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1 Introduction

More than ten years ago, [1] introduced a simple and effective method to extract information

from crossing equations in conformal field theories. In its simplest guise,1 the equation takes

the form ∑
O∈φ×φ

λ2
φφOF∆O(z|∆φ) = 0., (1.1)

with kinematically determined functions F∆ given below. This equation should be thought

of as expressing an infinite set of sum rules, labeled by the cross-ratio z, on the OPE data

λφφO between primary operators φ, φ,O. The basic idea of [1] is as follows.2 Firstly we

abstract from any particular CFT realization and think of the above as a general constraint

1In this example the equation expresses crossing symmetry for a correlator of four identical fields φ on

a line, when decomposed into SL(2,R) blocks.
2For a recent review and an extensive list of references see [2].
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on all possible consistent OPEs. Secondly we act on the crossing equation with suitably

chosen linear functionals ω to get simpler sum rules:∑
∆∈S

a∆ω(∆|∆φ) = 0, ω[F∆(z|∆φ)] ≡ ω(∆|∆φ) , (1.2)

where for unitary solutions we have a∆O ≡ λ2
φφO ≥ 0. We can now make various assump-

tions on the set S of allowed quantum numbers, on the external dimension ∆φ, or even the

allowed values of a∆ for specific ∆. Depending on these assumptions, it may be possible

to find ω(∆|∆φ) non-negative in S. The sum rule is then impossible to satisfy for positive

a∆, which means our original assumptions cannot hold for any unitary CFT. In this way, it

is possible to derive bounds on CFT data such as scaling dimensions and OPE coefficients.

In practice, the search for such functionals is done numerically inside a finite dimen-

sional linear vector space. This amounts to truncating the crossing constraints to a more

manageable finite subset. We want the size of this space to be as large as possible to get

the strongest bounds, but we are constrained in doing this by the available computational

resources. Clearly we would like to choose this space in a way which gives us the most

stringent constraints possible for a fixed dimensionality. In the original reference [1] this

choice corresponds to taking ω to be a finite sum of derivatives with respect to the cross-

ratio z at a specific point. For its simplicity and effectiveness, this has remained the default

choice up to now.3

Very recently, new bases of functionals were constructed in [4] (see also [5–9] for related

works) and found to lead to exact, optimal, bounds on CFT data. The goal of this note

is to explore how these bases can be used to obtain better numerical bounds. As we will

see, one of the key points is that in these bases each individual functional automatically

encodes the expected asymptotics and spectrum of bound-saturating (extremal [10, 11])

solutions to crossing. This leads to a decoupling between dynamics at small and large

scaling dimensions, which means the truncated bootstrap equations not only fully capture

the interesting physics, they may also be effectively completed to the full set of constraints

once the truncation size is large enough.

In this note we will consider two simple applications to test our proposal. In the first

we will bootstrap the generalized free boson solution using a functional basis associated

to free fermions. This somewhat perverse choice was chosen as a worse-case scenario

for our approach, and yet we will still find that it is a significant improvement over the

derivative basis. For our second application we will find a family of universal bounds on

OPE coefficients in 1D. The bound is saturated by a family of solutions to crossing which

neatly interpolates between the generalized free boson and fermionic solutions. Near the

boson point it is described by (boundary correlators of) a free scalar in AdS2 with a φ4

interaction. We are able to easily find the approximate exact bound, obtaining several

digits accuracy using a handful of components.

The outline of this note is as follows. In the next section we review the functional

bases obtained in [4]. Section 3 reviews the link between bounds and extremal solutions,

3See [3] for some alternative explorations.
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and explains why the new basis is expected to lead to highly improved numerical bounds.

In section 4 we do the two numerical applications explained above, which confirm these

expectations. We conclude with an outlook on higher dimensional applications.

This note is complemented by two appendices. The reader interested in using the

functionals will find the explicit form of the associated integral kernels in appendix A.

Furthermore for integer or half-integer external dimensions, the kernels simplify and we

explain how to compute the functional actions explicitly in appendix B.

