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ABSTRACT: Thermal leptogenesis, in the framework of the standard model with three ad-
ditional heavy Majorana neutrinos, provides an attractive scenario to explain the observed
baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana
neutrinos in a thermal bath of standard model particles, which in a fully quantum field
theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading
two-loop contributions from leptons and Higgs particles are included, but not yet gauge
corrections. These enter at three-loop level but, in certain kinematical regimes, require a
resummation to infinite loop order for a result to leading order in the gauge coupling. In
this work, we apply such a resummation to the calculation of the lepton number density.
The full result for the simplest “vanilla leptogenesis” scenario is by O(1) increased com-
pared to that of quantum Boltzmann equations, and for the first time permits an estimate
of all theoretical uncertainties. This step completes the quantum theory of leptogenesis
and forms the basis for quantitative evaluations, as well as extensions to other scenarios.
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1 Introduction

The origin of the observed baryon asymmetry in the universe is an as yet unsolved problem
of physics. Although the standard model of particle physics (SM) features baryon plus lep-
ton number (B+ L) and C P-violating processes before the electroweak phase transition [1],
the amount of C'P violation is too small to arrive at the observed asymmetry [2]. Moreover,
for the experimentally observed Higgs mass of ~ 125 GeV [3], the electroweak phase transi-
tion is merely an analytic crossover [4—6], whereas a sufficiently strong first-order transition
is required to provide a departure from equilibrium for baryogenesis. Viable models for



baryogenesis are thus based on extensions of the SM, with, e.g., additional particles on a
GUT scale, which then generate a finite asymmetry via CP-violating out-of-equilibrium
decays.

A particularly attractive model in this context is thermal leptogenesis [7]. In this case,
the SM is extended by three additional right-handed Majorana neutrinos, with Yukawa
couplings to the SM Higgs field and left-handed leptons. In the standard scenario [8],
these Majorana neutrinos are produced in the early universe at temperatures beyond their
mass scale, T' > M. When the temperature drops below their mass, they decay out-of-
equilibrium violating C' P, such that a lepton asymmetry is generated. Additional washout
processes diminish this asymmetry, until they fall out of equilibrium and a finite lepton
asymmetry is frozen in. Any lepton asymmetry is partially converted into a baryon asym-
metry via SM sphaleron transitions, which violate B+ L while keeping B— L constant [9, 10].
Besides giving robust predictions for baryogenesis, this simple extension of the SM would
also explain the smallness of the light neutrino masses via the see-saw mechanism [11]. For
recent reviews, also including other scenarios for leptogenesis, see [12-17].

Since leptogenesis is a non-equilibrium process, it is frequently studied using Boltz-
mann equations, which are inherently classical. For the collision terms, zero temperature
matrix elements are used, supplied with thermal momentum distribution functions which
introduce quantum effects. However, also off-shell and memory effects become important
for non-equilibrium processes and have to be treated appropriately. Further conceptual dif-
ficulties arise in gauge theories, where gauge boson numbers are neither gauge invariant nor
conserved. The problem of including quantum effects by hand into a classical framework is
avoided by a formal, quantum field theoretical treatment based on Kadanoff-Baym equa-
tions, which contain everything once computed to sufficient depth in perturbation theory.
In [18], quantum corrections to the Majorana neutrino reaction rates due to Higgs and lep-
ton loops have been included, and a detailed comparison with the solutions of Boltzmann
equations was given. Qualitative agreement was achieved by additionally introducing ther-
mal damping widths for Higgs and lepton propagators, which are expected to be caused
by interactions with the weak gauge bosons and may significantly modify the result at a
quantitative level [19].

In this work we complete the quantum mechanical treatment of leptogenesis by calcu-
lating gauge corrections systematically. First entering at three-loop level, their evaluation is
complicated by the dynamical generation of scales, which necessitate infinite resummations
in order to complete even a leading-order result in the gauge coupling. Such resummations
have been performed for the Majorana neutrino self-energy and the associated production
rate [20]. Here we extend these calculations to the lepton number density in a first complete
quantum mechanical calculation of leptogenesis. Our formulation using Kadanoff-Baym
equations [18] differs from other field-theoretical approaches, in which rate equations are
obtained by exploiting hierarchies of scales in the non-relativistic regime, 7' < M [21-24].

In order to render this paper self-contained, sections 2 and 3.1 recall the formalism
and previous results, which form the basis for our calculation. In section 3.2, we devise a
resummation technique to systematically include gauge corrections to the lepton number
density, which then is complete to leading order in all SM corrections. In section 4, some



approximations are motivated which allow for a simple evaluation. Finally, we compare to
previous results in the literature and discuss the significance of gauge corrections.

2 Thermal leptogenesis in non-equilibrium quantum field theory

2.1 The leptogenesis scenario

Starting from the SM, a standard approach to leptogenesis is to add three additional right-
handed Majorana neutrinos (which are electroweak singlets) to the Lagrangian Lgy,

. =~ _ 1 _ _
L=Lsm+ VRilaVRi + lLi(ZS)\z‘jVRj + l/Rinleigf) — §Mij (V%iVRj + VR]'VJC%) . (2.1)

Here the flavour indices 7,5 = 1,2,3 count the families in the gauge eigenbasis, and we
denote v, = CD}Q, with C' = iy?+? the charge conjugation matrix, and <Z> = io9¢*. The ad-
ditional neutrinos are weakly coupled to SM Higgs fields ¢ and massless left-handed leptons
lr; via Yukawa couplings A;;. Without loss of generality, we consider here the simplest sce-
nario, also termed “vanilla leptogenesis”, in which the final asymmetry is assumed to be in-
dependent of its flavour composition and, in a diagonal mass basis, the Majorana masses M;
are hierarchically ordered, M;~1 > M; := M. For a review including details, viable param-
eter ranges and other scenarios, see [8]. In this case, the two heavier neutrinos can be inte-
grated out, leading to the effective Lagrangian for the lightest neutrino N = Ny = vg1+v§,,

1 _ - - 1
L= Ly + 5NiaN + LA N + NTX1 Clpid — 5MNTCN
1 1, - .
+ §7h‘jl€i¢0lm¢ + §nilei¢Cf£j¢ (2.2)

with an effective vertex for lepton and Higgs fields and a combination of Majorana neutrino
couplings, respectively,

