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1 Introduction

N = 4 supersymmetric Yang-Mills theory (SYM) is the most famous example of a confor-

mal field theory (CFT) in four dimensions, and is often taken as a model for hot QCD in

the large number of colors Nc and strong ’t Hooft coupling λ = g2Nc limits. The strong

coupling behavior of the free energy has been computed using the anti-de Sitter space/CFT

(AdS/CFT) correspondence [1], with the result being

F
Fideal

=
S
Sideal

=
3

4

[
1 +

15

8
ζ(3)λ−3/2 +O(λ−2)

]
, (1.1)

where Fideal = −dAπ2T 4/6 is the ideal or Stefan-Boltzmann limit of the free energy and

Sideal = 2dAπ
2T 3/3, with dA = N2

c − 1 being the dimension of the adjoint representation.

In the weak-couping limit the N = 4 SYM free energy has been calculated through

order λ3/2 giving [2–4]

F
Fideal

=
S
Sideal

= 1− 3

2π2
λ+

3 +
√

2

π3
λ3/2 +O(λ2) . (1.2)

Note that, since the beta function of the N = 4 SYM theory is zero, the coupling constant

does not run and is independent of the temperature. As a result, we can vary the coupling

between the two limits at each temperature.

One expects these two series to describe their respective asymptotic limits correctly,

however, the radius of convergence of each of these series is unknown and, therefore, it is

unclear to what degree each of these can be trusted away from their respective limits. In

figure 1 we plot the scaled entropy density resulting from eqs. (1.1) and (1.2) as a function

of λ along with a R[4,4] Padé approximant constructed from these results [3, 5].1 From

this figure, we can see that the two successive weak coupling approximations are only close

to one another below λ ∼ 0.1 and rapidly diverge beyond λ ∼ 1. In the strong coupling

limit, only the first two terms in the series are known. As can be seen from figure 1

the strong coupling result diverges quickly below λ ∼ 10. The question then becomes,

how can we systematically extend these two results into the intermediate coupling region

λ ∼ 1− 10. In this paper, we present progress towards this goal in the weak-coupling limit

1Although a Padé approximant might provide a convenient interpolation between the weak- and strong-

coupling limits their construction is in no sense systematic. In particular, the resulting expressions are

incomplete since we know that, at least at weak coupling, the series will contain logarithms of the coupling

constant beyond O(λ3/2).
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Figure 1. Weak and strong coupling results for the entropy density in N = 4 SYM theory

compared to a R[4,4] Padè approximation constructed from both limits.

using hard-thermal-loop (HTL) perturbation theory. Our study is complementary to the

earlier work of Blaizot, Iancu, and Rebhan in which they applied HTL resummation using

an approximately self-consistent scheme [5]. The key difference from this earlier work is

that our result is based on the HTL perturbation theory (HTLpt) framework which can be

used to extend such calculations to arbitrary loop order in a gauge-invariant manner [6–8].

The goal of our work is to improve the convergence of the successive weak-coupling

approximations. One promising approach is to use a variational framework in which the

free energy F is expressed as the variational minimum of the thermodynamic potential

Ω(T, λ;m2) that depends on one or more variational parameters that we denote collectively

by a

F(T, λ) = Ω(T, λ;a)
∣∣
∂Ω/∂a=0

. (1.3)

For example, the Φ-derivable approximation is a widely used variational method in which

the propagator is used as an infinite set of variational parameters [9, 10]. The Φ-derivable

thermodynamic potential Ω is given by the 2-particle-irreducible (2PI) effective action,

which is the sum of all diagrams that are 2-particle-irreducible with respect to the com-

plete propagator [11]. This method is difficult to apply to relativistic field theories except

for the case where the self-energy is momentum-independent. Despite this, there still have

some progress in applications to quantum chromodynamics (QCD) and electrodynamics

(QED) [12–17]. Historically, the Φ-derivable approximation was first applied to QCD by

Freedman and McLerran [18], who demonstrated that the thermodynamic potential Ω

is gauge dependent beyond a given order in the coupling constant. The gauge parame-

ter dependence appears at the same order in αs as the series truncation when evaluated

off the stationary point and at twice the order in αs when evaluated at the stationary

point [17, 19, 20]. Despite this issue, this method had been used as the starting point

– 2 –
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for approximately self-consistent HTL resummation of the QCD entropy [21, 22] and the

pressure [23].

The problems encountered when applying the Φ-derivable approximation to gauge the-

ories motivated the use of alternative variational approximations. One such alternative,

which in its simplest form involves a single variational parameter m, has been called op-

timized perturbation theory [24], variational perturbation theory [25, 26], or the linear δ

expansion [27, 28]. This strategy has been successfully used for the thermodynamics of the

massless φ4 field theory up to four-loop order using “screened perturbation theory” [29–32],

and spontaneously broken field theories at finite temperature [33–37]. One impediment to

applying such ideas to gauge theories was that one cannot simply introduce a scalar mass

for the gluon without breaking gauge invariance. The solution to this problem was in-

troduced in refs. [7] and [8] in which it was demonstrated that one could generalize the

linear delta expansion by adding and subtracting the full gauge-invariant HTL effective

Lagrangian [38, 39].

The resulting scheme was called hard-thermal-loop perturbation theory (HTLpt) [7, 8].

The HTLpt method has been used to improve the convergence of weak coupling calculations

of the free energy in QED [40] and QCD up to three-loop order at finite temperature

and chemical potential [41–47]. When confronted with finite temperature and chemical

potential lattice QCD data the HTLpt resummation scheme works remarkably well down

to temperatures on the order of 200–300 MeV where the QCD coupling constant is on the

order of gs ∼ 2 [46–48]. The method successfully describes all thermodynamic variables

including second- and fourth-order quark susceptibilities.

Herein, we will take the first steps in applying this method to N = 4 SYM in the hope

that a similar improvement in convergence can be achieved in this theory at intermediate

couplings. We will calculate the one- and two-loop HTLpt-resummed thermodynamic

potential in N = 4 SYM using the same method as was used to obtain the one- and two-

loop QCD results in refs. [7, 8, 49, 50]. Importantly, in these papers it was demonstrated

that it was possible to renormalize the resummed thermodynamic potential at two-loop

order using simple vacuum and mass counterterms. Herein we will demonstrate the same

occurs inN = 4 SYM. In this theory the NLO contributions include scalar and scalar-gluon,

scalar-quark interactions compared to the QCD calculation, however these are relatively

straightforward to include. Additionally, in N = 4 SYM instead of having only gluon and

quark thermal masses, mD and mq, respectively, we will also have a thermal mass for the

scalar particles, MD. Our final results at one- and two-loop order are infinite series in λ

which, when trucated at O(λ3/2), reproduce the weak-coupling results obtained previously

in refs. [2–4]. In order to make the calculation tractable, we expand the HTLpt scalarized

sum-integrals in a power series in the three mass parameters MD, mD, and mq such that

it includes terms that would naively contribute through O(λ5/2). Our final results indicate

that, in N = 4 SYM, NLO HTLpt provides a good approximation for the scaled entropy

for couplings in the range 0 ≤ λ . 2.

We begin with a brief summary of HTLpt for N = 4 SYM in section 2. In section 3,

we give the expressions for the one- and two-loop diagrams contributing to the SYM ther-

modynamic potential. In section 4, we reduce these diagrams to scalar sum-integrals. As

– 3 –
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mentioned in the prior paragraph, since it would be intractable to calculate the resulting

sum-integrals analytically, in section 5 we expand these expressions by treating mD, MD

and mq as O(λ1/2) and expanding the integrals in powers of mD/T , MD/T and mq/T ,

keeping all terms up to O(λ5/2). In section 6, we combine the results obtained in section 5

to obtain the complete expressions for the leading- (LO) and next-to-leading order (NLO)

thermodynamic potentials. In section 7, we present our numerical results for the HTLpt-

resummed LO and NLO scaled thermodynamic functions in N = 4 SYM and compare to

prior results in the literature. For details concerning the transformation to Euclidean space

and the sum-integrals necessary we refer the reader to the appendices of refs. [49, 50].

Notation and conventions. We use lower-case letters for Minkowski space four-vectors,

e.g. p, and upper-case letters for Euclidean space four-vectors, e.g. P . We use the mostly

minus convention for the metric.

2 HTLpt for N = 4 SYM

In N = 4 SYM theory all fields belong to the adjoint representation of the SU(Nc) gauge

group. For the fermionic fields, a massless two-component Weyl fermion ψ in four dimen-

sions can be converted to four-component Majorana fermions [51–55]

ψ ≡

(
ψα
ψ̄α̇

)
and ψ̄ ≡

(
ψα ψ̄α̇

)
, (2.1)

where α = 1, 2 and the Weyl spinors satisfy ψ̄α̇ ≡ [ψα]†. The conjugate spinor ψ̄ is not

independent, but is related to ψ via the Majorana condition ψ = Cψ̄, where C =
(
εαβ 0

0 εα̇β̇

)
is the charge conjugation operator with ε02 = −ε11 ≡ −1. In the following, we will use

the indices i, j = 1, 2, 3, 4 to enumerate the Majorana fermions and use ψi to denote each

bispinor.

The definition of gauge field is the same as QCD, and Aµ can be expanded as Aµ=Aaµt
a,

with real coefficients Aaµ, and Hermitian color generators ta in the fundamental represen-

tation that satisfy

[ta, tb] = ifabct
c and Tr(tatb) =

1

2
δab , (2.2)

where a, b = 1, · · · , N2
c − 1, the structure constants fabc are real and completely antisym-

metric. The fermionic fields can similarly be expanded in the basis of color generators as

ψi = ψai t
a. The coefficients ψai are four-component Grassmann-valued spinors.

There are six independent real scalar fields which are represented by a multiplet

Φ ≡ (X1, Y1, X2, Y2, X3, Y3) , (2.3)

where Xp and Yq hermitian, with p,q = 1, 2, 3. Xp and Yq denote scalars and pseudoscalar

fields, respectively. We will use a capital Latin index A to denote components of vector

Φ. Therefore ΦA, Xp, and Yq can be expanded as ΦA = Φa
At
a, with A = 1, · · · , 6, and

Xp = Xa
p t
a, Yq = Y a

q t
a.