2 Setup

2.1 Crossing symmetry

We are interested in studying the crossing equation for 1D CFT correlators of identical

operators φ:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
G(z)

x
2∆φ

13 x
2∆φ

24

, xij = xi − xj , z =
x12x34

x13x24
. (2.1)

For z ∈ (0, 1) the correlator can be expressed in terms of SL(2,R) blocks as,

G(z) =
∑
O∈φ×φ

a∆O

G∆O(z)

z2∆φ
, a∆O = λ2

φφO , (2.2)

with the conformal block G∆(z) given by

G∆(z) := z∆
2F1(∆,∆, 2∆, z). (2.3)

Crossing symmetry is the statement G(z) = G(1− z). For a generic CFT this leads to the

equation ∑
∆

a∆F∆(z|∆φ) = 0, (2.4)

with F∆(z|∆φ) = z−2∆φG∆(z)− (z ↔ 1− z). We will often simplify notation by omitting

the dependence on ∆φ. For unitary CFTs the sum ranges over all scaling dimensions

∆ ≥ 0. We will study this equation as a mathematical set of constraints on the a∆ which

hold for any and all (unitary) CFTs.

Two simple and important solutions to these constraints are associated with generalized

free fields in D = 1, which describe boundary correlators of free fields in AdS2. Introduce:

afree
∆ =

2 Γ(∆)2Γ(∆ + 2∆φ − 1)

Γ(2∆φ)2Γ(2∆− 1)Γ(∆− 2∆φ + 1)
. (2.5)

Then we have

F0(z|∆φ) +

+∞∑
n=0

afree
∆B,F
n

F
∆B,F
n

(z|∆φ) = 0 (2.6)

with ∆B
n = 2∆φ + 2n and ∆F

n = 1 + 2∆φ + 2n. For z ∈ (0, 1) the corresponding correlators

are

GB,F (z) = ±1 + z−2∆φ + (1− z)−2∆φ (2.7)

with the + and − signs for (B)osons and (F)ermions respectively.

– 3 –
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2.2 Free functional bases

We will now review the analytic functionals constructed in [4]. There are two functional

bases which are in a sense dual to the simple solutions to crossing of the previous subsec-

tion.4 We will denote a generic functional by ω and functional actions will be abbreviated as

ω(∆) ≡ ω [F∆(z|∆φ)] . (2.8)

Each basis is made up of infinite sets of functionals αn, βn with n a non-negative

integer, and satisfying the duality conditions

αFn (∆F
m) = δnm, ∂∆α

F
n (∆F

m) = 0,

βFn (∆F
m) = 0, ∂∆β

F
n (∆F

m) = δnm ,
(2.9)

for the fermionic (F) basis, and

αBn (∆B
m) = δnm, ∂∆α

B
n (∆B

m) = −δ0mcn,

βBn (∆B
m) = 0, ∂∆β

B
n (∆B

m) = δnm − δ0mdn ,
(2.10)

for the bosonic (B) basis, with βB0 ≡ 0. The coefficients appearing here are given by

cn =
1

2
∂ndn, dn =

(∆φ)4
n(4∆φ − 1)2n

(n!)2(2∆φ)2
n (4∆φ + 2n− 1)2n

. (2.11)

The fact that cn, dn are non-zero is related to the fact the generalized free boson solution

admits a relevant deformation that does not introduce new states. Thinking of the free

boson as being the holographic dual to a massive scalar field φ in AdS2, this deformation

is accounted for by the φ4 interaction [4].

The action of the functionals is defined by the formula:

ω[F∆] =
1

2

∫ 1
2

+i∞

1
2

dzfω(z)F∆(z) +

∫ 1

1
2

dzgω(z)F∆(z) (2.12)

with gω(z) = ±(1 − z)2∆φ−2fω( 1
1−z ) and the + (−) sign for boson (fermion) functionals

respectively. The general functional kernels fω are given very explicitly in appendix A.

They are chosen such that not only the duality relations hold, but also that the functionals

ω are compatible with the crossing equation, in the sense that:

F0 +
∑
∆

a∆F∆ = 0 ⇒ ω

[
F0 +

∑
∆

a∆F∆

]
= ω(0) +

∑
∆

a∆ω(∆). (2.13)

The infinite sum appearing in the crossing equation means this swapping condition is not

trivial, and it in fact constrains the behaviour of f(z) near z = 0, 1 and ∞ [12].