1
Tij = ZAMEA@ . A= Z |Ait]? . (2.3)

k>1

The heavy neutrino mass is in the range 10° GeV < M < 10'° GeV [8], and its coupling is
assumed very weak compared to SM couplings gsm, A < gsm. Explicitly, the relevant SM
couplings for our work are the SU(2) and U(1) gauge group couplings g and ¢’, the Yukawa
coupling of the top quark h;, and the Higgs self coupling Ay, i.e. gsm € {g,9', he, \/ Ao}
During the generation of the lepton asymmetry, the heat bath is kept in thermal
equilibrium via SM interactions. These act on a time scale Tsn ~ 1/(g3yT), which is
much shorter than the equilibration time of the heavy neutrino, 7y ~ 1/(\2M) for T > M,
which thus is out of equilibrium. During this first stage, heavy Majorana neutrinos are
produced from zero initial abundance by scattering of leptons and Higgs bosons. This
out-of-equilibrium process generates an initial lepton asymmetry, which is later diminished
by washout processes. At temperatures 7' ~ M, part of the Majorana neutrinos decay out
of equilibrium to produce a final lepton asymmetry, or B — L > 0, which is of the same
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Figure 1. Non-equilibrium (left) and equilibrium (right) contours C in the complex time plane.

size as the initial one [25].! Since one can neglect the Hubble expansion, i.e. assume a
constant temperature, during the first stage, we will for technical convenience follow [18]
in calculating this initial lepton asymmetry at fixed T starting from zero initial Majorana
neutrino abundance. In reality, any lepton asymmetry gets continually converted to a
baryon asymmetry by sphaleron processes, which are in equilibrium for temperatures above
the electroweak phase transition. Our first calculation of gauge corrections focuses on the
lepton aymmetry only and neglects these and other spectator processes, which may affect
the final baryon asymmetry by ~ 50% [26-28|.

2.2 Correlation functions and Kadanoff-Baym equations

In a quantum field theoretical description of leptogenesis, the desired information is encoded
in the non-equilibrium correlation function of the Majorana neutrino, which is weakly
coupled to a thermal bath of SM particles. This requires the real time formalism of thermal
quantum field theory [29], in which two-point Green functions live on a contour C in the
complex time plane, whose form depends on whether the field is in equilibrium or not,
cf. figure 1. Our formulation and notation follows [18], where details of the calculation can
be found. Green functions can be expressed in terms of Wightman functions, which for a
real scalar field read

Ac(:l)l,wg) = QC( 15 g)A (xlva) + 90($8,$?)A<(x1,1’2) )
A7 (21,22) = (¢(21)9(22)) ,
A= (z1,22) = (O(22)¢(21)) | (2.6)

with the Heaviside f¢-function enforcing path ordering along the time contour C. These in
turn are related to the spectral function and statistical propagator, respectively,

A7 (w1, 22) = U[6(w1), dlaa))) = i( A (w1,22) = A (w1,22)) | (2.7)
AF(ar, ) = S0, @)} = 5 (A (@, m) + A% m)) . (28)

Analogous quantities are defined for the Green functions of leptons and the heavy Majorana
neutrino, with the role of (anti-)commutators exchanged for fermions,

Sos(@iw2) = il{lpa(@1), L p(z2)}) s Sis(ar,22) = %(UL,a(ml)J_L,ﬁ(ﬂh)D , o (29)

G (11, 22) = i{{Na(21), Ng(22)}) ,  Giglar,a2) = 1([J\sz(fﬂl),Nﬁ(%z)b - (2.10)

2

LA final lepton asymmetry of similar size is also generated when starting from a non-zero Majorana

neutrino abundance [25].



In the following, Il denotes the self-energy of the leptons and ¥ that of the Majorana
neutrino. These are equally defined on the time contour and can be similarly decomposed
into Wightman functions,

Ye(xy,x2) = Oc(29, 29)87 (21, 29) + O (23, 29) X< (21, 22) . (2.11)

According to the physics scenario given in section 2.1, the non-equilibrium Green
function of the Majorana neutrino has to be evaluated on the Schwinger-Keldysh contour,
figure 1 (left), while the lepton and Higgs fields are in the thermal bath of SM particles
described by the equilibrium contour, figure 1 (right), with inverse temperature 5 = 1/T.
The full time evolution of the Majorana neutrino correlation function is given by the coupled
set of Kadanoff-Baym equations,

C(iy°0;, — py — M)Gy (t1,t2) (2.12)
to

+/dt’cz;(t1,t’)G;(t’,tz) =0,

t1
C(in°0r, — py — M)Gy (11, t2) (2.13)
t1 t2
—/dt’CE;(tl,t’)G;(t’,tQ) = _/dt’czg(tl,t’)(;;(t’,tg) ,
t; t;

with the spatial Fourier transforms assuming spatial homogeneity (x = x; — x3),

G§ (tl, tg) = /d3x eiipri(tl, t2,X) , (2.14)

Z:; (tl, tz) = /d?)l‘ e_ipri(tl, tQ, X) . (2.15)

These equations are exact and in particular contain all quantum effects. Interactions with
the plasma are automatically included via the self-energies X% (1, z32), as can be seen via
generalised cutting rules. The leading-order contribution to the self-energy is given by the
diagram in figure 2.

An analytic solution can be obtained if the Yukawa coupling of the Majorana neutrino
to the thermal bath is weak, so that back-reactions, being of higher order and additionally
suppressed by the large number of degrees in freedom of the bath, can be neglected, and
a narrow-width approximation I' ~ \2T < T is justified [18].2 Since the particles in the
loop are thermal, the heavy neutrino spectral function is time-translation invariant,

Gy (t1,t2) = Gy (t1 — ta) . (2.16)

Using a zero abundance of the Majorana neutrinos at initial time ¢; = 0 and denoting

2Note that for T'< M one has I' ~ \2M < M.



Figure 2. One-loop self-energy contribution to the Majorana neutrino self-energy CE;E.

ti2 = (t1 + t2), At12 = (t1 — t2), the solution for the Kadanoff-Baym equation is

M —
71)7 Sin(prtm)) e_Fp(WP)‘AthQC_l , (2‘17)

Gp(Atyg) = (i'yo cos(wpAti2) + -
P

M —
Gg(tm, Atlg) = — <i’)/0 Sin(prtu) — Tm COS(prt12)> (2.18)
P

1 B —I'p(wp)|At12]/2 —T'p(wp)t12/2 -1
[ch<2> o + fr(wp)e™ PP o,

with wp = /p2 + M2 and the Fermi-Dirac distribution function fr(wp).
In general, I'p is the Majorana neutrino decay width resulting from its self-energy via

WLy () = itr (—ipS5 (@) - (2.19)

At the level of the calculation in [18], this decay width does not include gauge corrections,
and for its later use in the lepton number matrix is modeled by a momentum-independent
constant. In section 3 we extend the calculation to include gauge corrections, and keep
the full momentum-dependence in the lepton number matrix. Due to its appearance in
the Majorana neutrino propagators, we will often need the on-shell value I'p(wp), which
satisfies

I'p(wp) = I'p(—wp) = I'—p(wp)- (2.20)
2.3 The lepton number matrix

A net lepton number density is obtained from the flavour-diagonal lepton number current
1 ‘
m= =y [t >, (2.21)

P — JrAM = i ugt
Jig (@) = lin®le, :vl’lin tr[ St (@, m)} . (2.22)

T

The lepton number matrix is defined as the (spatial) Fourier transform of the current’s
zero component,

Ligii (1) = —tr [1°Sfp ;00| (2:23)

It has to be evaluated calculating the leading order correction to the lepton statistical prop-
agator, contributing the necessary C P-violation. The corresponding Feynman diagrams are
shown in figure 3, giving [18]

t t
Lk,Z"L‘ = 121m zl ’I’])\ il /dtl /dtQ Re tI‘ H( )> (tl,tQ)Slf(tQ *tl))} 5 (224)
0 0



with the lepton self-energy from the first graph?® in figure 3,
W07 (tt) = [dta [ en)p - K - d)en @ e 4kt a) (2.25)
p,q,k,q’
0

X [ép(tl,tg)H(Atgg) (s;(Atgg)Ag,(At%) - Slf,(Atgg)A;,(Atgg)> A;(Atm)PL] .

