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1 Introduction

Permanent electric dipole moments (EDMs) of non-degenerate systems break the symme-

tries of parity (P ) and time reversal (T ), and consequently, in Lorentz-invariant theories,

the combination of charge conjugation and parity (CP ). While C and P are separately

maximally broken in the Standard Model (SM) of particle physics by the weak interac-

tion, CP is broken in a much more subtle fashion: in the SM with three generations of

quarks, CP is broken by the phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-

mixing matrix and the QCD θ term. So far, CP violation has been observed in kaon [1–3],

D-meson [4], and B-meson [5, 6] decays, and it is compatible with the CKM mechanism. On

the other hand, SM CP violation is insufficient to explain the observed matter-antimatter

asymmetry in the universe [7, 8]. EDMs of the nucleon, light nuclei, diamagnetic and

paramagnetic atoms, and molecules offer an important window into non-SM CP violation,

by combining extremely high experimental sensitivies with unobservably small CKM back-

grounds, see [9] for a review. Currently, the strongest bounds are those on the electron

EDM, |de| < 1.1×10−16 e fm (at the 90% confidence level), inferred from experiments with

the ThO and HfF molecules [10–12], on the neutron EDM, |dn| < 1.8 × 10−13 e fm [13–

15], and on the EDM of the 199Hg atom, |dHg| < 7.4 × 10−17 e fm [16]. In all three

cases, the CKM background is several orders of magnitude smaller than current and future

sensitivies [17–22]. The present generation of EDM experiments is already putting severe

constraints on models of physics beyond the SM and on electroweak baryogenesis scenarios.

These constraints will become even more stringent in the next generation of experiments,

which aims at improving the electron and neutron EDM sensitivities by one or two orders

of magnitude, respectively, and the 225Ra EDM sensitivity by four orders of magnitude [23].

In addition, forthcoming experiments will for the first time investigate the EDMs of the

proton and light ions [24, 25] and the EDMs of unstable particles, like the τ , Λ, and the

Λc,s baryons [26, 27].

While the observation of a non-zero EDM in any of these experiments will be a clear

indication of new physics, connecting a nuclear or atomic EDM with the fundamental,

high-energy mechanism of CP violation requires gaining control over hadronic and nuclear

uncertainties. At the quark level, flavor-diagonal CP violation can be model-independently

described by extending the SM Lagrangian with gauge-invariant higher-dimensional opera-

tors to an effective field theory (SMEFT) [28, 29], which parametrizes the indirect effects of

physics at scales Λ� v, where v = 246 GeV is the Higgs vacuum expectation value. Heavy
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SM degrees of freedom can then be integrated out by matching the SMEFT Lagrangian

onto an SU(3)c × U(1)em-invariant low-energy effective field theory (LEFT) [30, 31]. The

complete one-loop matching was carried out recently in [32]. At the hadronic scale, the

LEFT Lagrangian includes the dimension-four QCD θ̄ term, the dimension-five electric

and chromo-electric dipole moments (CEDMs) of the u, d, and s quarks (which arise from

dimension-six SMEFT operators at the electroweak scale), and, at dimension six, the CP -

odd three-gluon operator and several four-quark operators. The quark-level operators in-

duce CP -violating hadronic interactions, such as the EDMs of the neutron and proton and

CP -violating pion-nucleon and nucleon-nucleon couplings, which then feed into the calcula-

tions of the EDM and Schiff moments of light and heavy nuclei. As QCD is nonperturbative

at the hadronic scale, the hadronic matrix elements required to match the quark-level and

hadronic/nuclear EFTs need to be evaluated via nonperturbative methods. In particular,

lattice QCD (LQCD) has emerged as a powerful tool to compute hadronic matrix elements,

in which all sources of systematic uncertainty can be quantified, controlled, and improved.

This has led to the first LQCD calculations of the nucleon EDM from the u- and d-quark

EDMs [33], with few-percent uncertainties, and to the first estimates of the nucleon EDM

induced by the QCD θ̄ term [34–41] and by the quark CEDM [42, 43]. These estimates,

though preliminary and still affected by large uncertainties, promise to deliver controlled

EDM calculations for the next generation of experiments.

An important issue to be addressed in the interpretation of LQCD results is the mixing

between different CP -violating operators. The lattice spacing in LQCD effectively works

as a gauge-invariant cut-off, causing mixing between operators of different dimension, in

addition to the familiar logarithmic mixing of dimensional regularization. To unambigously

identify the effects of various LEFT operators, it is then necessary to define a renormaliza-

tion scheme. This scheme needs to be interfaced with the MS scheme, which is employed

for the calculation of the operator mixing and running between the weak and the hadronic

scale in the LEFT [31] and above the weak scale in the SMEFT [44–46]. Such a matching

calculation has been performed in [47] for the dimension-five quark CEDM operator. In

this paper we focus on the CP -odd three-gluon operator [28, 48]1

O(6)
1 = igTr[GµνG

µ
λG̃

νλ] , (1.1)

where Gµν is the gluon field strength, the trace is taken in color space, and G̃µν =

εµναβGαβ/2 is the dual field-strength tensor. The three-gluon operator induces a non-

zero gluon chromo-electric dipole moment (gCEDM), and we will thus also denote O(6)
1

by gCEDM. The perturbative renormalization of the gCEDM has been calculated at one

loop in [49–51]. The anomalous dimension has recently been calculated to two and three

loops in [52]. A first study of the renormalization of O(6)
1 using the gradient flow has been

presented in [53, 54]. In this work we define the three-gluon operator in a regularization-

independent (RI) momentum-subtraction (MOM) scheme, construct the complete basis of

gauge-invariant and nuisance operators needed to carry out the nonperturbative renormal-

1In the literature, this operator is often called “Weinberg operator” in attribution to [48], although it

was already listed as part of the general set of gauge-invariant dimension-six operators in [28].
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ization, and calculate the matching between the MS scheme and the momentum-subtraction

scheme at one loop.

The paper is organized as follows. In section 2, we discuss mixing and different types

of operators that need to be taken into account in our scheme. In section 3, we discuss the

construction of the operators and present the resulting basis of operators that mix with the

gCEDM. In section 4, we define a regularization-independent renormalization scheme and

in section 5 we present the results for the matching between the RI and the MS scheme at

one loop, before we conclude in section 6. More details on the operator basis construction

are provided in the appendices.

2 Operator mixing

In this paper we define the CP -odd three-gluon operator (1.1) in a regularization-

independent momentum-subtraction scheme [55]. In this scheme, the renormalization

conditions are imposed on quark, gluon, and photon Green’s functions, computed in a

fixed gauge, with off-shell external states of large space-like virtualities. The renormalized

operators ORI
j thus defined are independent of the ultraviolet regulator, and, since the

renormalization conditions can be implemented both on the lattice and in perturbation

theory, one can convert them into the MS scheme

OMS
i = CijORI

j , (2.1)

with matching coefficients Cij computed in perturbation theory. The implementation

of the RI-MOM schemes requires working off-shell in a fixed gauge. In this case a

given gauge-invariant operator mixes with two classes of operators of the same or lower

dimension [56–60]:

I. gauge-invariant and ghost-free operators that do not vanish by equations of motion

(EOM) and have the same properties as O(6)
1 under Lorentz, chiral, and discrete

symmetries (C, P , and CP ),

II. “nuisance” operators, which we denote by N . These operators are allowed by the

solution of the Ward identities associated with BRST invariance. They do not need to

be gauge invariant, they vanish by the EOM and can be constructed as off-shell BRST

variations of operators with ghost number −1, with otherwise the same properties

as O(6)
1 .

We will discuss the construction of operators in class I and II in section 3, where we will

further divide the operators in class II into

IIa. gauge-invariant operators that vanish by EOM,

IIb. gauge-variant operators.

The mixing with gauge-variant operators (class IIb) can be avoided by working in

background-field gauge [61].

– 3 –
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In lattice calculations, the traditional RI-MOM scheme [55] suffers from unwanted in-

frared effects, which can be suppressed by choosing subtraction points with non-exceptional

kinematics as in the RI-SMOM prescription [62, 63]. In our scheme, we will impose the

renormalization conditions at non-exceptional but asymmetric kinematic points (dubbed

RI-S̃MOM scheme in [47]). As the scheme involves momentum insertion into the operator,

we also need to take into account mixing with operators that are total derivatives.

We now establish the conventions used throughout the paper. If we consider only

single-operator insertions, the relation between bare and renormalized operators in any

scheme is linear:

O(0)
i = ZijOj , (2.2)

where the superscript (0) denotes bare operators. By general consideration, it can be proved

that the renormalization matrix has triangular structure [56–60](
O(0)

N (0)

)
=

(
ZO ZON
0 ZN

) (
O
N

)
. (2.3)

The matching coefficients for the translation between the MS and RI-MOM schemes are

therefore given by

Cij =
(
ZMS

)−1

ik
ZRI
kj . (2.4)

In this paper we consider the matching at one-loop, where (2.4) simplifies to

Zij = 1ij + ∆ij , Cij = 1ij −∆MS
ij + ∆RI

ij . (2.5)

Since the matrix elements of nuisance operators vanish between physical states [59, 60],

when computing hadronic matrix elements we can neglect nuisance operators. In particular,

the contribution to the neutron EDM will be extracted from

〈N |OMS
i |γ∗N〉 =

(
1ij −∆MS

ij + ∆RI
ij

)
〈N |ORI

j |γ∗N〉 , (2.6)

where the operator OMS
i arises from the insertion of the effective Lagrangian, which car-

ries no external momentum. Hence, in (2.6) the summed index j only runs over gauge-

invariant, physical operators that are not total derivatives. Note, however, that in order

to determine the factors ∆ij in (2.6), either perturbatively or nonperturbatively, and in

particular the renormalized operators ORI
j , one is forced to also determine the mixing with

nuisance operators.

We need to calculate the mixing matrices in the two schemes, which can be obtained

by considering the insertions of bare operators into amputated n-point Green’s functions:

〈ψ(0)
1 . . . ψ(0)

n O
(0)
i 〉

amp = Z
−n/2
ψ Zij〈ψ1 . . . ψnOj〉amp , (2.7)

where ψ denotes a generic field and
√
Zψ its field-renormalization factor.

– 4 –
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3 Construction of the operator basis

The dimension-four QCD Lagrangian is given by

LQCD = q̄(iγµDµ −M)q − 1

4
Gµνa Gaµν − θ̄QCD

g2

32π2
Gµνa G̃aµν , (3.1)

where the quark field includes the three light quarks, q := (u, d, s)T . We define quark-mass

and charge matrices as

M = diag(mu,md,ms) , Q = diag

(
2

3
,−1

3
,−1

3

)
. (3.2)

In the LEFT, the Lagrangian (3.1) is supplemented with QED as well as a tower of effective

operators [30]. Here, we will be interested in the extraction of the neutron EDM from the

matrix element (2.6) with the insertion of the dimension-six three-gluon operator (1.1).

We consider the matrix element at O(e) and we will neglect higher-order QED corrections.

This allows us to disregard the photon kinetic term and instead treat the photon field as

an external source [64, 65]. In this case, the covariant derivative is given by

Dµ = ∂µ − igtaGaµ − ivµ − iγ5aµ = ∂µ − igtaGaµ − ilµPL − irµPR (3.3)

where ta = λa/2 and λa are the Gell-Mann matrices in color space, and vµ, aµ, lµ, and rµ
are traceless, Hermitian 3 × 3 matrices in flavor space, fulfilling

lµ = vµ − aµ , rµ = vµ + aµ (3.4)

and taking the physical values

lµ = rµ = vµ = eQAµ , aµ = 0 . (3.5)

In the following, we will construct the basis of operators that are needed to renormalize

the CP -odd three-gluon operator. The symmetries of the Lagrangian strongly constrain the

possible mixings. Neglecting the QCD θ̄ term, the leading-order Lagrangian is P - and CP -

even, implying that we only need to consider CP -odd operators as possible counterterms

to the three-gluon operator. In addition, in the limit M→ 0 and eQ→ 0, the Lagrangian

has an SU(3)L × SU(3)R chiral symmetry, i.e., it is invariant under the transformation

qL,R → UL,R qL,R , UL,R ∈ SU(3)L,R , (3.6)

where qL,R = PL,Rq and the chiral projectors are PL = (1 − γ5)/2, PR = (1 + γ5)/2.

While chiral symmetry is broken by quark masses and charges, one can formally recover

chiral invariance by assigning spurion transformation properties to the mass matrix and

external fields. Since the three-gluon operator is chirally invariant, it can mix only with

operators that are chirally invariant in the spurion sense. Chiral symmetry applies to the

continuum theory. If the lattice regularization breaks chiral symmetry, additional spurions

are present in the effective Lagrangian, which can induce more mixings of the three-gluon

– 5 –
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operator. We will restrict our analysis to the case where chiral symmetry is preserved by

the lattice regulator.

In section 3.1, we briefly describe the construction of the relevant set of gauge-invariant

class-I operators, while in section 3.2 we explain how we construct the class-II nuisance

operators. More details on the construction of the operator basis are provided in ap-

pendix A and B. In section 3.3, we present the complete basis of operators that are needed

to renormalize the gCEDM. Based on general considerations, we discuss the structure of

the mixing matrix in section 3.4.

3.1 Gauge-invariant operators

We construct the basis of operators up to dimension six that renormalize the CP -odd

three-gluon operator. The dynamical degrees of freedom that we need to consider are the

gluon field and quark fields.

In order to implement the constraints of chiral symmetry, we rewrite the non-gauge

part of the leading-order Lagrangian as

L =
i

2
q̄L
←→
/D qL +

i

2
q̄R
←→
/D qR − q̄LMqR − q̄RM†qL , (3.7)

where
←→
/D := /D −

←−
/D , and /D := γµDµ,

←−
/D := γµ

←−
Dµ. The left-acting covariant derivative is

←−
Dµ =

←−
∂ µ + igtaGaµ + ilµPL + irµPR . (3.8)

The mass matrix is promoted to a spurion field and the transformations

M χ7→ ULMU †R , M† χ7→ URM†U †L ,

lµ
χ7→ ULlµU

†
L + iUL∂µU

†
L , rµ

χ7→ URrµU
†
R + iUR∂µU

†
R (3.9)

formally make the leading-order Lagrangian invariant under chiral transformations. The

field-strength tensors associated with the external fields are

FLµν := ∂µlν − ∂ν lµ − i[lµ, lν ] , FRµν := ∂µrν − ∂νrµ − i[rµ, rν ] , (3.10)

with the physical values

FL,Rµν = eQFµν , Fµν = ∂µAν − ∂νAµ . (3.11)

Since we are interested only in effects of O(e), we will consistently restrict the basis to

operators that are at most linear in the external photon field. Gauge-invariant operators

will be expressed in terms of covariant derivatives, the external field-strength tensors, the

gluon field-strength tensor

Gaµν = ∂µG
a
ν − ∂νGaµ + gfabcGbµG

c
ν , (3.12)

and the dual field strengths

G̃aµν =
1

2
εµνλσGaλσ , F̃µνL,R =

1

2
εµνλσFL,Rλσ , (3.13)

with ε0123 = +1.

– 6 –
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The commutator of the covariant derivative is related to the field-strength tensors by

[Dµ, Dν ] = −igGµν − iFLµνPL − iFRµνPR , Gµν = taGaµν . (3.14)

The covariant derivative in the adjoint representation is defined by

Dµ(·) = ∂µ(·)− ig[Gµ, · ]− i[lµ, · ]PL − i[rµ, · ]PR , (3.15)

i.e., the covariant derivatives of the field-strength tensors are

DρF
L
µν = (∂ρF

L
µν − i[lρ, FLµν ]) , DρF

R
µν = (∂ρF

R
µν − i[rρ, FRµν ]) ,

DρGµν = ∂ρGµν − ig[Gρ, Gµν ] , or (DρGµν)a = ∂ρG
a
µν + gfabcGbρG

c
µν . (3.16)

We use the same symbol Dµ for the covariant derivative in different representations. Note

that the covariant derivative fulfills the Jacobi identity

[Dµ, [Dν , Dλ]] + [Dλ, [Dµ, Dν ]] + [Dν , [Dλ, Dµ]] = 0 (3.17)

as well as the Leibniz rule

Dµ(AB) = (DµA)B +A(DµB) , (3.18)

where each Dµ denotes the proper covariant derivative belonging to the representation of

the object that it acts upon. The Jacobi identity and Leibniz rule imply the Bianchi identity

(Dµ[Dν , Dλ]) + (Dλ[Dµ, Dν ]) + (Dν [Dλ, Dµ])

= −ig (DµGνλ +DλGµν +DνGλµ)

− i
(
DµF

L
νλ +DλF

L
µν +DνF

L
λµ

)
PL

− i
(
DµF

R
νλ +DλF

R
µν +DνF

R
λµ

)
PR = 0 . (3.19)

All three brackets have to vanish separately. By contracting the Bianchi identity with the

Levi-Civita tensor, one obtains

DµG̃
µν = 0 , DµF̃

µν
L = 0 , DµF̃

µν
R = 0 . (3.20)

These identities play an important role in identifying the minimal set of operators that

mix with the three-gluon operator.

The gauge-invariant operators mixing with the gCEDM are obtained by constructing

an exhaustive list of operators that are Lorentz scalars, chirally invariant, P -odd, and

CP -odd, using as building blocks the fields and spurions

q̄L,R , qL,R , Gµν , FL,Rµν , Dµ , M , M† , (3.21)

and subsequently removing all redundancies. Details on this construction are given in

appendix A. The counting of operators can be automatized using Hilbert series tech-

niques [66–70]. We use these methods as a cross-check to count the number of operators

that are invariant under the Lorentz group (which is isomorphic to SU(2)L × SU(2)R),

global SU(3)c × U(1)em, and the chiral group χ = SU(3)L × SU(3)R. From the complete

list including total derivatives and EOM operators, we select the operators that are P -odd

and CP -odd.

– 7 –
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3.2 Nuisance operators

Because of gauge fixing and the peculiar nature of BRST symmetry, by which BRST

variations of elementary fields are composite operators, gauge-invariant operators can mix

with non-invariant operators [56–60]. The form of the operators is dictated by the Ward-

Slavnov-Taylor identities associated with BRST symmetry, and we follow here the con-

struction of [59].

The construction relies on the fact that the nuisance operators can be written as

BRST variations of “seed operators” with ghost number −1. The seed operators need not

be gauge invariant. Their building blocks consist of the dynamical fields, the ghost fields,

the spurions, as well as external sources for the fields, which are set to zero after applying

the BRST variation. Details on the derivation are given in appendix B. The construction

provides us with a list of nuisance operators of both classes IIa and IIb. The class-IIa

operators (gauge-invariant operators that vanish by the EOM) are linear combinations of

gauge-invariant operators constructed in section 3.1.2 They can be presented in a compact

form by introducing the fields

qE := (i /D −M)q , q̄E = −q̄(i
←−
/D +M) . (3.22)

The complete list of operators is provided in section 3.3.

3.3 Operator basis

The final matrix element (2.6) that is needed to extract the neutron EDM contains an

external photon state. The photon is allowed to couple either to the electromagnetic

current or directly to an effective operator. As we are working at leading order in the QED

coupling, we disregard operators containing more than one photon field.

In a cut-off scheme, the gCEDM mixes with CP -odd operators of dimension six or

lower. There are no CP -odd, chirally invariant operators with dimension smaller than four.

In the following, we present the complete basis of operators that renormalize the

gCEDM operator at leading order in the QED coupling. In order to make the operators

manifestly Hermitian in D dimensions, we introduce the following symbols:3

γ̃µ :=
i

3!
εαβγµγαγβγγ =

1

2
[γµ, γ5] = PLγ

µPR − PRγµPL ,

σ̃µν :=
i

2
εµναβσαβ . (3.23)

Dimension four. At dimension four, we have two physical and one nuisance operator:

O(4)
1 = Tr[GµνG̃

µν ] ,

O(4)
2 = ∂µ(q̄γ̃µq) ,

N (4)
1 = i(q̄Eγ5q + q̄γ5qE) . (3.24)

The operator O(4)
1 is the QCD θ̄ term, the operator O(4)

2 is a total derivative and contributes

due to momentum insertion. The nuisance operator belongs to class IIa.

2These operators correspond to the EOM redundancies that are usually removed from the set of operators

in the construction of EFT Lagrangians through field redefinitions.
3The definition of σ̃µν differs from the one in [47] by an evanescent term.

– 8 –
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Dimension five. At dimension five, there is a single chiral invariant operator:

O(5)
1 = εijkεlmnMmjMnkq̄

iiγ5q
l . (3.25)

For a diagonal mass matrix, the following relation holds [71, 72]:

O(5)
1 = 2 det(M)q̄iγ5M−1q . (3.26)

Dimension six. At dimension six, we find the following operator basis:

O(6)
1 = igTr[GµνG

µ
λG̃

νλ] ,

O(6)
2 = ig(q̄σ̃µνMtaq)Gaµν ,

O(6)
3 = ie(q̄σ̃µνMQq)Fµν ,

O(6)
4 = Tr[M2]Tr[GµνG̃

µν ] ,

O(6)
5 = ∂νTr[(DµGµλ)G̃νλ] ,

O(6)
6 = ∂µ

(
q̄γ̃µM2q

)
− 1

Nf
O(6)

7 ,

O(6)
7 = Tr[M2]∂µ (q̄γ̃µq) ,

O(6)
8 = e∂µ

(
q̄γνQqF̃

µν
)
,

O(6)
9 = �Tr[GµνG̃

µν ] ,

O(6)
10 = �∂µ(q̄γ̃µq) , (3.27)

where Nf = 3 is the number of quark flavors. The basis in (3.27) contains the gCEDM

and three additional purely gluonic operators, O(6)
4 , a mass correction to the QCD θ̄ term,

and O(6)
5,9, which are total derivatives. O(6)

2 and O(6)
3 are the quark CEDM and EDM, re-

spectively. Due to the different chiral properties, the gCEDM can mix into them only via

insertions of M and MQ. O(6)
6,7,10 are derivatives of the axial current, with the appropri-

ate number of mass insertions required for chiral invariance. An important result of our

construction is that there are no SU(3) chirally invariant, CP -odd four-quark operators.

