lim
λ4→0

iλ4

(
ε3
ε4

z23z̄13

z42z̄14

)iλ4−1

Θ

(
ε3
ε4

z23z̄13

z42z̄14

)
= δ

(
ε3
ε4

z23z̄13

z42z̄14

)
, (3.10)

where I used the identity

δ(x) = lim
ε→0

|x|ε−1

Γ( ε2)
, (3.11)

and Θ(0) = 1
2 . Assuming z23 6= 0 we can write the δ-function as

δ
(z23z̄13

z24z̄14

)
= sgn(z23z24z̄14)

z̄14z24

z23
δ(z̄13) . (3.12)

Assuming further z13 6= 0, z24 6= 0, z̄34 6= 0 and using (3.12) we can write

δ(z12z34z̄13z̄24 − z13z24z̄12z̄34) =
sgn(z13z24z̄34)

z13z24z̄34
δ(z̄12) . (3.13)
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With this the conformally soft limit becomes

lim
λ4→0

iλ4H̃−−++ = −ε1ε2ε3ε4 z̄14 z
z7

12

z13z14z2
23z

2
34

(
ε3
ε1

z23

z12

)iλ1+3(ε3
ε2

z31

z12

)iλ2+3(z42z̄14

z23z̄13

)
×Θ

(
ε3
ε1

z23

z12

)
Θ

(
ε3
ε2

z31

z12

)
sgn(z23z31)

z23z31
δ(z̄12)δ(z̄13)

∫ ∞
0

dω3ω
i
∑3

i=1 λi+1
3 .

(3.14)

Comparing with (2.18) it is clear that the above expression cannot be expressed simply

in terms of H̃−−+. Instead, the OPE (3.6) implies that the conformally soft limit relates

four-point amplitudes to three-point amplitudes with shifted conformal weights. The way I

represented the momentum-conserving δ-function in (2.27) corresponds to shifting (h1, h̄1)

in (2.18) by (1
2 ,

1
2). This is accommodated by the imaginary shift λ1 → λ1− i. The shifted

celestial three-point amplitude is

H̃−−+(λ1−i,λ2,λ3) = sgn(z23z31)
z6

12

z3
23z

3
31

(
ε3
ε1

z23

z12

)iλ1+3(ε3
ε2

z31

z12

)iλ2+2

×Θ

(
ε3
ε1

z23

z12

)
Θ

(
ε3
ε2

z31

z12

)
δ(z̄13)δ(z̄23)

∫ ∞
0

dω3ω
i
∑3

i=1λi+1
3 .

(3.15)

From (3.14) and (3.15) follows the conformally soft factorization (3.7) with

S̃(0) =
ε1
ε4

z̄14

z14

z12z13

z24z34
, (3.16)

which corresponds to (3.8) with x = 2 and y = 3.6 As an aside, we may express the

conformally soft factor as S̃(0) = s14 z
(
−1

2
z31

z34z41

)2
where the term inside the brackets is

the (conformally) soft factor in gauge theory.

3.2 Conformally soft graviton theorem in heterotic string theory

The UV behavior of amplitudes gets softened in string theory. Four-graviton amplitudes

in heterotic string theory differ from those in Einstein gravity [13]

Hheterotic
−−++ = FHH−−++ , (3.17)

by the heterotic form factor

FH(s, t, u) = −Γ(−s)Γ(−t)Γ(−u)

Γ(s)Γ(t)Γ(u)
, (3.18)

where s, t, u are the Mandelstam variables

s = α′s12 , t = α′s23 , u = α′s13 . (3.19)

For the celestial four-point amplitude (2.27) this implies the substitution∫ ∞
0

dω3ω
i
∑4

i=1 λi+1
3 →

∫ ∞
0

dω3ω
i
∑4

i=1 λi+1
3 FH(ωi) ≡ F̃H(λi) . (3.20)

6Note that any other choice of x, y is equal to (3.16) upon use of the energy-momentum conserving

δ-function of the four-point amplitude (2.17).
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The Mandelstam variables are conveniently expressed as

s = 4α′ω2
3

z23z̄13

z42z̄14
z34z̄34 ,

u = 4α′ω2
3

z13z̄34

z12z̄42
z23z̄23 ,

t = 4α′ω2
3

z23z̄34

z12z̄14
z13z̄13 ,

(3.21)

where I made use of energy-momentum conservation of the four-graviton amplitude. In

the conformally soft limit λ4 → 0, using z̄12 = 0, z̄13 = 0, we get s, t, u → 0 and so the

celestial heterotic form factor reduces to

F̃H

∣∣∣
λ4→0,z̄12→0,z̄13→0

=

∫ ∞
0

dω3ω
i
∑4

i=1 λi+1
3 . (3.22)

The argument involving the shift λi → λi− i that leads to the energy integral of the three-

point amplitude remains unchanged. Hence, the heterotic four-graviton amplitude obeys

the Ward identity

lim
λ4→0

iλ4H̃heterotic
−−++ (λ1, λ2, λ3, λ4) =

3∑
i=1

S̃
(0)
i H̃−−+(λ1, . . . , λi − i, . . . , λ3) , (3.23)

with the conformally soft factor given by (3.8).

3.3 Conformally soft n-graviton amplitude

To generalize the argument for conformally soft factorization to n-point amplitudes recall

that the stripped n-point MHV graviton amplitude is (2.11)

Hn(1−2−3+ . . . n+) =
1

(−2)2n−8

(
ω1ω2

ω3 . . . ωn

)2 ∑
P(i3...in)

s1in

(
n−1∏
m=4

βm

)(
z3

12

z2i3 . . . zin1

)2

.

