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Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain

E-mail: mherrero@sissa.it, raquel.santosg@uam.es

Abstract: Unimodular Gravity is normally assumed to be equivalent to General Relativ-

ity for all matters but the character of the Cosmological Constant. Here we discuss this

equivalence in the presence of a non-minimally coupled scalar field. We show that when

we consider gravitation to be dynamical in a QFT sense, quantum corrections can distin-

guish both theories if the non-minimal coupling is non-vanishing. In order to show this, we

construct a path integral formulation of Unimodular Gravity, fixing the complicated gauge

invariance of the theory and computing all one-loop divergences. We find a combination

of the couplings in the Lagrangian to which we can assign a physical meaning. It tells

whether quantum gravitational phenomena can be ignored or not at a given energy scale.

Its renormalization group flow differs depending on if it is computed in General Relativity

or Unimodular Gravity.

Keywords: BRST Quantization, Renormalization Group, Classical Theories of Gravity,

Models of Quantum Gravity

ArXiv ePrint: 2006.06698

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2020)041

mailto:mherrero@sissa.it
mailto:raquel.santosg@uam.es
https://arxiv.org/abs/2006.06698
https://doi.org/10.1007/JHEP09(2020)041


J
H
E
P
0
9
(
2
0
2
0
)
0
4
1

Contents

1 Introduction 2

2 Unimodular Gravity 4

3 The background field expansion 7

3.1 Weyl Geometry 9

3.2 Gauge fixing and BRST invariance 10

4 Perturbations around flat space 14

4.1 Propagators for bosonic fields 14

4.2 The ghost propagators 16

5 Computation of correlation functions 17

5.1 The two-point function of the scalar field 19

5.2 The four-point function of the scalar field 20

5.3 Corrections to the non-minimal coupling 21

5.4 The gravitational two-point function 22

5.4.1 Contributions from scalar loops 22

5.4.2 Contributions from the graviton and bosonic ghost fields 23

5.4.3 Contributions from fermionic ghosts 24

5.4.4 The total result 25

5.5 Renormalization 25

5.5.1 Scalar two-point function 26

5.5.2 Scalar four-point function 26

5.5.3 The non-minimal coupling 27

5.5.4 Gravitational two-point function 28

6 β-functions and running couplings 28

7 Unimodular Gravity versus General Relativity 31

8 Discussion and conclusions 35

A Computation of β-functions in General Relativity 37

B Quantum corrections to vacuum Unimodular Gravity 38

– 1 –



J
H
E
P
0
9
(
2
0
2
0
)
0
4
1

1 Introduction

One of the most everlasting problems in theoretical physics is the Cosmological Constant

problem [1, 2] — the question of why our Universe is currently evolving according to the

presence of a very small cosmological constant, corresponding to M2
PΛ ∼ 10−46 GeV4,

where MP ∼ 1019 GeV is the Planck mass. Being precise, this problem has actually two

sides. The first belongs to the realm of model building and aims to describe which concrete

physical mechanism leads to the observed value of Λ. Many attempts have been done in

this direction during the last decades (see e.g. [3, 4] and references therein), but so far we

do not have any clear experimental signature that favours one or another.

The second facet of the problem is of more fundamental theoretical nature. Even if

a sensible mechanism to produce the current value of Λ at the classical level is described,

it still remains to explain why this value should be stable under radiative corrections.

In a Quantum Field Theory (QFT), all dimensionful parameters receive corrections from

loops of interacting particles that shift the classical value of parameters. This occurs

even if the particles running in the loops do not manifest themselves in the low energy

spectrum of the theory. In particular, if we think of an Effective Field Theory (EFT)

setting, the cosmological constant receives contributions proportional to the cut-off of the

theory, which encodes the ignorance about the UV degrees of freedom [5]. This means that

in a gravitational theory described at low energies by General Relativity (GR), we expect

corrections of the form δ(M2
PΛ) ∼ M4

P, which are clearly much larger than the observed

value of the cosmological constant. Although this hierarchy problem can be solved by the

inclusion of a very fine-tuned counter-term, it raises a question about the sensitivity of low

energy observables to high energy degrees of freedom and thus poses a problem for the

viability of the EFT, where separation of scales is critical.

A possible way out of this issue is to modify the infra-red (IR) limit of the gravita-

tional theory, so that the behavior of the cosmological constant gets replaced by a different

dynamical avatar. This is the direction of research followed by massive gravity [6, 7],

where the graviton mass regulates the IR limit of GR; and of the plethora of (Beyond-)

Hordensky/DHOST models [8], where the dynamics of an extra scalar degree of freedom

replaces the need for Dark Energy. However, the viability of both approaches has been

recently questioned from different directions, and the allowed parameter space is shrinking

quickly [9–14].

A particularly simple modification of GR that has attracted scattered attention during

the last decades, although it is almost as old as GR itself,1 is Unimodular Gravity (UG) [16–

18], formulated by appending the Einstein-Hilbert action with a condition of constant

determinant for the metric tensor. Since the variation of this determinant is proportional

to the trace of the equations of motion (eom), this effectively suppresses the trace degree

of freedom of the metric. The resulting eom of UG are then the traceless part of Einstein

1The equations of motion of UG appear for the first time ever in a 1919 paper by Einstein himself [15].

However, that work was not related to the cosmological constant but instead to the structure of point

particles within GR.
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equations [19–21]

Rµν −
1

4
gµνR = G

(
Tµν −

1

4
Tgµν

)
, (1.1)

where Tµν is the energy-momentum tensor of matter coupled to gravity. Any possible

cosmological constant in the Lagrangian, or its radiative corrections, would be contained

in the trace of Einstein equations and therefore they drop from the eom of UG.

Although this seems to signal a problem to reproduce well-known cosmological physics,

it is not the case. The standard classical dynamics for gravity is recovered by the use of

Bianchi identities, which are always true for a Riemannian manifold and imply, when taken

together with (1.1)

∇µRµν =
1

2
∇νR→ R+GT = 4C, (1.2)

after integration in a compact manifold without boundaries, and provided that ∇µTµν = 0.

Here C is an integration constant. If we now eliminate T from (1.1) by means of (1.2) we

recover the full set of Einstein equations

Rµν −
1

2
Rgµν + Cgµν = GTµν , (1.3)

where C takes the role of a cosmological constant. However, here C is an integration

constant instead of a coupling in the Lagrangian and therefore it does not receive radiative

corrections [22], effectively solving the second facet of the cosmological constant that we

have discussed. The value of the cosmological constant is not given by vacuum energy but

instead it is fixed by initial conditions when solving the eom. This mechanism has been

explored in the context of inflation in [23], while in [24] it was exploited together with scale

invariance to produce the complete thermal history of the Universe.

The fact that UG reproduces Einstein equations has led to a wide discussion of

whether it is fully equivalent to GR — apart form the discussed role of the cosmologi-

cal constant– or if there is some physical phenomenon that can serve to distinguish both

theories ([25–27] and references therein). From the previous discussion, it should be clear

that (semi-)classically2 there cannot be any difference between both theories. The equa-

tions of motion are the same and the number of degrees of freedom propagated by UG

matches those of GR — a single massless graviton [28, 29]. The same must be true for any

tree-level computation.

However, things are more subtle when dealing with the quantum nature of the grav-

itational field. In order to properly formulate a path integral for UG we need to resolve

the constraint |g| = 1 in an explicit way. As a consequence, and although on-shell states

match those of GR, off-shell states are different, owing to a different gauge group. While

the graviton fluctuation of GR is traceless only on the mass-shell, the one propagated by

UG has a vanishing trace even for off-shell states. This means that loops with running

gravitons are potentially different in both theories.

2By semi-classically here we mean quantum matter fields, represented by a quantum corrected energy-

momentum tensor 〈Tµν〉, coupled to classical gravity by replacing Tµν by 〈Tµν〉 in the equations of motion.
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Quantum phenomena in UG have been previosuly studied from several directions of

research [25, 27, 30–34]. Of particular interest are [22, 35], where the one-loop effective

action of UG is obtained by using two different approaches. Although the numerical results

of both works differ, something which may be a gauge artefact, their physical conclusion

is the same — the cosmological constant does not renormalize and UG is one-loop finite.

However, since in both works the theory is taken in vacuum, it is not possible to have access

to any physical observable in order to compare the dynamics of UG with that of GR. This

would require to couple another field to gravitation and account for its backreaction onto

the geometry.

In this work we tackle this last point by considering UG together with the action for a

non-minimally coupled scalar field. We will thus formulate a perturbative QFT expansion

for UG coupled to matter, clarifying the issue of fixing the complicated gauge freedom of

the theory and deriving all the elements required to implement perturbation theory around

flat space. We will afterwards use these tools to compute the renormalization group (RG)

flow of the different coupling constants in the action, at the one-loop level. This will allow

us to identify a physically relevant essential coupling and compute its β-function, that we

will be able to compare with the equivalent one as computed in GR.

This paper is organized as follows. First, in section 2 we will describe Unimodular

Gravity in more detail, together with the matter action that we consider. In order to

quantize the system we will use the Background Field Method, described in section 3

together with the concept of Weyl geometry and the BRST invariance of the gauge fixed

action. We will later compute correlation functions at the one-loop order by expanding

around flat space, as described in sections 4 and 5, where we compute divergences in the

MS scheme. Finally, we will derive the β-functions and anomalous dimensions of all the

couplings in the one-loop effective action in section 6, comparing our results with the

general relativistic ones in 7. We will draw our conclusions in section 8. For completeness,

we add two small appendices describing the computation in GR — appendix A — and the

discussion of divergences in UG in vacuum, in appendix B.

2 Unimodular Gravity

We define UG by adding a condition of constant determinant to the Einstein-Hilbert action

S = − 1

2G

∫
d4x
√
|g| R+ Smatter, |g| = ε, (2.1)

where ε is a constant tensor density. In the following we will be interested on perturbations

around flat space, so we fix it to ε = 1 henceforth. Here G = 8πM−2
P is the Newton’s

constant.

As a consequence of the condition |g| = 1, UG is not invariant under the full group

of diffeomorphisms. Instead, it is invariant only under those that preserve the constraint,

corresponding to volume preserving diffemorphisms, VDiff [36, 37]. Their action is char-

acterized at the infinitesimal level by a transverse vector

δgµν = Lξgµν , ∇µξµ = 0, (2.2)
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where Lξ stands for the Lie derivative along ξµ. We will dub the corresponding Lie algebra

as TDiff for this reason. In the rest of this document we will also use TDiff in an sloppy way

to refer to the full symmetry group. Effectively, we are replacing the four gauge constraints

of GR by three of them — those corresponding to the volume preserving subgroup– plus

the unit determinant constraint. The outcome for on-shell states is the same in both

theories, four constraints that leave a single transverse and traceless graviton as the only

propagating degree of freedom. However, this implies an important difference for off-shell

states, since the constraint |g| = 1 is also satisfied by them, unlike gauge constraints, which

only act on physical degrees of freedom. As a consequence, the metric fluctuations of UG

are always exactly traceless

δgµν ≡ δg̃µν −
1

4
g̃µν g̃

αβδg̃αβ , (2.3)

with g̃αβ an unconstrained metric. Indeed, this is the reason as to why the eom are traceless,

since they correspond to a variation with respect to this variable.