In addition to the physical operators, we find a set of 20 nuisance operators at dimen-

sion six. There are 10 gauge-invariant operators that vanish by EOM (class IIa):

N (6)
1 = ig(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)Gaµν ,

N (6)
2 = ie(q̄E σ̃

µνQq + q̄σ̃µνQqE)Fµν ,

N (6)
3 = (q̄EMγ̃µDµq + q̄

←−
Dµγ̃

µMqE) ,

N (6)
4 = i

(
q̄EM2γ5q + q̄M2γ5qE

)
− 1

Nf
N (6)

5 ,
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N (6)
5 = Tr[M2]i(q̄Eγ5q + q̄γ5qE) ,

N (6)
6 = i∂µ

(
q̄Eγ5D

µq + q̄
←−
Dµγ5qE

)
,

N (6)
7 = ∂µ(q̄E σ̃

µνDνq − q̄
←−
Dν σ̃

µνqE) ,

N (6)
8 = ∂λ

(
Gaµν

(
DρGaρσ + gq̄taγσq

))
εµνλσ ,

N (6)
9 = ∂µ

(
q̄EMγ̃µq + q̄Mγ̃µqE

)
,

N (6)
10 = i�

(
q̄Eγ5q + q̄γ5qE

)
. (3.28)

Finally, we find another 10 gauge-variant operators (class IIb):

N (6)
11 = Gaµν

(
∂λ

(
DρGaρσ + gq̄taγσq − gfabc(∂σ c̄b)cc

))
εµνλσ ,

N (6)
12 = ig2(q̄Eγ5q + q̄γ5qE)GaµG

µ
a ,

N (6)
13 = ig2(q̄Eγ5t

aq + q̄γ5t
aqE)GbµG

µ
c d

abc ,

N (6)
14 = g(q̄Eγ5t

aq − q̄γ5t
aqE)∂µG

µ
a ,

N (6)
15 = g(q̄Eγ5t

aDµq − q̄
←−
Dµγ5t

aqE)Gµa ,

N (6)
16 = ig(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)∂µG
a
ν ,

N (6)
17 = ig(q̄EMγ̃µt

aq − q̄Mγ̃µt
aqE)Gµa ,

N (6)
18 = ∂λ

(
(∂µG

a
ν)
(
DρGaρσ + gq̄taγσq − gfabc(∂σ c̄b)cc

))
εµνλσ ,

N (6)
19 = ∂µ

(
g(q̄Eγ5t

aq − q̄γ5t
aqE)Gµa

)
,

N (6)
20 = i∂µ

(
g(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)Gaν

)
. (3.29)

The operators that are written in terms of the EOM quark fields q̄E and qE obviously

vanish by the quark EOM. A subtlety arises in connection with the operators involving

pure gauge-field terms: N (6)
8 vanishes by the “naive” classical EOM, i.e., by the EOM

without gauge-fixing and ghost terms. On the other hand, the class-IIb operators N (6)
11

and N (6)
18 vanish by the full EOM including ghost (and auxiliary-field) terms. Nevertheless,

neither class-IIa nor class-IIb operators contribute to physical matrix elements [57, 59, 60],

as all of them are given by BRST variations. In particular, the class-IIa operator can be

obtained as the BRST variation of a seed operator with ghost number −1,

N (6)
8 = Ŵ

[
∂λ(Gaµν Ĵ

a
σ)εµνλσ

]
, (3.30)

where the BRST operator Ŵ is defined in (B.29) and given explicitly in (B.32), and where

Ĵaσ is the source for a composite BRST variation, see appendix B.5. The seed operator

in (3.30) is a linear combination of the seed operators (B.42).
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As discussed in [73], the difference between an operator that vanishes by the naive

classical EOM (i.e., the EOM without ghost and gauge-fixing terms) and the corresponding

operator vanishing by the full classical EOM is again a BRST variation. Therefore, this

difference is a class-IIb operator that does not affect physical matrix elements. In the case

of N (6)
8 , this difference would be given by the BRST variation

Ŵ
[
∂λ(Gaµν∂σ c̄

a)εµνλσ
]
. (3.31)

The fact that this term does not appear in our basis is due to the ghost quantum

EOM (B.23), which is a constraint on the effective action beyond the classical level, see

appendix B.2.

3.4 Mixing structure

In table 1, we give the structure of the mixing matrix at leading order in the QED coupling.

The structure is determined according to the following rules.

1. Dimensional argument: operators only mix into operators of the same or lower mass

dimension.

2. Operators containing the mass matrix only mix into operators with at least the same

power of the mass matrix.

3. Total derivative operators only mix into operators with at least the same structure

of total derivatives.

4. Nuisance operators do not mix into class-I operators [56–60].4

5. At leading order in the QED coupling, photon operators only mix into photon oper-

ators.

Due to the choice of the operator basis, the second rule involves a subtlety: because

of (3.22), operators proportional to the mass matrix can be obtained from linear combina-

tions of EOM operators with class-I operators without mass matrices. E.g., the relations

2q̄iγ5Mq = O(4)
2 −N

(4)
1 ,

2� (q̄iγ5Mq) = O(6)
10 −N

(6)
10 , (3.32)

imply that the qCEDM operator O(6)
2 , which contains a mass matrix, mixes into O(4)

2 −N
(4)
1

and O(6)
10 −N

(6)
10 .

A mixing of gauge-variant nuisance operators (class-IIb) into gauge-invariant nuisance

operators that vanish by the EOM (class-IIa) is not excluded. Note that in the MS scheme,

mixing only happens between operators of the same dimension, because mass insertions

are explicitly treated as part of the operators.

4This holds for regularization schemes where the path-integral measure is invariant under chiral rotations

and the anomaly is due to evanescent terms, such as dimensional regularization or Wilson fermions on the

lattice. In schemes where the Jacobian of chiral rotations is not unity, an additional finite renormalization

and potentially the subtraction of power-divergent terms are required, see [74].
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O(6)
1 O(6)

2 O(6)
3 O(6)

4 O(6)
5 O(6)

6 O(6)
7 O(6)

8 O(6)
9 O(6)

10 N (6)
1 N (6)

2 N (6)
3 N (6)

4 N (6)
5 N (6)

6 N (6)
7 N (6)

8 N (6)
9 N (6)

10 N (6)
11 N

(6)
12 N

(6)
13 N

(6)
14 N

(6)
15 N

(6)
16 N

(6)
17 N

(6)
18 N

(6)
19 N

(6)
20 O(5)

1 O(4)
1 O(4)

2 N (4)
1

O(6)
1 × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

O(6)
2 × × × × × × × × × × × × × × ×

O(6)
3 ×

O(6)
4 × × ×

O(6)
5 × × × × × × × × × × × × × × ×

O(6)
6 ×

O(6)
7 ×

O(6)
8 ×

O(6)
9 × × ×

O(6)
10 ×

N (6)
1 × × × × × × × × × × × × × × × × × × × × ×

N (6)
2 ×

N (6)
3 × × × × ×

N (6)
4 ×

N (6)
5 ×

N (6)
6 × × × × × × × ×

N (6)
7 × × × × × × × ×

N (6)
8 × × × × × × × ×

N (6)
9 ×

N (6)
10 ×

N (6)
11 × × × × × × × × × × × × × × × × × × × × ×

N (6)
12 × × × × × × × × × × × × × × × × × × × × ×

N (6)
13 × × × × × × × × × × × × × × × × × × × × ×

N (6)
14 × × × × × × × × × × × × × × × × × × × × ×

N (6)
15 × × × × × × × × × × × × × × × × × × × × ×

N (6)
16 × × × × × × × × × × × × × × × × × × × × ×

N (6)
17 × × × × ×

N (6)
18 × × × × × × × ×

N (6)
19 × × × × × × × ×

N (6)
20 × × × × × × × ×

O(5)
1 ×

O(4)
1 × × ×

O(4)
2 ×

N (4)
1 ×

Table 1. Structure of the inverse mixing matrix Z−1, defined in (2.2). The operators are defined

in (3.24), (3.25), (3.27), (3.28), and (3.29). The operator O(6)
1 is the CP -odd three-gluon operator.

The divergence of the axial current, O(4)
2 does not mix into the QCD θ̄ term O(4)

1 [75–

78]: although O(4)
1 is a total divergence, it is the divergence of a gauge-variant current.

In background-field gauge, the axial current cannot mix into this gauge-variant current

and the same is applies for their divergences. Since O(4)
1,2 are gauge invariant, the same

conclusion holds in any gauge. The argument of course applies as well to the dimension-six

operators involving GG̃.

4 Renormalization scheme

In order to calculate the matrix element of the MS three-gluon operator in (2.6), we need

the first row of the conversion matrix between MS and RI-S̃MOM schemes, C1j , as well
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as a definition of the renormalized physical RI-S̃MOM operators — nuisance operators as

well as total-derivative operators (apart from the topological θ̄ term) do not contribute

to the physical matrix element. In this section, we formulate renormalization conditions

in an RI-S̃MOM scheme, which can be implemented in lattice QCD. They define the

renormalized physical operators in terms of bare operators, hence the renormalization

conditions need to determine the entries of the mixing matrix,5

ORI
i = (ZRI)−1

ij O
(0)
j . (4.1)

Table 1 shows the structure of the full renormalization matrix of all the operators that

potentially mix with the three-gluon operator at leading order in the QED coupling.

Only those entries of the inverse mixing matrix (ZRI)−1
ij are needed, where both i and

j run over physical operators. However, in order to determine these entries, one still has

to impose n conditions if the operator Oi mixes with n operators Oj , j = 1, . . . , n. Let us

denote the renormalization condition for insertions of the operator Oi into m-point Green’s

functions by

Rk[Oi] := 〈ψ1 . . . ψmkO
RI
i 〉amp

∣∣∣
Sk

=

n∑
j=1

(ZRI)−1
ij Z

mk/2
ψ 〈ψ(0)

1 . . . ψ(0)
mk
O(0)
j 〉

amp
∣∣∣
Sk
, (4.2)

where |Sk denotes the evaluation at a certain kinematic point and appropriate contrac-

tions in Lorentz and Dirac space defined by condition k, with k = 1, . . . , n. The desired

renormalization factors are then obtained by inversion of an n× n matrix A

(ZRI)−1
ij =

n∑
k=1

[A−1]jkRk[Oi] , [A]kj = Z
mk/2
ψ 〈ψ(0)

1 . . . ψ(0)
mk
O(0)
j 〉

amp
∣∣∣
Sk
. (4.3)

In the MS scheme, a relation similar to (4.2) holds, with the renormalization matrix

(ZMS)−1
ij chosen to cancel only the dimensionally regulated poles.

In section 4.1, we compute the counterterm vertex rules for the insertions of all opera-

tors of the basis, which allows us to determine the number of independent renormalization

constraints that can be obtained from a particular Green’s function. The explicit renor-

malization conditions Rk
[
O(6)

1

]
on the Green’s functions with insertions of the three-gluon

operator are formulated in section 4.3. To carry out the full renormalization program,

we also need to impose renormalization conditions Rk[Oi] on the Green’s functions with

insertions of the other physical operators Oi that mix with the three-gluon operator. They

can be chosen as a subset of the conditions used for the gCEDM. Alternative conditions

for these operators could be obtained in a straightforward way from [47].

4.1 Counterterm vertex rules

The renormalization conditions for the RI-S̃MOM scheme need to render all renormal-

ized operators finite and determine the finite contributions to the mixing matrix. We will

5In general one expects mixing of the gCEDM and other physical operators with evanescent operators.

In appendix C we specify a set of evanescent operators that defines our minimal scheme, and which allows

us to effectively ignore the evanescent operators in the one-loop matching calculation.

– 13 –



J
H
E
P
0
9
(
2
0
2
0
)
0
9
4

q

pa pba, α b, β

q

pa pb

pc

a, α b, β

c, γ
q

pa pb

pc

a b

c, γ

Figure 1. Gluon two-point, gluon three-point, and ghost-gluon three-point functions with momen-

tum insertion into the operator.

q

pa pbi j

q

pa pbi j

pcc, γ
q

pa pbi j

pc pdc, γ d, δ

i jpa pb

pc

pd pe

q

c, γ

d, δ

e, ε

Figure 2. Quark two-point and quark-gluon three-, four-, and five-point functions with momentum

insertion into the operator.

q

pa pbi j

pcγ
q

pa pbi j

pc pdc, γ δ

i jpa pb

pc

pd pe

q

c, γ

d, δ

ε

Figure 3. Quark-photon three-point and quark-gluon-photon four- and five-point functions with

momentum insertion into the operator.

formulate the conditions as the requirement that at certain kinematic points the renor-

malized amputated Green’s functions agree with their tree-level expressions. In order to

determine the number of independent conditions that can be obtained from each Green’s

function, in the following we calculate the n-point vertex rules for all the operators of the

basis (3.24), (3.25), (3.27), (3.28), and (3.29). We insert momentum q into the operator.

The convention for signs and factors of i is given by

i(2π)4δ(4)(q + pi − pf )Tfi :=
∑
a,n

i

∫
d4xe−iq·x〈f |c(n)

a O(n)
a (x)|i〉

+
∑
a,n

i

∫
d4xe−iq·x〈f |n(n)

a N (n)
a (x)|i〉 . (4.4)

We only list the contact terms. We define kinematics and indices for all the necessary

Green’s functions as in figures 1, 2, and 3. Lorentz indices are denoted by Greek letters α,

β, . . . , color indices by a, b, . . . , and quark-flavor indices by i, j. All the gluon and photon

momenta are incoming, while for the quark and ghost lines the momentum flow is in the

direction of the fermion- and ghost-number flow.
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Gluon two-point function. The gluon two-point function is given by

Tab = εα(pa)εβ(pb)Π
αβ
ab ,

Παβ
ab = δabiε

αβµνpaµpbν

{
2c

(4)
1 + 2Tr[M2]c

(6)
4 − 2q2c

(6)
9 (4.5)

− (p2
a + p2

b)

(
1

2
c

(6)
5 + 2n

(6)
8 + 2n

(6)
11 + n

(6)
18

)}
.

It provides a constraint on the dimension-four operator coefficient c
(4)
1 and three indepen-

dent constraints on dimension-six operator coefficients.

Gluon three-point function. The gluon three-point function is given by

Tabc = εα(pa)εβ(pb)εγ(pc)Γ
αβγ
abc ,

Γαβγabc = gfabcεαβγµqµ

{
2c

(4)
1 + 2Tr[M2]c

(6)
4 − 2q2c

(6)
9 − (p2

a + p2
b + p2

c)

(
1

2
c

(6)
5 + 2n

(6)
8

)}
+ gfabcεαβγµ

(
paµpb · pc + pbµpc · pa + pcµpa · pb

){
− 1

2
c

(6)
1

}
+ gfabcεαβγµ

(
paµp

2
a + pbµp

2
b + pcµp

2
c

){
2n

(6)
11

}
+ gfabc

[
εαβµν

(
pγapbµpcν + pγb paµpcν

)
+ εβγµν

(
pαb pcµpaν + pαc pbµpaν

)
+ εγαµν

(
pβc paµpbν + pβapcµpbν

) ]{
− 1

2
c

(6)
1 −c

(6)
5 −4n

(6)
8 −4n

(6)
11 − 2n

(6)
18

}
+ gfabc

[
εαβµνpaµpbν

(
pγa − p

γ
b

)
+ εβγµνpbµpcν (pαb − pαc )

+ εγαµνpcµpaν

(
pβc − pβa

) ]{
c

(6)
5 + 4n

(6)
8 + 4n

(6)
11 + 2n

(6)
18

}
+ gfabc

(
εαβµνpγc pcµ + εβγµνpαapaµ + εγαµνpβb pbµ

)
qν

{
− 2n

(6)
11 − n

(6)
18

}
+ gfabc

[
εµνλσ

(
gαβgγσ + gβγgασ + gγαgβσ

)
pµap

ν
bp
λ
c

]
×
{

1

2
c

(6)
1 + c

(6)
5 + 4n

(6)
8 + 4n

(6)
11 + 2n

(6)
18

}
. (4.6)

It again provides a constraint on the dimension-four-operator coefficient c
(4)
1 (which can also

be fixed from the two-point function) as well as six independent constraints on dimension-

six-operator coefficients. Three of them are linearly dependent with the constraints from

the two-point function.

Ghost-gluon three-point function. The ghost-gluon three-point function is given by

Tabc = εγ(pc)Γ
γ
abc ,

Γγabc = gfabcεγµνλpaµpbνpcλ

{
− 2n

(6)
11 − n

(6)
18

}
. (4.7)
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It does not provide a new linear combination of coefficients, i.e., by renormalizing the

gluon two- and three-point functions, the ghost-gluon three-point function will be auto-

matically finite.

Quark two-point function. The quark two-point function is given by

Tji = ūj(pb)Γjiui(pa) ,

Γji = det(M)(M−1)jiγ5

{
− 2c

(5)
1

}
+Mjiγ5

{
2n

(4)
1 + (p2

a + p2
b)n

(6)
3 + q2

(
−n(6)

3 − n
(6)
6 − n

(6)
9 − 2n

(6)
10

)
− 2Tr[M2]

(
1

Nf
n

(6)
4 − n

(6)
5

)}
+Mjiiσ̃µνp

µ
ap

ν
b

{
2
(
n

(6)
3 + n

(6)
7 + n

(6)
9

)}
+ (M2)ji(/pa − /pb)γ5

{
c

(6)
6 − n

(6)
3 + n

(6)
4 − 2n

(6)
9

}
+ (M3)jiγ5

{
2n

(6)
4

}
+ δji(/pa − /pb)γ5

{
c

(4)
2 + n

(4)
1 − Tr[M2]

(
1

Nf
c

(6)
6 − c

(6)
7 +

1

Nf
n

(6)
4 − n

(6)
5

)
− q2

(
c

(6)
10 +

1

2
n

(6)
6 −

1

2
n

(6)
7 + n

(6)
10

)
− (p2

a + p2
b)n

(6)
7

}
+ δji(/pa + /pb)γ5

{
1

2
(p2
a − p2

b)
(
n

(6)
6 + n

(6)
7

)}
. (4.8)

It provides the two missing constraints on dimension-four coefficients, a constraint on the

dimension-five coefficient, as well as 10 constraints on dimension-six coefficients.

Quark-gluon three-point function. The quark-gluon three-point function is given by

Tji,c = εγ(pc)ūj(pb)Γ
γ
ji,cui(pa) ,

Γγji,c = igMjit
cσ̃γµpcµ

{
− 2c

(6)
2 + 4n

(6)
1 − 2n

(6)
7 − 2n

(6)
9 + 2n

(6)
16 + 2n

(6)
20

}
+ igMjit

cσ̃γµ(paµ − pbµ)
{
− 2n

(6)
3 − 2n

(6)
7 − 2n

(6)
9 + n

(6)
17 + 2n

(6)
20

}
+ gMjit

cγ5(pγa + pγb )
{

2n
(6)
3 − n

(6)
15 − n

(6)
17

}
+ gδjit

cγγγ5

{
(p2
a − p2

b)
(
n

(6)
6 + n

(6)
7 − n

(6)
20

)
+ (pa · pc + pb · pc)

(
−2n

(6)
1 + n

(6)
6 + n

(6)
7 − n

(6)
16 − n

(6)
20

)}
+ gδjit

cγµγ5(pγap
µ
b − p

γ
b p
µ
a)
{
n

(6)
6 + 3n

(6)
7 + n

(6)
15 + n

(6)
19 − n

(6)
20

}
+ gδjit

cγµγ5(pγap
µ
a − p

γ
b p
µ
b )
{
n

(6)
6 − n

(6)
7 + n

(6)
19 + n

(6)
20

}
+ gδjit

cγµγ5(pµa + pµb )pγc

{
n

(6)
6 + n

(6)
7 + n

(6)
14 + n

(6)
19

}
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+ gδjit
cγµγ5(pγa + pγb )pµc

{
2n

(6)
1 − 2n

(6)
7 + n

(6)
16 + n

(6)
20

}
+ igδjit

cεγµνλγµ(paν − pbν)pcλ

{
2n

(6)
1 −2n

(6)
7 −2n

(6)
8 −2n

(6)
11 +n

(6)
16 −n

(6)
18 +n

(6)
20

}
.

(4.9)

It provides 10 linearly independent constraints on dimension-six coefficients. Two of them

are linearly dependent with the constraints from previously listed n-point functions.