Here we introduced the notation [, = [ d3p/(27)3 and Gp is the scalar non-equilibrium
part of the Majorana neutrino propagator, connected to the full propagator via projections

PpGp(t1,t2)CPp = PLGY\(ty — t2)C P + Gp(t1, t2) Py (2.26)

with the solution I,
Gp(t1,t2) = — cos(wpAta) fr(wp)e P12/ (2.27)

Wp

Note that the equilibrium part of the neutrino propagator does not contribute. We do not
need and hence do not give the explicit form of the Higgs and lepton propagators A% and
SE, which can however be found in [18]. Using the relations between the different kinds of
propagators [29] and identifying

S o (Atas) = S5 (Atas) A (Atgs) i o(w) = —2fr (w)Im(Si (w)) | (2.28)

it is possible to express the lepton number matrix in terms of the retarded Majorana
neutrino self-energy %', Using Im(\}; (nA\*)i1) = 167e;;/(3M), with €;; parametrising the
strength of CP violation [30], we have

Ly ;i (t) (229
) t t to 0 q 0 d
_ 567e;; /dtl/dtz/dtg / w21 w23 / (27r)653(p_k/_q/)53(p—|—k+Q)
M 27 2T Jp a4
0 0 0 - -

x Gp(t1,t3) frr(wa ) tr (ImBY o (wo1)ImBE, o (was)) Re [e*i@ﬂﬁtz’ﬁwsms) :

This expression contains quantum mechanical off-shell and memory effects. However, it
does not yet contain corrections from interactions with SM gauge bosons, which introduce
thermal damping and the associated widths for the Higgs and lepton fields. As explained
in a detailed discussion in [18], this fact is responsible for the apparent difference between
quantum Boltzmann solutions and the present solution of Kadanoff-Baym equations. More-
over, for T' 2 M these damping widths are of order vy, 4 ~ g%MT > AT ~ T, i.e. larger than
the heavy neutrino rate, and hence can modify the result significantly [19]. Any quantitative
theory of quantum leptogenesis therefore requires a systematic inclusion of these effects.

3 Gauge corrections to leptogenesis

The inclusion of gauge corrections to thermal leptogenesis is complicated by the fact that
it happens before the electroweak transition, i.e. gauge bosons are massless and the non-
abelian weak dynamics are QCD-like [31-33]. This in particular implies the dynamical

3The contribution of the second graph can be expressed in terms of the first one.
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Figure 3. Two-loop corrections to the lepton self-energy II* leading to non-zero lepton number
densities.

generation of mass scales ~ T, ¢T, ¢*>T, of which the ultra-soft ~ ¢*>T is entirely non-
perturbative. For processes with gauge particles on the soft scale ~ g7, hard thermal loops
(HTL) contribute the same power in the coupling constant to the self-energy to any loop
order, and hence have to be resummed when counting orders in the gauge couplings [29, 34].
Here we consider fermion processes, whose external momenta in a plasma are typically hard,
k ~ T. Nevertheless, for hard momenta near the light cone, k? ~ ggMTQ7 loop momenta
collinear with the external ones require a similar resummation of collinear thermal loops
(CTL) [35]. For power counting purposes, all SM couplings are considered as parametrically
the same.

3.1 CTL resummation of the Majorana neutrino self-energy

As a first step, we need the gauge corrections to the Majorana neutrino self-energy and
its proper resummation shown in figure 4 to determine the Majorana neutrino production
rate [20]. One effect of interactions with the plasma is to modify the dispersion relations

of the thermalised leptons and Higgs particles by the asymptotic thermal masses®
1
Moo = 1—6(392 + 9”7 +4hi +8))T7
1
My = E(3g2 + g1, (3.1)

Next, we consider nearly collinear momenta k close to the light cone, pointing approxi-
mately in the three-direction of the light-like four-vector v = (1,v), v? = 1. Three-momenta
are then specified by components parallel and perpendicular to v,

k:k”{f—FkJ_, with k”::k-v, k, -v=0. (32)
The leptonic and Higgs loop momenta thus satisfy
ky~T, |ki|~gsmT, v-k~ ggMT . k2~ g%MTZ , (3.3)

and thermal masses are important. Further, the gauge loop momenta are considered soft,
uy ~ gsmT.

4Since other Yukawa couplings are very small, we include only the coupling of the top quark.



Figure 4. Majorana neutrino self-energy contributions with one and several additional gauge
bosons with soft three-momentum u ~ ggmT.

In this kinematical region the diagrams without and with gauge corrections, figures 2
and 4, respectively, are parametrically the same,

2
1
2 4 2
El—loop ~ gsm <2 gsm ~ 9gsMm >
~—~ 9Sm ~—~
3-vertex factor ==~ phase space integration
propagators
1 5
2 2 4 \2 2
Y2 loop ™~ 9SM 93M (2 > (9sm) ~gsm - (34)
~~ ~~ 9SM ~
3-vertex factor gauge boson vertices " phase space integration
propagators

The 3-vertex factor in each expression arises kinematically, where we followed the power
counting rules from [20, 35]. Thus, adding soft internal gauge boson lines does not increase
the order in the gauge coupling and necessitates a resummation of the entire ladder to
infinite loop order, figure 4, while contributions from crossed ladder rungs and vertex
corrections to loop particles are further suppressed [20, 35].