– 4 –
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The Lagrangian density that generates the perturbative expansion for N = 4 SYM

theory in Minkowski-space can be expressed as

LSYM = Tr

[
−1

2
G2
µν + (DµΦA)2 + iψ̄i 6Dψi −

1

2
g2(i[ΦA,ΦB])2

−igψ̄i
[
α
p
ijXp + iβ

q
ijγ5Yq, ψj

]]
+ Lgf + Lgh + ∆LSYM , (2.4)

where the field strength tensor is Gµν = ∂µAν − ∂νAµ− ig[Aµ, Aν ], and Dν = ∂ν − ig[Aν , ·]
is the covariant derivative in the adjoint representation. αp and βq are 4× 4 matrices that

satisfy

{αp, αq} = −2δpq, {βp, βq} = −2δpq, [αp, βq] = 0 , (2.5)

and their explicit form can be given as

α1 =

(
0 σ1

−σ1 0

)
, α2 =

(
0 −σ3

σ3 0

)
, α3 =

(
iσ2 0

0 iσ2

)
,

β1 =

(
0 iσ2

iσ2 0

)
, β2 =

(
0 σ0

−σ0 0

)
, β3 =

(
−iσ2 0

0 iσ2

)
, (2.6)

where σi with i ∈ {1, 2, 3} are the 2×2 Pauli matrices. And α and β satisfies α
p
ikα

p
kj = −3δij

and β
q
ijβ

p
ji = −4δpq, with δii = 4 for four Majorana fermions and δpp = 3 for three scalars.

The ghost term Lgh depends on the choice of the gauge-fixing term Lgf and is the same

as in QCD. Here we work in general covariant gauge, giving

Lgf = −1

ξ
Tr
[
(∂µAµ)2

]
,

Lgh = −2Tr
[
η̄ ∂µDµη

]
, (2.7)

with ξ being the gauge parameter.

In general, perturbative expansion in powers of g in quantum field theory generates

ultraviolet divergences. The renormalizability of perturbation theory guarantees that all

divergences in physical quantities can be removed by the renormalization of masses and

coupling constants. The coupling constant in N = 4 SYM theory is denoted as λ = g2Nc.

Unlike QCD, N = 4 SYM theory does not run.

Similar to the case of QCD presented in refs. [49, 50], HTLpt is also a reorganziation of

the perturbation series for the SYM theory, and can be defined by introducing an expansion

parameter δ. The HTL “shifted” Lagrangian density can be written as

L = (LSYM + LHTL)|g→√δg + ∆LHTL . (2.8)

The HTL improvement term is

LHTL = −1

2
(1− δ)m2

DTr

(
Gµα

〈
yαyβ

(y ·D)2

〉
ŷ

Gµβ

)
+(1− δ)im2

qTr

(
ψ̄jγ

µ

〈
yµ

y ·D

〉
ŷ

ψj

)
−(1− δ)M2

DTr(Φ2
A) , (2.9)

– 5 –
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where yµ = (1, ŷ) is a light-like four vector defined in appendix A, j ∈ {1 . . . 4} indexes the

four Majorana fermions, A ∈ {1 . . . 6} indexes the scalar degrees of freedom, and 〈· · · 〉ŷ
represents the average over the direction of ŷ. The parameters mD and MD are the electric

screening masses for the gauge field and the adjoint scalar field, respectively. The parameter

mq can be seen as the induced finite temperature quark mass. We note that, if we set δ = 1,

the Lagrangian above (2.8) reduces to the vacuum N = 4 SYM Lagrangian (2.4). HTLpt

is defined by treating δ as a formal expansion parameter, expanding around δ = 0 to

a fixed order, and then setting δ = 1. In the limit that this expansion is taken to all

orders, one reproduces the QCD result by construction, however, the loop expansion is

now shifted to be around the high-temperature minimum of the effective action, resulting

in a reorganization of the perturbation series which has better convergence than the naive

expansion loop expansion around the T = 0 vacuum. In addition, this reorganization

eliminates all infrared divergences associated with the electric sector of the theory.

The HTLpt reorganization generates new ultraviolet (UV) divergences and, due to the

renormalizability of perturbation theory, the ultraviolet divergences are constrained to have

a form that can be canceled by the counterterm Lagrangian ∆LHTL. References [49, 50]

demonstrated that at two-loop order the thermodynamic potential can be renormalized

using a simple counterterm Lagrangian ∆LHTL containing vacuum and mass countert-

erms. Although the general structure of the ultraviolet divergences is unknown, it has

been demonstrated that one can renormalize the next-to-leading order HTLpt thermody-

namic potential through three-loop order using only vacuum, gluon thermal mass, quark

thermal mass, and coupling constant counterterms [44, 47]. In this paper, we demonstrate

that the same method can be used for N = 4 SYM and we compute the vacuum and

screening mass counterterms necessary.

We find that the vacuum counterterm ∆0E0, which is the leading order counterterm in

the δ expansion of the vacuum energy E0, can be obtained by calculating the free energy to

leading order in δ. In section 6.1, we show that ∆1E0 can be obtained by expanding ∆E0

to linear order in δ. As a result, the counterterm ∆E0 has the form

∆E0 =

(
dA

128π2ε
+O(λδ)

)
(1− δ)2m4

D +

(
3dA

32π2ε
+O(λδ)

)
(1− δ)2M4

D . (2.10)

To calculate the NLO free energy we need to expand to order δ and we will need the

counterterms ∆E0, ∆m2
D, ∆m2

q , and ∆M2
D to order δ in order to cancel the UV divergences.

We find that in order to remove the divergences to two-loop order, the mass counterterms

should have the form

∆m2
D =

(
1

16π2ε
λδ +O(λ2δ2)

)
(1− δ)m2

D ,

∆M2
D =

(
3

8π2ε
λδ +O(λ2δ2)

)
(1− δ)M2

D ,

∆m2
q =

(
− 1

π2ε
λδ +O(λ2δ2)

)
(1− δ)m2

q . (2.11)

In the N = 4 SYM theory, we will use the same method as in QCD to calculate physical

observables in HTLpt, namely expanding the path-integral in powers of δ, truncating at

– 6 –
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some specified order, and then setting δ = 1. The results of the physical observables will

depend on mD, MD, and mq for any truncation of the expansion in δ, and some prescription

is required to determine mD, MD, and mq as a function of λ. In this work, we will follow

the two-loop HTLpt QCD prescription and determine them by minimizing the free energy.

If we use ΩN (T, λ,mD,MD,mq, δ) to represent the thermodynamic potential expanded to

N -th order in δ, then our full variational prescription is

∂

∂mD
ΩN (T, λ,mD,MD,mq, δ = 1) = 0,

∂

∂MD
ΩN (T, λ,mD,MD,mq, δ = 1) = 0,

∂

∂mq
ΩN (T, λ,mD,MD,mq, δ = 1) = 0 . (2.12)

We will call eqs. (2.12) the gap equations. The free energy is obtained by evaluating the

thermodynamic potential at the solution to the gap equations. Other thermodynamic

functions can then be obtained by taking appropriate derivatives of free energy with re-

spect to T .

3 Next-to-leading order thermodynamic potential

In the imaginary-time formalism, Minkoswski energies have discrete imaginary values p0 =

i(2πnT ), and the integrals over Minkowski space should be replaced by Euclidean sum

integrals. There are two ways to do this which have been discussed in refs. [49, 50]. One

is transforming the Feynman rules in Minkowski space given in appendix A into the form

in Euclidean space firstly, then calculating the free energy. The other way is using the

Feynman rules in Minkowski space to get the forms of free energy, after reducing these

forms, transforming it into the form in Euclidean space. Results from the two methods

must be the same.

The HTL perturbative thermodynamic potential at next-to-leading order in N = 4

SYM can be expressed as

ΩNLO = ΩLO + Ω2-loop + ΩHTL + ∆ΩNLO , (3.1)

where ΩLO is the leading order thermodynamic potential, O(δ0), which includes the one-

loop graphs shown in figure 2 and the LO vacuum renormalization counterterm. We first

discuss the contributions at this order.

3.1 LO thermodynamic potential

In SU(Nc) gauge theory with massless particles, ΩLO can be expressed as

ΩLO = dAFg + dFFq + dSFs + ∆0E0 , (3.2)

where dA = N2
c − 1 is the dimension of the adjoint representation. There are four indepen-

dent Majorana fermions in the adjoint representation, dF = 4dA, and dS = 6dA for the six

scalars.

– 7 –
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Figure 2. One loop Feynman diagrams for N = 4 SYM theory in HTLpt. Dashed lines indicate a

scalar field and dotted lines indicate a ghost field. Shaded circles indicate HTL-dressed propagators.

There are D = d + 1 polarization state for gluons, where d is the number of spatial

dimensions. After canceling the two unphysical states using the ghost contribution, we

obtain the HTL one-loop free energy of each of the color states of the gluon

Fg = Fgluon + Fghost = −1

2

∑∫
P
{(d− 1) log[−∆T (P )] + log ∆L(P )} . (3.3)

The transverse and longitudinal HTL propagators ∆T (P ) and ∆L(P ) are the HTL gluon

propagator (A.13) in Euclidean space

∆T (P ) =
−1

P 2 + ΠT (P )
,

∆L(P ) =
1

p2 + ΠL(P )
. (3.4)

The result above is the same as in QCD. The only difference is the definition of m2
D in the

gluon propagator which now contains contributions from gluon, fermion, and scalar loops

as detailed in appendix A.1.

Since the Majorana fermion is its own antiparticle, the fermionic contribution is re-

duced by a factor of two when comparing QCD and N = 4 SYM. Our definition of m2
q is

presented in appendix A.3. The one-loop fermionic free energy is

Fq = −1

2

∑∫
{P}

log det[ 6P − Σ(P )] , (3.5)

where Σ(P ) is the HTL fermion self-energy (A.27) in Euclidean space. The scalar one-loop

free energy is simply

Fs =
1

2

∑∫
P

log[−∆−1
s (P )] , (3.6)

where ∆−1
s (P ) is the inverse scalar propagator which is given in eq. (4.2). Finally, we

note that the leading order counterterm ∆0E0 cancels the divergent terms of the one-loop

thermodynamic potential in N = 4 SYM theory.