Quark-gluon four-point function. The quark-gluon four-point function is given by

Tji,cd = εγ(pc)εδ(pd)ūj(pb)Γ
γδ
ji,cdui(pa) ,

Γγδji,cd = g2Mjif
cdataσ̃γδ

{
− 2c

(6)
2 + 4n

(6)
1 + 2n

(6)
3 − 2n

(6)
17

}
+ g2Mji{tc, td}γ5g

γδ
{

2n
(6)
3 + 4n

(6)
13 − 2n

(6)
15 − 2n

(6)
17

}
+ g2Mjiδ

cdγ5g
γδ

{
4n

(6)
12 −

4

3
n

(6)
13

}
+ ig2δjif

cdataγµγ5

(
(pa + pb)

γgµδ − (pa + pb)
δgµγ

){
2n

(6)
1 +

1

2
n

(6)
15

}
+ g2δji{tc, td}γµγ5

(
(pa − pb)γgµδ + (pa − pb)δgµγ

)
×
{
n

(6)
6 + n

(6)
7 +

1

2
n

(6)
15 + n

(6)
19 − n

(6)
20

}
+ g2δji{tc, td}γµγ5

(
pγc g

µδ + pδdg
µγ
){

n
(6)
6 + n

(6)
7 + n

(6)
14 + n

(6)
19 − n

(6)
20

}
+ g2δji{tc, td}γµγ5

(
pγdg

µδ + pδcg
µγ
){
− 2n

(6)
1 +n

(6)
6 +n

(6)
7 −n

(6)
16 +n

(6)
19 −n

(6)
20

}
+ g2δji{tc, td}γµγ5g

γδ(pa − pb)µ
{
− 2n

(6)
7 + 2n

(6)
13 − n

(6)
15 + 2n

(6)
20

}
+ g2δji{tc, td}γµγ5g

γδ(pc + pd)
µ
{

2n
(6)
1 − 2n

(6)
7 + n

(6)
16 + 2n

(6)
20

}
+ g2δjif

cdataεγδµνγµ(pa − pb)ν
{

2n
(6)
1 − 2n

(6)
7 − 2n

(6)
8 − 2n

(6)
11 + 2n

(6)
20

}
+ g2δjif

cdataεγδµνγµ(pc + pd)ν

{
2n

(6)
1 − 2n

(6)
7 − 2n

(6)
8 + n

(6)
16 + 2n

(6)
20

}
+ g2δjiδ

cdγµγ5g
γδ(pa − pb)µ

{
2n

(6)
12 −

2

3
n

(6)
13

}
. (4.10)

Out of 11 constraints on dimension-six coefficients, three are linearly independent of the

constraints from two- and three-point functions.

Quark-gluon five-point function. The quark-gluon five-point function is given by

Tji,cde = εγ(pc)εδ(pd)εε(pe)ūj(pb)Γ
γδε
ji,cdeui(pa) ,

Γγδεji,cde = ig3δjit
a
(
gγδγεdcdbf eab + gδεγγddebf cab + gεγγδdecbfdab

)
γ5

×
{
− 2n

(6)
1 + 2n

(6)
13 − n

(6)
15

}
. (4.11)
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The condition that can be obtained from it is linearly dependent with the previously

listed ones.

Quark-photon three-point function. The quark-photon three-point function is

given by

Tji = εγ(pc)ūj(pb)Γ
γ
jiui(pa) ,

Γγji = ie(MQ)jiσ̃
γµpcµ

{
− 2c

(6)
3 + 4n

(6)
2 − 2n

(6)
7 − 2n

(6)
9

}
+ ie(MQ)jiσ̃

γµ(paµ − pbµ)
{
− 2n

(6)
3 − 2n

(6)
7 − 2n

(6)
9

}
+ e(MQ)jiγ5(pγa + pγb )

{
2n

(6)
3

}
+ eQjiγ

γγ5

{
(p2
a − p2

b)
(
n

(6)
6 + n

(6)
7

)
+ (pa · pc + pb · pc)

(
−2n

(6)
2 + n

(6)
6 + n

(6)
7

)}
+ eQjiγµγ5(pγap

µ
b − p

γ
b p
µ
a)
{
n

(6)
6 + 3n

(6)
7

}
+ eQjiγµγ5(pγap

µ
a − p

γ
b p
µ
b )
{
n

(6)
6 − n

(6)
7

}
+ eQjiγµγ5(pµa + pµb )pγc

{
n

(6)
6 + n

(6)
7

}
+ eQjiγµγ5(pγa + pγb )pµc

{
2n

(6)
2 − 2n

(6)
7

}
+ ieQjiε

γµνλγµ(paν − pbν)pcλ

{
− c(6)

8 + 2n
(6)
2 − 2n

(6)
7

}
. (4.12)

Out of 7 conditions on the dimension-six coefficients, 3 are linearly independent of the

previously listed ones.

Quark-gluon-photon four-point function. The quark-gluon-photon four-point func-

tion is given by

Tji,c = εγ(pc)εδ(pd)ūj(pb)Γ
γδ
ji,cui(pa) ,

Γγδji,c = eg(MQ)jit
cγ5g

γδ
{

4n
(6)
3 − 2n

(6)
15 − 2n

(6)
17

}
+ egQjit

cγµγ5

(
(pa − pb)δgµγ

){
2n

(6)
6 + 2n

(6)
7 − 2n

(6)
20

}
+ egQjit

cγµγ5

(
(pa − pb)γgµδ

){
2n

(6)
6 + 2n

(6)
7 + n

(6)
15 + 2n

(6)
19

}
+ egQjit

cγµγ5p
γ
c g
µδ
{

2n
(6)
6 + 2n

(6)
7 + 2n

(6)
14 + 2n

(6)
19

}
+ egQjit

cγµγ5p
γ
dg
µδ
{
− 4n

(6)
2 + 2n

(6)
6 + 2n

(6)
7 + 2n

(6)
19

}
+ egQjit

cγµγ5p
δ
cg
µγ
{
− 4n

(6)
1 + 2n

(6)
6 + 2n

(6)
7 − 2n

(6)
16 − 2n

(6)
20

}
+ egQjit

cγµγ5p
δ
dg
µγ
{

2n
(6)
6 + 2n

(6)
7 − 2n

(6)
20

}
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operator dimension n gluons only quarks & gluons photonic

4 2 g2 : 1 / 1 q̄q : 2 / 2

3 g3 : 0 / 1

5 2 q̄q : 1 / 1

6 2 g2 : 3 / 3 q̄q : 10 / 10

3 g3 : 3 / 6 q̄qg : 8 / 10 q̄qA : 3 / 7

4 q̄qg2 : 3 / 11 q̄qgA : 0 / 8

5 q̄qg3 : 0 / 1 q̄qg2A : 0 / 1

Table 2. Overview of the available n-point functions with up to one photon. a / b indicates that

a constraints are used out of b linearly independent ones provided by the n-point function at O(e).

+ egQjit
cγµγ5g

γδ(pa − pb)µ
{
− 4n

(6)
7 − n

(6)
15 + 2n

(6)
20

}
+ egQjit

cγµγ5g
γδpµc

{
4n

(6)
1 − 4n

(6)
7 + 2n

(6)
16 + 2n

(6)
20

}
+ egQjit

cγµγ5g
γδpµd

{
4n

(6)
2 − 4n

(6)
7 + 2n

(6)
20

}
. (4.13)

The 8 conditions that could be obtained from the quark-gluon-photon four-point function

are linearly dependent with the previously listed ones.

Quark-gluon-photon five-point function. The quark-gluon-photon five-point func-

tion is given by

Tji,cd = εγ(pc)εδ(pd)εε(pe)ūj(pb)Γ
γδε
ji,cdui(pa) ,

Γγδεji,cd = ieg2Qjif
cdata

(
γδgγε − γγgδε

)
γ5

{
− 4n

(6)
1 − n

(6)
15

}
. (4.14)

It only gives a condition that is linearly dependent with previously listed ones.

4.2 Projection of scalar structures

In order to renormalize the CP -odd three-gluon operator, we need to impose 3 + 1 + 30

linearly independent renormalization conditions on Green’s functions, corresponding to

the counterterms from dimension-four, -five, and -six operators. The number of available

structures in the Green’s functions is larger — we choose to use the lower n-point functions

as far as possible, which leads to the set of structures listed in table 2. We use structures

from two-, three-, and four-point functions with additional momentum insertion into the

operator. The five-point functions are not needed. The photonic Green’s function q̄qA is

required to provide 3 conditions that fix the photonic counterterms O(6)
3 , O(6)

8 , and N (6)
2 .

In the following, we define 3+1+30 projections in Lorentz, Dirac, color, and flavor space

out of the Green’s functions. The explicit renormalization conditions will be formulated

in section 4.3 by requiring these projections to agree with their tree-level expressions.

We remark that all the Lorentz contractions in the projections are performed in D = 4

dimensions, see section 5.2.
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The quark-mass and charge matrices take the values

M = diag(mu,md,ms) , Q =
1

3
diag(2,−1,−1) . (4.15)

However, after taking possible derivatives with respect to the quark masses, all condi-

tions will be understood in the chiral limit, M → 0. This leads to a mass-independent

renormalization scheme.

Gluon two-point function g2. We evaluate the gluon two-point function with momen-

tum insertion into the operator Oi as a function of the three Lorentz invariants p2
a, p

2
b , and

q2. The conditions are imposed on one Lorentz contraction of the amputated two-point

function and on its partial derivatives with respect to q2, p2
a, and the s-quark mass at the

symmetric point in the chiral limit defined by

S2 : p2
a = p2

b = q2 = −Λ2 , mu = md = ms = 0 , (4.16)

i.e., all invariants take large space-like values. Denoting by λ(a, b, c) = a2 + b2 + c2−2(ab+

bc+ ca) the Källén triangle function, the projections are

R1[Oi] :=
1

λ(p2
a, p

2
b , q

2)
iεαβµνp

µ
ap

ν
b δ
abΠαβ

ab

∣∣∣∣
S2

,

R2[Oi] :=
∂

∂q2

[
1

λ(p2
a, p

2
b , q

2)
iεαβµνp

µ
ap

ν
b δ
abΠαβ

ab

] ∣∣∣∣
S2

,

R3[Oi] :=
∂

∂p2
a

[
1

λ(p2
a, p

2
b , q

2)
iεαβµνp

µ
ap

ν
b δ
abΠαβ

ab

] ∣∣∣∣
S2

,

R4[Oi] :=
∂2

∂m2
s

[
1

λ(p2
a, p

2
b , q

2)
iεαβµνp

µ
ap

ν
b δ
abΠαβ

ab

] ∣∣∣∣
S2

. (4.17)

In R4, the derivative is taken with respect to the renormalized MS s-quark mass mMS
s (µ =

Λ). On the lattice, this can be implemented as a derivative with respect to the bare

mass times the appropriate renormalization factor connecting the bare lattice mass to the

MS mass.

Gluon three-point function g3. The three-point function with momentum insertion

effectively has four-point kinematics and depends on six Lorentz invariants, e.g., p2
a, p

2
b , p

2
c ,

as well as the Mandelstam variables

s = (pa + pb)
2 , t = (pa + pc)

2 , u = (pb + pc)
2 . (4.18)

The conditions are imposed on three different Lorentz contractions of the amputated three-

point function at the non-symmetric point defined by

S̃3 : p2
a = p2

b = p2
c = s = u = −Λ2 , t = −2Λ2 ,

q2 = s+ t+ u− p2
a − p2

b − p2
c = −Λ2 ,

mu = md = ms = 0 . (4.19)
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The conditions will be imposed on the following contractions:

R5[Oi] := εαβγµ(pa + pb + pc)
µfabcΠαβγ

abc

∣∣∣
S̃3

,

R6[Oi] := εαβγµ(pµapb · pc + pµb pc · pa + pµc pa · pb)fabcΠ
αβγ
abc

∣∣∣
S̃3

,

R7[Oi] := εµνλσ(ḡαβ ḡγσ + ḡβγ ḡασ + ḡγαḡβσ)paµpbνpcλf
abcΠαβγ

abc

∣∣∣
S̃3

, (4.20)

where ḡµν denotes the metric tensor in D = 4 spacetime dimensions.

Quark two-point function q̄q. The quark two-point function is evaluated at the non-

symmetric point defined by

S̃2 : p2
a = q2 = −Λ2 , p2

b = −2Λ2 , mu = md = ms = 0 . (4.21)

The renormalization conditions will be imposed on suitable contractions of the two-point

function and derivatives with respect to q2, p2
a, and the MS masses (again evaluated at the

scale µ = Λ):

R8[Oi] :=
∂

∂ms
Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R9[Oi] :=
∂2

∂ms∂q2
Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R10[Oi] :=
∂2

∂ms∂p2
a

Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R11[Oi] :=
∂2

∂mu∂ms
Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R12[Oi] :=
∂3

∂mu∂m2
s

Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R13[Oi] :=
∂3

∂m3
s

Tr
[
γ5δ

ijΓji
] ∣∣∣
S̃2

,

R14[Oi] :=
∂

∂ms
Tr
[
ipµap

ν
b σ̃µνQ

ijΓji
] ∣∣∣
S̃2

,

R15[Oi] :=
∂2

∂m2
s

Tr
[
(pa − pb)µγ̃µQijΓji

] ∣∣∣
S̃2

,

R16[Oi] := Tr

[
(pa + pb)

2(pa − pb)µ − (p2
a − p2

b)(pa + pb)
µ

λ(p2
a, p

2
b , q

2)
γ̃µδ

ijΓji

] ∣∣∣∣
S̃2

,

R17[Oi] :=
∂

∂q2
Tr

[
(pa + pb)

2(pa − pb)µ − (p2
a − p2

b)(pa + pb)
µ

λ(p2
a, p

2
b , q

2)
γ̃µδ

ijΓji

] ∣∣∣∣
S̃2

,

R18[Oi] :=
∂

∂p2
a

Tr

[
(pa + pb)

2(pa − pb)µ − (p2
a − p2

b)(pa + pb)
µ

λ(p2
a, p

2
b , q

2)
γ̃µδ

ijΓji

] ∣∣∣∣
S̃2

,

R19[Oi] :=
∂2

∂m2
s

Tr

[
(pa + pb)

2(pa − pb)µ − (p2
a − p2

b)(pa + pb)
µ

λ(p2
a, p

2
b , q

2)
γ̃µδ

ijΓji

] ∣∣∣∣
S̃2

,

R20[Oi] := Tr
[
[(p2

a − p2
b)(pa − pb)µ − (pa − pb)2(pa + pb)

µ]γ̃µδ
ijΓji

] ∣∣∣
S̃2

. (4.22)
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Tr stands for the trace in Dirac space. The traces in flavor space are written explicitly

with summed indices.

Quark-gluon three-point function q̄qg. The quark-gluon three-point function with

momentum insertion again depends on six Lorentz invariants, e.g., p2
a, p

2
b , p

2
c , as well as

the Mandelstam variables

s = (pa − pb)2 , t = (pa + pc)
2 , u = (pb − pc)2 . (4.23)

At the second non-symmetric point defined by

Ŝ3 : p2
a = p2

c = s = −Λ2 , p2
b = t = u = −2Λ2 ,

q2 = s+ t+ u− p2
a − p2

b − p2
c = −Λ2 ,

mu = md = ms = 0 , (4.24)

the renormalization conditions will be imposed on eight different contraction of the ampu-

tated three-point function:

R21[Oi] :=
∂

∂ms
Tr
[
ipµc σ̃γµt

cQijΓγji,c

] ∣∣∣
Ŝ3

,

R22[Oi] :=
∂

∂ms
Tr
[
i(pa − pb)µσ̃γµtcQijΓγji,c

] ∣∣∣
Ŝ3

,

R23[Oi] :=
∂

∂ms
Tr
[
(pa + pb)γγ5t

cQijΓγji,c

] ∣∣∣
Ŝ3

,

R24[Oi] := Tr
[
γ̃γt

cδijΓγji,c

] ∣∣∣
Ŝ3

,

R25[Oi] := Tr
[
paµpaγ γ̃

µtcδijΓγji,c

] ∣∣∣
Ŝ3

,

R26[Oi] := Tr
[
(pa + pb)µpcγ γ̃

µtcδijΓγji,c

] ∣∣∣
Ŝ3

,

R27[Oi] := Tr
[
pcµ(pa + pb)γ γ̃

µtcδijΓγji,c

] ∣∣∣
Ŝ3

,

R28[Oi] := Tr
[
iεγµνλp

ν
bp
λ
c γ

µtcδijΓγji,c

] ∣∣∣
Ŝ3

, (4.25)

where Tr stands for the trace both in Dirac space and in color space.

Quark-gluon four-point function q̄qg2. Due to momentum insertion, the quark-gluon

four-point function has five-point kinematics, i.e., there are 10 independent Lorentz invari-

ants that can be chosen as p2
a, p

2
b , p

2
c , p

2
d, as well as the Mandelstam variables

sab = (pa − pb)2 , sac = (pa + pc)
2 , sad = (pa + pd)

2 ,

sbc = (pb − pc)2 , sbd = (pb − pd)2 , scd = (pc + pd)
2 . (4.26)

At the non-symmetric kinematical point

S̃4 : p2
a = p2

b = p2
c = −Λ2 , p2

d = sab = sac = sad = sbc = sbd = scd = −2Λ2 ,

q2 = sab + sac + sad + sbc + sbd + scd − 2p2
a − 2p2

b − 2p2
c − 2p2

d = −2Λ2 ,

mu = md = ms = 0 (4.27)
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we use the following projections for the renormalization:

R29[Oi] :=
∂

∂ms
Tr
[
pcγpdδp

µ
c p

ν
dσ̃µνf

cdataQijΓγδji,cd

] ∣∣∣
S̃4

,

R30[Oi] :=
∂

∂ms
Tr
[
pcγpdδγ5δ

cdQijΓγδji,cd

] ∣∣∣
S̃4

,

R31[Oi] :=
∂

∂ms
Tr
[
pcγpdδγ5d

cdataQijΓγδji,cd

] ∣∣∣
S̃4

. (4.28)

Tr again stands for the trace both in Dirac and color space.

Quark-photon three-point function q̄qA. For the quark-photon three-point function,

we choose the same kinematical configuration as for the quark-gluon three-point function.

The projections are:

R32[Oi] :=
∂

∂ms
Tr
[
ipµc σ̃γµδ

ijΓγji

] ∣∣∣
Ŝ3

,

R33[Oi] := Tr
[
γ̃γQ

ijΓγji

] ∣∣∣
Ŝ3

,

R34[Oi] := Tr
[
iεγµνλ(pa + pb)

νpλc γ
µQijΓγji

] ∣∣∣
Ŝ3

, (4.29)

where Tr denotes the trace in Dirac space.

4.3 Renormalization conditions in the RI-S̃MOM scheme

The physical matrix element of the CP -odd three-gluon operator in the MS scheme, defined

in (2.6), depends on the matching coefficients Cij and on the matrix elements of the gauge-

invariant RI-S̃MOM operators. One needs to provide renormalization conditions to define

RI-S̃MOM operators on the lattice, but, as can be seen from (2.6), at O(αs) it is not

necessary to give the entries of the renormalization matrices ZMS
ij and ZRI

ij with i ≥ 2.

In the following, we define the RI-S̃MOM scheme by providing explicit renormaliza-

tion conditions for all physical operators. We impose 3 + 1 + 30 conditions on Green’s

functions with insertions of the gCEDM by requiring that the projections of two-, three-,

and four-point functions defined in section 4.2 agree with their tree-level values. For the

renormalization of the additional physical operators, only a subset of these conditions is

needed to fix all possible mixings.

The gauge-invariant operators at dimension six (3.27) include the qCEDM, O(6)
2 , and

the qEDM, O(6)
3 . The five operators O(6)

4,6,7,9,10 are related to the divergence of the axial

current and the QCD θ̄ term, with additional powers of the external momentum or of the

quark masses, which have little influence on the renormalization. As an alternative to the

conditions provided below, these additional operators could be renormalized by using the

conditions given in [47], where the case of generic flavor structure was discussed. With

minor modifications the renormalization conditions of [47] could be adjusted to the case

considered in this paper, where the flavor structure is determined by the mass M and

charge Q matrices.
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4.3.1 Conditions for the gCEDM

In order to renormalize the gCEDM, we need to impose 3+1+30 renormalization conditions.

They are given as

Rk
[
O(6)

1

]
= 0 , k ∈ {1, . . . , 4, 8, . . . , 34} ,

R5

[
O(6)

1

]
= −3gN2

cCFΛ4 ,

R6

[
O(6)

1

]
= −3gN2

cCFΛ6 ,

R7

[
O(6)

1

]
= 9gN2

cCFΛ6 , (4.30)

where CF = N2
c−1

2Nc
. The coupling g on the r.h.s. of these equations could be chosen as the

renormalized coupling in any scheme. In order to simplify the matching between the MS

and RI-S̃MOM schemes, we choose gMS(µ = Λ, ε = 0). Due to the contractions chosen

in (4.28), no gluon-exchange diagrams survive in the projections of the quark-gluon four-

point function and only the contact terms contribute at tree level in (4.30).

4.3.2 Conditions for the qCEDM

As shown in table 1, the qCEDM operator O(6)
2 in total mixes with 13 operators: it mixes

with one dimension-four operator, O(4)
2 − N (4)

1 , which corresponds to the pseudoscalar

density, see (3.32). At dimension five, it mixes into O(5)
1 . At dimension six, O(6)

2 is

renormalized by five gauge-invariant operators that do not vanish by EOMs, O(6)
2,3,4,6,7,

four gauge-invariant nuisance operators N (6)
3,4,5,9, and one gauge-variant nuisance operator,

N (6)
17 . In addition, in the basis of (3.27) and (3.28), O(6)

2 can mix into the combination

O(6)
10 −N

(6)
10 , see (3.32).

Therefore, we need to impose 13 renormalization conditions on Green’s functions with

insertions of O(6)
2 :

Rk
[
O(6)

2

]
= 0 , k ∈ {4, 8, 9, 10, 11, 12, 13, 14, 15, 19, 32} ,

R21

[
O(6)

2

]
= 8gNcCFΛ2 ,

R22

[
O(6)

2

]
= −4gNcCFΛ2 . (4.31)

Again, the coupling on the r.h.s. is chosen as gMS(µ = Λ, ε = 0).