The problem corresponds to the Landau-Pomeranchuk-Migdal effect and has also been
solved for gluon radiation in a QCD plasma [36]. Its application to the heavy Majorana
neutrino was treated in [20], where the ladder-resummed self-energy, including thermals
widths of the Higgs and leptons, is written as

A Fpy k) [~ kb g
S (w) = _)\22/1(()(19”) ( 2k ) : <_f44;€”f , 1/;) (3.5)

ki —pj 1

with d(r) = 2 the dimension of the SU(2) fundamental representation and the combination
of Fermi-Dirac and Bose-Einstein distributions

F(py, k) = fr(ky) + fek) —py) - (3.6)

The functions ¢ and f = (f!, f?) are defined as solutions of the integral equations

. d?u
le(p, k)f(kj_) — / WCUHJ_D [f(kJ_) — f(kJ_ — uL)] = 2kJ_ 5 (37)
2U
i) ~ [ G5 (k) ~ vlles —un)] =1, (38)

with the kernel

u) =7 |21 (1o = ot )+ (o - )| - 69

luy|? !uﬂ2+m2D luy |2 |UL|2+m/1:2>




The kernel is obtained from the gauge field propagator and contains the ladder resumma-
tion, with the SU(2) Casimir operator Ca(r) = 3/4, the hypercharge y; = —1/2, and the
HTL-resummed Debye masses [37]

11
m3, = €92T2 , mp= Eg’2T2 : (3.10)

The quantity €(p, k) is given in a frame, where v || p and p; =0, as

e(w, . k) = alw,p, k) + B(py. kKT = Blpy, k) (Mg + k7)) , (3.11)
with
( k) + Moo Mis (3.12)
oW, Pl =w-—=p - ) .
o "ok ) 2K
p|
k)= 3.13
By, k) 2k, (hy — 7)) (3.13)
naz, = Moo = ) oy + 2hy(w — pp) Uy ) (3.14)
‘ p|

The integral egs. (3.7), (3.8) are best solved in Fourier space,

2 2
o) = [ Gsule)etre) = [ SRR (3a5)

Rotational invariance implies ¢(b) = ¢(b), f(b) = h(b)b, and the equations are converted
into ordinary differential equations,

16 (3 + 50— M3 ) w(t) ~ K(B)(0) =0, (3.16)
—ip (a& + %ab - Mgff) h(b) — K(b)h(b) =0, (3.17)

with KC(b) the Fourier transform of C(u,)®

K0 = s [0 [l (1) i), 19
The solution of egs. (3.16), (3.17) determines the Majorana neutrino self-energy in the form
im ) = Va0 [T (BRGS0
T k| —p) 0 Re(cap(w, p), k)
_ _)\Qc;(r) (m(cg,pu) Uw(:ip)) , (3.19)

5The calculation of KC(b) requires a renormalization procedure to perform the Fourier transformation as
well as the uy integral. A detailed calculation can be found in [20].

~10 -
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Figure 5. The fully gauge corrected oy, 4 (wp, ) and the JZI’;’; (wp,p||), including asymptotic masses
only, evaluated on-shell, w = wp, with M = 1012 GeV and T = 10! GeV.

where the co are asymptotic solutions

2

/%Re(kL f1(ky)) = %i_r)lg) Im(2h(b)) = 2Im(co,pn(w, py, Ky)) (3.20)
2

/ (dzf;Re(ka)) - %%Re(w(b)) = Re(czp(w, py, k) - (3.21)

The off-diagonal elements of eq. (3.19) receive contributions vanishing in the limit b — 0,
and O(1/b) divergent contributions. These are removed by renormalization, since they
appear in the temperature independent part of the self-energy, while the temperature
dependent part is given by the function F (p”, kH). For later use in the lepton number
density we define the functions

dky  F(py, k

ah(wypn) E/JWIm(CZh(W,p”,kD) , (3.22)
dky F(py, k

oy (w, p)) E/QJMRG(CM(MPHW) : (3:23)

Because of the symmetry between right- and left-handed Dirac components, we have

Shpw) = ZE (W), (3.24)
on(—w,p) = oy(w,p),  onlw,—p)) = op(w,p) - (3.25)

In order to quantify the effect of the ladder resummation, it is useful to also analyse
egs. (3.7), (3.8) with C(|uyr|) = 0, giving a Majorana neutrino self-energy which is only
partly corrected by asymptotic masses. The equations in this limit can be solved trivially
and one obtains after k| -integration

oMo (w p”) — /khigh ﬁf(p”’ kH) a(w,p”, kH) (326)
b bow 27 Ky = py 16K38(py, ky)1B(py, Ky

s (w ) ) _ /khigh %]:(p“,k“) 1 . (3'27)
v A kow 27 K —pp 418y, Kyl

- 11 -
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Figure 6. Transformation of the lepton self-energy diagram to a form amenable to resummation.

The integration boundaries in this case are given by

X VY

4w—=py)’

X +VY
4w—p)

Kiow = (3.28)

Fnigh =
with

X=mi, - mi,oo +2w-—ppp, Y= X% - 8mﬁm(w —-ppPp, Y =0. (3.29)

l,00

In figure 5 the fully corrected oy (wp,p)) are plotted for M = 1019GeV, T =
10" GeV, and compared to the U;;L;z)" (wp,p)- The latter are significantly smaller than
their fully resummed counterparts in most of the parameter space considered. Note that
above a certain py|, the 02:‘;;’ (wp, py) vanish kinematically.

For the SM corrected Majorana decay width we start with eq. (2.19). In Weyl basis it
is possible to simplify further,

Ip(w) = %u« [pm (55(w))] (3.30)
1 0 o-p) 0 Im (zggfp(w)>
~ 2" <a p 0 ) Im (zrﬁ,(w)) 0 ‘ (3:31)
Using p; = 0 we find

2 T
() = =2 (0 4 )y .y + (0~ py)ory(.)) - (3.52)

For all further calculations we only need the on-shell expression I'p = I'p(wp) in the Ma-
jorana neutrino propagator, see eq. (2.27). Note that the symmetry property for the
opp-functions (3.25) reflects the symmetry of I'p, eq. (2.20).

3.2 (auge corrections to lepton self-energies

We now have everything at hand to also include gauge corrections to the C P-violating
diagrams in figure 3, which enter the lepton number matrix. Adding one internal gauge
boson line modifies those diagrams by either self-energy or vertex corrections of the internal
lines, the resulting three-loop diagrams are collected in appendix A. From the last section
it is clear that in the collinear kinematical region this will not suffice for a result to leading
order in the gauge coupling. Instead, infinitely many insertions have to be resummed.
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In order to achieve this, we follow the procedure depicted in figure 6 and first close the
external fermion lines (1), which implies an integration over lepton momenta and transforms
the lepton number matrix into the lepton number density,

A3k
/(271_)5 Lk,ii = nL,ii . (333)

In this form of the diagram, we can focus on the neutrino self-energy and apply the re-
summation from section 3.1. The only additional feature is the effective four-point vertex
appearing in this self-energy, so that two of the resummed blobs from 3.1 are needed in
step (2). It is instructive to check by direct comparison with appendix A that indeed all
parametrically leading three-loop diagrams shown there are included and resummed. In
appendix B we give a more detailed derivation of the double-blob diagram, which is general
and also applies away from the hierarchical mass scenario.

