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Abstract: We study a host of spacetimes where the Weyl curvature may be expressed

algebraically in terms of an Abelian field strength. These include Type D spacetimes

in four and higher dimensions which obey a simple quadratic relation between the field

strength and the Weyl tensor, following the Weyl spinor double copy relation. However,

we diverge from the usual double copy paradigm by taking the gauge fields to be in the

curved spacetime as opposed to an auxiliary flat space.

We show how for Gibbons-Hawking spacetimes with more than two centres a gen-

eralisation of the Weyl doubling formula is needed by including a derivative-dependent

expression which is linear in the Abelian field strength. We also find a type of twisted

doubling formula in a case of a manifold with Spin(7) holonomy in eight dimensions.

For Einstein Maxwell theories where there is an independent gauge field defined on

spacetime, we investigate how the gauge fields determine the Weyl spacetime curvature via

a doubling formula. We first show that this occurs for the Reissner-Nordström metric in

any dimension, and that this generalises to the electrically-charged Born-Infeld solutions.

Finally, we consider brane systems in supergravity, showing that a similar doubling formula

applies. This Weyl formula is based on the field strength of the p-form potential that

minimally couples to the brane and the brane world volume Killing vectors.
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1 Introduction

The “double copy” and its inverse the “single copy” have received considerable attention in

the past few years, as they provide an intriguing link between gauge theories and gravity.

The double copy refers to moving from gauge theory to gravity while the single copy is the

inverse map (there is also a “zeroth copy” to a scalar theory). This relationship, as a map

between perturbative scattering amplitudes in gauge theory and gravity, was first studied

in [1–3]. A tree-level proof has been given [3–11], where it has a stringy origin [12], and

support for its existence at loop level found in [2, 13–43].

Subsequently the double/single copy was applied to some exact classical solutions. The

Schwarzschild solution was shown to single copy to an electric charge [44], the Taub-NUT
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solution to a magnetic monopole [45] and the Eguchi-Hanson solution mapped to a self-

dual gauge field [46], for example. More general topologically non-trivial solutions have

been double copied in the work of [47]. Other work examining symmetries of the linearised

double copy is [48–56]. More recent work has developed a wide variety of analysis applied

to the double copy [57]–[93].

In [60] four-dimensional type D spacetimes were investigated, using a double copy

formula for the Weyl curvature spinor in terms of a Maxwell spinor. Duality symmetries of

gauge theories and their relationship to solution-generating maps in gravity have also been

studied recently from the point of view of the double copy [75, 77]. The earlier work of [94]

had used a self-dual Maxwell field, defined in terms of a Killing vector on the spacetime,

in order to study how the Weyl tensor transformed under sl(2, R), and noted in particular

that if the Weyl tensor was given by a suitable function quadratic in the Maxwell field, then

the sl(2, R)-transformed metric also had a Weyl tensor satisfying this property. In [77] we,

with Peinador Veiga, studied various metrics for which this is the case, showing how they

transform under duality. This work, and that of [60], suggested that it would be interest

to study cases where the Weyl tensor is given in terms of an Abelian gauge field, by what

we will call “Weyl doubling”.

In this paper we would thus like to explore classes of gravity and gravity-gauge field

systems where the Weyl curvature of a spacetime is given as a quadratic function of an

Abelian field strength which is also defined on the spacetime. Crucially we differ from the

normal double copy scheme as our gauge field will be taken to be in the curved space time

rather than some auxiliary flat background. We will investigate two such classes — the

first where the gauge field is defined using intrinsic geometric properties of the spacetime,

and the second where it is an additional field in the theory.

This paper is organised as follows. In section 2 we introduce the definition of purely

algebraic Weyl doubling. We then show that the spacetimes obeying Weyl doubling satisfy

the conditions for type D in four and higher dimensions. The independent scalar curvature

invariants are then functions of the invariants constructed from the field strength, and the

Weyl-NP scalars are in turn functions of the Maxwell-NP scalars. We give a number of

examples.

In section 3 we then study gravitational instantons where the curvature satisfies a

self-duality condition. For the Gibbons-Hawking metrics, the anti-self-dual two form field

strength derived from the Killing vector is expanded in the triplet of anti-self-dual two

forms and we show that these coefficients determine the Weyl tensor of the metric via two

terms — the first being a direct tensor doubling formula as in section 2, and the second

involving derivatives of the Abelian field strength. Based on this we give a derivative

correction to the Weyl doubling formula. In higher dimensions, we find a manifold with

Spin(7) holonomy that obeys a doubling construction using a type of twisted Maxwell field.

We next consider examples where there is an independent gauge field defined on the

spacetime and investigate if the gauge fields in these gravity-gauge systems obey a doubling

formula for the Weyl tensor. In section 4 we first give an example for the case of the

Reissner-Nordström metric in any dimension, showing that the Weyl tensor is given by a

doubling formula based on the external electromagnetic field strength. This formula applies
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to both the extremal and the non-extremal Reissner-Nordström solutions. We show that

this generalises to the charged Born-Infeld solution in any dimension. In section 5 we then

consider brane systems in supergravity. Here we show that the components of the Weyl

tensor are given by a simple doubling formula based on the field strength of the p-form

that minimally couples to the brane world volume and the brane Killing vectors. We finish

with a discussion of the results and future work in section 6.

2 Weyl doubling

2.1 Spacetime classification

The central object of study will be the “doubling” formula, where a tensor, C[F ] with

the algebraic symmetries of the Weyl tensor in D dimensions can be constructed from an

n-form F = dA (with the gauge field A an n− 1 form) as follows:

Cµνρσ[F ] = Fµν ·Fρσ−Fρµ ·Fνσ−
6

D − 2
gµρFν ·Fσ +

3

(D − 1)(D − 2)
gµρgνσF ·F

∣∣∣∣
s

, (2.1)

where a dot product means to contract all non-visible indices between the two terms, for

example for an n-form, Fµν · Fρσ = Fµνλ3...λnFµν
λ3...λn . The symbol “|s” above applies to

the expression on the right-hand side of the equation, and it means to anti-symmetrise in

the indices µ, ν and in ρ, σ, with unit weight.

We wish to study cases where the spacetime Weyl tensor Cµνρπ[g] is proportional to

this expression

Cµνρπ[g] =
1

σ
Cµνρπ[F ] (2.2)

for some function σ. In a later example we will exhibit a derivative corrected expression

where the right-hand side of (2.2) contains further terms determined by derivatives of F .

The field strength F is closed and required to be divergence-free. (Note that the field is

defined on the spacetime with metric gµν thus the divergence equation is non-trivial.)

Let us first consider the case n = 2 where we have a normal Abelian two form field

strength. (The cases with n > 2 will be relevant when we discuss supergravity brane

solutions.) One can identify two cases where the divergence equation follows automatically.

The first is where

Fµν = 2∂[µKν] (2.3)

for a Killing vector Kµ, and the second is where there is a self-duality condition

Fµν = φµν
ρσFρσ (2.4)

for some covariantly constant four form φ on the manifold. (The Killing vector-defined

field strength may also satisfy a self-duality condition of course, or have this imposed.) We

will study examples of both situations below.