4.3.3 Condition for the qEDM

The qEDM operator renormalizes diagonally. Hence, it suffices to impose a single renor-

malization condition on the quark-photon three-point function:

R32

[
O(6)

3

]
= 8eΛ2 . (4.32)

The coupling e to the external electromagnetic field is not renormalized in QCD.

4.3.4 Conditions for the remaining operators

The remaining physical operators that mix with the gCEDM are the dimension-four QCD

θ term, O(4)
1 , the dimension-five operator O(5)

1 , and the dimension-six operator O(6)
4 , a mass
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correction to the θ term. The remaining dimension-six operators are total derivatives and

do not contribute for vanishing momentum insertion into the physical matrix element.

The operator O(6)
4 mixes into O(6)

4,7 and N (6)
5 . We need three renormalization con-

ditions, one condition on the gluon two-point function and two conditions on the quark

two-point function:

R4

[
O(6)

4

]
= −4NcCF ,

Rk
[
O(6)

4

]
= 0 , k ∈ {12, 19} . (4.33)

The operator O(5)
1 renormalizes diagonally. We impose the single condition

R11

[
O(5)

1

]
= −8 . (4.34)

The operator O(4)
1 mixes into O(4)

1,2 and N (4)
1 . We need three renormalization condi-

tions, one condition on the gluon two-point function and two conditions on the quark

two-point function:

R1

[
O(4)

1

]
= −2NcCF ,

Rk
[
O(4)

1

]
= 0 , k ∈ {8, 16} . (4.35)

As discussed in [47], these conditions define a renormalized GG̃ operator that does not

satisfy the singlet Ward identity. The Ward identity can be restored by a finite renormal-

ization, as done in [47].

5 Matching at one loop

In this section we calculate the matching coefficients C1j , defined in (2.4), at one loop in

QCD. Since the RI-S̃MOM operators are independent of the chosen regulator, we can ob-

tain the matching coefficients C1j by calculating the n-point functions in dimensional regu-

larization, and then imposing the MS and RI-S̃MOM renormalization conditions. Together

with the nonperturbative definition of the RI-S̃MOM operators, ensured by the renormal-

ization conditions discussed in section 4, this will allow to convert lattice-QCD calculations

of the nucleon EDM induced by the gCEDM to the MS scheme, up to O(α2
s) corrections.

In section 5.1, we discuss two different gauge fixing procedures: conventional covariant

gauge and background-field gauge. In section 5.2, we define our dimensional MS scheme.

We present the results for the matching coefficients at one loop in section 5.3.

5.1 Gauge fixing

We provide results with two gauge-fixing choices. First, we work in a generic covariant

gauge, where the QCD Lagrangian in (3.1) is complemented by the gauge-fixing term

LGF = − 1

2ξ

(
∂µGaµ

)2
(5.1)

and by the ghost Lagrangian given in (B.1). This family includes the Landau gauge ξ = 0

that can be easily implemented on the lattice.
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Second, we will employ the background-field method [61, 79], which greatly simplifies

the mixing structure. In the background-field method, all fields are split into a classical

background field F̂ and a quantum field F ,

F 7→ F + F̂ . (5.2)

The quantum fields are the integration variables in the functional integral. External

fields and tree-level propagators are background fields, while internal loop propagators

are quantum fields. For fermion fields, quantum and background fields need not be dis-

tinguished. The gauge of the background and quantum fields can be fixed independently.

The background-field method manifestly preserves gauge invariance with respect to the

background fields, hence one only has to consider mixing with gauge-invariant operators in

the classes I and IIa defined in section 2, whereas no counterterms of class IIb are required.

The gauge-fixing term for the quantum fields is given by

LGF = − 1

2ξ

(
D̂µGaµ

)2
, (5.3)

where D̂µ denotes the covariant derivative with respect to the background field Ĝaµ,

D̂µGaµ = ∂µGaµ + gfabcĜb µGcµ , (5.4)

while we retain the symbol Gaµ for the quantum gluon field. The ghost Lagrangian reads [61]

Lgh = −c̄a
[
�δab − g

←−
∂ µf

abc(Ĝµc +Gµc ) + gfacbĜcµ∂
µ + g2facef edbĜcµ(Ĝµd +Gµd)

]
cb . (5.5)

The background-field gauge-fixing term is simply given by

LBG
GF = − 1

2ξ̂

(
∂µĜaµ

)2
, (5.6)

where the gauge-fixing parameter ξ̂ is independent of ξ. As the background fields only

appear at tree level, ghost terms can be ignored.

5.2 Dimensional regularization and renormalization

In dimensional regularization, we employ the ’t Hooft-Veltman (HV) scheme [80, 81]. The

definition of γ5 is

γ5 = − i

4!
εµνλσγ

µγνγλγσ , (5.7)

where the Levi-Civita symbol εµνλσ with ε0123 = +1 strictly remains in four space-time

dimensions. The commutation relations read

{γµ, γ5} = 0 , for µ = 0, 1, 2, 3 ,

[γµ, γ5] = 0 , else . (5.8)

In general, this scheme leads to spurious anomalies that break chiral invariance and require

the introduction of symmetry-restoring counterterms [81, 82]. The spurious anomalies can
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=

Figure 4. One-loop diagrams needed for the renormalization of the fields and the coupling.

be traced back to higher powers of the anticommutator {γµ, γ5}, which are matrices of

rank D − 4 [83]. In the present case, we do not encounter these problems because QCD

is a vector theory and we only consider single-operator insertions. For this reason, we

do not work with chiral fields and use the D-dimensional Dirac matrix γµ both in the

QCD quark-gluon vertex and the quark propagator. External momenta and polarization

vectors in S-matrix elements are treated in the HV scheme as having components only in

D = 4. The same applies to the projectors that we introduced in section 4.2 to define the

renormalization conditions.

We define the renormalization constants for the fields, coupling, and the quark

masses by

q(0) =
√
Zq q , G(0)

µ =
√
ZGGµ , g(0) = Zg g µ̄

ε , m(0) = Zmm,

µ̄ :=µ
eγE/2

(4π)1/2
, (5.9)

where γE is the Euler-Mascheroni constant and µ denotes an arbitrary parameter with

dimensions of mass, introduced to keep the renormalized coupling g dimensionless ([g] = 0)

in D = 4− 2ε spacetime dimensions, while [m] = 1, [q] = 3/2− ε, and [Gµ] = 1− ε. Note

that g and αs := g2/(4π) depend on both µ and ε, so that dαs/d(log µ) = −2εαs +O(α2
s).

In dimensional regularization with the MS scheme, the renormalization prescription is

to subtract poles proportional to

Λε = −1

2
µ̄D−4

(
1

ε
+ log(4π)− γE

)
. (5.10)

This is conveniently done by using the redefined scale µ and subsequently subtracting poles

in ε = (4−D)/2.

The renormalization of the gCEDM operator in the RI-S̃MOM scheme is accomplished

by imposing the 34 renormalization conditions (4.30) on the gluon two- and three-point

functions, on the quark two-point function, on the quark-gluon three and four-point func-

tions, and on the quark-photon three-point function. The one-loop diagrams that need to
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=
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Figure 5. Gluon two-point function Παβ
ab and three-point function Γαβγabc at one-loop, with the

insertion of the gCEDM operator O(1)
6 denoted by a square. Only one possible insertion of the

gCEDM is shown.

=

=

Figure 6. Quark-gluon three-point and four-point functions at one-loop, with the insertion of the

gCEDM operator O(1)
6 denoted by a square. Only one possible insertion of the gCEDM is shown.

The hatched blobs denote one-loop subdiagrams with a gCEDM insertion, while the gray blobs

denote QCD one-loop corrections.

be calculated are shown in figures 4, 5, and 6. Note that the quark two-point function and

the quark-photon three-point function with operator insertion only start at two-loop level.

5.3 Results

At one loop, the constants ∆ij introduced in (2.5) can be defined as

∆MS
ij =

αs
4π

zij
ε
,

∆RI
ij =

αs
4π

[(
1

ε
+ log

µ2

Λ2

)
zij + cij

]
, (5.11)

which implies that the matching coefficients are given by

Cij = 1ij +
αs
4π

(
zij log

µ2

Λ2
+ cij

)
. (5.12)
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As can be seen from (2.7), the determination of Zij requires the knowledge of the field

renormalization. Furthermore, the renormalization conditions (4.30) involve the MS renor-

malized coupling gMS and quark masses mMS.

5.3.1 Covariant gauge

We start by calculating the renormalization of the gCEDM operator in a generic covariant

gauge. At one loop, it is sufficient to know the renormalization of the gluon field and of

the strong coupling,

ZG = 1 +
αs
4π

(zG
ε

+ rG

)
= 1 +

αs
4π

{
1

ε

[
CA

(
13

6
− ξ

2

)
− 4

3
NfTF

]
+ rG

}
,

Zg = 1 +
αs
4π

(zg
ε

+ rg

)
= 1 +

αs
4π

{
−1

ε

β0

2
+ rg

}
, (5.13)

where β0 is the lowest order β function

β0 =
11

3
CA −

4

3
NfTF . (5.14)

CA is the Casimir factor of the adjoint representation of SU(3), CA = Nc, while TF = 1/2.

In the MS scheme, rMS
G = rMS

g = 0. In the RI-S̃MOM scheme, we define the residue of the

gluon propagator at p2 = −Λ2 to be equal to one, which determines the finite part of ZG
in the chiral limit [84]:

rRI
G = CA

(
97

36
+
ξ

2
+
ξ2

4

)
− 20

9
NfTF + zG log

µ2

Λ2
. (5.15)

Since the renormalization conditions (4.30) are expressed in terms of the MS coupling gMS,

we do not need to define an RI-S̃MOM coupling constant, as rg drops out of the equations.

The gluon two- and three-point functions are shown in figure 5 and they determine the

mixing of the gCEDM with the gluonic operators O(6)
4 , O(6)

5 , O(6)
9 , N (6)

8 , N (6)
11 , and N (6)

18

up to one linear combination of O(6)
5 and N (6)

8 . In dimensional regularization, O(6)
1 does

not induce divergences proportional to the QCD θ̄ term O(4)
1 . At the kinematic point S̃3,

one one-particle-reducible (1PR) diagram with the same topology as the last diagram in

figure 5 contributes to the three-point function. The 1PR contributions to the other two

legs vanish due to the renormalization condition imposed on the two-point function at the

kinematic point S2.

The quark two-point function is zero at one loop. The quark-gluon three- and four-

point functions are shown in figure 6. The 1PR contributions to the gluon leg of the

three-point function vanish at one loop due to the renormalization conditions R1-R4. The

1PR contributions to the incoming quark leg vanish due to the renormalization conditions

imposed on the quark two-point function at the non-symmetric kinematic point S̃2. The

1PR contributions to the other quark leg contain no loop corrections, which start at two-

loop order, but a counterterm contribution has to be taken into account since the kinematic

configuration does not correspond to S̃2.

Imposing the conditions R29-R31 greatly simplifies the calculation of the four-point

function at one loop. Since the three-gluon vertex from the operator O(6)
1 vanishes when
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contracted with the gluon momentum, it is easy to see that the box diagrams in the second

line of figure 6 do not contribute to R29-R31, leaving only the simpler triangle diagram. The

same argument applies to the 1PR diagrams in the third line of figure 6. Of the other 1PR

loop contributions to the four-point function, the gluon two- and three-point function with

insertion of the gCEDM do not contribute to the projections R29-R31. The last topology

shown in the second line of figure 6 does not receive a contribution from the loop, leaving

only the contribution of the quark-gluon three-point function, contracted with the QCD

three-gluon vertex. Several 1PR counterterm contributions need to be taken into account,

as their kinematic configuration does not correspond to the renormalization point of the

sub-amplitude.

We find the coefficients of the poles in ε to be

z
(6)
1,1 = −CA

(
3 +

3

4
(1− ξ)

)
+ zg +

3

2
zG = −1

2
(CA + 2Nf + β0) ,

z
(6)
1,2 = −3

8
CA ,

z
(6)
1,n8

=
3

16
CA ,

z
(6)
1,n11

=
3

16
CA , (5.16)

while all other coefficients z1j vanish. Here, for clarity we introduced the notation z
(n)
i,j for

the mixing into the operator O(n)
j and z

(n)
i,nj

for the mixing into N (n)
j .

The finite pieces c1j are

c
(6)
1,1 = −CA

[(
17

6
+

25

12
K +

25

18
ψ − 1

12
log 2

)
− 1

12
(1− ξ) (21 + 10K + 7ψ + log 2)

+
3

4
(1− ξ)2

]
+

3

2
rG −

(
3

2
zG + zg

)
log

µ2

Λ2
,

c
(6)
1,2 = CA

[
K

2
+

log 2

8
− 811

912

]
,

c
(6)
1,5 = CA

[
13K

8
+

11 log 2

8
− 1285

912

]
,

c
(6)
1,n1

= − 583

7296
CA ,

c
(6)
1,n8

= CA

[(
7K

32
− ψ

12
+

41 log 2

32
− 2819

3648

)
+ (1− ξ)

(
−K

4
− ψ

8
+

11 log 2

16
+

3

16

)]
,

c
(6)
1,n11

= CA

[(
−7K

4
+
ψ

12
− 25 log 2

8
+

55

16

)
+ (1− ξ)

(
K

2
+

5ψ

24
− 3 log 2

2
− 1

3

)]
,

c
(6)
1,n12

= CA

[
K

24
− log 2

24
− 319

24320

]
,

c
(6)
1,n13

= CA

[
K

8
− log 2

8
− 957

24320

]
,

c
(6)
1,n14

= CA

[
K

2
− log 2

2
− 11

95

]
,
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c
(6)
1,n15

=
21

304
CA ,

c
(6)
1,n16

=
59

1216
CA ,

c
(6)
1,n17

= − 21

304
CA ,

c
(6)
1,n18

= CA

[(
9K

4
+ 3 log 2− 29

8

)
+ (1− ξ)

(
−K

2
− ψ

6
+

13 log 2

8
+

7

24

)]
,

c
(6)
1,n19

= CA

[
−K + log 2 +

197

760

]
,

c
(6)
1,n20

=
59

608
CA ,

c
(4)
1,1 =

3

4
CAΛ2 , (5.17)

with analogous notation as for the z1j . All other c1j vanish at one loop. The additional

logarithmic term in c
(6)
1,1 is an artifact of using gMS in the renormalization conditions and

disappears if the matching is performed at µ = Λ. Note also that a finite renormalization

with the dimension-four operator O(4)
1 is present.

The triangle integrals in the three-point function depend on the two constants ψ and

K, which are defined as

ψ =
2

3

(
ψ(1)

(
1

3

)
− 2

3
π2

)
= 2.34 . . . , K =

1

8

(
ψ(1)

(
1

4

)
− π2

)
= 0.916 . . . , (5.18)

where ψ(1) is the first derivative of the Digamma function. To assess the numerical impact

of the conversion between the RI-S̃MOM and MS scheme, we can evaluate the coefficient

C11. At the scale µ = Λ = 3 GeV, C11 = 0.87 in Landau gauge and C11 = 0.76 in Feynman

gauge, indicating a 10% - 25% correction, as to be expected at one loop.

5.3.2 Background-field method

We can avoid mixing with gauge-variant operators by working with the background-field

method [61], with a gauge-fixing Lagrangian as specified in (5.3). In this case, the class-IIb

nuisance operators in (3.29) can be disregarded and at dimension six, the operator basis

reduces to the 10 operators in (3.27) and the 10 gauge-invariant EOM operators in (3.28).

We can define the RI-S̃MOM scheme by selecting a subset of 24 conditions Rk[O
(6)
1 ],

with the understanding that these conditions are imposed on Green’s functions of the

background field Ĝa, not of the quantum field Ga. In the background-field method, we

therefore replace the set of conditions (4.30) by

Rk
[
O(6)

1

]
= 0 , k ∈ {1, . . . , 4, 8, . . . , 21, 24, 28, 32, . . . , 34} ,

R6

[
O(6)

1

]
= −3gN2

cCFΛ6 . (5.19)

In particular, the quark-gluon four-point function is no longer required.
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The field renormalization of the background field, which we still denote by ZG, is

given by

zG = β0 ,

rG = CA

(
67

9
− 2(1− ξ) +

(1− ξ)2

4

)
− 20

9
NfTF + zG log

µ2

Λ2
. (5.20)

Because explicit gauge invariance is preserved, the divergent part of ZG and Zg satisfy

zG = −2zg. The same relation should be retained for the finite pieces, rG = −2rg in

order to preserve the Ward identity. However, we again remark that rg does not enter

our matching relations, as we use the MS coupling gMS(µ = Λ, ε = 0) on the r.h.s. of the

conditions (5.19).

The result for the divergent pieces of the matching relations in the background-field

gauge are given by

z
(6)
1,1 = −6CA + zg +

3

2
zG = −1

2
(CA + 2Nf + β0) ,

z
(6)
1,2 = −3

8
CA ,

z
(6)
1,n8

=
3

8
CA , (5.21)

while the finite pieces are

c
(6)
1,1 = −CA

[(
47

6
+

8ψ

3
− 3 log 2

)
− 1

12
(1− ξ) (6K + 3ψ + 6 log 2 + 44)

+
3

4
(1− ξ)2

]
+

3

2
rG −

(
3

2
zG + zg

)
log

µ2

Λ2
,

c
(6)
1,2 = CA

[
−89

96
+

5 log 2

8

]
,

c
(6)
1,5 = CA

[
21K

8
+

3 log 2

8
− 61

48

]
,

c
(6)
1,n1

= CA

[
−K

4
+

log 2

4
− 1

24

]
,

c
(6)
1,n8

= CA

[
−21K

32
− 3 log 2

32
+

157

192

]
,

c
(4)
1,1 =

3

4
CAΛ2 . (5.22)

It can be checked that the background-gluon two- and three-point functions respect the

Ward identities implied by gauge invariance at one loop for any value of the quantum gauge

parameter ξ. However, even in the background-field method, off-shell Green’s functions are

unphysical quantities and they are gauge-parameter dependent. Therefore, our matching

relations depend on the quantum gauge parameter ξ (but of course not on the background

gauge parameter ξ̂), since the RI-S̃MOM conditions themselves are gauge dependent.

Finally, we note that the results for z1j agree in the background-field gauge (5.21)

and the conventional gauge (5.16) for the case of mixing into physical (class-I) operators
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Oj , as is required by gauge invariance [59]. For the mixing into nuisance operators, gauge

invariance does not provide a similar constraint: in the case of class-IIb operators, the

mixing vanishes in the background-field method but not in conventional gauge, whereas

for class-IIa nuisance operators the result in conventional gauge depends on the choice of

basis for the class-IIb operators. We observe that with the basis change

N (6)
11
′ = N (6)

11 −N
(6)
8 (5.23)

the results for the mixing transform as

z
(6)
1,n8
N (6)

8 + z
(6)
1,n11
N (6)

11 = (z
(6)
1,n8

+ z
(6)
1,n11

)N (6)
8 + z

(6)
1,n11
N (6)

11
′ . (5.24)

The transformed operator N (6)
11
′ still belongs to class-IIb. In this particular basis, the

divergent pieces z1,nj of the mixing into class-IIa operators Nj in conventional gauge agree

with the results obtained in the background-field method.

6 Conclusions

The CP -odd three-gluon operator gives the main contribution to the nucleon EDM in

several beyond the Standard Model scenarios, especially when CP is violated in the inter-

actions of heavy particles, such as the Higgs [48, 85] or the Higgs and the top quark [86].

First-principle calculations, with controlled theoretical uncertainties, of the matrix ele-

ments of the gCEDM on the nucleon are necessary to derive the constraints of EDM

experiments on this operator, and the implications for BSM physics. At the moment, the

best estimates of the nucleon EDM from the gCEDM have been obtained with QCD sum

rule calculations [87, 88], which are however affected by large theoretical uncertainties, at

the level of 50%-100%. While for this operator lattice QCD calculations are still in their

infancy [53, 54, 89], this method can in principle provide fully nonperturbative results, in

which all sources of systematic uncertainty can be quantified, controlled, and improved.

LQCD and continuum calculations are interfaced via the definition of a renormalization

scheme. In this paper, we have defined an RI-S̃MOM scheme for the renormalization of the

gCEDM, and we have provided the conversion matrix to the MS scheme at O(αs). The

derived operator basis will be of relevance also for matching calculations in other schemes,

e.g., using the gradient flow [53, 54].

As a dimension-six, flavor-singlet operator, the gCEDM has a complicated mixing

pattern in an off-shell scheme. On the lattice, insertions of O(6)
1 induce power divergences,

which under the assumption of good chiral symmetry can be absorbed by three dimension-

four and one dimension-five operator, defined in (3.24) and (3.25). Both on the lattice and

in the continuum, the gCEDM mixes into 10 dimension-six gauge-invariant operators that

do not vanish by EOM, given in (3.27), 10 gauge-invariant nuisance operators (3.28), and 10

gauge-variant nuisance operators (3.29). In this work, we have provided 34 renormalization

conditions that define our RI-S̃MOM scheme. In order to obtain enough independent

conditions, it is necessary to compute the gluon two- and three-point functions, the quark

two-point function, the quark-gluon and quark-photon three-point functions, and some
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projections of the quark-gluon four-point function. We have imposed the renormalization

conditions at one loop and computed the conversion matrix between the RI-S̃MOM and

MS schemes, both in a conventional covariant gauge and in background-field gauge.

