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1 Introduction

Permanent electric dipole moments (EDMs) of non-degenerate systems break the symme-
tries of parity (P) and time reversal (7'), and consequently, in Lorentz-invariant theories,
the combination of charge conjugation and parity (CP). While C' and P are separately
maximally broken in the Standard Model (SM) of particle physics by the weak interac-
tion, C'P is broken in a much more subtle fashion: in the SM with three generations of
quarks, C'P is broken by the phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix and the QCD 6 term. So far, C'P violation has been observed in kaon [1-3],
D-meson [4], and B-meson [5, 6] decays, and it is compatible with the CKM mechanism. On
the other hand, SM CP violation is insufficient to explain the observed matter-antimatter
asymmetry in the universe [7, 8]. EDMs of the nucleon, light nuclei, diamagnetic and
paramagnetic atoms, and molecules offer an important window into non-SM C'P violation,
by combining extremely high experimental sensitivies with unobservably small CKM back-
grounds, see [9] for a review. Currently, the strongest bounds are those on the electron
EDM, |d| < 1.1 x 10716 e fm (at the 90% confidence level), inferred from experiments with
the ThO and HfF molecules [10-12], on the neutron EDM, |d,| < 1.8 x 107'3 efm [13-
15], and on the EDM of the %9Hg atom, |dpg| < 7.4 x 10717 efm [16]. In all three
cases, the CKM background is several orders of magnitude smaller than current and future
sensitivies [17-22]. The present generation of EDM experiments is already putting severe
constraints on models of physics beyond the SM and on electroweak baryogenesis scenarios.
These constraints will become even more stringent in the next generation of experiments,
which aims at improving the electron and neutron EDM sensitivities by one or two orders
of magnitude, respectively, and the 22°Ra EDM sensitivity by four orders of magnitude [23].
In addition, forthcoming experiments will for the first time investigate the EDMs of the
proton and light ions [24, 25] and the EDMs of unstable particles, like the 7, A, and the
A s baryons [26, 27].

While the observation of a non-zero EDM in any of these experiments will be a clear
indication of new physics, connecting a nuclear or atomic EDM with the fundamental,
high-energy mechanism of C'P violation requires gaining control over hadronic and nuclear
uncertainties. At the quark level, flavor-diagonal C' P violation can be model-independently
described by extending the SM Lagrangian with gauge-invariant higher-dimensional opera-
tors to an effective field theory (SMEFT) [28, 29], which parametrizes the indirect effects of
physics at scales A > v, where v = 246 GeV is the Higgs vacuum expectation value. Heavy



SM degrees of freedom can then be integrated out by matching the SMEFT Lagrangian
onto an SU(3), X U(1)em-invariant low-energy effective field theory (LEFT) [30, 31]. The
complete one-loop matching was carried out recently in [32]. At the hadronic scale, the
LEFT Lagrangian includes the dimension-four QCD 6 term, the dimension-five electric
and chromo-electric dipole moments (CEDMs) of the u, d, and s quarks (which arise from
dimension-six SMEFT operators at the electroweak scale), and, at dimension six, the C'P-
odd three-gluon operator and several four-quark operators. The quark-level operators in-
duce C P-violating hadronic interactions, such as the EDMs of the neutron and proton and
C P-violating pion-nucleon and nucleon-nucleon couplings, which then feed into the calcula-
tions of the EDM and Schiff moments of light and heavy nuclei. As QCD is nonperturbative
at the hadronic scale, the hadronic matrix elements required to match the quark-level and
hadronic/nuclear EFTs need to be evaluated via nonperturbative methods. In particular,
lattice QCD (LQCD) has emerged as a powerful tool to compute hadronic matrix elements,
in which all sources of systematic uncertainty can be quantified, controlled, and improved.
This has led to the first LQCD calculations of the nucleon EDM from the u- and d-quark
EDMs [33], with few-percent uncertainties, and to the first estimates of the nucleon EDM
induced by the QCD 6 term [34-41] and by the quark CEDM [42, 43]. These estimates,
though preliminary and still affected by large uncertainties, promise to deliver controlled
EDM calculations for the next generation of experiments.

An important issue to be addressed in the interpretation of LQCD results is the mixing
between different C P-violating operators. The lattice spacing in LQCD effectively works
as a gauge-invariant cut-off, causing mixing between operators of different dimension, in
addition to the familiar logarithmic mixing of dimensional regularization. To unambigously
identify the effects of various LEFT operators, it is then necessary to define a renormaliza-
tion scheme. This scheme needs to be interfaced with the MS scheme, which is employed
for the calculation of the operator mixing and running between the weak and the hadronic
scale in the LEFT [31] and above the weak scale in the SMEFT [44-46]. Such a matching
calculation has been performed in [47] for the dimension-five quark CEDM operator. In
this paper we focus on the C'P-odd three-gluon operator [28, 48]

Ol = igTr[G,, G* G, (1.1)

where G, is the gluon field strength, the trace is taken in color space, and GH =
ehvel Gop/2 is the dual field-strength tensor. The three-gluon operator induces a non-
zero gluon chromo-electric dipole moment (gCEDM), and we will thus also denote (’)gG)
by gCEDM. The perturbative renormalization of the gCEDM has been calculated at one
loop in [49-51]. The anomalous dimension has recently been calculated to two and three
loops in [52]. A first study of the renormalization of Ogﬁ) using the gradient flow has been
presented in [53, 54]. In this work we define the three-gluon operator in a regularization-
independent (RI) momentum-subtraction (MOM) scheme, construct the complete basis of

gauge-invariant and nuisance operators needed to carry out the nonperturbative renormal-

'In the literature, this operator is often called “Weinberg operator” in attribution to [48], although it
was already listed as part of the general set of gauge-invariant dimension-six operators in [28].



ization, and calculate the matching between the MS scheme and the momentum-subtraction
scheme at one loop.

The paper is organized as follows. In section 2, we discuss mixing and different types
of operators that need to be taken into account in our scheme. In section 3, we discuss the
construction of the operators and present the resulting basis of operators that mix with the
gCEDM. In section 4, we define a regularization-independent renormalization scheme and
in section 5 we present the results for the matching between the RI and the MS scheme at
one loop, before we conclude in section 6. More details on the operator basis construction
are provided in the appendices.

2 Operator mixing

In this paper we define the C'P-odd three-gluon operator (1.1) in a regularization-
independent momentum-subtraction scheme [55]. In this scheme, the renormalization
conditions are imposed on quark, gluon, and photon Green’s functions, computed in a
fixed gauge, with off-shell external states of large space-like virtualities. The renormalized
operators O?I thus defined are independent of the ultraviolet regulator, and, since the
renormalization conditions can be implemented both on the lattice and in perturbation
theory, one can convert them into the MS scheme

oM = ¢;; 0, (2.1)

)

with matching coefficients Cj; computed in perturbation theory. The implementation
of the RI-MOM schemes requires working off-shell in a fixed gauge. In this case a
given gauge-invariant operator mixes with two classes of operators of the same or lower
dimension [56-60]:

I. gauge-invariant and ghost-free operators that do not vanish by equations of motion
(EOM) and have the same properties as O§6) under Lorentz, chiral, and discrete

symmetries (C, P, and CP),

II. “nuisance” operators, which we denote by N. These operators are allowed by the
solution of the Ward identities associated with BRST invariance. They do not need to
be gauge invariant, they vanish by the EOM and can be constructed as off-shell BRST
variagcg;)ns of operators with ghost number —1, with otherwise the same properties
as 0.

We will discuss the construction of operators in class I and II in section 3, where we will
further divide the operators in class II into

ITa. gauge-invariant operators that vanish by EOM,
IIb. gauge-variant operators.

The mixing with gauge-variant operators (class IIb) can be avoided by working in
background-field gauge [61].



In lattice calculations, the traditional RI-MOM scheme [55] suffers from unwanted in-
frared effects, which can be suppressed by choosing subtraction points with non-exceptional
kinematics as in the RI-SMOM prescription [62, 63]. In our scheme, we will impose the
renormalization conditions at non-exceptional but asymmetric kinematic points (dubbed
RI-SMOM scheme in [47]). As the scheme involves momentum insertion into the operator,
we also need to take into account mixing with operators that are total derivatives.

We now establish the conventions used throughout the paper. If we consider only
single-operator insertions, the relation between bare and renormalized operators in any
scheme is linear:

oY = z,0;, (2.2)

where the superscript (©) denotes bare operators. By general consideration, it can be proved
that the renormalization matrix has triangular structure [56-60]

0O Zo Z, @)
(N(0>> - ( oO ZO]\J;V> (N) ' (23)

The matching coefficients for the translation between the MS and RI-MOM schemes are
therefore given by

MSY —1
Cij = (Z"), 2 . (2.4)
In this paper we consider the matching at one-loop, where (2.4) simplifies to
Zij =14+ Ay, Cij =15 — AN+ ARL (2.5)

Since the matrix elements of nuisance operators vanish between physical states [59, 60],
when computing hadronic matrix elements we can neglect nuisance operators. In particular,
the contribution to the neutron EDM will be extracted from

(NJOYSN) = (1 = A + AR) (N0 N) (2.6)

where the operator O%\TS arises from the insertion of the effective Lagrangian, which car-
ries no external momentum. Hence, in (2.6) the summed index j only runs over gauge-
invariant, physical operators that are not total derivatives. Note, however, that in order
to determine the factors A;; in (2.6), either perturbatively or nonperturbatively, and in
particular the renormalized operators (’)}ﬂ, one is forced to also determine the mixing with
nuisance operators.
We need to calculate the mixing matrices in the two schemes, which can be obtained
by considering the insertions of bare operators into amputated n-point Green’s functions:
W OOy = 2027 a0, (2.7)

where 1) denotes a generic field and /Zy, its field-renormalization factor.



3 Construction of the operator basis

The dimension-four QCD Lagrangian is given by

2 ~
G Ge (3.1)

uv

/. 1 v n g

Lacp = @(iy" Dy = M)q — £ GL7G, — o, —

where the quark field includes the three light quarks, q := (u,d, s)”. We define quark-mass
and charge matrices as

M = diag(my, mg,ms), Q= diag<2, —1, —1> ) (3.2)
373 3

In the LEFT, the Lagrangian (3.1) is supplemented with QED as well as a tower of effective
operators [30]. Here, we will be interested in the extraction of the neutron EDM from the
matrix element (2.6) with the insertion of the dimension-six three-gluon operator (1.1).
We consider the matrix element at O(e) and we will neglect higher-order QED corrections.
This allows us to disregard the photon kinetic term and instead treat the photon field as
an external source [64, 65]. In this case, the covariant derivative is given by

Dy = 9, —igt* G}, — vy, — ivsa, = 0y —igt" Gy, — il P, —ir, Pp (3.3)

where t* = A\*/2 and \* are the Gell-Mann matrices in color space, and v, a,, l,, and r,
are traceless, Hermitian 3 x 3 matrices in flavor space, fulfilling

ly=vy—au, ry=v,+a, (3.4)
and taking the physical values
ly=ry=vy=eQA,, a,=0. (3.5)

In the following, we will construct the basis of operators that are needed to renormalize
the C'P-odd three-gluon operator. The symmetries of the Lagrangian strongly constrain the
possible mixings. Neglecting the QCD @ term, the leading-order Lagrangian is P- and CP-
even, implying that we only need to consider C'P-odd operators as possible counterterms
to the three-gluon operator. In addition, in the limit M — 0 and e) — 0, the Lagrangian
has an SU(3), x SU(3)g chiral symmetry, i.e., it is invariant under the transformation

qr,r =+ Urrqr,r, Urr€SUQB)LR, (3.6)

where g, g = Pr rq and the chiral projectors are P, = (1 — 75)/2, Pr = (1 + 735)/2.
While chiral symmetry is broken by quark masses and charges, one can formally recover
chiral invariance by assigning spurion transformation properties to the mass matrix and
external fields. Since the three-gluon operator is chirally invariant, it can mix only with
operators that are chirally invariant in the spurion sense. Chiral symmetry applies to the
continuum theory. If the lattice regularization breaks chiral symmetry, additional spurions
are present in the effective Lagrangian, which can induce more mixings of the three-gluon



operator. We will restrict our analysis to the case where chiral symmetry is preserved by
the lattice regulator.

In section 3.1, we briefly describe the construction of the relevant set of gauge-invariant
class-1 operators, while in section 3.2 we explain how we construct the class-II nuisance
operators. More details on the construction of the operator basis are provided in ap-
pendix A and B. In section 3.3, we present the complete basis of operators that are needed
to renormalize the gCEDM. Based on general considerations, we discuss the structure of
the mixing matrix in section 3.4.

3.1 Gauge-invariant operators

We construct the basis of operators up to dimension six that renormalize the C'P-odd
three-gluon operator. The dynamical degrees of freedom that we need to consider are the
gluon field and quark fields.

In order to implement the constraints of chiral symmetry, we rewrite the non-gauge
part of the leading-order Lagrangian as

i = T
L= S Dar+ L D ar — GpMar — geMiqy, (3.7)
— — —
where I :=I) — P, and ) := YD, D = ’y“ﬁu. The left-acting covariant derivative is
(_

Dy = 9, +igt"G® + il Py, + ir,, Py (3.8)

The mass matrix is promoted to a spurion field and the transformations

M & U MU, ME& UpMmiv]

L, ULl UL + iU, U] ry % Upr, Ul + iURd, U, (3.9)

formally make the leading-order Lagrangian invariant under chiral transformations. The
field-strength tensors associated with the external fields are

F“Ll, = 0uly — Ol — il 1], Fﬁ, = 0ury — Oury — [Ty, ), (3.10)
with the physical values
FiR = eQFu, Fu =0,A, —0,A,. (3.11)

Since we are interested only in effects of O(e), we will consistently restrict the basis to
operators that are at most linear in the external photon field. Gauge-invariant operators
will be expressed in terms of covariant derivatives, the external field-strength tensors, the
gluon field-strength tensor

G4, = 0,G% — 0,G% + g f*™* GGy, (3.12)
and the dual field strengths
~ 1 ~ 1
G = 5eW”G‘;U, Fpn = ieW”Fﬁ;R, (3.13)

with 0123 = 41,



The commutator of the covariant derivative is related to the field-strength tensors by
(D, D] = —igGyy — iFj, PL — iF,Pr, G =t*GY,. (3.14)

The covariant derivative in the adjoint representation is defined by
Du(') = 8#(-) - ig[Gu, ’ ] - i[l“, ’ ]PL - i["”u: ’ ]PRa (3-15)

i.e., the covariant derivatives of the field-strength tensors are

DPF;fV = (8PFMLV - Z[ZP>F/EV]) ’ DPFlﬁ/ = (aPF/ﬁ - i[rpa F/ﬁ/]) )
D,G = 9,G . —ig|Gp, G, or (DpG o) = 9,G%, + gf***GLGS, . (3.16)

We use the same symbol D, for the covariant derivative in different representations. Note
that the covariant derivative fulfills the Jacobi identity

[Dy, [Dy, Dy]] + [Dx, [Dy, Dy]] + [Dy, [Dx, Dy]] = 0 (3.17)
as well as the Leibniz rule
D,(AB) = (D,A)B+ A(D,B), (3.18)

where each D,, denotes the proper covariant derivative belonging to the representation of
the object that it acts upon. The Jacobi identity and Leibniz rule imply the Bianchi identity

(DH[DW DA]) + (DA[DW Du]) + (DV[DM Du])
= —ig (D,Gyr + DG + D,G)y,,)
— i (DuFJ + DaFlL, + Dy FY,) Pr
— i (DuF3 + DAFlL + D, Fy,) Pr=0. (3.19)

14

All three brackets have to vanish separately. By contracting the Bianchi identity with the
Levi-Civita tensor, one obtains

D,G" =0, D,FI"=0, D,Fi =0. (3.20)

These identities play an important role in identifying the minimal set of operators that
mix with the three-gluon operator.

The gauge-invariant operators mixing with the gCEDM are obtained by constructing
an exhaustive list of operators that are Lorentz scalars, chirally invariant, P-odd, and
C P-odd, using as building blocks the fields and spurions

aLr, ar. Gw, FL%, Dy, M, M, (3.21)

and subsequently removing all redundancies. Details on this construction are given in
appendix A. The counting of operators can be automatized using Hilbert series tech-
niques [66-70]. We use these methods as a cross-check to count the number of operators
that are invariant under the Lorentz group (which is isomorphic to SU(2); x SU(2)g),
global SU(3). X U(1)em, and the chiral group x = SU(3)z, x SU(3)g. From the complete
list including total derivatives and EOM operators, we select the operators that are P-odd
and C P-odd.



3.2 Nuisance operators

Because of gauge fixing and the peculiar nature of BRST symmetry, by which BRST
variations of elementary fields are composite operators, gauge-invariant operators can mix
with non-invariant operators [56—-60]. The form of the operators is dictated by the Ward-
Slavnov-Taylor identities associated with BRST symmetry, and we follow here the con-
struction of [59].

