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1 Large-scale bootstrap: analytics and numerics

The conformal bootstrap is a powerful tool for exploring the space of conformal field theo-
ries. It can reveal universal properties of all allowed unitary CFTs, and it can predict some
conformal data with high precision; see [1, 2] for recent reviews. However, we still possess
limited knowledge of the precise spectrum of essentially all nontrivial CFTs, particularly
in d > 2 dimensions.

Recently, improved efficiency of the semidefinite program solver SDPB [3, 4] has enabled
new numerical bootstrap investigations. Together with a novel algorithm for scanning
through OPE space [5], we have new tools for computing high-precision OPE data involving
large systems of crossing equations. In [5], a subset of the present authors applied these
tools to obtain new results for critical exponents of the 3d O(2) model.

At the same time, novel analytic bootstrap tools are emerging. One of the most pow-
erful is the Lorentzian inversion formula [6], which unifies and extends the lightcone boot-
strap methods of [7-12].! The Lorentzian inversion formula yields (among other results)

!Other recent developments include conformal dispersion relations [13] and analytic functionals [14, 15].



interrelationships between the low-twist spectrum of a CFT, which leads to predictions
for low-twist Regge trajectories. By supplementing these analytical predictions with a
small amount of numerical input, one can often obtain excellent agreement with numerical
data [6, 16, 17].

The recent developments on both the numerical and analytic sides provide further
opportunities for obtaining precise spectra of specific CFTs. In addition, one can perform
tests of analytic methods using numerical data. In this work, we use the 3d O(2) CFT as
a playground for the following investigations:

e We use the numerical data provided in [5] and the extremal functional method [12, 18,
19] to obtain detailed numerical approximations for dimensions and OPE coefficients
of low twist operators. Using allowed points of the A = 35 computation given in [5],
we compute upper and lower bounds on the magnitude of OPE coefficients involv-
ing the external operators. The resulting extremal functionals give a high-precision
picture of the spectrum of the 3d O(2) CFT.

e We describe how to apply the Lorentzian inversion formula to estimate low-twist OPE
data. Performing the estimate correctly requires a nontrivial synthesis of methods in
the literature, including the inversion of 3d conformal blocks, the use of “twist Hamil-
tonians”, and the incorporation of sums over double-twist operators. Although many
of the required ideas have appeared in previous literature, especially in the context of
the lightcone bootstrap [12], their application using the Lorentzian inversion formula
is new.

e We justify these approaches by comparing numerical and analytic results for low-twist
data in the charge 0%, 1,2, 3 sectors of the 3d O(2) CFT, finding good agreement.

For charge 4 operators of even spin, we find decent agreement for one of the low lying
trajectories between analytics and numerics, despite the fact that we have relatively
limited numerical data. We make additional predictions for the charge 4 odd sector,
which is currently inaccessible in the numerics. Using this conformal data, we also
provide an initial analysis of the Regge intercepts for the leading trajectories.

e Some byproducts of our study include a more detailed analysis of the O(2) represen-
tation theory and crossing equations, some computations of the Mean Field Theory
(MFT) OPE coefficients in different O(2) charge sectors, a study of different expan-
sions for 3d conformal blocks, new results for sums of SLo blocks, and the introduction
of a new concept, the sharing effect, which must be overcome for precise spectrum
extraction in the numerical bootstrap.

Using the data for the low-twist operators, we can also verify that crossing symmetry
of (ppp@) holds to a high precision when we only include operators of low twist in the block
expansion. Using this data, we can also obtain an estimate for this four-point function in
FEuclidean configurations, that is Z = z*, as shown in figure 1. Specifically, we project onto
singlet, or charge 07, exchange in the s-channel and normalize by the corresponding MFT
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Figure 1. We plot the Euclidean four-point function {¢p¢¢d) projected onto 0 exchange in the
s-channel and normalized by the corresponding MFT four-point function. We include both the
isolated and double-twist operators and expand to 5"
around z = 0 and z = 1 are computed using the s and t-channel, respectively.

order in dimensional reduction. The regions

correlator. We see that for generic Euclidean configurations, away from the s or t-channel
OPE limits, the full O(2) correlator has significant non-gaussianities.

This paper is organized as follows. In section 2, we present a numerical analysis for
the 3d O(2) CFT using the extremal functional method. In section 3, we discuss our
framework for spectrum computation using the Lorentzian inversion formula. In section 4,
we specialize the analytic techniques to the 3d O(2) CFT. In section 5, we discuss the
comparison between the low-lying numerical spectra and analytic predictions, and also
make further predictions using the analytic bootstrap for quantities where the numerics
are insufficient. In section 6, we discuss future directions.

2 Numerical computations in the O(2) model

2.1 Bootstrap setup

To begin, let us summarize our setup for bootstrapping the O(2) model, which is the
same as the setup described in [5]. We consider quantum field theories with conformal
invariance and O(2) global symmetry. The group O(2) has two-dimensional irreducible
representations labeled by an integer ¢ € Z>1, together with one-dimensional irreducible
representations 0 and 0~. The integer label is the charge of the highest weight state with
respect to the U(1) subgroup. In the charge-0 case, the superscripts 4+ denote parity under
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fsss
f¢¢s
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0.519130434
0.519135171
0.519076518
0.519115548
0.519113909
0.519096732
0.519128801
0.519119255
0.519109342
0.519087647
0.519105802
0.519125142
0.519107610
0.519115226
0.519084390
0.519096529
0.519122718
0.519138689
0.519057668
0.519074424

1.51173444
1.51172427
1.51110487
1.51167580
1.51170936
1.51147972
1.51168098
1.51170685
1.51150256
1.51141667
1.51141826
1.51173460
1.51164424
1.51174173
1.51137895
1.51153244
1.51168123
1.51177044
1.51097950
1.51116298

1.23648971
1.23649356
1.23620503
1.23642873
1.23646025
1.23636344
1.23648846
1.23646324
1.23640031
1.23630721
1.23635621
1.23646472
1.23640715
1.23647414
1.23628833
1.23635748
1.23647847
1.23653770
1.23611240
1.23616082

1.20977354
1.20947477
1.20766586
1.21014420
1.21013097
1.20944426
1.20929738
1.21007964
1.20891847
1.20963450
1.20856734
1.21012577
1.21022297
1.21033291
1.20979136
1.20995866
1.20940108
1.20947377
1.20794762
1.20864157

1.82254374
1.82245370
1.82191247
1.82257643
1.82272756
1.82251617
1.82252856
1.82275976
1.82236481
1.82247476
1.82219520
1.82250871
1.82258938
1.82281805
1.82229748
1.82250999
1.82261368
1.82262309
1.82181966
1.82181577

1.76606470
1.76605159
1.76584197
1.76603227
1.76607582
1.76600087
1.76605495
1.76606055
1.76600112
1.76594440
1.76595563
1.76605236
1.76603036
1.76609054
1.76593252
1.76599060
1.76607344
1.76609008
1.76576836
1.76579563

Table 1. Allowed points in the A = 35 island used for the extremal functional method.

the Zg reflection subgroup of O(2). A more detailed introduction can be found in [5]. We
call the lowest Lorentz scalars with O(2) representations 07, 1, 2, 3, 4 as s, @, t, x, 7.

In the work [5] (see also [20]), we computed all possible crossing equations involving
four-point functions of s, ¢ and ¢t. (A review of this derivation, our conventions, and the
crossing equations needed for analytic computations, can be found in appendix C.)

An allowed island for the scaling dimensions and OPE coefficients involving ¢, s, and ¢
was obtained using SDPB [3, 4] at derivative order A = 27,35,43. In this work, we will use
the 20 allowed (primal) points given in table 1, with the parameters and gap assumptions
given in tables 2 and 3, to compute both upper and lower bounds on the OPE coefficient
fess- The resulting extremal functionals are then used to extract the extremal spectra
using method outlined in [12, 18, 19] and the code spectrum.py [21, 22].

In formulating the optimization problem, we impose gaps in the internal operator
sectors, given in table 2. As we noted in [5], sometimes the solver SDPB expends unnecessary
effort to find functionals that are positive for operators close to the unitarity bounds,
causing a steady decay of dualError without vanishing. To avoid this, we set a small gap
§A = 107% in those sectors above the unitarity bound. In the work [5], we used the same
points and setup to estimate the scalar dimensions in various charge sectors.



A 27
keptPoleOrder 12
order 60
spins So7
precision 900
dualityGapThreshold 1080
primalErrorThreshold 10200
dualErrorThreshold 10100
initialMatrixScalePrimal 1020
initialMatrixScaleDual 10%0
feasibleCenteringParameter 0.1
infeasibleCenteringParameter 0.3
stepLengthReduction 0.7
maxComplementarity 10200
Threshold for spectrum.py 10730

Table 2. Parameters used for the computations of the extremal functional method, as defined
in [3]. We define Sa7 = {0,...,31} U {49, 50}.

charge | spin dimensions
Agor A>3
Agor A>3
Ayor A>3
A>1
A >3 (A > 1 when predicting charge 4 scalars)
A=2or A>2+94;
A=3or A>3+,
A>0+1+6;

O O =W N = O

S N = O O O O O

R

Table 3. Assumptions about the spectrum of the O(2) model when doing the numerical bootstrap.
R, ¢ represent any other choices of representation R and spin £. In this work we set 6, = 1074,

2.2 Numerical spectrum

Based on the above construction and 20 primal points, we run SDPB to construct 40 different
spectra and their corresponding OPE coefficients. We follow the approach of [12] and plot
the spectra by identifying all operators in a given small interval and using the density of
operators in that interval as an indicator of stability. We find that the spectra is nicely
organized along double-twist trajectories, which are families of operators [O1 03], (¢) whose
twist, 7 = A—/, asymptotically approaches 71 +712+2n as £ — oo [7, 8]. When double-twist
operators can have different O(2) representations, corresponding to different irreducible
factors in the tensor product of the O(2) representations of O; and Oz, we distinguish



them with a superscript:

q operators on the trajectory with limy_,o 7(¢) = 71 + 72 + 2n,
[010:]3(¢) : .
with O(2) representation gq.

(2.1)

For the leading double-twist operators (n = 0), the results are stable, and we notice
remarkably clear numerical curves for all charge sectors. Thus, these trajectories provide a
good playground for testing analytic methods against numerics. In section 5 we will make a
detailed comparison between the analytic and numerical predictions for these double-twist
trajectories.

Before we start comparing numerical data with analytics, let us make the following
observations about the spectrum:

e We can clearly identify n = 0 double-twist families in each sector. However, for
higher-twist families, n > 1, we do not have enough accuracy in identifying clean
curves. This is different from the 3d Ising model case, where one can identify at least
one higher double-twist family relatively precisely. This could be improved at higher
derivative order, but it might also be due to the more complicated nature of the O(2)
model. For example, we may also need to include the leading charge 3 scalar x as an
external operator in the crossing equation in order to probe higher-twist towers built
using x.

The data in the charge 4 even-spin sector is relatively limited. We believe this is
partially due to the fact that our crossing relations do not contain y as an external
operator, so it is harder to probe charge 4 double-twist operators built using y. In
addition, there are large mixing effects in this sector. Nevertheless, our numerics
show reasonable agreement with the low-lying [x¢],,_, trajectory. We will revisit this
problem in section 5.2.

e We have also noticed that numerical predictions for the leading scalar operators in
each charge sector are quite stable. We can then make predictions for the dimensions
and OPEs of these operators and compare them with existing Monte Carlo data.
However, we have also noticed that the predictions for the low-lying operator di-
mensions might be affected by the gap we have imposed in the corresponding charge
sector. If the CFT operator has a dimension very close to the gap we impose, there
might be errors in the numerical predictions for the corresponding CFT data due
to the presence of unphysical contributions at the gap dimension. We call this the
sharing effect, and we will describe it in more detail below.

2.3 Predictions for scalar CFT data and the sharing effect

The leading charge 4 scalar operator, 7, has a conformal dimension around 3.1, with recent
Monte Carlo computations giving the value 3.114(2) [23]. In the charge 4 sector we have
also imposed that all operators have dimension A > 3. So we see A, is relatively close
to the imposed gap. In the extremal functional method, we often find that the functional
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Figure 2. Dimension of the leading charge 4 scalar operator (above the gap) as one changes the
imposed gap in the charge 4 sector. Here we have chosen a single primal point and computed the
extremal spectra by optimizing the upper bound on the OPE coefficient fy4s. This plot gives a
clear illustration of the sharing effect, where when we impose gaps closer to the target operators,
we get less accurate results from the extremal functional method in some cases.

develops zeros around the gap we impose. These zeros are usually not physical, and we will
refer them as fake zeros. Fake zeros will also come with nonzero OPE coefficients. Thus,
we expect that numerically, there might be some unphysical “sharing” of the contribution
between the fake zeros and the true zeros near the gap. This effect can then make the
predictions for the scaling dimension and OPE coefficients inaccurate.

To avoid this issue, one can attempt to compute the spectrum by lowering the gap.
For instance, here we can lower the gap in the charge 4 scalar sector from 3 down to
the unitarity bound of 1/2. As a demonstration, we compute the numerical spectrum by
computing the extremal functional with upper bounds of norms of external OPEs, for a
single point (the first point in the table 1), given by

<A¢,AS,At, fsss7 ftts , f(b(bt) (22)
foos fops fops

= (0.519130434, 1.51173444, 1.23648971, 1.20977354, 1.82254374, 1.76606470).

We then extract the dimension of leading charge 4 scalar operator above the gap using the
extremal functional as we increase the gap from 1/2 to 3. The result is shown in figure 2.
We can see that when the gap is set to be around 1/2, the scaling dimension decreases to
be around 3.116, which is closer to the current Monte Carlo estimate 3.114(2). To conclude
this section, we will summarize in table 4 the best predictions we have for the subleading
(non-external) scalar operators based on the extremal functional method. Some of the



A value
Ay 3.794(8%)
Ay 3.650(2%)
Ay 2.1086(3*)
A, 3.11535(73%)

Table 4. Conformal bootstrap predictions for subleading scalar operators using the extremal
functional method. The superscript * means that the error bar is estimated based on the extremal
functional method.

results were already reported in the paper [5]. For 7, we used the gap of 1/2 to avoid the

sharing effect.

3 Analytic predictions using the inversion formula

In this section, we describe the analytic tools used in this paper. This includes an introduc-
tion of our usage of the Lorentzian inversion formula [6], brief descriptions of expansions
of conformal blocks in 3d, a review of the twist Hamiltonian, and a discussion on inverting
infinite sums of double-twist operators [12]. This section is mostly a review of existing
results, reformulated for the inversion formula.

3.1 The inversion formula

The inversion formula developed in [6] (see also [24]) yields precise relationships between
low-twist operators in a CFT that are well-suited for extracting OPE data of double-twist
operators. In particular, it generalizes and extends the lightcone bootstrap methods of [7—-
12]. Comparisons between the inversion formula and numerics for the 3d Ising and O(2)
models were made in [17].

In this paper, we extend the calculations of [17] in the O(2) model by including more
external operators, more numerical data, and by inverting infinite sums of double-twist
operators. In the rest of this section, we review the analytic tools that we will use.