3.2 NLO thermodynamic potential

In eq. (3.1) Ω2-loop corresponds to the two-loop contributions shown in figure 3. It can be

expressed as

Ω2-loop = dAλ
[
F3g + F4g + Fgh + F4s + F3gs + F4gs + F3qg + F4qg + F3qs

]
, (3.7)

where λ = g2Nc is the ’t Hooft coupling constant.

– 8 –
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Figure 3. Two loop Feynman diagrams for N = 4 SYM theory in HTLpt. Dashed lines indicate a

scalar field and dotted lines indicate a ghost field. Shaded circles indicate HTL-dressed propagators

and vertices.

The gluon propagator, the three-gluon vertex, the four-gluon vertex, and the gluon-

ghost vertex are the same as in QCD up to the expression for the Debye mass mD.2

As a result, the purely gluonic and glue-ghost graphs given by F3g, F4g, and Fgh are,

respectively,

F3g =
1

12

∑∫
PQ

Γµλρ(P,Q,R)Γνστ (P,Q,R)∆µν(P )∆λσ(Q)∆ρτ (R),

F4g =
1

8

∑∫
PQ

Γµν,λσ(P,−P,Q,−Q)∆µν(P )∆λσ(P ),

Fgh =
1

2

∑∫
PQ

1

Q2

1

R2
QµRν∆µν(P ) , (3.8)

where R + P + Q = 0. Contributions come from the two-loop diagrams with four scalar

vertex, scalar-gluon vertex and scalar-gluon four vertex are respectively

F4s =
15

2

∑∫
PQ

∆s(P )∆s(Q),

F3gs =
3

2

∑∫
PQ

∆s(R)∆s(Q)∆µν(P )(R+Q)µ(R+Q)ν ,

F4gs = 3
∑∫
PQ

∆s(Q)∆µν(P )δµν , (3.9)

where R+P−Q = 0. The contributions F3qg and F4qg involve only quarks and gluons and,

since the Majorana fermion is its own antiparticle, their symmetry factor is 1/4 instead of

2See A.1 for proof of this statement.
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1/2 in QCD. Additionally, there are four Majorana fermions in N = 4 SYM, so that F3qg

and F4qg are 2 times the result obtained in QCD. As a result, we can substitute sF and

dF in ref. [50] to 2Nc and 2dA, respectively, to obtain the N = 4 SYM result. After this

adjustment, the only other change required is to use the N = 4 SYM definitions of m2
D

and m2
q . Based on the results contained in ref. [50] one obtains

F3qg = −
∑∫
P{Q}

∆µν(P )Tr
[
Γµ(P,Q,R)S(R)Γν(P,Q,R)S(Q)

]
,

F4qg = −
∑∫
P{Q}

∆µν(P )Tr
[
Γµν(P,−P,Q,Q)S(Q)

]
. (3.10)

The momentum conservation is R + P − Q = 0. One can also obtain these expressions

using the Feynman rules contained in appendix A.

The final new graph, the quark-scalar diagram F3qs, can be split into two parts, one

coming from the quark-scalar vertex, and the other coming from the quark-pseudoscalar

vertex. Using the Feynman rules in appendix A, one finds that their contributions are the

same. As a consequence, F3qs can be written as

F3qs = −6
∑∫
P{Q}

Tr
[
S(R)S(Q)

]
∆s(P ) , (3.11)

where R+ P −Q = 0.

The contribution ΩHTL in eq. (3.1) is the sum of the gluon, quark and scalar HTL

counterterms shown in figure 3. These enter in order to subtract contributions at lower

loop orders and guarantee that naive perturbative results are recovered order by order if

the expressions are truncated in λ. They can be expressed as

ΩHTL = dAFgct + dFFqct + dSFsct . (3.12)

There are two ways to get these three contributions, one is using the Feynman rules in

appendix A, the other one is substituting m2
D → (1 − δ)m2

D, M2
D → (1 − δ)M2

D and

m2
q → (1 − δ)m2

q in the one-loop expressions for Fg+Fghost, Fs, and Fq and expanding

them to linear order in δ. In terms of the first method, the contribution from the HTL

gluon counterterm diagram is

Fgct =
1

2

∑∫
P

Πµν(P )∆µν(P )

=
1

2

∑∫
P

[
(d− 1)ΠT (P )∆T (P )−ΠL(P )∆L(P )

]
. (3.13)

It is the same as in QCD up to the definition of m2
D. The contribution from the HTL scalar

counterterm diagram is

Fsct =
1

2

∑∫
P

∆s(P )PAAaa (P ) , (3.14)

where PAAaa (P ) = M2
D is referred in appendix A.6. The contribution from the HTL quark

counterterm diagram is

Fqct = −1

2

∑∫
{P}

Tr
[
Σ(P )S(P )

]
. (3.15)
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Compared to QCD this is different by one half due to the Majorana nature of the SYM

fermions. As usual, the quark mass should be adjusted to the SYM case.

Since HTL perturbation theory is renormalizable, the ultraviolet divergences of free

energy at any order in δ can be cancelled by E , m2
D, m2

q , and M2
D and the coupling constant

λ. ∆ΩNLO in eq. (3.1) is the renormalization contribution at first order in δ is used to cancel

the next-to-leading order divergences. It can be expressed as

∆ΩNLO = ∆1E0 +
(
∆1m

2
D + ∆1m

2
q + ∆1M

2
D

) ∂

∂M2
D

ΩLO , (3.16)

where ∆1E0, ∆1m
2
D, ∆1m

2
q , and ∆1M

2
D are the terms of order δ in the vacuum energy (2.10)

and mass counterterms (2.11). The first term ∆1E0 can be obtained simply by expanding

∆0E0 to first order in δ. The second term in (3.16) is slightly different from the QCD

result in refs. [49, 50]. This is because this term must be used to cancel the divergences of

two-loop self energy. As we can see in (6.5), there are two mixed term MDm
2
D and MDm

2
q

which comes from the (hs) contribution of F4gs and F3qs respectively. There are many

ways to construct the mass renormalization form which is corresponding to the second

part of eq. (3.16), but the only way to use one set of three counterterms ∆1m
2
D, ∆1m

2
q ,

and ∆1M
2
D is the form we have shown above.

In this work, we calculate the thermodynamic potential as an expansion in powers of

mD/T , mq/T , and MD/T to order g5. We will show that, at order δ, all divergences in

the two-loop thermodynamic potential plus HTL counterterms can be removed by these

vacuum and mass counterterms. This means the method used in QCD can also be used in

N = 4 SYM theory. This provides nontrivial evidence for the renormalizability of HTLpt

at order δ in N = 4 SYM.

4 Reduction to scalar sum-integrals

Since we can make use of prior QCD results, we only need to calculate Fs, Fsct, F4s,F3gs,

F4gs, F3qs, and the HTL counterterms contributing to eq. (3.12). The first step to calculate

the new SYM contributions in figures 2 and 3 is to reduce the sum of these diagrams to

scalar sum-integrals. In Euclidean space, by substituting p0 to iP0 the scalar propagator

can be written as

∆s(P ) =
−1

P 2 +M2
D

, (4.1)

so its inverse is

∆−1
s (P ) = −(P 2 +M2

D) . (4.2)

The leading-order scalar contribution can be written as

Fs =
1

2

∑∫
P

log[P 2 +M2
D] . (4.3)

The HTL scalar counterterm can be written as

Fsct = −1

2

∑∫
P

M2
D

P 2 +M2
D

. (4.4)

– 11 –



J
H
E
P
0
9
(
2
0
2
0
)
0
3
8

We proceed to simplify the sum of formulas in eq. (3.9) in general covariant gauge

parameterized by ξ. Using eqs. (4.1) and (A.24), we obtain

F4s+3gs+4gs =
15

2

∑∫
PQ

∆s(P )∆s(Q)

+
3

2

∑∫
PQ

∆s(R)∆s(Q)

{
∆T (P )

[
2R2 + 2Q2 − P 2 − (Q2 −R2)2

P 2

]
+∆X(P )

[
2

P 2
(Q2 −R2)(Q2 −R2 + r2 − q2)− (2R2 + 2Q2 − P 2)

+(2r2 + 2q2 − p2)− P 2
0

P 4
(Q2 −R2)2

]
− ξ

P 4
(Q2 −R2)2

}
+3
∑∫
PQ

∆s(Q)

[
d∆T (P )− p2

P 2
∆X(P )− ξ

P 2

]
. (4.5)

There are two terms which depend on ξ in (4.5), however, using P +R−Q = 0, one finds

that they cancel each other, so that the sum of these contributions is gauge independent.

Similarly, the results for F3g+4g+gh and F3qg+4qg are independent of gauge parameter ξ

as shown in prior QCD calculations. Therefore, we have verified explicitly that the NLO

HTLpt resummed thermodynamic potential in N = 4 SYM is gauge independent.

Finally, we simplify eq. (3.11) to

F3qs = −24
∑∫
P{Q}

A0(R)A0(Q)−As(R)As(Q)r̂ · q̂
[A2

0(R)−A2
s(R)][A2

0(Q)−A2
s(Q)]

∆s(P ) , (4.6)

where in Euclidean space

A0(P ) = iP0 −
m2
q

iP0
TP ,

As(P ) = p+
m2
q

p

[
1− TP

]
, (4.7)

with TP is the angular average T 00(p,−p) in Euclidean space, can be expressed as

TP =

〈
P 2

0

P 2
0 + p2c2

〉
c

, (4.8)

where the angular brackets denote an average over c defined by

〈
f(c)

〉
c
≡ ω(ε)

∫ 1

0
dc(1− c2)−εf(c) , (4.9)

where ω(ε) is given in (A.15).
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5 High temperature expansion

Having reduced Fs, F4s+3gs+4gs, F3qs, and the HTL counterterm Fsct to scalar sum-

integrals, we will now evaluate these sum-integrals approximately by expanding them in

powers of mD/T , mq/T , and MD/T . We will keep terms that contribute through O(g5) if

mD,mq and MD are taken to be of order g at leading-order. Additionally, each of these

terms can be divided into contributions from hard and soft momentum, so we will proceed

to calculate their hard and soft contributions, respectively. In some cases, the results pre-

sented here were obtained in previous one- and two-loop QCD HTLpt papers [8, 49, 50].