The construction relies on the fact that the nuisance operators can be written as
BRST variations of “seed operators” with ghost number —1. The seed operators need not
be gauge invariant. Their building blocks consist of the dynamical fields, the ghost fields,
the spurions, as well as external sources for the fields, which are set to zero after applying
the BRST variation. Details on the derivation are given in appendix B. The construction
provides us with a list of nuisance operators of both classes Ila and IIb. The class-Ila
operators (gauge-invariant operators that vanish by the EOM) are linear combinations of
gauge-invariant operators constructed in section 3.1.2 They can be presented in a compact
form by introducing the fields

ap = (D - M)q, 5= —qli +M). (3.22)

The complete list of operators is provided in section 3.3.

3.3 Operator basis

The final matrix element (2.6) that is needed to extract the neutron EDM contains an
external photon state. The photon is allowed to couple either to the electromagnetic
current or directly to an effective operator. As we are working at leading order in the QED
coupling, we disregard operators containing more than one photon field.

In a cut-off scheme, the gCEDM mixes with C'P-odd operators of dimension six or
lower. There are no C'P-odd, chirally invariant operators with dimension smaller than four.

In the following, we present the complete basis of operators that renormalize the
gCEDM operator at leading order in the QED coupling. In order to make the operators
manifestly Hermitian in D dimensions, we introduce the following symbols:?

- 1 1
= gea%vaww = 5[v"7s] = Py Pr — Py Pr,
ot = %e“”o‘ﬁaafg . (3.23)

Dimension four. At dimension four, we have two physical and one nuisance operator:
O = (G, G,
054) = 0u(7"q),
N = i@psq + 1) - (3.24)

The operator (9%4) is the QCD @ term, the operator (954) is a total derivative and contributes
due to momentum insertion. The nuisance operator belongs to class Ila.

2These operators correspond to the EOM redundancies that are usually removed from the set of operators
in the construction of EFT Lagrangians through field redefinitions.
3The definition of 5** differs from the one in [47] by an evanescent term.



Dimension five. At dimension five, there is a single chiral invariant operator:

O = €iintmmMumi M ivsq - (3.25)
For a diagonal mass matrix, the following relation holds [71, 72]:

0 = 2 det(M)givsMq. (3.26)

Dimension six. At dimension six, we find the following operator basis:

(956) = z’gTr[GWG“)\é”)‘] ,

OF) = iglg@" Mt"q)Gy,
OF) = ie(qa"" MQa) Fu
O = DM (G, G
O = 0, Th{(D G, )G,
0f =0, (g7 3%0) - -0,
OFF = TM0, (479) .
0F) = e, (71,QaF™)
ol = OT(G,.G"],
Of) = 00,(75"q) , (3.27)

where Ny = 3 is the number of quark flavors. The basis in (3.27) contains the gCEDM
and three additional purely gluonic operators, 0516), a mass correction to the QCD 6 term,
and Oé?g, which are total derivatives. (’)éﬁ) and (’)§6) are the quark CEDM and EDM, re-
spectively. Due to the different chiral properties, the gCEDM can mix into them only via
insertions of M and MQ. Oé?%lo are derivatives of the axial current, with the appropri-
ate number of mass insertions required for chiral invariance. An important result of our
construction is that there are no SU(3) chirally invariant, C'P-odd four-quark operators.
In addition to the physical operators, we find a set of 20 nuisance operators at dimen-
sion six. There are 10 gauge-invariant operators that vanish by EOM (class Ila):
N = ig(qus™toq + G5 1) G

nv o
N3 = ie(qps" Qq + 45" Qqp) Fyu |
NS = (apM3# Dyq + 4D 5" Mag)

o . 1
N = i (qeMPy5q + GMPys5q2) — fof\/gfﬁ) :



NS = e[ M2]i(qpysq + Gysam)
N = id), (QE%D“Q + 63“75(113) ;
N = 8,(qs6" Dg — 7D ,6" q5)
N = 8y (GZV (D" G5, + gét“%q)) A
N = 0, (awMF"g + aMi*q)
Ny =00 (cimsq + ci%qE) : (3.28)
Finally, we find another 10 gauge-variant operators (class IIb):
N = G, (02 (DGl + gatv00 = g1 (D5e)cc) ) €27,
N = ig*(@psq + qrsa5)GAGY,
N = ig(qust®a + r5toqr) GhGrd
NS) = 9(qest"q — @5t qr)0.GY
NS = g(@m75t* Dyg — 4D ustam) G
NI = ig(qua™tq + G5 tq1)0, G
N = ig(apMautt — IMAt )Gl
N = 0y ((3uGﬁ) (D” G + 9at*Veq — gf“bc(aaéb)cc)) L
N =0, (Q(QE%taq - 67575GQE)G5) ;
NG = 0, (9(apa™ 1% + 45" g G ) (3.20)

The operators that are written in terms of the EOM quark fields gg and ¢g obviously
vanish by the quark EOM. A subtlety arises in connection with the operators involving
pure gauge-field terms: N8(6) vanishes by the “naive” classical EOM, i.e., by the EOM
without gauge-fixing and ghost terms. On the other hand, the class-IIb operators N1(16)
and N, 1(86 ) vanish by the full EOM including ghost (and auxiliary-field) terms. Nevertheless,
neither class-ITa nor class-IIb operators contribute to physical matrix elements [57, 59, 60],
as all of them are given by BRST variations. In particular, the class-Ila operator can be
obtained as the BRST variation of a seed operator with ghost number —1,

N =W [on(Ge, Jaye ] (3.30)

uvo

where the BRST operator W is defined in (B.29) and given explicitly in (B.32), and where
jf} is the source for a composite BRST variation, see appendix B.5. The seed operator
in (3.30) is a linear combination of the seed operators (B.42).

~10 -



As discussed in [73], the difference between an operator that vanishes by the naive
classical EOM (i.e., the EOM without ghost and gauge-fixing terms) and the corresponding
operator vanishing by the full classical EOM is again a BRST variation. Therefore, this
difference is a class-IIb operator that does not affect physical matrix elements. In the case
of N8(6), this difference would be given by the BRST variation

W [0A(G4, 058" ] . (3.31)

The fact that this term does not appear in our basis is due to the ghost quantum
EOM (B.23), which is a constraint on the effective action beyond the classical level, see
appendix B.2.

3.4 Mixing structure

In table 1, we give the structure of the mixing matrix at leading order in the QED coupling.
The structure is determined according to the following rules.

1. Dimensional argument: operators only mix into operators of the same or lower mass
dimension.

2. Operators containing the mass matrix only mix into operators with at least the same
power of the mass matrix.

3. Total derivative operators only mix into operators with at least the same structure
of total derivatives.

4. Nuisance operators do not mix into class-I operators [56-60].%

5. At leading order in the QED coupling, photon operators only mix into photon oper-
ators.

Due to the choice of the operator basis, the second rule involves a subtlety: because
of (3.22), operators proportional to the mass matrix can be obtained from linear combina-
tions of EOM operators with class-1 operators without mass matrices. E.g., the relations

2Gins Mg = 05 — N |
20 (qirsMa) = O3 = Njo (3.32)

imply that the qCEDM operator (’)56), which contains a mass matrix, mixes into O§4) -\, 1(4)
and 0% — M),

A mixing of gauge-variant nuisance operators (class-I1Ib) into gauge-invariant nuisance
operators that vanish by the EOM (class-IIa) is not excluded. Note that in the MS scheme,
mixing only happens between operators of the same dimension, because mass insertions
are explicitly treated as part of the operators.

4This holds for regularization schemes where the path-integral measure is invariant under chiral rotations
and the anomaly is due to evanescent terms, such as dimensional regularization or Wilson fermions on the
lattice. In schemes where the Jacobian of chiral rotations is not unity, an additional finite renormalization
and potentially the subtraction of power-divergent terms are required, see [74].

- 11 -



(6) (6) (6) A(6) ~(6) A(6) ~(6) AB) ~n(6) ~(6) £(6) A(6) Ar(6) Ar(6) AA(6) £rA(6) pr(6) pr(6) yrA6) \r(6) F(6) AF(6) nA(6) AA6) \rA(6) pr(6) pr(6) £rAB) \r(6) pr(6)] n(5) (4) (1) r(4)
o 0 0 0 0 o 0 0 O 0| A NP NI N N N MY N N NG| N NS N N N MY N N N N[ 0| 0f 08|
0P x x x x x x x x x x| x x x x x x x x x x| x x x x x x x x x x| x| x x| x
o X x X X x x X x x X x x x x| x
6)
oy x
oY x x x
Oél’) X XX X XX X X XXX x X% x
o x
ow x
(6)
Og x
O‘(,(’) X % x
(6)
O x
N XX XXX x o x o x o x x| XX xxxx % x xx x
£(6)
Ny x
e « xx « «
r(6)
N x
(6)
N x
N X X ox X x X x X
A©)
X X X x X X XX
X X ox X x X X X
x
x
X X X X X X X x x X X X X X X X X x x X x
X XX X X X X X X X XXX X X X X X X X x
X X X X X X x X x X X X X X X X X X x X x
X X X X X X x x x X X X X X X X X x x X x
X X X X X X X x x X X X X X X X X x x X x
XXX X X X X X X X XXX X X X X X XX x
X XX x x
X X ox X 0x X X X
X X X X X X X X
X X X ox o x X XX
x
i X % x
o x
N x

Table 1. Structure of the inverse mixing matrix Z~!, defined in (2.2). The operators are defined
in (3.24), (3.25), (3.27), (3.28), and (3.29). The operator O\® is the C'P-odd three-gluon operator.

The divergence of the axial current, (954) does not mix into the QCD 6 term OYQ [75—
78]: although (9§4) is a total divergence, it is the divergence of a gauge-variant current.
In background-field gauge, the axial current cannot mix into this gauge-variant current
and the same is applies for their divergences. Since (’)Yg are gauge invariant, the same
conclusion holds in any gauge. The argument of course applies as well to the dimension-six

operators involving GG.

4 Renormalization scheme

In order to calculate the matrix element of the MS three-gluon operator in (2.6), we need
the first row of the conversion matrix between MS and RI-SMOM schemes, Cyj, as well
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as a definition of the renormalized physical RI-SMOM operators — nuisance operators as
well as total-derivative operators (apart from the topological # term) do not contribute
to the physical matrix element. In this section, we formulate renormalization conditions
in an RI-SMOM scheme, which can be implemented in lattice QCD. They define the
renormalized physical operators in terms of bare operators, hence the renormalization

conditions need to determine the entries of the mixing matrix,”

RI _ /~RI\—1,+(0)
0" =(Z )ij Oj : (4.1)

Table 1 shows the structure of the full renormalization matrix of all the operators that
potentially mix with the three-gluon operator at leading order in the QED coupling.

Only those entries of the inverse mixing matrix (ZRI) ;; are needed, where both i and
J run over physical operators. However, in order to determine these entries, one still has
to impose n conditions if the operator O; mixes with n operators O;, j =1,...,n. Let us
denote the renormalization condition for insertions of the operator O; into m-point Green’s
functions by

n

= > (2 z P @ oy L (4.2)

Rk[Oi] = (1/11 o wkaiRI>amp S
j=1 '

Sk

where |g, denotes the evaluation at a certain kinematic point and appropriate contrac-
tions in Lorentz and Dirac space defined by condition k, with kK = 1,...,n. The desired
renormalization factors are then obtained by inversion of an n x n matrix A

n

(25 =3I RO, (Al = 2w QO (43)
k=1 b

In the MS scheme, a relation similar to (4.2) holds, with the renormalization matrix
MS
(Z )’LJ

In section 4.1, we compute the counterterm vertex rules for the insertions of all opera-

chosen to cancel only the dimensionally regulated poles.

tors of the basis, which allows us to determine the number of independent renormalization
constraints that can be obtained from a particular Green’s function. The explicit renor-

(6)]

malization conditions Ry [(’)1 on the Green’s functions with insertions of the three-gluon
operator are formulated in section 4.3. To carry out the full renormalization program,
we also need to impose renormalization conditions Ry[O;] on the Green’s functions with
insertions of the other physical operators O; that mix with the three-gluon operator. They
can be chosen as a subset of the conditions used for the gCEDM. Alternative conditions

for these operators could be obtained in a straightforward way from [47].

4.1 Counterterm vertex rules

The renormalization conditions for the RI-SMOM scheme need to render all renormal-
ized operators finite and determine the finite contributions to the mixing matrix. We will

®In general one expects mixing of the gCEDM and other physical operators with evanescent operators.
In appendix C we specify a set of evanescent operators that defines our minimal scheme, and which allows
us to effectively ignore the evanescent operators in the one-loop matching calculation.
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iq wj:z@%% ”%%%O/

Figure 1. Gluon two-point, gluon three-point, and ghost-gluon three-point functions with momen-

b

tum insertion into the operator.

d, s

, q Pd
q ey pc e pc pd d,s 077 ,
i pb ' / i ' i DPa Do J

Figure 2. Quark two-point and quark-gluon three-, four-, and five-point functions with momentum
insertion into the operator.

4,6
Pe Pc ¢ Pd pdi Pe
v \ q ¢, \ / 0 ¢,y / €
il
/ QT

N (N z}* j
Figure 3. Quark-photon three-point and quark-gluon-photon four- and five-point functions with
momentum insertion into the operator.

formulate the conditions as the requirement that at certain kinematic points the renor-
malized amputated Green’s functions agree with their tree-level expressions. In order to
determine the number of independent conditions that can be obtained from each Green’s
function, in the following we calculate the n-point vertex rules for all the operators of the
basis (3.24), (3.25), (3.27), (3.28), and (3.29). We insert momentum ¢ into the operator.
The convention for signs and factors of 7 is given by

i) 60 + i = p) Ty = 301 [ dtae (71O @)

+) i / drze™ 0 (FinIN) (2)]i) (4.4)

We only list the contact terms. We define kinematics and indices for all the necessary
Green’s functions as in figures 1, 2, and 3. Lorentz indices are denoted by Greek letters «,
B, ..., color indices by a, b, ..., and quark-flavor indices by 7, j. All the gluon and photon
momenta are incoming, while for the quark and ghost lines the momentum flow is in the
direction of the fermion- and ghost-number flow.
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Gluon two-point function. The gluon two-point function is given by
Tap = €a(pa)65(pb)nzbﬁ )

% = G, p, #pby{zcg‘*) +2Tr[ M) — 2¢%c (4.5)

1
~ ) (e + 20+ 2 ) |

It provides a constraint on the dimension-four operator coefficient 054) and three indepen-

dent constraints on dimension-six operator coefficients.

Gluon three-point function. The gluon three-point function is given by

Tabe = €a(pa)es(py)es ()T

1
P’ = gfabceaﬁwq“{%g@ + 2T M) — 267" — (p2 + P} + p?) <20§>6) + 2m(36)) }

1@
+ g f "€ (Do, Dy - Pe + DpPe  Pa + PeyPa - Pb) { — §C§ )}

+ g f "€ (Do, 2 + PouDh + Pe bt {27%5?}
+ gfobe [eaﬂ W (DIDbyPey + Py Paybey)

+ € (e, Pay + PEDbuPay)

+ eranv (p/fpaupby + pgpcupbu) ] { - %Cg(*) —ch) _4né6) _4n§§) _ 2n§68)}
+ gfobe {e“’gwpa,mby (pl —p})

+ MM pype,, (Ph — P2)

+ eWWpCMpM (pf - pﬁ) ] {céG) + 4né6) + 4nﬁ) + 2n§68)}
g (P ey, + D, + O pipy, ) 0 { — 20 — Q]
+gfo [ewa (90‘5 97 +979°7 + 979" ") phpyp) }

. {;cg@ L O 4 an® 4 an® 4 2ngg>} | (4.6)

It again provides a constraint on the dimension-four-operator coefficient 054) (which can also

be fixed from the two-point function) as well as six independent constraints on dimension-
six-operator coefficients. Three of them are linearly dependent with the constraints from
the two-point function.

Ghost-gluon three-point function. The ghost-gluon three-point function is given by

Tabe = €3(Pe) g »

v 6 6
Toe=9f wbeem All’aﬂll?zmpcx{ N 2”§1) - ngs)} : (4.7)
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It does not provide a new linear combination of coefficients, i.e., by renormalizing the
gluon two- and three-point functions, the ghost-gluon three-point function will be auto-
matically finite.

Quark two-point function. The quark two-point function is given by
Tji = 1 (pp)Ljivi(pa) ,
;= det(M)(Mfl)ji’}%{ — 26&5)}

+ Mji'YS{anl) + (02 + p)n” + 4 ( R 2n(6))

1 % 6
— 2Tr[M?] <anz(l ) né )> }
+ Mjﬂ&uypng{Q ( (6) + ng ) + néﬁ)> }
+ (M?);i(p, — zﬂb)%{cfgﬁ) —n{ +n® — 2”5(96)}
+ (Mg)jws{?”f)}
@ @) _ o L e ©®, 1 © (6
—|—5ﬂ(;¢a pb)75{62 +ny Tr[M ]<Nf66 ey + an4 n; )

1 1
- (Cg? g =g+ n§60)> - 2 +p§)n§6)}

+05i(p, P {;(pﬁ — 1) (néﬁ) + n§6)) } : (4.8)

It provides the two missing constraints on dimension-four coefficients, a constraint on the
dimension-five coefficient, as well as 10 constraints on dimension-six coefficients.