3.3 Lepton number matrix with complete SM corrections

Collecting all results from the previous sections it is possible to give an expression for the
SM corrected lepton number matrix. Starting with eq. (2.29) we first carry out the q and
q’ momentum integrals by using the momentum conserving d-functions, so that the trace
in the integrand takes the form

/kk’ tr (Im f}k’,p,k(wgl)Imeﬁk,7p_k, (wo3)) = tr (ImBR" , (wo1 ) ImET, (was))
= tr (ImE}5", (wor)ImEE, (woz)) ,  (3.34)

where we have used the relation between the left- and right-handed self-energy (3.24).
Finally we use the resummed diagram figure 6 to insert the resummed Majorana neu-
trino self-energy in the equation above. Then, the trace can be carried out using eq. (3.19),

tr (TmX%Y, (wor )T, (w23)) = oy (war, py) oy (w23, ) + on(war, py)on(was, p) - (3.35)

Altogether, we arrive at the following result of the corrected lepton number density:

t t to [e’e) [ee)
128 dw dw p
nri(t) = - /dh/dtz/dts/dp” / 221 2 w” Jr(wp) fr(wa1) cos(wpAty3)
0 0 0 0

t
e —rpia Re ( 1(w21At21+uJ23At23)> [01/1 (w217p”)0-w(w237p“) +Uh(w21ap||)0h(w237p\\)] . (336)

This expression contains all SM corrections to leading order in the respective couplings
and for the first time gives a complete description of quantum leptogenesis.

4 Evaluation of the lepton number density

It now remains to numerically evaluate our final result eq. (3.36). As we shall see shortly, the
time integrations can be performed analytically. However, the remaining three-dimensional
integral has an integrand with rapidly oscillating parts, rendering an accurate numerical
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evaluation difficult. Moreover, o}, and oy, are specified by the asymptotic solutions of the
differential eqs. (3.16) and (3.17), which have to be solved numerically for each call of
those functions. A brute force numerical result would thus require a significant amount of
computing power.

Here we adopt a different approach. Since the final result is accurate to leading or-
der in the couplings only, we limit the integration range to those regions, which give the
parametrically leading contribution. This permits us to do two more integrations analyti-
cally, leaving only the p|-integral as a final numerical task. Since we are left with only one
momentum variable, we simplify the notation p| — p in this section.

4.1 The time integrals
We begin by factoring out the time integrals,

128 dw dw 2
nri(t) = _Weii/ / 2 2T w2law237p)%fF(wp)fF(W2l) (4.1)
p
0

X [a¢(w21,p)0¢(w23,p) + Uh(w21,P)Uh(w23,p)] .

The resulting function,

t t to
T(t;WQl,LUQg, = /dtl/dtg/dtg COS(prtlg)efrptngRe (efi(wmAt21+w23At23)>7 (4.2)
0 0

can be integrated explicitly with the help of Mathematica, and the result is spelled out
in appendix C. We now use this expression to estimate in which domain of frequencies it
gives parametrically dominant contributions to the integral.

The denominator of (C.1) reads

(w1 + w23) (T2 + 4(wa1 — wp)?) (T3 + 4(wo1 + wp)?)
X (T 4 4(w2s — wp)?) (T + 4(was + wp)?) - (4.3)

At typical particle momentum in our system p ~ O(T'), the Majorana neutrino decay width
is of order 'y, < O(A\?T), and since we are working at temperatures 7' > M, this results
in wp ~ O(T) as well. Hence in the four factors including I'p, the latter is subdominant
compared to the frequency terms. These factors are thus smallest when the two frequencies
approach the mass shell. Alternatively, there is a pole due to the first factor. The function
T thus has peaks in the following two limits, for which we estimate their parametric
contribution:

1. wo1,wo3 — Fwp: symmetric under wp — —wp,

2e_rpt(erpt/2 _ 1)
I t -
rs Bty 20028 P) = F e g

4wy + e"PH2 (—dwy, cos(wpt) 4 T'p sin(2wpt))
~ O\ T3 . (4.4)
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Figure 7. T (t;wa1,was,p) around wa = —wa3 = wp for fixed ¢t = 1072/GeV and wp = 1.42-
10'9 GeV implying I', = 2.01 - 10% GeV at T = 10! GeV, M = 10" GeV, and A\? = 1075.
2. wo1, —w93 — Twp: symmetric under wp — —wp,

lim T (t;wa1,wa3,p) (4.5)

—w23,w21 —>:twp

- rg(rg—i;wg)’z [— 8(I'h+16T w2 +128wp)
40T (Th(Tpt —2) +8(3Tpt — )T + 128(Tpt — 2)us )
_9alpt/2 ((Fpt —4)(T2 4 16w2)?
—i—l““:’) (Tp(Tpt—4)+ 16w12,t) cos(2wpt)>]
~O\OT?).

Sufficiently far away from the peaks we can simplify 7 by considering I'y — 0, while
keeping I'pt = const., which is possible because of the smallness of I'p [18],

o—Tpt/2
lim T (t;wo1,was,p) = 4.6
Ip—0 ( ) (wa1 + was) (w3 — wiz) (w3 — w3)) o

~ [(wzl — wa3)wp sin(twp) (cos(tway ) — cos(twas))
+ (warwag — wh)(cos(twp) (sin(twar ) + sin(twss))
— Pt/ 2 gin(t(wa + ng)))] )
Since this is symmetric under the exchange of w91 and wa3, we now consider |way| > |wos|
without loss of generality. An upper bound is obtained by approximating (wa; +wa3) &~ wa1

in the denominator. We then have three cases of interest:

1. wp < |watl, |waz|: this is far away from the peaks and we have (wf, —wd) = —w?,
(wf, — w2y) ~ —w3,, and (worweg — wg) A Wo1wo3.

T (t;wa1, w23, p) ~ O(wytwiy') - (4.7)
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Figure 8. Deviation of the oy, 4 (w21,p) from the value at we; = wp, plotted for 7' = 10! GeV,
M =100 GeV and different wp.

2. wo1 > wp but wez K wp: in this case (w% — w2 = —wl, (wf, — w3,) ~ wg.
T (t; wa1, w23, p) ~ Owyr T™) (4.8)
3. wp > |wail, |waz|: here we approximate (wf, —w3) ~ wf,, (wf) — w2y ~ wf), and
(worwas — wl) ~ —w3.
T (t; wa1, was, p) ~ O(wy' T77) . (4.9)
For very small values of |ws;| we may expand the trigonometric functions in eq. (4.6),
leading to
Lot (1 — e TPt/2 cos(wpt)
T(t;ng,WQ3,p) ~ P ( P ) ) (410)
Ipw?
P*p
where we have kept I'p, to compare with the peak region. For I'pt ~ O(1) one finds
T (t;wa1,wa3, p) ~ ONT2T73) . (4.11)
Comparing all estimates shows that the region around the peak at wo; = —wa3 = Fwp

gives the largest contribution, T (¢;wa1,was3, p) ~ O(A"9T3). All other contributions are

suppressed by a factor of order O(A*). Note that we later use A> = 1078, which im-

plies O(A\*) ~ 10716, This conclusion is corroborated by an independent consideration

of the large time limit, which we give in appendix D. An exemplary plot of the function