We start by describing the Lorentzian inversion formula for a four-point function of
distinct scalar operators (¢1¢2¢3¢4) in a generic CFT. Including global symmetries does
not modify the analysis significantly and will simply amount to weighting the contribution
of operators by some group theory factors. The s-channel OPE data for this correlator can
be encoded in the OPE function

c(h,h) = ct(h, h) + (=1)"""c¥(h, h), (3.1)



which can be expressed as an integral of the four-point function,

_ For 1 rs _ . _
c(h,h) = Zh/o dzd?,u(z,?)gd’_l_hﬁ(z,z)lesct[g(z,z)],
L(h+7r)T'(h —7)['(h+s)T'(h — s)

Kop = — = ,
zh 2120 (2h — 1)I'(2h)
—1d—2 —\\S—T
I e (P )
z2,Z) = — . 3.2
nez) = = = (32
Here, d is the spacetime dimension and we have introduced the labels
A-t T - A+t T
h=—"%"=3 h=——=5+6
r = hia, s = h3y, (3'3)

where h;; = h; — h;. These are the natural variables in the large-spin expansion, which is
an expansion at large h for fixed h. The function G(z,%) is the four-point function after
factoring out some kinematic factors,

1 214\ 22 (@yg ) 20N _
<¢1(:C1)W¢4(:C4)>:W‘( > () G(z,7),

T24

12 V) 213
2 .2 2 .2
Ti,T T4,
=N (1-2)(1-7) =732, (3.4)
2 .2 2 .2
Ti3To4 Li3Lo4

8
We refer to 99 1 hh

for conformal blocks are described in appendix F. We use the superscripts s, t and v to
denote the three OPE channels.? The notation dDiSCehannel denotes the standard double
discontinuity in each channel. For instance, in the s-channel we have

(2,%Z) in the integrand as the Weyl-reflected block. Our conventions

1, . 1, ,
dDiscs[G(2,2)] = cos(ﬂ'(s—r))g(z,Z)—§e”r(s_r)g (ze2m,z)—§e”<"“—5)g (26_27”,2) , (3.5)
in which the analytic continuation is taken around z = 0. For the ¢ and w-channels, the
double discontinuity is performed around z = 1 and z = oo respectively. Once we compute

the function c(h, h), one can read off the OPE data using

¢
<—1) f120f3a0 = —Resa=a,c (A, Lo) , (3.6)

2
where we have rewritten ¢ as a function of A and ¢ to emphasize that we are taking the
residue in dimension at fixed spin.
In practice, it is convenient to define the generating function to package the conformal
data,

t(h, h = 1@—’@ h 3.7
c'(h, )|poles— ; 5,7 (z,h), (3.7)

2We apologize for the abuse of notation where ¢ and s also denote external operators in the 0O(2) model.
We hope that there will be minimal confusion based on the context.



where ¢* is defined in a similar way. Then the powers of z in the generating function
C*(z,h) turn into poles in h for the OPE function.

Now, we will derive a formula for the generating function. First, it will be convenient
to use the identity

—r,—s =\ o _ =\\—Tr+s 7S =
6,57 (22) = (1 - 2)(1 - D) g (2.3 (3.8)
Next, we need the conformal block expansion in the t-channel for G(z,z):?
B (zE)hH_hZ ( 1)60/ e B
G(z,z) = —= f300 f120 952" (1 — 2,1 — Z). 3.9
( ) [(1 —Z)(l —E)]h2+h3 ; 2 32 14 O ( ) ( )

Finally, setting d = 3 we find the generating function is:

_ 1 > 1 (zE)hlJrh?
Ct h) = _ dz g—Z h217h:13 =
(zh) HQh/Z Z( 2z ) 222 2-nh (2,2) [(1—2)(1—7))"2Ths

. . 1\’ ~
5 2sin (o1~ )sin o~z h)) (=3 ) oo faorlye 4 (1-1-3).
O/

2
(3.10)

By taking z — 0 and expanding the 3d block in this limit [6, 12] we find two powers of z:
Zhthe and 2zM31+h4 . The inversion of a single block will then produce poles for the double-
twist operators [¢¢2]n(h) and [¢3¢4]n(h) in the OPE function [25]. However, in general,
we cannot take the z — 0 limit under the sum over O’ on the right-hand side. Instead, the
infinite sum can produce new powers of z corresponding to other multi-twist families. So
we then have to distinguish two different cases:

e One possibility is the low-lying operators appearing in the ¢-channel, for instance the
scalars s, ¢, and ¢, or the conserved operators J and 7', give an accurate estimation
for the double-discontinuity. In this case, we can directly invert each block and take
the sum.

e One can also include infinite families of operators, for instance, the double-twist
trajectory. In this case, the sum and integral may not commute, and we have to
perform the infinite summation first. When this happens, a careful regularization
needs to be performed.

In the following subsection, we will develop techniques to study how individual operators
contribute to the generating function. We will return to the problem of performing the
infinite sums in section 3.3.

3.2 Expanding conformal blocks in the inversion formula

Simplifying the generating function typically involves a procedure for expanding the con-
formal blocks in a simple set of functions, which can be inverted analytically. Below we
describe two possible expansions.

3Generically, we mainly use O’ to denote the internal operators in the crossed channels if we want to
emphasize the cross channels, while O denotes the internal operators in the s-channel. Similarly, we will
sometimes use the notation k', h’, A’, ¢’ for the crossed channels.

~10 -



3.2.1 SLj expansion for the Weyl-reflected block

There is no known closed-form formula for conformal blocks in 3d. However, there is a
natural expansion for any conformal block in terms of SLo blocks,

K2 (2) = 2o Fy (b — ki + 5,20, 7). (3.11)
Firstly, we wish to apply this expansion to the Weyl-reflected block. We have [6]
zZ—2z 1h,hr _ —h4n h,h ha1,h
< — ) 0,0 (2, 2) = Z;) ht Z C ™ (h k2 (). (3.12)
n=| j=-—n
Plugging this in, we can simplify the generating function as
1 —\hi1+ha
hat,h Y (27)
=K z 621’43hh/d k20 (Z
2h2 J; [, e O a e
. 1 Lo N
ZQSID (hor —h1—hy))sin (7 (hor —ha—hg3)) <—2> f320/f140’ 32’ H(1-2,1-%).

(3.13)

In this work, we are only interested in the leading double-twist trajectories, in which case
we can focus on the small z dependence of the generating function. Therefore, we only
need to keep the n = 0 piece of the above sum to make predictions for [¢¢2],—o(h) and
[p304]n=0(h). In that case we have ng%l’h“ = 1 (more examples of these coefficients are
given in appendix D) and then taking the small z limit we find:*

(Zz)hl+h2

[(1—2)(1—z)]"*"

Ct(z,h)D/izh/ dz— k:Ql’h43(z)
0

Loy
. . 1\©
E 28111(71’(}10/—hl—h4))Sln(ﬂ'(hO/—hg—h3)) <—2> f3201f140/ 32’ 14(1 zZ, 1— Z)
(3.14)
3.2.2 SL; expansion for G

We can also use the SLsy expansion to simplify G itself. We expand the blocks as:

rs h+p1.78 [(—
9,5z Z Z Ay (h R)ZPEES (2). (3.15)

p=0g=-p
The coefficients A are summarized in appendix D. This expansion works for small z and
0 <z < 1. Alternatively, one can expand the analogous formula at small Z and arbitrary z:

T,8 rs —h+
9,5(2.%) ZO Z Ay (h PR (2), (3.16)
p q=—p

“Note that here we have modified the integration range in Z to go from 0 to 1. The integration from 0 to z
contributes to higher-order corrections ~ z"+"i+1 while here we are computing the generating function in
a small z expansion. Therefore, at leading order we can drop these terms and extend the integral. However,
they will be important when computing higher-twist trajectories. For an alternative way to study the z

dependence, see [26].
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(the conformal block is symmetric in z and Z). We can apply it to the ¢-channel block,

gg§27h14(1 —2,1-7%) Z Z Ah32’h14 h, h)( )thpk}}z:,’ﬁ:;(l 2), (3.17)
p=0g=-p
in the limit Z — 17, and we can then safely take the small z limit.

After performing the Z integral and dropping the OPE coefficients, we find

Cg)/ (Z,E) = KQEQ sin (71' (ho/ — hl — h4)) sin( (hO’ — hg — hg))
Shithe k‘h32’h14(1 . Z)

haz,h14 7 hor+q h+hi-+ho—2,hor+p—ha—hs
Z Z Ay (hor, hor) (1 o) R btk . (3.18)
p=0g=-p

where Cto, is the contribution of O’ to the generating function, and R is defined and
explained in appendix B.

3.2.3 Dimensional reduction for G

Instead of using the decomposition into SLgy blocks, one can also decompose the three-
dimensional blocks into two-dimensional blocks. This treatment is manifestly symmetric
for z and Z.

The decomposition reads

G Z Z Ay Wk, ()R () (3.19)

p=0g=—p

where the A coefficients are described in appendix D. For conformal blocks with integer
spin, h — h = £, the coefficients A}, vanish for ¢ < p — 2.

We can perform a similar expansion in the t-channel, and after plugging it into the
inversion formula, we obtain

Cto/(z, h) = K‘QEQ sin (7'(' (h()/ - hl - h4)) SiIl( (ho/ — hz — hg))
h1+h2kh327h14(1 _ z)

P
h32,h14 7 hor+q h;
z[:) Z A4 (hor, hor) (1 o) Qﬁ,ho,+p,h2+h3 , (3.20)
p=0qg=—p

where € is given in appendix B in terms of 4F3 hypergeometrics and we have once again
dropped the OPE coefficients. In practice, we evaluate this by truncating the sum over p
at some pyax-

The two types of expansions are closely related, and one can easily derive one expansion
from the other (see appendix D). Practically, we see that the predictions arising from
truncating each expansion give very similar answers. In section 5, we use dimensional
reduction to perform our calculations. We give a more detailed comparison between the
two approaches in appendix E.1.
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3.3 Double-twist improvement (DTT)

Until now, we only considered isolated low-lying operators in the ¢ and u-channels. One
can also consider an infinite tower of operators in the crossed channels and study its effect
on OPE data in the s-channel. Importantly, taking the z — 0 limit does not commute
with the infinite sum.

To see how this works in practice, we consider a four-point function of scalars (cooo)
and look at the inversion of a general, double-twist trajectory [OO]o(h). To keep the
notation compact, we denote weights of this double-twist trajectory as hy and hy, and we
will consider the sum over spins ¢ > ¢g. Their contribution to the generating function is:

&Y 7
C'(zh) D) <_2) 7610010 (1) Clooy, iy (2: 1)

=ty
- 1\ 7 2
> Z Roh <_2> s0(00], (he)2sin” (7 (he — 2ho))
=ty
00 z h"k‘%ﬁi_q(l —2) .
Z Z ASO (hy, ) TESEE VAN (3.21)
p=04g=-p o

We see there are now two infinite sums to perform, one sum for the double-twist operators
we are inverting and another to expand them in 2d blocks. In practice, the sum over 2d
blocks converges quickly for 2 > 1 so we can truncate the sum at some prpax ~ 10 — 20.

To see why we cannot commute z — 0 with the infinite sum over ¢ we can consider
the following sum derived in [12]:

Z Sa( koo —z)= (1 i Z>a+§:5k3a,—k—1(ho) <1iz>k7 (3.22)

=ho+{ k=0
i 0,1,..

T(h)2T(h—a—1)
I'(—a)’I'(2h — )I'(h+a+1)’
__(a+ho)(b+ ho)l'(2he — 1)?

Bay(ho) = — (14 a+ b)['(ho)*

If we take the limit z — 0 under the sum we only see powers of z and log(z), which

Sa(h) = (3.23)

Sa(ho)S(ho) - (3.24)

correspond to the second term of (3.22):

O T(2h) & 2 \"
kp(l—2) = T kzzoakT_k_l (1 - z) , (3.25)
T.(h) = Wsa(h). (3.26)

The sum over blocks (3.22) and the series expansion (3.25) are consistent because if we
expand around z = 0 first, we find the sum over h is divergent. Therefore, we cannot do
this series expansion under the sum.

We can now use the sum (3.22) to evaluate (3.21). Specifically, we expand around
z = 0, and if we find the sum diverges, we subtract by the left-hand side of (3.22), for
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appropriate S, (h), sufficiently many times until the sum converges. We can then add back
in their contribution using the right-hand side of (3.22). This procedure was spelled out in
detail in [12], so here we will discuss new subtleties from using the inversion formula and
dimensional reduction.

First, in (3.21) there are many terms we have to expand at large ¢: we have the OPE
coefficients and the weights hy, and hy which appear as arguments in several places. In
general, we need to expand all these terms at large ¢, expand the summand around z = 0,
and then perform the subtractions at each p and ¢. In practice, for the problems we will
consider here, a single subtraction is needed, and the problem simplifies significantly. To
see how this works, we need that at asymptotically large spin:

hy — 2ho
he — 2ho + L. (3.27)

If we only need to perform one subtraction, then we can break the sum over £ in two, we
have a sum from £y to ¢, which we can perform directly and a sum from ¢, to oo which we
can compute analytically to a sufficiently high degree of precision:

li—1 Vi
1 — _
t _ 2 t
B[OO],l - ng (_2> UU[OO]O(hK)C[OO]O(M) (za h)7
=to

o) 1\ B B
t _ 2 t
B[OO]Q - Z <_2> ao[00]o (hZ)C[OO]O(EZ)(Z’ h). (3.28)
=L,

For the first sum, because we are inverting a finite number of operators, we can take the
z — 0 limit under the sum. To actually perform the sum, we need to know the OPE
coefficients f,5(00], Which can be calculated either using the inversion formula or through
numerics.

For the second sum, we assume £, is large enough such that we can set h = 2hp
and h = 2ho + £. For asymptotically large ¢ we also have that the dimensional reduction
coefficients, A, become independent of £,

AD0(2ho, he) ~ Ao(2ho0) (3.29)

for all p and ¢. At leading order, we can then ignore corrections to A itself. Then the
second sum becomes
oo 1\ ¢ B
Blooja® Y, kg <—2> 2 001, (Fe)2sin? (21 (ho — hy))

Ee:2h0+€
0=l li+1,...

22ho | 20 (1 — 2)

co P
10,0 het+q he
Z Z Ap,q (2h0) : 2hs QE 2ho+p,2hs (3.30)
p:() q=—p (1 - Z) ’ ’

We see that if we take £, large enough we get an integrally spaced sum over h and we
can straightforwardly apply identities like (3.22). Finally, we can compute the large h
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asymptotics of the OPE coefficients (—%)Z fw[OO]O(Eg)Q by studying the inversion formula
for (c00OO0). If we assume the OPE coefficients at large ¢ are given by,

1\* _ _
<_2> 2510000 (Pe) = caSahe) , (3.31)
we then need to evaluate the sum
71700
> Sa(ho)ky’ (1= 2). (3.32)
Ee=2ho+f
b=l 0.+1,...

The last complication before we can use (3.22) is the hypergeometric has twist displaced
by ¢ in comparison to the S, (hy), due to using dimensional reduction for the 3d block. To
take this into account we use that for asymptotically large h:

Sa(h) ~ 225, (h +q). (3.33)

Using this we can now evaluate the sum in (3.30),

o P 2h,
t . ) 20,0 e he 2
Biooja D D 2ggsin’ (27 (ho — ho)) Ayq (2h0) (1 oy% oot o

p=0g=—p
[<1fz>a+iak8a,_k_l(ho) (1:)1 | .

k=0

We can now expand the sum at small z and read off the twist of the exchanged operators
from the powers of z. For example, the extra power of z% signals the presence of a multi-
twist operator with h = 2h, + a.

In [17, 25, 27-29] it was revealed that performing the full inversion formula gives rise
to new non-perturbative corrections in the large-spin expansion. One question is if these
corrections play any important role in the large spin sums considered here. We find that
they are only relevant for calculating the OPE coefficients in BfOO]’l, the bounded sum over
spin. They do not play any role in Bfoo]z since we are taking ¢, sufficiently large such that
these non-perturbative effects can be neglected. Equivalently, the new corrections do not
lead to any divergences in the sum over spin, so they do not lead to any new subtractions.

Finally, one special case is when [OO],, = [00],. In that case in (3.30) we expand the
sin? factor to leading order in the anomalous dimension and use the MFT OPE coefficients
for fw[w}o(ﬁg). Besides that, the analysis remains unchanged if we again assume we only

need to perform one subtraction.