Quark-gluon three-point function. The quark-gluon three-point function is given by

Tiie = €4 (pe)uj(py)T}; ui(pa) ,

[se = igM;ita " pe, { = 27 +4n(® — 2 — 2 4 2n) + 203}
+igM;it°c " (pa,, — pbu){ — 2n§6) - 2n§6) — 2n<g6) + nﬁ) + 2n§%)}
+ gM;it“ys(pg + pb){ ) —nf - n§67)}
+ 905t 35 02 = ) (n” + 0 — ny))

+ (pa " Pe + Py - De) (—2n§6) + ngs) + n§6) — n%%) — né?) }

+ 90t Y5 (Pap) —préf){ ¢+ 30+ nfd) +nfy) - né%)}
+90;it“vu s (Paph — PyD)) {néﬁ) —n” +nig + né%)}

+ 985t (Pl + P+l + i + (3}
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+ g8ty vy + oo {2nl” — 20l + Q) + 03}

+ 093t €y, (Pay — Doy )Pex { 2n§6) - Zn;G) - 2né6) - 2n§61) +ng%) - ngﬁ) +n(6) } .
(4.9)

It provides 10 linearly independent constraints on dimension-six coefficients. Two of them
are linearly dependent with the constraints from previously listed n-point functions.

Quark-gluon four-point function. The quark-gluon four-point function is given by

Tiised = €(pe)es(pa) i (Po) T ogtti(pa)

~vé
F]z ed =

2/\/( deata(ﬂ‘s{ céG) + 4n§ ) + 2n(6) - 2n§67)}
+ Mt 1507 {20 + anff) — 2nY) — 20D}
+ gZMjiécd’yg)gV‘s{élng) — gngg)}
+ 19705 f 1t Y5 ((pa +6)79" — (pa + o ‘59’”) { 3 (165)}
+ 970 {t", t s (( —5)79" + (Pa — s 59’”)

X{ © 4 ) 4 2n§5>+ngg> _ng?}

+ 265 {15 s (ng”5 + pgguv) { O 4 p® 4 &4 plo) né%)}

+ %05 {t", s (pfi’g“‘s + p‘gg’”) { = 2 g i i 4 —ngé)}
+ 92(5ji{t0, td}’Yu%gw(pa - pb)“{ — 2n$ ) 4+ 2n(6) ngg) + 2n(6)}

+ 928t t"}7959™ (e + pa)” {27%5 "2 i) + Qn@}

+ 925jz’fcdata675“”7u(pa — pb)y{Qng ) 2n(6) 2né6) — Znﬁ) + Qng%)}

+ g5 f My, (e + pa) {20 — 20l — 20l Q) 4 20}

2
+ 925ji50d'yufy5g"’6(pa — pb)“{Qngg) — Sng?} ) (4.10)

Out of 11 constraints on dimension-six coefficients, three are linearly independent of the
constraints from two- and three-point functions.

Quark-gluon five-point function. The quark-gluon five-point function is given b
g g y
Thicde = €(Pe)es(Pa)ec(pe) i (o)L )y getti(Pa) -
Fﬁide ,L-g?)(sjita (g'yé,yedcdbfeab +g ,Yvddebfcab + gew,}/checbfdab)

x { =2l 4 op{0) _ p{O1 4.11
1 15
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The condition that can be obtained from it is linearly dependent with the previously
listed ones.

Quark-photon three-point function. The quark-photon three-point function is
given by

Tji = ey(pe) i (pp)T J;ui(pa) »

I, = ie(MQ) jic}wpcu{ —2c9 1 4nl® —2p{9 Qngﬁ)}
+ie(MQ) ;i ™" (Pa,, — pbu){ — 2n§6) — 2n(76) — anj)}
+ e(MQ);ivs(pa + PZ){Q”:S,G)}
+ erM%{(pi ~pp) (nf(i6) + nga))

+ (Pa " e+ Pb - Pe) ( 2ng” + g + "(6)) }

+ Qs wiph — ppi) {nl + 30}
+ Qs (rirh —pip){n —n®}
+eQjinuys(Pe + vy )pZ{néﬁ) + n@}

+ eQjivus(py + py ) )Pk {2n(6) 2”(76)}

i@, — o] — 0+~ aan

Out of 7 conditions on the dimension-six coefficients, 3 are linearly independent of the
previously listed ones.

Quark-gluon-photon four-point function. The quark-gluon-photon four-point func-
tion is given by

7}i,c = ﬁy(pc)%(pd)ﬂj (Pb)r;yz c (pa) ,

ji,c

I, = eg(MQ);it 75975{4%, ) —2n{Y) —2nf) }
+egQyit Vs ((pa - pb)‘sg’”> { ¢+ 2 — 27”65%)}
a7 (30— ) {20 20 o) 509}
+ egQ it vuysplg “5{2n(6) + 2n(7 )+ 2ng4) + 2n(6)}

6)

+ egQjit° 'yu'yg,pdg“‘;{ Ny’ + 2n6 6) + 2n(6) + Zn@}

4
+WWWmW4muwHw4ﬁ4@}

+ egQuit vyspag" | 2ng” + 2y — 2“50)}
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operator dimension n  gluons only quarks & gluons photonic

4 2 ¢2:1/1 qq:2/2
3 ¢4:0/1
2 qgqg:1/1

6 2 ¢*:3/3 gq : 10 /10
3 ¢2:3/6 gqg : 8 /10 gqA :3 /7
4 Gqg® : 3/ 11 GqgA : 0/ 8
5 qq9*: 0/ 1 qq9*A: 0/ 1

Table 2. Overview of the available n-point functions with up to one photon. a / b indicates that
a constraints are used out of b linearly independent ones provided by the n-point function at O(e).

+e9Qjit“ V59" (Pa — Po)" { —4nl? — ) + 2”%%)}
+egQjit“vus g'y‘spfj{élng@ — 4n(76) + 2ng? + an(i))}
+ engitC'yM'yg,g'y‘spg{llng;) — 4n(76) + Qngﬁ)} . (4.13)

The 8 conditions that could be obtained from the quark-gluon-photon four-point function
are linearly dependent with the previously listed ones.

Quark-gluon-photon five-point function. The quark-gluon-photon five-point func-
tion is given by

— de
Tiicd = €y(pe)es(pa)ee(pe)uy(po)T}; cqtti(pa) »
[Je = ieg?Quf ™t (179 = 776" )35 { = an® — i} (4.14)

It only gives a condition that is linearly dependent with previously listed ones.

4.2 Projection of scalar structures

In order to renormalize the C'P-odd three-gluon operator, we need to impose 3 + 1 + 30
linearly independent renormalization conditions on Green’s functions, corresponding to
the counterterms from dimension-four, -five, and -six operators. The number of available
structures in the Green’s functions is larger — we choose to use the lower n-point functions
as far as possible, which leads to the set of structures listed in table 2. We use structures
from two-, three-, and four-point functions with additional momentum insertion into the
operator. The five-point functions are not needed. The photonic Green’s function ggA is
required to provide 3 conditions that fix the photonic counterterms (9:(,)6), Oéﬁ), and N2(6).

In the following, we define 34+1+430 projections in Lorentz, Dirac, color, and flavor space
out of the Green’s functions. The explicit renormalization conditions will be formulated
in section 4.3 by requiring these projections to agree with their tree-level expressions.
We remark that all the Lorentz contractions in the projections are performed in D = 4
dimensions, see section 5.2.

~19 —



The quark-mass and charge matrices take the values
1
M = diag(my, mg,ms), Q= gdiag(Q, -1,-1). (4.15)

However, after taking possible derivatives with respect to the quark masses, all condi-
tions will be understood in the chiral limit, M — 0. This leads to a mass-independent
renormalization scheme.

Gluon two-point function g2. We evaluate the gluon two-point function with momen-
tum insertion into the operator O; as a function of the three Lorentz invariants p2, pg, and
¢>. The conditions are imposed on one Lorentz contraction of the amputated two-point
function and on its partial derivatives with respect to ¢2, p2, and the s-quark mass at the

symmetric point in the chiral limit defined by
SQZ pz:pg:QQ:—A27 mu:md:ms:07 (416)

i.e., all invariants take large space-like values. Denoting by A(a, b, c) = a4+ b?+c? —2(ab+
bc + ca) the Kéllén triangle function, the projections are

1
Jeme = s 1, v sabra
B R Y

)

Sa

0 1
Rl = 305 |5y ot ||
04 02 [ N(p2,p2, q2) *Prrarvt ab ||
RO == [1 ieapuphph 0" TIg) }
1] T e 17 I
op2 | \(p2,p3,q%) M @],
R4[0;] = o [ ! i€0p p“pZ&“bHaﬂ (4.17)
1] oY v .
om2 [ A(p2,pp,q%) “1ls,
In R4, the derivative is taken with respect to the renormalized MS s-quark mass mg/TS(u =

A). On the lattice, this can be implemented as a derivative with respect to the bare

mass times the appropriate renormalization factor connecting the bare lattice mass to the
MS mass.

Gluon three-point function g3. The three-point function with momentum insertion
effectively has four-point kinematics and depends on six Lorentz invariants, e.g., p2, pg, P2,
as well as the Mandelstam variables

s = (pa + pb)2 , t= (pa +pc)2 y U= (pb +pc)2 . (4'18)

The conditions are imposed on three different Lorentz contractions of the amputated three-
point function at the non-symmetric point defined by

S3 pz:pzng:s:u:—A2, t:—2A2,
¢ =s+t+u—p;—p,—ps=—A°,
My =mg=ms=0. (4.19)
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The conditions will be imposed on the following contractions:

R5[O4] := €apru(pa + po + pe) FETI2 .
3

abc

Ro[O4] := €apru(Ppy - De + DiiDe - Pa + Piipa - pp) fUTET

S5

Ry [Oz] = e'lw)\U (gab’g'yo + 98v9ac + gvagﬂa)paupbypcxfabcngé?

4.20
o (2

where g, denotes the metric tensor in D = 4 spacetime dimensions.

Quark two-point function gq. The quark two-point function is evaluated at the non-
symmetric point defined by

Sy pP=q¢>=—-A*, pi=-2A, my=mg=ms=0. (4.21)

The renormalization conditions will be imposed on suitable contractions of the two-point
function and derivatives with respect to ¢, p2, and the MS masses (again evaluated at the
scale p = A):

0 i
Rg[ol] = ams Tr [’}/55 ]Fji] ~2 5
2 ..
Rol0;] := Wﬂ (56T ;4] ;,
? g
Rlo[oz] = Imed 2Tl" [7551]Fji} §2>
2 g
Rll[Oi] = mTY [755 Jfﬂ] ~2 ,
93 y
R12[Oi] = WTF [’755 JFji] 5,
3 ..
Ri3]0;] == amgTr 750" L] s,
P g
i) = Tr |iphpy 0, QYT il | .
R14[0] am. [iph Py 5, Q7T ji) .
92 o
R15[Oi] = WTI' [(pa - pb)MfY[LQ ]Fji] 3, s
(Pa + P6)(Pa — o) — (P2 — D) (Pa + Do) - ]
Ri6|O;] :=Tr a SUT ’
16[0] [ P2, 97, ¢%) W g,
0 (pa +pb)2(pa _pb)u - (p2 - p%)(pa +pb)'u ~ cid :|
R17|O; —Tr a 5,049 ,
170) dq? [ Ap2.p%,q4%) S RS
d [(pa + pp)?(Pa — Po)* — (P2 — D7) (Pa + Do) - ]
R13|O;] = Tr a 5,049 ’
01 =5, o2 7 62) s,
0? [(pa + pp)?(Pa — Po)* — (P2 — D) (Pa + Do) - ]
R19|0;] = Tr a 5,049 ’
10lO] =55 NP2 12, ) s,

Roo[0;] := Tr [[(p2 — p})(Pa — Pb)" — (Pa — b)*(Pa + Pb)*] 76" T ji] p

(4.22)

2
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Tr stands for the trace in Dirac space. The traces in flavor space are written explicitly
with summed indices.

Quark-gluon three-point function gqg. The quark-gluon three-point function with
momentum insertion again depends on six Lorentz invariants, e.g., pZ, pg, p?, as well as
the Mandelstam variables

s=(pa—m), t=(Pa+p), u=(ppb—pc)’ (4.23)
At the second non-symmetric point defined by
Sy : pr=pt=s5=—A%, p%zt:u:—QAz,

¢ =s+t+u—p;—p,—ps=—A,
My =mg=ms =0, (4.24)

the renormalization conditions will be imposed on eight different contraction of the ampu-
tated three-point function:

Ro1[0)] == ais Tr :ip’c‘éwthijF]i,c} .

Roo[O;] := (97?15 Tr :i(pa —pb)‘l&wtCQ”F]i’C} .

Ry3[Oi] := 83@5ﬁ :(pa +pb)775thijF]-i,c} g

R0} i= T | 3,157, | 5

Ro5[0;] :=Tr :pa,ipaﬂ“tcfsijrzi,c} g’

Ra6]0;] := Tr :(pa +pb)upcﬂ”tc5ij1?i,c] =

Ry7[Oj] == Tr :pcﬂ(pa +pb)ﬂ“tc5i’T?i,6] S

Ros[O;] == T :z'ew,,,\pgpg\’y“tccsijf%c} . (4.25)

where Tr stands for the trace both in Dirac space and in color space.

Quark-gluon four-point function ggg?. Due to momentum insertion, the quark-gluon
four-point function has five-point kinematics, i.e., there are 10 independent Lorentz invari-
ants that can be chosen as p2, pg, P2, pg, as well as the Mandelstam variables
_ 2 _ 2 _ 2
Sab = (pa - pb) y  Sac = (pa +pc) y  Sad = (pa +pd) ’
Sbe=(Po —Pe)® Sba=(Pb—Da)*s Sea = (e +pa)°- (4.26)

At the non-symmetric kinematical point

Sy: p2=pi=p2=—A% P} =5 = Suc= Sad = Sbe = Spd = Sea = —2A%,
@* = Sab + Sac + Sad + Sbe + Sbd + Sea — 2Pz — 2py — 2p2 — 2p5 = —2A2,
My =mg =mg =10 (4.27)

- 29 —



we use the following projections for the renormalization:

0 r v~ iy
R29[Oi] = 8m5Tr _pCWPdép'gde,uqudataQ”le"cdi| ‘5,4 )
9 - s
o - s
R31[0;] := amSTr _pCWpd(;’yg,dCdat“Q”F]i7cd} ‘34. (4.28)

Tr again stands for the trace both in Dirac and color space.

Quark-photon three-point function gqA. For the quark-photon three-point function,
we choose the same kinematical configuration as for the quark-gluon three-point function.
The projections are:

R32 [Ol] =

P
3

0 R .
e Tr {ngawéwlgi}

Ryg[0] = Tr [5,Q7T]

S5

RualO) i= T |iesyun(pa + o) 227"QTY |

4.29
3'3 ’ ( )
where Tr denotes the trace in Dirac space.

4.3 Renormalization conditions in the RI-SMOM scheme

The physical matrix element of the C'P-odd three-gluon operator in the MS scheme, defined

n (2.6), depends on the matching coefficients C;; and on the matrix elements of the gauge-
invariant RI-SMOM operators. One needs to provide renormalization conditions to define
RI-SMOM operators on the lattice, but, as can be seen from (2.6), at O(a;) it is not
necessary to give the entries of the renormalization matrices Z}}TS and Zifju with ¢ > 2.

In the following, we define the RI-SMOM scheme by providing explicit renormaliza-
tion conditions for all physical operators. We impose 3 + 1 4+ 30 conditions on Green’s
functions with insertions of the gCEDM by requiring that the projections of two-, three-,
and four-point functions defined in section 4.2 agree with their tree-level values. For the
renormalization of the additional physical operators, only a subset of these conditions is
needed to fix all possible mixings.

The gauge-invariant operators at dimension six (3.27) include the qCEDM, (956), and
the qgEDM, (9:(,)6). The five operators (94(2?779’10 are related to the divergence of the axial
current and the QCD 6 term, with additional powers of the external momentum or of the
quark masses, which have little influence on the renormalization. As an alternative to the
conditions provided below, these additional operators could be renormalized by using the
conditions given in [47], where the case of generic flavor structure was discussed. With
minor modifications the renormalization conditions of [47] could be adjusted to the case
considered in this paper, where the flavor structure is determined by the mass M and
charge () matrices.
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4.3.1 Conditions for the gCEDM

In order to renormalize the gCEDM, we need to impose 341430 renormalization conditions.
They are given as

RO =0, Kke{l,...,48,...,34},

Rs[0\9] = —3gN2CpA*Y,

Rs[0\V] = —3gN2CpAS,

R [0\9] = 9gN2CpAS (4.30)
where Cp = J\;ij_c ! The coupling g on the r.h.s. of these equations could be chosen as the

renormalized coupling in any scheme. In order to simplify the matching between the MS
and RI-SMOM schemes, we choose gm(u = A,e = 0). Due to the contractions chosen
in (4.28), no gluon-exchange diagrams survive in the projections of the quark-gluon four-
point function and only the contact terms contribute at tree level in (4.30).