When converting the prior QCD graphs involving quarks, as mentioned previously, one has

to take into account that the four SYM quarks are Majorana fermions. Here we list results

for all contributions to the N = 4 SYM Feynman graphs and counterterms for complete-

ness and ease of reference. In all cases, we use the integral and sum-integral formulas from

refs. [49, 50] to obtain explicit expressions.

5.1 One-loop sum-integrals

The one-loop sum-integrals include the leading gluon, quark, and scalar contribu-

tions (3.3), (3.5), and (3.6) along with their corresponding counterterms (3.13), (3.15),

and (3.14). In order to include all terms through O(g5), we need to expand the one-loop

contribution to order m4
D, m4

q , and M4
D.

5.1.1 Hard contributions

The hard contribution from the gluon free energy (3.3) is [49]

F (h)
g = −π

2

45
T 4 +

1

24

[
1 +

(
2 + 2

ζ
′
(−1)

ζ(−1)

)
ε

](
µ

4πT

)2ε

m2
DT

2

− 1

128π2

(
1

ε
− 7 + 2γ +

2π2

3

)(
µ

4πT

)2ε

m4
D . (5.1)

The hard contribution from the gluon HTL counterterm (3.13) is [49]

F (h)
gct = − 1

24
m2
DT

2 +
1

64π2

(
1

ε
− 7 + 2γ +

2π2

3

)(
µ

4πT

)2ε

m4
D . (5.2)

The hard contribution from the quark free energy (3.5) is

F (h)
q = −7π2

360
T 4 +

1

12

[
1 +

(
2− 2 log 2 + 2

ζ
′
(−1)

ζ(−1)

)
ε

](
µ

4πT

)2ε

m2
qT

2

+
1

24π2

(
π2 − 6

)
m4
q . (5.3)

The hard contribution from the quark HTL counterterm (3.15) is

F (h)
qct = − 1

12
m2
qT

2 − 1

12π2

(
π2 − 6

)
m4
q . (5.4)
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Since scalars are bosons, the sum-integrals in (3.6) are the same those used for gluons.

After expansion, we obtain the hard contribution to the LO scalar free energy

F (h)
s =

1

2

∑∫
P

logP 2 +
1

2
M2
D

∑∫
P

1

P 2
− 1

4
M4
D

∑∫
P

1

P 4
. (5.5)

Using the results for sum-integrals contained in the appendices B and C of refs. [49, 50],

eq. (5.5) reduces to

F (h)
s = − 1

90
π2T 4 +

1

24

[
1 +

(
2 + 2

ζ
′
(−1)

ζ(−1)

)
ε

](
µ

4πT

)2ε

M2
DT

2

− 1

64π2

[
1

ε
+ 2γ

](
µ

4πT

)2ε

M4
D . (5.6)

The scalar HTL counterterm is given in (3.14), after expansion, we get

F (h)
sct = −1

2
M2
D

∑∫
P

1

P 2
+

1

2
M4
D

∑∫
P

1

P 4
, (5.7)

which can be reduced to

F (h)
sct = − 1

24
M2
DT

2 +
1

32π2

(
1

ε
+ 2γ

)(
µ

4πT

)2ε

M4
D . (5.8)

Note that the first terms in (5.1), (5.3) and (5.6) cancel the order-ε0 term in the coefficient

of mass squared in (5.2), (5.4) and (5.8), respectively.

5.1.2 Soft contributions

The soft contributions to the thermodynamical potential come from the n = 0 Matsubara

mode (P0 = 0) in the resulting bosonic sum-integrals. For fermions, since P0 = (2n +

1)πT 6= 0 for integer n, the quark momentum is always hard ; therefore, quarks do not have

a soft contribution. For gluons, in the soft limit P → (0,p), the HTL gluon self-energy

functions reduce to ΠT (P ) = 0 and ΠL(P ) = m2
D. For scalars, in this limit the propagator

reduces to ∆s(P ) = −1/(p2 +M2
D) where, here p2 = p2.

The soft contribution to the gluon free energy (3.3) is

F (s)
g = − 1

12π

(
1 +

8

3
ε

)(
µ

2mD

)2ε

m3
DT . (5.9)

The soft contribution from the gluon HTL counterterm (3.13) is

F (s)
gct =

1

8π
m3
DT . (5.10)

The soft contribution from scalar free energy (3.6) is

F (s)
s =

1

2
T

∫
p

log
(
p2 +M2

D

)
, (5.11)
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which can be reduced to

F (s)
s = − 1

12π

(
1 +

8

3
ε

)(
µ

2MD

)2ε

M3
DT . (5.12)

The soft contribution from the scalar HTL counterterm (3.14) is

F (s)
sct = −1

2
M2
DT

∫
p

1

p2 +M2
D

, (5.13)

then it can be reduced as

F (s)
sct =

1

8π
M3
DT . (5.14)

5.2 Two-loop sum-integrals

Since the two-loop sum-integrals have an explicit factor of λ, we only need to expand

these sum-integrals to order m3
D/T

3, M3
D/T

3, mDm
2
q/T

3, MDm
2
q/T

3, m2
DMD/T

3, and

M2
DmD/T

3 to include all terms through λ5/2. Since these integrals involve two momen-

tum integrations we will expand contributions from hard loop momentum and soft loop

momentum for each momentum integral. For bosons, this gives three contributions which

we will denote as (hh), (hs) and (ss). For fermions, since their momentum is always hard,

there will be only two regions (hh) and (hs). In the (hh) region, all three momentum are

hard p ∼ T , while in the (ss) region, all the three momentum are soft, p ∼ gT . In the (hs)

region, two of the three momenta are hard and the other is soft.

5.2.1 Contributions from the (hh) region

In the (hh) region, the self energies are suppressed by m2
D/T

2, M2
D/T

2 and m2
q/T

2, so we

can expand in powers of ΠT , ΠL, Σ, and M2
D.

The (hh) contribution from gluon self energy (3.8) is [49]

F (hh)
3g+4g+gh =

1

144
T 4 − 7

1152π2

(
1

ε
+ 4.6216

)(
µ

4πT

)4ε

m2
DT

2 . (5.15)

The (hh) contribution from quark self energy (3.10) is [49]

F (hh)
3qg+4qg =

5

144
T 4 − 1

144π2

[
1

ε
+ 1.2963

](
µ

4πT

)4ε

m2
DT

2

+
1

16π2

[
1

ε
+ 8.96751

](
µ

4πT

)4ε

m2
qT

2 . (5.16)

The (hh) contribution from (3.9) can be expanded as

F (hh)
4s+3gs+4gs =

∑∫
PQ

3(d+ 2)

P 2Q2
+M2

D

∑∫
PQ

[
− 3(5 + d)

P 2Q4
+

6

P 2Q2R2

]
+
m2
D

d− 1

∑∫
PQ

{
3(1− d)

P 4Q2
+

3(d− 2)

p2P 2Q2
+

3(2 + d)

2p2Q2R2
− 3

P 2Q2R2

− 6dq2

p4Q2R2
+

6q2

p2P 2Q2R2
+

3d(Q ·R)

p4Q2R2

+

[
3(1− d)

p2P 2Q2
− 3(1 + d)

2p2Q2R2
+

6dq2

p4Q2R2
− 3d(Q ·R)

p4Q2R2

]
TP
}
, (5.17)
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where P + R − Q = 0. Using the sum-integral formulas in appendix C of ref. [50] this

reduces to

F (hh)
4s+3gs+4gs =

5

48
T 4 − 1

8π2

(
1

ε
+ 2γ + 5.72011

)(
µ

4πT

)4ε

M2
DT

2

− 7

384π2

(
1

ε
+ 5.61263

)(
µ

4πT

)4ε

m2
DT

2 . (5.18)

The (hh) contribution to (3.11) can be expanded as

F (hh)
3qs = 24

[∑∫
P{Q}

−1

P 2Q2
+
∑∫
{PQ}

1

2P 2Q2

]
+ 24M2

D

∑∫
P{Q}

[
1

P 4Q2
− 1

2P 2Q2R2

]
+24m2

q

∑∫
P{Q}

{
2

P 2Q4
+

1

P 2Q2R2
+

p2 − r2

P 2Q2R2q2
+

[
−1

P 2Q2Q2
0

+
r2 − p2

P 2R2Q2
0q

2

]
TQ
}

+ 24m2
q

∑∫
{PQ}

[
−2

P 2Q4
+

1

P 2Q2Q2
0

TQ
]
, (5.19)

where P + R − Q = 0. Using the sum-integral formulas in appendix C of ref. [50] this

reduces to

F (hh)
3qs =

5

48
T 4 − 1

16π2

(
1

ε
+ 5.73824

)(
µ

4πT

)4ε

M2
DT

2

+
3

16π2

(
1

ε
+ 9.96751

)(
µ

4πT

)4ε

m2
qT

2 . (5.20)

5.2.2 Contributions from the (hs) region

In the (hs) region, the soft momentum can be any bosonic momentum. The functions that

multiply the soft propagators ∆T (0,p), ∆X(0,p), or ∆s(0,p) can be expanded in powers of

the soft momentum p. In terms involving ∆T (0,p), the resulting integrals over p have no

scale and vanish in dimensional regularization. The integration measure
∫
p scales like m3

D

for gluon momentum and M3
D for scalar momentum, respectively. The soft propagators

∆X(0,p) and ∆s(0,p) scale like 1/m2
D and 1/M2

D, respectively, and every power of p in

the numerator scales like mD for gluon momentum and MD for scalar momentum.

The (hs) contribution from the gluonic free energy graphs (3.8) is [49]

F (hs)
3g+4g+gh = − 1

24π
mDT

3 − 11

384π3

(
1

ε
+ 2γ +

27

11

)(
µ

4πT

)2ε( µ

2mD

)2ε

m3
DT . (5.21)

The (hs) contribution from quark self energy (3.10) is

F (hs)
3qg+4qg = − 1

12π
mDT

3 +
1

4π3
mDm

2
qT

+
1

48π3

(
1

ε
+ 2γ + 1 + 4 log 2

)(
µ

4πT

)2ε( µ

2mD

)2ε

m3
DT . (5.22)

Note that the sign on the second term differs from ref. [50]. This is due to an incorrect

sign in the HTL-corrected quark-gluon three vertex in ref. [50], which we discuss in the

appendix A.9.
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For the (hs) contributions to (3.9) and (3.11), like QCD, after expansion there will

be terms of contributing at O(g) and higher. For terms that are already of order g3, we

can set R = Q for soft momentum P . For terms that are O(g), we must expand the sum-

integral to second order in p, and then perform the angular integration for p, where the

linear terms in p vanish and quadratic terms of the form pipj can be replaced by p2δij/d.