(3.24)

A convenient way to express βm is [20]

βm =
〈imim+1〉
〈2im+1〉

(〈21〉[1im] + 〈2im+1〉[im+1im]) . (3.25)

A formal argument for the conformally soft factorization of the n-graviton amplitude,

similar to the one given in [8] for Yang-Mills, is as follows. Using the integral representation

of the energy-momentum conserving δ-function

δ(4)

(
n∑
i=1

εiωiqi

)
=

∫
d4y

(2π)4
e−i

∑
i ωi(εiy·qi−iε) , (3.26)
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we can write the celestial n-graviton amplitude as

H̃n(1−2−3+ . . . n+) =

(
n∏
k=1

∫ ∞
0

dωkω
iλk
k

)
δ(4)

(
n∑
k=1

εkωkqk

)
Hn(1−2−3+ . . . n+)

=

(
n∏
k=1

∫ ∞
0

dωkω
iλk−Jk
k

)∫
d4y

(2π)4
e−i

∑
k ωk(εky·qk−iε)

× 1

(−2)2n−8

 ∑
P(i3...in)

4ε1εinω1ωin

(
n−1∏
m=4

βm

)
z1in z̄1inz

6
12

z2
2i3
. . . z2

in1

 .
(3.27)

The crucial thing to notice is that conformally soft poles arise from terms inside [. . .] that

provide a single factor of ωk so that the integral over ωk becomes7∫ ∞
0

dωkω
iλk−Jk+1
k e−iωk(εky·qk−iε) =

Γ(iλk − Jk + 2)

[iεky · qk + ε]iλk−Jk+2
. (3.28)

We see explicitly from the Γ-function that H̃n has poles at λk with 3 ≤ k ≤ n (but not in λ1

and λ2) and the conformally soft limit picks out the residue of this pole. The dependence

of the k-th term on zij , z̄ij disappears in the λk → 0 limit as can be seen explicitly from

the denominator [iεky · qk + ε]iλk−Jk+2 → 1. From Weinberg’s soft theorem it then follows

that the remaining terms support the conformally soft factor (3.4) where n = k.

To illustrate these arguments consider again the celestial four-graviton amplitude

H̃4(1−2−3+4+) =

∫
d4y

(2π)4

(
4∏

k=1

∫ ∞
0

dωkω
iλk
k e−iωk(εky·qk−iε)

)
H4(1−2−3+4+) , (3.29)

with the stripped four-graviton amplitude

H4(1−2−3+4+) =
∑
P(i3i4)

ε1ω1

εi4ωi4
z1i4 z̄1i4

(
zi31

zi3i4zi41

)2

H3(1−2−i+3 ) . (3.30)

Let’s first recall the soft theorem. The above sum over perumtations P(i3, i4) contains two

terms both of which contribute to the soft factor. Using energy-momentum conservation

we can express the second term in the sum (i3i4) = (43) in terms of the first (i3i4) = (34)

with an additional factor (z − 1) thus yielding Weinberg’s soft factor (3.2) for n = 4 for

the choice x = 2, y = 3.

Let’s now return to the celestial four-graviton amplitude

H̃4(1−2−3+4+) = z14z̄14

(
z31

z34z41

)2

z

∫
d4y

(2π)4

∫ ∞
0

dω4ω
iλ4−J4+1
4 e−iω4(ε4y·q4−iε)

×
3∏
i=1

∫ ∞
0

dωkω
iλk
k ω1e

−iωk(εky·qk−iε)H3(1−2−3+) .

(3.31)

7Here I used ∫ ∞
0

dωωxe−bω =
Γ(x+ 1)

bx+1
.
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The integral over ω4 provides the pole at λ4 = 0∫ ∞
0

dω4ω
iλ4−J4+1
4 e−ω4(ε4y·q4−iε) =

Γ(iλ4 − J4 + 2)

[iε4y · q4 + ε]iλ4−J4+2

λ4→0−→ 1

iλ4
, (3.32)

which is canceled by the explicit factor (iλ4) in taking the conformally soft limit (3.7). The

additional factor of ω1 in (3.31) can be absorbed by shifting λ1 → λ1−i in the celestial three-

graviton amplitude H̃3(1−2−3+). Hence, the conformally soft theorem (3.7)–(3.8) holds.

For higher-point amplitudes it is convenient to use Hodges’ formula [22–24] for the n-

graviton amplitude which makes Weinberg’s soft limits manifest. For example, the stripped

five-point amplitude can be expressed as [21]

H5(1−2−3+4+5+) = −
4∑
i=1

[5i]

〈5i〉
〈xi〉〈yi〉
〈x5〉〈y5〉

H4(1−2−3+4+) +
〈12〉6

〈23〉2〈31〉2
[53][54]〈31〉〈32〉
〈53〉〈54〉〈41〉〈42〉

,

(3.33)

where the second term corresponds to the subleading soft graviton operator acting on

the stripped four-point amplitude S(1)H4(1−2−3+4+). With the first term providing the

desired factor 1/ω5, the integral over ω5, following the same line of reasoning as above,

provides the pole at λ5 = 0 of the five-point amplitude in the conformally soft limit.

After accounting for the shift in conformal weights of the four-point amplitude, the factor

in (3.33) becomes the conformally soft factor (3.4) for n = 5. Similar arguments can

be applied to the six-graviton amplitude. A pleasant feature of amplitudes with n ≤ 6

gravitons is that the soft factorization is exact while for higher-point amplitudes there are

corrections. While I have not proven the conformally soft factorization (3.3) for general

MHV n-graviton amplitudes, the general argument given in the beginning of this section

combined with the formal arguments described above are highly suggestive.
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