T (t; wa1,was3, p) illustrates our findings numerically in figure 7.
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4.2 Approximate integration of the lepton number

We are now going back to the full expression for the lepton number, eq. (3.36), and factor
out the frequency integrals,

t to [e’e)
2
ni(t) = / 1/dt2 dt3/dp “— fr(wp) cos(wpAtysz)e ~Ip
0 0
XW(t17t27t37 )

W(th t27 t37 / dw21 dUJ23 fF (.UQl)Re ( I(WQlAt21+UJ23At23)> (412)

[O-h(WQIap)Uh(WZ?np) + oy (wa1, p)oy(was, p)] -

Following the analysis in the previous section, we restrict the frequency integrations to a
diagonal strip including the on-shell peak, wa3 € [—wo1 — a, —wa21 + a]. We choose a =
const. x I'p, such that wp > a > I'p (cf. figure 7). Using the symmetry properties (3.25),
we rewrite the wej integration to obtain

OOd —UJ21+ad

w21 w23

W(t1,ta,t3;p) ~ / o / o cos(wa1 Atag + waegAtos) (4.13)
0 —w21—a
X [on(wa1, p)on(was, p) + oy (w21, p)oy (was, p)] -

Next, the oy, y-functions can be checked numerically to vary at most at the percent level
in the interval wai, —wag € [wp — a,wp + al, as depicted in figure 8, with the conservative
choice @ = 100I',. The variation is largest for small momenta p, which however do not
contribute significantly to the integral. For the relevant momenta p ~ O(T'), deviations
from the on-shell values o, (w21 = wp) are negligible. In a second step we may then only
keep the leading term in a Taylor expansion around wg; = —wa3 = wp (cf. eq. (3.25)),

O'h(UJQl,p) = Uh(wp7p) ) O-w(w217p) =~ U’lﬁ(w]:hp) )
op(wa3, p) ~ op(—wp, p) = oy(wp,p) ,  oy(wes,p) ~ oy(—wp,p) = on(wp,p) , (4.14)

allowing us to pull the oy, 4 out of the integration. Note that it is sufficient to consider
+wp in this step, because we made use of the symmetry in w; before. We can now do the
integration in eq. (4.13) analytically leading to

Sin(aAtzg)

W(ti,ta,t3;p) ~ RN

§(Ats1)[on(wp, p)oy(wp, p)] - (4.15)

17 -



Using this on-shell approximated intermediate result, we are able to carry out the time
integration of the lepton number density

t t t 00
128 ‘ p?
nwat) = e [t [ [ dy / A 2= fr(wp)lon (e, Pou(p. )] (4.16)
0 0 0
t13 alt
x cos(wpAtyz)e TP pp 7T(A752323)6(At31)

P
—a—il —a+il
. 2Ei<t(ia+Fp)> “In M) TN ik ) + deletSi(at) |
a—il'p a+il'p

where Ei(x) denotes the exponential integral function and Si(z) the sine trigonometric

o 2 —I'pt
=~ [0 L rlap)iontuppiouten ) S| (28 (t(ia+ )
0

integral function. Our choice a = 100I'y satisfies a > I', and allows us to approximately
consider at — 0o, while keeping I'pt fixed, leading to an a-independent result,

64 p2 1—eIpt
nri(t) ~ ——ej /dp 7fF(wp)F70'h(Wp’p)o'w(wpup) . (4.17)
v ; (A)p P

Note that this expression only holds for ¢ 2 1/T'p, since for earlier times the approximation
leading to eq. (4.6) is not valid, i.e. the region around the on-shell peaks is less suppressed
so that the peaks are less pronounced. These memory and off-shell effects could of course be
kept by a complete numerical integration without restriction to the regions around wo; =
—w93 = Twp. Nevertheless, one makes the remarkable observation that at sufficiently late
times our result has the same time dependence as the solution of the corresponding Boltz-
mann equations [18], but this time based on a full calculation without any assumptions.

Ultimately, we are interested in the value of the generated lepton number once it is
thermalised. This is easily obtained by taking the limit { — oo, resulting in

. 64 p? 1
RS Jim nri(t,t) = _ﬂ_fii/dp o fF(Wp)*F [oh(wp,p)oy(wp, p)] - (4.18)
p p
0

As a valuable crosscheck for our approximate calculation, we change the order of integration
in appendix D, i.e. we first do the time integrals, followed by the ¢ — oo limit and only
then integrate over the frequencies, arriving at the same result.

Finally, it is also interesting to quantify the timescale for thermalisation, which is
expected to be of order t7 ~ O(1/T'p) according to the discussion in section 2.1. We define
tr as the time where

npii(tr) = (1—e ) ng (4.19)

which gives t7 = 1/T" for a constant I'y =T, cf. eq. (4.17).
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Figure 9. Time evolution of the lepton number density. Left: full result obtained by different
orders of integration (see text). The green curve gives the time-dependent contribution. Right:
comparison of the full result with Boltzmann (B), quantum Boltzmann (QB) and Kadanoff-Baym
(KB) computations, where gauge corrections are not computed but parametrised by thermal widths.

4.3 Time evolution of the lepton number

The final integration over the Majorana neutrino momentum is performed numerically
using integration and ODE algorithms implemented in the GNU scientific library [38] and
the BOOST library [39]. Following [18], we consider a Majorana neutrino mass of M =
10'° GeV and a constant temperature of T = 10! GeV for the time-dependent calculation.
This choice is consistent with the physical scenario outlined in section 2.1, allowing to
neglect the Hubble expansion. For the coupling of the corrected Majorana neutrino decay
width we choose A\? = 1078, in analogy to [20].° The SM couplings are obtained by solving
the renormalization group equations from [40, 41] using the SM parameters from [3]. In
analogy to the calculation of the asymptotic masses, we have neglected all contributions
from the quark sector except for the top quark. All details are given in appendix E.

The resulting time evolution of the lepton number is shown in figure 9 (left) by the red
curve. The blue curve corresponds to an alternative evaluation of the integrals, where we
start from the time-integrated expression, 7T (¢; wa1,was, p) in appendix C, and numerically
integrate over the frequencies with wos € [—wa1 — a, —w9;1 + al, this time with the larger
range a = 1000I', and the full functions oy, . As the figure shows, this crosscheck fully
confirms the validity of our approximations at sufficiently large times. Deviations between
the two curves show up only at early times, when the on-shell peak of the integrand is
less pronounced. The green curve shows the time-dependent term in eq. (4.18), which
dies away exponentially, leaving us with the fully thermalised value of the lepton number.
The thermalisation time in the figure is consistent with the expectation for our choice of
parameter values, i.e. we have I'y ~ O(GeV) and tr ~ O(1/GeV).