Therefore, the (hs) contribution from (3.9) can be written as

F (hs)
4s+3gs+4gs = T

∫
p

1

p2 +M2
D

∑∫
Q

[
3(d+ 5)

Q2
−M2

D

(
3

Q4
+

12q2

dQ6

)
−m2

D

3

Q4

]
+T

∫
p

1

p2 +m2
D

∑∫
Q

{
6q2

Q4
− 3

Q2
+M2

D

(
9

Q4
− 12q2

Q6

)}
+m2

D

[
− 6

Q4
+ 6(d+ 4)

q2

dQ6
− 24q4

dQ8

]
, (5.23)

where P + R − Q = 0. Using the sum-integral formulas from appendix C of ref. [50] this

reduces to

F (hs)
4s+3gs+4gs = −T 3

(
mD

8π
+
MD

2π

)
− 3

32π3
M2
DmDT

+

[
3

64π3
MDm

2
DT +

3

32π3
M3
DT

](
1

ε
+ 2 + 2γ

)(
µ

4πT

)2ε( µ

2MD

)2ε

+
1

128π3

(
1

ε
+ 4 + 2γ

)(
µ

4πT

)2ε( µ

2mD

)2ε

m3
DT . (5.24)

The (hs) contribution from (3.11) can be written as

F (hs)
3qs = 24T

∫
p

1

p2 +M2
D

∑∫
{Q}

[
− 1

Q2
+M2

D

(
− 1

Q4
+

2q2

dQ6

)
+m2

q

2

Q4

]
, (5.25)

where P +R−Q = 0. Again using the sum-integral formulas from appendix C of ref. [50]

this reduces to

F (hs)
3qs = − 1

4π
MDT

3 +

[
3

16π3
M3
DT −

3

4π3
MDm

2
qT

]
×
(

1

ε
+ 2 + 2γ + 4 log 2

)(
µ

4πT

)2ε( µ

2MD

)2ε

. (5.26)

5.2.3 Contributions from the (ss) region

In the (ss) region, all bosonic momentum are soft, and the gluonic HTL correction func-

tions TP , T 000, and T 0000 vanish. The gluonic self-energy functions at zero-frequency are

ΠT (0,p) = 0 and ΠL(0,p) = m2
D. The scales in the integrals come from the gluonic longitu-

dinal propagator ∆L(0,p) = 1/(p2 +m2
D) and scalar propagator ∆s(0,p) = −1/(p2 +M2

D).

Therefore for bosons, in dimensional regularization, at least one such propagator is required

in order for the integral to be nonzero, and there is no (ss) contributions coming from

fermionic diagrams.
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The (hs) contribution to the gluonic free energy graphs (3.8) is

F (ss)
3g+4g+gh =

1

64π2

(
1

ε
+ 3

)(
µ

2mD

)4ε

m2
DT

2 . (5.27)

The (ss) contribution to (3.9) can be expanded as

F (ss)
4s+3gs+4gs = T 2

∫
pq

[
3

(p2 +m2
D)(q2 +M2

D)
+

6M2
D + 9p2

p2(q2 +M2
D)(r2 +M2

D)

]
, (5.28)

where P +R−Q = 0. Again using the sum-integral formulas from appendix C of ref. [50]

this reduces to

F (ss)
4s+3gs+4gs =

3

16π2
MDmDT

2 +
3

32π2

(
1

ε
+ 8

)(
µ

2MD

)4ε

M2
DT

2 . (5.29)

6 HTL thermodynamic potential

In this section, we calculate the thermodynamic potential Ω(T, λ,mD,MD,mq, δ = 1)

explicity, first to LO in the δ expansion and then to NLO.

6.1 Leading order

As we mentioned in section 3, the leading order thermodynamic potential is the sum of the

contributions from one-loop diagrams and the leading order vacuum energy counterterm.

The contributions coming from the one-loop diagrams is the sum of (5.1), (5.3), (5.6), (5.9)

and (5.12). After multiplying by the appropriate coefficients in (3.2), one obtains

Ω1-loop = Fideal

{
1− m̂2

D + 4m̂3
D − 6M̂2

D + 24M̂3
D − 8m̂q

2 + 16m̂q
4(6− π2)

+
3

4
m̂4
D

[
1

ε
− 7 + 2γ +

2π2

3
+ 2 log

µ̂

2

]
+ 9M̂4

D

[
1

ε
+ 2γ + 2 log

µ̂

2

]}
, (6.1)

where Fideal is the free energy density of N = 4 SYM in the ideal gas limit and m̂D, M̂D,

m̂q and µ̂ are dimensionless variables, defined as

m̂D =
mD

2πT
,

M̂D =
MD

2πT
,

m̂q =
mq

2πT
,

µ̂ =
µ

2πT
. (6.2)

Since the leading order vacuum energy counterterm ∆0E0 should cancel the divergences in

the one-loop free energy, we obtain

∆0E0 = dA

(
1

128π2ε
m4
D +

3

32π2ε
M4
D

)
= Fideal

(
− 3

4ε
m̂4
D −

9

ε
M̂4
D

)
. (6.3)
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After adding the leading order vacuum renormalization counterterm, our final result for

the renormalized LO HTLpt thermodynamic potential is

ΩLO = Fideal

{
1− m̂2

D + 4m̂3
D − 6M̂2

D + 24M̂3
D − 8m̂2

q + 16m̂4
q(6− π2)

+
3

4
m̂4
D

[
− 7 + 2γ +

2π2

3
+ 2 log

µ̂

2

]
+ 18M̂4

D

[
γ + log

µ̂

2

]}
. (6.4)

6.2 Next-to-leading order

The next-to-leading order corrections to the thermodynamic potential include all of the

two-loop free energy diagrams, the gluon, quark, scalar counterterms in figure 3, and the

renormalization counterterms. The contributions from the two-loop diagrams include all

terms through order g5 is the sum of (5.15), (5.16), (5.18), (5.20), (5.21), (5.22), (5.24),

(5.26), (5.27) and (5.29) multiplied by λdA. Adding these gives

Ω2-loop = Fideal
λ

π2

{
− 3

2
+ 3m̂D + 9M̂D −

9

2
M̂Dm̂D +

9

2
m̂DM̂

2
D

−12m̂Dm̂
2
q +

3

8
m̂2
D

[
1

ε
+ 4 log m̂D + 4 log

µ̂

2
+ 5.93198468

]
+

9

4
M̂2
D

[
1

ε
+ 4 log M̂D + 4 log

µ̂

2
+ 4.99154798

]
+

1

8
m̂3
D

[
7− 32 log 2

]
(6.5)

−6m̂2
q

[
1

ε
+ 4 log

µ̂

2
+ 9.71751112

]
− 36 log 2M̂3

D + 144 log 2M̂Dm̂
2
q

+

[
− 27

2
M̂3
D −

9

4
M̂Dm̂

2
D + 36M̂Dm̂

2
q

][
2 +

1

ε
+ 2γ − 2 log M̂D + 4 log

µ̂

2

]}
.

The total NLO HTL counterterm contribution is the sum of (5.2), (5.4), (5.8), (5.10)

and (5.14) multiplied by the Casimirs in (3.12)

ΩHTL = Fideal

{
m̂2
D − 6m̂3

D + 6M̂2
D − 36M̂3

D + 8m̂2
q + 32m̂4

q(π
2 − 6)

−3

2
m̂4
D

[
1

ε
− 7 + 2γ + 2 log

µ̂

2
+

2π2

3

]
− 18M̂4

D

[
1

ε
+ 2γ + 2 log

µ̂

2

]}
. (6.6)

The ultraviolet divergences in (6.5) and (6.6) will be removed by the renormalization of

the vacuum energy density E0 and the HTL mass parameters mD, MD, and mq. The

renormalization counterterm contribution at linear order in δ is denoted by ∆ΩNLO in

eqs. (3.1) and (3.16). We cannot obtain its form directly from ref. [50] due to the fact that

there are contributions coming from the scalar fields in N = 4 SYM theory, but we can

use the same method as in QCD. The form of ∆1E0 can be obtained by expanding (2.10)

to first order in δ, which is

∆1E0 = −dA
(
m4
D

64π2ε
+

3M4
D

16π2ε

)
= Fideal

(
3

2ε
m̂4
D +

18

ε
M̂4
D

)
. (6.7)

This renormalization counterterm cancels the divergences in ΩHTL (6.6). For the two-loop

self energy, as we can see, the divergent terms are

Fideal
λ

π2

[
3

8ε
m̂2
D +

9

4ε
M̂2
D −

6

ε
m̂2
q −

27

2ε
M̂3
D −

9

4ε
M̂Dm̂

2
D +

36

ε
M̂Dm̂

2
q

]
. (6.8)
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Since there are two mixed terms M̂Dm̂
2
D and M̂Dm̂

2
q which is a big difference from QCD,

we cannot use the following formula

∆1m
2
D

∂

∂m2
D

ΩLO + ∆1m
2
q

∂

∂m2
q

ΩLO + ∆1M
2
D

∂

∂M2
D

ΩLO. (6.9)

This is because we cannot get the two mixed terms using this form. In order to cancel

the ultraviolet divergence for two-loop self energy, the simplest form is given in eq. (3.16).