Although for classical matters we can use (2.3) to derive the eom, in order to perform

a path integral over the gravitational field we need to resolve the constraint |g| = 1. It

must be included in the integration measure, giving

Z[Tµν ] =

∫
[Dg] δ (|g| − 1) eiS+iT ·g, (2.4)

where we have defined the dot product

T · g =

∫
d4x
√
|g| Tµνgµν . (2.5)

Several ways to resolve this issue have been explored before, including using a Lagrange

multiplier [21] and a Stuckelberg field [17, 69, 70]. Here we choose to deal with it by

performing a change of variables to a new metric defined by

gµν = g̃µν |g̃|
1
4 , (2.6)

so that |g| = 1 is satisfied identically. In terms of the new metric g̃µν and after integration

by parts, the action of UG reads [38]

SUG = − 1

2G

∫
d4x |g̃|

1
4

(
R̃+

3

32

∇̃µ|g̃|∇̃µ|g̃|
|g̃|2

)
, (2.7)

where g̃µν is now an unconstrained field and variations can be taken freely.

Note that factors of g, which behaves as sort of an extra scalar field, have now ap-

peared in the action. In a diffeomorphism invariant theory this is not possible, because the

determinant of the metric transforms as a density under a general Diff element. However,

the fact that here we are dealing only with volume preserving transformations ensure that

g will transform as a true scalar and thus the new terms are allowed by symmetry.

The change of variables (2.6) also introduces an extra fictitious gauge symmetry in the

form of Weyl invariance

g̃µν → Ω(x)2g̃µν , (2.8)

– 5 –
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where Ω(x) is an arbitrary function of the space-time coordinates. The full gauge symmetry

of the theory to be considered is then the direct product of TDiff and Weyl, a combination

that has been dubbed WTDiff before [36]. It is precisely Weyl invariance which comes to

replace the determinant constraint in this form of the action, giving the extra condition

needed to reduce the number of degrees of freedom to a single massless graviton.

Although we will use the action (2.7) in order to evaluate the path integral of UG, we

are interested on writing results in terms of the original metric variable, that we choose

as our physical metric. This is achieved by simply choosing the gauge |g̃| = 1 for Weyl

transformations, thus identifying both metrics in (2.6). This is certainly true at the classical

level, but one might be worried by the potential presence of a Weyl anomaly in the effective

action, that would then obstruct the identification in the quantum variables. There are

no reasons to worry, however, since it can be proven that the identification of the original

metric gµν as the physical one precisely ensures the absence of anomalies [39, 40].

Note that when working with the action (2.7) it is straightforward to understand the

main feature of UG. Due to Weyl invariance, a cosmological constant term is forbidden

in the action and it cannot be generated by radiative corrections either. Moreover, the

Ward identity stemming from (2.8) precisely enforces the tracelessness of the eom and all

subsequent variations

g̃µ1ν1 g̃µ2ν2 . . . g̃µnνn
δ

δg̃µ1ν1

δ

δg̃µ2ν2
. . .

δS

δg̃µnνn
= 0. (2.9)

This also implies that the graviton excitation hµν = g̃µν − ηµν will always be exactly

traceless. One can check explicitly that the eom derived from (2.7), in the gauge |g̃| = 1

where we restore the original metric, are indeed the traceless Einstein equations (1.1).

As we discussed before, one of the main conundrums in the formulation of UG is the

question of whether it is really a different theory than GR or if otherwise, and barring

aside the role of the cosmological constant, they are exactly the same theory. Classically it

is obvious that the answer is the latter. Since the eom of both theories are equivalent, the

theories are so. However, quantum mechanically there are subtleties due to the different

gauge group of UG. This question has been explored in several works from different points

of view [22, 25, 27, 30–35], but all of them consider the theory in vacuum, with only

gravitation present. Although this is an interesting setting, the simplicity of the theory

implies that nothing can be said about the true equivalence of the theories. In particular,

if UG is considered alone, there are no physical observables that can be used to establish

a comparison with GR, since the one-loop correction in vacuum is finite.

In order to bypass this problem and to be able to define dependable quantities to

establish such a comparison, we couple here UG to matter. To keep things simpler — but

not trivial — we will consider a toy model comprised of a single massive scalar field with

a quartic interaction and non-minimal coupling to gravity

Smatter =

∫
d4x

(
1

2
∂µφ∂

µφ− m2

2
φ2 − λφ4 − ξ

2
φ2R

)
, (2.10)

where we have already fixed |g| = 1. Note that, as advertised, the action is written with

respect to the original metric gµν that we consider as physical.

– 6 –
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An important difference with respect to GR arises here. Due to the constraint on the

metric determinant, neither the mass term nor the quartic interaction couple directly to

gravity. This will have a direct effect on the form of the vertices coupling gravity to matter

in the perturbative expansion of this Lagrangian. Additionally, and since we will rely on

perturbation theory for our later computations, we will always consider G, ξ, λ� 1.

Finally, note that since the Weyl invariance of the action (2.7) appears here as a

consequence of the change of variables (2.6), the scalar field is inert under it. Unlike

standard Weyl transformations, where a scalar would transform with a factor proportional

to its energy dimension, here the symmetry is restricted purely to the metric sector. For

this reason it has sometimes been dubbed as fake or spurious Weyl Invariance [40].

The total action that we will consider is then the sum of (2.7) and (2.10)

S = SUG + Smatter. (2.11)

However, in (2.10) the metric is unimodular. By performing the change of variables to

the unconstrained metric gµν = |g̃|
1
4 g̃µν we have

S =

∫
d4x

{
|g̃|

1
4

[
− 1

2G

(
R̃+

3

32

∇̃µ|g̃|∇̃µ|g̃|
|g̃|2

)
+

1

2
∂µφ∂

µφ

−ξ
2
φ2

(
R̃+

3�̃|g̃|
4|g̃|

− 27∇̃µ|g̃|∇̃µ|g̃|
32|g̃|2

)]
− m2

2
φ2 − λφ4

}
, (2.12)

where we have integrated by parts in some terms. All indices in this expression must be

contracted by using the unconstrained metric g̃µν . This is the action that we will use

hereinafter.

3 The background field expansion

We will formulate the path integral of the theory by using standard tools. In order to be

able to preserve explicitly the gauge invariance of gravitational correlation functions we

will rely on the use of the background field method [41, 42]. We thus start by defining the

complete path integral that we will deal with as

Z[Jµν , j] =

∫
[Dg̃][Dφ] ei(S+J ·g̃+j·φ), (3.1)

where we have introduced two sources Jµν and j, which couple to the metric and to the

scalar field respectively. We will use those to define correlation functions in the usual way

through variational derivatives with respect to them.

Now, following the background field method, we separate the metric into background

and fluctuation by

g̃µν = ḡµν + hµν , (3.2)

where hµν is the graviton field. Since this is just a shift of the integration variable, we can

set [Dg̃] = [Dh].

– 7 –
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Under this redefinition, the exponent inside the path integral can be expanded in

powers of hµν

SJ = SJ |g̃=ḡ +

∫
d4x

δSJ
δg̃(x)µν

∣∣∣∣
g̃=ḡ

h(x)µν

+
1

2

∫
d4x

∫
d4y h(x)µν

δ2SJ
δg̃(x)µνδg̃(y)αβ

∣∣∣∣
g̃=ḡ

h(y)αβ +O(h3), (3.3)

where we have defined SJ = S + J · g̃ + j · φ. The first term in the expansion corresponds

to the action evaluated in the background field, while the linear term vanishes whenever

the background configuration satisfies the classical equations of motion. Since in this work

we are interested only in one-loop effects, we cut the expansion at second order, which

corresponds to leading order in the ~ expansion.

Since we have shifted the integration variable to hµν , the background metric can be

thought as an extra source, with the path integral depending on it

Z[Jµν , ḡµν , j] =

∫
[Dh][Dφ] eiSJ . (3.4)

If we now define the Quantum Effective Action in the standard way by a Legendre

transform before and after the field redefinition, we find the apparently trivial identity

Γ[g̃µν , φ] = Γ[ḡµν + hµν , φ]. (3.5)

However, this is not trivial at all. It means that, due to the appearance of the back-

ground metric as a shift of the total one, we can capture any covariant term of the Quantum

Effective Action just by computing those correlators in which only ḡµν and φ appear on

external legs, while hµν is a pure internal variable over which we integrate. This will clearly

make our lives easier and defines our computational strategy.

The other advantage of the background field method is that it allows us to preserve

the gauge invariance — WTDiff in this case — of the Quantum Effective Action easily, by

preserving that of any operator involving the background metric. This is due to the fact

that, after the field redefinition, infinitesimal gauge transformations can be split in two

δbgḡµν = Lξ ḡµν + 2ωḡµν , (3.6)

δbghµν = Lξhµν + 2ωhµν , (3.7)

δqḡµν = 0, (3.8)

δqhµν = Lξ(ḡµν + hµν) + 2ω(ḡµν + hµν), (3.9)

where ω is the infinitesimal parameter associated to Weyl transformations (2.8) Ω(x) =

1 + ω +O(ω2).

As we see, δbg corresponds to the gauge invariance of the background quantities, where

hµν is then regarded as a tensor transforming in the same way as the metric. To this we

must append the condition that φ is a scalar field inert under Weyl transformations.

– 8 –
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Since the path integral that we need to compute integrates only over hµν and φ, while

ḡµν is regarded as a source, we will only need to gauge fix the quantum part of the symme-

try δq. The background symmetry will remain unaltered and therefore gauge invariance of

our results is automatically ensured. All correlation functions must then satisfy an anal-

ogous expression to (2.9), with the classical action S replaced by the Quantum Effective

Action Γ[g̃µν , φ].

3.1 Weyl Geometry

We thus turn now our attention to the issue of gauge fixing δq. In order to do that,

we first wish to be able to construct a gauge fixing term which is invariant under the

background remaining WTDiff symmetry represented by δbg. A priori this does not seem

like a complicated task, but the complexity of the gauge sector of the theory (cf. later) can

make it a cumbersome task. In order to make things easier and more straightforward, we

will use here the formalism introduced in [43, 44] and named as Weyl Geometry. By defining

a full geometric construction which is explicitly Weyl covariant — as well as diffeomorphism

covariant — we can construct invariant quantities in a easy way.

The core of the method consists in the introduction of a U(1) gauge field Wµ which will

serve to define Weyl covariant derivatives. However, since this is a Weyl invariant theory,

this field is not an external ingredient, but instead it can be built out of the fields already

in the action. In our case, we define it to be

Wµ =
1

8
∇̄µ log(|ḡ|). (3.10)

It can be easily checked that under a Weyl transformation (2.8), Wµ behaves indeed as a

U(1) gauge field

Wµ →Wµ + Ω∇̄µΩ. (3.11)

Using it we introduce a non-metric connection

Γ(W)α
µν = { }αµν − δ

α
µWν − δανWµ + ḡµνW

α, (3.12)

where { }αµν is the Levi-Civita connection of the metric ḡµν . As usual, the connection Γ(W)α

will induce a covariant derivative, that we label ∇(W).

We complete the construction presented here by introducing the Weyl covariant deriva-

tive acting on a generic tensor T

DµT = ∇(W )
µ T − λT T , (3.13)

where λT is the scaling dimension of the tensor, defined as the weight of Ω under a Weyl

transformation

T → ΩλT T . (3.14)

Note that, when defined in this way, Dµ is compatible with the background metric

Dµḡαβ = 0.

– 9 –
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For the future it will be also useful to define a Weyl covariant curvature by using the

Ricci identity acting on a generic vector V α

[Dµ, Dν ]V α = R α
µν βV

β , (3.15)

which gives

Rµναβ = R̄µναβ + ḡµα
(
∇̄νWβ +WνWβ

)
− ḡµβ

(
∇̄νWα +WνWα

)
− ḡνα

(
∇̄µWβ +WµWβ

)
+ ḡνβ

(
∇̄µWα +WµWα

)
− (ḡµαḡνβ − ḡµβ ḡνα)W 2, (3.16)

and subsequently

Rµν = R̄µν + 2WµWν + ∇̄µWν + ∇̄νWµ − 2ḡµνW
2 + ḡµν∇̄αWα, (3.17)

R = R̄+ 6(∇̄µWµ −W 2), (3.18)

where R̄µναβ is the Riemann tensor of the background metric.