In the first case, where we construct F from the Killing vector K, we note that KµFµν
is closed. This follows from application of Cartan’s formula for the Lie derivative:

LKF = iKdF + diKF (2.5)
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which means for closed F and K Killing then diKF = 0. Locally we can solve this condition

to write KµFµν an exact form so that

KµFµν = ∂νσ . (2.6)

A solution to this (up to the addition of an arbitrary constant) is

σ = KµKµ . (2.7)

In four dimensions, an analysis of the action of duality transformations [77, 94] shows

that this is the same σ as in equation (2.2). See also [95, 96] where this was seen earlier

using the spinor formalism in Type D spacetimes and more recently [97, 98] for related

work in higher dimensions.

The formula (2.2) naturally implies some conditions on the spacetime. Write the

eigenvector equation for F as

Fµ
νkν = λkkµ , (2.8)

for eigenvector kµ and eigenvalue λk. Note that the eigenvectors are necessarily null.

Since F is antisymmetric, its eigenvalues form into pairs with opposite signs (and one zero

eigenvalue if D is odd). Then (2.2) implies that

Cµνρσk
νkσ = Λkµkρ (2.9)

with

Λ =
3

2(D − 1)(D − 2)

[
(D − 1)(D − 4)λ2k + FαβF

βα
]
. (2.10)

This implies that the eigenvector kµ is a principal null direction of the Weyl tensor. Equa-

tion (2.2) also implies that

k[αCµ]ν[ρσkπ]k
ν = 0 . (2.11)

and similarly for a second eigenvector lµ with a different eigenvalue. Thus generically there

are two principal null directions satisfying (2.11) which implies that the spacetime satisfies

the conditions for falling within the type D class in the appropriate higher-dimensional

classification [99] (see also the overview [100]). A special case occurs when the eigenvectors

are not independent and so there is only one principal null direction. This occurs when F

obeys a self-duality relation in which case the two eigenvectors are identical. The spacetime

is then said to fall into the type II class.

2.2 Invariants

Equation (2.2) implies that scalar invariants constructed from the Weyl tensor (and its

dual where there is a suitable four-form on the manifold) are functions of the traces

(Fn) = Fµ1µ2F
µ2
µ3 . . . F

µn
µ1 . (2.12)

We will use a similar notation for traces of products of Weyl tensors (or their duals), for

example

(C3) = CµνρπC
ρπ
αβC

αβ
µν . (2.13)
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In the four-dimensional case, then,

(C2) =
1

σ2

(
9

4
(F 2)2 − 3(F 4)

)
,

(CC∗) =
1

σ2

(
(F 2)(FF ∗) + 2(F 3F ∗)

)
,

(C3) =
1

σ3

(
− 61

2
(F 6) +

201

8
(F 2)(F 4)− 41

8
(F 2)3

)
(2.14)

(C2C∗) =
1

σ3

(
21

2
(F 3(F 3)∗)− (F 2)(F 3F ∗) +

(
− 5

2
(F 2)2 + 2(F 4)

)
(FF ∗) +

11

2
(F 5F ∗)

)
,

and so on. We define F ∗µν = 1
2εµνρσF

ρσ, and (F 3)∗µν = 1
2εµνρσF

ραFαβF
βσ in the above.

For four-dimensional vacuum spacetimes, the invariants (2.14) form an independent basis

(under algebraic relationships) for the set of scalar invariants [101]. In addition, traces of

higher powers of F are related to those of lower powers by the recursion relation

(F 2n) =
1

2
(F 2n−2)(F 2)− 1

8

(
(F 2)2 − 2(F 4)

)
(F 2n−4) . (2.15)

Using this, one can express any (Fn) in terms of (F 2) and (F 4), and hence all scalar

curvature invariants in the vacuum case are functions of these two traces. There are

analogous results in D > 4.

If one block-diagonalises F as

F =


0 x 0 0

−x 0 0 0

0 0 0 y

0 0 −y 0

 . (2.16)

then (F 2) = −2(x2 + y2) and (F 4) = 2(x4 + y4) and the invariants are functions of these

combinations. If x and y are proportional then (F 2) is the only independent function.

Similar arguments to those above apply to express the Weyl-NP scalars in terms of

the independent Maxwell-NP scalars, depending on the dimension. We now give some

examples to illustrate the above.

2.2.1 Taub-NUT

The Taub-NUT metric can be written in the form [102]

ds2 = −f(r)(dt− 2n cos θdφ)2 + f(r)−1dr2 + (r2 + n2)dΩ2
2 (2.17)

with

f(r) =
r2 − 2mr − n2

r2 + n2
. (2.18)

From the Killing vector Kµ = (1, 0, 0, 0) define the Maxwell field Fµν = 2∂[µKν]. Then we

have the Weyl doubling formula [77]

C+
µνρπ =

1

σ+
Cµνρπ[F+] , (2.19)
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with σ+ = −m+in
r+in =: −m+

r+
. The eigenvalues of F+ are m+

r2+
(1, 1,−1,−1) with corresponding

eigenvectors

mµ =
1

sin θ
√

2(r2 + n2

(
− 2n cos θ, 0,−i, 0

)
, lµ =

1√
λ

(
λ, 1, 0, 0

)
,

m̄µ =
1

sin θ
√

2(r2 + n2

(
− 2n cos θ, 0, i, 0

)
, nµ =

1√
λ

(
− λ, 1, 0, 0

)
, (2.20)

with λ = (r2 + n2)/(n2 + 2mr− r2). These form a null tetrad, with lµn
µ = −1,mµm̄

µ = 1

and the remaining inner products zero.

As F+ has repeated eigenvalues, the only independent trace is

(F+F+) = −4
m2

+

r4+
(2.21)

leading to

(C+C+) = 24
m2

+

r6+
. (2.22)

All other scalar invariants are functions of this expression and its conjugate.

The formula (2.19) implies corresponding relationships amongst the NP scalars. In

this case, for example, the Maxwell-NP scalars are φ0 = F+
µν l

µmν = 0, φ2 = F+
µνm̄

µnν = 0

and

φ1 =
1

2
F+
µν(lµnν + m̄µmν) =

m+

r2+
. (2.23)

Correspondingly, the only non-vanishing Weyl-NP scalar is

Ψ2 = C+
µνρπl

µmνm̄ρnπ = −m+

r3+
=

1

σ+
φ21 . (2.24)

This simple form of the Weyl doubling formula can also be seen directly from the spinor

formulation (cf. [60]).