3.4 Exact vs. approximate generating function

Next, we discuss how we can use the generating function to calculate anomalous dimensions
and OPE coefficients at finite spin. For simplicity we will again restrict to a four-point

function of identical scalars (cooo). In the small z limit the generating function for this

correlator scales as®

C'(2,]h) = Clog), ()2 Mot (3.35)

®For identical scalars we have C*(z,h) = C*(z, h) so we will focus on the t-channel.
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where [00], denotes the leading double-twist family and we have dropped higher twist fam-

ilies. The anomalous dimension 5h[w]0 (h) can be computed by taking the exact generating
function and evaluating

Shige],(h) = lim 00 h) _

——= —2h,, 3.36
2—0 C(z’h) ( )

where we take the z — 0 limit to extract the minimal-twist operators. Here we also defined
the partial derivative symbol

0

0= 20, = dlogz

(3.37)

In practice, we cannot calculate the exact generating function in theories like the Ising
or O(2) model. Instead, we try to get an estimate for the generating function by inverting
operators of bounded twist. For example, if we invert a finite number of operators, including
the identity, we find the generating function takes the form:

Cl(z, h) ~ 2%he Cloolo(h) (1 + 6hooy(h)log(z2)) (3.38)

Comparing to (3.35) we see that the inversion of the light, isolated operators are capturing
the leading approximation to the generating function from expanding in the anomalous
dimension. If we expand (3.35) to higher orders in 6h we also find higher log terms,

1
Zhtoh — b (1 + dhlog z + §5h210g22 +.. ) : (3.39)

The log® z terms for an integer k in the generating function are found by inverting an infinite
sum of k-twist operators [12, 30]. Therefore, if we can assume the anomalous dimensions
are small, e.g., when studying s-channel, double-twist operators with large spin, we can
calculate the anomalous dimension by looking at the log term.

However, this is insufficient if we want to study double-twist operators at finite spin
when the anomalous dimension can be large, and the above approximation is no longer
valid. In that case, we take a different approach and attempt to fit our approximate
generating function from inverting operators of bounded twists to the exact form given
in (3.35) [12, 31]. For the case of (cooc) this method is very simple, we take the logarithmic
derivative of the generating function and evaluate it at a fixed, small z,

— 0C(z,h
5h[o‘o]0 (h) = ( )

0(2,75) —2hy| . (3.40)

z2=2z0

There is now an arbitrariness in what value to choose for zy. If we choose zy small we can
ignore higher, multi-twist operators in the generating function, e.g., [0o],=1(h). On the
other hand, if we choose zg to be too small, we see that the logs in (3.39) are becoming large,
and we can no longer ignore them, i.e., we are no longer justified in inverting operators of
bounded twist.

This happens when

|0hlog zo| ~ 1, (3.41)
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or equivalently

20 ~ exp (_(51h) . (3.42)

In this work, we make a choice zg = 0.1, the same as the value used in [12] in the lightcone
bootstrap, and in [17] when using the inversion formula. In appendix E.2, we discuss some
other choices of zp and try to make a comparison. We have found that in many situations,
the results are very stable against changing the value of z.

With these issues in mind, (3.40) gives us h as a function h but we are specifically
interested in operators of integer spin, . To determine the physical spectrum, we then
need to solve the equation,

h—nh(h)=1¢. (3.43)

This is a complicated, transcendental equation, but in practice can be solved iteratively. If
dh is small we can first plug in the MFT result, h = 2h, to find an initial approximation
Sh(© 5 We then use this as our input i = 2k, + 6h(® + ¢ to find another 5h(Y). We can
iterate this procedure several times, and the result quickly converges to the actual solution,
e.g., we typically need around five iterations. If the anomalous dimension is large, one can
also obtain estimates by making a plot in (h,h) and drawing lines of constant £ = h — h.
Finally, we discuss the predictions for OPE coefficients. Once we have the prediction
for the anomalous dimensions, we can easily compute the OPE coefficient predictions using

: _ et M\ Ct(z0. T
<_;> 3a[oa1o(h)=2<1— LN )> Clanh) (3.44)

8h z2h0+§h[ao]0(ﬁ)
0

The derivative term appearing in the above formula is given by a Jacobian since we need
to find the residue in A at fixed spin as opposed to the residue in h at fixed h [6]. The
factor of 2 is because the ¢t and u-channels give the same contribution.

3.5 The twist Hamiltonian

In the previous section, we assumed the leading double-twist operators in the s-channel
were non-degenerate. In that case, we can use (3.40) to find the anomalous dimensions
by taking zo sufficiently small that we can neglect heavier s-channel operators. However,
this becomes insufficient once there are multiple double-twist operators with commensurate
twists. In that case, to find the spectrum at finite spin, we need to introduce the twist
Hamiltonian [12]. Here we describe how to define the twist Hamiltonian in the context of
the Lorentzian inversion formula.

We will focus on a practical mixing example that arises in the O(2) model, the mixing
of charge 1 operators. We can observe that the charge-1, double twist operators [gf)t]}lzo
and [¢s]]_, have twist which become approximately degenerate for h > 1,

higa (h) = 0.877689 (3.45)

SHere the superscript denotes the order in the iterative approximation for finding integer spin operators
and not the twist of the trajectory.
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Recall that we use the notation [0 O3] described in (2.1), where the subscript n indicates
the asymptotic twist of the double-twist family and the superscript ¢ indicates the charge.
Given the exact generating functions, we could of course distinguish the two trajectories.
However, as mentioned before we are in practice finding approximations to the generating
function and to resolve the mixing need to consider the crossing equations (¢tt), (psps),
and (ps¢t) simultaneously. In particular, we construct the matrix of generating functions,

CP*% (2, h) Cft5¢<z,h>>

Mi(z,h) = b, — — 3.47
1( ) (Cibt d)(Z, h) Cibttqﬁ(z’ h) ( )

where the subscript ; denotes the charge 1 family.” We have also used Cf’ 559 to denote the t-
channel contribution to the (¢ss¢) generating function. To include u-channel contributions,
we also need to define:

_ CP5%% (2, h) CP'95 (2, h)
M (z,h)=| L L i 3.48
Heh <Ci‘”¢8<z,h> cy(=h)) (349

so the full matrix is My (z, h) = M{(z, h) + (=1)* M (2, h).
Next, we want to fit this matrix to some function. To do this, we define a Hamiltonian

_— h[d)s]é(ﬁ) 0
H(h)_< 0 Iy (h)>, (3.49)

of operator twists,

and a matrix of OPE coefficients

h) = f¢8[¢8]1(ﬁ) fqbs[qbt]l(ﬁ)
Alh) = (R P | 3.50
. <f¢t[¢816(h) Fotiony(h) (3.50)

We then have:

2 7 2 7
My (2, ) ~ 2~ A(R)2HPAR)T = 2~ Joso(h) f¢80(h)> ho(h) (3,51
1(z,h) (h)z (h) oz[d%[m]é (fq%to(h) f;t@(h) z (3.51)

We can then follow a similar strategy as before. To obtain an approximation for the twist
Hamiltonian, we diagonalize the following matrix

H = diag (eigenvalues[M ' (2, h)0OM (z, h)]) ‘ (3.52)

z=z0 "

This gives the twist for [(bs](l) and [4t];. As before we have to introduce an arbitrary 2
when evaluating the matrices, which we will take to be zp = 0.1.

One can also compute the OPE coefficient matrix using similar ideas. Defining M’ =
OM , we can perform the Cholesky decomposition for M and M':

M =U,U¢,
M =UUT . (3.53)

"To compute these requires group theory factors we have not given yet, but will introduce shortly.
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Then we have

Ur = AMi(R)2772QT
U2 = Al(E)ZH/2H1/2Qg . (3.54)

To solve for Q12 we use,
Uty = QHY2QY . (3.55)

One can then compute @1 and Q2 by taking the singular value decomposition (SVD) of
Uy 'Us,. Finally, this allows us to compute Aj (%) from (3.54).

The above treatment can be generalized easily to a general number of mixings involving
arbitrary double-twist towers n [12]. One can show that for a trivial 1 x 1 matrix, the
method reduces to the case described in the previous section.

The mixing effects computed using the twist Hamiltonian can be significant. In ap-
pendix E.3, we make a direct comparison between the results of using or not using the
twist Hamiltonian. This comparison shows that using the twist Hamiltonian is crucial to
resolve important mixing effects.

4 Inversion formula for the O(2) model

4.1 Generating functions

Now that we have all the ingredients in place, we can turn to the O(2) model. We work
with the following values for dimensions and OPE coefficients of light operators:

Ay = 0.519088, Ay =1.23629, A, =1.51136,
fogs = 0.687126, foor = 1213408, foss = 0.830914,  fys = 1.25213,
Cy/C¥ee =0.904395, Crp/Ciee =0.944056 . (4.1)

Here Cfree are the values of the central charge in the free O(2) model. The couplings fee.s
and f¢¢T are then fixed by Ward identities:
ooy = 1 Foip = 3A4
oo = A/ Cy’ ooT = 8t/Cr’
and then for scalar O we have foos/fses = qo and foor/feer = Ao/Ay. Here Cjr are

the normalization of J and T [32]. We will also need the following data about the lightest
charge 3 scalar y found using the extremal functional,

(4.2)

A, = 2.1086,
Font = 1.3505. (4.3)

When applying the inversion formula, the only new ingredient with the O(2) model
is that we now have to include group theory factors, corresponding to 6j-symbols, when
computing the generating function. For example, for the correlator (pppd) we have:

Lo
Comm =Y 3 ij;f¢< > 200 Cy (1), (4.4)

Tt O’E'f‘t
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where C}(z,h) is the contribution to the generating function from a single block (3.20)
and 7 are the representations appearing in the s and ¢-channel. The explicit form of the
O(2) crossing matrices M are given in appendix C.6.

Now the only remaining problem is to determine which operators we should invert
on the right-hand side. For (¢¢p¢p) we will follow [17] and only include the light isolated

operators, s, t, J, and 7. From this we can then make predictions for éh o+, and

(9],
2

f solpsl0t? which can in turn be used in the inversion formula. However, due to the sin
0
factor in (3.20) and their small anomalous dimensions we can ignore their effects for this

correlator.

The next simplest case to consider is the generating function for charge 3 operators®
Ms(z,h) = C®"% (2, h) + (—1)£C¢t¢t(z,ﬁ) . (4.5)

To compute C?*9(z, E) we invert the isolated operators s, J, and 7', and also the double-
twist operators [¢¢]) * (). To compute C®!(z, 1) we only include ¢ which gives the leading
effect. The charge 3 scalar, x, does not contribute because M?? =o0.

The charge 3 generating function is the simplest case where we must perform an infinite
sum over spin. Specifically, we include the sum over the [¢p¢]d trajectories for ¢ = 0*. First,
we determine the couplings f SloolE (h) ftt[ oalE (h) for all h. To do this we study the ¢-channel
generating function for (¢¢tt). The dominant contribution comes from ¢ exchange in the
t-channel,

Cot™ (2, h) = MT" F36Cl (2, T) (4.6)

At small z this generating functions contains the powers z2"¢ and 22" corresponding to
computing f¢¢[¢¢]§ (E)ftt[w]g (h) and f¢¢[tt]:l:( )ftt[tt +(h), respectively. We will assume we
can determine the couplings for the former by followmg the naive procedure and looking
at the coefficient of z2"¢. This is justified because there are no other light operators that
[qﬁqﬁ]gi mixes with. Later we will compare our prediction for fysr and fse; from analytics
with the exact answer from the Ward identity. Given these OPE coefficients, we can
perform the large-spin sums using identities given in section 3.3 and appendix G.2.

The procedure for the charge 1 sector is identical, except as discussed in section 3.5
we must study a matrix of generating functions, see (3.47) and (3.48). To compute the
matrix elements, we again include the light operators s, ¢, t, T', J and the double-twist
operators [qﬁqﬁ]gi’z(ﬁ) in the ¢-channel. To compute the OPE coefficients fss[ ol (h) and

fst[w]g(ﬁ) we look at the generating functions for (p¢ss) and (pe@st), respectively, and
include ¢ exchange in the t-channel.

To study the charge 4 sector, we must resolve potential mixing between the charge
4 double-twist operators [tt]§ and [¢x]|3. At asymptotically large spin they have similar

8In this case, we do not have a matrix of generating functions, but to keep the notation consistent we
continue to use M.
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twists:

{—o0

lim Ay 14 (h) = 1.314. (4.7)

{—o0

In order to do this, we study the following matrices of generating functions,

_’ 4 _ . 4.8
X3, ) CP(z, h)) “8)

For the even spin trajectories, the full matrix is My even(2, h) = ML(2,h) + M (2, h). For
simplicity, we will only include the isolated operators s, ¢, t, J, and T in the generating
function. As we will demonstrate in section 5, this yields accurate results for the even spin
charge 4 sector. To further improve the results, we would need to understand how the
double-twist operators mix with triple and quadruple twist operators, which lies outside
the scope of the current work.

For the odd spin charge 4 sector the matrix of generating functions collapses to a single
function,

My oad(z,h) = CPX0 (2, ) — COXX(2,h), (4.9)

because the [tt]3(h) trajectory only exists for even spin. For the same reason, we cannot
compare our prediction to the current numerical results, which do not include x as an
external operator.

For both sectors we must compute Cffxw(z,ﬁ), which involves the OPE coeflicients,
fxxo for O = s,J,T. The latter two can be fixed by Ward identities, but the OPE
coefficient f,,s is not currently known. While we expect this will give a small contribution
in comparison to the exchange of ¢ for Cfx‘z’x(z,ﬁ), it would still be useful to have an
estimate for this coupling. To get an analytic estimate for this OPE coefficient we will
argue that x sits on the [¢t]3(h) trajectory. Evidence for this conjecture, that in the O(2)
model we have analyticity down to spin 0, will be given in section 5 where we show the
analytic prediction for A,, obtained by studying M3(z, h), is close to the numerical result.
Assuming analyticity does hold down to spin 0, we can compute fys by studying the
generating function for (sx¢t):

M3,off—diag(zaﬁ) = CSXQ%(Z’B) + (_1)€CSXt¢(Zvﬁ) . (410)

In the small z expansion this generating function contains two powers, zsThx and ztetht

x[sx}g(ﬁ) :
When we continue down to spin 0, the former becomes fy, fyys and we already know fg,

which determine the product of couplings fy(41 (h) foyignz(h) and fy503(h) f,

from numerics. From this approach we find the estimate

Frxs ~ 1.45. (4.11)
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This is a rough estimate because we are continuing our results down to Ex ~ 1.05. For
large h the contribution of heavy operators O in the inversion formula is suppressed by
77" while around i ~ 1 we lose this suppression. It would be interesting to compare
this result with future determinations from the numerical bootstrap and/or Monte Carlo
simulations.

4.2 Double-twist sums

To explain how sums over double-twist operators are performed in practice in the O(2)
model, let us study the generating function for charge 3 operators. Specifically, we look at:

Vi
St 1 t
C (Z h’) é,_426 < 2> f¢¢[¢¢]0+ (hf)ftt[¢¢]0+ (hf)0[¢¢]0+( )(Z h)

I - . _
*‘Wzgg ("2) Faoioory B oty (Pl gy (=B (412

where we used that M(z)tti = 1. Also, to keep the notation compact, when hg appears as

an argument, e.g., in tt[¢¢]0+(h€), we leave it implicitly defined as the solution to he =
0

Prsagt
¢ < /4, and those with ¢ > /,. When performing the large-spin part of the sum we

(E;) + /. Next we split each ¢/ sum into two pieces, a sum over operators with

will set h = 2hg + £. To find the large-spin data, we use results from the lightcone
bootstrap [7, 8, 12]:

1\* 2T (2(hy — hy)) T(2h )
<_2> f¢¢[¢¢]0i (hé)ftt[d)qﬂoi (hf) if(;%(j)t ( ( tFQ(hd;))) ( d)) Sg’l?,t (hf) :

We also need to expand one of the sin factors which comes from the dDisc to leading order

(4.13)

in the anomalous dimension,

_ o
NI 271'/12E5h[ sagg () sin (27 (hy — hy))
- E z ¢+ t h¢hthth¢ 070
Z;) p a 2h¢ (1 —z)2he Qh,2h¢+p,2htk2h¢+€’+q(1 —z). (414
p=0g=—p

The anomalous dimensions for [¢¢]) ( h) are in turn computed from the lightcone bootstrap
for (¢p¢@p), and get contributions from s, ¢, J, and T exchange:”

olotolo) ;0 7
TR DU . <‘1>£O 2,05 0) St )
lad: oariny MEZL \ 2 2(ho) S%, (h)

To use the identities given in appendix G.2 we need to express all of the E; dependence in
terms of SS’O(E’E) directly. To do this, we use that in the limit of large h we have

Sa(h)Sy(h) _ T(=c)’T(—a—b+c)?
Se(h)  T(—a)2T(-b)

9Here we use the notation O to denote the internal operator in (pddd).