4.3.2 Conditions for the qCEDM

As shown in table 1, the qCEDM operator O§6) in total mixes with 13 operators: it mixes
with one dimension-four operator, (’)54) — Nl(4), which corresponds to the pseudoscalar
density, see (3.32). At dimension five, it mixes into (9§5). At dimension six, OéG) is
renormalized by five gauge-invariant operators that do not vanish by EOMs, 05?3)74,677,
four gauge-invariant nuisance operators N?Eil)é,w and one gauge-variant nuisance operator,
./\/'l(g). In addition, in the basis of (3.27) and (3.28), (956) can mix into the combination
(9%) —Nl(g), see (3.32).

Therefore, we need to impose 13 renormalization conditions on Green’s functions with

insertions of (’)56) :

R [0 =0, ke{4,89,10,11,12,13,14,15,19,32}
Ry [O89] = 8gN.CrA?,
Ry [O] = —4gN.CpAZ. (4.31)

Again, the coupling on the r.h.s. is chosen as ¢MS(u = A, e = 0).

4.3.3 Condition for the qEDM

The qEDM operator renormalizes diagonally. Hence, it suffices to impose a single renor-
malization condition on the quark-photon three-point function:

R32 [O§6)] = 8€A2 . (4.32)
The coupling e to the external electromagnetic field is not renormalized in QCD.

4.3.4 Conditions for the remaining operators

The remaining physical operators that mix with the gCEDM are the dimension-four QCD

(5) (6)
1

0 term, (954), the dimension-five operator O}, and the dimension-six operator O, ", a mass
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correction to the 6 term. The remaining dimension-six operators are total derivatives and

do not contribute for vanishing momentum insertion into the physical matrix element.
The operator 0516) mixes into (’)Ef; and N5(6). We need three renormalization con-

ditions, one condition on the gluon two-point function and two conditions on the quark

two-point function:

Ry[O)] = —4N.Cr,
R [0P] =0, ke{12,19}. (4.33)

The operator (9%5) renormalizes diagonally. We impose the single condition

R [0P)] = —8. (4.34)
()

The operator (’)Yl) mixes into 0172 and N1(4). We need three renormalization condi-
tions, one condition on the gluon two-point function and two conditions on the quark
two-point function:

R [0Y] = —2N.Cp,
R [0OM] =0, ke {8,16}. (4.35)

As discussed in [47], these conditions define a renormalized GG operator that does not
satisfy the singlet Ward identity. The Ward identity can be restored by a finite renormal-
ization, as done in [47].

5 Matching at one loop

In this section we calculate the matching coefficients C;, defined in (2.4), at one loop in
QCD. Since the RI-SMOM operators are independent of the chosen regulator, we can ob-
tain the matching coefficients C'1; by calculating the n-point functions in dimensional regu-
larization, and then imposing the MS and RI-SMOM renormalization conditions. Together
with the nonperturbative definition of the RI-SMOM operators, ensured by the renormal-
ization conditions discussed in section 4, this will allow to convert lattice-QCD calculations
of the nucleon EDM induced by the gCEDM to the MS scheme, up to O(a?) corrections.

In section 5.1, we discuss two different gauge fixing procedures: conventional covariant
gauge and background-field gauge. In section 5.2, we define our dimensional MS scheme.
We present the results for the matching coefficients at one loop in section 5.3.

5.1 Gauge fixing

We provide results with two gauge-fixing choices. First, we work in a generic covariant
gauge, where the QCD Lagrangian in (3.1) is complemented by the gauge-fixing term

Lar = —21§ (9rGe)? (5.1)

and by the ghost Lagrangian given in (B.1). This family includes the Landau gauge £ =0
that can be easily implemented on the lattice.
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Second, we will employ the background-field method [61, 79], which greatly simplifies
the mixing structure. In the background-field method, all fields are split into a classical
background field F' and a quantum field F,

F—F+F. (5.2)

The quantum fields are the integration variables in the functional integral. External
fields and tree-level propagators are background fields, while internal loop propagators
are quantum fields. For fermion fields, quantum and background fields need not be dis-
tinguished. The gauge of the background and quantum fields can be fixed independently.
The background-field method manifestly preserves gauge invariance with respect to the
background fields, hence one only has to consider mixing with gauge-invariant operators in
the classes I and Ila defined in section 2, whereas no counterterms of class IIb are required.
The gauge-fixing term for the quantum fields is given by

&m:—%(DGQZ, (5.3)

where D* denotes the covariant derivative with respect to the background field C’Z,
2 _ be Ab
DHGY, = 0'GY, + g f*° G G, (5.4)
while we retain the symbol G, for the quantum gluon field. The ghost Lagrangian reads [61]
— N « A A
Lgn = =" |06% — g0, f(Gl + GE) + gf*VC0" + g> [« fPGE(Gh + G| . (5.5)
The background-field gauge-fixing term is simply given by

&ﬁ:—%(%é@Q, (5.6)

where the gauge-fixing parameter é is independent of £&. As the background fields only
appear at tree level, ghost terms can be ignored.

5.2 Dimensional regularization and renormalization

In dimensional regularization, we employ the 't Hooft-Veltman (HV) scheme [80, 81]. The
definition of 75 is

7

Vs = —gremra? 1M (5.7)

where the Levi-Civita symbol €, , with 9123 — 11 strictly remains in four space-time
dimensions. The commutation relations read

{,Y/M’YE)}:Oa fOI'/,LZO,172,3,
sl =0, else. (5.8)

In general, this scheme leads to spurious anomalies that break chiral invariance and require
the introduction of symmetry-restoring counterterms [81, 82]. The spurious anomalies can
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Figure 4. One-loop diagrams needed for the renormalization of the fields and the coupling.

be traced back to higher powers of the anticommutator {v,,vs}, which are matrices of
rank D — 4 [83]. In the present case, we do not encounter these problems because QCD
is a vector theory and we only consider single-operator insertions. For this reason, we
do not work with chiral fields and use the D-dimensional Dirac matrix y* both in the
QCD quark-gluon vertex and the quark propagator. External momenta and polarization
vectors in S-matrix elements are treated in the HV scheme as having components only in
D = 4. The same applies to the projectors that we introduced in section 4.2 to define the
renormalization conditions.

We define the renormalization constants for the fields, coupling, and the quark
masses by

V=29, GV =V2:G,, ¢ =Zgp, m=2Z,m,
- eVE/2
Bi=p W ) (5.9)
where vg is the Euler-Mascheroni constant and p denotes an arbitrary parameter with
dimensions of mass, introduced to keep the renormalized coupling g dimensionless ([g] = 0)
in D = 4 — 2¢ spacetime dimensions, while [m] =1, [¢q] =3/2 — ¢, and [G,] =1 — €. Note
that g and ay := g?/(47) depend on both  and ¢, so that das/d(log ) = —2eas + O(a?).
In dimensional regularization with the MS scheme, the renormalization prescription is
to subtract poles proportional to

1 1
A = —iﬂD_‘L <E + log(4m) — 7E> . (5.10)

This is conveniently done by using the redefined scale u and subsequently subtracting poles
ine=(4—-D)/2.

The renormalization of the gCEDM operator in the RI-SMOM scheme is accomplished
by imposing the 34 renormalization conditions (4.30) on the gluon two- and three-point
functions, on the quark two-point function, on the quark-gluon three and four-point func-
tions, and on the quark-photon three-point function. The one-loop diagrams that need to
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Figure 5. Gluon two-point function Hgf and three-point function at one-loop, with the

insertion of the gCEDM operator (’)él) denoted by a square. Only one possible insertion of the

o
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Figure 6. Quark-gluon three-point and four-point functions at one-loop, with the insertion of the
gCEDM operator Oél) denoted by a square. Only one possible insertion of the gCEDM is shown.
The hatched blobs denote one-loop subdiagrams with a gCEDM insertion, while the gray blobs

ad

denote QCD one-loop corrections.

be calculated are shown in figures 4, 5, and 6. Note that the quark two-point function and
the quark-photon three-point function with operator insertion only start at two-loop level.

5.3 Results

At one loop, the constants A;; introduced in (2.5) can be defined as

AMS _ s Zij
v A7 €’
« 1 w2
Agl = ﬁ |:<5 + log A2> zij + Cij:| , (511)

which implies that the matching coefficients are given by

Qg 12
Cij =1; + I zij log el +cij ) - (5.12)
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As can be seen from (2.7), the determination of Z;; requires the knowledge of the field
renormalization. Furthermore, the renormalization conditions (4.30) involve the MS renor-

malized coupling gNTS and quark masses mMS,

5.3.1 Covariant gauge

We start by calculating the renormalization of the gCEDM operator in a generic covariant
gauge. At one loop, it is sufficient to know the renormalization of the gluon field and of
the strong coupling,

1 13 ¢ 4
T4 =1 i(’zﬁ ):1 D) lo (228 ZEN,T
G +4 €+7“G +47r5 A6 5 3fF+TG,

1 Bo
Z=1+ 32 (2 +rg)_1+4ﬂ{—€2+rg}, (5.13)
where Sy is the lowest order § function
11 4
Bo = gcA - ngTF- (5.14)

C'y is the Casimir factor of the adjoint representation of SU(3), C4 = N, while TF = 1/2.
In the MS scheme, rgs = TF = 0. In the RI-SMOM scheme, we define the residue of the
gluon propagator at p> = —A? to be equal to one, which determines the finite part of Zg
in the chiral limit [84]:

RI _ 5 & 20 M2
= — —N(T 1 1

Since the renormalization conditions (4.30) are expressed in terms of the MS coupling gm,
we do not need to define an RI-SMOM coupling constant, as rq drops out of the equations.

The gluon two- and three-point functions are shown in figure 5 and they determine the
mixing of the gCEDM with the gluonic operators (’)( ) (’)(6) Oéﬁ), /\/'8(6), Nl(f), and J\/'(ﬁ)
up to one linear combination of (’)(6) and N . In dlmensmnal regularization, (’)§6) does

not induce divergences proportional to the QCD 6 term (9%4)

. At the kinematic point 5’3,
one one-particle-reducible (1PR) diagram with the same topology as the last diagram in
figure 5 contributes to the three-point function. The 1PR contributions to the other two
legs vanish due to the renormalization condition imposed on the two-point function at the
kinematic point So.

The quark two-point function is zero at one loop. The quark-gluon three- and four-
point functions are shown in figure 6. The 1PR contributions to the gluon leg of the
three-point function vanish at one loop due to the renormalization conditions Ri-R4. The
1PR contributions to the incoming quark leg vanish due to the renormalization conditions
imposed on the quark two-point function at the non-symmetric kinematic point Sy. The
1PR contributions to the other quark leg contain no loop corrections, which start at two-
loop order, but a counterterm contribution has to be taken into account since the kinematic
configuration does not correspond to Ss.

Imposing the conditions Rag-R3; greatly simplifies the calculation (o)f the four-point
6

function at one loop. Since the three-gluon vertex from the operator O;" vanishes when
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contracted with the gluon momentum, it is easy to see that the box diagrams in the second
line of figure 6 do not contribute to Reg-R31, leaving only the simpler triangle diagram. The
same argument applies to the 1PR diagrams in the third line of figure 6. Of the other 1PR
loop contributions to the four-point function, the gluon two- and three-point function with
insertion of the gCEDM do not contribute to the projections Rog-R31. The last topology
shown in the second line of figure 6 does not receive a contribution from the loop, leaving
only the contribution of the quark-gluon three-point function, contracted with the QCD
three-gluon vertex. Several 1PR counterterm contributions need to be taken into account,
as their kinematic configuration does not correspond to the renormalization point of the
sub-amplitude.
We find the coefficients of the poles in € to be

Zfl) - _Cy <3+ %(1 —f)) + 25+ ;ZG = —% (Ca+2Ns + Bo) ,
49 =-Sou,
A0, = 2Ca
Z§,67111 _ %CA, (5.16)

(n)

while all other coefficients z1; vanish. Here, for clarity we introduced the notation 2 j for

the mixing into the operator (’);n) and zl(j:l)J for the mixing into ./\/‘j(n).
The finite pieces c1; are
&) = _CA[ <167 + %K-F %w _ 11210g2> - %(1 — &) (21 + 10K + 7¢ + log 2)
+ z(l - 5)2] + grg — <;)ZG + zg> log M—Z ,
) = Ca [12{ + 1052 - 21;] ;
Cg?% e [138[( n 111;)g2 _ 1921825] ’
&0 = *%936%,

(6) [(7TK ¢  4llog2 2819 K ¢ 1llog2 3
- = _ 7 _ 1—6(-=-2 =2
Clny = Ca < 3 1 32 ses) U OUT st 1))

[ TK 25log2 55 K 5 3log2 1
O (T8 b B2 Y (K s sme 1)

n 4 12 8 16 24 2 3
Cg(,jr)zm =Ca _Z - 102%2 - 22;)20] ;
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Clins = ﬂ As

6 59
“Lme = 12164

6 21
Clmy = ~3524>

©) 0K . 29 K ¢ 13log2 7

— il 9= 1-o(-= -2 -

Clomns C’A[<4 + 3log S +(1-¢) 5 6+ 3 +24 ,

6 197
CgJ)LlQ =Ca |:—K + 10g2 + 760:| ,

6 99
Clman = gog A

3
o = SN, (5.17)

with analogous notation as for the zj;. All other ¢;; vanish at one loop. The additional
logarithmic term in cﬁ is an artifact of using gl\TS in the renormalization conditions and
disappears if the matching is performed at u = A. Note also that a finite renormalization
with the dimension-four operator (’)YL) is present.

The triangle integrals in the three-point function depend on the two constants v and

K, which are defined as

_2 (1)<1>_22>_ _1<(1)<1>_ 2>_
w—g(w 3) 37 =234, K=o(¢(7)-7)=0916..., (5.18)

where () is the first derivative of the Digamma function. To assess the numerical impact
of the conversion between the RI-SMOM and MS scheme, we can evaluate the coefficient
C11. At the scale p = A = 3GeV, C11 = 0.87 in Landau gauge and Cq1 = 0.76 in Feynman
gauge, indicating a 10% - 256% correction, as to be expected at one loop.

5.3.2 Background-field method

We can avoid mixing with gauge-variant operators by working with the background-field
method [61], with a gauge-fixing Lagrangian as specified in (5.3). In this case, the class-1Ib
nuisance operators in (3.29) can be disregarded and at dimension six, the operator basis
reduces to the 10 operators in (3.27) and the 10 gauge-invariant EOM operators in (3.28).

We can define the RI-SMOM scheme by selecting a subset of 24 conditions Rk[(’)gm],
with the understanding that these conditions are imposed on Green’s functions of the
background field G, not of the quantum field G®. In the background-field method, we
therefore replace the set of conditions (4.30) by

=0, ke{l,...,4,8,...,21,24,28,32,...,34},
] = —3gN2CpAS. (5.19)

R[O

(
1
Rs[O!

In particular, the quark-gluon four-point function is no longer required.
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The field renormalization of the background field, which we still denote by Zg, is
given by

ZGZBOa

_ 67 (1-¢)2 20 u?
rag =Cy (9 21-¢)+ 1 9 Tr + za log Az (5.20)

Because explicit gauge invariance is preserved, the divergent part of Zg and Z, satisfy
2G = —2z4. The same relation should be retained for the finite pieces, r¢ = —2r; in
order to preserve the Ward identity. However, we again remark that r, does not enter
our matching relations, as we use the MS coupling gm(u = A,e = 0) on the r.h.s. of the
conditions (5.19).

The result for the divergent pieces of the matching relations in the background-field
gauge are given by

3
A% = 604 + 2 + 56 =5 (CA +2Nf + fo)
(6) 3
219 =—2-C4a,
) 8
© _ 3
Py = g0 (5.21)

while the finite pieces are

8 1
Cg(,?:_CA[<6 +—¢—31 g2> — 15 (1= ©) (6K + 3¢ + Glog2 + 44)

ST B P
056% =Cy :Sg 51?2] ;
-y [, 2est_ 01
c§67)11 _ __Z( lo§2 B 214] ’
FNRAE T Paet
o) = Soun?. (5.22)

It can be checked that the background-gluon two- and three-point functions respect the
Ward identities implied by gauge invariance at one loop for any value of the quantum gauge
parameter £. However, even in the background-field method, off-shell Green’s functions are
unphysical quantities and they are gauge-parameter dependent. Therefore, our matching
relations depend on the quantum gauge parameter £ (but of course not on the background
gauge parameter é), since the RI-SMOM conditions themselves are gauge dependent.
Finally, we note that the results for z;; agree in the background-field gauge (5.21)
and the conventional gauge (5.16) for the case of mixing into physical (class-I) operators

~32 -



Oj, as is required by gauge invariance [59]. For the mixing into nuisance operators, gauge
invariance does not provide a similar constraint: in the case of class-IIb operators, the
mixing vanishes in the background-field method but not in conventional gauge, whereas
for class-Ila nuisance operators the result in conventional gauge depends on the choice of
basis for the class-IIb operators. We observe that with the basis change

NP = N = A (5.23)
the results for the mixing transform as

DN 420 N = (0 420 AP 420 N (5.24)

;N8

The transformed operator Nl(?)l

still belongs to class-IIb. In this particular basis, the
divergent pieces z1 ; of the mixing into class-Ila operators N in conventional gauge agree

with the results obtained in the background-field method.