2.2.2 Plebanski-Demianski

The general vacuum type D solution with vanishing cosmological constant [103], as given

in [60], is

ds2 =
1

(1−pq)2
(2.25)

×

[
2i(du+q2dv)dp−2(du−p2dv)dq+

P (p)

p2+q2
(du+q2dv)2− Q(q)

p2+q2
(du−p2dv)2

]
,

with

P (p) = γ(1− p4) + 2np− εp2 + 2mp3 ,

Q(q) = γ(1− q4)− 2mq + εq2 − 2nq3 , (2.26)

– 6 –
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where the parameters m,n, γ, ε are related to the mass, NUT charge, angular momentum

and acceleration (cf. [104]). The self-dual part of the Maxwell two form is given by

F+ =
(m− in)

2(p+ iq)2

(
i(du+ q2dv)dp+ (−du+ p2dv)dq

)
, (2.27)

with the anti-self dual part given by the complex conjugate. One has the Weyl doubling

formula

C+
µνρπ =

1

σ+
Cµνρπ[F+] , (2.28)

with σ+ = (m− in)(1− pq)4/(4i(p+ iq). Then

(F 2) =

(
(m− in)(1− pq)2

(p+ iq)2

)2

, (F 4) =
1

4

(
(m− in)(1− pq)2

(p+ iq)2

)4

. (2.29)

These are not independent as the eigenvalues of F+ are repeated — they are ±(m−in)(1−
pq)2/2(p+ iq)2 twice, and hence

(C+C+) = −24(m− in)2(1− pq)6

(p+ iq)6
(2.30)

is the only independent curvature invariant involving C+. Invariants involving C and C∗

can be written in terms of this and its conjugate.

2.2.3 Eguchi-Hanson

The Eguchi-Hanson metric is a vacuum solution with self-dual Weyl curvature. It is given

by

ds2 = 2dudv − 2dXdY +
λ

(uv −XY )3
(vdu−XdY )2 , (2.31)

with coordinates (u, v,X, Y ) and constant λ. The single-copy (self-dual) Maxwell tensor is

F =
2λ

(uv −XY )3

(
(uv+XY )(du∧ dv− dX ∧ dY )− 2vY du∧ dX + 2uXdv ∧ dY

)
. (2.32)

This is the single copy tensor discussed in [60], rather than the “mixed” version of [46].

With the Killing vector Kµ = (u,−v,−X,Y ) this is given by Fµν = (2∂[µKν])
+. The Weyl

curvature is then given by

Cµνρσ =
1

σ+
Cµνρσ[F ] , (2.33)

with σ+ = − λ
(uv−XY ) and F the Maxwell field (2.32).

As in the case above, the eigenvalues of F are repeated — here they are ±m/(uv−XY )2

twice. Thus the only independent trace of Fn is

(F 2) =
4λ2

(uv −XY )4
(2.34)

and hence the only independent curvature invariant is

(C2) =
24λ2

(uv −XY )6
. (2.35)

– 7 –
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2.2.4 Singly rotating Myers-Perry

As an example in D > 4, consider the singly-rotating Myers-Perry metric in the form [105]

ds2 = −f(x)

f(y)

(
dt+R

√
ν(1 + y)dψ

)2
+

R2

(x− y)2

[
−f(x)

(
g(y)dψ2 +

f(y)

g(y)
dy2
)

+ f(y)2
(
dx2

g(x)
+
g(x)

f(x)
dφ2
)]

, (2.36)

with

f(ξ) = 1− ξ , g(ξ) = (1− ξ2)(1− νξ) . (2.37)

From the Killing vector Kµ = ∂/∂t form the Maxwell field strength Fµν = 2∂[µKν]. Then

one can check that the Weyl tensor is given by the doubling formula

Cµνρπ =
1

σ
Cµνρπ[F ] , (2.38)

with σ = (y − 1)/(x − y). This satisfies (2.6). One can ask how Kµ might be related

to the standard single-copy gauge potential that arises from the Kerr-Schild form of the

metric. In the notation of [97], section (E.3), the single-copy potential for the Myers-Perry

metrics is Hlµ, and it differs from the contravariant vector Kµ obtained from the Killing

vector ∂/∂τ by a gauge transformation with parameter τ . Thus the two potentials give the

same single-copy Maxwell tensor in Kerr-Schild coordinates. When one transforms to the

coordinates used in (2.36) above, one obtains that metric, but with the function g(ξ) having

no term linear in ξ, i.e., with g(ξ) = 1 − ξ2 + νξ3 [106]. The coefficient of the linear term

is purely kinematical [103] and does not affect the vanishing of the Ricci tensor. However,

it does appear in the Weyl tensor, and its presence thus affects whether there is a Weyl

doubling formula or not. For the function g[ξ) = 1−Aνξ− ξ2 + νξ3 it can be checked that

only for A = 1 is there a Weyl doubling formula, which is (2.38).

From (2.1) with D = 5, the (C2) and (C3) invariants are given by the formulæ

(C2) =
1

σ2

(
15

8
(F 2)2 − 3

2
(F 4)

)
,

(C3) =
1

σ3

(
− 23

2
(F 6) +

81

8
(F 2)(F 4)− 41

16
(F 2)3

)
. (2.39)

The recursion relation (2.15) also applies in five dimensions so that the only independent

traces are again (F 2) and (F 4). Here they are

(F 2) =
2(−1 + L2(1 + 2x))(x− y)3

R2(−1 + y)3
, (2.40)

(F 3) =
2(1− 2L2x+ L4(1 + 2x+ 2x2))(x− y)6

R4(−1 + y)6
.

The Maxwell field strength here has four distinct eigenvalues — two different pairs with

opposite signs, and one zero.

– 8 –
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Turning to the Weyl-NP scalars, the classification of spacetimes in general dimensions

via properties of the Weyl tensor has been discussed by Coley, Milson, Pravda and Prav-

dova (CMPP) in [107, 108] (see also [109, 110]). More recently, the relationship between

these classifications has been discussed and compared to a spinor-based analysis in [111],

who show that in five dimensions the CMPP and spinor approaches are equivalent. The

classification of Maxwell fields is also described there.

We first define a null pentad of five vectors nµ, lµ,mµ
i , (i = 1, 2, 3), with

nµlµ = −1, mµ
imjµ = δij (2.41)

and all other inner products zero. A convenient set is defined in the appendix A. Now

expand a five-dimensional Maxwell field as

Fµν = F01n[µlν] + F̂0in[µmν]i + F̃1il[µmν]i + Fijmi[µmν]j . (2.42)

There is an analogous expansion for the Weyl tensor. In this type D case the terms with

non-zero weights vanish using our pentad choice and we have [107, 108]

Cµνρπ = 4C0101n{µlνnρlπ} + C01ijn{µlνm
i
ρm

j
π} + 8C0i1jn{µm

i
ν lρm

j
π} + Cijkln{µm

i
ν lρm

j
π} ,

(2.43)

with the notation T{µνρπ} := 1
2(T[µν][ρπ] + T[ρπ][µν]) for a tensor Tµνρπ.