Sa-i—b—c(ﬁ) . (4'16)
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While we can perform the sums over the operators in the 0™ and 0~ sector individually, in
practice, it will be more useful to combine the sums. First, we can note from (4.13) that
the weighted product of OPE coefficients for these two trajectories has the opposite sign.
The sign for the anomalous dimension is determined by a ratio of crossing matrices. Using
the results summarized in appendix C.6, we find at large h:

Oy o+ (1) o Sy g0~ (R) L (4.17)
Ohiggrgr (R) ; ~ Ohyg o= (h) ) (4.18)
5h[¢¢}8*(h)‘t ~ ~Ohyg- (h)t (4.19)

This implies if we include the effects from s, J, or T' on the anomalous dimensions, the
sums over the two trajectories add destructively, i.e., we have alternating signs. In this
case, we can use equation (G.5), and the infinite sum does not lead to any new powers of z
in the generating function, i.e., there are no new multi-twist operators. By contrast, when
we use the correction from ¢, we get a constructive sum and will find higher logs.

When we combine (4.12), (4.14), (4.15) for ¢ exchange, and (4.16) we find the following
sum over spin, where we drop some overall coefficients:

lim > T(—€)2S0(2hg + O )kony g 4q(1 = 2) . (4.20)
O=l, 0t 1,...

The factor of I'(—€)? comes from using a = —hy, b = hy — 2hg, and ¢ = 2h in (4.16) and

seeing we naively get a divergence from I'2(0)Sy(h). However if we dropped the T'?(0) and

used Sp(h) in the above sum we would get 0. Being careful with the limits and only taking
€ to zero at the end gives the finite result:

li_%e ezz: T (=€)2S20(2hg+€ kon, 1 or1q(1—2) =
Il lat 1,

22 ((3(2Hn-2+10g (125 ) ) (2(ho—1)Hag—-+ (ho—1)log (13 ) +2)
6 ho—1

2

+m

)

ho=2h4+Ls
(4.21)

where we used (3.22) and (3.33). Here H, is the harmonic number. We see that the sum
over /' has produced a log?(z) factor while each individual block contains powers of z* and
2Flog(z). The log? factor is expected if the anomalous dimensions for [¢t]3 (%) exponentiate.
This also explains why when we included corrections to the [(b(b]gi (h) anomalous dimensions
from s, J, or T' we had to find an alternating sum: if the sum were constructive we would
find new powers of z corresponding to [¢s]o, [¢J]o or [¢T]o. However, we are looking at
the generating function for charge 3 operators and those double-twist trajectories all have
charge 1.
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charge sector | isolated op. Correlators DTI

0+ s, t,J, T (ppp) No
(pssp) (psto) 0%,2
0,8, T ’

N (oiso) (otte) ) | P70

2 even s, t, J,T (ppp) No
3 ¢,5,J,T (tto) (6]

(tttt) (ttxo)
4 J, T N
o s ((d)xtt) <<Z>xx<b)> ’

4 odd s, t, J, T (pxXx D) No

Table 5. We compare analytic and numerical predictions of the conformal data in the 3d O(2)
CFT. For analytics, the table summarizes different operators in the cross channels and different
metrologies we use.

Finally putting all the ingredients together, we find the large spin contribution to the
charge-3 generating function is:

p
Cgtm(z’ﬁ) o Z (—;) f¢¢[¢¢}8+ (E/K)ftt[¢¢]8+ (hé)cf¢¢}0+(he)(z’ﬁ)
large-spin pr—g, ¢, 41,..
47r Foprrior T (2h¢)3f(2ht) sin(2m(hg — he))T(2he — 2hy)

3T (ht)ST(2hy — ht)?
Z Z AL (2ng) el ST (3 <2Hh 2 +log <Z>>

&0 2he+p,2he ™ 6(hg — 1) 0 11—z

p=0g=—p

<2(h0 — 1) Hpy—2 + (ho — 1) log (1 : ) + 2) +72(ho — 1)>

(4.22)

h0:2h¢+£*
5 Comparing numerical and analytic predictions

In this section, we will present the predictions for the O(2) model using our analytic
formalism, and compare them with our 40 extremal spectra from the numerical bootstrap
at A = 35. The operators we use in the inversion formula are summarized in table 5.

5.1 Charge 0%, 1,2,30%*(+-), 1, 2, 3

First, we present plots for the low-lying operators and their OPE coefficients in the charge
0%,1,2,3 sectors, and compare our analytic and numerical results. We make plots for
twists and OPE coefficients in figures 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 for different spins up
to £ = 20. The OPE coefficients are normalized by the MFT coefficients when those are
non-zero. The ratio of OPE coefficients then approaches 1 at large spins.

For all plots, the curves are found via the inversion formula, and the dots show our
numerical results found via the extremal functional method. In the inversion formula
calculations, it is sufficient to work to 1% order in dimensional reduction, i.e., pmax = 1,
when comparing with the numerical predictions for operators with spin ¢ > 2. Working to
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Figure 3. Analytical and numerical predictions for the twists 7 = A — ¢ of the leading-twist
Regge trajectories [¢¢]gi’2 in the charge sectors 0%, 2 as a function of spin £. The lowest trajectory
corresponds to charge 07 (the trivial representation of O(2)). Note that both the spin-2 operator
in the charge 0 sector and the spin-1 operator in the charge 0~ sector have twist 1, corresponding
to the stress tensor and O(2) current, respectively.

higher orders in pmax gives a negligible contribution which is not visible on the plot. The
exceptions are figures 3 and 4 where we work to 5" order since we are extrapolating down
to h = 3/2 to reach the spin-1 current J and dimensional reduction converges slower for
smaller h. For the double-twist operators with spin £, < 20 we will invert them individually
using OPE data found from the inversion formula. For the operators with spins £ > 21 we
approximate their sum using their large-spin asymptotics.

In figure 3 and 4, we see that for the leading towers [¢¢]8i’2 the analytic results
for the twist 7 agree with the numerical data to high precision. (Recall that we use
the notation (2.1) for double-twist families.) Similar analytic results for charge 0% were
presented previously in [17]. The new results in this figure are the analytic curve for charge
2 and the numerical data for all three charged trajectories up to spin 20. To find these
results we inverted the light operators, s, ¢, J, and T' as described in table 5. While the
prediction for the OPE coefficients from analytics agrees well with numerics at low spin,
e.g., £ = 1,2, there are large numerical errors and disagreement as we go to higher spins.
It would be interesting to understand how to reduce these errors to better understand the
validity of the analytic predictions.

In figure 5, we see that the analytic predictions for the charge 3 spectrum also agree
with the numerical values down to low spin. We see a similar agreement with the OPE
coefficients in figure 6, with the analytic curve passing through the numerical data points.

In figure 7 and 8, we once again see agreement between the analytic and numerical
methods for computing the charge 1 spectrum. This is also the first example where the
twist Hamiltonian is used. As we demonstrate in appendix E.3, it is crucial that we use it to
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Figure 4. Analyiical and numerical predictions for the OPE coefficients of the leading-twist Regge
trajectories [¢¢]8 2 in the charge sectors 0%, 2, as a function of spin £. We divide each coefficient
by the corresponding coefficient in Mean Field Theory (MFT).

Tigt)p(£) : Charge 3

T

1.9¢

1.8+ —— Even Spin
Odd Spin

1.7+

1.6+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E
1.5+ 5 10 15 20

Figure 5. Analytic and numerical predictions for the spectrum of the [¢t]3 Regge trajectories.
The upper (blue) curve represents even spin operators, while the lower (orange) curve represents
odd-spin operators.
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14f
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0.6/

Figure 6. Analytic and numerical predictions for three-point coefficients of the [¢t]3 Regge tra-
jectories. The upper (blue) curve represents even spin operators, while the lower (orange) curve
represents odd-spin operators. We divide each coefficient by the corresponding coefficient in Mean
Field Theory (MFT).

7(¢): Charge 1 and Even Spin

20 \;\.N | |

20+

1.8+

1.6+

14 5 10 15 20 ¢

Figure 7. Analytic and numerical predictions for twists of the double-twist trajectories [¢s]3, [¢t]§
with charge 1 and even spin. The blue curve represents the [¢s]} trajectory, while the orange curve
represents the [¢t]} trajectory.
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Figure 8. Analytic and numerical predictions for twists of the double-twist trajectories [¢s]3, [¢t]§
with charge 1 and odd spin. The blue curve represents the [¢s]} trajectory, while the orange curve
represents the [¢t]} trajectory.
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I \\ . . —— Even Spin
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3 10 15 20 Odd Spin

0.8+
0.6

Figure 9. Analytic and numerical predictions for “diagonal” three-point coefficients between exter-
nal operators ¢, s and operators on the double-twist trajectories [¢s]} with charge 1 and both even
and odd spin. The blue curve represents the even-spin trajectory while the orange curve represents
the odd-spin trajectory. We divide each coefficient by the corresponding coefficient in Mean Field
Theory (MFT).

obtain this agreement. In other words, the minimal twist, charge 1 double-twist operators
in the O(2) model do have sizable mixing at low spin.

In figure 9 and 10 we see that the numerics and analytics also agree for the charge 1
OPE data, although here the numerical errors are larger in comparison to the results for
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Figure 10. Analytic and numerical predictions for “diagonal” three-point coefficients between
external operators ¢, t and operators on the double-twist trajectories [¢t]} with charge 1 and both
even and odd spin. The blue curve represents the even-spin trajectory while the orange curve
represents the odd-spin trajectory. We divide each coefficient by the corresponding coefficient in
Mean Field Theory (MFT).

f(/)s[q')t]” : Charge 1
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— Even Spin
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05-P,//¥’””—’T/#—?___¥‘—_T—~—r_
‘ ‘ ‘ ‘ y

004_1 e 10 15 20

Odd Spin

0.2¢

Figure 11. Analytic and numerical predictions for “off-diagonal” three-point coefficients between
external operators ¢, s and operators on the double-twist trajectories [¢t]} with charge 1 and
both even and odd spin. The blue curve represents the even-spin trajectory while the orange curve
represents the odd-spin trajectory. We normalize the OPEs such that the asymptotic values are one.

the spectrum. Taking these errors into account, we see the analytic curve is consistent with
the prediction from the extremal functional.

Finally, by studying the charge-1 twist Hamiltonian we also have access to the off-
diagonal OPE coefficients, f¢8[¢t](1)(ﬁ) and f¢t[¢s](1)(ﬁ) which are given in figure 11 and 12.
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Figure 12. Analytic and numerical predictions for “off-diagonal” three-point coefficients between
external operators ¢, ¢t and operators on the double-twist trajectories [¢s]} with charge 1 and

both even and odd spin. The blue curve represents the even-spin trajectory while the orange curve

represents the odd-spin trajectory. We normalize the OPEs such that the asymptotic values are one.

These OPE coefficients very quickly go to zero at large h, so in the above plots, we have

normalized them by their asymptotic large-spin value. For both OPE coefficients, this can

be found by studying (¢s¢t) and inverting the contribution of ¢ in the ¢-channel. In all

cases, the analytic results are in agreement with predictions from the extremal functional

approach.

We summarize the lessons we have learned from this calculation:

e Generically, the numerics and analytics agree pretty well below spins ¢ < 20, which
means that the analytic methods we have established seem to be effective across dif-
ferent double-twist sectors. Examples include the charge 0% and charge 2 trajectories
[gbgb]giz, double-twist towers [gbt]é"g built out of non-identical operators in the charge
1 and 3 sectors, and the importance of mixing with [¢s]} in the charge 1 sector in
order to obtain accurate predictions.

e The twist Hamiltonian approach is seen to be very powerful in the charge 1 sector.
We make a more detailed comparison about predictions with or without the twist
Hamiltonian in appendix E.3.

e Generically, we have noticed that the OPE coefficients behave worse in the numerical
calculations. This might occur due to some limitations of the extremal functional
method. This might also be related to the sharing effect we have discussed previously:
the predictions for OPE coeflicients of the low-lying operators could be affected by
contributions of fake operators at the gap we impose in the semidefinite program.
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5.2 Charge 4 predictions

Next, we discuss the analytic predictions for the charge 4 sector. As discussed earlier, in
order to do this, we need to include y as an external operator in order to resolve the mixing
effects between [tt]§ and [¢x]g.

We will start by focusing on operators of even spin since we can then make a comparison
to the numerical bootstrap.'? Using the OPE data known from numerics along with the
analytic estimates described in section 4.1, in figure 13, we show our predictions for low-
lying charge 4 dimensions for even spins. We see that despite the fact we have less numerical
data and had to use an estimate for fy,s by assuming analyticity down to spin 0, the
analytics and the numerics are consistent. In particular, we see the analytic prediction for
one of the curves passes almost exactly through the spin-2 numerical point.

However, there is a funny feature about this plot. If we continue the curves to asymp-
totically large spin, we see the orange curve corresponds to the [tt]é(ﬁ) trajectory while the
blue curve corresponds to the [¢x]¢(h) trajectory. While the blue curve is well-behaved
down to spin 0, the orange curve displays a pole at relatively high spin. This is problematic
because this curve is going below the unitarity bound 7 = 1 while the O(2) CFT obeys all
the usual unitarity bounds.

The likely resolution is that our methods cannot be trusted for this curve because we
are ignoring other charge 4 operators with lower twists. For example we could consider
the triple-twist operators [¢pét]d(h) and [pppad]s. At large spin their twists asymptotically
approach:

Wiy, (B) — 1.14,
h[¢¢¢¢}é(h) — 1.04. (5.1)

In the exact plot, we would, therefore, expect that the [tt]3 trajectory will intersect the
[pot]g trajectory and there will be large mixing which prevents the curve from diverging
downwards. In order to make this more concrete, we need analytic tools to resolve mixing
for these multi-twist operators, either by considering double-twists as external operators
or by studying higher-point functions of ¢ and ¢.

By contrast, the odd-spin charge 4 sector is simpler to study because we only have
the [px]s trajectory, so mixing effects will be suppressed. However as mentioned before,
here we do not have any numerical data to compare with, and in figure 14 we just present
the analytic results. It would be interesting to compare with future numerical work for
(xox¢), which would give better access to the charge 4 sector.

5.3 Ward identity checks

As discussed in section 4.1, to determine the OPE coefficients ftt[ a0t (h), fss[ S0t (h), and
0 0

fts[w]g(ﬁ) we use the inversion formula for (¢¢tt), (¢p@ss), and (p@ts), respectively, where
in all cases the leading contribution comes from ¢ exchange. To get an additional test of

10 A5 a caveat, the numerics has relatively lower accuracy here because we do not have as many operators
in this sector.
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Figure 13. Analytic predictions for charge 4 even spin anomalous dimensions, and their compar-
ison with numerics. In order of increasing spins, the combined numerical data from 40 extremal
spectra contains {40, 40, 10,40, 14, 40, 38,17, 38, 39} operators around this twist range for spins 2-20.
Despite the limited data at some spins we still see decent agreement with the [¢x]o trajectory.

Tignlo(€) : Odd Spin

2.60:—
2.55}
2.50}

2450

240l 50 15 20 25 30 35!