6 Conclusions

The CP-odd three-gluon operator gives the main contribution to the nucleon EDM in
several beyond the Standard Model scenarios, especially when CP is violated in the inter-
actions of heavy particles, such as the Higgs [48, 85] or the Higgs and the top quark [86].
First-principle calculations, with controlled theoretical uncertainties, of the matrix ele-
ments of the gCEDM on the nucleon are necessary to derive the constraints of EDM
experiments on this operator, and the implications for BSM physics. At the moment, the
best estimates of the nucleon EDM from the gCEDM have been obtained with QCD sum
rule calculations [87, 88], which are however affected by large theoretical uncertainties, at
the level of 50%-100%. While for this operator lattice QCD calculations are still in their
infancy [53, 54, 89], this method can in principle provide fully nonperturbative results, in
which all sources of systematic uncertainty can be quantified, controlled, and improved.
LQCD and continuum calculations are interfaced via the definition of a renormalization
scheme. In this paper, we have defined an RI-SMOM scheme for the renormalization of the
gCEDM, and we have provided the conversion matrix to the MS scheme at O(as). The
derived operator basis will be of relevance also for matching calculations in other schemes,
e.g., using the gradient flow [53, 54].

As a dimension-six, flavor-singlet operator, the gCEDM has a complicated mixing

(6)

pattern in an off-shell scheme. On the lattice, insertions of O} induce power divergences,
which under the assumption of good chiral symmetry can be absorbed by three dimension-
four and one dimension-five operator, defined in (3.24) and (3.25). Both on the lattice and
in the continuum, the gCEDM mixes into 10 dimension-six gauge-invariant operators that
do not vanish by EOM, given in (3.27), 10 gauge-invariant nuisance operators (3.28), and 10
gauge-variant nuisance operators (3.29). In this work, we have provided 34 renormalization
conditions that define our RI-SMOM scheme. In order to obtain enough independent
conditions, it is necessary to compute the gluon two- and three-point functions, the quark

two-point function, the quark-gluon and quark-photon three-point functions, and some
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projections of the quark-gluon four-point function. We have imposed the renormalization
conditions at one loop and computed the conversion matrix between the RI-SMOM and
MS schemes, both in a conventional covariant gauge and in background-field gauge.

The number of operators and renormalization conditions make the lattice implementa-
tion of the RI-SMOM renormalization scheme challenging, even though calculations of com-
parable complexity have been carried out for AS = 1 operators that contribute to K — 77
decays [90, 91]. For this reason, we explored the definition of the RI-SMOM scheme in
the background-field gauge [61], which allows to discard gauge-variant operators. Using
the background-field method, the definition of the RI-SMOM scheme involves only two-
and three-point functions, a very noticeable simplification. While background-field meth-
ods have not extensively been used to study higher-dimensional operators on the lattice,
there are no particular technical problems for the implementation of the background-field
condition [92], and thus of the renormalization conditions enumerated in section 5.3.2. It
will be interesting to further explore the use of background-field methods in actual numer-
ical simulations.
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A Construction of gauge-invariant operator basis

In this appendix, we provide details on the construction of the basis of gauge-invariant
operators. In appendix A.l, we describe the symmetries of the building blocks. In ap-
pendix A.2, A.3, and A.4, we construct a complete list of pure gauge operators, two-quark,
and four-quark operators, respectively, which we summarize in appendix A.5. Here, we
disregard evanescent operators away from DD = 4 dimensions, which will be discussed in
appendix C.

A.1 Symmetries and building blocks

The gauge-invariant class-1 operators that are needed to renormalize the C'P-odd three-
gluon operator are constructed from the building blocks (3.21). The mass matrix has been
promoted to a spurion field. The chiral transformations (3.9) assigned to spurion and
external fields allow us to take into account explicit chiral-symmetry breaking.

In order to renormalize the three-gluon operator, the operators have to be chirally
invariant in the spurion sense, Lorentz scalars, C'P-odd, and P-odd. Since we are working
at leading order in the electromagnetic coupling and the external photon field always comes
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field comm. mass dim. Lorentz SU(3). X T P cpP
qr - 3 (2,1) 3 (3,1) a?° Yqr 7°Cat
qr - 3 (1,2) 3 (1,3)  ar?° 74 7°Cak
L - 3 (1,2) 3 31 A @’ 41 CY°
ar - 3 (2,1) 3 (1,3)  1%r @ 4RCY°
Ge,  + 2 B,1)@®(1,3) 8 11 G, G —p(a)Gr
FL  + 2 B,1)®(1,3) 1 ’,1)  FL Fh —FT
FR 4 2 3,1)e@1,3) 1 1,8) FR FI e
M + 1 (1,1) 1 (3,3) MT M M
Mt + 1 (1,1) 1 (3,3) M M MT
0, + 1 (2,2) 1 1,1 o, " "

D)+ ! 22 188 (GiTy 0D 7D De0)

Table 3. Properties of dynamical fields, spurion and external fields, and derivative operators. For
simplicity, additional arbitrary phases in P- and CP-conjugation are neglected. n(a) is defined
in (A.6). The Lorentz group is locally isomorphic to SU(2) x SU(2)g.

together with a charge matrix ) and a coupling e, we only consider operators with at most
one QED field-strength tensor.

The symmetry properties of the building blocks are listed in table 3. The charge-
conjugation matrix fulfills

ny;‘fc_l =~V (A.1)
and can be written in the Dirac representation as C' = iy?4", hence
C=C*"=-C't=—-Ccl=-cT. (A.2)
The Dirac field transforms under charge conjugation as

Cip(z)C " = n.CYT (2),
Cp(z)C ' = niyp" (2)C, (A.3)

where 7. is a phase factor, which we put equal to 1 in the following. The electromagnetic
gauge field transforms as

CA,(z)C ! =—A,(2), (A.4)
whereas the non-abelian gauge field transforms under charge conjugation as

CGo(x)C" = —n(a)Gi(x), (A.5)
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with

1, a=1,3,4,6,8,

n(a) = (A.6)
-1, a=2,5T7.

We classify the operators according to the field content and mass dimension (up to O(e)):

e pure gauge operators:

— dimension 4: G2,
— dimension 5: G?2D, G*M,
— dimension 6: G2, G?D?, G*DM, G*>M?,

e two-quark operators:

dimension 3: 2,

dimension 4: ¥?M, ¢?D,
— dimension 5: 2> M2, p2DM, >D?, *G, *F,
dimension 6: > M3, Y2DM?, V> D* M, > D3, > GM, v>GD, Y*FM, *FD,

e four-quark operators:
— dimension 6: 1,

where 12 denotes a quark bilinear. In this list, we have already excluded classes that ob-
viously contain no gauge-invariant operators, e.g., FG, FG? classes. In the following, we
construct the explicit operators by hand. We use the Hilbert series techniques [66-70] as a
cross-check to count the number of operators in each class, including total derivatives and
EOM operators. As the known Hilbert series method does not include the discrete symme-
tries, even in this cross-check we select by hand the operators that are P-odd and C' P-odd.

A.2 Pure gauge operators

As a first class of operators, we consider the pure gauge operators. The building blocks are
the quark-mass matrix, partial and covariant derivatives, and field-strength tensors. There
are no operators at dimension two or three, hence we start at dimension four. Note that
we need at least two field-strength tensors in order to have a non-vanishing trace. As we
are only interested in operators up to O(e), we disregard the electromagnetic field-strength
tensor in this section.

Although in dimensional regularization mixing is only possible within operators of the
same mass dimension (the mass matrix is treated as a spurion field), this is not necessarily
true for other schemes. Therefore, we also look for P-odd, C' P-odd operators of dimension
smaller than six.
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dim = 4. At dimension four, we have two operators that consist only of gauge fields:
TY[G,, G, Tr[G,.,G"]. (A7)

The first term is the standard C'P-even kinetic term for the gauge field, the second one is
the C'P-odd and P-odd QCD 6-term. It belongs to our basis:

oW = my(G,,G"]. (A.8)

Here, we use the tilde to distinguish a preliminary set of operators from the final ones after
having removed redundancies.

dim = 5. At dimension five, there are no chirally invariant pure gauge operators.

dim = 6. We reach dimension six by adding either two mass matrices or two derivatives
to a dimension-four operator (adding one mass matrix and one derivative does not give a
Lorentz scalar). The only way to add two mass matrices is within a trace:

0% = Te MM TG, G, (A.9)

where now the first trace is in flavor space, the second one in color space.

We consider the addition of two partial derivatives. The six Lorentz indices can be
contracted either with g ¢*? ¢®? or with e#**? ¢®# to form a Lorentz scalar. In total, there
are only four different contractions:

OTr[G,,G"™), OTr[GuLG"], 8,0"Tr[G* Gy,  0,0"Tr[G* Gy . (A.10)
Furthermore, the Schouten identity
Gap€uvro t Jap€urop T Jav€ropu T Gar€opur + Jao€ppr =0 (A.11)
implies the relation
OTr (G, G| = 40,0" Tr[GHG,y) . (A.12)
This only leaves the following P-odd and C P-odd operator:
G

05 = 0@, G™). (A.13)

Next, we consider the case where we add one partial and one covariant derivative. The
possible contractions of the Lorentz indices are:

M Tr((DGoA )G, M Tr[(D,Gu )G,  *Tr[(D,G")G i,
HTr[(D,Gun )G, O*Tr[(D,Gu )G, FTY[(D, GG,
8, Tr[(D*G )G, 8, Te[(DFG"™ MGl 8, Te[(DAGH ) G,ip]€ P . (A.14)

However, we only have to consider contractions with the Levi-Civita tensor: they are P-odd
and C P-odd, while the other contractions are even.
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By applying the Bianchi identity (3.19), we remove redundancies. Furthermore, we
note the Leibniz rule (3.18) for the covariant derivative in adjoint representation:

Tr[(DnA)B] + Tr[A(D,B)] = Tr[(9,A) B] + Tr[A(9,B)] — igTr[[Gy, A]B + A|Gy, Bl
= 9, Tr[AB]. (A.15)
We find the relations
HTr[(D,G" )G, = 0,
OMTr[(D,G,2 )G = 204 TY[(D, GG,
8, Tr[(DAGH ) G5l = 9, Tr[(DFGYMG ]

OMTY[(D, G un) G + OHT[(D, GY )G ] = 818, Tr[G,nG"
8, Tr[(D G2 )G + 8, Tr[(DFG™)G,ia] = 979, Tr[G G (A.16)

hence, there is only one additional independent operator:
05 = 9, Tx[(D"G,0) G (A.17)

Finally, we can build operators with two covariant derivatives and two field-strength
tensors. The requirement that the operator be P- and C'P-odd allows again only the
contraction with e#**?¢®?  If the two derivatives do not act on the same field-strength
tensor, we can use (A.15) and obtain a linear relation to an operator where both derivatives
act on the same tensor and an operator involving a partial derivative.

The possible contractions are

Tr[(D,D, Gy )G 5l 7P | Tr[(D,D,Gry)GY 5le*P | Tr[(D, DGy )G 5] P
Tr[(DY DG o) Gaple®™™ | Tr[(D,DY G,y )Gaple® ™, Tr[(D,D Gry)Gaple™ .
(A.18)

We take some linear combinations to replace this set by

Tr[([Dy, Du]Grg )G 51e 7P | Tr[([Dy, Du)Grg )G 5P | Tr[(D, DGy )G 5le 7 |
Tr[([D”, D)Gux)Gagle® ™, Tr[(DuDYGya)Gaple®™™ , Tr[(D,D Gi)Gaple® .
(A.19)

Using the Jacobi and Bianchi identities, we can eliminate three elements of the set:
Tt[(Dy DGy )G gl P =0,
Tr[(DY D,Gyy)Gaple® = %Tr[(D#D“GAJ)Gag]eD‘ﬁAU,
Tr[(D,DY G,0)Gaple®® = 8, Tr[(DY G0) G aple™™ — Tr[(DYGya) (DG ap)]ePH

= 9, Tr[(DYG,))Gaple®PH. (A.20)
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The commutators of covariant derivatives in the adjoint representation can be expressed
in terms of the field-strength according to

[Dp7 DU](') = _ig[Gpav : ] . (A.21)
Therefore, the only additional operator is the C'P-odd three-gluon operator itself,
09 = iTr[G,, G* G, (A.22)

which is the only P-odd and C'P-odd operator that can be constructed with three field-
strength tensors. This completes the construction of the set of pure gauge operators.
A.3 Two-quark operators

We continue with two-quark operators, which at least have mass dimension three.
dim = 3. There is no quark bilinear that is a Lorentz scalar and chirally invariant.

dim = 4. In order to reach mass dimension four, we can add either one mass matrix or
one derivative to a quark bilinear.

The chirally invariant operators obtained by adding a mass matrix to a quark bilin-
ear are

aLMar, qrMiqr. (A.23)

There is one Hermitian linear combination that is P- and C P-odd:

@Qq,(4) _

. . fixed spuri
1 = qriMaqr — griMiqy BTN g

qiys Mg . (A.24)

Next, we consider the insertion of a derivative, which has to be contracted with a
Lorentz-vector, hence we need a vector quark bilinear. The possible gauge-invariant and
chirally invariant contractions with a partial or covariant derivative are the following:

A= _ =
0u(@"ar), 0u(qrY"qr), @i D uqr, qrY"iD uqR. (A.25)

The third and fourth operators are C'P-even (they are the standard kinetic terms), while
the first two are CP-odd. There is only one linear combination that is also P-odd, the
divergence of the axial current:

@Sq"“) = 9u(qrY"qr — @Y qL) = Ou(@V"q) , (A.26)
where 4 is defined in (3.23).

dim = 5. We reach mass dimension five by inserting two masses, one mass and one
derivative, two derivatives, or a field strength tensor into a quark bilinear.

There are two chirally invariant operators obtained from the insertion of two mass
matrices into a quark bilinear:

GijkﬁlmnM:ranTkQEQEa 6z‘jkelmn/\/lmj~/\/lnkq7§quL ) (A.27)

n
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which are possible due to the fact that for SU(3), the following tensor decompositions hold:

33®3=303¢6)=108®8d10,
333=30336)=19848¢10, (A.28)

hence a product of three (anti-)fundamental representations contains a singlet. If the
spurions M and MT are fixed to a diagonal mass matrix, the above operators are flavor
conserving as well and represent a correction to the mass terms themselves. We can again
form one P-odd and C P-odd combination:

~ . fixed spurion -
(’)?q’@) = i€gjpeimn(M], MTkQLQR Mg Mokray) = €ijkeimn Mo Mard iy’
(A.29)
For a diagonal mass matrix, the following relation holds 71, 72]:
07 = 2det(M)gins Mg (A.30)

Consider the insertion of a single mass matrix and a derivative into a quark bilinear.
In order to contract the Lorentz index of the derivative, we need a vector bilinear. With an
additional mass matrix, it is impossible to construct a chirally invariant operator. Finally,
we consider the case of two derivatives. We have to start either with a (pseudo-)scalar or
with a tensor quark bilinear, and add two derivatives. Also here, we cannot construct a
chirally invariant operator. The same is obviously true for the insertion of a field-strength
tensor in a two-quark operator.

dim = 6. We obtain operators of dimension six by inserting either three mass matrices,
two mass matrices and one derivative, one mass matrix and two derivatives, or three
derivatives into a quark bilinear. Furthermore, a field-strength tensor can take the role of
two derivatives.

We start with the insertion of three mass matrices. A basis for the chirally invariant
operators is given by:

GMM Mqr, GgMIMMiq,, TeMMGMer, TrMMGaMiq,. (A.31)

The SU(Ny) Fierz identity

1
tkltf; 5kj5il - mdkl(szj (A.32)
implies
Te[At*)ipt " x = ﬂ/}Ax - %Tr[fl]wx, (A.33)

hence t4 ® t* operators are linearly dependent of 1 ® 1 operators.
We can form the following Hermitian P-odd and C'P-odd linear combinations:

- e _ fixed spurion _.
qu,((}) =9 ((]LMMTM(]R — QRMTMMT(]L) ’g qZ’75M3(I7

fixed ’gurion

03" = i Te[MMT] (CYLMCIR - (IRMTQL) Te[M?)gins M. (A.34)
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Next, we insert two mass matrices and one derivative into a quark bilinear. We find
the following chirally invariant Hermitian operators:

O (@ MMPqs) . Ou (ary" M Mag) | TeMMT0, (@7 ar) |
<= _ <=
Tr[MM']0, (Gr7"qr) . "D MMiqy, ary"i D WM Mgr,
<— <—
TeMMI] (qm“m qu) . T MM ((jR'y“iDuqR) . (A.35)

=
The four operators with covariant derivatives i D, are C'P-even. The following linear
combinations are P- and C'P-odd:

I~ _ _ fixed spurion .