The Weyl doubling relationship (2.2) implies that the Weyl coefficients, such as those

in (2.43), are given in terms of the analogous Maxwell coefficients, which are given in

five dimensions by (2.42). We also saw a simple four-dimensional example of this for the

Taub-NUT metric in subsection 2.2.1 above. In five dimensions we find, for example,

C0101 =
1

σ

(
3

16
F 2
01 −

1

8
F̂0iF̃1i −

1

8
FijF

ij

)
. (2.44)

For the Myers-Perry metric (2.36) we find the non-zero Maxwell-NP scalars

F01 = 2
(x− y)

R(−1 + y)

√
(−1 + L2x)(x− y)

(−1 + y)
, F31 = −F13 =

L(x− y)

R(1− y)

√
(1 + x)(x− y)

(1− y)

(2.45)

and the non-zero independent Weyl-NP scalars

C0101 =
(−3 + L2(1 + 4x))(x− y)2

4R2(1− y)2
, C0131 = −C0113 = −L

2(x− y)4(1 + x)(−1 + L2x)

R4(1− y)4
.

(2.46)

(The Cijkl are not independent quantities in five dimensions (cf. also [111] eq. (5.30)). One

can then check that for the Myers-Perry metric (2.44) is satisfied using (2.45) and (2.46)

and the vanishing of F̂0i and F̃1i.

3 The Gibbons-Hawking metrics

We will now consider the extension of the Eguchi-Hanson case where there is a self-duality

condition on the fields. Here we will find a generalisation of the Weyl doubling formula (2.2),

– 9 –
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where the additional terms are also given in terms of the derivative field strength F . The

Gibbons-Hawking metric is given by

ds2 =
1

V

(
dx4 +Aidx

i
)2

+ V dxidxi , (3.1)

where the fields V,Ai are functions of the spatial coordinates xi, i = 1, 2, 3, and are related

by

∇V = ∇×A . (3.2)

This equation implies V is harmonic. It may thus be solved by a superposition of harmonic

functions with arbitrary centres. The two centre solution can be shown to be equivalent

to the Eguchi-Hanson solution, after a coordinate transformation. From the Killing vector

Kµ = (0, 0, 0, 1) we can form the anti-self-dual field strength

Fµν = 2∂[µKν] , (3.3)

satisfying F ∗µν = 1
2εµνρσF

ρσ = −Fµν with σ = 1/V via (2.6). We find in this case that

a simple Weyl doubling formula of the form of equation (2.2) does not hold. To explore

this further, note that as the Weyl curvature is anti-self-dual, it has only five independent

components, which may be taken to be the components of the symmetric traceless matrix

3× 3 matrix Ci4j4. One can express this using the following three anti-self-dual two forms.

First note that the vierbein one-forms are given by

e4 =
1√
V

(
dx4 +Aidx

i
)
, (3.4)

ei =
√
V dxi .

Then the two forms are given by

Σi = e4ei +
1

2
εijkejek . (3.5)

We now solve the following equation for Ω̂i:

dΣi + εijkΩ̂jΣk = 0 . (3.6)

This implies that Ω̂i is given by the anti-self-dual part of the spin connection, ωµν and thus

Ω̂i = ωi4 − 1

2
εijkω

jk . (3.7)

The curvature can then be constructed directly from the curvature of Ω̂i and is given by

Ĉi = dΩ̂i +
1

2
εijkΩ̂jΩ̂k = ĈijΣj , (3.8)

where we have introduced Ĉij encoding the Weyl tensor. We now use Cartan’s first struc-

ture equation to calculate the connection one forms for the vierbeins as follows

ω4i = V −3/2
(
−1

2
∂iV e4 + ∂[iAj]ej

)
, ωij = V −3/2

(
1

2
∂jV ei − ∂[iAj]e4

)
. (3.9)
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Then, expanding both the Maxwell field strength and the curvature in terms of the two

forms Σi we find the following doubling formula

F = αiΣ
i , (3.10)

Ĉi =
(
V αiαj − ∂iαj

)T
Σj ,

where the superscript T means to take the traceless part of the expression within the

brackets and

αi =
1

V 2
∂iV . (3.11)

In terms of the Weyl tensor we have the relation Ĉij = −2Ci4j4, with the other components

of the Weyl tensor related to these by the anti-self-duality condition. Equation (3.10)

may be viewed a generalised form of Weyl doubling, where the quadratic, algebraic terms

involving the gauge field are supplemented by terms depending on the derivatives of the

gauge field. Thus we see that the general class of gravitational instantons in four dimensions

satisfies a generalised Weyl doubling formula.

An explicitly covariant version of this formula can be found as follows. There is the

identity

Cµνρσ = −2V
(
KµK

λCνλρσ +KρK
λCσλµν − 2gρµCνλπσK

λKπ
)
[µν][ρσ]

(3.12)

where the notation [µν][ρσ] means to antisymmetrise the expression within the preceding

brackets in µ, ν and separately in ρ, σ. The above relation follows from the fact that

C∗ = −C and K2 = −σ = 1
V . To see this, define the three expressions on the right-

hand side of (3.12), including the antisymmetrisations, as CL + CR + Cg. Then, taking

the (left) dual of each by contracting with 1
2ε
αβµν , one finds that (CL + CR + Cg)

∗ =

(−C − CL) + (CR) + (CL − CR) = −C = C∗.

Equation (3.12) is equivalent to

Cµνρσ = V
(
K[µ∇ν]Fρσ +K[ρ∇σ]Fµν

)T
, (3.13)

where the notation (. . .)T means to subtract all traces. This can be re-expressed as the

doubling formula

Cµνρσ = V Cµνρσ[F ] + V
(

2∇ρ(KµFνσ)−∇µ(KνFρσ)−∇ρ(KσFµν)−Kµ∇νFρσ
)T
[µν][ρσ]

.

(3.14)

where the notation (. . .)T means to subtract all traces.

As the two-centred solution for the Gibbons-Hawking (GH) metric (3.1) is equivalent

to the Eguchi-Hanson (EH) metric (2.31) via a coordinate transformation one may wonder

why there is a simple doubling formula for the EH metric described earlier, but not for the

more general multi-centred GH metrics. This special case can be understood by noting that

for spherical polar coordinates the map from the EH metric to the two-centred GH metric

(see [112] for example) interchanges the periodic “time” coordinate and the azimuthal

angle φ. Mapping to the two-centred GH case, the Killing vector which gives a simple

– 11 –
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Weyl doubling formula via the anti-self-dual part of the Maxwell field 2∂[µKν] is then

Kµ = ∂
∂φ . If one constructs the Maxwell field via the Killing vector Kµ = ∂

∂t then one

obtains the formulæ in the analysis above for this particular potential. In the generic multi-

centre case there is only the latter Killing vector, leading to the above analysis. (In the

multi-centre case where the centres are all at different sites along the z-axis, the additional

Killing vector is present of course — here we find evidence from a numerical analysis that

the simpler Weyl doubling formula continues to hold.)