The advantage of using Dµ now is clear. For any tensor T with a well-defined scaling

dimension — that is, that there are not derivatives of Ω involved in the transformation

of the tensor —, DµT will transform in the same way as T . Constructing Weyl invariant

quantities is just a matter of combining Dµ with powers of |ḡ| — which enjoys scaling

dimension λ|ḡ| = 8 — to form scalars under Weyl transformation. A simple example of

this is the action (2.7) evaluated in ḡ, which can be easily written as

S|g̃=ḡ = − 1

2G

∫
d4x |ḡ|

1
4R. (3.19)

3.2 Gauge fixing and BRST invariance

We finally turn ourselves to the problem of fixing the WTDiff symmetry of the fluctuations.

In principle one could think on attempting to fix the symmetry in a standard manner, by

introducing a gauge fixing condition

Fµ = 0, (3.20)

and appending the action with a gauge fixing term

Sgf =

∫
d4x FµF

µ, (3.21)

and the corresponding action for the ghosts. However, this is not as straightforward as it

seems for two reasons. First, we are dealing with the direct product of TDiff and Weyl.

The total number of conditions required to fix the symmetry is still four and thus it seems

that choosing a space-time vector Fµ does the work. However, the resulting gauge fixing

term must then satisfy three conditions

1. It must break the quantum part of TDiff invariance.

2. It must break the quantum part of Weyl invariance.

3. It must preserve the background WTDiff symmetry.
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As far as we know, it is not possible to choose a function Fµ such that (3.21) satisfies

all three conditions.

The other reason as to why a standard gauge fixing method is cumbersome is related

to the structure of the TDiff group. Since the generator of transverse diffeomorphisms is

constrained to be transverse, the same will be true for the corresponding ghost field cµ

∇̄µcµ = 0. (3.22)

This condition has to be included in the measure in some manner. The easiest way is

to follow [22] and use a transverse projector to project an otherwise arbitrary field

cµ =
(
δµν − ∇̄µ�−1∇̄ν

)
dµ, (3.23)

where the inverse of the Laplace operator � = ∇̄µ∇̄µ is defined by acting on an arbitrary

tensor

�−1 � = � �−1T = T . (3.24)

By doing this, in a similar way to what happens with the transformation of the met-

ric (2.6), we replace the condition (3.22) by a U(1) gauge symmetry acting on dµ

dµ → ∇̄µf, (3.25)

where f is an arbitrary function of the space-time coordinates. Thus, we will need to

introduce a gauge fixing term for this symmetry as well, that will then generate a full new

set of ghosts and anti-ghosts, of bosonic character this time. These have been sometimes

dubbed in the literature as Nielsen-Kallosh ghosts [45, 46].

In order to circumvent all the complications implied by these properties, we decide

here to fix the gauge by using BRST invariance [47]. We thus introduce an operator s

which, when acting on the graviton fluctuation hµν , implements a gauge transformation

with the infinitesimal generator replaced by a ghost

shµν = Lc(ḡµν + hµν) + 2b(ḡµν + hµν), (3.26)

where we have introduced the ghost field associated to Weyl invariance b. Note that

since the generators of the transformation are now Grassman variables, the operator s is

Grassman odd. To this we must append the transformation rules for the ghost fields cµ

and b

scµ = Lccµ = cρ∇ρcµ, (3.27)

sb = Lcb = cρ∇ρb, (3.28)

which are inert under Weyl transformations.

However, in this work we are only interested in one-loop corrections, that we have

already established that correspond to the quadratic approximation in the path integral.

Since, as we will see later, the transformation of the ghost will always come in the final
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gauge-fixed action multiplied by another quantum field, we can just neglect the transfor-

mation of both ghost fields and write instead

scµ = O(field2), (3.29)

sb = O(field2). (3.30)

As before, the ghost field cµ is forced to satisfy a transversality condition. However,

since our ultimate goal is to obtain a gauge fixing term which preserves background WTDiff

invariance, from now on we define the transverse condition by using the Weyl covariant

derivative

Dµc
µ = 0. (3.31)

We will do the same in any other BRST transformation from now on.

Note that this replacement is always possible, since we can always use whatever deriva-

tive we desire to compute the Lie derivative in (3.26). Alternatively, any difference between

derivatives can be also absorbed in a redefinition of the ghost field b.

Again, we use a transverse projector to satisfy (3.31), which in this case will be given by

cµ =
(
δµν −Dµ(D2)−1Dν

)
dν , (3.32)

and the inherited U(1) invariance will take the form

dµ → Dµf. (3.33)

In general, dealing with this kind of open algebra would require the sophisticated

technique of BV quantization [48]. However, in the case of UG things are simple enough

so that we can construct the gauge fixing sector by simply including the gauge symmetry

of the ghost field in the BRST operator [22, 49, 50]. Consequently, we extend the action

of s appropriately. We introduce a ghost field α and write

sdµ = Dµα, (3.34)

where, due to the Grassman parity of s, we see that α must be a bosonic field.

We now append our theory with a complementary set of anti-ghost and auxiliary fields

with the goal of closing the algebra of the BRST operator, that we demand to be nilpotent

when acting on any field involved in the path integral

s2 = 0. (3.35)

For symmetries whose associated ghost is Grassman odd, it is enough to add a single

anti-ghost and an auxiliary field with even Grassman number to achieve the closure of the

algebra. However, for symmetries whose ghost is bosonic, such as α, things are more subtle.

Since the auxiliary field needs to be Grassman odd, it is impossible to form its square. In

that case we are required to introduce two pairs of anti-ghost and auxiliary fields. Following

these rules and taking into account that here we have three gauge symmetries — TDiff,
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Weyl and the U(1) symmetry of the ghost field — we find that we need the following set

of fields and transformations

sc̄µ = ρµ, sρµ = 0, (3.36)

sb̄ = l, sl = 0, (3.37)

sx = m, sm = 0, (3.38)

sx̄ = m̄, sm̄ = 0. (3.39)

Here the first two lines correspond to the auxiliary fields needed to close the algebra

for WTDiff transformations, while the rest are the two pairs of field required for the U(1).

Their Grassman character is

{c̄µ, b̄,m, m̄} ≡ Grassman odd. (3.40)

{ρµ, l, x, x̄} ≡ Grassman even. (3.41)

This is enough to ensure the nil-potency of the BRST operator when acting on any field

of the path integral within the one-loop approximation.

Once the action of s onto every field is defined, we introduce the BRST gauge-fixing

term, which includes the action of the ghosts, as the result of acting with s on a so-called

gauge fermion

SBRST = − 1

2G

∫
d4x sΨ, (3.42)

where Ψ is a term quadratic in the fields and of odd Grassman parity. Thanks to the

nil-potency of s and once SBRST is chosen in this way, the total action is invariant under a

BRST transformation. The associated Ward-Takahashi identities then become the Slavnov-

Taylor identities of the theory, ensuring a successful quantization.

The construction of Ψ now replaces the arbitrary choice of gauge function Fµ. As long

as Ψ is Grassman odd and breaks gauge invariance — but not BRST invariance — it is

a valid choice. Here we will however follow a conservative approach, still defining a gauge

condition

Fµ = Dνhµν + τDµh, (3.43)

and writing

Ψ = |ḡ|
1
4 (c̄µ+Dµb̄)

(
Fµ− 1

4σ
(ρµ−Dµl)

)
+x

(
Dµd

µ+
1

2γ
m̄

)
+y x̄

(
ḡ

1
4Dµc̄

µ− 1

2γ
m

)
.

(3.44)

Here σ, τ , y and γ are gauge parameters whose value we can use either to simplify our

computations or to test gauge invariance of our results. The powers of |g| are chosen so

that the expression is invariant under background Weyl invariance. The form of this gauge

fermion is motivated by the BRST formulation of the usual Faddev-Poppov gauge fixing

method. If we were dealing with a simpler symmetry, and in the absence of Weyl invariance,
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then the first term would be enough to fix it and after integration of the auxiliary field ρ

we would have recovered the standard gauge fixing plus ghost action. Here the first term

deals with the combined WTDiff gauge symmetry while the rest is needed to be able to

fix the U(1) symmetry of the ghost sector.

Acting with the BRST operator we then have

SBRST = − 1

2G

∫
d4x

{
|ḡ|

1
4 (ρµ +Dµl)

(
Fµ − 1

4σ
(ρµ −Dµl)

)
+ |ḡ|

1
4 (c̄µ +Dµb̄) sFµ

+m

(
Dµd

µ +
1

2γ
m̄

)
+ |ḡ|

1
4xD2α+ y m̄

(
|ḡ|

1
4Dµc̄

µ − 1

2γ
m

)
+ y|ḡ|

1
4 x̄Dµρ

µ

}
. (3.45)

Examining this expression we see that ρµ, m and m̄ are linearly coupled, entering

the path integral as sources. We can thus integrate them out by using their equations of

motion. This simplifies the BRST term to

SBRST = − 1

2G

∫
d4x |ḡ|

1
4

{
(c̄µ +Dµb̄) sFµ +

2γy

y + 1
Dµc̄

µDνd
ν + σ (Fµ − yDµx̄)2

+
1

4σ
DµlD

µl +DµlF
µ + xD2α

}
. (3.46)

Finally, appending this action to the classical action, we can write the path integral of

UG in the background field approach to be

Z[Jµν , ḡµν , j] =

∫
[Dh][Dφ][Dc̄][Dd][Db̄][Db][Dx̄][Dl][Dx][Dα] ei(SJ+SBRST). (3.47)

4 Perturbations around flat space

Once the path integral for the unimodular scalar-tensor theory is properly defined, we come

to the task of computing the one-loop correction to the coupling constants. Since back-

ground WTDiff invariance is ensured by construction, we will perform our computation

by expanding the background metric around flat space-time

ḡµν = ηµν +Hµν , (4.1)

where we will dub Hµν as the background graviton fluctuation. This will allow us to use

standard techniques to compute Feynman diagrams. Correlation functions of the back-

ground metric will become correlators of Hµν and we will capture the renormalization of

the coupling constants by computing diagrams with Hµν and φ in the external legs.

4.1 Propagators for bosonic fields

We start by computing the propagators of the fluctuations. In order to do that we take

SJ + SBRST and we set the background metric to be flat, thus retaining only the terms
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quadratic in the quantum fields. The lagrangian for the bosonic fields then reads

L2 = − 1

2G

[
hµν∂α∂νh

α
µ+hαβ∂β∂µh

µ
α+

1

2
∂βhαµ∂µhαβ−

1

16
h∂2h−1

4
hαβ∂2hαβ−

1

4
h∂α∂βh

αβ

−hαβ∂α∂βh+(σ−1)∂αh
αβ∂µh

µ
α−

1+8στ

4
∂αh

β
α∂

αh−1+32στ2

32
∂αh∂

αh+
1

4σ
∂µl∂

µl

+σy2∂µx̄∂
µx̄+∂αl(∂βh

αβ+τ∂ah)−2σy∂αx̄(∂βh
αβ+τ∂ah)+x∂2α

]
+

1

2

(
∂αφ∂

αφ−m2φ2
)
.

(4.2)

We leave the discussion of the ghost sector involving dµ, c̄µ, b and b̄ for the next subsection.

Here we find a striking difference between GR and UG. Due to the complicated gauge

fixing sector involving bosonic Nielsen-Kallosh ghost fields, we find that the graviton fluc-

tuation hµν mixes with the bosonic ghosts at the kinetic level, as indicated by the last

terms in the second line in (4.2). This means that in order to compute the propagator of

the gravitational field, we need to take these fields into account in order to cancel spurious

gauge pole contributions. It is not enough to take the FµF
µ term in the gauge fixing and

invert the kinetic term for the graviton by itself, even for tree-level computations.