Using (2.11), (6.7), and (3.16), one finds

∆ΩNLO = Fideal

{
3

2ε
m̂4
D +

18

ε
M̂4
D +

λ

π2

[(
− 3

8
m̂2
D −

9

4
M̂2
D + 6m̂2

q

)
×
(

1

ε
+ 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 log

µ̂

2

)
+

(
27

2
M̂3
D +

9

4
M̂Dm̂

2
D − 36M̂Dm̂

2
q

)
×
(

1

ε
+ 2− 2 log M̂D + 2 log

µ̂

2

)]}
. (6.10)

Adding the leading order thermodynamic potential in (6.4), the two-loop free energy

in (6.5), the HTL gluon and quark counterterms in (6.6), and the HTL vacuum and mass

renormalizations in (6.10), our final expression for the NLO HTLpt thermodynamic poten-

tial in N = 4 SYM is

ΩNLO = Fideal

{
1− 2m̂3

D − 12M̂3
D + 16m̂4

q(π
2 − 6)− 18M̂4

D

(
γ + log

µ̂

2

)
−3

2
m̂4
D

(
− 7

2
+ γ +

π2

3
+ log

µ̂

2

)
+

λ

π2

[
− 3

2
+ 3m̂D + 9M̂D

−9

2
m̂DM̂D +

9

2
m̂DM̂

2
D − 12m̂Dm̂

2
q − 12m̂2

q

(
1.87370184 + log

µ̂

2

)
+

3

4
m̂2
D

(
− 0.01906138 + 2 log m̂D + log

µ̂

2

)
+

1

8
m̂3
D

(
7− 32 log 2

)
+

9

2
M̂2
D

(
− 0.489279733 + 2 log M̂D + log

µ̂

2

)
− 9

2
M̂Dm̂

2
D

(
γ + log

µ̂

2

)
+72M̂Dm̂

2
q

(
γ + 2 log 2 + log

µ̂

2

)
− 9M̂3

D

(
3γ + 4 log 2 + 3 log

µ̂

2

)]}
. (6.11)

Note that this result reproduces the perturbative expansion given in (1.2) through O(λ3/2)

in the weak-coupling limit. This can be verified by taking m̂D, M̂D, and m̂q to be given by

their leading-order expressions (6.16) and truncating the resulting expansion in the ’t Hooft

coupling at O(λ3/2).

6.3 Gap equations

The gluon, scalar, and quark mass parameters mD, MD, and mq are determined by us-

ing the variational method, requiring that the derivative of ΩNLO with respect to each
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parameter is zero

∂

∂mq
ΩNLO(T, λ,mD,MD,mq, δ = 1) = 0 ,

∂

∂mD
ΩNLO(T, λ,mD,MD,mq, δ = 1) = 0 ,

∂

∂MD
ΩNLO(T, λ,mD,MD,mq, δ = 1) = 0 . (6.12)

The first equation gives

m̂2
q

(
π2− 6

)
=

λ

4π2

[
3

2
m̂D +

3

2

(
1.87370184 + log

µ̂

2

)
− 9M̂D

(
γ + 2 log 2 + log

µ̂

2

)]
. (6.13)

The second equation gives

m̂2
D + m̂3

D

(
−7

2
+ γ +

π2

3
+ log

µ̂

2

)
=

λ

4π2

[
2− 3M̂D + 3M̂2

D − 8m̂2
q +

7

4
m̂2
D

(
1− 32

7
log 2

)
−6m̂DM̂D

(
γ + log

µ̂

2

)
+ m̂D

(
0.980939 + 2 log m̂D + log

µ̂

2

)]
. (6.14)

The third equation gives

M̂2
D + 2M̂3

D

(
γ + log

µ̂

2

)
=

λ

4π2

[
1− 1

2
m̂D + m̂DM̂D −

1

2
m̂2
D

(
γ + log

µ̂

2

)
−3M̂2

D

(
4 log 2 + 3γ + 3 log

µ̂

2

)
+ 8m̂2

q

(
γ + 2 log 2 + log

µ̂

2

)
+M̂D

(
0.51072 + 2 log M̂D + log

µ̂

2

)]
. (6.15)

Note that the terms proportional to m̂2
q in eqs. (6.14) and (6.15) can be written in terms

of M̂D and m̂D by using (6.13).

In practice, one must solve these three equations simultaneously in order to obtain

the gap equation solutions for m̂2
q(λ), m̂2

D(λ), and M̂2
D(λ). In figure 4 we present our

numerical solutions to these three gap equations scaled by the corresponding leading-order

weak-coupling limits

m̂2
q,LO =

λ

8π2
,

m̂2
D,LO =

λ

2π2
,

M̂2
D,LO =

λ

4π2
. (6.16)

In all three panels, the black line is the solution when taking the renormalization scale

µ̂ = 1, the red dashed line is µ̂ = 1/2, and the blue long-dashed line is µ̂ = 2. As can be
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Figure 4. Numerical solution of gap equations for mq, mD, and MD as a function of λ. In each

panel the results are scaled by their corresponding leading-order weak-coupling limits.

seen from figure 4, the gap equation solution for m̂q does not approach its perturbative

limit when λ is approaches zero.

Similar to what was found in NLO HTLpt applied to QCD [50], for the SUSY theory

m̂q does not go to the perturbative value in the limit λ → 0. This is due to the fact that

the perturbative limit of the quark gap equation comes from terms which are proportional

to the coupling constant λ, these terms are not included completely at NLO in HTLpt.

Unfortunately, this problem cannot be completely solved by calculating to higher order in

HTLpt, because the fermionic sector is infrared safe and therefore only even powers of m̂q

will appear at each order since fermions will not have soft contributions. At NNLO all

terms contributing at O(λ2) will be modifed and the m̂q dependence will be pushed up to

O(λ3). All these behaviors above will exist at all orders in HTLpt, so the weak-coupling

limit of the gap equation quark mass will be scale dependent at any order, and will never

approach to its perturbative value. Fundamentally, this is due to the fact that the fermionic

sector is infrared safe.

In order to avoid this problem, one can simply remove the quark contribution from

the HTL effective Lagrangian by setting mq = 0. Since the fermionic sector is infrared
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Figure 5. Comparison of the LO and NLO HTLpt results for the scaled entropy density with

prior results from the literature. A detailed description of the various lines can be found in the

text.

safe, the calculation is still well-defined and amounts to an alternative reorganization of

the perturbative series. In the main body of the text we will use the full gap equation

solutions with mq 6= 0, but in appendix B we present the effect of using the alternative

mq = 0 prescription.

7 Thermodynamic functions

The NLO HTLpt approximation to the free energy is obtained by evaluating the NLO

HTLpt thermodynamic potential (6.11) at the solution of the gap equations (6.12)

FNLO = ΩNLO(T, λ,mgap
D ,Mgap

D ,mgap
q , δ = 1) . (7.1)

The pressure, entropy density, and energy density can then be obtained using

P = −F ,

S = −dF
dT

,

E = F − T dF
dT

. (7.2)

Note that due the conformality of the SYM theory, in all three of these functions, the only

dependence on T is contained in the overall factor of Fideal. As a result, when scaled by

their ideal limits, the ratios of all of these quantities are the same, i.e. P/Pideal = S/Sideal

= E/Eideal.

7.1 Numerical results

In figure 5 we present our final results for the scaled entropy density in N = 4 SYM. The

red solid line with a red shaded band is the NLO HTLpt result and the blue solid line
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with a blue shaded band is the LO HTLpt result determined by evaluating eq. (6.4) at

the solution to the NLO mass gap equations (6.12). The HTLpt shaded bands result from

variation of the renormalization scale µ̂. Herein, we take µ̂ ∈ {1/2, 1, 2} with the central

value of the renormalization scale plotted as solid blue and red lines for the LO and NLO

results, respectively. The blue dotted line is the weak-coupling result (1.2) truncated at

order λ, the green dotted line is the weak-coupling result (1.2) truncated at order λ3/2, the

dark-orange dotted line is the strong-coupling result (1.1). The purple dot-dashed line is

the result of constructing a R[4,4] Padé approximant which interpolates between the weak

and strong coupling limits [5]. Finally, the grey dotted lines indicate the strong and weak

coupling limits of 3/4 and 1, respectively.

As can be seen from figure 5, the LO and NLO HTLpt predictions are close to one

another out to λ . 2, however, one observes that the bands obtained by scale variation

for the two results (blue and red shaded bands) do not necessarily overlap in this range.

Computing the ratio of the NLO and LO results, we find that they are within ∼ 5% of one

another in this range. This is a much smaller change from LO to NLO than is found using

the naive weak-coupling expansion. We also observe that the size of the scale variation

(shown as shaded red and blue bands) decreases as one goes from LO to NLO. Comparing

the bands at λ = 1 we find that the LO HTLpt variation around µ̂ = 1 is on the order of

2%, whereas the NLO order HTLpt variation is 0.3%. For λ & 6 the NLO HTLpt result

is below the value expected in the strong coupling limit. At smaller couplings, λ . 1, we

observe that the NLO HTLpt result is very close to the R[4,4] Padé approximant. This

could be coincidental, however, it is suggestive that somehow the R[4,4] Padé approximant

may provide a reasonable approximation to N = 4 SYM thermodynamics despite its ad

hoc construction.

A similar conclusion was obtained in a prior study of HTL resummation in N = 4

SYM thermodynamics [5]. In their work, Blaizot, Iancu, Kraemmer, and Rebhan (BIKR)

used the Φ-derivable framework to obtain an approximately self-consistent approximation

to the scaled entropy density. In their approach, the one-loop Φ-derivable result for the

entropy density has approximate next-to-leading-order accuracy (NLA), so it should be

comparable to the our NLO HTLpt result. In figure 6 we present a comparison of our

NLO HTLpt result with the BIKR NLA result [5]. In this figure, the blue line with a blue

shaded band is our NLO HTLpt result and the solid red line with a red shaded band is the

NLA result from ref. [5]. The dashed and dotted lines are the same as the previous figure.

We find that, for µ̂ = 1, the two calculations are within ≤ 2% of one another for λ . 6.

We observe that the NLO HTLpt result has a smaller scale variation than the NLA result

at all couplings shown.