Figure 14. Analytic predictions for twists of operators on the Regge trajectory [¢x]s with charge
4 and odd spin.
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the validity of this method, we can use the fact that the conserved operators T and J sit on
the [dxb]gi trajectories [17]. Therefore, we can compute the OPE coefficients fyr, fis, and
fssT from the inversion formula and compare their values to the Ward identity constraints,
which relate them to fyer and fsss. Using the numerical bootstrap values of the latter,
we find:

fttT,inv/f¢¢T,num = 2.428 ) fttT,Ward/.ﬂj)d)T,num =2.382 )
fssT,inv/ﬁi)(i)T,num = 3.050 y fssT,Ward/f¢¢T,num = 2912 5
fetinv/ [T num = 2.32, fitgward/ fopJoum = 2, (5.2)

which correspond to errors of ~ 1.9%, 4.7%, and 16%. To obtain the analytic estimates
involving 7' and J we worked to 5* and 15* order in dimensional reduction, respectively,
which ensures that the numerical values shown above are stable to increasing ppax. We
see that while the analytic predictions work well for the stress tensor, they start to deviate
significantly for the current. Since we will only use inversion formula results for ¢ > 2 for
charge 2, £ > 3 for charge 0, and £ > 4 for charge 0T, we expect the corresponding errors
are small. To improve the result for fi;; we will likely need to include more operators in
the inversion formula.

We can also repeat the same exercise for (ppxx). In that case, the dominant contri-
bution comes inverting ¢ exchange, and we find:

fxxT,inv/f¢¢T,num = 4.049 ; fxxT,Ward/fqﬁqﬁT,num = 4.062 ;
fxxJ,inv/f¢¢J,num =3.31 ) fxxJ,Ward/fqﬁ(j)J,num =3 ) (53)

which corresponds to errors of ~ 0.3% and 10.3% respectively. So we see that this simple
approximation works very well for studying spin-2 operators, but getting accurate predic-
tions at lower-spin likely requires inverting more operators.

5.4 Leading scalar predictions

Given that the inversion formula works well down to spin 2 and perhaps down to spin 1,
it is natural to ask if we can push it further down to spin 0.'' In previous sections, we
have already used this idea to get an estimate for f,,s and we will now make a comparison
between analytic and known numerical results for scalars. In table 6, we compare results
for the dimensions of scalars from the inversion formula with known numerical values.
Before explaining how we get these results, we should note the large-spin expansion should
actually be thought of as a 1/h expansion. This is especially relevant for scalars since we
will be setting ¢ = 0, but from experience with the lightcone bootstrap, we should expect
the inversion formula will give more accurate results for heavier operators. In practice, this
means dimensional reduction will converge faster when we are studying heavier scalars.

11 An explanation that scalar operators and their shadows should appear on Regge trajectories continued
to £ =0 was given in [33]. This idea has been explored in perturbation theory in [34].
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Operator Inversion Numerics Relative error Monte Carlo
Charge 1, shadow of ¢ 2.37 2.480912(22) 4% 2.480950(40) [35]
Charge 3, x 1.99 2.1086(3*) 6% 2.1085(20) [36]
Charge 4, 7 3.35 3.11535(73*) 7.5% 3.108(6) [36]

Table 6. Predictions from the inversion formula versus numerical bootstrap values for the leading

scalar operator dimensions. For the relative error between the inversion formula and numerical

bootstrap methods, we use the formula ’w
numerics

predictions come from evaluating the [¢s]3, [¢t]s, and [¢x]s trajectories at spin 0. We also include

a comparison to Monte Carlo results.

’. The charge 1, 3, and 4 inversion formula

Starting with the charge 1 trajectory, we claim that the shadow of ¢ sits on the [¢s]}
trajectory.'?

To test our hypothesis, we must evaluate nggge = Tigsl (0), where Tlos]} (¢) is the upper
curve in figure 7. To do so, we computed M;(z,h) to 20" and 15" order in dimensional
reduction for the isolated and double-twist operators [¢¢]o, respectively. For the double-
twist operators we also inverted the first 50 operators exactly, i.e. we chose £, = 50 and
performed the sum for £ = 51,..., co using the identities given in section 3.3. At this order
we find Eg‘egge ~ 2.37, which is close to the expected result A, = 2.48091(22).

For the charge 3 scalar, we can see in figure 5 that the even-spin trajectory is increasing
as we go down to spin 0. To make the structure clearer, in figure 15, we zoom in on the
region around spin 0 and plot the charge 3 scalar dimension at various orders in the
dimensional reduction for the isolated operators. For the double-twist operators, we work
to 15" order in dimensional reduction, treat operators with spin ¢ < 50 exactly, and
approximate the remaining operators using the large-spin asymptotics. We see that for
Pmax = 100 the curve intersects around A;{egge ~ 1.995. This is to be compared with the
expected value A, ~ 2.1086(3) in table 4. Note that h, & 1, so we are clearly no longer in
the regime of large-spin perturbation theory, but the inversion formula still works well.

Next, we can study the charge 4 scalar 7. Here we have a tradeoff, while A, is larger
than EX or EE’ we know there are potentially large mixing effects to consider when studying
My(z,h). The former means dimensional reduction converges very quickly and we can
work to 15 order to find the converged value AB °88¢ ~ 3.35, which can be compared to the
expected result A, = 3.11535(73) in table 4. This can also be seen from the figure 13 by
looking at the [gﬁx]é trajectory. It would be interesting to understand how to improve this

result and especially how to properly include mixing with higher multi-twist operators.

12 A5 a reminder, the OPE function c(A, J) is shadow symmetric, a pole at A. also implies the existence
of a pole at d — A,. As explained in [37], the poles in ¢(A, J) represent light-ray operators with quantum
numbers (A”, J¥) = (1 — J,1 — A). The integer spin points represent light-transforms of local operators
L[O]. The shadow operation for light-ray operators is the “spin shadow” Sy : (AL, J¥) = (AY 2—d—J%) =
(1-J,A—d+1). Thus, when we refer to the shadow O of a local operator @, we are really discussing the
spin-shadow of its light-transform S ;[L[O]].
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Figure 15. The analytic prediction for the twist of the [¢t]3 Regge trajectory near ¢ = 0, for
various orders in dimensional reduction for isolated operators in the inversion formula.

5.5 Regge intercepts

In this work, we have mostly focused on using the inversion formula to make predictions
for the spectrum and couplings of local operators. However, another interesting observable
when studying CFTs in Lorentzian signature are the Regge intercepts for the minimal-
twist trajectories. The Regge intercept of a given trajectory, £y, is defined by analytically
continuing the dimensions as a function of ¢, A(¢) and finding the spin such that A(¢in) =
d/2.'3 The Regge intercept of the leading trajectory, Amin(fint) = d/2, determines the
behavior of the correlator in the Regge limit [38].

In the O(2) model the leading trajectory corresponds to [¢¢]8+, which can be seen
directly from figure 3.1* To find its Regge intercept in practice, we make a (A, ) plot for
this trajectory and find the A = 3/2 point. In figure 16 we plot this trajectory as well
as the trajectories for [(]5(]5]87’2
t0 Pmax = 200 in dimensional reduction when inverting the light, isolated operators, and

as we approach this point. To make this plot we worked

then made a linear fit to extrapolate to pmax = oo. The plot is made by evaluating the
generating functions from h = 1.15 to 1.50 in steps of 0.01. For lower h dimensional
reduction converges very slowly and we cannot make reliable predictions.

From this plot, we see that the Regge intercept is slightly below 0.82. Note that there
is an ambiguity, from figure 16 we see that our function o (A) is almost, but not quite
shadow symmetric, i.e. invariant under A — 3 — A. In the exact theory, the minimum of
0(A) will be exactly at A = 3/2, while here we see it is slightly to the right. The lack of
exact shadow symmetry is not surprising and will likely only emerge when we know the

13There will exactly be two solutions to this equation and we will take the larger one. This is the solution
that determines the leading behavior of the CFT correlator in the Regge limit.

4 0One can also show on general grounds that the leading trajectory has to be a singlet under global
symmetries [39].
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Figure 16. The [¢¢]8i’2 trajectories continued down to the intercept point A = 3/2. The undotted
lines give the prediction from the inversion formula. The curves are truncated at h = 1.15 as below
this value the dimensional reduction expansion converges too slowly to make reliable predictions.
The dashed lines correspond to a simple shadow-symmetric quadratic fit.

Trajectory | fing
[(¢ols” | 082
(6ol | 0.75
[6¢]5 | 0.69

+
Table 7. Analytical estimates of the Regge intercepts fi,; of the leading [¢¢]8 2 trajectories.

exact correlator. For the sake of making an approximation, we define the Regge intercept
as corresponding to the minimum of 2" (A), which here is slightly off-center. To obtain
a better estimate, in figure 17 we plot the Regge intercept as a function of 1/pmax from
Pmax = 100 to 500. Making a linear fit we see that the extrapolation points to the value
0O~ 82,

To obtain estimates for the Regge intercepts of the other trajectories, we need to make
an ansatz for their form. One option is to assume shadow symmetry for ¢(A) and make
a quadratic fit based on the results of the inversion formula. Here we will take a related
approach, but choose an ansatz which is motivated by the generalized free field spectrum.
If we have a generalized free field ¢ then we can construct the n = 0, double-twist operators
[¢¢]o,e with dimension Ag, = 2A4 + £. By shadow symmetry we also have the trajectory
with A =d — Agy. These two trajectories can be found by solving

(A—=0—=2A4)(d—A—-1—-2A4)=0. (5.4)
We can deform this result by introducing two new parameters a and b:

(A—t—a)d—A—C—a)=b. (5.5)
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Regge Intercept of [¢¢]8+
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Figure 17. The [¢¢]8+ Regge intercept as a function of 1/pyax.

This ansatz makes shadow symmetry, A — d — A, manifest. Solving for ¢ yields two

E:d/2—ai%\/4b+(d—2A)2. (5.6)

Choosing the plus sign gives both the physical trajectory and its shadow. Choosing the

trajectories:

minus sign gives a trajectory whose spin decreases as we increase the scaling dimension.
Setting d = 3, taking the data in figure 16 from h = 1.15,...,1.50 and making a fit
for the 0T trajectory yields:
ag+ = 1.05, (5.7)
b0+ — 013 .
Setting A = 3/2 yields the Regge intercept E?;t ~ .81 which is consistent with (but slightly
differs from) our previous result based on extrapolation.
For the charge 2 trajectory we find:
as = 1.05, (5.9)
by = 0.09. (5.10)

Plugging this into the ansatz yields a Regge intercept of (2, ~ 0.75.
Finally, for the charge 0~ trajectory we find:

ag- = 1.05 (5.11)
by— = 0.06.. (5.12)

This gives a Regge intercept of E?n; ~ 0.69.

- 37 —



We can note that for all three trajectories we have aq, ~ 1.05. If we take (5.6) and
expand it at large A we see a, is the twist of each trajectory. It is then not surprising a4 does
not significantly vary between trajectories as they all have twist 7 ~ 2A4. The parameter
by is effectively measuring the deviation of the exact trajectory from the generalized free
field result. For all three trajectories we see by is relatively small and that the 0T trajectory
has the largest deviation from generalized free field theory.

Finally, an interesting feature of the ansatz (5.5) is that it also produces a lower
trajectory which can intersect the ¢ = 0 line for real A. Specifically, we find for the
0" trajectory a scalar with dimension 1.76 and for the charge 2 trajectory a scalar with
dimension A = 1.17. We see that the charge 2 result is fairly close to the numerical
prediction A; = 1.23629(11), with a relative error around 5.5%. However, the charge 0
result differs more significantly from the numerical result Ay = 1.51136(22), with a relative
error around 16.5%. The likely resolution is that our simple ansatz (5.5) is really only a
good local fit to the upper branch for A € (3/2,2), and does not correctly describe the
lower branch. The fact that we can see physical, scalar operators on the lower branch is
encouraging, but to make precise predictions we likely need a better ansatz and/or method
for inverting 3d blocks.

5.6 Crossing symmetry and the dDisc

In this section, we will briefly return to the problem of studying crossing symmetry for
the full correlation function. In the numerical bootstrap, bounds are derived by imposing
crossing symmetry and unitarity on the full correlation function. However, when studying
the Lorentzian inversion formula, we start by making an ansatz for the double-discontinuity
and use this to find the OPE data in a given channel.'® In principle, given the full double-
discontinuity, the output of the inversion formula is a solution to crossing symmetry. In
practice, we only have an approximation for the double-discontinuity and can only make
reliable predictions for low-twist operators. Here we will study to what extent the CFT
data we have saturates the crossing symmetry condition and, in the process, understand
where our ansatz for the double-discontinuity is reliable.

Specifically, we will study the correlator (¢ppped) and use data from the numerical boot-
strap [5] for the light, isolated operators s, ¢, J, and T, and use data from the inversion
formula for the double-twist operators [¢¢]¢(¢) up to spin 20. Equivalently, one can de-
termine the double-twist couplings and spectrum via the extremal functional method and
the exact parameters can be found in the attached Mathematica file. As an example, in
figure 18 we project onto charge 07 exchange in the s-channel and compare the predic-
tions from the s and ¢-channel OPEs. Recall G(z,%) is defined in (3.4) by factoring out
an s-channel prefactor. To make the plots clearer, we specialize to the diagonal z = Z and
define the normalized correlator as:

Gi(z, 2)
27,
2A
14222 1 (1)

Ghorm (%, 2) = (5.13)

151 this discussion, we will assume the analyticity in spin holds to £ = 0 so we can ignore any ambiguities
at finite spin.
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Crossing Symmetry: Charge 0"
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Figure 18. We study the correlator (¢d¢pg) and project onto 0T exchange in the s-channel. We

plot the prediction for g,?;m(z, z) using the s and t-channel OPEs. We also plot its dDisc;, which

we compute by expanding in the ¢t-channel OPE and then taking the double-discontinuity. We
normalize all three functions by an MFT four-point function. Because dDisc; is computed using
the t-channel OPE, it is reliable where the ¢t-channel OPE is reliable. This includes the region
z > 1/2 and also somewhat smaller z 2 0.1 where crossing symmetry holds to high precision.

That is, we are dividing by the MFT four-point function for a fictitious, uncharged scalar
with dimension Ag. To compute the blocks, we also use dimensional reduction up to
Pmax = 30.

From figure 18, we see that crossing symmetry is obeyed in a large neighborhood
around z = 1/2. As we go to smaller z, for example z ~ 1/10, we see significant deviations
between the s and t-channel OPEs. This is important because we compute the double-
discontinuity, dDisc;, by expanding in the ¢-channel and then taking the discontinuities.
Recall that computing dDisc; requires analytically continuing outside the regime where

6 so we cannot use a finite number of s-channel blocks to

the s-channel OPE converges, '
approximate dDisc;. For z 2 9/10, we also see that crossing symmetry no longer holds,
but in this region, the t-channel OPE is valid.

To make figure 18, we included the double-twist operators [¢¢]8+ (¢), up to spin 20,
for all three functions. It is important to include these operators in the OPE to see
crossing symmetry emerge for the correlator, G(z,z). We also included these operators
when plotting its double-discontinuity, but here they play a minor role. In figure 19 we
plot the difference dDisc[Gl4(z, 2)] for Gh.q = ggorm’DT — gﬁorm\no o again specialized
to the diagonal z = Z, when we include or exclude the double-twist operators. We see
that including the double-twists gives a small effect, which is of order ~ 0.0005. Therefore,
while the double-twist operators have a large effect on the full correlator, the double-

discontinuity itself is relatively stable against further corrections. This gives more evidence

5Relatedly, dDisc; annihilates individual s-channel conformal blocks [6].
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Comparing dDisc;: Charge 07
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Figure 19. We study the effect of the double-twist operators on dDisct[gg;m(z, z)] and see that
the difference between including or not including them is small.

that just including the light operators of low-spin gives a good approximation to the full
double-discontinuity.

Using the same data, we can also make a plot for go* (z,%) in Euclidean configurations,
as shown in figure 1. Here we restricted to the configuration Z = 2*, worked to 5" order
in dimensional reduction, and normalized the correlator by its value in MFT. To make the
plot we defined two regions:

Rs={z€C||z] <1, Relz] <1/2}, (5.14)
R, ={z€C||z—1]| <1, Re[z] >1/2}, (5.15)

and used the s and t-channel to compute the correlator in Rs; and R; respectively. We
zil
of these regions (corresponding to the u-channel region). We see that there are two peaks,

apply the transformation z — to the t-channel data to obtain the correlator outside

centered around z = 0 and z = 1, corresponding to identity exchange in each channel. The
correlator decreases away from these peaks and the minimum of QO+ /g&*FT in these two
regions is approximately 0.704. This tells us that the O(2) CFT, like the critical 3d Ising
model [40], does exhibit large deviations from the MFT prediction.