We take the action (4.2), Fourier transforming it to momentum space and we write it

in matrix form

L2 =
1

2

(
hµν , x̄, l, φ, x, α

)
M−1(q)



hαβ
x̄

l

φ

x

α


(4.3)

whereM−1(q) is the matrix-valued inverse propagator. Inverting it with the following sign

convention

M−1(q)M(q) = iI, (4.4)

gives the following non-vanishing propagators for the fields

〈hµν(−q)hαβ(q)〉 =
2iG

q2

(
ηµαηνβ + ηµβηνα −

1 + 2σ(3 + 8τ(1 + τ))

σ(1 + 4τ)2
ηµνηαβ

)
+

4iG

q6

1− 2σ

σ
qµqνqαqβ +

4iG

q4

3 + 4τ

1 + 4τ
(ηµνqαqβ + ηαβqµqν)

− iG

q4

1 + 2σ

σ
(ηµαqνqβ + ηναqµqβ + ηµβqνqα + ηνβqµqα) , (4.5)

〈l(−q)l(q)〉 = −6iGσ
1

q2
, (4.6)

〈l(−q)hµν(q)〉 =
2iG

(1 + 4τ)

ηµν
q2
, (4.7)
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〈x̄(−q)x̄(q)〉 = − 3iG

2σy2

1

q2
, (4.8)

〈x̄(−q)hµν(q)〉 = − iG

σy(1 + 4τ)

ηµν
q2
, (4.9)

〈l(−q)x̄(q)〉 =
iG

y

1

q2
, (4.10)

〈x(−q)α(q)〉 =
4iG

q2
, (4.11)

〈φ(−q)φ(q)〉 =
i

q2 −m2
. (4.12)

In order to simplify our computations we will set the gauge parameter τ = −3/4, for

which the graviton propagator reduces to

〈hµν(−q)hαβ(q)〉 =
2iG

q2

(
ηµαηνβ + ηµβηνα −

1 + 3σ

4σ
ηµνηαβ

)
+

4iG

q6

1− 2σ

σ
qµqνqαqβ

− iG

q4

1 + 2σ

σ
(ηµαqνqβ + ηναqµqβ + ηµβqνqα + ηνβqµqα) . (4.13)

In principle we could further simplify this expression by choosing σ = −1/2. However, we

refrain to do so in order to be able to track the gauge dependence of our results along the

computation. We will also leave the parameter y arbitrary.

4.2 The ghost propagators

We now focus in the action for the ghost fields

Sgh = − 1

2G

∫
d4x |ḡ|

1
4

[
(c̄µ +Dµb̄)sF

µ +
2γy

y + 1
Dµc̄

µDνd
ν

]
, (4.14)

with the goal of computing their propagators.

Acting with the BRST operator on Fµ gives

sFµ = D2cµ +Rµν cν + (2 + 8τ)Dµb, (4.15)

with Rµν given by (3.17). However, this is written in terms of the constrained field cµ. We

thus perform the change of variables (3.32) and write

sFµ = D2dµ −DµDνd
ν +Rµνdν − 2RµνDν

(
D2
)−1

Dαd
α + (2 + 8τ)Dµb. (4.16)

Setting the background metric to be flat in order to derive the propagator, we have

Dµ ≡ ∂µ and therefore the non-local operator (∂2)−1 has a well-defined representation in

momentum space when acting on an arbitrary tensor, given by

(∂2)−1T =

∫
d4q

2π

(
− 1

q2

)
T eiq·x. (4.17)

However, this will never enter into the definition of the propagators, since it comes mul-

tiplied by a curvature, which vanishes when ḡµν = ηµν . It will be important later when
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deriving the interaction vertices, but due to the same reason and since we will only need

vertices with one external graviton, we will never have to workout the task of inverting this

in general, but only take its flat realization.

Around flat space-time, the action that defines the propagator then gives the following

Lagrangian

L(gh)
2 =

(
c̄µ + ∂µb̄

) (
∂2dµ − ∂µ∂νdν + (2 + 8τ)∂µb

)
− z ∂µc̄µ∂νdν , (4.18)

where we must note that the different ghost sectors, belonging to TDiff and Weyl, are

mixed at the kinetic level. Here we have defined z = −2γy(1 + y)−1.

As with the bosonic fields, we now write this in matrix form after integration by parts

L(gh)
2 =

(
c̄µ, b̄

)
N−1

(
dν

b

)
, (4.19)

and by inverting N−1 we find the following non-vanishing propagators

〈c̄ν(−q)dµ(q)〉 = −2G

(
(1 + z)qµqν

z
− δµν

)
i

q2
, (4.20)

〈b̄(−q)dµ(q)〉 = −2Gqµ

zq4
, (4.21)

〈b̄(−q)b(q)〉 = − G

1 + 4τ

i

q2
. (4.22)

Although we could use z to try to simplify the form of the propagator 〈dµ(−q)c̄ν(q)〉 we

prefer to keep it arbitrary in order to track gauge independence of our results.

5 Computation of correlation functions

Once we have set-up the perturbative expansion of the action and derived the propagators,

we can affront the computation of the one-loop RG flow of the different coupling constants

in the Lagrangian. In order to understand what we need to compute, let us take a look to

the zeroth order action around the background metric

S =

∫
d4x

{
|ḡ|

1
4

[
− 1

2G

(
R̄+

3

32

∇̄µ|ḡ|∇̄µ|ḡ|
|ḡ|2

)
+

1

2
∂µφ∂

µφ

−ξ
2
φ2

(
R̄+

3�̄|ḡ|
4|ḡ|

− 27∇̄µ|ḡ|∇̄µ|ḡ|
32|ḡ|2

)]
− m2

2
φ2 − λφ4

}
. (5.1)

By expanding this around flat space

ḡµν = ηµν +Hµν , (5.2)

we see that it is enough to compute the two-point function of Hµν in order to capture

the running of G, while from the two and four-point functions of the scalar field we de-

rive the running of m2, λ and the field strength renormalization of φ, as usual. Finally,
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from the coupling φ2Hµν we can extract the running of ξ. Of course, since the theory

is non-renormalizable, we will also find extra divergences corresponding to higher dimen-

sion operators — with four derivatives. Therefore, we will adopt an EFT approach to

quantization from now on.

We will perform the computation with standard Feynman diagrams, using the propa-

gators (4.5)–(4.12) and (4.20)–(4.22). The interaction vertices are defined in the standard

way by variational derivatives of the action SJ , after expanding the background metric

around flat space and going to momentum space

〈Hµ1ν1(q1) . . . Hµnνn(qn)hα1β1(p1) . . . hαmβm(pm)φ(k1)φ(ks)〉

=
i

n!m!s!

δ

δHµ1ν1(q1)
. . .

δ

δHµnνn(qn)

δ

δhα1β1(p1)
. . .

δ

δhαmβm(pm)

δ

δφ(k1)
. . .

δSJ
δφ(ks)

. (5.3)

The explicit formulas for all the vertices are pretty cumbersome and not illuminating at

all, so we refrain to show them here explicitly. Let us note however that, due to background

Weyl invariance, all vertices and all correlation functions that we will compute must satisfy

the Ward identities (2.9).

Regarding loop integrals, we have two possible poles that can enter into the loops from

the propagators (4.5)–(4.12) and (4.20)–(4.22). They represent the massless pole of the

graviton and ghosts and the massive pole of the scalar field

P0(q) =
1

q2
, Pm(q) =

1

q2 −m2
. (5.4)

This implies that the denominator in a typical Feynman diagram will be a product of

these poles evaluated for the momentum structures running in the loops, that will depend

on the external momentum pµ. For example, a fish diagram will have a typical form

∼
∫

d4k

(2π)4
F (p, k) Pi(k + p)Pj(k), (5.5)

where the form-factor F (p, k) will depend on the particular diagram, and we would have

to choose later the pole structures depending if the internal legs are scalars or gravitons.

In the following we will be interested in the computation of divergences, which are

the only piece needed to obtain the RG flow of the coupling constants. Therefore we will

ignore the finite parts of the diagrams and will capture these divergences by expanding the

integrands of the different diagrams in powers of the external momentum and the mass

m of the scalar field. After reducing any index structure as usual by using rotational

invariance,3 all divergent integrals in the expansion will have the same form

D(n) =

∫
d4q

(2π)4

1

qn
. (5.6)

3When expanding the denominators in the Feynman integrals, we will encounter an increasing number

of loop momenta qµ in the numerators. We will reduce those by Lorentz (rotational) invariance in the

standard way, averaging over directions [51],

qi1qi2 . . . qin → |q|
nTi1i2...in

Γ
(
d
2

)
Γ
(
n+1
2

)
Γ
(
1
2

)
Γ
(
d+n
2

)
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Once they are taken to this form, we will use dimensional regularization in order to

compute them. Since the above integrals have no dimensionful parameter, we can directly

see that all of them must vanish — as it is usual in dimensional regularization — unless

n = 4, so we will only need to retain these integrals

I = D(4) =

∫
d4q

(2π)4

1

q4
. (5.7)

Although we are only interested in the UV divergences of the integral, we must note

that (5.7) is however divergent on both ends of the integral. Therefore, it will be convenient

for us to regulate the intermediate IR divergences by introducing a soft mass η and rewriting

I in d dimensions as

I =

∫
ddq

(2π)4

1

(q2 − η2)2
, (5.8)

which can now be computed by using standard formulas to give

I =
i

8π2ε
− i

16π2

(
γ − log(4π) + log(η2)

)
+O(ε), (5.9)

where γ is the Euler-Mascheroni constant and ε = 4−d. This will be the form that we will

later use to regularize the divergences in the Feynman diagrams. From now on we will only

focus on those diagrams with non-vanishing divergences under this regularization scheme.

All the computations presented here have been performed with two independent com-

puter codes based on Mathematica, with the help of the package xAct [52, 53]; and

FORM [54].

5.1 The two-point function of the scalar field

We start by computing the simplest of the correlation functions that we will need to define

the RG flow of the coupling constants. That is the two-point function of the scalar field,

which will be given by the following Feynman diagrams

〈φ(−p)φ(p)〉1-loop = + , (5.10)

where our dictionary for the lines of the diagrams is shown in table 1.

where d is the space-time dimension and

Ti1i2...in =
1

n!

[
δi1i2 . . . δin−1in + all permutations of the i’s

]
for even n, and Ti1i2...in = 0 for odd n.

Note that the maximum number of free loop momenta that we can find is tied to the number of indices

in the external legs of the diagram. Two for every Hµν in a external leg and one for every pµ. This means

that, for example, for the two-point function of the scalar field it is enough to retain terms with up to four

free qµ (since we can have divergences proportional to p4), while this amount is doubled for the graviton

two-point function (four momenta and four indices in the gravitons).
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Hµν ≡ hµν ≡ φ ≡

l ≡ x̄ ≡ x ≡

α ≡ dµ, c̄µ ≡ b, b̄ ≡

Table 1. Dictionary of lines for the Feynman diagrams.

By inspection of the action and the topology of the diagrams, we see that we can

expect three types of divergences, proportional to p0, p2 and p4. In principle, we could

have added a gravitational tadpole here. However, it is proportional to the integral D(2)

and therefore it vanishes in dimensional regularization.

Computing the diagrams as previously discussed, expanding the denominators, and

retaining only the UV divergent terms we find

〈φ(−p)φ(p)〉1-loop =

(
Gp4(3+2σ(3+8ξ))

4σ
−3Gm2p2(1+2σ(1+8ξ+4ξ2))

4σ
+12λm2−6Gm4ξ2

)
I,

(5.11)

which indeed contains the three possible divergences previously mentioned. From the

momentum-independent term we will be able to extract the running of m2, while the term

proportional to p2 will give the field strength renormalization of the field. The piece quartic

in the external momentum will require the introduction of a higher-derivative operator in

order to absorb the divergence, as usual in a non-renormalizable EFT.