In figure 9 (right) we compare our complete result to various other approaches discussed
previously [18]. These are the solutions of Boltzmann equations (B), Boltzmann equations
using quantum mechanical distribution functions (QB), and Kadanoff-Baym equations
without gauge corrections, but with thermal widths for the lepton and Higgs propaga-

5In fact our presentation is independent of the choice of A\? because it is possible to rescale ¢ in eq. (4.17)
accordingly and factor A2 out of 1/Tp together with As;.
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Figure 10. Left: thermalised lepton number density from the full resummation, only includ-
ing asymptotic masses, Boltzmann (B), quantum Boltzmann (QB) and Kadanoff-Baym with
parametrised propagators (KB), as a function of temperature. Right: thermalisation time as a
function of temperature.

tors, ¥ = 71 + 74, introduced by hand (KB).” In all three cases we work with a constant
decay width for the Majorana neutrino propagator, I'p(wp) = I' ~ 1070M ~ O(GeV),
corresponding to the dominant contribution in our full calculation. For the SM thermal
damping widths we choose v ~ 0.1 T" as expected from thermal field theory [29]. All results
are normalised by the value of the thermalised lepton number density from the full calcula-
tion. While all curves have the same qualitative features, the Boltzmann result deviates by
almost an order of magnitude, the quantum Boltzmann computation reduces the difference
significantly and Kadanoff-Baym with thermal widths is O(1) accurate. The qualitative
similarity is due to eq. (4.17) having the same explicit time dependence as the Boltzmann
solutions. The quantitative difference of the full solution stems from the functions oy, and
a momentum-dependent 'y, effecting different changes for the weights of the momentum
modes. We may thus conclude that gauge corrections indeed cause the expected narrow
damping widths at late times. However, as expected in [18, 19], for quantitative results
the full calculation is mandatory.

4.4 Temperature dependence of the gauge corrections

In the simplest leptogenesis scenario considered here, the temperature is constant to first
approximation. However, gauge corrections apply to other parameter choices and scenar-
ios as well, and it is interesting to investigate their relative importance as a function of
temperature. In figure 10 (left) we repeat the comparison of the previous section in case of
the thermalised lepton number as a function of temperature 7. Only including asymptotic
masses leads to a kinematical suppression of the Majorana decay and production rate [20],
and hence of the lepton number, in some temperature range, which is unphysical. This
illustrates the importance of a complete calculation including the resummed gauge correc-
tions. At yet higher temperatures, once T' > M, the kinematic suppression is switched off
and only including asymptotic masses gives a good approximation of the full result.

"To be specific, we use eq. (7.2) from [18] and perform an additional k-integration, inserting eq. (7.3)
for (B), eq. (7.10) for (QB) and eq. (7.8) for (KB).
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For low temperatures T < M, the results of Boltzmann, quantum Boltzmann and
Kadanoff-Baym with thermal damping widths are very close. This agrees with the small-
ness of corrections observed in the non-relativistic case [23]. Since the resummed gauge
corrections are suppressed in this regime, our calculation is close to the previous results
as well. Note however, that the agreement cannot be exact, because the weights of the
momentum modes are still not identical, due to the momentum dependent I',. It is thus
the choice of the (momentum independent) model parameters I" and ~ which determines
the temperature range of best agreement between the gauge resummed and approximate
solutions. For the choice presented here this is at T" ~ M. Another choice achieves full
agreement at low temperatures at the expense of larger discrepancies at high temperatures,
while an appropriately temperature dependent I' can increase the range of agreement.

For temperatures 7" > M, the different solutions split up. Introducing thermal damp-
ing widths by hand repairs the qualitative deficit of kinematic suppression (and agrees
well with the full result in a part of this region), but overestimates the lepton number for
high temperatures. This is because the dominant momenta become more light-like, and
hence the resummation more important. Note however that, by altering the scaling of the
Majorana neutrino decay width to e.g. I' ~ 107 T, better agreement with the full result
is achieved.

Finally, figure 10 (right) shows the thermalisation times for the lepton number, ex-
tracted from the full result and the one including asymptotic masses only. Apart from
the region with kinematic suppression we roughly find a scaling t7 ~ O(1/I'p) x 1/T as

expected.

5 Conclusions

In this work the leading-order gauge corrections to quantum leptogenesis were included
in a fully quantum field theoretical calculation based on non-equilibrium Kadanoff-Baym
equations. In this setting, gauge corrections appear first at the three-loop level of lepton
self-energies. In the symmetric electroweak phase, gauge bosons are massless on tree-level
and, for T'2> M and collinear thermal loop momenta, require resummations to infinite
loop order to complete a leading-order calculation in the gauge coupling. We have adapted
a previous CTL resummation of the Majorana neutrino self-energy in such a way that
it can be applied to the lepton self-energy graphs relevant for quantum leptogenesis. Our
resulting lepton number density, eq. (3.36), is complete to leading order in all SM couplings
and forms the basis for a quantitatively accurate evaluation of leptogenesis.

We have evaluated our expression for the simplest vanilla leptogenesis scenario at late
times approaching thermalisation, which allows for an analytic analysis and integration
of the lepton number density in Fourier space. One observes how the gauge corrections
dynamically cause a dominant peak to grow in the integrand, whose width at late times cor-
responds to the thermal decay width of the Majorana neutrino. Similarly, thermal widths
for leptons and Higgs propagators are automatically and fully included. The resulting late
time behaviour qualitatively agrees with that observed from Boltzmann equations. How-
ever, for quantitative results, the full quantum calculation is necessary. Finally, we have
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evaluated the temperature dependence of the gauge corrections and the thermalisation time
to estimate effects on other parameter choices or scenarios. Boltzmann equations dressed
with quantum distribution functions underestimate the full result by O(1) for T' 2 M, in-
troducing an uncertainty of similar size as that of spectator processes. Thus, we have also
obtained a first complete estimate of the theoretical uncertainties for leptogenesis. On
the other hand, for T'< M the resummed gauge corrections are suppressed and our result
is close to the previous ones.

Our calculation can be easily adopted to other parameter regions or modfied scenarios,
such as resonant leptogenesis. For yet better accuracy, the calculation could be further
refined by also including washout diagrams as well as the temperature change due to the
Hubble expansion.

Acknowledgments

We thank D. Bodeker and W. Buchmiiller for useful discussions and suggestions. Nu-
merical calculations were performed on the LOEWE-CSC computer at Goethe University
Frankfurt. This work is supported by the ERC Starting Grant ‘NewAve’ (638528) as well
as by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy — EXC
2121 ‘Quantum Universe’ — 390833306.

A Feynman diagrams for gauge corrections at three-loop level
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Here we list all Feynman diagrams obtained by adding one gauge boson line to the diagrams
in figure 3. The diagrams (a)-(g) are gauge corrections to the lepton and Higgs propagators,
which are included by the asymptotic masses, eq. (3.1). The diagrams (h)-(j) are vertex
gauge corrections, which are included in the resummed ladder diagram figure 6. The
remaining diagrams are further suppressed because the mean free path between heavy
neutrino vertices exceeds the Debye screening length, for details see appendix B.