The number of operators and renormalization conditions make the lattice implementa-

tion of the RI-S̃MOM renormalization scheme challenging, even though calculations of com-

parable complexity have been carried out for ∆S = 1 operators that contribute to K → ππ

decays [90, 91]. For this reason, we explored the definition of the RI-S̃MOM scheme in

the background-field gauge [61], which allows to discard gauge-variant operators. Using

the background-field method, the definition of the RI-S̃MOM scheme involves only two-

and three-point functions, a very noticeable simplification. While background-field meth-

ods have not extensively been used to study higher-dimensional operators on the lattice,

there are no particular technical problems for the implementation of the background-field

condition [92], and thus of the renormalization conditions enumerated in section 5.3.2. It

will be interesting to further explore the use of background-field methods in actual numer-

ical simulations.
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A Construction of gauge-invariant operator basis

In this appendix, we provide details on the construction of the basis of gauge-invariant

operators. In appendix A.1, we describe the symmetries of the building blocks. In ap-

pendix A.2, A.3, and A.4, we construct a complete list of pure gauge operators, two-quark,

and four-quark operators, respectively, which we summarize in appendix A.5. Here, we

disregard evanescent operators away from D = 4 dimensions, which will be discussed in

appendix C.

A.1 Symmetries and building blocks

The gauge-invariant class-I operators that are needed to renormalize the CP -odd three-

gluon operator are constructed from the building blocks (3.21). The mass matrix has been

promoted to a spurion field. The chiral transformations (3.9) assigned to spurion and

external fields allow us to take into account explicit chiral-symmetry breaking.

In order to renormalize the three-gluon operator, the operators have to be chirally

invariant in the spurion sense, Lorentz scalars, CP -odd, and P -odd. Since we are working

at leading order in the electromagnetic coupling and the external photon field always comes
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field comm. mass dim. Lorentz SU(3)c χ † P CP

qL − 3
2 (2, 1) 3 (3, 1) q̄Lγ

0 γ0qR γ0Cq̄TL

qR − 3
2 (1, 2) 3 (1, 3) q̄Rγ

0 γ0qL γ0Cq̄TR

q̄L − 3
2 (1, 2) 3̄ (3̄, 1) γ0qL q̄Rγ

0 qTLCγ
0

q̄R − 3
2 (2, 1) 3̄ (1, 3̄) γ0qR q̄Lγ

0 qTRCγ
0

Gaµν + 2 (3, 1)⊕ (1, 3) 8 (1, 1) Gaµν Gµνa −η(a)Gµνa

FLµν + 2 (3, 1)⊕ (1, 3) 1 (8, 1) FLµν FµνR −FµνL
T

FRµν + 2 (3, 1)⊕ (1, 3) 1 (1, 8) FRµν FµνL −FµνR
T

M + 1 (1, 1) 1 (3, 3̄) M† M† M∗

M† + 1 (1, 1) 1 (3̄, 3) M M MT

∂µ + 1 (2, 2) 1 (1, 1) ∂µ ∂µ ∂µ

Dµ(·) + 1 (2, 2) 1⊕ 8 (1,1)⊕
(8,1)⊕(1,8) (·)

←−
Dµ γ0Dµγ0(·) Dµ∗(·)

Table 3. Properties of dynamical fields, spurion and external fields, and derivative operators. For

simplicity, additional arbitrary phases in P - and CP -conjugation are neglected. η(a) is defined

in (A.6). The Lorentz group is locally isomorphic to SU(2)L × SU(2)R.

together with a charge matrix Q and a coupling e, we only consider operators with at most

one QED field-strength tensor.

The symmetry properties of the building blocks are listed in table 3. The charge-

conjugation matrix fulfills

CγTµC
−1 = −γµ (A.1)

and can be written in the Dirac representation as C = iγ2γ0, hence

C = C∗ = −C−1 = −C† = −CT . (A.2)

The Dirac field transforms under charge conjugation as

Cψ(x)C−1 = ηcCψ̄
T (x) ,

Cψ̄(x)C−1 = η∗cψ
T (x)C , (A.3)

where ηc is a phase factor, which we put equal to 1 in the following. The electromagnetic

gauge field transforms as

CAµ(x)C−1 = −Aµ(x) , (A.4)

whereas the non-abelian gauge field transforms under charge conjugation as

CGaµ(x)C−1 = −η(a)Gaµ(x) , (A.5)
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with

η(a) =

{
1, a = 1, 3, 4, 6, 8,

−1, a = 2, 5, 7.
(A.6)

We classify the operators according to the field content and mass dimension (up to O(e)):

• pure gauge operators:

– dimension 4: G2,

– dimension 5: G2D, G2M,

– dimension 6: G3, G2D2, G2DM, G2M2,

• two-quark operators:

– dimension 3: ψ2,

– dimension 4: ψ2M, ψ2D,

– dimension 5: ψ2M2, ψ2DM, ψ2D2, ψ2G, ψ2F ,

– dimension 6: ψ2M3, ψ2DM2, ψ2D2M, ψ2D3, ψ2GM, ψ2GD, ψ2FM, ψ2FD,

• four-quark operators:

– dimension 6: ψ4,

where ψ2 denotes a quark bilinear. In this list, we have already excluded classes that ob-

viously contain no gauge-invariant operators, e.g., FG, FG2 classes. In the following, we

construct the explicit operators by hand. We use the Hilbert series techniques [66–70] as a

cross-check to count the number of operators in each class, including total derivatives and

EOM operators. As the known Hilbert series method does not include the discrete symme-

tries, even in this cross-check we select by hand the operators that are P -odd and CP -odd.

A.2 Pure gauge operators

As a first class of operators, we consider the pure gauge operators. The building blocks are

the quark-mass matrix, partial and covariant derivatives, and field-strength tensors. There

are no operators at dimension two or three, hence we start at dimension four. Note that

we need at least two field-strength tensors in order to have a non-vanishing trace. As we

are only interested in operators up to O(e), we disregard the electromagnetic field-strength

tensor in this section.

Although in dimensional regularization mixing is only possible within operators of the

same mass dimension (the mass matrix is treated as a spurion field), this is not necessarily

true for other schemes. Therefore, we also look for P -odd, CP -odd operators of dimension

smaller than six.
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dim = 4. At dimension four, we have two operators that consist only of gauge fields:

Tr[GµνG
µν ] , Tr[GµνG̃

µν ] . (A.7)

The first term is the standard CP -even kinetic term for the gauge field, the second one is

the CP -odd and P -odd QCD θ-term. It belongs to our basis:

ÕG,(4)
1 = Tr[GµνG̃

µν ] . (A.8)

Here, we use the tilde to distinguish a preliminary set of operators from the final ones after

having removed redundancies.

dim = 5. At dimension five, there are no chirally invariant pure gauge operators.

dim = 6. We reach dimension six by adding either two mass matrices or two derivatives

to a dimension-four operator (adding one mass matrix and one derivative does not give a

Lorentz scalar). The only way to add two mass matrices is within a trace:

ÕG,(6)
1 = Tr[MM†]Tr[GµνG̃

µν ] , (A.9)

where now the first trace is in flavor space, the second one in color space.

We consider the addition of two partial derivatives. The six Lorentz indices can be

contracted either with gµνgλσgαβ or with εµνλσgαβ to form a Lorentz scalar. In total, there

are only four different contractions:

�Tr[GµνG
µν ], �Tr[GµνG̃

µν ], ∂µ∂
νTr[GµλGνλ], ∂µ∂

νTr[GµλG̃νλ] . (A.10)

Furthermore, the Schouten identity

gαρεµνλσ + gαµενλσρ + gανελσρµ + gαλεσρµν + gασερµνλ = 0 (A.11)

implies the relation

�Tr[GµνG̃
µν ] = 4∂µ∂

νTr[GµλG̃νλ] . (A.12)

This only leaves the following P -odd and CP -odd operator:

ÕG,(6)
2 = �Tr[GµνG̃

µν ] . (A.13)

Next, we consider the case where we add one partial and one covariant derivative. The

possible contractions of the Lorentz indices are:

∂µTr[(DµGνλ)Gνλ] , ∂µTr[(DνGµλ)Gνλ] , ∂µTr[(DνG
νλ)Gµλ] ,

∂µTr[(DµGνλ)G̃νλ] , ∂µTr[(DνGµλ)G̃νλ] , ∂µTr[(DνG̃
νλ)Gµλ] ,

∂νTr[(DµGµλ)G̃νλ] , ∂νTr[(DµG̃νλ)Gµλ] , ∂νTr[(DλG
µ
α)Gµβ ]ενλαβ . (A.14)

However, we only have to consider contractions with the Levi-Civita tensor: they are P -odd

and CP -odd, while the other contractions are even.
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By applying the Bianchi identity (3.19), we remove redundancies. Furthermore, we

note the Leibniz rule (3.18) for the covariant derivative in adjoint representation:

Tr[(DµA)B] + Tr[A(DµB)] = Tr[(∂µA)B] + Tr[A(∂µB)]− igTr[[Gµ, A]B +A[Gµ, B]]

= ∂µTr[AB] . (A.15)

We find the relations

∂µTr[(DνG̃
νλ)Gµλ] = 0 ,

∂µTr[(DµGνλ)G̃νλ] = 2∂µTr[(DνGµλ)G̃νλ] ,

∂νTr[(DλG
µ
α)Gµβ ]ενλαβ = ∂νTr[(DµG̃νλ)Gµλ] ,

∂µTr[(DνGµλ)G̃νλ] + ∂µTr[(DνG̃
νλ)Gµλ] = ∂µ∂νTr[GµλG̃

νλ] ,

∂νTr[(DµGµλ)G̃νλ] + ∂νTr[(DµG̃νλ)Gµλ] = ∂µ∂νTr[GµλG̃
νλ] , (A.16)

hence, there is only one additional independent operator:

ÕG,(6)
3 = ∂νTr[(DµGµλ)G̃νλ] . (A.17)

Finally, we can build operators with two covariant derivatives and two field-strength

tensors. The requirement that the operator be P - and CP -odd allows again only the

contraction with εµνλσgαβ . If the two derivatives do not act on the same field-strength

tensor, we can use (A.15) and obtain a linear relation to an operator where both derivatives

act on the same tensor and an operator involving a partial derivative.

The possible contractions are

Tr[(DµDνGλσ)Gλβ ]εµνσβ , Tr[(DµDνGλσ)Gνβ ]εµλσβ , Tr[(DνDµGλσ)Gνβ ]εµλσβ ,

Tr[(DνDµGνλ)Gαβ ]εαβµλ , Tr[(DµD
νGνλ)Gαβ ]εαβµλ , Tr[(DµD

µGλσ)Gαβ ]εαβλσ .

(A.18)

We take some linear combinations to replace this set by

Tr[([Dµ, Dν ]Gλσ)Gλβ ]εµνσβ , Tr[([Dµ, Dν ]Gλσ)Gνβ ]εµλσβ , Tr[(DνDµGλσ)Gνβ ]εµλσβ ,

Tr[([Dν , Dµ]Gνλ)Gαβ ]εαβµλ , Tr[(DµD
νGνλ)Gαβ ]εαβµλ , Tr[(DµD

µGλσ)Gαβ ]εαβλσ .

(A.19)

Using the Jacobi and Bianchi identities, we can eliminate three elements of the set:

Tr[(DνDµGλσ)Gνβ ]εµλσβ = 0 ,

Tr[(DνDµGνλ)Gαβ ]εαβµλ =
1

2
Tr[(DµD

µGλσ)Gαβ ]εαβλσ ,

Tr[(DµD
νGνλ)Gαβ ]εαβµλ = ∂µTr[(DνGνλ)Gαβ ]εαβµλ − Tr[(DνGνλ)(DµGαβ)]εαβµλ

= ∂µTr[(DνGνλ)Gαβ ]εαβµλ . (A.20)
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The commutators of covariant derivatives in the adjoint representation can be expressed

in terms of the field-strength according to

[Dρ, Dσ](·) = −ig[Gρσ, · ] . (A.21)

Therefore, the only additional operator is the CP -odd three-gluon operator itself,

ÕG,(6)
4 = iTr[GµνG

µ
λG̃

νλ] , (A.22)

which is the only P -odd and CP -odd operator that can be constructed with three field-

strength tensors. This completes the construction of the set of pure gauge operators.

A.3 Two-quark operators

We continue with two-quark operators, which at least have mass dimension three.

dim = 3. There is no quark bilinear that is a Lorentz scalar and chirally invariant.

dim = 4. In order to reach mass dimension four, we can add either one mass matrix or

one derivative to a quark bilinear.

The chirally invariant operators obtained by adding a mass matrix to a quark bilin-

ear are

q̄LMqR , q̄RM†qL . (A.23)

There is one Hermitian linear combination that is P - and CP -odd:

Õ2q,(4)
1 = q̄LiMqR − q̄RiM†qL

fixed spurion7→ q̄iγ5Mq . (A.24)

Next, we consider the insertion of a derivative, which has to be contracted with a

Lorentz-vector, hence we need a vector quark bilinear. The possible gauge-invariant and

chirally invariant contractions with a partial or covariant derivative are the following:

∂µ(q̄Lγ
µqL) , ∂µ(q̄Rγ

µqR) , q̄Lγ
µi
←→
D µqL , q̄Rγ

µi
←→
D µqR . (A.25)

The third and fourth operators are CP -even (they are the standard kinetic terms), while

the first two are CP -odd. There is only one linear combination that is also P -odd, the

divergence of the axial current:

Õ2q,(4)
2 = ∂µ(q̄Rγ

µqR − q̄LγµqL) = ∂µ(q̄γ̃µq) , (A.26)

where γ̃µ is defined in (3.23).

dim = 5. We reach mass dimension five by inserting two masses, one mass and one

derivative, two derivatives, or a field strength tensor into a quark bilinear.

There are two chirally invariant operators obtained from the insertion of two mass

matrices into a quark bilinear:

εijkεlmnM†mjM
†
nkq̄

i
Lq

l
R , εijkεlmnMmjMnkq̄

i
Rq

l
L , (A.27)
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which are possible due to the fact that for SU(3), the following tensor decompositions hold:

3⊗ 3⊗ 3 = 3⊗ (3̄⊕ 6) = 1⊕ 8⊕ 8⊕ 10 ,

3̄⊗ 3̄⊗ 3̄ = 3̄⊗ (3⊕ 6̄) = 1⊕ 8⊕ 8⊕ 10 , (A.28)

hence a product of three (anti-)fundamental representations contains a singlet. If the

spurions M and M† are fixed to a diagonal mass matrix, the above operators are flavor

conserving as well and represent a correction to the mass terms themselves. We can again

form one P -odd and CP -odd combination:

Õ2q,(5)
1 = iεijkεlmn(M†mjM

†
nkq̄

i
Lq

l
R −MmjMnkq̄

i
Rq

l
L)

fixed spurion7→ εijkεlmnMmjMnkq̄
iiγ5q

l .

(A.29)

For a diagonal mass matrix, the following relation holds [71, 72]:

Õ2q,(5)
1 = 2 det(M)q̄iγ5M−1q . (A.30)

Consider the insertion of a single mass matrix and a derivative into a quark bilinear.

In order to contract the Lorentz index of the derivative, we need a vector bilinear. With an

additional mass matrix, it is impossible to construct a chirally invariant operator. Finally,

we consider the case of two derivatives. We have to start either with a (pseudo-)scalar or

with a tensor quark bilinear, and add two derivatives. Also here, we cannot construct a

chirally invariant operator. The same is obviously true for the insertion of a field-strength

tensor in a two-quark operator.

dim = 6. We obtain operators of dimension six by inserting either three mass matrices,

two mass matrices and one derivative, one mass matrix and two derivatives, or three

derivatives into a quark bilinear. Furthermore, a field-strength tensor can take the role of

two derivatives.

We start with the insertion of three mass matrices. A basis for the chirally invariant

operators is given by:

q̄LMM†MqR , q̄RM†MM†qL , Tr[MM†]q̄LMqR , Tr[MM†]q̄RM†qL . (A.31)

The SU(Nf ) Fierz identity

tAklt
A
ij =

1

2
δkjδil −

1

2Nf
δklδij (A.32)

implies

Tr[AtA]ψ̄tAχ =
1

2
ψ̄Aχ− 1

2Nf
Tr[A]ψ̄χ , (A.33)

hence tA ⊗ tA operators are linearly dependent of 1⊗ 1 operators.

We can form the following Hermitian P -odd and CP -odd linear combinations:

Õ2q,(6)
1 = i

(
q̄LMM†MqR − q̄RM†MM†qL

)
fixed spurion7→ q̄iγ5M3q ,

Õ2q,(6)
2 = i Tr[MM†]

(
q̄LMqR − q̄RM†qL

)
fixed spurion7→ Tr[M2]q̄iγ5Mq . (A.34)
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Next, we insert two mass matrices and one derivative into a quark bilinear. We find

the following chirally invariant Hermitian operators:

∂µ

(
q̄Lγ

µMM†qL
)
, ∂µ

(
q̄Rγ

µM†MqR

)
, Tr[MM†]∂µ (q̄Lγ

µqL) ,

Tr[MM†]∂µ (q̄Rγ
µqR) , q̄Lγ

µi
←→
D µMM†qL , q̄Rγ

µi
←→
D µM†MqR ,

Tr[MM†]
(
q̄Lγ

µi
←→
D µqL

)
, Tr[MM†]

(
q̄Rγ

µi
←→
D µqR

)
. (A.35)

The four operators with covariant derivatives i
←→
D µ are CP -even. The following linear

combinations are P - and CP -odd:

Õ2q,(6)
3 = ∂µ

(
q̄Rγ

µM†MqR − q̄LγµMM†qL
)

fixed spurion7→ ∂µ
(
q̄γ̃µM2q

)
,

Õ2q,(6)
4 = Tr[MM†]∂µ (q̄Rγ

µqR − q̄LγµqL)
fixed spurion7→ Tr[M2]∂µ (q̄γ̃µq) . (A.36)

The next operator class consist of insertions of one mass matrix and two derivatives

in a quark bilinear. We start with the following set of chirally invariant operators:

�(q̄LMqR) , �(q̄RM†qL) , ∂µ(q̄L
←→
D µMqR) , ∂µ(q̄R

←→
D µM†qL) ,

∂µ(q̄Lσ
µν←→D νMqR) , ∂µ(q̄Rσ

µν←→D νM†qL) , q̄L(
←−
D2 +D2)MqR ,

q̄R(
←−
D2 +D2)M†qL , q̄Lσ

µν [Dµ, Dν ]MqR , q̄Rσ
µν [Dµ, Dν ]M†qL . (A.37)

The following Hermitian linear combinations are P - and CP -odd:

Õ2q,(6)
5 = i �(q̄LMqR − q̄RM†qL)

fixed spurion7→ �(q̄iγ5Mq) ,

Õ2q,(6)
6 = ∂µ(q̄Lσ

µν←→D νMqR − q̄Rσµν
←→
D νM†qL)

fixed spurion7→ ∂µ(q̄σ̃µν
←→
D νMq) ,

Õ2q,(6)
7 = i

(
q̄L(
←−
D2 +D2)MqR − q̄R(

←−
D2 +D2)M†qL

) fixed spurion7→ q̄iγ5(
←−
D2 +D2)Mq ,

Õ2q,(6)
8 = q̄Lσ

µν [Dµ, Dν ]MqR − q̄Rσµν [Dµ, Dν ]M†qL
fixed spurion7→ q̄σ̃µν [Dµ, Dν ]Mq ,

(A.38)

where σ̃µν is defined in (3.23).

The next class of two-quark operators contains insertions of three derivatives. The

three Lorentz indices of the derivatives {·}µνλ can either be contracted with gµνγλ or with

εµνλσγσ. For the moment, we disregard evanescent operators (see appendix C) and use the

four-dimensional relation

γµγνγλ = gµνγλ + gνλγµ − gµλγν + iεµνλσγσγ5 . (A.39)

Due to the odd number of gamma matrices, all operators will be chirally invariant, hence

we work directly in the parity basis. We start with the contractions with gµνγλ. A γ5

matrix is required for P -odd operators. The derivatives can be either covariant derivatives

or partial derivatives of a gauge singlet. Note that due to

[Dµ, Dν ] = −[
←−
Dµ, Dν ] = −[Dµ,

←−
Dν ] = [

←−
Dµ,
←−
Dν ] , (A.40)
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the covariant derivatives acting on the left can always be put on the left-hand side of

derivatives acting on the right. Furthermore, by using the relation

Ā(
←−
Dµ +Dµ)B = ∂µ(ĀB) , (A.41)

left-acting covariant derivatives can be traded for partial derivatives of the gauge singlet.

Hence, we find the following list of nine operators with three derivatives:

q̄γ̃νDµD
µDνq , q̄γ̃νDµDνD

µq , q̄γ̃νDνD
µDµq ,

∂µ(q̄γ̃νDµDνq) , ∂µ(q̄γ̃νDνD
µq) , ∂ν(q̄γ̃νDµDµq) ,

�(q̄γ̃νDνq) , ∂µ∂ν(q̄γ̃νDµq) , �∂ν(q̄γ̃νq) .

(A.42)

By taking linear combinations, we make them manifestly Hermitian:

q̄γ̃ν(
←−
D2Dν +

←−
DνD

2)q , i q̄γ̃ν
←−
Dµ
←→
D νD

µq , i q̄γ̃ν(
←−
D2Dν −

←−
DνD

2)q ,

∂µ

(
q̄γ̃ν(
←−
Dν
←−
Dµ +DµDν)q

)
, i ∂µ(q̄γ̃ν [Dµ, Dν ]q) , ∂ν

(
q̄γ̃ν(
←−
D2 +D2)q

)
,

i�(q̄γ̃ν
←→
D νq) , i ∂µ∂ν(q̄γ̃ν

←→
D µq) , �∂ν(q̄γ̃νq) .