5.2 The four-point function of the scalar field

We compute now the four-point function of the scalar field. As before, we expect diver-

gences with external momentum up to p4. The corresponding Feynman diagrams con-

tributing to this are

〈φ(−p)φ(−p)φ(p)φ(p)〉1-loop = + + + + ,

(5.12)

where we are just drawing inequivalent topologies. For all the diagrams considered here, we

must sum the contribution of all inequivalent channels once the external momenta are fixed.

This amounts to adding the s, t and u channels for all the diagrams, plus two permutations

of the external vertices for the triangles, which add up to six different channels.

We evaluate the divergences by setting the magnitude of all external momenta to that

of pµ. This is equivalent to the kinematical configuration s = 4p2, t = u = 0, which will

define our subtraction point. Under this choice, the one-loop contribution to the four-point
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function becomes

〈φ(−p)φ(−p)φ(p)φ(p)〉1-loop =

[
36(24λ2−48Gλm2ξ2+G2m4ξ3(2+9ξ))

+
6Gp2(−6λ(1+σ(2+8ξ(4+ξ)))+Gm2ξ(−3ξ+σ(1+2ξ(11+6ξ(7+3ξ )))))

σ

+
G2p4(117+8ξ(17+40ξ)−4σ(27+4ξ(37+45ξ))+4σ2(483+4ξ(259+2ξ(385+3ξ(−28+9ξ)))))

8σ2

]
I.

(5.13)

As in the previous section, we obtain three kind of divergences. The momentum

independent one will dictate the running of λ, while the other terms will demand higher-

derivative operators to be introduced in the EFT expansion.

5.3 Corrections to the non-minimal coupling

In order to compute the one-loop contribution to the running of the non-minimal coupling

we will need to focus on the three-point function mixing two external scalar fields and a

graviton. The tree-level form of this correlator can be obtained by expanding the action

to the given order in the background graviton, giving

〈φ(−p)φ(−p)Hµν(2p)〉tree = − i
4

(1 + 4ξ)(p2ηµν − 4pµpν), (5.14)

where we have assigned equal incoming momentum for the scalar fields.

Therefore, contributions to 〈φ(−p)φ(−p)Hµν(2p)〉 will renormalize the combination

1 + 4ξ, once the effect of the field strength renormalization of φ is subtracted. Note that,

since the theory is Weyl invariant at the background level, the action must satisfy the

condition (2.9), which implies that 〈φ(−p)φ(−p)Hµν(p)〉 must be a traceless tensor. This

is trivially satisfied by the tree-level contribution (5.14) but it will serve as a strong sanity

check of our result for the one-loop computation since in that case the condition is satisfied

in a non-trivial way.

The one-loop topologies contributing to this correlator are

〈φ(−p)φ(−p)Hµν(2p)〉1-loop = + + +

+ + + , (5.15)

where the last two diagrams contain a explicit presence of the bosonic ghost fields in the

internal lines, with the small shaded blown representing kinetic mixing. Actually, the

presence of these bosonic ghost fields is critical, since the sum of all the other diagrams is

not traceless and therefore violates the Ward identity (2.9). It is only when the last two

topologies, which also have a non-vanishing trace, are added, that the whole contribution
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becomes traceless. This is not surprising, of course. The role of ghosts is precisely to cancel

the dynamics of gauge modes, which violate Ward identities, in the internal legs. However,

it serves here as a very non-trivial test of the construction of the path integral, the BRST

sector and of our computation.

The final result takes the form

〈φ(−p)φ(−p)Hµν(2p)〉1-loop = I
(
pµpν−

1

4
p2ηµν

)
×
[
−64λσ(1+6ξ)−Gm2(−3+2σ(1+6ξ)(−3+2ξ(−3+8ξ)))

4σ

+
Gp2(−9−40ξ+2σ(23+30ξ+σ(42+4ξ(53+6(13−6ξ)ξ))))

12σ2

]
.

(5.16)

We see that the result is indeed proportional to (5.14). Moreover, no terms independent

of the momentum have been generated. Those would require the introduction of counter-

terms of the schematic form |g|αφ2, with α a constant, that violate Weyl invariance.

5.4 The gravitational two-point function

The last correlation function that we need in order to compute the RG flow of the coupling

constants in the action is the two-point function of the gravitational field. Its value is

required in order to get the running of the Newton constant G. Additionally, we will also

compute the contributions that require the introduction of higher-derivative operators to

cancel divergences. This will not only complete our computation but it will also serve as

a third additional computation complementary to that of [22, 35]. In the following we will

split the computation in three parts — the contribution of the scalar field, that of the rest

of bosonic fields, and the one coming from ghost loops.

5.4.1 Contributions from scalar loops

This first contribution in the simplest one of all that we will consider in this subsection. It

is equivalent to compute the contribution of a gravitating scalar-field in a background non-

dynamical geometry. As such, and by the reasons discussed in this work, its contribution

shall be identical to that coming from GR. Indeed, we have checked that it is the case at

the level of β-functions.

There are only two diagrams that need to be taken into account

〈Hµν(−p)Hαβ(p)〉φ = + , (5.17)
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and whose contribution is

〈Hµν(−p)Hαβ(p)〉φ =

[
p4

480
(−1+20ξ+60ξ2)ηαβηµν−

p2

120
(1+20ξ+60ξ2) (ηµνpαpβ+ηαβpµpν)

− p2

120
(ηβνpαpµ+ηανpβpµ+ηβµpαpν+ηαµpβpν)+

(
1

15
+

2ξ

3
+2ξ2

)
pαpβpµpν

+
p4

120
(ηανηβµ+ηαµηβν)−m

2(1+6ξ)

48

(
4p2(ηανηβµ+ηαµηβν)+4(ηµνpαpβ+ηαβpµpν)

−4(ηβνpαpµ+ηανpβpµ+ηβµpαpν+ηαµpβpν)−3p2ηαβηµν

)]
I. (5.18)

As in the case of the non-minimal coupling, note that there are no terms independent

of the external momentum, since those would imply a renormalization of the cosmologi-

cal constant, violating Weyl invariance of the background. The satisfaction of the Ward

identity (2.9) can be seen here from the fact that

〈Hµν(−p)Hαβ(p)〉φηµνηαβ = 0. (5.19)

The terms proportional to p2 will renormalize the Newton’s constant G — as it can

be seen from the fact that they are proportional to the tree-level kinetic term of Hµν —,

while the terms with a quartic dependence on p4 will require higher-derivative terms.

5.4.2 Contributions from the graviton and bosonic ghost fields

While the contribution from the scalar field to the gravitational two-point function is pretty

simple, that of the rest of bosonic fields is pretty cumbersome, due to the kinetic mixing

between the graviton fluctuation hµν and the bosonic ghosts l and x̄. This multiplies the

number of Feynman diagrams to be considered and leaves the following set of inequivalent

topologies

〈Hµν(−p)Hαβ(p)〉bosons = + +

+ + + +

+ + + +
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+ + + +

+ + + + .

(5.20)

Computing these Feynman diagrams by following the methods previously described in

this paper, we find the following result

〈Hµν(−p)Hαβ(p)〉bosons =

(
p4(50+100σ+777σ2)(ηαµηβν+ηανηβµ)

480σ2
−p

4(125+250σ+2167σ2)ηαβηµν
1920σ2

−p
2(50+100σ+777σ2)(pαpµηβν+pαpνηβµ+pβpµηαν+pβpνηαµ)

480σ2
+

(25+50σ+164σ2)pαpβpµpν
120σ2

+
p2(25+50σ+613σ2)(ηµνpαpβ+ηαβpµpν)

480σ2

)
I. (5.21)

Note that in this case all divergences are proportional to p4 as a consequence of the

absence of any dimensionful parameter in the loops, since all the fields that propagate in

these diagrams are massless. As a consequence, this contribution will only renormalize

higher-derivative operators.

5.4.3 Contributions from fermionic ghosts

The last contribution that we need to compute in order to get the full one-loop divergence

contributing to the gravitational two-point functions is that coming from the loops of

fermionic ghosts, c̄µ, dµ, b̄ and b. It is given by the following diagrams

〈Hµν(−p)Hαβ(p)〉fermions = +

+ + , (5.22)

where the arrows indicate the fermion flow. Their contribution to the correlation func-

tion is

〈Hµν(−p)Hαβ(p)〉fermions =

(
p4

16
(ηαµηβν+ηανηβµ)−p

2

16
(pµpαηνβ+pνpαηµβ+pµpβηνα+pνpβηαµ)

+
5

48
p2(ηµνpαpβ+ηαβpµpν)−1

6
pαpβpµpν−

11

192
p4ηαβηµν

)
I. (5.23)
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Again, since there are no dimensionful constant running in the loop propagators, the

result is proportional to p4 and will only renormalize higher-derivative operators. Addi-

tionally, we see that the dependence on the gauge parameter z, which appears explicitly in

the ghost propagators (4.20)–(4.22), has cancelled out in the final result. This cancellation

is non-trivial, since individual diagrams depend on z and only the total combination is

independent of the parameter.

5.4.4 The total result

We finally add up all the different contributions computed in the previous sections, finding

that the total one-loop correction to the two-point function of the background graviton is

〈Hµν(−p)Hαβ(p)〉1-loop = 〈Hµν(−p)Hαβ(p)〉φ+〈Hµν(−p)Hαβ(p)〉bosons+〈Hµν(−p)Hαβ(p)〉fermions

=

[
p4(50+100σ+811σ2)(ηαµηβν+ηανηβµ)

480σ2
+
p4(−125−250σ+σ2(−2281+80ξ+240ξ2))ηµνηαβ

1920σ2

+
p2(25+50σ+σ2(659−80ξ−240ξ2))(ηµνpαpβ+ηαβpµpν)

480σ2
+

9(25+50σ+8σ2(19+10ξ+30ξ2))pαpβpµpν
1080σ2

−
p2(50+100σ+811σ2)(pµpαηνβ+pνpαηµβ+pµpβηνα+pνpβηαµ)

480σ2
−m

2(1+6ξ)

48

(
4p2(ηανηβµ+ηαµηβν)

+4(ηµνpαpβ+ηαβpµpν)−4(ηβνpαpµ+ηανpβpµ+ηβµpαpν+ηαµpβpν)−3p2ηαβηµν
)]
I.

(5.24)

5.5 Renormalization

Once we have computed the divergent parts of the different correlation functions, we come

to the moment of renormalizing the effective action, absorbing the divergences by using

a counter-term. For any generic correlation function G, we will compute the value I by

using (5.9) so that we will have

G1-loop ≡ Ḡ
(

i

8π2ε
− i

16π2

(
γ − log(4π) + log(η2)

)
+O(ε)

)
, (5.25)

where Ḡ will be a tensor structure depending on pµ and on the coupling constants of the

theory. We will then add counterterms to the bare Lagrangian, including also higher-

derivative new operators that we will need to absorb the divergences quartic in pµ. Using

the MS subtraction scheme then we write

Gct ∝ δc
(

i

8π2ε
− i

16π2

(
γ − log(4π) + log(µ2)

))
= δc <(µ), (5.26)

for a generic coupling c. We have defined

<(µ) =

(
i

8π2ε
− i

16π2

(
γ − log(4π) + log(µ2)

))
, (5.27)

where µ is the renormalization scale.

We will determine the value of δc so that the sum G1-loop + Gcounter-term is free of

divergences when ε→ 0.
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5.5.1 Scalar two-point function

In order to absorb the divergences in the two-point function of the scalar field, we must

extend the bare action by including an operator with four derivatives in the kinetic term.