6200 — g, (qmﬂMT Map — qL’y“MMTqL> S0, (G MPq)

~ _ _ fixed spurion _~

O3 = T MMYO, (@r"ar — qov'ar) B T M0, (3g) - (A.36)

The next operator class consist of insertions of one mass matrix and two derivatives
in a quark bilinear. We start with the following set of chirally invariant operators:

— —
D(QLMQR) ; D(@RMTQL) ) 8,&((711 D MMQR) ’ 6#(QR D MMTQL) )
— —
0u(qro*™ D yMgr), 0u(Gro™ D, Miqr), €7L(§2 + D*)Mgg,
gr(D2+ D)Mlq, qpo*[D,, D,)JMar, @ro*[Dy, DMl . (A.37)

The following Hermitian linear combinations are P- and C'P-odd:

02" = i O(gLMar — geMiqr) 5" O(ginsMa)

05" = 3M(Q7LUW<BVMQR — grot D, Migy) Tl
02 — i(q,(D* + D) Mgn — qr(D? + D)Mlqy)
02 — g0 (D, D,JMqg — Gro™ Dy, D,JM'q,

=
9u(qo™” Dy Mq),
ﬁxed’g;urion 6175(§2 I DZ)MC] 7

qc""[Dy, DyJMaq,
(A.38)

fixed spurion
H

where 6" is defined in (3.23).

The next class of two-quark operators contains insertions of three derivatives. The
three Lorentz indices of the derivatives {-},,) can either be contracted with g"'~* or with
"2~ For the moment, we disregard evanescent operators (see appendix C) and use the

four-dimensional relation

VA = g+ g — g+ A5 (A.39)

Due to the odd number of gamma matrices, all operators will be chirally invariant, hence
we work directly in the parity basis. We start with the contractions with g"4*. A s
matrix is required for P-odd operators. The derivatives can be either covariant derivatives
or partial derivatives of a gauge singlet. Note that due to

[Dy, D) = =D, D,] = =Dy, D) = Dy, D], (A.40)
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the covariant derivatives acting on the left can always be put on the left-hand side of
derivatives acting on the right. Furthermore, by using the relation

AD, + D,)B = 8,(AB), (A.41)

left-acting covariant derivatives can be traded for partial derivatives of the gauge singlet.
Hence, we find the following list of nine operators with three derivatives:

Q:VJDMDMDV(L q:YVDuDVDMCL Q’?VDVDHD;LQ7
8#(@7VDMDV(]) I a,u((j’?VDVDMQ) ) 8V(Q’7VDMD#Q) ) (A42)
0(¢y"Dua) 0u,0,(q7" D"q),  D0,(q7"q) -

By taking linear combinations, we make them manifestly Hermitian:

7" (DD, + D,D%q. i¢5'D,D,prq,  ig7(D*D, — D,D¥q,
0u(a(D, D"+ D"D,)g), 10, D", DJa), 0 (77 (D2 +D%q),  (A43)
. _ 5 . _ —~V

i0(gy" D ,q), 19,0,(77" D*q),  00,(q7"q).

Four operators are C'P-odd:
02 — g3(D?D, + D,Dq,
Ol = 0,(¢7"(D, D" + DD, )q)
01 = o, (¢7(D* + D?)q) |
034 = 00, (75" q). (A.44)

Next, we investigate the contractions of three derivatives with e***?~,. It is only
possible to have three covariant derivatives or two covariant and one partial derivative:
partial derivatives are commuting, hence two or three of them vanish upon contraction
with the Levi-Civita tensor. Left-acting covariant derivatives can again be traded for
right-acting and partial derivatives. If we choose two covariant and one partial derivative,
we can immediately insert the commutator of the covariant derivatives. In order to have a
P-odd operator, no v5 matrix is allowed. The only Hermitian operator with two covariant
derivatives is therefore

0?2 — 9,(gine[Dy, Dalg)e ™, (A.45)
which indeed is C'P-odd. Finally, consider the insertion of three covariant derivatives:
1
@Yo DDy Dyget " = 5@ DDy, D)]get™ . (A.46)

Hermitian conjugation of this operator is identical to a C' P conjugation. The C' P-odd Her-

mitian component is again identical to @%g’(ﬁ)

, which is therefore the only C' P-odd operator.
Finally, we consider the operator classes with field-strength tensors. Due to (3.14),

we only need to take into account the external (electromagnetic) field-strength tensor:
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the QCD field-strength tensor can be written as a linear combination of the commutator
of covariant derivatives and the external field-strength tensors. In the class ¥?FM, the
chirally invariant operators are

Qo' Fi,Mqr, qo""MFElqr, qro" FiMiq,  qro" M'Flqp. (A.47)
One Hermitian linear combination is both P-odd and CP-odd:
01 = i(qgLo™ (FEM + MER)qr — qro*” (FE M + MIFL)qy)
ﬁxed's_p>urion .

ie(qc"{M, Q}q) Fpw - (A.48)

The last class of two-quark operators is ©?FD. Here, we find the P-odd operators

(‘jR'Y'ugVFRVQR - CYLW“gVFLVQL) : (GrY"Fj,D"qr — @uy"Fh, D" q1)
" (GrY"Filbar — @y Flav) (GrYo FR Duar + qrye FADugr) e
Ou(ArVe Fyar + QLo Fiaqr) e . (A.49)

Two C' P-odd Hermitian linear combinations exist:

@fg’(m = i(qry" F . D"qr — @y Fil, D qr) — i( qu@ Fllar — qL'y“E Flar)
ﬁxed’gurlon . (q*y“QD q) s

fixed spurion
P — e

A2q,(6 — — — v
(913( ) = 0u(@rYoFRar + drvoFlhar) 0u(71oQq)Fore™ . (A.50)

A.4 Four-quark operators

A Dbasis for the chirally invariant four-quark operators is given by the following six operators:

V.LL _ - _ V.LL _ - _
011, = (@y"au)(qryugr) , Og1; = (@y"t*qr)(@uyut®ar) ,

V.RR _ _ V.RR _ _
011, = (@rY"ar)(ArYuar) ; O, = (@rY"t"qr)(GrRVut"R) |

V,.LR _ _ V,.LR
011, = (@ aL)(@rVugr) Og1; = @yt qn)(qrut*qr) , (A.51)

where t* are the SU(3) generators in color space. Note that flavor-octet operators OYBLfL

(’)é/ é:L (’)Y gR, and C’);f g‘R are related to the above operators through Fierz identities in
c f f cOf

Dirac space

(Y P) [y PrL] = =(v" PrllPr)
(v Pr)[vuPr] = —(v" Pr] [, Pr)
(v Pr)luPr] = 2(PR][PL)
(v*Pr)[vuPr] = 2(PL][Pr) , (A.52)
as well as the SU(Ny) and SU(N,) Fierz relations:
1 1 . 1 1
tAtkl 25il5kj - m(siﬂskly taptas = 5a5(57ﬁ - 27]\7650[,3575. (A.53)
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On the other hand, the flavor-octet LR operators (’)YC’SL:%, Oé/c’éﬁ are not chirally invariant.

For the four-quark operators, Hermitian conjugation acts in the same way as a CP-

V,LL V,RR V.LR
(O NNOAS oY

transformation. All the operators , and are Hermitian and C P-even.

We conclude that there is no four-quark operator that could mix with the C'P-odd three-
gluon operator.

Note that if SU(2) instead of SU(3) chiral symmetry is considered, there are additional
chirally invariant operators [93, 94] due to the absence of the symmetric structure constants
dABC. In SU(3), these operators only appear at dimension 7 as structures similar to (A.27):

eijkelmnM;rnj (ql[c/q}n{)(quq%) ; Eijkelmanj (Q%qz)(qf;%qll/) 3
eijkelmannj ((jﬁtaq}%)((jitaq%) ) 6ijlselﬂ’m-/\/lmj (ql}c?taqz)((ﬁ%taql[,) ) (A54)

with two P-odd and C'P-odd linear combinations. The SU(3) analysis shows that the
SU(2) invariant operators

(ﬂLuR)(CZLdR) — (QRUL)(C?RdL) — (JLUR)(ﬂLdR) + (CZRUL)(’QRdL) ,

(ﬂLtauR)(JLt“dR) — (ﬁRt“uL)(JRt“dL) — (JLtauR)(ﬂLt“dR) + (JRt“uL)(ﬂRtadL) , (A.55)

always involve a factor mg. Therefore, the gCEDM does not mix into these operators, which
can only appear as power corrections. Here, we neglect any effects beyond dimension 6.

A.5 Intermediate summary

Here, we summarize the P-odd, C'P-odd, Lorentz- and gauge-invariant, chirally invariant
Hermitian operators up to dimension 6.

Pure gauge operators. At dimension four, there is the QCD 6#-term:
0%W = (G, G, (A.56)

while at dimension six, we find four operators:

o7 = T M (G G

o5 = OM(G,. G,

~G7(6) — 14 ~l//\

03" = 0, Tr[(DFG )G,

0¢) = iTr(G,., G*\G). (A.57)

Two-quark operators. We find two operators at dimension four:

07" = gins Mg,
%2q,(4 .
034 = 9,(a7"q) . (A.58)
one operator at dimension five:
@Tq’@ = €k €lmnMmiMard'ivsq (A.59)
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and 16 operators at dimension six:

07" = ginsM3q,

037 = Te[M?givs M,
037 = 9, (g7 M3q) |
03" = Ta[M2)9,, (73"9)
034" = D(qm/\/lq}
02 = 9,,(q5" D ,Mq),

02 — gins(D? + DMy,

@ﬁq’(ﬁ) = 45" [Dy, DyJMq,

020 — g31(D2D, + D,D¥q,

@fg’@ = 0,(@7(D, D" + D" D, )q)

6340 — o, (57 + D).

019 = D0,(a7"q) .

0149 = 9,(qi Dy, Dylg)e™ |

o' = i7" (M. Q)

0% — ie(¢7" QD" q) Fyu

O3 = 0, (@7, Q) Fore™™ . (A.60)

Four-quark operators. There are no four-quark operators that can mix with the
gCEDM.

B BRST invariance and nuisance operators

In this appendix, we provide details on the construction of the nuisance operators, which
vanish by the EOM. We follow the method of [59].

In appendix B.1, we review the EOM. In appendix B.2, we discuss the Slavnov-Taylor
identities. The recipe for the construction of the nuisance operators is reviewed in ap-
pendix B.3. The symmetry properties of the building blocks are discussed in appendix B.4.
We construct the seed operators in appendix B.5 and list the resulting nuisance operators
in appendix B.6. In appendix B.7, we derive redundancies in the preliminary operator set,
and we relate the operators to our final basis.

B.1 Gauge fixing and equations of motion

The QCD Lagrangian including gauge fixing and Faddeev-Popov ghosts is given by

1
Lacp+argh = = Ga Gy + qih — Mg — 2*5(3“(;@) + 0*e* (D), (B.1)
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where D¢ = 0,6% +g f“bCGZ is the covariant derivative in the adjoint representation. The
gauge-fixing term can also be written in terms of an auxiliary field G* [95]:

§

Lop = 3G G+ (9"G) Gy, (B.2)

The EOM for G* is {G* = "Gy,

fixing term plus a total derivative.

which, inserted into Lgr, leads to the original gauge-

When the quark mass matrix is promoted to a spurion field, the mass term has to be
replaced by

LIP = —qMar — gaMiqr. (B.3)
The complete list of EOM reads:
(le - MTPL - ./\/lPR)q — O,

; T
q(il) + M'Pp + MPg) =0,
DrGY, = —gqt"vuq — 0,G" + gf%¢(8,e)c,

G = 0"Ga,
9D =0,
DioteE = 0. (B.4)

For notational convenience, we define the EOM fields:

<_
qp = (i) — MYPL, — MPRr)q, qg:=—q(ilp + M Py + MPg),
1
¢

The definition of the EOM quark fields is chosen in such a way that they fulfil q}; = ",

4= Gt — ZOrGY. (B.5)

B.2 Slavnov-Taylor identities

We add source terms for the fields and the (composite) BRST variations:

1
Lo = —ZGZ‘”GZV +q(il) — MPg — MTPL)q + 8“6“(DZCCC) + gG“G“ + (G“GG)GZ
+ H"GY, + Lq+ gL + N%" 4+ ¢*N*®
_ 1 _
_ Ju,aDchc + K*°G®* + §gfachacbcc + gMcataq —i—g(jcataM. (B.ﬁ)

The action including a set of sources for gauge-invariant ghost-free operators O; is defined as

S = /d4$ Lo+ /d423‘ ‘Pl(l‘)oz(]}) =Sy +®-0. (B7)
We introduce the BRST transformation:
a 65 ac c
5Gu = _5JM7‘16)\ = Du cON,
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0q = —iﬁé)\ = —igc™tqoN,

oM
0q = —is—]\i[d)\ = —iggc®toN,
oc* = é?a 0N = %gfabccbccé)\,
dct = 5(_5;:; IA = G\,
0G* =0, (B.8)

where 0\ is an anticommuting infinitesimal parameter. With this transformation, we find
d(gct*q) = gdctq + gct*dq = %ng“bccbccé)\t“q — g2 Pt goN
= —%g2f“bccbcct“q5)\ + %ngcabcacbthé)\ =0 (B.9)
and similarly
6(ggc't*) =0, (B.10)
as well as

(Dyc) = 0(0uc + gf“bCGch) = D,o0c" + gf“bC(SGZCC
1

= 9D FOLE)SN + gf (D uc) oA

1 aoc C aoc (&
= §gD#(f becbe)gA — g fab (Ducb)c oA=0,

1
5(fabccb60) — fab(:((scbcc + cbdc(:) — §gf(lbc (fbdecdce(s)\cc + beCdeCdCe(s)\)
— gfabefcdecbcccd(S)\ — g(fabefcde + facefdbe + fadefbce)cbcccd(S)\ — 0’ (Bll)

where in both relations we have used the Jacobi identity for the SU(3) structure constants.
Therefore, we see that for all fields ¢ € {GY,,q,q,c?, ¢*, G}

01020 =0, (B.12)

i.e., the BRST transformation is nilpotent. Note that if the auxiliary field G is not used,
nilpotency for anti-ghosts only holds on-shell [96].

For the fields G}, ¢, g, the BRST transformation corresponds to an infinitesimal gauge
transformation with the parameter € = ¢*d\. Therefore, the physical part of the La-
grangian is invariant under BRST transformations. For the ghost and gauge-fixing part,
one finds:

3
2
= (9GY)ON(DICE) + (MG DICE6N = 0. (B.13)

SLghicr =0 (aﬂcﬂ(pgccc’) +2GeGe + (aﬂaa)az)
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The source terms for the BRST variations are obviously invariant as well, hence the only
variant part of the Lagrangian are the source terms for the fields:

6Ly = HM"0GY, + Léq + 6qL + N°5c® + 6c* N
_ 1 _
= (H“’QDZCCC —igLct®q + igqc“t* L + igfabCN“cbcc — G“Na> ON. (B.14)

The generating functional is invariant under the variable transformation (see [95] for the

invariance of the measure)
¢ P+ 00, (B.15)

which implies (J generically denoting the sources)

0= 52[J] = / Do (z / e 5£0> gl dato

07 - 07 WA 0 07 VA
4 . .
_ _ e —4iL— +i—L+ N* — —N*“ . B.1
! /m( sgma —onr ot T GKe T Ko >M (B.16)
This implies for the generating functional of connected Green’s functions, defined by Z[J] =
GV
oW —6W oW o OW W
4 . .
_ —-gmt—— i — 4+i—L+ N? — ——N%). B.1
0 /dx< sy st Vst T SKe T GKe ) (B-17)

We introduce the effective action as the Legendre transform of W, which is the generating
functional for one-particle-irreducible truncated Green’s functions (we do not transform

the auxiliary field, which is not propagating):
[p!] = W[J] — / d'z (H“"IGZ(CD + Lg'™ 4+ ¢VL 4+ N 4 aa<d>Na) ., (B18)

where the “classical fields” are expectation values (the functional derivatives are understood
to act from the left):

qatey _ OW g = W ey W ey W ey W
" SHL oL’ L’ SNa’ dNe
(B.19)
The variations of I' with respect to classical fields and sources are given by:
L:_H#,a, izf” (Eirz—L, L:NG’ _(Silﬂ:_‘]\[a7
6GZ (cl) 5q(cl) 5q(cl) Sco (cl) hYel (cl)
or oW oL ow oL ow or oW or  ow
§Jwa — §Jma’  §M  §M°’ SM  SM’  6Ke SK*'  SK® §Ke’

(B.20)

which leads to the Slavnov-Taylor identities:
O—/d4:1c or  or _Z,5F67F_Z,5F57F+ or 6F+5I‘ or
= 5GZ(C1) S JHa 5q(cl) SM 5q(cl) oM Scale) §Ka seo(c) §Ka
(B.21)
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In addition, we derive the (quantum) EOM for the ghost field. Consider the generating
functional Z[.J], which must be invariant under the shift of the integration variable ¢*
c® + €. Expanding to first order in € gives

0= / D" Db — N@)et [ 4w ko, (B.22)
This leads to
or 1 - —i 07 1144 or
_ _nNo wyab by i [dte Lo _ au " _ K _ Al
Scalel) N 7 /D¢(a Du ¢ )6 0 7 &]g 0 5Jf; 0 (5Jf; . (B23)

Therefore, we can rewrite the Slavnov-Taylor identities as
or or or or 6T or 6T or  or
_ 4 om0 - Y v
! / I x<(5ag<d> 0 5Ka) 57ma ' Sq@ ST '5g 6M T jealed 5Ka) '
(B.24)

The ghost quantum EOM (B.23) implies that the effective action depends on the anti-ghost
only through the combination

Jra — grealel) (B.25)

B.3 Construction of nuisance operators

To lowest order in the loop expansion, the Slavnov-Taylor identities become

59 5S\ 6S S 48S 68 6S &S 4S
_ 4 _am O _ 9000 00 IY o0
0 /d x((&Gz 9 5Ka> 5T "5qoht  '5qoM " sen 5Ka> ‘ (B-26)

While S = Sy + @ - O satisfies the Ward identity, the general solution is given by
S+d.-N, (B.27)

where N are additional nuisance operators. Working to first order in the external sources
&, &, one finds that the nuisance operators satisfy

W@ -N)=0, (B.28)

with the operator

[0Sy .08\ & . 88 o LGS0\ 0
W= <5G;g 0 5Ka> e (8 5Jg:> G

0S5y 6 050 0 05y 6 0500 0S5y 6 0Sp 6

Vg 53T oaidq ogon 'spog  swmoka T skesm (B2

The BRST operator W is nilpotent, W2 = 0, and it carries ghost number 1. In [58] it was
shown that the most general solution for the nuisance operators is given by

b N = /d4:c W()(® - F), (B.30)
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where F is a set of anti-Hermitian “seed operators” with the same Lorentz, chiral, and
global SU(3). properties as O, the same discrete symmetries and dimension, and ghost
number —1. Hence, in the following we construct systematically the set F and derive from
it the (gauge-variant) nuisance operators: we act with the operator W on the set F and
afterwards we set the sources to zero.