Finally, in figure 7 we present a comparison of all results for λ ≤ 2. The various weak-

coupling lines in this figure are the same as in figure 5. As can be seen from this figure,

there is excellent agreement between the NLA calculation of BIKR and NLO HTLpt in

this coupling range. We also see that the R[4,4] Padé approximant overlaps with both cal-

culations at smaller λ. Given the agreement between our NLO results and the BIKR NLA

results in this range of ’t Hooft coupling, one can try to estimate the range of temperatures

this might map to in a real-world QGP. This is a fraught endeavor, however, since one can
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Figure 6. Comparison of our NLO HTLpt result for the scaled entropy density with the prior

NLA work of Blaizot, Iancu, Kraemmer, and Rebhan (BIKR) [5]. A detailed description of the

various lines can be found in the text.
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Figure 7. Comparison of our NLO HTLpt result for the scaled entropy density with prior results

at small λ. Lines are the same as in figure 6.

choose to match a variety of quantities with, to our knowledge, no unique prescription. In

ref. [5] the authors advocated matching the scaled entropy density. For the purposes of

a ball-park estimate, we will follow their suggestion. State-of-the-art lattice data for the

scaled entropy density indicates that corrections to the ideal limit saturate above approx-

imately T ∼ 3Tc ∼ 450 MeV at value of SQCD/SQCD,0 ∼ 0.8 − 0.85 [56]. Matching this to

the same ratio in N = 4 SYM, one finds from figure 6 that this requires λ ∼ 3 − 4 using
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µ̂ = 1.3 Our results suggest that the NLO HTLpt result for N = 4 SYM can be trusted

to with high accuracy for λ . 2. This provides motivation for extending our calculation

to NNLO.

8 Conclusions

In this paper we have extended the LO and NLO HTLpt calculation of the thermodynamic

potential in QCD to N = 4 SYM theory. We have presented results for the LO and

NLO HTLpt predictions for the thermodynamics of N = 4 SYM for arbitrary Nc. We

found that it is possible to extend the range of applicability of perturbative calculations

of thermodynamics in N = 4 SYM theory to intermediate couplings, albeit using involved

resummations. We compared our NLO HTLpt results to approximately self-consistent

resummations obtained previously in ref. [5] and found them to be in excellent agreement

with our NLO HTLpt results for the scaled entropy density for λ . 6. Compared to the

method used in ref. [5], our HTLpt results are manifestly gauge-invariant at all loop orders

and the HTLpt framework allows for systematic extension of the calculation to higher loop

orders. It would be interesting to extend the HTLpt results obtained here to NNLO as

has been done in QCD. For this purpose, it seems necessary to first establish the naive

perturbative corrections to SUSY thermodynamics at orders g4 and g5. Work along these

lines is in progress.
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A HTL Feynman rules for N = 4 SYM

In this appendix, we will present the Feynman rules for HTLpt applied to N = 4 SYM. The

Feynman rules are given in Minkowski space to facilitate future applications to real-time

processes. A Minkowski momentum is denoted by p = (p0,p), and satisfies p·q = p0q0−p·q.

The vector that specifies the thermal rest frame is n = (1,0).

3Note that all such estimates should be taken with care since in QCD, unlike N = 4 SYM, there is

conformal symmetry breaking which causes, e.g., SQCD/SQCD,0 6= PQCD/PQCD,0. If one were to use the

scaled pressure instead, one for find a different limit for λ. Additionally, our choice of µ̂ = 1 is somewhat

arbitrary and varying this scale will result in further variation of the constraint on the effective ’t Hooft

coupling.
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A.1 Gluon polarization tensor

In N = 4 SYM, there are six diagrams that contribute to the LO gluon self energy. In the

HTL limit, for massless bosons and fermions, the gluon polarization tensor was derived in

ref. [57]

Πµν
ab (p) = −g2Ncδab

∫
d3k

(2π)3

f(k)

|k|
p2kµkν − (p · k)(pµkν + kµpν) + (p · k)2gµν

(p · k)2
, (A.1)

where f(k) ≡ 2ng(k)+8nq(k)+6ns(k) is the effective one-particle distribution function for

an N = 4 SYM theory. The coefficients of ng, nq, ns are equal to the number of degrees of

freedom of the gauge field, fermions, and scalars. Since Πµν
ab (p) is symmetric and transverse

in its Lorentz indices, it is gauge independent.

We can define the Debye mass for the gauge field using

m2
D = −gµνΠµν

aa (p) = 2g2Nc

∫
d3k

(2π)3

f(k)

|k|
= 2λT 2, λ = g2Nc , (A.2)

which has been given previously in refs. [3] and [57]. Then using integration by parts from

ref. [39] applied to (A.1), we obtain

Πµν(p) = −g2Nc

∫
d3k

(2π)3

∂f(k)

∂|k|

[
yµyν

p · n
p · y

− nµnν
]
, (A.3)

where yµ ≡ kµ/|k| = (1,k/|k|) ≡ (1, ŷ). After integration over the length of momentum

|k|, the HTL gluon polarization tensor can be written as

Πµν(p) = m2
D

[
T µν(p,−p)− nµnν

]
. (A.4)

Where we have introduced a rank-two tensor T µν(p, q) which is defined only when p+q = 0

as

T µν(p,−p) =

〈
yµyν

p · n
p · y

〉
ŷ

. (A.5)

The angular brackets indicate averaging over the spatial direction of the light-like vector

y. The tensor T µν is symmetric in µ and ν, and satisfies the “Ward identity”

pµT µν(p,−p) = (p · n)nν . (A.6)

As a result, the polarization tensor Πµν is also symmetric in µ and ν and satisfies

pµΠµν(p) = 0,

gµνΠµν(p) = −m2
D . (A.7)

The gluon polarization tensor can also be expressed in terms of two scalar functions,

the transverse and longitudinal polarization functions ΠT and ΠL, defined by

ΠT (p) =
1

d− 1

(
δij − p̂ip̂j

)
Πij(p),

ΠL(p) = −Π00(p) , (A.8)
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where p̂ = p/|p| is the unit vector in the direction of p. The gluon polarization tensor can

be written in terms of these two functions

Πµν(p) = −ΠT (p)Tµνp −
1

n2
p

ΠL(p)Lµνp , (A.9)

where the tensor Tp and Lp are

Tµνp = gµν − pµpν

p2
−
nµpnνp
n2
p

,

Lµνp =
nµpnνp
n2
p

. (A.10)

Above, the four-vector nµp is

nµp = nµ − n · p
p2

pµ , (A.11)

which satisfies p · np = 0 and n2
p = 1− (n · p)2/p2. Then (A.7) reduces to the identity

(d− 1)ΠT (p) +
1

n2
p

ΠL(p) = m2
D , (A.12)

at the same time, we can use T 00 to represent

In the HTL limit, the polarization functions ΠT (p) and ΠL(p) can we written in terms

of T 00

ΠT (p) =
m2
D

(d− 1)n2
p

[
T 00(p,−p)− 1 + n2

p

]
,

ΠL(p) = m2
D

[
1− T 00(p,−p)

]
. (A.13)

Note that it is essential to take the angular average in d = 3 − 2ε in (A.5), and then

analytically continue to d = 3 only after all poles in ε have been elimimated. The expression

for T 00 is

T 00(p,−p) =
ω(ε)

2

∫ 1

−1
dc (1− c2)−ε

p0

p0 − |p|c
, (A.14)

where the weight function ω(ε)

ω(ε) =
Γ(2− 2ε)

Γ2(1− ε)
22ε =

Γ
(

3
2 − ε

)
Γ
(

3
2

)
Γ(1− ε)

. (A.15)

The integral in (A.14) must be defined so that it is analytic at |p0| = ∞. It then has a

branch cut running from p0 = −|p| to p0 = |p|. If we take the limit ε → 0, it reduces to

its d = 3 form

T 00(p,−p) =
p0

2|p|
log

p0 + |p|
p0 − |p|

. (A.16)

From the results above, we see that the definition of the gluon self energy in (A.1)

and (A.4) is the same as in QCD in ref. [49] up to the definition of mD. Furthermore,

as shown in ref. [57], this means that the HTL three-gluon vertex, four-gluon vertex, and

ghost-gluon vertex are also the same as obtained in QCD after adjustment of mD.
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A.2 Gluon propagator

The Feynman rule for the gluon propagator is

iδab∆µν(p) , (A.17)

where the gluon propagator tensor ∆µν depends on the choice of gauge fixing. In the limit

ξ →∞, the its inverse reduces to

∆−1
∞ (p)µν = −p2gµν + pµpν −Πµν(p)

= − 1

∆T (p)
Tµνp +

1

n2
p∆L(p)

Lµνp , (A.18)

where ∆T and ∆L are the transverse and longitudinal propagators

∆T (p) =
1

p2 −ΠT (p)
,

∆L(p) =
1

−n2
pp

2 + ΠL(p)
. (A.19)

The inverse propagator for general ξ is

∆−1(p)µν = ∆−1
∞ (p)µν − 1

ξ
pµpν , (A.20)

then by inverting the tensor ∆−1(p)µν , we can get

∆µν(p) = −∆T (p)Tµνp + ∆L(p)nµpn
ν
p − ξ

pµpν

(p2)2
. (A.21)

In the course of the calculation it proved to be convenient to introduce the following

propagators

∆X(p) = ∆L(p) +
1

n2
p

∆T (p) . (A.22)

Using (A.12) and (A.19), it can also be expressed as

∆X(p) =
[
m2
D − dΠT (p)

]
∆L(p)∆T (p) , (A.23)

which vanishes in the limit mD → 0. Using this form, gluon propagator tensor can be

written as

∆µν(p) =
[
−∆T (p)gµν + ∆X(p)nµnν

]
− n · p

p2
∆X(p)(pµnν + nµpν)

+

[
∆T (p) +

(n · p)2

p2
∆X(p)− ξ

p2

]
pµpν

p2
. (A.24)
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A.3 Quark self-energy

In N = 4 SYM theory, there are three diagrams that contribute to the quark self energy.

In HTL limit, the quark self energy was computed in ref. [57] for massless bosons and

fermions

Σij
ab(p) =

g2

2
Ncδabδ

ij

∫
d3k

(2π)3

f(k)

|k|
6k
p · k

. (A.25)

This form is not complicated and we can divide |k| directly for the last part in (A.25)

giving

Σij
ab(p) =

g2

2
Ncδabδ

ij

∫
k2dk

2π2

f(k)

|k|

∫
dΩ

4π

6y
p · y

, (A.26)

after integration for momentum |k|, the HTL quark self energy can be written as

Σ(p) = m2
q 6T (p), m2

q =
1

2
λT 2 , (A.27)

where we have suppressed the trivial Kronecker deltas and

T µ(p) ≡
〈
yµ

p · y

〉
ŷ

, (A.28)

and m2
q is the quark mass in super symmetry, satisfies m2

q = 1/4m2
D.