The corresponding action for the counter-terms can be written in the frame where the

metric is unimodular in the standard way

δS2,φ =

∫
d4x

(
δZ

2
∂φ∂µφ− δm2

2
φ2 +

δa4

2
�φ�φ

)
, (5.28)

where a4 is a dimensionful coupling and δZ is the anomalous dimension of the scalar field,

related to the field strength renormalization as usual

φR = Z
1
2φ, Z = 1 + δZ. (5.29)

Now, we perform the change of variables to the unconstrained background metric by

gµν = |ḡ|
1
4 ḡµν , (5.30)

for which the action takes the slightly more involved form

δS2,φ =

∫
d4x

(
δZ

2
|ḡ|

1
4∂µφ∂

µφ− δm2

2
φ2 +

δa4

2
|ḡ|

1
2D2φD2φ

)
, (5.31)

which is explicitly WTDiff invariant.

The contribution from the counter-terms to the correlation function is then

〈φ(−p)φ(p)〉ct = i
(
δZp2 − δm2 + δa4p

4
)
<(µ). (5.32)

Adding it to the one-loop result (5.11) and demanding the result to be finite, we find

that the value of the counter-terms must be

δZ =
3Gm2(1 + 2σ(1 + 4ξ(2 + ξ)))

4σ
, (5.33)

δa4 = −G(3 + 2σ(3 + 8ξ))

4σ
, (5.34)

δm2 = 12λm2 − 6Gm4ξ2. (5.35)

5.5.2 Scalar four-point function

In order to renormalize the divergences in the four-point function (5.13) we also need to

include higher-derivative operators. As before, we write them in a standard form in the

unimodular frame

S4,φ =

∫
d4x

(
−δλφ4 +

δb2
8
φ2(∂φ)2 +

δb4
24

(∂φ)4

)
. (5.36)

Writing it in the unconstrained frame with (5.30), the corresponding action, which is

invariant under background WTDiff transformations, then reads

S4,φ =

∫
d4x

(
−δλφ4 +

δb2
8
|g|

1
4φ2(∂φ)2 +

δb4
24
|ḡ|

1
2 (∂φ)4

)
, (5.37)
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and gives a contribution to the correlator of the form

〈φ(−p)φ(−p)φ(p)φ(p)〉ct = i
(
−24δλ+ δb2p

2 + δb4p
4
)
<(µ). (5.38)

Adding it to (5.13) and cancelling the divergences in ε we find

δλ = 6λ2−72Gλm2ξ2+
3

2
G2m4ξ3(2+9ξ), (5.39)

δb2 = −6G(−6λ(1+σ(2+8ξ(4+ξ)))+Gm2ξ(−3ξ+σ(1+2ξ(11+6ξ(7+3ξ)))))

σ
, (5.40)

δb4 = −G
2(117+8ξ(17+40ξ)−4σ(27+4ξ(37+45ξ))+4σ2(483+4ξ(259+2ξ(385+3ξ(−28+9ξ)))))

8σ2
,

(5.41)

so that the total correlation function in the one-loop approximation is now finite.

5.5.3 The non-minimal coupling

Now we come to the renormalization of the corrections to the non-minimal coupling, given

by (5.16). In order to do that we will need not only to introduce a counter-term for ξ

and a new higher-derivative operator, but also take into account the contribution of two

operators that we have already included in a previous section, since they contain the metric

and therefore will also contribute to this correlator when expanded around flat space. The

full counter-term action that we need is then

SφφH =

∫
d4x

(
δZ

2
∂µφ∂

µφ+
δa4

2
�2φ�2φ− δξ

2
φ2R+

δς

2
∂µφ∂

µφR

)
, (5.42)

which in the unconstrained frame reads

SφφH =

∫
d4x |ḡ|

1
4

[
δZ

2
∂µφ∂

µφ+
δa4

2
|ḡ|

1
4D2φD2φ− δξ

2
φ2

(
R̄+

3�̄|ḡ|
4|ḡ|

− 27∇̄µ|ḡ|∇̄µ|ḡ|
32|ḡ|2

)
+
δς

2
|ḡ|

1
4∂µφ∂

µφ

(
R̄+

3�̄|ḡ|
4|ḡ|

− 27∇̄µ|ḡ|∇̄µ|ḡ|
32|ḡ|2

)]
. (5.43)

The contribution from this action to the corresponding correlation function is then

〈φ(−p)φ(−p)Hµν(2p)〉ct = −i
(
p2(2δς + δa4)

2
+
δZ + 4δξ

4

)(
ηµνp

2 − 4pµpν
)
<(µ)

≡ −i
(
p2δς + δξ

) (
ηµνp

2 − 4pµpν
)
<(µ), (5.44)

where in the last step we have absorbed the value of δa4 and δZ into the arbitrariness of

δς and δξ by redefining them.

Adding this to the divergent result (5.16) and cancelling the divergences we have

δξ =
64λσ(1 + 6ξ) +Gm2(3 + σ(6 + 8ξ(6 + (5− 24ξ)ξ)))

16σ
, (5.45)

δς =
G(9 + 40ξ + 2σ(−23− 30ξ + 2σ(−21 + 2ξ(−53 + 6ξ(−13 + 6ξ)))))

48σ2
. (5.46)
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5.5.4 Gravitational two-point function

The last correlation function that we need to renormalize is the two-point function of the

background graviton 〈Hµν(−p)Hαβ〉. In order to absorb all the divergences we need to add

counter-terms for the Newton’s constant G as well as two new standard higher-derivative

operators in the form of R2 and RµνR
µν , that we write in the following combination

S2,H =

∫
d4x

(
−δ
(

1

2G

)
R+ δαR2 + δρ

(
RµνR

µν − 1

3
R2

))
. (5.47)

In principle we are allowed to add also a term RµναβR
µναβ . However its integral

corresponds to the Gauss-Bonnet term in four space-time dimensions and therefore its

variation — and consequently its expansion around flat space — vanishes.

Of course, the counter-terms must be now written in the unconstrained frame by

performing the change of variables gµν = |ḡ|
1
4 ḡµν for which we have

Rµν = R̄µν +
ḡµν∂α∂

α|ḡ|
8|ḡ|

− 5gµν∂α|ḡ|∂α|ḡ|
32|ḡ|2

+
∂µ∂ν |ḡ|

4|ḡ|
− 7∂µ|ḡ|∂ν |ḡ|

32|ḡ|2
, (5.48)

R = R̄+
3�|ḡ|
4|ḡ|

− 27∂µ|ḡ|∂µ|ḡ|
32|ḡ|2

. (5.49)

We omit the full expression for S2,H since it is very cumbersome. Note that, since G

multiplies the kinetic term of the graviton, there is no need to introduce a field strength

renormalization for Hµν .

The contribution of the counter-terms to the correlator is

〈Hµν(−p)Hαβ(p)〉ct =

{
−1

4
δ

(
1

2G

)(
−p2(ηµαηνβ+ηµβηνα)+

3p2

4
ηµνηαβ−(ηµνpαpβ+ηαβpµpν)

+(ηµαpβpν+ηµβpαpν+ηναpµpβ+ηνβpµpα)

)
+δα

(
p4

8
ηµνηαβ−

p2

2
(ηµνpαpβ+ηαβpµpν)

+2pµpνpαpβ

)
+δρ

(
p4

4
(ηµαηβν+ηµβηνα)−p

4

6
ηµνηαβ+

p2

6
(ηµνpαpβ+ηαβpµpν)

−p
2

4
(ηµαpνpβ+ηναpµpβ+ηµβpνpa+ηνβpµpα)+

p2

3
pαpβpµpν

)}
<(µ). (5.50)

Adding this to (5.24) and demanding that the divergences cancel, we find

δ

(
1

2G

)
=
m2(1 + 6ξ)

3
, (5.51)

δα = −5 + 10σ − σ2(71− 48ξ − 144ξ2)

144σ2
, (5.52)

δρ = −50 + 100σ + 811σ2

120σ2
. (5.53)

6 β-functions and running couplings

Once we have determined the form of the renormalized correlation functions that we need,

we come to the issue of computing the renormalization group flow of the different coupling
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constants, which is independent of the renormalization and regularization schemes used in

the previous sections. We will actually define the running of a given coupling through the

Callan-Symanzik (CS) equation for the corresponding correlation function [55, 56]µ ∂

∂µ
+
∑
i

β(ci)
∂

∂ci
+
∑
j

γ(Mj)Mj
∂

∂MJ
+ nγφ

G(p, µ) = 0, (6.1)

which is obtained by demanding independence of the arbitrary scale µ introduced by renor-

malization. Here ci are all possible dimensionless couplings appearing in the correlator,

while Mj refers to dimensionful couplings. γ(Mj) is then the anomalous dimension of the

coupling, while γφ is the anomalous dimension of the scalar field, being n the number of

external scalar legs in the correlator. Here we have already taken into account that the

anomalous dimension of Hµν vanishes. Solving the equation (6.1) perturbatively for the

couplings in the action will allow us to obtain the running of all of them.

Since we are working at one-loop, we find an important simplification here. The only

part of the renormalized correlation function which depends on µ is the counter-term, so

we can make the replacement

µ
∂G(p, µ)

∂µ
≡ µ∂Gct(p, µ)

∂µ
. (6.2)

Additionally, since our expansion is polynomial in the couplings, derivatives with re-

spect to them are ordered in the loop expansion, with increasing loops contributing with

higher orders. For the one-loop computation at hand, this means that we can also replace∑
i

β(ci)
∂

∂ci
+
∑
j

γ(Mj)Mj
∂

∂MJ
+ nγφ

G(p, µ) ≡

∑
i

β(ci)
∂

∂ci
+
∑
j

γ(Mj)Mj
∂

∂MJ
+ nγφ

Gtree(p, µ), (6.3)

since when acting on the corrections we will generate a next-to-leading-order term. These

two substitutions simplify the computation greatly.

Let us then start by writing the simplified form of equation (6.1) for the two-point

function of the scalar field(
µ
∂

∂µ
+m2γ(m2)

∂

∂m2
+ a4γ(a4)

∂

∂a4
+ 2γφ

)
〈φ(−p)φ(p)〉 = 0. (6.4)

Combining the one-loop correction and the counter-term, and ordering this equation

by powers of the momentum, it can be easily solved to get

γφ =
3Gm2(1 + 2σ(1 + 4ξ(2 + ξ)))

64π2σ
, (6.5)

γ(m2) =
3λ

2π2
− 3Gm2(1 + 2σ(1 + 8ξ(1 + ξ)))

32π2σ
, (6.6)

γ(a4) = −G
(

3 + 2σ(3 + 8ξ)

32a4π2σ
+

3m2(1 + 2σ(1 + 8ξ + 4ξ2))

32π2σ

)
. (6.7)
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From the four-point function of the scalar field we can now compute the running of λ,

b2 and b4. The corresponding CS equation is(
µ
∂

∂µ
+ β(λ)

∂

∂λ
+ b2γ(b2)

∂

∂b2
+ b4γ(b4)

∂

∂b4
+ 4γφ

)
〈φ(−p)φ(−p)φ(p)φ(p)〉 = 0. (6.8)

Note however that this imposes a limitation in our computation. While the divergent

contribution (5.13) contains pieces proportional to G2, the field strength of the scalar field

is only linear in G. This means that we should expect two-loop contributions to γφ of order

G2. Indeed if one notes that the powers of G are brought into the diagrams by gravitational

propagators, we can straightforwardly see that the following two diagrams, for instance,

will potentially contribute to γs at order G2

, . (6.9)

Therefore, if we wanted to solve the CS equation (6.8) at order G2 we would need to

add the contribution coming from the two-loop correction to γs. As a consequence, we can

only trust our result here up to order G and thus we will cut the perturbative solution

to (6.8) at this order. It reads

β(λ) =
9λ2

2π2
− 3Gλm2(1 + 2σ(1 + 8ξ + 28ξ2))

16π2σ
, (6.10)

γ(b2) = G

(
−3m2(1 + 2σ(1 + 8ξ + 4ξ2))

16π2σ
+

9λ(1 + σ(2 + 32ξ + 8ξ2))

2b2π2σ

)
, (6.11)

γ(b4) = −3Gm2(1 + 2σ(1 + 8ξ + 4ξ2))

16π2σ
. (6.12)

In the limit of decoupling gravitation G → 0, the running of higher-derivative terms

freeze as expected, while the running of λ matches the text-book result4 for λφ4.