4 An eight-dimensional example with Spin(7) holonomy

The discussion above used features of the Gibbons-Hawking metrics which arise from

the underlying self duality relation (3.2) which expresses the anti-self-duality of the field

strength of the four vector gauge field (V,Ai). In higher dimensions, manifolds of special

holonomy are examples where there are more novel duality conditions satisfied by the cur-

vature, and two forms on the manifold can similarly be restricted to have duality properties

determined by the canonical four-form defined by the special holonomy group (a pioneering

paper on this is [113]; see [114] for a review relevant to string theory). However, in general

the formula (2.1) does not preserve duality properties. This means that if a two-form F

transforms in a certain representation of the holonomy group then this does not imply that

C[F ] will as well (in each pair of indices). Furthermore, projecting C[F ] onto appropriate

representations does not in general preserve the algebraic symmetries needed to relate it

to a Weyl tensor. While these conditions may appear quite restrictive, we have found an

example of an eight-dimensional manifold with Spin(7) holonomy for which Weyl doubling

does work. We will use the conventions of [115] in what follows.

Begin with the metric [116]

ds2 = V −3/2
(
dx8 +Aidx

i
)2

+ V 1/2dxidxi , (4.1)

where here the indices i, j, . . . run from 1 to 7, and a, b, . . . and µ, ν, . . . run from 1 to 8.

The fields (Ai, V ) are functions of the spatial coordinates xi only. The spin(7) four-form

φabcd has the following non-zero orthonormal frame components

[1256] = [1278] = [3456] = [3478] = [1357] = [2468] = [1234] = [5678] = 1 , (4.2)

[1368] = [2457] = [1458] = [1467] = [2358] = [2367] = −1 ,

where [abcd] means φabcd. The four-form satisfies φ2 = 4φ+ 12 and the projectors of a two

form onto the “self-dual” 7 and “anti self-dual” 21 representations of Spin(7) are given by

P7 =
1

4

(
1 +

1

2
φ

)
, P21 =

3

4

(
1− 1

6
φ

)
. (4.3)

Define the acht-beins

ea = (ei, e8) ,

ei = V 1/4 dxi ,

e8 = V −3/4 (dx8 +Aidx
i) . (4.4)

– 12 –
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Then the four form

φ =
1

24
φabcde

aebeced (4.5)

is closed provided that the fields (Ai, V ) satisfy the constraints (Fij := ∂iAj − ∂jAi and

Vi := ∂iV )

V[iφjklm] − 2F[ijφklm]8 = 0 . (4.6)

These 21 equations can be solved in terms of 7 independent quantities. For example, choos-

ing the independent variables to be (F37, F45, F46, F47, F56, F57, F67) the other expressions

are given by

F12 = F56, F13 = F57, F14 = −F67, F15 = −F37, F16 = F47, F17 = −F46, F23 = −F67 ,

F24 = −F57, F25 = F47, F26 = F37, F27 = −F45, F34 = F56, F35 = −F46, F36 = F45 , (4.7)

V1 = −2F45, V2 = 2F46, V3 = 2F47, V4 = −2F37, V5 = 2F67, V6 = −2F57, V7 = 2F56 .

It can be checked that φ is also covariantly constant when these conditions are met. In

fact, taking various linear combinations of the constraints (4.6) one finds that ∂i∂jV = 0

for all i, j so that V is linear in the coordinates xi and the correction term is trivial. This

also means that all the electric Vi and magnetic Fij components of the gravitational field

are constants. Now consider the construction of the Maxwell field. From the Killing vector

Kµ = δµ8 we can again form the gauge field strength

Fµν = 2∂[µKν] . (4.8)

This field is anti self-dual i.e. in the 21 representation, as P7F = 0. Define the anti self-dual

two forms

Σij
− = P21e

a ∧ eb . (4.9)

These satisfy the orthonormality conditions

Σabµν
− Σ−cdµν = 4(P21)

ab
cd, Σabµν

− Σ−abρσ = (P21)
µν
ρσ . (4.10)

We can expand the gauge field two form in the basis of these as

Fµν =
1

2
αab Σab

−µν , (4.11)

with αab = 1
2Σµν
−abFµν which can be written as

αij = − 1

2V 2
φ8ijkVk , αi8 = − 3

2V 2
Vi . (4.12)

The metric is Ricci-flat and it can be checked that the Weyl tensor Cµνρσ satisfies

(P7C)µνρσ = 0, with P7 acting either on the first or second pair of indices of the Weyl

tensor. The tangent space components of the Weyl tensor can be expressed purely in

terms of the constants Vi. Let us then consider if these can be given as a doubling formula

based on a two form such as (4.11) above. We will generalise this expression slightly and

consider the “twisted” two form with components

αij = − b

2V 2
φ8ijkVk , αi8 = − 3a

2V 2
Vi , (4.13)
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for some constants a, b. This two form will be anti self-dual if a = b. The natural expression

to consider for a doubling formula is one based on (2.1) in eight dimensions, Cabcd[α] with α

given by (4.13). In four dimensions the formula (2.1) preserves duality - if Fµν is self-dual or

anti self-dual then Cµνρσ[F ] is also (in both pairs of indices). But this is not true in higher

dimensions and in this eight-dimensional case, in order to seek to match the Weyl tensor

this expression must be projected onto the 21 on the left and right pairs of indices. Upon

doing this we find that it is not possible to both preserve the duality conditions and the

symmetry and trace properties of a Weyl-type tensor unless a and b satisfy the condition

23a2 − 42ab + 27b2 = 0. We will write a solution of this as a = γb with γ a particular

complex number. In this case we find that there is a doubling formula for the Weyl tensor

Cabcd = λC21
abcd[α] , (4.14)

where the superscript 21 on C indicates that both pairs of indices are to be projected

into the 21 representation. The proportionality constant is λ = −23V 3/2/(32b2(γ + 1)).

The field α here is not anti self-dual as we have noted, but it can be checked that its anti

self-dual part is proportional to the Maxwell tensor (4.11), and that the corresponding

field strength Fµν satisfies the Maxwell field equations.

5 Reissner-Nordström and Born-Infeld

In the sections above, we studied examples where the gauge field arises from intrinsic prop-

erties of the spacetime. We now turn to study situations where there is an independent

gauge field defined on the spacetime, in order to see if there is a doubling relationship

whereby the gauge fields in the gravity-gauge system give formulæ for the full spacetime

curvature — determining the Ricci tensor via the Einstein equations as usual but in ad-

dition fixing the Weyl tensor via a doubling formula. We will call this “self-doubling” for

simplicity.

5.1 Reissner-Nordström

As a first case, consider the Reissner-Nordström theory in D dimensions, with metric

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
D−2 , (5.1)

with

f(r) = 1− 2M

rD−3
+

Q2

r2(D−3)
, (5.2)

dΩ2
D−2 the metric on the (D − 2)-dimensional sphere, and M and Q the mass and charge

respectively.