(A.43)

Four operators are CP -odd:

Õ2q,(6)
9 = q̄γ̃ν(

←−
D2Dν +

←−
DνD

2)q ,

Õ2q,(6)
10 = ∂µ

(
q̄γ̃ν(
←−
Dν
←−
Dµ +DµDν)q

)
,

Õ2q,(6)
11 = ∂ν

(
q̄γ̃ν(
←−
D2 +D2)q

)
,

Õ2q,(6)
12 = �∂ν(q̄γ̃νq) . (A.44)

Next, we investigate the contractions of three derivatives with εµνλσγσ. It is only

possible to have three covariant derivatives or two covariant and one partial derivative:

partial derivatives are commuting, hence two or three of them vanish upon contraction

with the Levi-Civita tensor. Left-acting covariant derivatives can again be traded for

right-acting and partial derivatives. If we choose two covariant and one partial derivative,

we can immediately insert the commutator of the covariant derivatives. In order to have a

P -odd operator, no γ5 matrix is allowed. The only Hermitian operator with two covariant

derivatives is therefore

Õ2q,(6)
13 = ∂µ(q̄iγσ[Dν , Dλ]q)εµνλσ , (A.45)

which indeed is CP -odd. Finally, consider the insertion of three covariant derivatives:

q̄γσDµDνDλqε
µνλσ =

1

2
q̄γσDµ[Dν , Dλ]qεµνλσ . (A.46)

Hermitian conjugation of this operator is identical to a CP conjugation. The CP -odd Her-

mitian component is again identical to Õ2q,(6)
13 , which is therefore the only CP -odd operator.

Finally, we consider the operator classes with field-strength tensors. Due to (3.14),

we only need to take into account the external (electromagnetic) field-strength tensor:
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the QCD field-strength tensor can be written as a linear combination of the commutator

of covariant derivatives and the external field-strength tensors. In the class ψ2FM, the

chirally invariant operators are

q̄Lσ
µνFLµνMqR , q̄Lσ

µνMFRµνqR , q̄Rσ
µνFRµνM†qL q̄Rσ

µνM†FLµνqL . (A.47)

One Hermitian linear combination is both P -odd and CP -odd:

Õ2q,(6)
14 = i

(
q̄Lσ

µν(FLµνM+MFRµν)qR − q̄Rσµν(FRµνM† +M†FLµν)qL
)

fixed spurion7→ ie(q̄σ̃µν{M, Q}q)Fµν . (A.48)

The last class of two-quark operators is ψ2FD. Here, we find the P -odd operators

(q̄Rγ
µ←−DνFRµνqR − q̄Lγµ

←−
DνFLµνqL) , (q̄Rγ

µFRµνD
νqR − q̄LγµFLµνDνqL) ,

∂ν(q̄Rγ
µFRµνqR − q̄LγµFLµνqL) , (q̄RγσF

R
νλDµqR + q̄LγσF

L
νλDµqL)εµνλσ ,

∂µ(q̄RγσF
R
νλqR + q̄LγσF

L
νλqL)εµνλσ . (A.49)

Two CP -odd Hermitian linear combinations exist:

Õ2q,(6)
15 = i(q̄Rγ

µFRµνD
νqR − q̄LγµFLµνDνqL)− i(q̄Rγµ

←−
DνFRµνqR − q̄Lγµ

←−
DνFLµνqL)

fixed spurion7→ ie(q̄γ̃µQ
←→
D νq)Fµν ,

Õ2q,(6)
16 = ∂µ(q̄RγσF

R
νλqR + q̄LγσF

L
νλqL)εµνλσ

fixed spurion7→ e∂µ(q̄γσQq)Fνλε
µνλσ . (A.50)

A.4 Four-quark operators

A basis for the chirally invariant four-quark operators is given by the following six operators:

OV,LL1c1f
= (q̄Lγ

µqL)(q̄LγµqL) , OV,LL8c1f
= (q̄Lγ

µtaqL)(q̄Lγµt
aqL) ,

OV,RR1c1f
= (q̄Rγ

µqR)(q̄RγµqR) , OV,RR8c1f
= (q̄Rγ

µtaqR)(q̄Rγµt
aqR) ,

OV,LR1c1f
= (q̄Lγ

µqL)(q̄RγµqR) , OV,LR8c1f
= (q̄Lγ

µtaqL)(q̄Rγµt
aqR) , (A.51)

where ta are the SU(3) generators in color space. Note that flavor-octet operators OV,LL1c8f
,

OV,LL8c8f
, OV,RR1c8f

, and OV,RR8c8f
are related to the above operators through Fierz identities in

Dirac space

(γµPL)[γµPL] = −(γµPL][γµPL) ,

(γµPR)[γµPR] = −(γµPR][γµPR) ,

(γµPL)[γµPR] = 2(PR][PL) ,

(γµPR)[γµPL] = 2(PL][PR) , (A.52)

as well as the SU(Nf ) and SU(Nc) Fierz relations:

tAijt
A
kl =

1

2
δilδkj −

1

2Nf
δijδkl , taαβt

a
γδ =

1

2
δαδδγβ −

1

2Nc
δαβδγδ . (A.53)
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On the other hand, the flavor-octet LR operators OV,LR1c8f
, OV,LR8c8f

are not chirally invariant.

For the four-quark operators, Hermitian conjugation acts in the same way as a CP -

transformation. All the operators OV,LL, OV,RR, and OV,LR are Hermitian and CP -even.

We conclude that there is no four-quark operator that could mix with the CP -odd three-

gluon operator.

Note that if SU(2) instead of SU(3) chiral symmetry is considered, there are additional

chirally invariant operators [93, 94] due to the absence of the symmetric structure constants

dABC . In SU(3), these operators only appear at dimension 7 as structures similar to (A.27):

εijkεlmnM†mj(q̄
k
Lq

n
R)(q̄iLq

l
R) , εijkεlmnMmj(q̄

k
Rq

n
L)(q̄iRq

l
L) ,

εijkεlmnM†mj(q̄
k
Lt
aqnR)(q̄iLt

aqlR) , εijkεlmnMmj(q̄
k
Rt
aqnL)(q̄iRt

aqlL) , (A.54)

with two P -odd and CP -odd linear combinations. The SU(3) analysis shows that the

SU(2) invariant operators

(ūLuR)(d̄LdR)− (ūRuL)(d̄RdL)− (d̄LuR)(ūLdR) + (d̄RuL)(ūRdL) ,

(ūLt
auR)(d̄Lt

adR)− (ūRt
auL)(d̄Rt

adL)− (d̄Lt
auR)(ūLt

adR) + (d̄Rt
auL)(ūRt

adL) , (A.55)

always involve a factor ms. Therefore, the gCEDM does not mix into these operators, which

can only appear as power corrections. Here, we neglect any effects beyond dimension 6.

A.5 Intermediate summary

Here, we summarize the P -odd, CP -odd, Lorentz- and gauge-invariant, chirally invariant

Hermitian operators up to dimension 6.

Pure gauge operators. At dimension four, there is the QCD θ-term:

ÕG,(4)
1 = Tr[GµνG̃

µν ] , (A.56)

while at dimension six, we find four operators:

ÕG,(6)
1 = Tr[M2]Tr[GµνG̃

µν ] ,

ÕG,(6)
2 = �Tr[GµνG̃

µν ] ,

ÕG,(6)
3 = ∂νTr[(DµGµλ)G̃νλ] ,

ÕG,(6)
4 = iTr[GµνG

µ
λG̃

νλ] . (A.57)

Two-quark operators. We find two operators at dimension four:

Õ2q,(4)
1 = q̄iγ5Mq ,

Õ2q,(4)
2 = ∂µ(q̄γ̃µq) , (A.58)

one operator at dimension five:

Õ2q,(5)
1 = εijkεlmnMmjMnkq̄

iiγ5q
l , (A.59)
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and 16 operators at dimension six:

Õ2q,(6)
1 = q̄iγ5M3q ,

Õ2q,(6)
2 = Tr[M2]q̄iγ5Mq ,

Õ2q,(6)
3 = ∂µ

(
q̄γ̃µM2q

)
,

Õ2q,(6)
4 = Tr[M2]∂µ (q̄γ̃µq) ,

Õ2q,(6)
5 = � (q̄iγ5Mq) ,

Õ2q,(6)
6 = ∂µ(q̄σ̃µν

←→
D νMq) ,

Õ2q,(6)
7 = q̄iγ5(

←−
D2 +D2)Mq ,

Õ2q,(6)
8 = q̄σ̃µν [Dµ, Dν ]Mq ,

Õ2q,(6)
9 = q̄γ̃µ(

←−
D2Dµ +

←−
DµD

2)q ,

Õ2q,(6)
10 = ∂µ

(
q̄γ̃ν(
←−
Dν
←−
Dµ +DµDν)q

)
,

Õ2q,(6)
11 = ∂µ

(
q̄γ̃µ(
←−
D2 +D2)q

)
,

Õ2q,(6)
12 = �∂µ(q̄γ̃µq) ,

Õ2q,(6)
13 = ∂µ(q̄iγσ[Dν , Dλ]q)εµνλσ ,

Õ2q,(6)
14 = ie(q̄σ̃µν{M, Q}q)Fµν ,

Õ2q,(6)
15 = ie(q̄γ̃µQ

←→
D νq)Fµν ,

Õ2q,(6)
16 = e∂µ(q̄γσQq)Fνλε

µνλσ . (A.60)

Four-quark operators. There are no four-quark operators that can mix with the

gCEDM.

B BRST invariance and nuisance operators

In this appendix, we provide details on the construction of the nuisance operators, which

vanish by the EOM. We follow the method of [59].

In appendix B.1, we review the EOM. In appendix B.2, we discuss the Slavnov-Taylor

identities. The recipe for the construction of the nuisance operators is reviewed in ap-

pendix B.3. The symmetry properties of the building blocks are discussed in appendix B.4.

We construct the seed operators in appendix B.5 and list the resulting nuisance operators

in appendix B.6. In appendix B.7, we derive redundancies in the preliminary operator set,

and we relate the operators to our final basis.

B.1 Gauge fixing and equations of motion

The QCD Lagrangian including gauge fixing and Faddeev-Popov ghosts is given by

LQCD+GF+gh = −1

4
Gµνa Gaµν + q̄(i /D −M)q − 1

2ξ
(∂µGaµ)2 + ∂µc̄a(Dac

µ c
c) , (B.1)
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where Dac
µ = ∂µδ

ac+gfabcGbµ is the covariant derivative in the adjoint representation. The

gauge-fixing term can also be written in terms of an auxiliary field Ga [95]:

LGF =
ξ

2
GaGa + (∂µGa)Gaµ . (B.2)

The EOM for Ga is ξGa = ∂µGaµ, which, inserted into LGF, leads to the original gauge-

fixing term plus a total derivative.

When the quark mass matrix is promoted to a spurion field, the mass term has to be

replaced by

LQCD
m = −q̄LMqR − q̄RM†qL. (B.3)

The complete list of EOM reads:

(i /D −M†PL −MPR)q = 0 ,

q̄(i
←−
/D +M†PL +MPR) = 0 ,

DµGaµν = −gq̄taγνq − ∂νGa + gfabc(∂ν c̄
b)cc ,

ξGa = ∂µGaµ,

∂µDac
µ c

c = 0 ,

Dac
µ ∂

µc̄c = 0 . (B.4)

For notational convenience, we define the EOM fields:

qE := (i /D −M†PL −MPR)q , q̄E := −q̄(i
←−
/D +M†PL +MPR),

GaE := Ga − 1

ξ
∂µGaµ . (B.5)

The definition of the EOM quark fields is chosen in such a way that they fulfil q†E = q̄Eγ
0.

B.2 Slavnov-Taylor identities

We add source terms for the fields and the (composite) BRST variations:

L0 = −1

4
Gµνa Gaµν + q̄(i /D −MPR −M†PL)q + ∂µc̄a(Dac

µ c
c) +

ξ

2
GaGa + (∂µGa)Gaµ

+Hµ,aGaµ + L̄q + q̄L+ N̄aca + c̄aNa

− Jµ,aDac
µ c

c + K̄aGa +
1

2
gfabcKacbcc + gM̄cataq + gq̄cataM . (B.6)

The action including a set of sources for gauge-invariant ghost-free operators Oi is defined as

S =

∫
d4xL0 +

∫
d4xΦi(x)Oi(x) =: S0 + Φ · O. (B.7)

We introduce the BRST transformation:

δGaµ = − δS

δJµ,a
δλ = Dac

µ c
cδλ ,
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δq = −i δS
δM̄

δλ = −igcataqδλ ,

δq̄ = −i δS
δM

δλ = −iq̄gcataδλ ,

δca =
δS

δKa
δλ =

1

2
gfabccbccδλ ,

δc̄a =
δS

δK̄a
δλ = Gaδλ ,

δGa = 0 , (B.8)

where δλ is an anticommuting infinitesimal parameter. With this transformation, we find

δ(gcataq) = gδcataq + gcataδq =
1

2
g2fabccbccδλtaq − ig2cacbtatbqδλ

= −1

2
g2fabccbcctaqδλ+

1

2
g2f cabcacbtcqδλ = 0 (B.9)

and similarly

δ(q̄gcata) = 0 , (B.10)

as well as

δ(Dµc
a) = δ(∂µc

a + gfabcGbµc
c) = Dµδc

a + gfabcδGbµc
c

=
1

2
gDµ(fabccbcc)δλ+ gfabc(Dµc

b)δλcc

=
1

2
gDµ(fabccbcc)δλ− gfabc(Dµc

b)ccδλ = 0 ,

δ(fabccbcc) = fabc(δcbcc + cbδcc) =
1

2
gfabc

(
f bdecdceδλcc + cbf cdecdceδλ

)
= gfabef cdecbcccdδλ =

g

3
(fabef cde + facefdbe + fadef bce)cbcccdδλ = 0 , (B.11)

where in both relations we have used the Jacobi identity for the SU(3) structure constants.

Therefore, we see that for all fields φ ∈ {Gaµ, q, q̄, ca, c̄a, Ga}

δ1δ2φ = 0 , (B.12)

i.e., the BRST transformation is nilpotent. Note that if the auxiliary field Ga is not used,

nilpotency for anti-ghosts only holds on-shell [96].

For the fields Gaµ, q, q̄, the BRST transformation corresponds to an infinitesimal gauge

transformation with the parameter εa = caδλ. Therefore, the physical part of the La-

grangian is invariant under BRST transformations. For the ghost and gauge-fixing part,

one finds:

δLgh+GF = δ

(
∂µc̄a(Dac

µ c
c) +

ξ

2
GaGa + (∂µGa)Gaµ

)
= (∂µGa)δλ(Dac

µ c
c) + (∂µGa)Dac

µ c
cδλ = 0 . (B.13)
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The source terms for the BRST variations are obviously invariant as well, hence the only

variant part of the Lagrangian are the source terms for the fields:

δL0 = Hµ,aδGaµ + L̄δq + δq̄L+ N̄aδca + δc̄aNa

=

(
Hµ,aDac

µ c
c − igL̄cataq + igq̄cataL+

1

2
gfabcN̄acbcc −GaNa

)
δλ . (B.14)

The generating functional is invariant under the variable transformation (see [95] for the

invariance of the measure)

φ 7→ φ+ δφ , (B.15)

which implies (J generically denoting the sources)

0 = δZ[J ] =

∫
Dφ
(
i

∫
d4x δL0

)
ei

∫
d4x L0 ,

0 =

∫
d4x

(
−Hµ,a δZ

δJµ,a
− iL̄ δZ

δM̄
+ i

δZ

δM
L+ N̄a δZ

δKa
− δZ

δK̄a
Na

)
δλ . (B.16)

This implies for the generating functional of connected Green’s functions, defined by Z[J ] =

eiW [J ]:

0 =

∫
d4x

(
−Hµ,a δW

δJµ,a
− iL̄δW

δM̄
+ i

δW

δM
L+ N̄a δW

δKa
− δW

δK̄a
Na

)
. (B.17)

We introduce the effective action as the Legendre transform of W , which is the generating

functional for one-particle-irreducible truncated Green’s functions (we do not transform

the auxiliary field, which is not propagating):

Γ[φ(cl)] := W [J ]−
∫
d4x
(
Hµ,aGaµ

(cl) + L̄q(cl) + q̄(cl)L+ N̄aca(cl) + c̄a(cl)Na
)
, (B.18)

where the “classical fields” are expectation values (the functional derivatives are understood

to act from the left):

Gaµ
(cl) =

δW

δHµ
a
, q(cl) =

δW

δL̄
, q̄(cl) = −δW

δL
, ca(cl) =

δW

δN̄a
, c̄a(cl) = − δW

δNa
.

(B.19)

The variations of Γ with respect to classical fields and sources are given by:

δΓ

δGaµ
(cl)

= −Hµ,a ,
δΓ

δq(cl)
= L̄ ,

δΓ

δq̄(cl)
= −L , δΓ

δca(cl)
= N̄a ,

δΓ

δc̄a(cl)
= −Na ,

δΓ

δJµ,a
=

δW

δJµ,a
,

δΓ

δM
=
δW

δM
,

δΓ

δM̄
=
δW

δM̄
,

δΓ

δKa
=

δW

δKa
,

δΓ

δK̄a
=

δW

δK̄a
,

(B.20)

which leads to the Slavnov-Taylor identities:

0 =

∫
d4x

(
δΓ

δGaµ
(cl)

δΓ

δJµ,a
− i δΓ

δq(cl)

δΓ

δM̄
− i δΓ

δq̄(cl)

δΓ

δM
+

δΓ

δca(cl)

δΓ

δKa
+

δΓ

δc̄a(cl)

δΓ

δK̄a

)
.

(B.21)
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In addition, we derive the (quantum) EOM for the ghost field. Consider the generating

functional Z[J ], which must be invariant under the shift of the integration variable c̄a 7→
c̄a + ε̄. Expanding to first order in ε̄ gives

0 =

∫
Dφ(∂µDab

µ c
b −Na)ei

∫
d4xL0 . (B.22)

This leads to

δΓ

δc̄a(cl)
= −Na = − 1

Z

∫
Dφ(∂µDab

µ c
b)ei

∫
d4xL0 = ∂µ

−i
Z

δZ

δJµa
= ∂µ

δW

δJµa
= ∂µ

δΓ

δJµa
. (B.23)

Therefore, we can rewrite the Slavnov-Taylor identities as

0 =

∫
d4x

((
δΓ

δGaµ
(cl)
− ∂µ δΓ

δK̄a

)
δΓ

δJµ,a
− i δΓ

δq(cl)

δΓ

δM̄
− i δΓ

δq̄(cl)

δΓ

δM
+

δΓ

δca(cl)

δΓ

δKa

)
.

(B.24)

The ghost quantum EOM (B.23) implies that the effective action depends on the anti-ghost

only through the combination

Jµ,a − ∂µc̄a(cl) . (B.25)

B.3 Construction of nuisance operators

To lowest order in the loop expansion, the Slavnov-Taylor identities become

0 =

∫
d4x

((
δS

δGaµ
− ∂µ δS

δK̄a

)
δS

δJµa
− iδS

δq

δS

δM̄
− iδS

δq̄

δS

δM
+
δS

δca
δS

δKa

)
. (B.26)

While S = S0 + Φ · O satisfies the Ward identity, the general solution is given by

S + Φ̂ · N , (B.27)

where N are additional nuisance operators. Working to first order in the external sources

Φ, Φ̂, one finds that the nuisance operators satisfy

Ŵ (Φ̂ · N ) = 0 , (B.28)

with the operator

Ŵ =

(
δS0

δGaµ
− ∂µ δS0

δK̄a

)
δ

δJµa
+
δS0

δJµa

δ

δGaµ
+

(
∂µ
δS0

δJµa

)
δ

δK̄a

− iδS0

δq

δ

δM̄
− i δS0

δM̄

δ

δq
− iδS0

δq̄

δ

δM
− i δS0

δM

δ

δq̄
+
δS0

δca
δ

δKa
+
δS0

δKa

δ

δca
. (B.29)

The BRST operator Ŵ is nilpotent, Ŵ 2 = 0, and it carries ghost number 1. In [58] it was

shown that the most general solution for the nuisance operators is given by

Φ̂ · N =

∫
d4x Ŵ (x)(Φ̂ · F) , (B.30)
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where F is a set of anti-Hermitian “seed operators” with the same Lorentz, chiral, and

global SU(3)c properties as O, the same discrete symmetries and dimension, and ghost

number −1. Hence, in the following we construct systematically the set F and derive from

it the (gauge-variant) nuisance operators: we act with the operator Ŵ on the set F and

afterwards we set the sources to zero.