We will find the same issue previously discussed when trying to solve the CS equation

for the running of the non-minimal coupling(
µ
∂

∂µ
+ β(ξ)

∂

∂ξ
+ a4γ(a4)

∂

∂a4
+ ςγ(ς)

∂

∂ς
+ 2γφ

)
〈φ(−p)φ(−p)Hµν(2p)〉 = 0, (6.13)

since both γ(a4) and γφ are of order G and we expect corrections of order G2 coming from

two-loop divergences.

We therefore again cut the solution to this equation at order G. Taking the form of

the divergence (5.16) and the counter-terms (5.45) and ordering the CS equation in powers

of pµ we find

β(ξ) =
λ(1+6ξ)

2π2
−Gm

2ξ(3+σ(6+44ξ+72ξ2))

32π2σ
, (6.14)

γ(ς) =
G(9+40ξ−4σ(7+15ξ+9m2ς)+8σ2(−6−41ξ−78ξ2+36ξ3−9m2(1+4ξ(2+ξ))ς))

384π2σ2ς
.

(6.15)

4Note however that we are defining our coupling without the standard 4! denominator.
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Finally, we write the corresponding equation for the two-point function of the graviton(
µ
∂

∂µ
+Gγ(G)

∂

∂G
+ β(α)

∂

∂α
+ β(ρ)

∂

∂ρ

)
〈Hµν(−p)Hαβ(p)〉 = 0. (6.16)

Ordering it by powers of the momentum, we complete the computation of the renor-

malization group flow of the theory with the results

γ(G) = −Gm
2(1 + 6ξ)

12π2
, (6.17)

β(α) = −5 + 10σ − σ2(71− 48ξ − 144ξ2)

1152π2σ2
, (6.18)

β(ρ) = −50 + 100σ + 811σ2

960π2σ2
. (6.19)

As a final note in this section, let us note that all the β functions and γ-functions

defined here reduce to those of the case of background gravity once the right limit G→ 0 is

taken. The only subtlety comes from the running of α and β, which are however irrelevant

because in the limit G→ 0 they are subleading with respect to the Einstein-Hilbert term

in the action.

This completes the computation of the one-loop β-functions for the unimodular scalar

tensor-theory. In the appendix B we discuss the results in the absence of the scalar field,

in order to establish a comparison with previous works.

7 Unimodular Gravity versus General Relativity

Once the renormalization group flow of the coupling constants is computed, we come to

the question that originated this work — is Unimodular Gravity equivalent to General

Relativity when coupled to matter?

Although the question is simple enough, the answer is not so. First of all, we note

that although the quantization of UG looks much more complicated than the one of GR,

no new counter-terms are required in order to absorb all one-loop divergences. Indeed, all

required counter-terms — depicted in (5.28), (5.36), (5.42), and (5.47) — are exactly the

same ones that would be required in GR, just appended with the condition |g| = 1.

In order to differentiate both theories we shall then look at a physical observable.

However, the running of the couplings that we have just derived does not classify as such,

as it can be observed by the explicit dependence on the gauge fixing parameter σ of most

of them. Moreover, some of our results could, in principle, be modified by a non-linear

redefinition of the gravitational field Hµν → Hµν(φ), clearly denoting that they lack a

physical meaning due to operator mixing after the field redefinition [57, 58]. To determine

something which can be thought as physical, we must then find which combinations of the

couplings are independent of the gauge choice and blind to field redefinitions. Those, known

as essential couplings, will be the couplings that control correlation functions of observable

quantities. Only the β-functions of essential couplings have an intrinsic physical meaning.

They can be determined by noting that they correspond to the only combinations that do
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not change when we add to the action a piece proportional to the classical equations of

motion [59, 60].

In the following we will focus only on those couplings which are present in the bare

Lagrangian, ignoring the higher-derivative operators. Moreover, and for simplicity, we will

consider solutions to the eom with unimodular background determinant |ḡ| = 1. Under

this assumption, the background action reads

S =

∫
d4x

(
− 1

2G
R̄+

1

2
∂µφ∂

µφ− ξ

2
φ2R̄− m2

2
φ2 − λφ4

)
. (7.1)

In this frame, the equations of motion are the traceless Einstein equations (1.1), which

by using Bianchi identities are equivalent to the full set of Einstein equations with an

arbitrary cosmological constant C

R̄µν −
1

2
R̄gµν + Cḡµν = GTµν . (7.2)

The only scalar quantity up to two derivatives that we can form with the eom is then

the trace of Einstein equations

E = R̄+GT − 4C = R̄+G
[
−(1 + 6ξ)∂µφ∂

µφ− 6ξφ�φ+ 2m2φ2 + 4λφ4 + ξGφ2R̄
]
− 4C,
(7.3)

where we have used

Tµν = (1+2ξ)∂µφ∂νφ+2ξφ∇̄µ∂νφ−ξφ2R̄µν−ḡµν
(

1+4ξ

2
∂αφ∂

αφ+2ξφ�φ−m
2

2
φ2−λφ4−ξ

2
φ2R̄

)
.

(7.4)

We thus add a piece proportional to the trace of the eom to the action

S → S +

∫
d4x

ΣE
2G

, (7.5)

where Σ is a constant parameter. Under this addition, ignoring the cosmological constant

and integrating by parts, we find that the couplings transform as

δΣG = ΣG, (7.6)

δΣm
2 = −2Σm2, (7.7)

δΣλ = −2Σλ, (7.8)

δΣξ = −Σξ. (7.9)

Thus, essential couplings will be combinations of these that are invariant under the

addition of the evanescent piece proportional to Σ. Additionally, since we want to avoid

the arbitrariness tied to the reference scale for dimensionful quantities, we will demand our

essential couplings to be dimensionless as well.

Out of G and m2 we can build the following scale-invariant coupling

G = Gm2, δG = −ΣG, (7.10)
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which transforms as
√
λ and therefore we can build a ratio which is an essential coupling,

given by

∆ =
G2

λ
. (7.11)

It corresponds to the relative strength between interactions dictated by the Einstein-Hilbert

term and the self-interaction of the scalar in the Lagrangian, as measured in a 2 → 2

scattering of scalar fields. The two channels involved in this process, graviton exchange

and contact interactions, are schematically given by

∼ Gm4

p2
= G2

(
Gp2

)−1
, ∼ λ, (7.12)

and we can see that their ratio corresponds to ∆ when the momentum exchanged by the

graviton is set at the scale where gravitational interactions dominate p2 ∼ G−1 ∼ M2
P.

Thus, the running of ∆ indicates at which energy scale gravitation becomes important and

cannot be ignored when doing QFT with scalar fields. Its β-function can be easily obtained

from the ones of the couplings in the Lagrangian. It reads

β(∆) =
∆(−9λ+ G(−1− 6ξ + 45ξ2))

6π2
, (7.13)

where as expected, the dependence on the gauge parameter σ has cancelled out. In prin-

ciple, we could also define two other ratios ∆i involving ξ. However, these enter strong-

coupling when either G, λ, ξ → 0 since their β-functions are not polynomial in the cou-

plings.5 We will therefore refrain from discussing them hereinafter.

An unpleasant property about β(∆) that we must remark here is that although ∆ is an

essential coupling, its running, albeit being gauge invariant, depends on the non-physical

quantities λ,G and ξ independently. A similar property has been already noted before in

the context of asymptotic safety6 for the running of essential couplings [61, 62]. It implies

that in this situation one cannot disentangle physical contributions from un-physical ones

but instead one needs to first compute the latter in order to derive the former. It also poses

a conundrum on understanding how the value of ∆ can indeed remain essential along the

RG flow and at higher order in perturbation theory. Here we cannot offer any satisfactory

explanation beyond hinting that this might be a consequence of the non-renormalizability

of the theory.

5This can be seen by writing the β-functions in the form

β(∆i) = ∆i(. . . ),

where the dots indicate an expansion in the couplings of the theory, which will depend on the particular

coupling chosen. For instance, for ∆ξ = G/ξ the leading term within the parenthesis goes as ξ−1 and

therefore it is not perturbative in the sense discussed along this work. Note that this is not the case for the

coupling (7.13).
6We are grateful to R. Percacci for pointing this out.
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Following the same reasoning depicted before, we see that the same definition of essen-

tial couplings holds for the case of GR, when we restore the
√
|g| in the integration measure

and shift the action accordingly by modifying (7.5). Although the value for the running

of the couplings in GR can be found in the literature [63], we prefer here to re-derive the

needed ones with the same techniques described for UG. Details of this computation can

be found in appendix A. In that case, the value of the β-function for the essential coupling

takes the form

βGR(∆) =
∆(−9λ+ G(−1 + 39ξ + 45ξ2))

6π2
, (7.14)

which is subtlety but clearly different from (7.13).

Let us remark that the coupling ∆ has a physical meaning. It gives a definite answer

to the question of when gravitational interactions can be disregarded. As such, the fact

that it does not agree with the UG result is a smoking gun that the theories cannot be

considered equivalent once gravitation is dynamical. However, we see that the difference

is very minor. The one-loop result β(∆) agrees in both theories in two very important

limiting cases, ξ → 0 and ξ � 1.

The first limit corresponds to a scalar field minimally coupled. In that case, we see

that although the theory is very complicated, the running of the physical parameter ∆ is

identical to the more easily computed one in GR. It seems that non-minimal coupling is

then an important ingredient to violate the equivalence. One could argue then that the

full identification of both theories seems to be connected in a very non-trivial way to the

satisfaction of the strong equivalence principle.

The second case is also interesting, since it corresponds to the limit in which several

models of inflation — in particular Higgs [64, 65] and Higg-Dilaton inflation [66–68] — are

successful. Although strictly speaking we have performed our computations in the limit

ξ � 1 and therefore they would not be valid in the large ξ limit, let us note that in the case

ξ � 1 we can also take G� 1 and then the role of both couplings is formally exchanged in

the action for the case of approximately constant scalar profiles. In that case, the equations

for gravity reduce to

ξφ2

(
Rµν −

1

4
Rgµν +O

(
1

ξ

))
= 0, (7.15)

which corresponds to the vacuum equations, up to sub-leading corrections. This means

that in the ξ � 1 limit, and around flat space, the theory becomes indistinguishable from

the case ξ � 1 and therefore our result should hold.

In any other intermediate value of ξ we find that UG and GR are not equivalent. Al-

though this might look minor, since the difference is very subtle, it might have influence

in intermediate energy regimes when moving along the flow. For instance, in the thermal

history of our Universe. It also poses a question mark on the validity of quantum compu-

tations performed in UG without taking into account the very complicated quantization

structure and just assuming that, since they are classically equivalent, one can compute in

GR instead. This is clearly wrong at the light of our result.
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Let us finally remark that we strongly believe in the robustness of our result. We

have derived it independently by using two different computer codes in different languages.

Moreover, the preservation of gauge invariance — both at the background level and from

independence of σ — is a very non-trivial issue and any minor modification of any ingredient

in the computation would produce a result not satisfying it.