We can also repeat this analysis when we project onto charge 0~ and charge-2 exchange
in the s-channel, as shown in figure 20. For both cases, we see that crossing symmetry
is obeyed in a large region around z = 1/2. Here deviations between the s and ¢-channel
OPEs are not visible around z = 0 because to define G? we pulled out an overall s-channel
prefactor. This has the effect of weighting each correlator by a factor of (2z)%¢.

As a final application, one could also try to use the above approximation for the dDiscy

to estimate the Regge growth of the correlator. In section 5.5 we approximated the Regge
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Crossing Symmetry: Charge 0~

0-
gnorm

-0.2¢

s-channel

— t-channel

~04}

— dDisc;

-0.6¢

-0.8¢

-1.0¢+
Crossing Symmetry: Charge 2
2
gll()l'lll

1.0+

0.8+

s-channel
0.6+

— t-channel

— dDisc¢,

0.4+

0.2¢

| | | | oz

0.2 04 0.6 0.8 1.0

Figure 20. We study (¢¢¢d) and project onto charge 0~ and charge 2 exchange in the s-channel.
We compare the prediction for the full normalized correlator on the diagonal, GO 2 (2, z), using the
s and t-channel OPEs. We also plot its dDisc, which is computed using the ¢-channel OPE.

intercepts by continuing the physical trajectories down to A = 3/2. Alternatively, one
could directly study dDisc;[G(z,%)] and take the limit z,Z — 0 with the ratio z/Z held
fixed. The current difficulty with this approach is that we need to study the double-
discontinuity around z = 0, while the expansion we have is around z = 1. Indeed, if we
naively fit the dDisc; in figure 18 to a power law at small z, we obtain a Regge intercept
of 3/2 —2A4 ~ 0.46. This is a kinematic effect, coming from the fact that the dDisc; in
figure 18 is dominated by a finite number of ¢-channel blocks. Each individual ¢-channel
block has Regge spin 3/2 — 2A,.17

"One way to see this is to note that t-channel blocks have an expansion in s-channel double-twists,
which have A = 2A4 + ¢. Setting A = g gives liny = d/2 — 2A4. More directly, one can take an individual
t-channel block, ga (1 — 2,1 — Z), and take the limit z,Z — 0 with z/Z held fixed. In this limit, each
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To find the genuine Regge intercept, we must study a sum over an infinite family of
operators in the t-channel.'® Alternatively, in section 5.5 we found a Regge intercept of

70"

it ~ 0.82 by also inverting a few light operators. However there we assumed the logs in the

generating function exponentiate, following the discussion in section 3.4. Understanding
a similar approximation for the full double-discontinuity could be a useful alternative to
performing infinite sums over 3d blocks.

6 Future directions

6.1 Numerical bootstrap

Recent improvements to numerical bootstrap algorithms [4, 5] allow us to solve problems
with significantly higher numerical precision and at a much larger scale. In particular, we
can get a much clearer picture of the full spectrum for a variety of different CFTs that
can be solved using bootstrap techniques. Some immediate candidates are to study in
detail the full spectrum of the 3d Ising CFT, the full set of O(N) CFTs, Gross-Neveu-
Yukawa models, and related theories (e.g., various supersymmetric extensions) using the
methods developed in [5] and in this paper. We also hope that targets like 3d QED and 4d
QCD in their conformal windows will soon become accessible using large-scale bootstrap
methods [47-49].

For the O(2) model itself, we see several ways to improve the numerics used in our
work. For instance, we have seen that overcoming the “sharing effect”, which arises due to
spurious operators at the gap threshold sharing OPE coefficients with physical operators,
will be important for obtaining accurate numerical conformal data. Thus, to overcome
the sharing effect and mitigate the error, one could impose more carefully chosen gaps in
different sectors. It will be interesting to explore which precise gaps could be implemented
and how to control the error induced by the sharing effect. In addition, it might be helpful
to study mixed correlators involving other relevant operators, such as the leading charge
3 scalar and conserved O(2) current (building on [50]). Pursuing these directions may, for
example, be helpful for obtaining precise numerical data for the higher-twist families in the
O(2) model.

It will also be interesting to explore methods for spectrum extraction beyond the cur-
rent numerical computational framework. The standard extremal functional method has
some drawbacks. For instance, one needs to average over several spectra to stabilize the
operators, and there is no known way to make rigorous estimates. It is worth thinking
about how to overcome this problem and finding an improved version of the extremal
functional method in which errors are under better control. Other possible numerical im-
provements include finding a more efficient dimension and OPE scan method, a better basis

block scales like z! %, which can be verified by solving the Casimir equation or using known expressions
for blocks on the diagonal z = Z [41, 42]. Multiplying by the factor (22)%¢ /((1 — 2)(1 — Z))*¢ coming from
crossing symmetry, we obtain zlf(%%A"’), which corresponds to spin d/2 —2A4 growth in the Regge limit.

18For example, in large N theories the non-trivial Regge growth comes from performing infinite sums of

the double-twist operators over both n and ¢ [43-46].
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of functionals, or numerical bootstrap algorithms beyond the usual semidefinite program-
ming interior point method. We believe that those directions will be helpful for obtaining
precise conformal data for specific CFTs.

6.2 Analytic bootstrap

For the analytic bootstrap, an immediate direction is to apply the new techniques developed
in this work to other CFTs where very precise low-lying data is known from the numerical
bootstrap, such as the 3d Ising model [51], its supersymmetric extension [52, 53], or other
O(N) models [51, 54]. Using the recent results [55], they can also now be readily applied
to 3d CFTs with fermions such as the Gross-Neveu-Yukawa models [56, 57]. These models
will be important testing grounds for a better understanding of which contributions are
needed in order to make precise predictions for higher-twist trajectories.

It will also be helpful to further refine the z = 2y method formalized in this paper. Can
we find a more systematic scheme to determine the optimal values of zy in different models,
charge sectors, and spins? Is there a better way to move into the proper small z regime
while suppressing the logarithmic divergence? Along these lines, it will be important to
improve methods for the twist Hamiltonian and resummations of double-twist operators.

A related problem is how to properly study triple- and higher-twist operators. As we
study double-twist trajectories with larger twists, we need to understand how to resolve
mixing with the higher-twist trajectories. Double-twist operators are fairly simple. The
trajectory is non-degenerate, i.e., there is a single operator with a given twist and spin,
and we have a single accumulation point in twist space. On the other hand, triple-twist
operators are composed of double-twists, e.g., [¢dd] = [[p@]@], so their degeneracy grows
with spin, and we find accumulation points of accumulation points in twist space. There-
fore, resolving their mixing and understanding their large-spin structure is a significantly
more complicated problem and a proper understanding may require studying higher-point
functions, e.g., (ppopos) in the O(2) model.

It would also be useful to understand how to more effectively streamline these com-
putations. At our current stage, we have an iterative procedure which involves computing
the contributions of operators to a matrix of generating functions, extracting the physical
data by diagonalizing the twist Hamiltonian, and then plugging the results back into the
inversion formula. While the procedure is straightforward, in practice, it would be useful
to develop tools that avoid intermediate steps, e.g., diagonalizing the twist Hamiltonian.

Finally, our work is mostly based on the Lorentzian inversion formula, and it would be
interesting to understand its connection to other analytic methods. For example, we can
compare to more traditional lightcone bootstrap [12, 17], the CFT dispersion relation [13],
or analytic functional methods [15]. Eventually, it would be interesting to find a way
to incorporate the precise analytical solutions computed via these methods back into the
numerical bootstrap to find a robust iterative scheme for efficient bootstrap computations.
In order to do this, it is important to understand how to rigorously bound errors when

using the inversion formula.
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6.3 Additional applications

Our preliminary result for the Regge intercept of the O(2) model, fiy; ~ 0.82 < 1 implies
that charge-charge event shapes are well-defined in this theory [58-60]. Charge-charge
correlators are natural observables in quantum-critical realizations of the O(2) model: one
could potentially measure them by exciting a critical sample in the center and measuring the
distribution of charge excitations at the boundary. It would be very interesting to compute
these correlators using a combination of analytical and numerical bootstrap techniques. A
natural approach would be to compute the data appearing in current-current OPEs using
the numerical bootstrap, analytically continue the results in spin, and use the light-ray OPE
of [60] to construct the event shape in an expansion in the angle between charge detectors.
A comparison between theory and experiment for these observables would constitute a
nontrivial check of nonperturbative CF'T techniques in intrinsically Lorentzian regimes.

Now that we are obtaining more complete pictures of the full spectrum of CFTs, it is
important to think about the broader applications of this data. One possible application
is to apply this data to the Hamiltonian or conformal truncation program (recent work
includes [61-72]). The conformal truncation method starts from fixed points described by
CFTs and probes non-conformal physics (e.g., the mass spectrum) using the UV conformal
basis. Thus, to obtain precise predictions, it is important to obtain precise sets of conformal
data.

It is also interesting to study the physics of condensed matter or other experimental
systems away from their critical points. For example, transport properties or thermal
coefficients of quantum critical systems at finite temperature can be computed using CF'T
data [31, 73-77]. These computations can now be pursued with much higher precision for
O(2) quantum critical points, and one can try to make direct connections with experimental

or quantum Monte Carlo data.
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Notation Description
S, O, X, T Leading scalar operators with O(2) charge 0%,1,2,3,4.
J, T Current and stress tensor.
f0,0,04 The OPE coefficient with respect to operators O1, O2, Os.

[0105],,,¢ or [0102];

The n-th double-twist family [O102] with spin ¢ and charge q.

hi2,h34 (Z 5)
M

or ¢Channel ( h, E)

I Conformal block in three dimensions using the
or gg”’h“(z,i) convention [12] for external scalar operators 1234.
Al Conformal dimension and spin in general,
or h,h or conformal dimension and spin in the s-channel.
A OR R Mostly conformal dimension and spin in the ¢ or u-channels.
c(h, h) Coefficients in the conformal partial wave

decomposition of four-point functions.

To

The O(2) representation for operator O.

g

Conformal blocks factoring out kinematic factors.

0(27 E)7 CChannel(Z, E),
or C%<d(z h)

Generating functions.

ky*(2) The SLy block k;°(2) = 2" x oF1(h —r,h + 5,2h, 2).
A, Three-dimensional conformal block expansion coefficients
A, in the context of SLs, dimensional reduction,

C and Weyl-reflected blocks.
M Matrices of correlators for the twist Hamiltonian.
M Crossing matrices in the O(2) model.

Table 8. Some of the notation used in this paper.

A Summary of notation

We summarize some of the notation used in this paper in table 8.

B Integrals of hypergeometric functions

We define Q as

hihohshy
hs,he,p

Ldz 2\ . h. o i331
:/ <1Z> B o T2 pnd () _ oy (B.1)

022

Here, ¢ means the shadow transform in d = 2, which maps h; to 1 — h; and h; to 1 — hj,
and we define the SLy blocks as

ki11234(2) = kZ’S(Z) = gﬁgFl(h —r,h+s,2h,z). (B.2)
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The result of the € integral is given by [25]

1234 _
Qh5,h6 P

[ (2h6)T (h1 —hs +hs +p—1)T (=ha + hy+hs +p—1)T (=h1 + hg — hs + hg —p+ 1)
['(=h1+hy+he) T (he — hg + he) T (h1 — ha +hs +he +p — 1)
Xd%(M—hy+%Jm—M+%&m—hyH%+p—L—@+hm+%+p—l>
2hs,hy — ha +hs —hg+p,h1 —ha+hs+hg+p—1
I'(2hs5) T (h¢ —p+1)T(hy —ho+hs —hg+p—1)T(=h1+ha+hs —hg+hs—p+1)

['(h1 —ha + hs) T (hs — hg + h5) U (=h1 + ha + hs + he —p+ 1)

A F hg—h3+h6,—h1+h4—|—h6,h6—p—l—1,—h1+h2+h3—h4+h6—p+1.1
e 2he,—h1 +hy —hs +he —p+2,—hi+hy+hs+hs—p+1 ]’
(B.3)

We will also define an R symbol,

T(p+1)(c+1)
T(p+o+2)

3Fy(a, B, p+ 157, p+o+2;1).

(B.4)
When inverting individual blocks using the SLs expansion, we have to be a little careful

1
Rosn = / 2P (1 —2)%y Fi(a, B;y; o) de =
0

about the analytic continuation of the function gF5, defined as

ai, ag, as; ) = — (1), (ag),(a3), 2°
3Fy (a1, az, az; by, bo; )—kzzo b (bs), R (B.5)

On the circle |z| = 1, the function itself is absolute convergent when
Re[yap) = b1 + b2 —a1 —ag —az > 0. (B.6)
It is convergent except at z = 1 when
— 1 < Relyap] <0. (B.7)
On the other hand, it is divergent for
Re[yap) < —1. (B.8)

Now, one might worry about the divergence at z = 1 when v,; < 0 in our inversion
formula. However, we wish to point out that a hypergeometric transformation can solve
the problem. In our inversion formula, the R symbol appears as

E+h1+h2—2,ho+p—h1—h4 B
h—h12,h+h34,2h ) ( 9)

It has the following symmetry when we swap the operators 1 <+ 2,3 < 4:

E+h1+h272,ho+p7h17h4 _ E+h1+h272,ho+p7h27h3 (B 10)

h—h12,h+h34,2h © “"h—ho1,hthas,2h
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This formula holds when both sides are well-defined, and could be proven easily using a
hypergeometric transformation. Thus, when one side is not well-defined, we can use the
other side to define an analytic continuation. The following is a specific example.

Consider including the isolated operators 7" and J in the ¢-channel of (¢ss¢p). We see
that for the left-hand side of (B.10):

3
Yap =ho+p—ha—hs+1=5 +p=2h;=p-002, (B.11)

which is smaller than 0 for p = 0. To resolve the divergence, we swap 1 <> 2,3 <> 4 and we
obtain a formula for 7, ; using the right-hand side of (B.10):

3
’Ya,b=h0+p—h1—h4+1:§+p—2h¢:p—|—0.98, (B.12)

which is always in the convergence regime of the 3F». We find that the above treatment
can resolve all the non-convergence issues in our analytic bootstrap in the O(2) model.
Moreover, the non-convergence situation does not appear in the dimensional reduction
version, which makes use of 4F3 hypergeometric functions. It might be interesting to ask
for a deeper interpretation of the above phenomenon.

C Crossing equations in the O(2) model

In this paper, we mainly study crossing equations for the external operators ¢, s,t. The
crossing equations and their derivation are given in more detail in [5]. Here, we will review
some basics of their derivation, and present crossing equations in conventions consistent
with the main text of this paper. Moreover, we give some explicit Mean Field Theory
(MFT) coefficients suitable for our analytic bootstrap analysis in the O(2) system. We
also derive some crossing equations involving x used in the analytic bootstrap, which is
new compared to [5].