Let us work out the explicit form of the operator Ŵ . With sources already set to zero,

we have

δS0

δGaµ
= DνG

νµ,a + gq̄taγµq + ∂µGa − gfabc(∂µc̄b)cc , δS0

δK̄a
= Ga ,

δS0

δJµa
= −Dac

µ c
c ,

δS0

δq
= −q̄E ,

δS0

δq̄
= qE ,

δS0

δM
= gq̄cata ,

δS0

δM̄
= gcataq ,

δS0

δca
= Dac

ν ∂
ν c̄c ,

δS0

δKa
=

1

2
gfabccbcc . (B.31)

This leads to

Ŵ =
(
DνG

νµ,a + gq̄taγµq − gfabc(∂µc̄b)cc
) δ

δJµa
−
(
Dac
µ c

c
) δ

δGaµ
−
(
∂µDac

µ c
c
) δ

δK̄a

+ iq̄E
δ

δM̄
− igcataq δ

δq
− iqE

δ

δM
− igq̄cata δ

δq̄

+ (Dac
ν ∂

ν c̄c)
δ

δKa
+

(
1

2
gfabccbcc

)
δ

δca
. (B.32)

Note that after acting with the term

−iδS0

δq̄

δ

δM
= −iqE

δ

δM
(B.33)

on the seed operators, the EOM quark field qE needs to be anticommuted to the right-hand

side, which produces an additional minus sign.

In case that the seed operator contains derivatives of the sources Jµa , . . ., we have to

use partial integration, e.g.,∫
d4x Ŵ (x)

∫
d4y Φ̂(y)F(y) =

∫
d4x Ŵ (x)

∫
d4y Φ̂(y)F̃(y)νλb (∂yνJ

b
λ(y))

= −
∫
d4x

(
δS0

δGaµ(x)
− ∂µ δS0

δK̄a(x)

)
δ

δJµa (x)

∫
d4y ∂yν (Φ̂(y)F̃(y)νλb )Jbλ(y)

= −
∫
d4x

(
δS0

δGaµ(x)
− ∂µ δS0

δK̄a(x)

)
∂ν(Φ̂(x)F̃(x)aνµ)

=

∫
d4x Φ̂(x)∂ν

(
δS0

δGaµ(x)
− ∂µ δS0

δK̄a(x)

)
F̃(x)aνµ . (B.34)

B.4 Symmetry properties of sources and building blocks

In Table 4, we list the transformation properties of the various fields and sources, which

are the building blocks for the seed operators. In particular, the given transformation

properties ensure that the leading-order Lagrangian is Hermitian,6 P -even, and CP -even.

6See [96] for the Hermiticity properties of the ghost fields.

– 50 –



J
H
E
P
0
9
(
2
0
2
0
)
0
9
4

field comm. mass dim. ghost num. Lorentz SU(3)c χ † P CP

qL − 3
2 0 (2, 1) 3 (3, 1) q̄Lγ

0 γ0qR γ0Cq̄TL

qR − 3
2 0 (1, 2) 3 (1, 3) q̄Rγ

0 γ0qL γ0Cq̄TR

q̄L − 3
2 0 (1, 2) 3̄ (3̄, 1) γ0qL q̄Rγ

0 qTLCγ
0

q̄R − 3
2 0 (2, 1) 3̄ (1, 3̄) γ0qR q̄Lγ

0 qTRCγ
0

Gaµ + 1 0 (2, 2) 8 (1, 1) Gaµ Gµa −η(a)Gµa

Ga + 2 0 (1, 1) 8 (1, 1) Ga Ga −η(a)Ga

ca − 0 1 (1, 1) 8 (1, 1) ca ca −η(a)ca

c̄a − 2 −1 (1, 1) 8 (1, 1) −c̄a c̄a −η(a)c̄a

Jaµ − 3 −1 (2, 2) 8 (1, 1) −Jaµ Jµa −η(a)Jµa

ML + 5
2 −1 (2, 1) 3 (1, 3) M̄Lγ

0 γ0MR −γ0CM̄T
L

MR + 5
2 −1 (1, 2) 3 (3, 1) M̄Rγ

0 γ0ML −γ0CM̄T
R

M̄L + 5
2 −1 (1, 2) 3̄ (1, 3̄) γ0ML M̄Rγ

0 −MT
LCγ

0

M̄R + 5
2 −1 (2, 1) 3̄ (3̄, 1) γ0MR M̄Lγ

0 −MT
RCγ

0

Ka + 4 −2 (1, 1) 8 (1, 1) −Ka Ka −η(a)Ka

K̄a + 2 0 (1, 1) 8 (1, 1) K̄a K̄a −η(a)K̄a

FLµν + 2 0 (3, 1)⊕ (1, 3) 1 (8, 1) FLµν FµνR −FµνL
T

FRµν + 2 0 (3, 1)⊕ (1, 3) 1 (1, 8) FRµν FµνL −FµνR
T

M + 1 0 (1, 1) 1 (3, 3̄) M† M† M∗

M† + 1 0 (1, 1) 1 (3̄, 3) M M MT

∂µ + 1 0 (2, 2) 1 (1, 1) ∂µ ∂µ ∂µ

∇Lµ(·) + 1 0 (2, 2) 1 (1, 1)⊕ (8, 1) (·)
←−
∇L
µ ∇

µ
R(·) ∇µL

∗
(·)

∇Rµ (·) + 1 0 (2, 2) 1 (1, 1)⊕ (1, 8) (·)
←−
∇R
µ ∇µL(·) ∇µR

∗
(·)

Table 4. Properties of dynamical fields, sources, spurions, and derivative operators. For simplicity,

additional arbitrary phases in P - and CP -conjugation are neglected. η(a) is defined in (A.6).

Note that we define the complex conjugate of the product of Grassmann variables c1,2 as

(c1c2)∗ = c∗2c
∗
1 = −c∗1c∗2.

We assign zero mass dimension to the ghost field and mass dimension 2 to the anti-ghost

field. In this convention, the operator
∫
d4x Ŵ (x) does not change the mass dimension of

the seed operators. If a mass dimension 1 is assigned to both ghost and anti-ghost fields,

the operator
∫
d4x Ŵ (x) raises the mass dimension by one unit. The assignment of the

mass dimensions is purely conventional and does not affect the results.

We assign the following chiral transformations:

ML,R
χ7→ UR,LML,R,

M̄L,R
χ7→ M̄L,RU

†
R,L, (B.35)
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where

ML,R := PL,RM, M̄L,R := M̄PR,L. (B.36)

Due to gauge fixing, the seed operators need not be gauge invariant under SU(3)c.

Therefore, the gauge field Gaµ is allowed as a separate building block and not only as part

of the full covariant derivative Dµ. However, the gauged SU(3)L×SU(3)R chiral symmetry,

which also contains U(1)em as a subgroup, remains intact. Therefore, we define covariant

derivatives with respect to the external fields only,

∇Lµ = ∂µ − ilµ ,
←−
∇L
µ =
←−
∂ µ + ilµ ,

∇Rµ = ∂µ − irµ ,
←−
∇R
µ =
←−
∂ µ + irµ , (B.37)

and impose on the seed operators invariance under the local chiral group.

B.5 Seed operators

Let us now systematically construct the gauge-variant seed operators using the building

blocks in table 4. Due to the ghost EOM (B.23), the anti-ghost and the source Jµa only

appear as a building block

Ĵµ,a := Jµ,a − ∂µc̄a . (B.38)

After applying the operator Ŵ , we will set the sources ML,R, M̄L,R, Ka, K̄a to zero,

hence we only need to take into account seed operators with at most one of these sources.

The source Ĵµ,a should be set to −∂µc̄a.
In order to construct SU(3)c singlets, we contract open indices with the SU(3)c tensors

δab (two indices), fabc, dabc (three indices), or

δabδcd, δacδbd, δadδbc, dabedcde, dacedbde, dabef cde, dacef bde, dadef bce (B.39)

in the case of four indices [97, 98].

Ka operators. At dimension 4, the only operator

caKa

is P - and CP -even. At dimension 5, there are no operators. At dimension 6, the following

operators have to be considered:

seed operator P CP

GµaG
a
µc
bKb, GµaG

b
µc
aKb, GµaG

b
µc
cKddacedbde, even, even,

GµaG
b
µc
cKddacef bde, even, odd,

(∂µGaµ)cbKcfabc, Gaµ(∂µcb)Kcfabc, Gaµc
b(∂µKc)fabc, even, even,

(∂µGaµ)cbKcdabc, Gaµ(∂µcb)Kcdabc, Gaµc
b(∂µKc)dabc, even, odd,
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ca(�Ka), even, even,

(�ca)Ka, even, even,

(∂µca)(∂µK
a), even, even,

Tr[MM†]caKa, even, even.

Obviously, it is not possible to construct a P -odd operator.

K̄a operators. The source K̄a has to come together with a source Ĵaµ in order to give

ghost number −1. There are only dimension-six operators:

seed operator P CP

Gµa Ĵ
b
µK̄

cfabc, even, even,

Gµa Ĵ
b
µK̄

cdabc, even, odd,

(∂µĴaµ)K̄a, Ĵµa (∂µK̄
a), even, even.

No P -odd operators can be constructed.

M and M̄ operators. At dimension 4, there are four operators:

seed operator P CP

i(q̄M + M̄q), even, even,

q̄M − M̄q, even, odd,

i(q̄γ5M − M̄γ5q), odd, even,

q̄γ5M + M̄γ5q, odd, odd.

Therefore, the only anti-Hermitian P - and CP -odd seed operator at dimension 4 is

F (4)
1 = q̄γ5M + M̄γ5q . (B.40)

No dimension-5 operator can be constructed. At dimension six, we find the following list

of chirally invariant operators. Note that we already neglect operators that vanish when

the spurions and external fields are fixed to their physical values:

seed operator P CP

Tr[MM†]i(q̄LMR + M̄RqL), L↔ R, even,

Tr[MM†](q̄LMR − M̄RqL), L↔ R, odd,

Tr[MM†]i(q̄RML + M̄LqR), L↔ R, even,

Tr[MM†](q̄RML − M̄LqR), L↔ R, odd,

i(q̄LMM†MR + M̄RMM†qL), L↔ R, M↔M†, even,

(q̄LMM†MR − M̄RMM†qL), L↔ R, M↔M†, odd,

i(q̄RM†MML + M̄LM†MqR), L↔ R, M↔M†, even,
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(q̄RM†MML − M̄LM†MqR), L↔ R, M↔M†, odd,

i(q̄LMγµt
aML + M̄LM†γµtaqL)Gµa , L↔ R, M↔M†, even,

(q̄LMγµt
aML − M̄LM†γµtaqL)Gµa , L↔ R, M↔M†, odd,

i(q̄RM†γµtaMR + M̄RMγµt
aqR)Gµa , L↔ R, M↔M†, even,

(q̄RM†γµtaMR − M̄RMγµt
aqR)Gµa , L↔ R, M↔M†, odd,

i(q̄LM /∇RML + M̄L

←−
/∇RM†qL), L↔ R, M↔M†, odd,

(q̄LM /∇RML − M̄L

←−
/∇RM†qL), L↔ R, M↔M†, even,

i(q̄RM† /∇LMR + M̄R

←−
/∇LMqR), L↔ R, M↔M†, odd,

(q̄RM† /∇LMR − M̄R

←−
/∇LMqR), L↔ R, M↔M†, even,

i(q̄L
←−
/∇LMML + M̄LM† /∇LqL), L↔ R, M↔M†, odd,

(q̄L
←−
/∇LMML − M̄LM† /∇LqL), L↔ R, M↔M†, even,

i(q̄R
←−
/∇RM†MR + M̄RM /∇RqR), L↔ R, M↔M†, odd,

(q̄R
←−
/∇RM†MR − M̄RM /∇RqR), L↔ R, M↔M†, even,

i(q̄L,RMR,L + M̄R,LqL,R)GaµG
µ
a , L↔ R, even,

(q̄L,RMR,L − M̄R,LqL,R)GaµG
µ
a , L↔ R, odd,

i(q̄L,Rt
aMR,L + M̄R,Lt

aqL,R)GbµG
µ
c d

abc, L↔ R, even,

(q̄L,Rt
aMR,L − M̄R,Lt

aqL,R)GbµG
µ
c d

abc, L↔ R, odd,

i(q̄L,Rσ
µνtaMR,L + M̄R,Lσ

µνtaqL,R)GbµG
c
νf

abc, L↔ R, even,

(q̄L,Rσ
µνtaMR,L − M̄R,Lσ

µνtaqL,R)GbµG
c
νf

abc, L↔ R, odd,

i(q̄L,Rt
aMR,L + M̄R,Lt

aqL,R)∂µG
µ
a , L↔ R, odd,

(q̄L,Rt
aMR,L − M̄R,Lt

aqL,R)∂µG
µ
a , L↔ R, even,

i(q̄L,Rσ
µνtaMR,L + M̄R,Lσ

µνtaqL,R)∂µG
a
ν , L↔ R, even,

(q̄L,Rσ
µνtaMR,L − M̄R,Lσ

µνtaqL,R)∂µG
a
ν , L↔ R, odd,

i(q̄L,R
←−
∇L,R
µ taMR,L + M̄R,Lt

a∇L,Rµ qL,R)Gµa , L↔ R, odd,

(q̄L,R
←−
∇L,R
µ taMR,L − M̄R,Lt

a∇L,Rµ qL,R)Gµa , L↔ R, even,

i(q̄L,R
←−
∇L,R
µ σµνtaMR,L + M̄R,Lσ

µνta∇L,Rµ qL,R)Gaν , L↔ R, even,

(q̄L,R
←−
∇L,R
µ σµνtaMR,L − M̄R,Lσ

µνta∇L,Rµ qL,R)Gaν , L↔ R, odd,

i(q̄L,Rt
a∇L,Rµ MR,L + M̄R,L

←−
∇L,R
µ taqL,R)Gµa , L↔ R, odd,

(q̄L,Rt
a∇L,Rµ MR,L − M̄R,L

←−
∇L,R
µ taqL,R)Gµa , L↔ R, even,

i(q̄L,Rσ
µνta∇L,Rµ MR,L + M̄R,L

←−
∇L,R
µ σµνtaqL,R)Gaν , L↔ R, even,
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(q̄L,Rσ
µνta∇L,Rµ MR,L − M̄R,L

←−
∇L,R
µ σµνtaqL,R)Gaν , L↔ R, odd,

i(q̄L,R
←−
∇2
L,RMR,L + M̄R,L∇2

L,RqL,R), L↔ R, even,

(q̄L,R
←−
∇2
L,RMR,L − M̄R,L∇2

L,RqL,R), L↔ R, odd,

i(q̄L,R∇2
L,RMR,L + M̄R,L

←−
∇2
L,RqL,R), L↔ R, even,

(q̄L,R∇2
L,RMR,L − M̄R,L

←−
∇2
L,RqL,R), L↔ R, odd,

i(q̄L,R
←−
∇L,R
µ ∇µL,RMR,L + M̄R,L

←−
∇L,R
µ ∇µL,RqL,R), L↔ R, even,

(q̄L,R
←−
∇L,R
µ ∇µL,RMR,L − M̄R,L

←−
∇L,R
µ ∇µL,RqL,R), L↔ R, odd,

i(q̄L,R
←−
∇L,R
µ σµν∇L,Rν MR,L + M̄R,L

←−
∇L,R
ν σµν∇L,Rµ qL,R), L↔ R, odd,

(q̄L,R
←−
∇L,R
µ σµν∇L,Rν MR,L − M̄R,L

←−
∇L,R
ν σµν∇L,Rµ qL,R), L↔ R, even,

i(q̄L,Rσ
µνFL,Rµν MR,L + M̄R,Lσ

µνFL,Rµν qL,R), L↔ R, even,

(q̄L,Rσ
µνFL,Rµν MR,L − M̄R,Lσ

µνFL,Rµν qL,R), L↔ R, odd.

This results in the following list of 19 anti-Hermitian P - and CP -odd seed operators:

F (6)
1 = Tr[MM†](q̄LMR − q̄RML + M̄LqR − M̄RqL) ,

F (6)
2 = (q̄LMM†MR − q̄RM†MML + M̄LM†MqR − M̄RMM†qL) ,

F (6)
3 = (q̄LMγµt

aML − q̄RM†γµtaMR + M̄RMγµt
aqR − M̄LM†γµtaqL)Gµa ,

F (6)
4 = i(q̄RM† /∇LMR − q̄LM /∇RML + M̄R

←−
/∇LMqR − M̄L

←−
/∇RM†qL) ,

F (6)
5 = i(q̄R

←−
/∇RM†MR − q̄L

←−
/∇LMML + M̄RM /∇RqR − M̄LM† /∇LqL) ,

F (6)
6 = (q̄LMR − q̄RML + M̄LqR − M̄RqL)GaµG

µ
a ,

F (6)
7 = (q̄Lt

aMR − q̄RtaML + M̄Lt
aqR − M̄Rt

aqL)GbµG
µ
c d

abc ,

F (6)
8 = (q̄Lσ

µνtaMR − q̄RσµνtaML + M̄Lσ
µνtaqR − M̄Rσ

µνtaqL)GbµG
c
νf

abc ,

F (6)
9 = i(q̄Lt

aMR − q̄RtaML + M̄Rt
aqL − M̄Lt

aqR)∂µG
µ
a ,

F (6)
10 = (q̄Lσ

µνtaMR − q̄RσµνtaML + M̄Lσ
µνtaqR − M̄Rσ

µνtaqL)∂µG
a
ν ,

F (6)
11 = i(q̄L

←−
∇L
µt
aMR − q̄R

←−
∇R
µ t
aML + M̄Rt

a∇LµqL − M̄Lt
a∇Rµ qR)Gµa ,

F (6)
12 = (q̄L

←−
∇L
µσ

µνtaMR − q̄R
←−
∇R
µσ

µνtaML + M̄Lσ
µνta∇Rµ qR − M̄Rσ

µνta∇LµqL)Gaν ,

F (6)
13 = i(q̄Lt

a∇LµMR − q̄Rta∇RµML + M̄R
←−
∇L
µt
aqL − M̄L

←−
∇R
µ t
aqR)Gµa ,

F (6)
14 = (q̄Lσ

µνta∇LµMR − q̄Rσµνta∇RµML + M̄L
←−
∇R
µσ

µνtaqR − M̄R
←−
∇L
µσ

µνtaqL)Gaν ,

F (6)
15 = (q̄L

←−
∇2
LMR − q̄R

←−
∇2
RML + M̄L∇2

RqR − M̄R∇2
LqL) ,

F (6)
16 = (q̄L∇2

LMR − q̄R∇2
RML + M̄L

←−
∇2
RqR − M̄R

←−
∇2
LqL) ,

F (6)
17 = (q̄L

←−
∇L
µ∇

µ
LMR − q̄R

←−
∇R
µ∇

µ
RML + M̄L

←−
∇R
µ∇

µ
RqR − M̄R

←−
∇L
µ∇

µ
LqL) ,

F (6)
18 = i(q̄L

←−
∇L
µσ

µν∇LνMR − q̄R
←−
∇R
µσ

µν∇RνML + M̄R
←−
∇L
ν σ

µν∇LµqL − M̄L
←−
∇R
ν σ

µν∇Rµ qR) ,

F (6)
19 = (q̄Lσ

µνFLµνMR − q̄RσµνFRµνML + M̄Lσ
µνFRµνqR − M̄Rσ

µνFLµνqL) . (B.41)
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Ĵaµ operators. At dimension 4, there is the operator

Gµa Ĵ
a
µ ,

which, however, is P -even. At dimension 5, no operators can be constructed. At dimension

6, we find the following list of seed operators.

seed operator P CP

Tr[MM†]Gµa Ĵaµ , even, even,

caĴbµĴ
µ
c f

abc, even, even,

GaµG
b
νG

c
λĴ

d
σε
µνλσdadef bce, odd, even,

GµaG
a
µG

ν
b Ĵ

b
ν , GµaG

b
µG

ν
aĴ

b
ν , GµaG

b
µG

ν
c Ĵ

d
ν d

acedbde, even, even,

GµaG
b
µG

ν
c Ĵ

d
ν d

adef bce, even, odd,

(∂µG
a
ν)GbλĴ

c
σε
µνλσfabc, odd, odd,

(∂µG
a
ν)GbλĴ

c
σε
µνλσdabc, odd, even,

(∂µGaµ)Gνb Ĵ
c
νf

abc, (∂µGνa)GbµĴ
c
νf

abc, (∂µGνa)Gbν Ĵ
c
µf

abc, even, even,

(∂µGaµ)Gνb Ĵ
c
νd
abc, (∂µGνa)GbµĴ

c
νd
abc, (∂µGνa)Gbν Ĵ

c
µd

abc, even, odd,

GaµG
b
ν(∂λĴ

c
σ)εµνλσfabc, odd, odd,

GµaG
ν
b (∂µĴ

c
ν)fabc, even, even,

GµaG
ν
b (∂µĴ

c
ν)dabc, GµaG

b
µ(∂ν Ĵcν)dabc, even, odd,

(�Gµa)Ĵaµ , (∂µ∂νGaµ)Ĵaν , even, even,

Gµa(�Ĵaµ), Gaµ(∂µ∂ν Ĵaν ), even, even,

(∂µG
a
ν)(∂λĴ

a
σ)εµνλσ, odd, odd,

(∂µGaµ)(∂ν Ĵaν ), (∂µGνa)(∂µĴ
a
ν ), (∂µGνa)(∂ν Ĵ

a
µ), even, even,

q̄Lγ
µtaqLĴ

a
µ , q̄Rγ

µtaqRĴ
a
µ , L↔ R, even.

Dropping all operators that are not both P - and CP -odd, we are left with three anti-

Hermitian seed operators:

F (6)
20 = (∂µG

a
ν)GbλĴ

c
σε
µνλσfabc ,

F (6)
21 = GaµG

b
ν(∂λĴ

c
σ)εµνλσfabc ,

F (6)
22 = (∂µG

a
ν)(∂λĴ

a
σ)εµνλσ . (B.42)

B.6 Nuisance operators

After acting with the Ŵ operator on the seed operators Fi, we obtain the list of nuisance

operators. Furthermore, we perform a basis change: we write as many nuisance operators
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as possible in a manifestly gauge-invariant form and as total derivatives. In order to write

the operators in a more compact form, we fix the spurion and external fields to their

physical value, M,M† 7→ M, lµ, rµ 7→ eQAµ, and write everything in the parity basis.