8 Discussion and conclusions

In this paper we have studied the question of the equivalence between General Relativ-

ity and Unimodular Gravity. Although the answer is positive when we look to classical

physics, or even classical gravitation in the presence of quantum matter, there are impor-

tant subtleties when gravitons are dynamical and allowed to run freely in the loops.

In order to discuss this property in a QFT manner, we started by formulating the theory

in a frame where the constraint |g| = 1 is automatically satisfied, by redefining the metric

as gµν = |g̃|
1
4 g̃µν . In this frame UG becomes a pretty non-standard theory enjoying an

extended gauge symmetry, the product of TDiff and Weyl, that we call WTDiff. However,

in this form the main properties of UG are explicit. The counting of degrees of freedom

is straightfoward and the traceless character of the eom is explicit. In order to compute

one-loop corrections we exploited this symmetry by using the background field method in

combination with the construction of a Weyl invariant geometry.

The construction of the gauge sector — combining gauge fixing and ghost action —

becomes surprisingly much more cumbersome in UG than in GR, mainly due to the fact

that TDiff generators are not independent but rather constrained to be a transverse vector.

Although they can then be represented by using a transverse projector and the full gauge

system solved by using BRST symmetry, this generates a tower of new ghost fields of

bosonic character. These fields actually couple with the graviton degree of freedom, showing

a first non-trivial difference of UG with respect to GR, at least at the technical level. Even

for tree-level computations, one cannot just ignore the gauge sector, since the kinetic mixing

between hµν and the bosonic ghosts will have an impact on the propagator of the former.

Nevertheless, once the issue with constructing the gauge sector is solved, then the one-

loop corrections to the correlation functions of the theory can be computed in a standard

manner by expanding the background around flat space and looking at Feynman diagrams

carrying perturbations of the background in the external legs. Although there are plenty

of them — in particular due to the mixing of the graviton with the bosonic fields —, this is

a task that we were able to carry out with the help of computer codes specialized in tensor

algebra.

The result of our computations are the complete set of β-functions and anomalous

dimensions of all the couplings involved in the action, computed in the one-loop approxi-

mation and at order G, which we reproduce here to collect them together

γφ =
3Gm2(1+2σ(1+4ξ(2+ξ)))

64π2σ
,

γ(m2) =
3λ

2π2
−3Gm2(1+2σ(1+8ξ(1+ξ)))

32π2σ
,
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γ(a4) = −G
(

3+2σ(3+8ξ)

32a4π2σ
+

3m2(1+2σ(1+8ξ+4ξ2))

32π2σ

)
,

β(λ) =
9λ2

2π2
−3Gλm2(1+2σ(1+8ξ+28ξ2))

16π2σ
,

γ(b2) = G

(
−3m2(1+2σ(1+8ξ+4ξ2))

16π2σ
+

9λ(1+σ(2+32ξ+8ξ2))

2b2π2σ

)
,

γ(b4) = −3Gm2(1+2σ(1+8ξ+4ξ2))

16π2σ
,

β(ξ) =
λ(1+6ξ)

2π2
−Gm

2ξ(3+σ(6+44ξ+72ξ2))

32π2σ
,

γ(ς) =
G(9+40ξ−4σ(7+15ξ+9m2ς)+8σ2(−6−41ξ−78ξ2+36ξ3−9m2(1+4ξ(2+ξ))ς))

384π2σ2ς
,

γ(G) = −Gm
2(1+6ξ)

12π2
,

β(α) = −5+10σ−σ2(71−48ξ−144ξ2)

1152π2σ2
,

β(ρ) = −50+100σ+811σ2

960π2σ2
. (8.1)

They include the couplings present in the classical Lagrangian but also new couplings

controlling the strength of higher-derivative terms in the EFT expansion, as required by

the non-renormalizability of gravity. The full one-loop EFT action that we obtain is then

S1-loop =

∫
d4x

[
− 1

2G
R+

1

2
∂µφ∂

µφ− ξ

2
φ2R− m2

2
φ2 − λφ4 +

a4

2
�φ�φ+

b2
8
φ2(∂φ)2

+
b4
24

(∂φ)4 +
ς

2
∂µφ∂

µφR+ αR2 + ρ

(
RµνR

µν − 1

3
R2

)]
, (8.2)

in the frame where the metric is unimodular |g| = 1.

These runnings are however dependent on the gauge choice used to quantize the the-

ory and therefore they do not correspond to physical quantities. Out of them, we identify

the combination ∆ = G2m4λ−1, which controls the relative strength of gravitational in-

teractions with respect to scalar self-interactions and therefore has a physical meaning. It

corresponds to an essential coupling of the theory. Its running is then gauge invariant and

reads

β(∆) =
∆(−9λ+ G(−1− 6ξ + 45ξ2))

6π2
. (8.3)

We find that this quantity actually differs from the corresponding result in GR, which

can be found in (7.14), whenever the non-minimal coupling ranges on intermediate values.

Only in the two extremal limits ξ → 0 and ξ � 1, our result agrees with the general

relativistic one. We interpret the first of these agreements as a consequence of the strong

equivalence principle, which is then violated by non-minimal coupling. The second coinci-

dence can be traced back to the singular behaviour of the eom in the large ξ limit. However,
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the difference in intermediate regimes might be important when considering situations in

which following the running of physical quantities along an energy history is critical, like

the thermal history of the Universe.

Altogether this poses a question on the validity of several approaches found in the

literature to computing quantum corrections in the case of UG. One cannot just assume that

the theories are equivalent, restore
√
|g| in the action, and compute quantum corrections

in GR by hiding under the carpet the fact that actually one wants to work with UG. In

particular, it would be interesting to revisit these results and their effects in models of

inflation, which closely resemble the case studied here.
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A Computation of β-functions in General Relativity

We summarize here the computation of the β-function of the composite coupling ∆ in GR,

following the same techniques as in the case of UG. We will consider the action equivalent

to SUG + Smatter by restoring
√
|g|

SGR =

∫
d4x
√
|g|
(
− 1

2G
R+

1

2
∂µφ∂

µφ− m2

2
φ2 − λφ4 − ξ

2
φ2R

)
. (A.1)

We will also expand this around a background configuration for the gravitational field

gµν = ḡµν + hµν . However, the absence of Weyl invariance and the independence of the

generators of Diff allow us to construct a standard gauge fixing à la Feynman

Sgf = − σ

2G

∫
d4x
√
|ḡ| FµFµ, (A.2)

with Fµ analogous to (3.43)

Fµ = ∇̄νhµν −
1

2
∇̄µh. (A.3)

Since we only want to compute the running of λ, G and m2, we will not need to add the

action for the ghost fields in this case.

Expanding now the background metric around flat space ḡµν = ηµν+Hµν and comput-

ing correlation functions involving Hµν and φ, we can derive the running of the couplings

that we are interested in. The computation is analogous to that of UG with only two
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important changes — the diagrams containing bosonic ghosts are now absent, and there

are two extra diagrams to be considered

, , (A.4)

whose contributions are actually critical to ensure gauge invariance.

Running our code and computing all the Feynman diagrams, renormalizing, and solving

the CS equation, we find

γGR,φ =
Gm2(−1 + 6σ(−1− ξ + ξ2))

16π2σ
, (A.5)

γGR(m2) =
6λ− 3Gm2ξ(1 + 2ξ)

4π2
, (A.6)

βGR(λ) =
3λ(3λ−Gm2ξ(6 + 7ξ))

2π2
, (A.7)

γGR(G) = −Gm
2(1 + 6ξ)

12π2
, (A.8)

from which we can compute the running of ∆ = Gm2λ−1 to be

βGR(∆) =
∆(−9λ+ G(−1 + 39ξ + 45ξ2))

6π2
, (A.9)

where G = Gm2. We have also cross-checked the results of γGR,φ and γGR(m2) by using

the three-point function mixing scalar fields and a graviton 〈φ(−p)φ(−p)Hµν(2p)〉.

B Quantum corrections to vacuum Unimodular Gravity

For completeness, we take here a look to the renormalization group flow of the theory in

the case of pure UG, when the action is only

SUG = − 1

2G

∫
d4x |g̃|

1
4

(
R̃+

3

32

∇̃µ|g̃|∇̃µ|g̃|
|g̃|2

)
. (B.1)

In this case, and using the renormalization scheme previously described in this work,

we see that G does not receive divergent one-loop corrections. Only the higher-derivative

terms in (5.47) will run in this case. Subtracting the contribution of the scalar loops from

our result and repeating the steps in section 5, we find that the running of the higher-

derivative terms is controlled by

βvacuum(α) = −5 + 10σ − 30σ2

1152π2σ2
, (B.2)

βvacuum(ρ) = −50 + 100σ + 807σ2

960π2σ2
. (B.3)
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As we expected, these β-functions are gauge dependent, since they do not correspond

to essential couplings. In order to check the robustness of our result we will then recon-

struct the full non-linear divergence by noting that due to background field invariance,

the divergent part of the one-loop correction — the term proportional to ε−1 — can be

obtained by expanding the following action around flat space

Sdiv = − i
ε

∫
d4x

(
βvacuum(α)R2 + βvacuum(ρ)

(
RµνR

µν − 1

3
R2

))
. (B.4)

Otherwise, we would not be able to absorb it into a counter-term.

Now, gauge independence can be tested with the help of the Kallosh-DeWitt theo-

rem [59, 60]. Since addition of terms proportional to the eom must be able to shift every

gauge-dependent quantity, only when we take the previous divergence to be on-shell we

must find a gauge-independent result. For the theory in vacuum, the eom of UG are

equivalent to the full set of Einstein equations (1.3), which imply

Rµν = Cgµν , R = 4C. (B.5)

Plugging this into (B.4) we get

Sdiv = − 173i

80π2ε

∫
d4x C2, (B.6)

where the gauge dependence has vanished. Moreover, we find that the divergence is inde-

pendent of the field, since there is no
√
|g| term due to the unimodular condition. Therefore

we conclude, in the same lines as [22], that UG is one-loop finite even in the presence of a

cosmological constant.

Note however that our result cannot shed any light on the discrepancy of the results

between [22] and [35], since here we only have access to gauge dependent quantities whose

on-shell value is not dynamical. Due to the fact that we are working in perturbation

theory around flat space, we cannot obtain the value of the topological term, which should

be gauge independent by itself.
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[70] P. Jiroušek and A. Vikman, New Weyl-invariant vector-tensor theory for the cosmological

constant, JCAP 04 (2019) 004 [arXiv:1811.09547] [INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.87.096001
https://arxiv.org/abs/1212.4148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.4148
https://doi.org/10.1103/PhysRevD.84.123504
https://arxiv.org/abs/1107.2163
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.2163
https://doi.org/10.1016/j.physletb.2008.11.041
https://arxiv.org/abs/0809.3406
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.3406
https://arxiv.org/abs/2001.03169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.03169
https://doi.org/10.1088/1475-7516/2019/04/004
https://arxiv.org/abs/1811.09547
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.09547

	Introduction
	Unimodular Gravity
	The background field expansion
	Weyl Geometry
	Gauge fixing and BRST invariance

	Perturbations around flat space
	Propagators for bosonic fields
	The ghost propagators

	Computation of correlation functions
	The two-point function of the scalar field
	The four-point function of the scalar field
	Corrections to the non-minimal coupling
	The gravitational two-point function
	Contributions from scalar loops
	Contributions from the graviton and bosonic ghost fields
	Contributions from fermionic ghosts
	The total result

	Renormalization
	Scalar two-point function
	Scalar four-point function
	The non-minimal coupling
	Gravitational two-point function


	beta-functions and running couplings
	Unimodular Gravity versus General Relativity
	Discussion and conclusions
	Computation of beta-functions in General Relativity
	Quantum corrections to vacuum Unimodular Gravity