Similar to the gluon polarization tensor, the angular average in T µ can be expressed as

T µ(p) =
ω(ε)

2

∫ 1

−1
dc(1− c2)−ε

yµ

p0 − |p|c
. (A.29)

The integral in (A.29) must be defined, so that it is analytic at |p0| = ∞. It then has a

branch cut running from p0 = −|p| to p0 = |p|. In three dimensions, it can be written as

Σ(p) =
m2
q

2|p|
γ0 log

p0 + |p|
p0 − |p|

+
m2
q

|p|
γ · p̂

(
1− p0

2|p|
log

p0 + |p|
p0 − |p|

)
. (A.30)

We can see that the definition of quark self energy in (A.27) is the same as in QCD [50]

up to the definition of mq and taking into account that there are four Majorana fermions

indexed by i. In practice, this means that the quark propagator, quark-gluon three vertex

and quark-gluon four vertex in HTLpt are the same as in QCD after the appropriate

adjustment of the group structure constants. We will take the results for these from ref. [50]

with the understanding that the finite-temperature quark mass should be understood to

that of the SYM theory.

A.4 Quark propagator

The Feynman rule for the quark propagator is

iδabδijS(p) with S(p) =
1

6p− Σ(p)
, (A.31)

where i, j index the Majorana fermion being considered. As a result, the inverse quark

propagator can be written as

S−1(p) = 6p− Σ(p) ≡ 6A(p) , (A.32)
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where Aµ(p) = (A0(p),As(p)p̂) with

A0(p) = p0 −
m2
q

p0
Tp ,

As(p) = |p|+
m2
q

|p|
[
1− Tp

]
. (A.33)

A.5 HTL quark counterterm

The insertion of an HTL quark counterterm into a quark propagator is

iδabδijΣ(p) , (A.34)

where Σ(p) is the HTL quark self energy given in (A.27).

A.6 Scalar self-energy

There are four diagrams that contribute to the scalar self energy in N = 4 SYM theory.

In the HTL limit, the scalar self energy PABab was computed in ref. [57] for massless bosons

and fermions

PABab (p) = g2Ncδabδ
AB

∫
d3k

(2π)3

f(k)

|k|
. (A.35)

After integration over the length of the three-momentum |k|, the HTL scalar self energy

reduces to

PAAaa (p) = g2NcT
2 = λT 2 = M2

D , (A.36)

where M2
D is the adjoint scalar mass, which has been given in refs. [3, 57]. We can see that

it satisfies M2
D = m2

D/2 = 2m2
q .

Note that the scalar self energy is a constant, which means that it only affects the scalar

propagator and not the scalar-gluon and scalar-quark vertices in N = 4 SYM theory. This

is due to the fact that the HTL Lagrangian density LHTL is a combination of the fields

and their corresponding covariantized self energies and the HTL vertices are obtained

by expanding the covariant derivatives Dµ appearing in the HTL effective Lagrangian in

powers of the gauge field Aµ. Since there are no covariant derivatives appearing in the

scalar contribution to the HTL effective action (2.9), the scalar-gluon vertices will not

receive corrections in HTLpt.4,5

A.7 Scalar propagator

The Feynman rule for the scalar propagator is

iδabδAB∆s(p) , (A.37)

4Ref. [39] details the steps necessary to obtain the QCD HTLpt propagators and vertices from the QCD

HTL effective action for both equilibrium and non-equilibrium systems.
5We are grateful for the authors of ref. [57] for bringing this to our attention.
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where

∆s(p) =
1

p2 −M2
D

, (A.38)

and its inverse is

∆−1
s (p) = p2 −M2

D . (A.39)

A.8 HTL scalar counterterm

The insertion of an HTL scalar counterterm into a scalar propagator is

−iδabδABPAAaa (p) , (A.40)

where PAAaa (p) is the HTL scalar self energy given in (A.36).

A.9 Quark-gluon vertex

The quark-gluon vertex with incoming gluon momentum p, incoming quark momentum r,

and outgoing quark momentum q, Lorentz index µ, and color indices a, b, c is

Γµ,ijabc (p, q, r) = −gfabcδij
[
γµ +m2

q T̃ µ(p, q, r)
]

= −gfabcδijΓµ(p, q, r) . (A.41)

Note that the sign on the second term differs from ref. [50]. This appears to be a typo in

the original reference. The rank-one tensor T̃ µ in the HTL correction term is only defined

for p+ r − q = 0

T̃ µ(p, q, r) =

〈
yµ
(

6y
(y · r)(y · q)

)〉
ŷ

, (A.42)

and is even under the permutation of q and r. It satisfies the “Ward identity”

pµT̃ µ(p, q, r) = 6T (r)− 6T (q) . (A.43)

Note that the overall sign here differs from ref. [50]. This appears to be a typo in the

original reference. The quark-gluon vertex therefore satisfies the Ward identity

pµΓµ(p, q, r) = S−1(q)− S−1(r) . (A.44)

A.10 Quark-gluon four vertex

The quark-gluon four vertex with outgoing gluon momentum p, q, incoming quark momen-

tum r, and outgoing quark momentum s is

Γµν,ijabcd (p, q, r, s) = −ig2δijm2
q T̃

µν
abcd(p, q, r, s) , (A.45)

where we note that compared to QCD, the SYM theory has only quark indices in the adjoint

representation. There is no tree-level term. The rank-two tensor T̃ µν is only defined for

p+ q + s− r = 0

T̃ µνabcd(p, q, r, s) = fcdefbae

〈
yµyν

6y
(y · r)(y · s)[y · (r − p)]

〉
+fbdefcae

〈
yµyν

6y
(y · r)(y · s)[y · (s+ p)]

〉
, (A.46)
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and satisfies

δijδadδbcΓµνabcd,ij(p, q, r, s) = −4ig2NcdAΓµν(p, q, r, s) , (A.47)

where

Γµν(p, q, r, s) = m2
q

〈
yµyν

(
1

y · r
+

1

y · s

)
6y

[y · (r − p)][y · (s+ p)]

〉
. (A.48)

This tensor is symmetric in µ and ν, and satisfies the Ward identity

pµΓµν(p, q, r, s) = Γν(q, r − p, s)− Γν(q, r, s+ p) . (A.49)

A.11 Four-scalar vertex

The four-scalar vertex does not depend on the momentum and is

ΓABCDabcd (p, q, r, s) = −ig2

[
fabefcde

(
δACδBD − δADδBC

)
+facefbde

(
δABδCD − δADδBC

)
+fadefbce

(
δABδCD − δACδBD

)]
. (A.50)

This vertex satisfies

δbdδacδACδBDΓABCDabcd (p, q, r, s) = (−ig2)(60NcdA) , (A.51)

where δAA = 6 for six scalars in this theory.

A.12 Scalar-gluon vertex

The scalar-gluon vertex with incoming gluon momentum p, incoming scalar momentum r,

and outgoing scalar momentum q is

Γµ,ABabc (p, q, r) = gfabcδ
AB(r + q)µ . (A.52)

A.13 Scalar-gluon four vertex

The scalar-gluon four vertex is independent on the direction of the momentum, and it can

be expressed as

Γµν,ABabcde (p, q, r, s) = −2ig2gµνδABfadefbce , (A.53)

and satisfies

δacδbdδABΓµν,ABabcde (p, q, r, s) = (2ig2)(6NcdA)gµν . (A.54)
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Figure 8. Numerical solution of the gap equations for MD and mD as a function of λ for the case

mq = 0. In both panels the results are scaled by their corresponding leading-order weak-coupling

limits.

A.14 Quark-scalar vertex

Since fermions have different interactions with the scalar (Xp) and pseudoscalar (Yq) de-

grees of freedom, there are two kinds of vertex needed. One is quark-scalar vertex, with

incoming scalar momentum p, outgoing quark momentum q and incoming quark momen-

tum r, and their corresponding colors a, b, c respectively. This vertex can be written as

Γ
p
abc,ij(p, q, r) = −igfabcαpij . (A.55)

The other one is quark-pseudoscalar vertex

Γ
q
abc,ij(p, q, r) = gfabcβ

q
ijγ5 . (A.56)

B The comparison of the results under mq = 0 and mq = mgap
q

As discussed in the main body of the text, it is not formally necessary to include the quark

contribution in the HTL effective Lagrangian since the fermionic sector is infrared safe. As

a result, one can consider an alternative reorganization which starts from a purely-gluonic

HTL effective Lagrangian. Formally, this can be accomplished by setting mq = 0 from

the beginning. This choice affects the solutions to the scalar and gluon masses and hence

results in a different predicition for the thermodynamic functions. In figure 8 we present

a comparison of the scalar and gluon masses resulting from the choice mq(λ) = 0. We

find that the solutions with mq = 0 are qualitatively similar to those with mq = mgap
q

shown in figure 4, however, small quantitative differences remain. In order to assess the

differences between the two quark mass schemes, in figure 9 we present the ratio of the

solutions obtained with mq = 0 to those obtained with mq = mgap
q (6.13). As can be

seen from this figure, the differences between the two schemes are maximally on the order

of 40%, with the largest deviations occurring at very large couplings. Note that, despite

these differences, both schemes have MD → 0 and mD → 0 in the large coupling limit as
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Figure 9. Ratio of the numerical solutions of the MD and mD gap equations for the two quark

mass schemes: mq = 0 and mq = mgap
q (6.13).
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Figure 10. Comparison of two different quark mass prescriptions: mq = 0 and mq = mgap
q .

NLO HTLpt results with these prescriptions are shown as solid blue and long-dashed red lines,

respectively. We also include plots of the results obtained in the strong and weak coupling limits

along with the [4,4] Padé approximant.

can be seen in figures 4 and 8. Finally, in figure 10 we present a comparison of the final

result for the scaled entropy using the two different quark mass prescriptions: mq = 0 and

mq = mgap
q . The NLO HTLpt results with these two prescriptions are shown as solid blue

and long-dashed red lines, respectively. We also include plots of the results obtained in the

strong and weak coupling limits along with the [4,4] Padé approximant. As can be seen

from this figure, there is a dependence on the quark mass scheme, however, it is on the

order of the size of the uncertainty bands of the full NLO HTLpt calculation. If one were

to go to NNLO, presumably the difference between the two schemes would be diminished

further.
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