There is one nuisance operator at dimension four:

Ñ (4)
1 = i(q̄Eγ5q + q̄γ5qE) . (B.43)

At dimension six, we find the following nuisance operators:

Ñ (6)
1 = Gaµν

(
∂λ

(
DρGaρσ + gq̄taγσq − gfabc(∂σ c̄b)cc

))
εµνλσ ,

Ñ (6)
2 = i(q̄Eγ5q + q̄γ5qE)GaµG

µ
a ,

Ñ (6)
3 = i(q̄Eγ5t

aq + q̄γ5t
aqE)GbµG

µ
c d

abc ,

Ñ (6)
4 = i(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)Gaµν ,

Ñ (6)
5 = (q̄Eγ5t

aq − q̄γ5t
aqE)∂µG

µ
a ,

Ñ (6)
6 = (q̄Eγ5t

aDµq − q̄
←−
Dµγ5t

aqE)Gµa ,

Ñ (6)
7 = i(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)∂µG
a
ν ,

Ñ (6)
8 = i(q̄E σ̃

µνtaDµq + q̄
←−
Dµσ̃

µνtaqE)Gaν ,

Ñ (6)
9 = i(q̄Eγ5D

2q + q̄
←−
D2γ5qE) ,

Ñ (6)
10 = ie(q̄E σ̃

µνQq + q̄σ̃µνQqE)Fµν ,

Ñ (6)
11 = (q̄EMγ̃µDµq + q̄

←−
Dµγ̃

µMqE) ,

Ñ (6)
12 = i(q̄EMγ̃µt

aq − q̄Mγ̃µt
aqE)Gµa ,

Ñ (6)
13 = Tr[M2]i(q̄Eγ5q + q̄γ5qE) ,

Ñ (6)
14 = i(q̄EM2γ5q + q̄M2γ5qE) ,

Ñ (6)
15 = ∂λ

(
Gaµν

(
DρGaρσ + gq̄taγσq

))
εµνλσ ,

Ñ (6)
16 = ∂λ

(
(∂µG

a
ν)
(
DρGaρσ + gq̄taγσq − gfabc(∂σ c̄b)cc

))
εµνλσ ,

Ñ (6)
17 = ∂µ

(
(q̄Eγ5t

aq − q̄γ5t
aqE)Gµa

)
,

Ñ (6)
18 = i∂µ

(
(q̄E σ̃

µνtaq + q̄σ̃µνtaqE)Gaν

)
,

Ñ (6)
19 = i∂µ

(
q̄Eγ5D

µq + q̄
←−
Dµγ5qE

)
,

Ñ (6)
20 = ∂µ(q̄E σ̃

µνDνq − q̄
←−
Dν σ̃

µνqE) ,

Ñ (6)
21 = ∂µ

(
q̄EMγ̃µq + q̄Mγ̃µqE

)
,

Ñ (6)
22 = i�

(
q̄Eγ5q + q̄γ5qE

)
. (B.44)

B.7 Redundancies

The nuisance operators are constructed as BRST variations of a complete set of linearly

independent seed operators. However, it turns out that the nuisance operators themselves
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are redundant. This can be understood as follows: acting with the BRST operator on the

seed operators replaces the BRST sources by EOM fields, i.e., this operation reduces the

degrees of freedom. Therefore, linear independence of the seed operators does not imply

linear independence of the resulting nuisance operators. The remaining redundancies are

most easily identified by considering the vertex rules for all the operators, see section 4.1,

which leave two linear combinations of nuisance operators undetermined. An explicit cal-

culation then confirms the following linear relations:

0 = Ñ (6)
6 + Ñ (6)

8 − Ñ (6)
12 ,

0 = gÑ (6)
4 − 2Ñ (6)

9 + Ñ (6)
10 − 2Ñ (6)

11 + Ñ (6)
19 + Ñ (6)

20 + Ñ (6)
21 . (B.45)

This allows us to drop two nuisance operators from the set (B.44)—we choose to drop the

nuisance operators Ñ (6)
8 and Ñ (6)

9 .

In a last step, we remove redundancies from the list of operators Õ in appendix A.5:

there are linear combinations that are identical to nuisance operators. Removing these

redundancies leads to a minimal set of class-I operators O, i.e., gauge-invariant operators

that do not vanish by the EOM.

At dimension four, we find the linear relation

Ñ (4)
1 = Õ2q,(4)

2 − 2Õ2q,(4)
1 . (B.46)

At dimension six, the following relations hold (disregarding evanescent structures):

gÑ (6)
4 + Ñ (6)

10 = 2Õ2q,(6)
8 + 2Õ2q,(6)

9 + 2Õ2q,(6)
10 − Õ2q,(6)

11 − Õ2q,(6)
12 − Õ2q,(6)

13 ,

Ñ (6)
10 = −Õ2q,(6)

14 + 2Õ2q,(6)
15 − Õ2q,(6)

16 ,

Ñ (6)
11 = −Õ2q,(6)

3 − Õ2q,(6)
5 − Õ2q,(6)

6 + Õ2q,(6)
7 + Õ2q,(6)

8 ,

Ñ (6)
13 = Õ2q,(6)

4 − 2Õ2q,(6)
2 ,

Ñ (6)
14 = Õ2q,(6)

3 − 2Õ2q,(6)
1 ,

Ñ (6)
15 = 4ÕG,(6)

3 + Õ2q,(6)
13 − Õ2q,(6)

16 ,

Ñ (6)
19 = −Õ2q,(6)

5 − Õ2q,(6)
10 + Õ2q,(6)

12 ,

Ñ (6)
20 = −Õ2q,(6)

6 − Õ2q,(6)
10 + Õ2q,(6)

11 + Õ2q,(6)
13 ,

Ñ (6)
21 = −2Õ2q,(6)

3 − Õ2q,(6)
5 − Õ2q,(6)

6 ,

Ñ (6)
22 = Õ2q,(6)

12 − 2Õ2q,(6)
5 . (B.47)

Finally, we arrive at an operator basis that is free of redundancies, presented in section 3.3.

For the determination of the mixing structure, it is useful to express the intermediate

redundant set of operators in terms of the final basis. At dimension four, the relations

read:

ÕG,(4)
1 = O(4)

1 , Õ2q,(4)
1 =

1

2

(
O(4)

2 −N
(4)
1

)
, Õ2q,(4)

2 = O(4)
2 , Ñ (4)

1 = N (4)
1 . (B.48)
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At dimension five, there is only one operator:

Õ2q,(5)
1 = O(5)

1 . (B.49)

At dimension six, the gauge-invariant operators are given by

ÕG,(6)
1 = O(6)

4 , ÕG,(6)
2 = O(6)

9 , ÕG,(6)
3 = O(6)

5 , ÕG,(6)
4 =

1

g
O(6)

1 ,

Õ2q,(6)
1 =

1

2

(
O(6)

6 −N
(6)
4 +

1

Nf

(
O(6)

7 −N
(6)
5

))
,

Õ2q,(6)
2 =

1

2

(
O(6)

7 −N
(6)
5

)
,

Õ2q,(6)
3 = O(6)

6 +
1

Nf
O(6)

7 ,

Õ2q,(6)
4 = O(6)

7 ,

Õ2q,(6)
5 =

1

2

(
O(6)

10 −N
(6)
10

)
,

Õ2q,(6)
6 = −2O(6)

6 −
2

Nf
O(6)

7 −
1

2
O(6)

10 −N
(6)
9 +

1

2
N (6)

10 ,

Õ2q,(6)
7 = O(6)

2 +O(6)
3 −O

(6)
6 −

1

Nf
O(6)

7 +N (6)
3 −N (6)

9 ,

Õ2q,(6)
8 = −O(6)

2 −O
(6)
3 ,

Õ2q,(6)
9 = O(6)

2 +O(6)
3 −O

(6)
6 −

1

Nf
O(6)

7 +
1

2

(
N (6)

1 +N (6)
2 +N (6)

6 +N (6)
7 −N (6)

9

)
,

Õ2q,(6)
10 =

1

2
O(6)

10 −N
(6)
6 +

1

2
N (6)

10 ,

Õ2q,(6)
11 = 4O(6)

5 − 2O(6)
6 −

2

Nf
O(6)

7 − 2O(6)
8 −N

(6)
6 +N (6)

7 −N (6)
8 −N (6)

9 +N (6)
10 ,

Õ2q,(6)
12 = O(6)

10 ,

Õ2q,(6)
13 = −4O(6)

5 + 2O(6)
8 +N (6)

8 ,

Õ2q,(6)
14 = 2O(6)

3 ,

Õ2q,(6)
15 = O(6)

3 +O(6)
8 +

1

2
N (6)

2 ,

Õ2q,(6)
16 = 2O(6)

8 . (B.50)

For the nuisance operators, we have the relations

Ñ (6)
1 = N (6)

11 , Ñ (6)
2 =

1

g2
N (6)

12 , Ñ (6)
3 =

1

g2
N (6)

13 , Ñ (6)
4 =

1

g
N (6)

1 ,

Ñ (6)
5 =

1

g
N (6)

14 , Ñ (6)
6 =

1

g
N (6)

15 , Ñ (6)
7 =

1

g
N (6)

16 , Ñ (6)
8 =

1

g

(
−N (6)

15 +N (6)
17

)
,

Ñ (6)
9 =

1

2

(
N (6)

1 +N (6)
2 − 2N (6)

3 +N (6)
6 +N (6)

7 +N (6)
9

)
, Ñ (6)

10 = N (6)
2 ,
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Ñ (6)
11 = N (6)

3 , Ñ (6)
12 =

1

g
N (6)

17 , Ñ (6)
13 = N (6)

5 , Ñ (6)
14 = N (6)

4 +
1

Nf
N (6)

5 ,

Ñ (6)
15 = N (6)

8 , Ñ (6)
16 = N (6)

18 , Ñ (6)
17 =

1

g
N (6)

19 , Ñ (6)
18 =

1

g
N (6)

20 ,

Ñ (6)
19 = N (6)

6 , Ñ (6)
20 = N (6)

7 , Ñ (6)
21 = N (6)

9 , Ñ (6)
22 = N (6)

10 . (B.51)

C Mixing with evanescent operators

C.1 Generalities

As is well known, dimensional regularization leads to the appearance of evanescent opera-

tors [60, 99–101]. These operators are present in D dimensions, but they vanish for D = 4.

If bare evanescent operators are inserted into loop diagrams, the combination of poles in

ε with the evanescent structure can lead to finite contributions. Evanescent operators can

be renormalized by finite counterterms so that the renormalized evanescent operators have

vanishing matrix elements. As shown in [100, 101], the renormalized evanescent operators

do not mix into physical operators. However, the counterterms affect the calculation of

the anomalous dimension. Since the bare evanescent operators are ambiguous, their choice

affects the anomalous dimension matrix of the physical operators and their definition is

part of the scheme.

In dimensional regularization, the evanescent operators are present both in the MS

scheme and in the MOM scheme. Let us denote the relation between bare and renormalized

operators asOMS

EMS

 =

Z̃MS
OO Z̃MS

OE

Z̃MS
EO Z̃MS

EE

(O(0)

E(0)

)
,

(
OMOM

EMOM

)
=

(
Z̃MOM
OO Z̃MOM

OE

Z̃MOM
EO Z̃MOM

EE

)(
O(0)

E(0)

)
, (C.1)

where Z̃ij denote the entries of the inverse mixing matrices Z−1, fulfilling Z̃ij = δij+O(αs).

The renormalized MS evanescent operators are defined to have vanishing matrix elements,

〈EMS〉 = 0 . (C.2)

This is achieved by adjusting the counterterms Z̃EO, which at O(αs) are finite, i.e., O(ε0).

The minimal scheme defines Z̃MS
OO − 1, Z̃MS

OE , and Z̃MS
EE − 1 to only contain poles in ε. The

exact form of the evanescent operators EMS is part of the scheme definition: suppose that

we are choosing a different basis of bare operators(
O(0)′

E(0)′

)
=

(
1 0

aε 1

)(
O(0)

E(0)

)
, (C.3)

where with some arbitrary constant a the operator E(0)′ still is evanescent, then the minimal

scheme in the new basis reads(
OMS′

EMS′

)
=

 Z̃MS
OO Z̃MS

OE

Z̃MS
EO + aε

(
Z̃MS
OO − Z̃MS

EE
)
Z̃MS
EE

(O(0)′

E(0)′

)

=

Z̃MS
OO + aεZ̃MS

OE Z̃
MS
OE

Z̃MS
EO + aεZ̃MS

OO Z̃MS
EE

(O(0)

E(0)

)
, (C.4)
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i.e., the alternative operator OMS′ differs from OMS by a finite renormalization (and no

longer looks minimally subtracted in the original basis), while the new renormalized evanes-

cent still has vanishing matrix elements. Similarly, the choice of evanescent operators affects

the anomalous-dimension matrix of the physical operators at two loops [100, 101].

Also in the MOM scheme, the renormalized evanescent operators are defined to have

vanishing matrix element,

〈EMOM〉 = 0 . (C.5)

Therefore, the set of regularization-independent operators can be identified as the renor-

malized physical operators only, {ORI} = {OMOM}.
The conversion between the MS and MOM schemes is given by(

OMS

EMS

)
=

Z̃MS
OO Z̃MS

OE

Z̃MS
EO Z̃MS

EE

(ZMOM
OO ZMOM

OE

ZMOM
EO ZMOM

EE

)(
OMOM

EMOM

)
, (C.6)

where Zij are the entries of the mixing matrix Z. In particular, the physical MS operators

are given by

OMS =
(
Z̃MS
OOZ

MOM
OO + Z̃MS

OE Z
MOM
EO

)
OMOM +

(
Z̃MS
OOZ

MOM
OE + Z̃MS

OE Z
MOM
EE

)
EMOM . (C.7)

Due to (C.5), we only need to know the coefficient of OMOM in order to determine 〈OMS〉.
Furthermore, in the matching at one loop, we have

〈OMS〉 =
(

1−∆MS
OO + ∆MOM

OO +O(α2
s)
)
〈OMOM〉 , (C.8)

where Z = 1 + ∆, i.e., (2.6) is unaffected by evanescent operators.

Finally, we determine the conversion matrix C = 1 − ∆MS + ∆MOM by imposing

renormalization conditions

const.
!

= R[OMOM]1-loop = Z̃MOM
OO R[O(0)]1-loop + Z̃MOM

OE R[E(0)]tree , (C.9)

where

Z̃MOM
OO = 1− αs

4π

(
zOO
ε

+ cOO

)
+O(α2

s) , Z̃MOM
OE = −αs

4π

(
zOE
ε

+ cOE

)
+O(α2

s) .

(C.10)

Since in general 〈E〉tree = O(ε), one expects that either the evanescent counterterms zOE
need to be determined separately, or the number of conditions to be imposed must match

the number of physical plus evanescent operators. However, this can be avoided if the renor-

malization conditions and the set of evanescent operators is chosen so that R[E(0)]tree = 0

instead of R[E(0)]tree = O(ε). This allows us to consider only as many conditions as phys-

ical operators are present and to solve the system for the coefficients cOO that determine

the conversion matrix.

In the following, we define the set of relevant evanescent operators and show that their

tree-level insertions into the renormalization conditions vanish identically. Throughout, we
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use the HV scheme [80, 81] to deal with the Levi-Civita symbol and the Dirac matrices in

D 6= 4 spacetime dimensions. In defining our scheme, it is useful to divide the operators in

our basis (up to and including dimension six) in two categories: (i) purely bosonic operators

OB, involving one gluonic dual field strength (such as gCEDM); (ii) fermionic operators OF
containing a quark bilinear with a Dirac structure involving one γ5, and possibly gluonic

structures, the external electromagnetic field, and derivatives (such as the pseudoscalar

density and the qCEDM).

C.2 Definition of evanescent operators

The bosonic operators at dimension four and six can be written schematically as

O(4)
B = εµνλσ O

µνλσ
B ,

O(6)
B,M = εµνλσ Tr[M2]OµνλσB ,

O(6)
B = εµνλσ gαβ O

µνλσαβ
B , (C.11)

where OB are Lorentz tensors of rank four and six, respectively, built out of ∂µ, Gaµ, and Aµ.

In the HV scheme, the indices of the Levi-Civita symbol are restricted to D = 4 dimensions.

In addition, external momenta and polarization vectors in S-matrix elements are considered

to be objects in D = 4 dimensions. However, the restriction to D = 4 of external momenta

and polarizations can be performed after performing the loop calculation. As we are

considering only QCD corrections, all vertices and propagators in loops are continued to D

dimensions. Therefore, any metric tensor that appears in a loop calculation (either from

propagators, tensor reductions of loop integrals, or the Dirac trace of closed fermion loops)

is D-dimensional. In particular, an evanescent structure

E(6)
B = εµνλσ gα̂β̂ O

µνλσα̂β̂
B , (C.12)

where the indices α̂ and β̂ are restricted to −2ε dimensions, cannot be independently

generated in QCD with single insertions of the gCEDM operator. This implies that the only

evanescent bosonic operator appears at dimension six due to the Schouten identity (A.11):

E(6)
S = ∂α∂

α Tr[GµνG̃
µν ]− 4 ∂α∂

µ Tr[GανG̃µν ] , (C.13)

where the indices µ, ν are in 4, and α in D dimensions.

For the fermionic operators, we make use of the HV definition (5.7) for γ5 and the fact

that in any spacetime dimension D a string of k Dirac matrices can be decomposed as a

linear combination of the fully antisymmetric products

Γ(n)
α1...αn =

1

n!
γ[α1

. . . γαn] . (C.14)

In particular, the product of n gamma matrices is expressed as a combination of Γ(n) with

n = k, k− 2, . . ., with the remaining Lorentz indices provided by appropriate powers of the

D-dimensional metric tensor gµν [102]. Note that all structures involving Γ(n) with n > 4

are evanescent.
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The fermionic operators at dimension four, five, and six can be written schematically as

O(k,n)
F = εµ1µ2µ3µ4 q̄ Oν1...νkF Γ

(n)
λ1...λn

q gµaνbgµc
λdgνeνf gνg

λh ,

k = 0, 1, 2, 3 , n = 4− k, 6− k, . . . , 4 + k , (C.15)

where OF is built out of ∂µ, Gaµ, Aµ, color structures, and the charge and mass matrices.

The highly symbolic product of metric tensors is needed to ensure the final result is a

Lorentz scalar (note that µa and λb indices cannot be contracted among themselves due

to the antisymmetry of the Levi-Civita symbol and Γ(n)). As in the case of the bosonic

operators, QCD loops only generate metric tensors in D dimensions, since we only consider

single insertions of the gCEDM. Therefore, the only possible evanescent operators arise

either due to the evanescent structures Γ(n) with n > 4, or due to the Schouten identity.

An explicit list (with generic operators OF ) is given by

E(1,5)
F = εµ1...µ4 q̄ Γ(5)

µ1...µ5O
µ5
F q ,

E(2,4)
F = εµ1...µ4 q̄ Γ(4)

µ1...µ3µ5O
µ5µ6
F q gµ4µ6 −

1

4
εµ1...µ4 q̄ Γ(4)

µ1...µ4O
µ5µ6
F q gµ5µ6 ,

E(2,6)
F = εµ1...µ4 q̄ Γ(6)

µ1...µ6O
µ5µ6
F q ,

E(3,3)
F = εµ1...µ4 q̄ Γ(3)

µ1...µ3O
[µ5µ6]µ7
F q gµ4µ5gµ6µ7 + 3εµ1...µ4 q̄ Γ(3)

µ1µ2µ7O
µ5µ6µ7
F q gµ3µ5gµ4µ6 ,

E(3,5)
F = εµ1...µ4 q̄ Γ(5)

µ1...µ5O
µ5µ6µ7
F q gµ6µ7 ,

Ẽ(3,5)
F = εµ1...µ4 q̄ Γ(5)

µ1...µ3µ5µ6O
µ5µ6µ7
F q gµ4µ7 ,

E(3,7)
F = εµ1...µ4 q̄ Γ(7)

µ1...µ7O
µ5µ6µ7
F q , (C.16)

and operators where the indices of Oµ5µ6µ7F are permuted. The operators E(k,n)
F with n > 4

are evanescent due to the evanescent structure Γ(n). The other two operators are evanescent

due to the Schouten identity. When the Dirac algebra is worked out in the HV scheme

replacing the Levi-Civita symbol with γ5, all the fermionic evanescent operators involve

contractions of the Lorentz indices of Oν1...νkF with objects in D − 4 = −2ε dimensions.

Finally, our scheme requires that the tree-level insertions of the evanescent operators

into the renormalization conditions vanish in D dimensions. This follows immediately

from the fact that the renormalization conditions are formulated in terms of projections

in section 4.2 that contract all open Lorentz indices of the truncated vertex functions with

four-dimensional objects, in the same way as it happens with S-matrix elements in the HV

scheme. When the evanescent operators are inserted into the truncated vertex functions

at tree level, the fields are removed and derivatives turn into four-dimensional external

momenta. All indices are either contracted with the four-dimensional Levi-Civita symbol

or the four-dimensional indices of the projectors, hence both the Dirac structures Γ(n)

and the metric tensors in the evanescent operators are projected to D = 4 dimensions.

Therefore, both the four-dimensional Dirac algebra and the Schouten identity apply and

the tree-level insertions of the evanescent operators vanish identically.
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