Let us work out the explicit form of the operator W. With sources already set to zero,

we have
7:Dy v, a. weya abc( au c7 -V a7 :_Dacc’
5C G 4 gqt~tqg + O*G* — g f*°(0Me")c ke G 50 ne
@__* ﬁ_ @ gct® 570_ e
050 acave 05 1 abe b e
Soa = D;co"¢c", 5Ka—2gf c’ce. (B.31)
This leads to
W = (D,,G”“’a + gqt®~tq — gf“bc(ﬁuéb)cc) i — (D“Ccc) — (auDacc‘:) —(E
S5JE ® (5GZ # oK@
+1q ifzct if ifz gc*t®
qE oM g q5q 1qE oM 99 5(]
—i—(D“Ca"EC) o + 1 fabccbcc i (B 32)
v oK T\ 29 dca '
Note that after acting with the term
0S8y o 0
e 5L = e (B.33)

on the seed operators, the EOM quark field gp needs to be anticommuted to the right-hand
side, which produces an additional minus sign.

In case that the seed operator contains derivatives of the sources JY, ..., we have to
use partial integration, e.g.,

[dta@) [atyoFe) = [ e [ayemFwporRw)
= [ (st~ i) s | S OWFWA0)
05 4SS0 y .
_ _/d4;c <5GZE) ) auéKa( )) & (d(x) F(2)2,)

_ / ' ()0 < y gigx) - o [‘;S‘()x)> Fa)e,. (B.34)

B.4 Symmetry properties of sources and building blocks

In Table 4, we list the transformation properties of the various fields and sources, which
are the building blocks for the seed operators. In particular, the given transformation
properties ensure that the leading-order Lagrangian is Hermitian,® P-even, and C'P-even.

6See [96] for the Hermiticity properties of the ghost fields.
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field comm. mass dim. ghost num. Lorentz SU(3), X T P CP
qar - 3 0 (2,1) 3 (3,1) a’ Yar  A°CqE
ar - 3 0 (1,2) 3 (1,3) " Y ACqh
ar - 3 0 (1,2) 3 (3,1) Yar  qrY° ¢ CH°
i - 3 0 (2,1) 3 (1,3) Yar @y’ aRCH°
Ge + 1 0 (2,2) (1,1) Ge Gt —n(a)GH
Ge + 2 0 (1,1) 8 (1,1) G G  —n(a)G®
c® — 0 1 (1,1) 8 (1,1) c® ct —n(a)c®
e - 2 -1 (1,1) 8 (1,1) - @ —nla)
Je - 3 -1 (2,2) 8 (1,1) —Je g —n(la)Jt
My, + 5 -1 (2,1) 3 (1,3) Miy® Mg —y°CMT
Mg + 5 -1 (1,2) 3 (3,1) Mgry® My —°CME
My, + 5 -1 (1,2) 3 (1,3) PMy Mpy® —MECHP
Mg + s -1 (2,1) 3 (3,1) YPMr My® —MECH°
Ke + 4 -2 (1,1) 8 (1,1) ~-K* K* —p(a)K*®
Ke + 2 0 (1,1) 8 (1,1) Ke Ke  —nla)K®
L+ 2 0 (3,1)®(1,3) 1 (8,1) I
T+ 2 0 @B,1@(1,3) 1 (1,8) N T
M + 1 0 (1,1) 1 (3,3) Mt Mt M
Mt + 1 0 (1,1) 1 (3,3) M M MT
Oy + 1 0 (2,2) 1 (1,1) Oy o o
Vi) o+ 1 0 (2,2) 1 (L)e(s1) ('ﬁﬁ V() VE(C)
Vi) o+ 1 0 (2,2) 1 (L,)®(L8) (.)‘ﬂ? ViC) V()

Table 4. Properties of dynamical fields, sources, spurions, and derivative operators. For simplicity,
additional arbitrary phases in P- and C'P-conjugation are neglected. n(a) is defined in (A.6).

Note that we define the complex conjugate of the product of Grassmann variables c; o as
(cr1e2)* = e = —cics.

We assign zero mass dimension to the ghost field and mass dimension 2 to the anti-ghost
field. In this convention, the operator [ d*z W(as) does not change the mass dimension of
the seed operators. If a mass dimension 1 is assigned to both ghost and anti-ghost fields,
the operator [ d'z W(m) raises the mass dimension by one unit. The assignment of the
mass dimensions is purely conventional and does not affect the results.

We assign the following chiral transformations:

Mr r 5 Ur,c My R,
My, 2 MprU}, (B.35)
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where
ML,R = PL7RM, ML,R = MPRJ/. (B36)

Due to gauge fixing, the seed operators need not be gauge invariant under SU(3)..
Therefore, the gauge field Gy, is allowed as a separate building block and not only as part
of the full covariant derivative D,. However, the gauged SU(3)r, x SU(3) g chiral symmetry,
which also contains U(1)en as a subgroup, remains intact. Therefore, we define covariant
derivatives with respect to the external fields only,

. Ay .
VL =9, —il,, VL=, +il,,
<_
Vi =0, —iry, %f} =0, +iry, (B.37)
and impose on the seed operators invariance under the local chiral group.

B.5 Seed operators

Let us now systematically construct the gauge-variant seed operators using the building
blocks in table 4. Due to the ghost EOM (B.23), the anti-ghost and the source J£ only
appear as a building block

JHa = JHa _ ghge (B.38)

After applying the operator W, we will set the sources My g, ML,R, K® K® to zero,
hence we only need to take into account seed operators with at most one of these sources.
The source J*% should be set to —dH e,

In order to construct SU(3). singlets, we contract open indices with the SU(3), tensors
6% (two indices), fo%¢, d® (three indices), or

5ab5cd 5ac5bd 5ad6bc dabedcde dacedbde dabe fcde dace fbde dadefbce (B39)
in the case of four indices [97, 98].
K? operators. At dimension 4, the only operator
K

is P- and C'P-even. At dimension 5, there are no operators. At dimension 6, the following
operators have to be considered:

seed operator P cP
GZ‘GZchb, GQGanKb, ijGchKddacedbde, even, even,
Gfl‘GchKddacefbde, even, odd,
(8“GZ)chCf“bc, Gz((‘?”cb)ch“bc, GZcb(E)“KC)fabC, even, even,
(O"G)P K d™,  GL(o")Ked™,  Guch(9MKe)d™, even, odd,
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" (OK%), even, even,

(Oc*)K*, even, even,
(0" c")(0,K"), even, even,
Tr MM K, even, even.

Obviously, it is not possible to construct a P-odd operator.

K@ operators. The source K® has to come together with a source j;f in order to give

ghost number —1. There are only dimension-six operators:

seed operator P cpP

GZjZI_(Cf“bC, even, even,

nggf(cdabc, even, odd,
(" JHK®,  JH0.K"), even, even.

No P-odd operators can be constructed.

M and M operators. At dimension 4, there are four operators:

seed operator P CcpP
i(gM + Mgq), even, even,

gM — Mg, even, odd,
i(qysM — M~sq), odd, even,
qysM + M~ysq, odd, odd.

Therefore, the only anti-Hermitian P- and C'P-odd seed operator at dimension 4 is
FY = qusM + Mysq. (B.40)

No dimension-5 operator can be constructed. At dimension six, we find the following list
of chirally invariant operators. Note that we already neglect operators that vanish when
the spurions and external fields are fixed to their physical values:

seed operator P CcP

Tr[MMT]Z'(qLMR + Mgrqyr), L < R, even,
Te[MM'(G. Mg — Mrqr), L+ R, odd,
Te[MMi(Gr My, + Mrgr), L < R, even,

T MM (GrML, — M1qr), L+ R, odd,
i(GMM Mg + MpMMTqr), L R, M M, even,
(MM My — MpMMPqr), L+ R, Mo M odd,
i(GrMI MM + MM Mqgr), L+ R, M < MT, even,
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(GrMI MM, — MM Mqg),

(G Myt My, 4+ Mp M, GH
(qr My t* My, — M MT,t%;)GE,
i(GrM Tyt MR + MpMey,t%qr)GH,
(GrM Ty, 1" Mp — MpMy,t°qR)GY,

i(qLMY g My, + MLWRMTQL)a
(qLMY gM;, — MLWR-/\/lT qr),
i(GrMY L Mg + MRWLMCIR),
(q MTWLMR - MRVLMQR),
(QLWLMML + M MY ),
(QLWLMML — M MY qp),
(QRWRMTMR + MRMY rqr),
(QRWRMTMR — MpMY gqr),

i(Gr,.RMp,1 + MR Lqr,r)G}.GY,

(qL,rRMR,L — MR,1qL,r)G.GY,

i(qL,rt"Mp,L, + Mg t"qr r) G GHA™,

(GL,rt"Mp,L — MR pt"qL r)GLGEA™,

i(qr,ro" t"Mp 1 + Mg, o 1%qL g)G5GS £,

(qL,ro™ 1" Mp L — Mg Lo tqL r)GLGS £,
i(qr.rRt" MR, + Mg t°qr.r)0,G
(qr,rt*Mp,, — MR t*qr r)0.G

i(qr,ro" " MR 1, + Mg o t%qr r)0,GY

)

(qr,ro"™t*Mp, 1, — Mg 0" t"q1, r)0,G

i(@L,R%ﬁ’RtaMR,L + Mp "V " qp r)GE,

(QL,R$5’RtaMR,L — MgtV qL r)GY,

Z.(qL,R$,€’RUMVtQMR,L + Mg o™ t*V gL r)GY,
)

(QL,R$,€’RUM%QMR,L — Mp o t*Vi gL g)GY

i(qL,rt" V" Mg 1, + MR,L%ﬁ’RtGQL,R)Gga
(qLrt"V " Mp 1 — MR,L$,€’R7§GQL,R)G57
i(qL,ro™ t*V My L + MR,L$£’RU“%&QL,R)G37
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L+ R Mo M

L+ R, M M,
L+ R, M+ M,
L+ R Mo M,
L+ R, Mo M,

L+ R, M M,
L+ R, Mo M,
L+ R, Mo M,
L+ R, M« M,
L+ R, Mo M,
L+ R, M < M,
L+ R, M M,
L+ R Mo M,

L+ R,
L+ R,
L+ R,
L+ R,
L+ R,
L+ R,

L+ R,
L+ R,
L+ R,
L+ R,

L+ R,
L+ R,
L+ R,
L+ R,

L+ R,
L+ R,
L+ R,

odd,

even,
odd,
even,

odd,

odd,
even,
odd,
even,
odd,
even,
odd,

even,

even,
odd,
even,
odd,
even,

odd,

odd,
even,

even,

odd,

odd,
even,
even,

odd,

odd,
even,

even,



(quRU“VtaV!IL/’RMR’L — MRL%ﬁ’RO"uytaqL’R)Gg, L+ R, odd,

i(qr, $LRMRL+MRLVLRQLR)J L < R, even,

(q LJﬁL wMps— MppV3parr), Lo R, odd,
z(qLRVLRMRL—i—MRL%LRqLR), L < R, even,

(qL,rVE rMp, — Mg L$L RAIL,R) L+ R, odd,

i(ar, R VLAY My + M VLAV qp), Lo R, even,

(qr, R% V’i rMp 1 — Mg, L$ v RIL,R); L < R, odd,

ia, R%ﬁfRo—WvﬁfRMR L+ Mg VEReyLRg, o) Lo R, odd,
(QL,R$ﬁ’RU“”Vf’RMR7L — MR,L$5’R0"‘WV‘5 R R), L < R, even,
i(qL,ro" FiR Mg 1 + Mg o™ Flo%qr ), L+ R, even,

(GL.ro" FlLfMpp — Mg o™ Flfqrr), L+ R, odd.

This results in the following list of 19 anti-Hermitian P- and C P-odd seed operators:

FO = e[ MM Mg — GeMy, + Myar — Mgar),
FO = (MM Mg — geMT MMy, + N M Mg — MpMMiqy) |
f§ ) = = (qLMyut" My, — GrMIy,t"Mp + MRM%tGQR MMy, t%q)GE,
F’ ) = i(grMIY L Mg — G MY g My + MRWLMQR - MLVRMTQL) )
FO = 2'(Q_R<V71w3/\/ﬁMR - @L%LMML + MpMY par — MMV 1q1)
F = (@Mp — GrMy + Mrqg — Mpqr)G,GY,
FO = (qut*Mp — qrt® My, + Mpt®qr — Mpt®qr)GLGE™
}—(6) (qrott*Mp — qro*"t* My, + Mot t%qp — MRU’WtaqL)Gb Gcfabc
]:é ) = i(qut*Mp — qrt* My, + Mgt®qr, — Mt qr)0,GY
]:1(3) = (qro"t* Mg — Gro*t* My, + Mpo""tqr — MRU“”t“qL)(?MGﬁ ,
FO = i(q, VE My — gV RO M, + Mpt*Viqp — Mit*VEgr)Gr,
]:1(2) = (jL$ﬁaWt“MR — q‘R$ﬁU‘”’taML + MLJ“”t“foqR — MRJ“”t“VﬁqL)Gﬁ )
FO — i(@ut*VE Mg — qut*VEM + MaV o, — M,V Eegp) G,
]-'( ) = (qpot™t"VE Mg — Gro™ "V EM, + MLV Bot0gy - M;ﬁL e

= (@ ViMp - QR$RML + M Vhar — MrViqL),

16 = (GLViMRg — GrVEML + ML%%%QR - MR$%QL)

— (@ VEVE My — gr T EVEM,, + N, Vg — 1RV EVE ),
]—“1(8) = (g, VLo VE M — gaV EatVEM, + MR<€Laﬂ"quL — MV RV Ry,
Fo = (qLo*™ Fil,Mg — qro™ Fi, M + Mpo" Flqr — Mro"  FlLqr) . (B.41)
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jﬁ operators. At dimension 4, there is the operator

GH Jo

avp >

which, however, is P-even. At dimension 5, no operators can be constructed. At dimension
6, we find the following list of seed operators.

seed operator P cP
Tr[MMT]ngﬁ, even, even,
c“jﬁjé‘fabc, even, even,
GZGSGf\ng“”)‘Ud“defbce, odd, even,
GGGy b, GHGYGLIY,  GRGhGY Jldred e, even, even,
GHGh GY Jdd e foee., even, odd,
(0uG)GS J5er 27 fobe, odd, odd,
(OHGg)ng(‘;e“”’\Udabc, odd, even,

(O“GR)Gy IS f™e,  (O"GGh IS ™, (9*GL)Gh T [, even, even,

)
)

(0"Ge)Gy Jed™e,  (9MGY)Gh Jcd™,  (9"GY)GYJEd™, even, odd,
GLGY (DN TS e fabe, odd, odd,

GHGY (,JC) f2be, even, even,

GHGY (0, J5)d™,  GEGY (0" Jg)d™, even, odd,

(DGﬁ)jﬁ, (8“8”GZ)j3, even, even,

Gg(Djﬁ), GZ(@“@”j{f), even, even,

(8,G2)(9rJ2) e, odd, odd,

("G (0TS, (9"GH)(0udS),  (9"GL)(D,J5), even, even,
quut“quﬁ, qu“t“qRJAﬁ, L+ R, even.