This theory is self-doubling in the sense that the gauge field already present in the

theory provides the basis for the doubling. This can be seen as follows — the gauge field

one form is

A = − Q

rD−3
dt , (5.3)

– 14 –



J
H
E
P
0
9
(
2
0
2
0
)
1
2
7

satisfying the field equations (Fµν = 2∂[µAν])

∇µFµν = 0 ,

Rµν −
1

2
gµνR =

D − 2

D − 3
Tµν , (5.4)

with the usual stress tensor

Tµν = Fµ · Fν −
1

4
gµνF · F . (5.5)

We find the Weyl doubling formula

Cµνρσ = Λ(r)Cµνρσ[F ] , (5.6)

where on the right-hand side of this equation Cµνρσ[F ] is given by the formula (2.1) and

the coefficient is

Λ(r) =
2(D − 2)

3(D − 3)2

(
(2D − 5)− (D − 1)

MrD−3

Q2

)
. (5.7)

This result has been checked up to D = 10 but there are no reasons why this would not

hold for all dimensions given the structure of the metric. Notice that one can take the

extremal limit Q→M directly in the equations above.

5.2 Born-Infeld

The discussion above may be generalised to the Born-Infeld theory in any dimension. The

Lagrangian is

L =
√
gR+

1

λ2

(√
g −

√
| det (g + λF )|

)
(5.8)

with Fµν the Maxwell field and λ a constant. The solution with electric charge Q in four

dimension is given by (e.g. [117])

ds2 = −
(

1− 2m(r)

r2

)
dt2 +

(
1− 2m(r)

r2

)−1
dr2 + r2(dr2 + dΩ2

2) ,

Ftr = −Frt =
Q√

r4 + λ2Q2
, (5.9)

with the other components of F vanishing. The function m(r) is fixed by the metric

equation of motion, and satisfies

m′(r) =
1

λ2

(√
r4 + λ2Q2 − r2

)
, (5.10)

the solution of which is given by equation (5.15) below with D = 4. We also define the

tensor

Gµν = − 2
√
g

∂L

∂Fµν
(5.11)
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which satisfies the (non-linear in F ) field equations ∇µGµν = 0. For the solution F

in (5.9) this is given simply by Gtr = −Grt = Q
r2

with other components vanishing. It is

straightforward to confirm that the Weyl tensor satisfies the equation

Cµνρσ = Λ4(r)Cµνρσ[G] (5.12)

with

Λ4(r) = − 2r

3Q2

(
6m(r)− 4rm′(r) + r2m′′(r)

)
. (5.13)

This discussion is easily generalised to D dimensions. The metric is as in (5.9) with

dΩ2
2 → dΩ2

D−2 with the function m(r) satisfying

m′(r) =
1

λ2

(√
r2(D−2) + λ2Q2 − rD−2

)
. (5.14)

This is solved by

λ2m(r) = λ2m+
rD−1

D − 1
− r

√
λ2Q2 + r2(D−2)

D − 1
(5.15)

+
λ2Q2(D − 2)

(D − 1)(D − 3)rD−3
2F1

[
1

2
,
D − 3

2(D − 2)
, 1 +

D − 3

2(D − 2)
,− λ2Q2

r2(D−2)

]
.

for constant m. Note that m(r)→ m in the limit r → 0.

One has the result

Cµνρσ = Λ(r)Cµνρσ[G] (5.16)

with

Λ(r) = −2rD−3

3Q2

(
(D − 1)(D − 2)m(r)− 2(D − 2)rm′(r) + r2m′′(r)

)
(5.17)

and the field G in D dimensions given by

Gtr = −Grt =
Q

rD−2
, (5.18)

with other components vanishing. Notice that Gµν is a function of the Maxwell field Fµν
via the relation (5.11). The result (5.16) leads to curvature singularities as r → 0 which

are not present in the field Fµν .

This Born-Infeld solution reduces to the Reissner-Nordström model in the section above

in the limit as λ→ 0, using the expansion

det (δµν + λFµν) = 1− 1

2
λ2(F 2)− 1

4
λ4
(

(F 4)− 1

2
(F 2)2

)
+ o(λ6) , (5.19)

where the brackets in (F 2), (F 4) indicate matrix traces of powers of Fµν . It can be checked

that the coefficient in (5.17) reduces in this limit to that in (5.7).

The formula (5.16) enables one to easily find invariants, for example

CµνρσCµνρσ =
4 (D − 3)

(D − 1) r2(D−1)

(
(D−1)(D−2)m(r)−2(D−2)rm′(r)+r2m′′(r)

)2
. (5.20)
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Note that this diverges as 1/r2(D−1) as r → 0, although the non-zero Maxwell field strength

component Ftr = Q/
√
r2D−4 + λ2Q2 does not. The divergence comes from the traces of

the field Gµν which appear when squaring (5.16). (A discussion of the four dimensional

Born-Infeld theory appeared recently [118] and the D = 4 version of (5.20) appeared there,

although their equivalent of m(r) satisfies a different equation.)

6 Brane solutions

It is natural to conjecture that BPS brane solutions in supergravity (we will follow the

conventions of [119] in this section) might satisfy Weyl doubling. The (p + 1)-forms that

minimally couple to the p-brane provide a potential from which one can construct a (p+2)-

form field strength. This field strength can then be used in the formula for the Weyl

curvature, as well as determining the Ricci curvature via the field equations and stress

tensor. We consider here the cases of p-branes where the scalar fields play no role.

6.1 String in five dimensions

A simple example is the string in five dimensions. The metric and two-form are given by

ds2 = H−1(r)
(
− dx21 + dx22

)
+H2(r)(dr2 + r2

(
dθ2 + sin2θdφ2)

)
,

Bµν =
√

3 εµνH
−1(r) , (6.1)

with H(r) = 1 + k/r and indices µ, ν = 1, 2. The three-form field strength F = dB, obeys

∇MFMNP = 0 and the metric field equation

GMN =
1

4

(
FM · FN −

1

6
gMNF · F

)
. (6.2)

For the p-forms F discussed in the subsections below the equivalent equation is

GMN =
1

2(p− 1)!

(
FM · FN −

1

2p
gMNF · F

)
. (6.3)

We will now define the two-forms (Fµ)NP = (Kµ)MFMNP (µ = 1, 2) where the Killing

vectors Kµ correspond to translations in the xµ directions in the string world sheet. Note

that K2
1 = H−1(r) = −K2

2 . We then find that the following Weyl doubling formula may

be constructed from the three-form field strength F and the two-form field strengths Fµ

CMNPQ = −(k + 4r)

6k
CMNPQ[F ]− rH(r)

3k

(
− CMNPQ[F1] + CMNPQ[F2]

)
. (6.4)

This can also be written as

CMN
PQ = −1

6
CMN

PQ[F ] + Σ1(r)TMN
PQ , (6.5)

where Σ1(r) = k
r3H4 . We note that Σ1(r) is proportional to the inverse of the volume of the

transverse sphere. In this coordinate system all of the non-zero components of the Weyl

tensor take the form (up to sign) CMN
MN . The only non-zero components of CMN

PQ[F ]
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and the tensor TMN
PQ are similarly when (P,Q) = (M,N) (or (N,M)). In this case

the TMN
PQ are given by (0, 1,−1/2,−1, 2) for (MN) = (12, µ3, µm̄, 3m̄, 45) respectively

(m̄ = 4, 5), and components related to these by the antisymmetry in M,N . Notice thus

that the tensor T vanishes when all its components are along the world-volume, and so

from (6.5) we see that on the world-volume there is a simple Weyl doubling formula, and

this is corrected off the world volume by a tensor that takes a simple form.