4Note we use the word “basis” loosely — what we mean here is that the functionals fully encode the

constraints implied by the z = z̄ SL(2,R) crossing equation under the assumption of Regge boundedness.
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One of the main results of [4] is that the crossing equation is equivalent to the set of

sum rules arising from applying a complete functional basis:∑
∆

a∆F∆(z) = 0 for all z ∈ (0, 1)

is equivalent to∑
∆

a∆ω(∆) = 0 for all ω ∈ {αn, βn, n ∈ N≥0} .

The equivalence holds whether we use the bosonic or the fermionic basis of functionals.

Because of this equivalence between the crossing equation and the sum rules involving the

functional actions αn(∆), βn(∆) it is clearly of utmost importance to obtain expressions for

these, or at least to have the means for their speedy numerical evaluation. In the derivative

basis, this would be analogous to being able to compute arbitrary derivatives of conformal

blocks efficiently. In our case, a useful result is that for each basis, for ∆ > ∆m a contour

rotation argument leads to the expression

ωm(∆) = [1± cosπ(∆− 2∆φ)]

∫ 1

0
dz gωm(z)

G∆(z)

z2∆φ
(2.14)

where again the + (−) sign corresponds to the bosonic (fermionic) functionals. This expres-

sion is essentially what lies at the origin of the duality conditions, thanks to the oscillating

prefactor. The limited validity of this formula comes about due to singularities in g(z) as

z → 0. However, if one manages to evaluate the integral above exactly, we can of course

extend the result to all ∆ by analytic continuation.

With the explicit forms of the fω(z) given in appendix A, it is relatively straightfor-

ward to evaluate numerically the functional actions for any ∆, using either (2.12) or (2.14),

and this is all we need for bootstrap applications.5 However, the kernels take on partic-

ularly simple expressions when ∆φ is a half-integer, for the fermion basis, or an integer,

for the bosonic basis. With these simplified kernels we are able compute the functional

actions analytically, and this is discussed in appendix B. These analytic expressions can

be evaluated much more rapidly than by doing the integrals numerically. It would be very

useful to be able to determine similar analytic results for any ∆φ, although this is strictly

speaking not necessary for numerical applications.6

Examples. Since the discussion above is perhaps unfamiliar, it may be useful to consider

a couple of concrete examples. For general ∆φ, f(z) are sums of 3F2 hypergeometric

functions. In the special case ∆φ = 1 we have instead, for instance, the simple expression:

fαB0
(z) =

2
(
(z − 1)z + (z − 2)(z + 1)(2z − 1) coth−1(1− 2z) + 1

)
π2(z − 1)z

. (2.15)

The functional action can now easily be computed numerically by plugging in this ex-

pression into (2.12) with gαB0
(z) = (1 − z)2∆φ−2fαB0

(
1

1−z

)
. Equivalently, we can use the

5In our experience, it is faster to numerically evaluate (2.14) when available, rather than (2.12).
6Along these lines the results of [13] seem to be very promising at least for the bosonic functional actions.
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methods described in appendix B to get an analytic expression. Either way the moti-

vated reader can easily check that αB0 (0) = −2, αB0 (2 + 2n) = δn,0, with the general shape

of αB0 (∆) as in figure 1. This is perfectly consistent with the fact that for ∆φ = 1 the

generalized free boson solution takes the form:

F0(z) + 2F2(z) +
∞∑
n≥1

anF2+2n(z) = 0. (2.16)

Similarly, for ∆φ = 1/2 the fermionic basis also simplifies. We have for instance:

gβF0
(z) =

(1− z)
(
2z2 + z + 2

)
π2z2

. (2.17)

Instead of using (2.12), in this case we will do the integral (2.14) directly, finding the

analytic result7

βF0 (∆) =
2 sin2

(
π∆
2

)
π2

Γ(2∆)

Γ(∆)2

[
1

(∆− 2)(∆ + 1)