Dropping all operators that are not both P- and C'P-odd, we are left with three anti-
Hermitian seed operators:

Fio = (9uG5)CR T jeove,

FY = GaahoaJg)e e pee,

Fi3) = (0,62 (9nJ2)e™ ™ (B.42)
B.6 Nuisance operators

After acting with the 144 operator on the seed operators F;, we obtain the list of nuisance
operators. Furthermore, we perform a basis change: we write as many nuisance operators
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as possible in a manifestly gauge-invariant form and as total derivatives. In order to write

the operators in a more compact form, we fix the spurion and external fields to their

physical value, M, M' — M, ly, 7y — eQA,, and write everything in the parity basis.
There is one nuisance operator at dimension four:

/\71(4) = (g5 + qV54E) - (B.43)
At dimension six, we find the following nuisance operators:
=qe, (BA (D” Goy + 93t Y0q — gf“bc(aaéb)cc>) AT
i(GeY5q + @v59E)GLGY
i(qeystq + @7575&61E)Gb Ghd®™

i(qea"t q + g t"qr) G, ,

i

i

i

i

i

qevst"q — @5t qe)0,GY
4575t" Dy — 4 D51 QE)Gﬁ )
i(qpa"tq + qa" tqr)0,.Gy
= i(qge"’t*D g + qﬁﬁ“ t%qp)GY,

l§
| |
/—\ A

2

2

X

iG55 D% + G D s5q5)
ie(qrd" Qq + o™ Qqe) Fuy
= (GsM7"Dyug + GD,5" Mag) |

!

=

!

o Oo
N/
\

i

PR LD S ©f @ N O 0 AR 0 oA =

=)
=

2 = i(QEMﬁutaq - qM:Yuta(JE)GZ )

i
—~
(=)
=

15 = Tr[M?)i(Gevsq + @Y5qE)

©) = i(qeMPy5q + GM5q8) |

i
—~
=)

Vis) = 0, (G,‘iu (D” GS, + grﬁ“%t})) AT
Vi) = ((3 Gy) (Dp G + 93" V0q — gf“bc(aaéb)cc)) AT
VY =9 (( EY5t"q — q%t“qE)G“)
Vis) = id), ((QEU‘“’t“q + qa“”t“qE)G“)
Viy) = id, (fY Vs DM q + qﬁ“vqu)
Vi) = ,(aué" Dya — 4D,6" q),
Ny = f%( Mg+ qMA* qE)
Ny = ZD( B34 + q_%CJE) : (B.44)

B.7 Redundancies

The nuisance operators are constructed as BRST variations of a complete set of linearly
independent seed operators. However, it turns out that the nuisance operators themselves
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are redundant. This can be understood as follows: acting with the BRST operator on the
seed operators replaces the BRST sources by EOM fields, i.e., this operation reduces the
degrees of freedom. Therefore, linear independence of the seed operators does not imply
linear independence of the resulting nuisance operators. The remaining redundancies are
most easily identified by considering the vertex rules for all the operators, see section 4.1,
which leave two linear combinations of nuisance operators undetermined. An explicit cal-
culation then confirms the following linear relations:

0=N 4+ A - N,
0= gN® — 20D 4 N — oD 4+ N 4+ NS + N (B.45)
This allows us to drop two nuisance operators from the set (B.44)—we choose to drop the
: \7(6) \7(6)
nuisance operators Ng ' and Ny .
In a last step, we remove redundancies from the list of operators O in appendix A.5:
there are linear combinations that are identical to nuisance operators. Removing these
redundancies leads to a minimal set of class-I operators O, i.e., gauge-invariant operators

that do not vanish by the EOM.
At dimension four, we find the linear relation

N = G308 _ 900, (B.46)
At dimension six, the following relations hold (disregarding evanescent structures):

g J\74(6) + /\71(3‘) _ 2@5%(6) + 2@3q7(6) + 2@%,(6) o @%1]7(6) _ @fg,(fi) . @fgv(G) ’
(6 ~2q,(6 ~2q,(6 ~2q,(6
N1(0) :—013( )+201g( ) _O1g( s
N—l(f) _ _@?2’11,(6) _ @?%(6) _ @gq,(ﬁ) + @3(17(6) + @;q(ﬁ) ’
Nl(g) _ @iqv(G) _ 2@3(17(6) :
/\71(2) _ @5%(6) _ 2(7)%(17(6) :
NP =400 + 01 - o3t
/\71(96) _ _@?%(6) _ @%7@ + @%{21,(6) ’
/\72(8‘) _ 7@2%(6) _ @%7(6) + @ﬁ,(ﬁ) + @537(6) ’
/\7—2(? _ _2(53%(6) _ @gq,(ﬁ) _ @gq,(ﬁ) :
N = 0280 _ 2020 (B.47)
Finally, we arrive at an operator basis that is free of redundancies, presented in section 3.3.
For the determination of the mixing structure, it is useful to express the intermediate

redundant set of operators in terms of the final basis. At dimension four, the relations
read:

- - 1 - -
of =0, o= (o -MY), oW =0, MY =", (Bas)
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At dimension five, there is only one operator:
020 = o) (B.49)
At dimension six, the gauge-invariant operators are given by

~G,(6 6 ~G,(6 6 ~G,(6 6 ~G,(6
GEO _ ol FEO _ o GEE _o® 3o

- 1 1
G _ 1 <@é6> N+ (o - Néﬁ))) 7

2 Ny
o2 _ % (056) _ Néﬁ)) 7
020 _ o® 4 J\lfngG)’
520 — 01O,

o — 1 (0 - 1)

24,(6 6 2 6 1, 6) 1,6
20 - 20f9 - 2o - Loft - x0 + I,

1

Lo 4 AL - A,
f

52 _ _o® _ o)

- 1 1
03%(6) _ Oéﬁ) + Oéﬁ) _ Oéﬁ) _ Ff(ggi) + 5 <N1(6) +N2(6) +Né6) +./\/’7(6) _NQ(G)) 7

~2¢,6) 1 (6 6) , 1,6

016" = 010 = NG” + SN,

o (a , , 92 , , , ,

O =40 — 20 - -0 — 20 — N® + N = N = N 4+ NP
!

=24,(6 6

Olg( )= 050) )

07149 = —40{) 4200 + NV

6340 =20,

6% = 0f) + 0 4 N

020 — 20 (B.50)

For the nuisance operators, we have the relations

(6 6 (6 1 6 (6 6 (6 1 6
/\/'1()——./\/‘1(1), ./\/’2()—92 1(2)a ./\/’35)—92 1(3)’ ./\/?4()——79./\/’1(),

6 1 6 6 1 6 6 1 6 (6 1 6 6
./\/’5()—7./\/’1(4), ./\/'6()—7/\/'1(5), N()—— f/\/'l(G), /\/é()—f<—/\/'1(5)+./\/'1(7)>,

1

7(6) _
Ny =3

(M + A — 20§ + NP+ MO+ ) D = NP,
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(6 6 ~6) L1, .6 ~(6 6 ~(6 6 1 6

NP =AY = =AY = s

(6 6 ~(6 1. 6 ~ (6 1 .6

N =M N =AY N = N =

NG =N N =T A =AY A = A (B.51)

C Mixing with evanescent operators

C.1 Generalities

As is well known, dimensional regularization leads to the appearance of evanescent opera-
tors [60, 99-101]. These operators are present in D dimensions, but they vanish for D = 4.
If bare evanescent operators are inserted into loop diagrams, the combination of poles in
€ with the evanescent structure can lead to finite contributions. Evanescent operators can
be renormalized by finite counterterms so that the renormalized evanescent operators have
vanishing matrix elements. As shown in [100, 101], the renormalized evanescent operators
do not mix into physical operators. However, the counterterms affect the calculation of
the anomalous dimension. Since the bare evanescent operators are ambiguous, their choice
affects the anomalous dimension matrix of the physical operators and their definition is
part of the scheme.

In dimensional regularization, the evanescent operators are present both in the MS
scheme and in the MOM scheme. Let us denote the relation between bare and renormalized

operators as
OMS Z(l\D/Tg ZWS 0(0) OMOM (1\9/101\/1 ZMOM 00
| = , = , (C.1)
(c/‘MS Zg ZMS <5(0) ) (5MOM> (Zg/[OM ZMOM) (5(0) )
where Zl-j denote the entries of the inverse mixing matrices Z !, fulfilling Zij = 0;; +O(a).
The renormalized MS evanescent operators are defined to have vanishing matrix elements,

(EMSYy = 0. (C.2)

This is achieved by adjusting the counterterms Zgo, which at O(ay) are finite, i.e., O(°).
The minimal scheme defines Zg% -1, Z(957 and Zlgvl? — 1 to only contain poles in €. The
exact form of the evanescent operators EMS is part of the scheme definition: suppose that
we are choosing a different basis of bare operators

o0y 10 000

where with some arbitrary constant a the operator £ (07 still is evanescent, then the minimal

scheme in the new basis reads

O\ N3 ZM3\ (oor
EMS )\ NS 4 e (235 ZWS) 725 ) \ &V

Z + asZOS Z OO0
] ) (2) o
Z + asZ Z
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i.e., the alternative operator OMS (differs from OMS by a finite renormalization (and no
longer looks minimally subtracted in the original basis), while the new renormalized evanes-
cent still has vanishing matrix elements. Similarly, the choice of evanescent operators affects
the anomalous-dimension matrix of the physical operators at two loops [100, 101].

Also in the MOM scheme, the renormalized evanescent operators are defined to have
vanishing matrix element,

(EMOMy — ¢, (C.5)

Therefore, the set of regularization-independent operators can be identified as the renor-
malized physical operators only, {OR} = {OMOM1,
The conversion between the MS and MOM schemes is given by

(OMS> ZO Z (Z(I\Q/IOM ZMOM> (OMOM>

| = C.6)
MS MOM »MOM MOM | ’ (

€ ZN8 ZMS | \ Z¥OM 7 £

where Z;; are the entries of the mixing matrix Z. In particular, the physical MS operators
are given by

OMS (Z S ZMOM | ZOSZMOM> OMOM (Z S ZMOM | ZOSZMOM) gMOM ((1.7)
Due to (C.5), we only need to know the coefficient of OMOM in order to determine (OMS).
Furthermore, in the matching at one loop, we have

(OMSy = (1 — AMS L AMOM O(a§)> (OMOM) (C.8)

where Z =1+ A, i.e., (2.6) is unaffected by evanescent operators.
Finally, we determine the conversion matrix ¢ = 1 — AMS 4 AMOM }v imposing
renormalization conditions

const. ; R[OMOM]I loop __ ZMOMR[O( )]l—loop + Z%\,)/I“:OMR[S(O)]tree’ (Cg)

where

o Z00 5MO rOE
ZyM =1— 47r(5 +Coo> +0(a?), Z¥M = _47r<5 +Cos> +0(a2).
(C.10)

Since in general (€)™ = O(e), one expects that either the evanescent counterterms zpg
need to be determined separately, or the number of conditions to be imposed must match
the number of physical plus evanescent operators. However, this can be avoided if the renor-
malization conditions and the set of evanescent operators is chosen so that R[E(©)]tree = (
instead of R[E(O)]tree = O(¢). This allows us to consider only as many conditions as phys-
ical operators are present and to solve the system for the coefficients cpop that determine
the conversion matrix.

In the following, we define the set of relevant evanescent operators and show that their
tree-level insertions into the renormalization conditions vanish identically. Throughout, we
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use the HV scheme [80, 81] to deal with the Levi-Civita symbol and the Dirac matrices in
D +# 4 spacetime dimensions. In defining our scheme, it is useful to divide the operators in
our basis (up to and including dimension six) in two categories: (i) purely bosonic operators
Op, involving one gluonic dual field strength (such as gCEDM); (ii) fermionic operators Op
containing a quark bilinear with a Dirac structure involving one 75, and possibly gluonic

structures, the external electromagnetic field, and derivatives (such as the pseudoscalar
density and the qCEDM).

C.2 Definition of evanescent operators

The bosonic operators at dimension four and six can be written schematically as

0(34) = €uvo O%VAU )
Ol5n = o THM? O

O = €20 gap O17F (C.11)

where Op are Lorentz tensors of rank four and six, respectively, built out of 9, G}, and A,.
In the HV scheme, the indices of the Levi-Civita symbol are restricted to D = 4 dimensions.
In addition, external momenta and polarization vectors in S-matrix elements are considered
to be objects in D = 4 dimensions. However, the restriction to D = 4 of external momenta
and polarizations can be performed after performing the loop calculation. As we are
considering only QCD corrections, all vertices and propagators in loops are continued to D
dimensions. Therefore, any metric tensor that appears in a loop calculation (either from
propagators, tensor reductions of loop integrals, or the Dirac trace of closed fermion loops)
is D-dimensional. In particular, an evanescent structure

6 o
g(B) = €uvio gd@ O%V)\Uaﬁ 5 (012)

where the indices & and B are restricted to —2e dimensions, cannot be independently
generated in QCD with single insertions of the gCEDM operator. This implies that the only
evanescent bosonic operator appears at dimension six due to the Schouten identity (A.11):

EéG) = 0,0° Tr[Guyé“V] — 40,0 TT[GM@W] ) (C.13)

where the indices u, v are in 4, and « in D dimensions.

For the fermionic operators, we make use of the HV definition (5.7) for 75 and the fact
that in any spacetime dimension D a string of £ Dirac matrices can be decomposed as a
linear combination of the fully antisymmetric products

. 1
L& = o3 Mo -+~ Veun] (C.14)

In particular, the product of n gamma matrices is expressed as a combination of I'™ with
n =k, k—2,..., with the remaining Lorentz indices provided by appropriate powers of the
D-dimensional metric tensor g, [102]. Note that all structures involving '™ with n > 4
are evanescent.
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The fermionic operators at dimension four, five, and six can be written schematically as
k, _ A A
OE; n) _ H1kzpspa gov! V'T(Q..A,L 0 Gy I oo Gy ™
k=0,1,2,3, n=4—-k6—k,....44+k, (C.15)

where Op is built out of 9y, G}, A, color structures, and the charge and mass matrices.
The highly symbolic product of metric tensors is needed to ensure the final result is a
Lorentz scalar (note that p, and ), indices cannot be contracted among themselves due
to the antisymmetry of the Levi-Civita symbol and F(")). As in the case of the bosonic
operators, QCD loops only generate metric tensors in D dimensions, since we only consider
single insertions of the gCEDM. Therefore, the only possible evanescent operators arise
either due to the evanescent structures I'™ with n > 4, or due to the Schouten identity.
An explicit list (with generic operators Op) is given by

5}(71175) — 6#1...,&4 ql—\ffl#50%5q’

2,4 o (4 Loona g g
5}(7 ) htia qrfu‘..ug%Og“squgMWG — ZEM a4 qu(i)...MO% "9 Gpspe

5}2,6) — e qu(ﬁmu60%5ueq7

(3.3) _ p1.pa =70(3 ot =72(3
Ep =g F/(u)---m O%‘LSM]MQ Gpaps Gpops + 31 qu(n)uzmolﬁ%mq Guzps Jpaps -

3,5 _
51(? ) _ ehie e qr/(i)---us 0;5“6#7qu6u7 ’

51(5”5) — hipa qr(5 O%5N6H7

[ -3 45 116 4 9papr >
3,7 4 = 5
g = emnagr( OlsHerTy (C.16)

) with n > 4

are evanescent due to the evanescent structure I'™. The other two operators are evanescent

and operators where the indices of are permuted. The operators 51(;6’”

Olizhons
due to the Schouten identity. When the Dirac algebra is worked out in the HV scheme
replacing the Levi-Civita symbol with s, all the fermionic evanescent operators involve
contractions of the Lorentz indices of O'* with objects in D — 4 = —2¢ dimensions.

Finally, our scheme requires that the tree-level insertions of the evanescent operators
into the renormalization conditions vanish in D dimensions. This follows immediately
from the fact that the renormalization conditions are formulated in terms of projections
in section 4.2 that contract all open Lorentz indices of the truncated vertex functions with
four-dimensional objects, in the same way as it happens with S-matrix elements in the HV
scheme. When the evanescent operators are inserted into the truncated vertex functions
at tree level, the fields are removed and derivatives turn into four-dimensional external
momenta. All indices are either contracted with the four-dimensional Levi-Civita symbol
or the four-dimensional indices of the projectors, hence both the Dirac structures r
and the metric tensors in the evanescent operators are projected to D = 4 dimensions.
Therefore, both the four-dimensional Dirac algebra and the Schouten identity apply and
the tree-level insertions of the evanescent operators vanish identically.
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