In [120] the Kerr-Schild formulation was investigated in the case where there is both a

metric and a Kalb-Ramond field, using doubled geometry. It was found that this involved

two null vectors with the metric and B field involving the symmetric and anti-symmetric

product of these vectors. It is natural then to expect that a single copy in this case

should involve two Maxwell gauge fields A and Ā. For the five-dimensional case under

consideration here, one can see that the B field in (6.1) is given by

BMN = 2
√

3HA[M ĀN ] , (6.6)

with

AM = (H−1, 0, 0, 0, 0) ,

ĀM = (0, H−1, 0, 0, 0) . (6.7)

This generates a formula for FMNP in terms of AM and ĀM .

One avenue suggested by this work is to develop a Weyl doubling formula for DFT.

Along these lines, one may view an expression of the formula (6.5) as a Weyl “doubling” in

terms of the two Maxwell fields in the formalism of [120]. Inserting (6.6) into (6.5) would

then give an expression for the Weyl tensor in terms of an expression quartic in fields and

two derivatives. (Note that the expression (6.6) is in the usual double copy where the

vector fields in that formalism live in flat space.)

6.2 M2 brane

For the M2 brane in eleven dimensions, the metric and non-zero three-form potential

components are given by

ds2 = H−2/3(r)(−dx21 + dx22 + dx23) +H1/3(r)(dr2 + r2dΩ2
7), (6.8)

Aµνρ = εµνρH
−1(r) ,

with H(r) = 1 + k/r6 and indices µ, ν, . . . = 1, 2, 3, and m,n, . . . = 4, . . . , , 11 (with

M,N, . . . = 1, . . . , 11). r is the radial coordinate in the eight-dimensional transverse space.

The four-form field strength F = dA has non-zero components F1234 = −6kH−2/r7 and

obeys ∇MFMNPQ = 0 and (6.3) with p = 4.

Again we define the tensors (Fµ)MNP = (Kµ)QFQMNP where the Killing vectors Kµ

correspond to translations in the xµ directions in the world-volume. The Weyl doubling

formula can then be constructed as follows:

CMNPQ =
(k + 4r6)

36k
CMNPQ[F ]− r

6H(r)2/3

3k

(
−CMNPQ[F1]+CMNPQ[F2]+CMNPQ[F3]

)
.

(6.9)
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This simplifies along the world-volume as in the string case above, with the analogue

of (6.5) being

CMN
PQ =

1

36
CMN

PQ[F ] + Σ2(r)TMN
PQ , (6.10)

where here Σ2(r) = 2kH−7/3

r8
and the object TMN

PQ has non-zero components

(0, 7,−1,−3, 1) for (PQ) = (MN) = (µν, µ4, µm̄, 4m̄, m̄n̄) respectively, with m̄, n̄ =

5, . . . , 11. Again we note that Σ2(r) is proportional to the inverse of the volume of the

transverse sphere.

Whilst a Kerr-Schild type formulation based on exceptional geometry (see [121] for a

review) is not yet available, we note that for SL(5) the 10 representation reduces to 4+6 in

four dimensions, representing a vector and two-form which are expected to be fundamental

to this. Thus one might expect that a single copy in this case might involve a Maxwell

gauge field AM and two-form AMN , with the AMNP field.

6.3 D3 brane

For the D3 brane in ten dimensions, the metric and non-zero four-form potential compo-

nents are given by

ds2 = H−1/2(r)(−dx21 + dx22 + dx23 + dx24) +H1/2(r)(dr2 + r2dΩ2
5), (6.11)

Aµνρσ = εµνρσH
−1(r) ,

with H(r) = 1 + k/r4 and indices µ, ν . . . = 1, 2, 3, 4, and m,n, . . . = 5 . . . , , 10 (and

M,N, . . . = 1, . . . , 10). r is the radial coordinate in the six-dimensional transverse space.

We will need the self-dual five-form field strength F = 1
2(dA + (dA)∗). As above, we

define the tensors (Fµ)MNPQ = (Kµ)RFRMNPQ where the Killing vectors Kµ correspond

to translations in the xµ directions in the world-volume. The Weyl doubling formula is

then found to be

CMNPQ =
r4

6k
CMNPQ[F ] (6.12)

− 2r4H(r)1/2

3k

(
− CMNPQ[F1] + CMNPQ[F2] + CMNPQ[F3] + CMNPQ[F4]

)
This also shows that the Weyl tensor vanishes for components along the world-volume. To

see this, one has the equivalent expression

CMN
PQ = Σ3(r)TMN

PQ , (6.13)

where Σ3(r) = kH−5/2

r6
and the object TMN

PQ has non-zero components (0, 5,−1,−4, 2) for

(PQ) = (MN) = (µν, µ5, µm̄, 5m̄, m̄n̄) respectively, with m̄, n̄ = 6, . . . , 10. As in the cases

above, Σ3(r) is proportional to the inverse of the volume of the transverse sphere.

6.4 M5 brane

There is a similar story for the M5 brane in eleven dimensions. The metric and non-zero

4-form field strength components are given by

ds2 = H−1/3(r)ηµνdx
µdxν +H2/3(r)(dr2 + r2dΩ2

4),

F
(4)
8 9 10 11 = 3k sin3(θ) sin2(φ) sin(ψ1) , (6.14)
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with F (4) antisymmetrised, H(r) = 1 + k/r3, world-volume coordinates xµ (µ = 1, . . . 6),

and transverse coordinates r and spherical polars (θ, φ, ψ1, ψ2).

The fivebrane magnetically couples to the three form C3 which means we will need

to use the magnetic dual field strength given by the seven-form, F = ∗F (4). Then define

(Fµ)NPQRST = (Kµ)MFMNPQRST (µ = 1, 2, . . . , 6) with the Killing vectors Kµ correspond-

ing to translations in the xµ directions in the world-volume. The Weyl doubling formula

is then

36CMNPQ = − 1

60
CMNPQ[F ] +

r3

3k
CMNPQ[F ] (6.15)

− r3

2k
H(r)1/3

(
− CMNPQ[F1] + CMNPQ[F2] + · · ·+ CMNPQ[F6]

)
.

This is equivalent to

36CMN
PQ = − 1

60
CMN

PQ[F ] + Σ5(r)TMN
PQ , (6.16)

where here Σ5(r) = 18kH−8/3

r5
and the object TMN

PQ has non-zero components

(0, 4,−1,−6, 4) for (PQ) = (MN) = (µν, µ7, µ m̄, 7m̄, m̄n̄) respectively, with m̄, n̄ =

8, 9, 10, 11. We see again there is a simple doubling formula for the Weyl components

along the world-volume directions and that Σ5(r) is proportional to the inverse of the

volume of the transverse sphere.