B Leading and sub-leading gauge corrections

In order to distinguish leading and sub-leading gauge corrections, as well as for general-
isations to other neutrino mass configurations, it is useful to step back from the hierar-
chical scenario and re-introduce the heavy neutrinos N3 3. The self-energy diagrams of
the neutrino N can then be separated into two classes, which can be described as either
“propagator-type” or “vertex-type” corrections, figures 11 and 12, respectively.

A parametric suppression applies to a diagram whenever the mean free path between
emission and absorbtion of a soft gauge boson exceeds its associated screening length [36].
In our case, the mean free path of the heavy neutrinos is Iy, ~ (A2M;)~!, while the Debye
screening length is Ip ~ (¢7')~!. We thus have [y > [p as long as

M; < 5T . (B.1)

With A2 ~ 1078, this is satisfied for all mass scenarios provided the M; are sufficiently
below the Planck scale. Hence, the diagrams (k)-(n) in figure 11 and (i), (j), (m), (n) in
figure 12 are parametrically suppressed. A similar suppression occurs for vertex corrections
as (k), (1) in figure 12, once the N-line is closed. All remaining diagrams have to be
resummed, as explained in section 3.1. Finally, we return to the hierarchical scenario and
integrate out the N3 3, where both propagator-type and vertex-type diagrams reduce to a
double blob diagram with an effective four-point vertex. Upon closing the external lines
we then obtain the resummed diagram in figure 6.
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Figure 12. Gauge corrections to the vertex-type self-energy contribution of N.
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C The function T (t; wa1, was3, P)

The integral in eq. (4.2) can be performed analytically giving the result

—I'pt
e P
T (t;wa1,wo3,p) =
(reomn s, ) = ) (T2 4 &l — o ) (T2 + Az - 0p)?)
1
X 8I', (wo1 +w
(rg+4(w21—wp)Q)(rgH(lewp)?){ p(w21 +wns)

X [— (02 4 dewd) ) (T2 4 dwdy) — 8(T% +2(wd) — dwsiwag +aly) Jw’ — lﬁwfg}

— 86T P T (w1 +was) | (T + ey ) (T3 + )+ 8(T2 + 2w — dwmwng + ) ) + 16|
X cos(t(wa1 +wag)) + 4eFPt(F12) — 4woqwos + 4w12)) sin(t(wa1 +w23))

X [Ff, +16(wa1 — wp) (w23 —wp ) (w21 +wp ) (waz +wp) + 41% (w3 4 w3y + 2%2,)}

+8el'rt/2 |:COS(t(CU21 —w»3)/2) cos(twp) <2Fp(uJ21 +CU23)((F% 4—4<,L)§1)(I‘12D + 4w3s)

+8(F% +2(w3| — 4w was +w§3))wg’, + 16w;‘;) cos(t(wa1 +wa3)/2)

— (Ff) +16(w21 — wp) (w23 — wp ) (w21 +wp ) (W23 +wp) +4Ff)(w%1 +was + 2wf,))

X (I’f) — dwowag +4wr2,) sin(1/2t(wa +W23))) —4(w21 — wa3)wp sin(t(w21 —wa3)/2)

X ( — ATy (w21 +wa3) (I‘% — dwowaz + 4w12)) cos(t(wa1 +w23)/2)

+ (F;l) + 16(LU21 —wp)(OJQg — wp)((ﬂZl +wp)(w23 +0Jp) — 4F12) (wgl —|—4WQ10J23 +w§3 — QOJIQ)))

x sin(1/2t(wa1 +w23))) sin(twp)} } . (C.1)

D Late-time limit for the lepton number

Here we provide a crosscheck for the derivation of the approximated lepton number density
in the infinite-time limit. Starting from the full expression, eq. (4.1), taking the infinite
time limit in the time dependent part 7 (¢;wa1,was, p) of the integrand reads

47‘(‘(1—% + 4(%2, +w?))

lim 7 (t;wa1,wes, p) = 0(wa1 + wos) . D.1
t—00 (w21, w33, p) Id 4+ 16(w2 — w3;)? 4 8T (w2 +w3)) (21 +wzs) (D-1)
Note the explicit appearance of a Delta function enforcing we3 = —we1, which is consistent

with the dominant on-shell approximation we; = *wp, wa3 = Fwp identified in section 4.1.
Carrying out the wes integration in the infinite-time limit and using the symmetry
properties of the o-functions (3.25), we arrive at

oo o

lim n "(t):—me"/d /dwmp2 47TfF(wp)(F%,+4(wr2,+w%1)) (D.2)

e e S R R A R R A
0 —00

x oy (wa1, p)on(wat, p) -
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Approximating the oy, -functions by their on-shell contributions, cf. section 4.2,

O'¢(W21,p) ~ Ulli(wpvp) ) O-h(oj?lap) ~ Oh(wpvp) )

we can do the wsi-integral to recover

. 64
tILIEo nL,zz(t) = _?67,7,

o0
2
P 1
[ 02 frlen) - plonlion.p)
Wp I'p
0
as in eq. (4.18), validating our approximate integration in section 4.2.

E SM parameters for the numerical evaluation

(D.3)

(D.4)

In order to evolve the SM parameters to the scale given by the temperature p = 277, we

employ the renormalization group equations (RGEs) from [40, 41] taking only into account

the largest coupling to a quark, i.e. the top quark being the heaviest quark,

W B o).

g (-%) + Otk

e )+ O

Cgf _ 8}:?2 (ghf — %9’2 — 292 — 893) +0(géu)

— 6h{ + 12hf N, + 24A§> + 0(gé\)

(E.1)

(E.2)

(E.5)

where 7 = In(p/ o) and we choose g = 27Ty with Ty = 10? GeV. For notational simplicity
O(g8y;) denotes any combination of SM couplings and Ay ~ O(g2,) for this counting. As

initial conditions we use at 77 = In(mz /o) [3]

mz = 91.1876(21) GeV ,
em(T7) = 1/127.950(17) ,
as(17) = 0.1182(16) ,
sin? Oy (77) = 0.23129(5) ,
my = 173.21(1.22) GeV
my = 125.09(24) GeV |

1
Gr = 1.1663787(6) - 10> GeV 2 = v = ———— = 246.2197(1) GeV .
V2GF
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With the relations between the couplings given in [40], one analytically obtains

o 1 8072 207 (1 — sin? Oy (72))
- - dy = E.13
9°(7) &7 €=~ 1 Town(72) +7z, (E.13)
) Co 4872 127 sin? Oy (72)
- - — - E.14
A e T 2 Waem(tz) 27 (E.14)
9 c3 87‘(‘2 27T
_ = do = ——— , E.15
s (7-) d3 Tr ’ 3 7 3 7045 (TZ) 7z ( )

which we then use to solve the RGEs for h; and Ay numerically.
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