C.1 Index-free notation and practical implementation

We first give a brief introduction to the index-free notation established in [5]. For a charge-¢
operator Oj4,...;, containing ¢ O(NN) indices, we define the index-free notation

O(v) = Ojyigei 00 0" (C.1)

where v is a null O(N) vector
> =0. (C.2)

Since we are taking N = 2, we can make further simplifications. We introduce the basis
1 1
:<> e:< ) 3
i —i
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So for degree-n tensors represented in the index-free notation, f(v) and g(v), we have the
expansions

o) = a0 55) +a@ () ()

This expansion is consistent with both the degree in v and the result when v is taken to
be e or €. Thus, it is uniquely fixed. When contracting two tensors, f and g with degree
n in the index-free notation, we compare the degree for common vectors and remove the
coefficients, so we define the inner product

o) = (10(55) +r0(5) e (%) +a@(55)")

_ f(e>g<e)<:€)n+f(e)g(e)(:6)”

1 _ _
= on (fe)g(e) + f(E)g(e)) - (C.5)
One can use the formula to compute some examples. For instance, if we wish to compute

((vl . 00)2(1)2 . 00)2, (v - 00)2(1)4 . 00)2> , (C.6)

the result is

1
o ((v1-€)*(va - €)*(v3 - @)% (v - €)* + (v1 - €)% (v2 - €)% (vs - €)*(va - €)?) . (C.7)
Furthermore, we introduce
Ve = w;,
V; € = W, (CS)
where
v? = w;w; ,
r
Vi ’Uj = §(wiwj + ’wi’w]‘) s
- T,
Vi - V5 = i(wiwj — wiwj) s
b= €lvj, (C.9)

and e is the Levi-Civita symbol. Then we can rewrite the above example as

L9 9 9 9 _9 5 o 9

274( 1'UJ2'LU3'UJ4 +w1'lU2w3'UJ4) . (CIO)
Practically, we could use either v or w variables to compute the O(2) crossing equations.
One important thing to notice is that we should keep v; to be null. For instance, if we

write crossing equations in terms of the w variables, because v; is null, we know that
w; =0orw; =0. (C.11)

So when we derive crossing equations for different charge sectors, we can always impose
this condition.
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C.2 General setup

Next we compute crossing equations and MFT coefficients using the index-free notation.
We will completely follow the convention of [12]. We define the s, ¢ and u-channel
expansion as the following:

(d1(21)P2(x1)P3(w3)Pa(24))

Aszyq Al2 L
1 x14 x24 1 f f 127 34(2 2)
Ar+A2  As+Ag  Aze, Aro 9 120J3409 4 ,
x12 T3l T3 T o
A A V4
_ 1 x3414x2432 _1 fas0f A32,A14(1 2 1-7%)
T A3+ Ay AT+ Ay Ay A32 2 320J1409 7 g1 R
T32 T14 T31 T34~ o
A A V4
1 T 131: 42 1
= 43 23 _ - 42,A13
T AuFBy AAs A A 5 f420f1aogA,g, (1/2,1/2), (C.12)
Tyo T3 Ty1"Ty3” o

where we use A; for the dimensions of the external scalars ¢;, the internal operator O has
dimension A (or A’) and spin ¢ (or ¢'). In general, we use A’, ¢’ for t— and wu-channel
operators, and A, ¢ for s-channel operators. We define A;; = A; — Aj and x5 = |z; — .
The cross ratios are defined by

2
55129534

$%35U%4
=zz , wv= =(1-2)(1-2). (C.13)
:1:139524 37%3‘13%4

Sometimes, we will exchange fi20f310 = fi20f130(—1)¢ to cancel the (—1) factors ap-
pearing in the OPEs. From now on, we will write the prefactors as

Azg A1z
S = A1—i—A21 Az+Ay xxl34x2ﬁ412 ’
T12 T34 T13 T4
A4, A32
T= A3-|—A21 A1+Ay xilmxiln ’
L3 Tyg T3y T4
A1z, Ag2
U= A4+A21 A1+A3 $§13x§42 ’ (0'14)
Ty2 T13 Ty Ty3

Now we set up the conventions for MFT coefficients. We have

(91 (71) P2 (z2) d1 (23) P2 (T4))

1 A+Ag A1+A2 A1z Arp

= &, 38, = 5% ° =S Z Ot T (A1 D) (~D) g1 % (2,2),
T13 T4 n =0
(91 (z1) 2 (22) D2 (23) d1 (24))
1 A1+A2 A1+A2 A1p Ajp
oA 28, = % =S Z Al,AQ)g[d)ld) }:e (2,%), (C.15)

3714 Log n,0=0

where we define

J— Z —_
YT1 o YT1o
AND Asy
_ _ 1
5 s 5 (C.16)
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The above expansions define the ¢ and u-channel expansions of double-twist operators
[¢1¢2]n’4 with spin ¢. Here we use the convention of the MFT coefficients in [12]

CQQFT (A1, Ag) = (C.17)

(A1 = 1/2),(Ag = 1/2),, (A1) 1, (A2) gy
Mnl(0+3/2), (A1 +As+n—2) (A1 + Ao +2n+ L —1),(A1+ Do +n+0-3/2),°

where we use the Pochhammer symbol (a), =T'(a +n)/T'(a).
Now we write down crossing equations for identical operators, involving s, ¢, and t as
external operators. To keep equations simpler we also define

¢
<—;> Javo fedo = favo fedo 5 (C.18)

as a short-hand notation for the products of OPEs.

C.3 Crossing equations and MFT coefficients for identical operators

We start with correlators for identical operators:

e (ssss): we have the crossing equation

Sssss Z fssOfssOg?)syss (27 2)

O=0+
= Tysss Z fssO’fssO’gsoslﬁs(l —z,1- 2)
0'=0*
N N 55,88 —
= Ussss Z fssO’fssO/gO/ (1/Z, 1/2) ) (019)
O'=0t+
and for MFT we have
1 1 1 1 A A—A
(ssss) = Sx——5a; + A, 9A. T 38, 3A. — AL I8 (1+“ THYTY S) :
Tip T3y ®  Tyz Ty, Tig o Toz” Tiy T3y

(C.20)
o (pppd): we have the crossing equation

Seese D Fo00fos098" %% (2,7)
O=0t+

LS Fesor Fosorgly?P(1— 2,1 - %)
O'=0t+

=T +5 > f¢¢0'f¢¢0/gg?’¢¢(1 —2,1-7%)
6000 pa
02 f¢¢0’f¢>¢0fgg?’¢¢(1 —2,1-732)
/:O—
3 OZ+ Fosor Fasor gt ®?(1/2,1/%)
'—0

N N [oloNalos =
= U¢¢¢¢ + 0,222 f¢¢o/f¢¢o/go, (1/'27 1/2) s (0.21)

1

2

LS Fovor Foe0r 20?0 (1/2,1)7)
0'—0-

N[ =
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Sepse D Foo0Fos0987 %% (2,%)
O=0—

-3 Z Fosor Fosor gt *2(1 = 2,1 - 2)
= Togps | T2 Z f¢¢0’f¢¢0' (1= 2,1-3)
+3 Z Fosor Fosor g *2(1 = 2,1 = 2)
Z Fos0r Favor gty (1/2,1/7)
Fooo Fosor gy ??(1/2,1/7) | (C.22)
Fosor Fosor gty (1/2,1/2)

= l\’)

=

= Uggpo

§
1
2

Z:
o

Seees Z Fooofos0987 %% (2,%)

0=2
Z f¢¢o’f¢¢0193‘? ¢¢(1 —2,1-72)

= Toppe _
+ Z Foo0 Fosor gy ?? (1 — 2,1 - %)
O'=0—

Z Fosor Favor gty (1/2,1/2)

+z Z Fos0r Favor gty (1/2,1/2)
and for MFT we have
(v1-v2) (v3-va) | (v1-v3)(va-vg) | (v1-vg)(v2-03)
(pdo0) = 27, 27, 27, 2A, 28, 2A,
Tig T3y T13 Toyg T14 T3
1 ( 1 1)2) (’Ug . ?)4) (1 + %UA¢’ + %yA¢yA¢)
~ 27, 2A +1 (wlwz@?@zi + @1@2w3w4) (uls +yReyte) | . (C.24)
e (tttt): we have the crossing equation
Sttt Z fttofttogg’tt(z,f)
O=0+
Z+ fttO’fttO/ggitt(l —2,1-7%)
O'=0
= Tt +% OZ ftto’ftto’gg;tt(l —z,1- E)
=4
—% > ftto'fttO’gg}tt(l —2,1-7%)
O'=0—
Tttt _
2 OZ‘F fttO’fttO’gO/ (1/27 1/2)
=0
2 _
= Upe +% 01224 fttO’fttO’gO/ (l/za 1/,2) , (025)

*% > fttO’fttO’gg;tt(l/Zv 1/z)
0'=0-
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Sttt Z fttofttogg’“ (2,%)
0=0—

- O/Z+ fttO'fttO’gg3tt(1 - 2,1-%)
=0

r 7 tt, it _
= Tyt +% > fttO/fttO/gO/ (1-2,1-%)
O'=4

+3 X fttO/fttO/gg}tt(l —2,1—-32)
0'=0-

> fttO’fttO’gg;tt(l/za 1/z)
?/:0+ N N tt,tt
= Utttt -2 0/24 fttO’fttO’gd (]—/Za ]-/E) , (026)

—1 S Fuo fuorgt(1/2,1/7)
0'=0-

N[

D=

Tttt —
Sttt Z fttOfttOgo (2,%2)
0=4

> fttO/fttO/ggitt(l —2z,1-7%2)

=Tyu | 700 ~ = it B
+ > fuorfuogo (1—2,1-7%)
0'=0-
52 fuorfuorgyt(1/2,1/7)
=Uu | V750 2 2 ] (C.27)
+3 Y fuorfuorge (1/2,1/7)
0'=0~

and for MFT we have

<tttt> = (7)1 i 02) (U3 ) U4) (Ul : UB) (UQ : ’04) (1)1 . U4) (1)2 . 1}3)
= 2A: 2A 2A: 2A 2A¢, 2A

2 T13 ' Tog TR
('l) ’ UQ) (U3 : U4) (1 + %U,At + %yAtyAt)

1
% (w1w2@3@4 + @1@271)3104) (UAt + yAt@At) . (028)
(

1

= o, 5 | T
T1o T3y +

C.4 Crossing equations and MFT coefficients for mixed operators
Here we list the crossing equations for mixed operators we will use in this paper.

o (ps¢s): we have the crossing equation

S¢sq§s Z f¢sOf¢sOggs’¢s(za Z)

O=1

=Tpsps Y Fosor Fosorgly (1= 2,1 - %)
0'=1

= U¢s¢s Z fssO’fd)d)O’gsos/’d)d)(l/Za 1/2) ) (029)
o'=0+

and for MFT we have
B (1)1‘1)3) B 1 xﬁf_Asx@f’_As AptAs AgtAs
(0505) = SR AT = R, TA. ByTA. AgTA. AgA, (V1 v3)zT T E
L13 Loy Lo L3y L13 L14

(C.30)
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o (ptot): we have the crossing equation

Setet Z fte0 ft¢oggt7¢t (2,2)

0=3
= Tgtet Z ft¢0/ft¢0/g(g’¢t(1 —2z,1-%2)
o'=1
> N f¢¢0’ftt0’gg}¢¢(1/2, 1/7)
= Usror | 7 : (C.31)

+ 3 f¢¢o'ftto'9tot?¢¢(1/»’3, 1/z)
0'=0-

> 7 t,pt,  —
S¢t¢t Z ft¢oft¢ogg v (2’7 Z)

0=1
= Totgt Z Fro Froor gy (1 — 2,1 — 2)
0'=3
S fosor fuorgiy??(1)2,1/%)
I—o+
= Ustar | 7 : (C.32)

— > fesor fttO/ggid’d’(l/z, 1/z)
0'=0-

and for MFT we have,

~ (v1-v3) (v2-114)2 ~ (v1-v3) (Ug-v4)2 xﬁt7A¢$g7A¢ Agptdr  Agtay
(O1Ot) = =K, n, = Byh ApiA AA, AR, 2 °
T13 Togq T19 T3y T13 L14
. . A¢,+At7A¢+At
L ety () 0 ) () 252
AptA: ApgtA; A—Ay A—A Agthy Agta,
1‘12¢ t$34¢ ' 3713t ¢5U14t ’ + (vi-v2) (v3-v4) (V2 v4) 2 E z E
(C.33)
e (t¢sp): we have the crossing equation
S~ s B
Stese Z FfrooFsp098"° (2, %)
0=1
= Tt¢s¢ Z fs¢0’ft¢0’gsodl)7t¢(1 —Z 1- 2)
0'=1
=Uigsp Y, Fooor Frsorg*(1/2,1/7) . (C.34)
0'=2

This correlator vanishes in MFT.

C.5 Crossing equations involving y

Here we summarize the crossing relations we will use involving .
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o (pxdx): we have the crossing equation

Soxex O Joxofox0gg ™ (2,%)

0O=4
= Toxox Z f¢x0’f¢x0/gg>f’¢x(1 —2,1-%)

O'=2

=Upxox Y. Foxo Fooorgs ™ (1/2,1/7)
0'=0+

+ Upyox D Fexor Foovor g5 0 (1/2,1/7) | (C.35)
O'=0—

Sexex O Joxofoxogg ™ (2,%)

0=2
= Toyox Z f¢x0’f¢x0/gg>f ¢X(1 —2,1-7%)

O'=4
=Upxox D Foxo Fooorgs ™ (1/2,1/7)
O'=0+

—Upnox D Froxorfosorgs 0 (1)2,1/7) (C.36)
0'=0~

and for MFT we have

( 1)3) (1)2 1}4)3 xﬁ A¢ A B A¢+AX7A¢J2“AX
<¢X¢X>_ Ag+Ax A¢+Ax Ax Ag Ax Ag

T12 T3y T13 T1q

A¢+AX7A¢+AX

_ 1 el (o) () (0 0) (00 0)) 2T T
T TAGHA, Ag+A, A -Ay; A A Aptix  Ay+iy
vy @y vy Cwy + (1 - vg) (v3-vg) (V2 -vg)?2— 2 2 2

(C.37)

e (pxtt): we have the crossing equation

Sextt Z Foxo Frogh " (2,7
0=4

= Toxue Z ftxO’f¢tO/gO/ (1 —2,1-%)
O'=1

= Ugytt Z ﬁXO/ﬁt0/g§§‘/’¢t(1/Z, 1/z). (C.38)
o0'=1

e (xs¢t): we have the crossing equation
std)t Z fstfqﬁtng()S’(ﬁt(% 2)

0=3

- szd)t Z f(j)sO’fxtO’ggf’Xt(l —Z 1- z)
o'=1

= st¢t Z ﬁsO/ﬁ((bO/glg;Xd)(l/zv 1/2) . (039)

O'=2
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C.6 Crossing matrices

With the above results, taking into account sign factors from f;;z = (—1)€’€ fjir, we can write
down the crossing matrices used in the O(2) model inversion formulas such as eq. (4.4):

1 11
2 22 1 1 01
1 10 22
1 _ 11
01 1-1 222
M¢x¢x:<10>’ M<Z>XX¢:<1 1>’ Mttt — _% % % (C.40)
1 10

To explain the notation we have:

MEP? with  rg, e = {0,07,2},

M with e ={0T,07,2}, r = {1,3},
M?j% with rg, 7 = {1,3},

M?}?tx with  7s, 7 = {2,4},

MPX? with ry={2,4},r, = {07,07},
Mttt with 7g, 7 = {07,07,4}.

Ts,Tt

All the other crossing matrices we need are either related by symmetry or trivial:
MOPSE— MO = MPPIX = MBIIOX = MIXP = MIXD = Mt = M =1, (C.41)

One can notice that the crossing matrices are exactly the same for (ppp¢) and (tttt). In
fact, in the O(2) model for scalar operator Oy with charge ¢ (¢ € Z>1), the corresponding
matrices are always the same for four-point functions of identical operators, in the basis of
charge {07,07,2q} representations and the index-free notation defined above.

D Conformal block expansions in three dimensions

Three-dimensional conformal blocks are relatively inconvenient to perform inversion di-
rectly on. Thus we consider decomposing three-dimensional conformal blocks down to
two-dimensional blocks. In this paper, we will mainly use the following two methods,
which we call the SLy expansion and dimensional reduction.