In all of the cases above, for a brane with V -dimensional world-volume in D dimen-

sions, and T = D − V transverse dimensions, the components of the tensor TMN
MN are

proportional to (0, T−1,−1,−V, 2V/(T−2)) for (PQ) = (MN) = (µν, µr, µ m̄, rm̄, m̄n̄) re-

spectively, in the notation used above. Given that the components along the world-volume

vanish, this follows from the tracelessness condition on the Weyl tensor. The powers or r

and H in the coefficients Σ are equal to −T and that appearing in the inverse of the vol-

ume of the transverse sphere respectively. Similarly, the powers of r and H in the doubling

formulæ above have common expressions: rT−2 and the inverse of the power of H which

appears in the world-volume metric.

7 Discussion

We described Weyl doubling as the writing of the Weyl tensor (up to a scalar factor) in

terms of a quadratic expression in an Abelian field strength obeying Maxwell’s equations

in a curved background. The curved background distinguishes these results from the usual

double copy originating in scattering amplitudes and more recently classical solutions using

the Kerr-Schild form. This phenomenon of Weyl doubling was found in a variety of solutions

in different dimensions. The purely intrinsic case is where a Killing vector on the manifold

is used to define a potential from which the field strength is derived. The Weyl tensor

is given by the formula (2.1). We showed that the metrics for which the Weyl doubling

formula (2.1) applies fall into the Type D class in the general dimensional classification, so

that this is a necessary condition. It is also a sufficient condition in four dimensions [95, 96]

(see also [60]). But it does not appear to be a sufficient condition in higher dimensions
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— the five-dimensional Myers-Perry metrics [122] are Type D [123] and while we showed

that the singly-rotating solution has a Weyl doubling formula, the general solution with

two rotation parameters does not appear to satisfy such a formula. We also investigated

the BPS solution in six-dimensions studied in [124], which is Type D but does not appear

to satisfy a doubling formula.

A second way to generate a two-form gauge field strength is if the spacetime admits a

closed, covariantly constant four-form which may be used to define a self-dual (or anti-self-

dual) two form. These manifolds have special holonomy and the Maxwell field equations

then follow from the duality and closure conditions. In the four-dimensional case these are

manifolds with SU(2) holonomy. The Gibbons-Hawking metrics provide a broad class of

such metrics. We found that in this case the Weyl doubling formula has a correction term

which is linear in the gauge field strength — equation (3.10) or equivalently (3.14). This

generalisation of doubling could be studied further to see if it applies in other cases. It

may also suggest generalisations of the double copy construction. A reader might wonder

that such a doubling formula is inevitable given the symmetries of the Weyl tensor. The

Gibbons-Hawking case where there is a derivative correction provides a good counter ex-

ample that demonstrates the non-triviality of the algebraic relation in the algebraic Weyl

doubling formula.

In studying a generalisation to higher dimensions an issue arises in that a Weyl tensor

constructed from (2.1) using a self-dual two-form is not in general self-dual, unlike in

four dimensions. One might have expected that this might be resolved by using self-dual

projection operators, but this will not preserve the algebraic symmetries of the tensor in

general. Nevertheless we found an example in eight dimensions where a sort of twisted

doubling construction exists which expresses the Weyl tensor in terms of a spin(7) self-dual

two form. It would be interesting to explore if other examples exist.

A different mechanism for Weyl doubling is if the gauge field strength is an additional

field defined on the spacetime, rather than being expressed using the metric and/or Killing

vectors. The most natural example of this is the Reissner-Nordström metric in D dimen-

sions. This works in the general case as well as the BPS limit, although perhaps one might

have expected that such a construction, requiring the Weyl and Maxwell curvatures to be

related, would require the BPS constraint linking the charge and mass. We showed that

this discussion generalises to the charged Born-Infeld solution in D dimensions. A recent

paper [118] discussed how study of the Born-Infeld electrically charged solution might illu-

minate the investigation of stringy corrections of the double copy. It would be interesting

to see if the doubling approach may provide insights into this.

We then turned to study cases where the gauge field strength is a higher degree p-form,

and analysed the associated brane solutions. Here it was found that a simple quadratic

Weyl doubling formula holds using the p-form field strength and contractions of it with the

world volume Killing vectors. Evaluating this gives a particularly simple Weyl doubling

formula for the components of the Weyl tensor projected on to the world volume. There

is a variety of directions for further research, such as how does the inclusion of scalars,

Kaluza-Klein reductions and supersymmetry impact the doubling construction. We have

studied the Weyl tensor here but there will also be spinor analogues of our formulæ in each

dimension (cf. [111]).
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The central question that this paper implicitly poses is, what is the relation to the

usual double copy? Can the formulæ for brane solutions be applied to the usual single and

double copy? Does the derivative corrected Gibbon-Hawking expression have a conven-

tional double copy interpretation in terms of Maxwell fields in flat space? It was shown

in [79] that doubled geometry clarifies the double copy construction for the point charge,

relating this to the JNW solution [125]. As we noted in section 6, the Kerr-Schild form in

double field theory involves more than one gauge field — for example, two Maxwell fields

in the case where there is a Kalb-Ramond field as well as the metric. For the string in five

dimensions the B field can indeed be simply constructed from two Maxwell gauge fields.

This might also provide insights into exceptional geometry where such a Kerr-Schild for-

mulation is not yet available. One approach following these ideas is to use a DFT or EFT

generalised Killing vector as the basis for generating gauge field strengths in the extended

space to express the DFT equations.

The phenomenon of Weyl doubling that we have explored here in numerous examples,

relating gravity and Abelian gauge theory, reveals a structure that it would be interesting

to develop further, and in particular to investigate its relationship to the double copy.
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A Myers-Perry pentad

The pentad used for the analysis of the Myers-Perry metric in subsection 2.2.4 is based on

the two null vectors lµ = Lµ± satisfying the equation lν lρCµνρ[πlω] = 0 [126]

L± =
1

(x2 − 1)(−1 + L2y)

(
L2xy − y + L2x+ 1− 2L2y

x− y
R∂t − L∂ψ

)

±

√
L2x− 1

(x− y)(y − 1)

(
∂x +

y2 − 1

x2 − 1
∂y

)
. (A.1)

We take lµ = Lµ+, n
µ = Lµ− and choose the three unit norm vectors mµ

i (i = 1, 2, 3) to be

m1 =

√
(1 + x)(x− y)(1 + y)(−1 + L2y)2

(1 + L2)R2(x− 1)

(
0,−(x− 1)(−1 + L2x)

(y − 1)(−1 + L2y)
,−1, 0, 0

)
,

m2 =

√
− (x− y)2

(1 + x)(−1 + L2x)(y − 1)2R2

(
0, 0, 0,−1, 0

)
, (A.2)

m3 =

√
− (x− y)2

(−1 + x)(1 + L2)(y2 − 1)R2

(
LR(x− 1)(y + 1)

x− y
, 0, 0, 0,−1

)
.
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These vectors satisfy the conditions in and beneath (2.41). This choice is convenient in

this case as the non-zero weight Weyl-NP (and Maxwell-NP) components vanish directly

using them.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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