D.1 SL> expansion

The idea of the SLy expansion is basically the following (see for instance [12]). One can
expand three-dimensional conformal blocks in the small z limit,

ghh Z Z Ay (hh)z h+nkg+]( z). (D.1)

n=0j=—n
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Here, we use r = A12/2, s = A3y/2, h = (A —/)/2 and h = (A + £)/2 to parametrize the
conformal block g. Finally k is the SLg block

ky®(z) = loF (h—r h+s,2h, 2) (D.2)
The coefficient A can be derived from the quadratic Casimir equation
Dagn’(2:2) = Cp 79x°(2,7) , (D.3)
where
Cpp=h(h—=2)+h(h-1),
Z (120 - (1-2)09) |

D, =

D, =2*(1—2)0? — (—r + s+ 1)2%0, +rsz . (D.4)

One can determine the solution iteratively starting from Apo = 1 and performing the
expansion around 0 < z < z < 1. For generic external scalar operators, the formulas for
A don’t have known closed forms. Some examples are:

Ago(h,h) =1,

7,8 7 (E_h)
147 h,h :ii,

11 ) 2h —2h —1

i2 J—
_ _ rs{2h” —2h—h+1

Ay = 2R ( = )—r+h,

' 2 2(h—1)h(2h — 1)

R — h+h—1)(h-=r)h+7r)(h—3s)(h+s

AT = )= r)(h+ )= 5)(+ ) D3)

4R* (27 — 1)(2h + 1)(2h + 2k — 1)

The above coefficients are mostly applied in the context of the correlation function in the
t-channel. For expansions in the Weyl-reflected block, we will instead use

zZ—z\1 hig,hsa =\ = —h+m h12,h34 hi2,h34
< po= )Zg2—h,h (2,2) = Z z Z C, (h,h) s (2). (D.6)

m=0 j=—m

The coefficients C can be derived completely in a similar way. We again list a few examples:

Coo(h,h) =1,

rs o — h+h—3
G ) = s

o —r(s(h—zﬁzmﬁ—z)+(2h—3)(ﬁ—1)ﬁ)+(2h—3)(ﬁ—1)ﬁ(s—h+1)
Crolh,h)=

2(2h—3)(h—1)h ’

o (Br?) (B -s) (=)
Cualhh) == an* (452—1> (2h—2h—3) (B-7)
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D.2 Dimensional reduction

Here we describe an alternative expansion that has been used in [17, 78]. We expand the
three-dimensional conformal block as

9z Z Z A (h Rk ()RS (Z) (D.8)

p=0g=-p
This expansion amounts to reducing a three-dimensional block to a sum of chiral two-
dimensional blocks. One can derive the coefficients A in a very similar way. To simplify
the recursion relations we make use of the inner product formula of the SLo blocks

r,S TS dz 1 —r,—S TS
(Ki1ki22) = §. 3ot i WS (2) = o 09)

where Cj is a contour encircling z = (. Since we now have an orthogonality relation for
the SLo blocks, it is natural to express all the objects produced in the Casimir equation in
terms of them. Specifically, we will use the following expansions:

21 (2 ZW’"S RS (),

h4n+q

A0k (2 ZY” Jrg(2) (D.10)
where
= s (S e )

(=r+h)(s+h)
2h
Zr,s _ 75:1 (_r+h+1)fm+n71(s+h+1)fm+nfl(7q_h_n_Q+1>m(_s_h_n_Q+1>m
an m!C(n—m)(2h+1)_,, ., (—=2(h+n+q—1)),,

YIo(h) =hWhs+ Zgn(h),

m=0
(D.11)
Based on these formulas, one can expand all terms in the quadratic Casimir equation in
terms of the SLo hypergeometrics. Then one can derive a recursion relation by using the
orthogonality property of these functions given above.
We can perform this calculation easily by computer algebra. The first few leading
terms of A are:

Ago(h.h) =1,

- h—h
78 h, h - - -
-1 ) —2h+2h+1"
e — rs ((h—1)h—h2+h)
1’,0(’17 )=— 9 N =

(2n—1)(h—=1)h

(it h=1) (B =2) (B = &2

Vi, h) = ( ) ( ) (D.12)

4R* (2h —1) (2h+1) (2h +2h — 1)
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In [78], a closed-form formula for A was discovered for equal external operators r =
s = 0. While we have not found a closed form expression for A for general r and s, we are
able to use the recursion relation to go to very high orders in this expansion.

D.3 Connections

Those two expansions are connected to each other by the following. Using the defining
sum for the hypergeometric function we have

h +5)5 2P
T,s h B
KS(z2) = 2 § 2h o (D.13)

we can easily derive a relation between A and A,
Ap (hh) = Vs (h)AGS (hy B
p:\QI
APS (h,h) Z Qs (h) A7 (b, h) . (D.14)
n=|q|

The coefficient V is directly related to the Taylor expansion of the dimensional reduction

formula in Z,
(h+p_r)n p(h+p+3)

Vo (h D.15
p(h) = (2h + 2p)p—p(n — p)! ( )
We can also obtain @) by inverting V. We list the first few leading coefficients:
Voo =WVii =Voy =1, 00 =QU1=0Qy5=1,
7,8 (h_ )(h+$) TS (h—T’)(h—l—S)
S _ [ LA S A D.1
VLO 2h ’ 1,0 2 ( 6)

E Some comparisons of computational performance

In this part, we will include comparisons between different methods. This will include a
discussion about different expansions, a discussion about choosing different values of z,
the effect of mixing in the twist Hamiltonian, and a discussion about double-twist sums.

E.1 Comparison using different expansions

Here, we show a typical example of the comparison between two different expansions: the
SLy expansion and dimensional reduction. In figure 21, we compare the predictions for
the leading twist charge 3 operators of even spin using the SLy expansion and dimensional
reduction for fixed zg = 0.1 and inverting isolated operators only. We include both zeroth
and first order and we plot the relative error between the expansions. This analysis shows
that even at very low orders, generically, we expect a very small difference between two
expansions at a small zg. For higher spins, the error is relatively smaller. Computationally,
the SL, expansion is cheaper when performing the inversion formula, since generically
evaluating sF5 is easier than evaluating 4F3. On the other hand, dimensional reduction
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relative error for different expansions

relative error

0.010
0.001
1074+
1073}

1076

10_77 s s s s | s s L L 1 L L L L 1 L L n , g
0 5 10 15 20

Figure 21. A comparison between two different expansions in charge 3 even-spin sector. We

(dimensional reduction results for Tlot

]3)7(SL2 results for T[W]g)

o dh]

(dimensional reduction results for 'r[m]:;) '
‘1o

evaluate the relative error by

captures more information about descendants, so it contains a higher amount of non-
perturbative information and has higher complexity. In most parts of this paper, we will
use the dimensional reduction method.

E.2 Comparison using different values of z

Here we show some examples of how the analytic predictions for anomalous dimensions
depend on the choice of zy. In figures 22 and 23, we computed the relative error between
different values of zq in the charge 0™ and charge 3 even sectors. We expect that zgp = 0.1
is a reasonably good value for all predictions used in this paper, but the question remains
if there is a universal principle to determine the optimal value of z5. We know that there
are large logs when we take zy — 0 while for large zy we have to consider heavier operators
in the s-channel. In general, the optimal choice of zy might be different for different CFTs,
different sectors, and even different spins. In our model, figures 22 and 23 show that the
result is relatively stable against some ranges of zgs, but we think it will be important to
find a general algorithm to determine zj.
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Charge 0" predictions for different zgs
relative error

|
0.100
\ — 20 = D
0.010 =005
10,4 20 = 0.001
107>
10-6L . . . Y
0 5 10 15 20

Figure 22. A comparison between using different values of z in the charge 0% sector. We evaluate

(zo=%# results for T[¢¢]8+ )—(2z0=0.1 results for T[¢¢]8+)

the relative error by (20=0.1 results for 7 o+ )
0

Charge 3 even predictions for different zys
relative error

0.100}
0050/
=05
0010} — =0l
0.005! % =001
2 = 0.001
0001}
5.x 1074}
. ¢

Figure 23. A comparison between using different values of zy in the charge 3 even-spin sector. We
(zo=# results for T[d)t]g)—(zozo.l results for T[d)t]g)

evaluate the relative error by (20=0.1 rosults Tor 7. 3)
= ; (o113

E.3 Effects of the twist Hamiltonian

In this section, we will show that using the twist Hamiltonian is important for obtaining
accurate results in certain sectors. In figures 24 and 25, we show the effects of including
or not including mixing in the charge 1 sector. Specifically, we compare the results when
we diagonalize the twist Hamiltonian with the results when we ignore mixing by just
studying the diagonal elements of Mj(z, h). This results show clearly that it is important
to resolve the mixing effects, particularly at low spins, and therefore one should use the
twist Hamiltonian approach.
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Mixing: Charge 1 and Even Spin

-
2'2; \i\‘\+\i+

I : * . . o — Without Mixing
2.0+ With Mixing

I o Numerical
1.8]

. . . - . . 0 . °
1.6/ t
S T/ S T-E—

Figure 24. A comparison between using or not using the twist Hamiltonian for the leading trajec-
tories in the charge 1 even-spin sector.

Mixing: Charge 1 and Odd Spin

~
20,

1.9

—— Without Mixing
With Mixing

1.8}

. I’ . e Numerical

1.7¢ "

16[ }

s R e

Figure 25. A comparison between using or not using the twist Hamiltonian for the leading trajec-
tories in the charge 1 odd-spin sector.

E.4 DTI versus non-DTI

In this section we compare the results that include or exclude the infinite sum of double-
twist operators, see figures 26, 27, 28, 29, 30, 31, 32, 33 and 34. We see that the inclusion
of double-twist operators typically yields very small effects for the OPE coefficients, but in
some cases can improve the accuracy for the spectrum. This can be seen most clearly for
the charge 3 odd-spin operators, see the lower curve of figure 26 and the charge 1 even-spin
operators, see figures 29 and 30.
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Tiot)o(£) - Charge 3

-
1.9t
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— With Double-Twists
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1.6
L S S S RS S B
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Figure 26. The effects of DTIs for leading double twists in the charge 3 [¢t]3 sector. The top
curve corresponds to even spin and the lower curve corresponds to odd spin.

Totion/ MET . Charge 3 and Even Spin

otleto

f
14
— Isolated
1.2
) ) T —a ¢ With Double-Twists
0 l 5 10 15 20 ¢ Numerical
1.0
0.8]
0.6

Figure 27. The effects of DTIs for OPEs of leading double twists in the charge 3 [¢t]3 even-spin
sector.

F Conformal block conventions

Here we give a summary of the conventions related to conformal block expansions that we
will use in this paper.

One can consider the three-dimensional conformal block in the following limit,

A12,A34¢0, =\ -2 ztz
AP (e) o Naren) P oer (32 (F.1)

where we take the dimension d = 3. Here Geg,(z) is the Gegenbauer polynomial. Now in
d = 3 we have

Gegy(z) = Pu(x) (F.2)
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Figure 28. The effects of DTIs for OPEs of leading double twists in the charge 3 [¢t]3 odd-spin
sector.

Tigtp(€) - Charge 1 and Even Spin

r
1.75¢
170}

[ — Isolated

[ — With Double-Twists
1.65¢-

[ o Numerical
1.601

[ | | | . | [

5 10 15 20

Figure 29. The effects of DTIs for low-lying double twists in the charge 1 [¢t]} even-spin sector.

where P is the Legendre polynomial. The definition of the coefficient N will fix the nor-
malization of the conformal blocks. Different convention choices are summarized in table
1 of [2].

In the analytic computations of this paper, we will use the convention in [12]. The
definition of conformal blocks in [12] demands the behavior z"z" in the limit 0 < z < 7 < 1,
which fixes the coefficient N to be

Nlightcone: 14 _ e'F(l/?)
=T R), T2+

(F.3)

In the numerical computations we have performed, we used a different convention. The
convention of our code follows the convention of the Mathematica code published in [79],
which uses the following convention for A. Let us consider the coordinates for the radial
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Figure 30. The effects of DTIs for low-lying double twists in the charge 1 odd-spin sector.
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Figure 31. The effects of DTIs for OPEs of different low-lying double twists in the charge 1 [¢s]}
even-spin sector.

expansion

4 .
- p= P p=re?, cosf =n, (F.4)

T VIoae 1+p2

for z and similarly for Z. One can then expand

gﬁ};’AS“ (u,v) =72 3 r' Z w(m, j) Geg,;(n) - (F.5)
m=0 j
In the small 2z limit, we take p = iz, so we get
ga )~ Nae(4r)® Gegy(n) (F.6)
which matches the behavior defined by N as
w(0,£) = N3 4% . (F.7)

— 64 —



f(s(s[¢s]0/f£I.FT : Odd Spin

s(oso

11f

— Isolated

h

— With Double-Twists

¢ Numerical

15 20

0.7}

0.6

Figure 32. The effects of DTIs for OPEs of different low-lying double twists in the charge 1 [¢s]}
odd-spin sector.

Totroto/ f;}tl[};?]o . Charge 1 and Even Spin

f
0.95}
0.90i — Isolated

i — With Double-Twists
0.85} » Numerical

0.80

i e SN U

Figure 33. The effects of DTIs for OPEs of different low-lying double twists in the charge 1 [¢t]}
even-spin sector.

The Mathematica code uses the convention

w(0,0) =1 (F.8)
and hence
0!
code 44 F.

It is then different from the lightcone convention [12] by the factor

NEE™  (-1)'ar(1/2)4
N5 L(1/2+0)

(F.10)
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Figure 34. The effects of DTIs for OPEs of different low-lying double twists in the charge 1 [¢t]}
odd-spin sector.

G Technical details about SL, sums

Here we briefly summarize some SLy sums which are used in the inversion formula. These
are a generalization of the sum given in (3.22) and were derived in [12].

G.1 Asymptotic form for

From (3.20) we see all the non-trivial A dependence comes from the function §2. To compare
with previous results in the lightcone bootstrap, we then need the large h expansion of this
function. We find that the relation is:

[o.¢]
1234 1234 hi2,h:
H2h5Qh5,h6,h2+h3 ~ Z 7756 (m)Shﬁlz—hiZL—hg,—'-m (h‘5) ) (Gl)
m=0

where

1234(m) _ <_1)mr (2h6>
"ls6 2mIT (2hg +m) T (—hy + ha + he) T (hg — hs + he)
F(—hl +h4+h6+m)1“(h2 —h3+h6+m)

sin (7T (hl + hg — hG)) sin <7T (hg + hg — hﬁ)) ’
vy L'h—r)I'(h—s)'(h—a—1)
™M) = S T Ca— T @h— Tt at 1) (G3)

In all cases, we will only need the m = 0 term.

G.2 General SL; sums

Here we will summarize some of the SL9 sums used to calculate the contributions of double-
twist operators. For more details on their derivation see [12].
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For general correlation functions of external scalars, (¢1¢2¢3¢4) we have:

> STk = 2) =y + Y (CriBar-ko1(h)y T+ (s 1))
h=ho+¢ k=0

T [(—a)? T(k+1—r)?

Car = sin(m(s — 7)) (—a—r)I'(—a—s)T(k+1+s—r)k!’ (G-4)

z
1—2"

where y = By taking the limit s — r and » — 0 we recover the sum given in (3.22).
To perform sums involving ll_])r% ['(—€)%2S.(h) when r = s = 7 or 21_1}(1] I'(—€)Se(h) for non-zero
r and s we first perform the sum and then take e — 0. This will produce log(z) terms
which correspond to expanding z"*%" in §h.

We also need to consider sums where the signs are alternating:

e}

N (1SR TR (L2 = <J;:28;r_k_1(ho)yk_r +(s e r)) . (G.5)
h=ho+£ k=0
¢=0,1,...
[(—a)’T(k —r+1)?
e al(~a)?T(k — 7 + 1) o)

* o sin(w(s — )Tk + 1) (—a—7r)T(—a—s)I'k—r+s+1)’

K
B;’b(h(]) = Zta,b(k)857+b+k+1ﬁ1(h0)
k=0
K
S (-1 - 2n) (Tam)Tb(h) - Zta,b<k>Ta+b+k+1<h>> . @)
k=0

B, _1(ho) = —(ho + a)Ta(ho) - (G.8)

To compute B, ,(ho) for general a and b we take K > —a—b—>5/2 so the sum over £ in (G.7)
converges and can be computed numerically. To perform sums that involve operators of
only even or odd spin we add or subtract the sums (G.4) and (G.5).
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