+ Γ(∆)3
(

3F̃2(∆,∆,∆; 2∆,∆ + 1; 1)− 2∆ 3F̃2(∆,∆,∆ + 1; 2∆,∆ + 2; 1)
)]

=

=
2 sin2

(
π∆
2

)
π2

Γ(2∆)

Γ(∆)2

{
1

(∆− 2)(∆ + 1)
+

+

(
∆(∆− 1) +

1

2

)[
ψ(1)

(
∆

2

)
− ψ(1)

(
∆ + 1

2

)]
− 2

}
(2.18)

where 3F̃2 stands for the regularized hypergeometric function. One can now explicitly

check that the properties (2.9) are satisfied: the term in parenthesis is finite for every value

of ∆ = ∆F
m = 2 + 2m for m > 0, while it has a single pole for ∆ = ∆F

0 = 2. However, the

prefactor has double zeroes at ∆ = ∆F
m = 2 + 2m for every m ≥ 0, and we have indeed

that βFn (∆F
m) = 0.

3 Bounds and the choice of basis

The goal of this section is to review how bounds on CFT data are associated to extremal

functionals and sparse solutions to crossing, and how this perspective explains why our

proposed bases are ideally suited for numerics. In the next subsection we remind the

reader of the basic idea of [1], and the link between optimal bounds and extremal solutions

to the crossing equation [10, 11]. In subsection 3.2 we will argue for our new basis of

functionals. To do this we will use the link between extremal solutions and bounds, studying

the former to understand the latter. In particular we will show that the functional bases

described in the previous section strongly constrain the form of such solutions, leading to

fast convergence of numerical bootstrap computations.

7This particular functional and corresponding functional action first appeared in [6].
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3.1 Bounds and extremality

Consider a set of solutions to crossing of the form

F0(z) + a0F∆0 +
∑

∆≥∆g

a∆F∆(z) = 0 . (3.1)

We would like to determine an upper bound on a0 [14]. To do this we apply a linear

functional ω to this equation, setting without loss of generality ω(∆0) = 1. We will

consider ω to lie inside some linear vector space WN of finite dimension. We get

a0 = −ω(0)−
∑

∆≥∆g

a∆ω(∆) . (3.2)

Hence for any solution to the crossing equation (3.1) we have the bound

a0 ≤ −ωopt,N (0) ≡ min
ω∈WN

−ω(0) such that ω(∆) ≥ 0 for all ∆ ≥ ∆g. (3.3)

If ω̂n are a basis for WN , then we can define the dual space to be:

W∗N = span
{
~F∆(z), ∆ ≥ 0

}
, ~F∆ := (ω̂1(∆), . . . , ω̂N (∆)) . (3.4)

Then we can also determine a bound by solving a problem in this space:

a0 ≤ aopt,N
0 ≡ max a0 such that ~F0 + a0

~F∆0 +
∑

∆≥∆g

a∆
~F∆ = 0 , (3.5)

for some a∆ ≥ 0, since increasing N adds more constraints and hence lowers a0. These

kinds of problems are known as semi-infinite linear programs [15], and the theory of linear

convex optimisation gives us an important result:

− ωopt,N (0) = aopt,N
0 . (3.6)

In other words the functional problem and the dual problem are equivalent.

This deserves some explanations. In the dual space formulation, we always find an

explicit solution to the truncated form of the crossing equation (i.e. that involving the ~F∆),

since we are satisfying the constraints throughout the maximization process. Meanwhile in

the original formulation of the problem one constructs functionals which are supposed to

rule out such solutions. How can these problems then be equivalent? The reason is that for

any fixed N , at optimality there is indeed a solution to crossing but a very special one. The

statement is that there exists a (generically unique) set of an ≥ 0, ∆n with n = 1, . . . N −1

such that not only

~F0 + aopt,N
0

~F∆0 +

N−1∑
n=1

an ~F∆n = 0, (3.7)

but furthermore

ωopt,N (∆n) = 0, ∂∆ω
opt,N (∆n) = δ∆n,∆g if an > 0. (3.8)

– 7 –
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Figure 1. Schematic form of the optimal functional. Such a functional provides a valid upper

bound on the OPE coefficient at ∆0 for any choice of ∆g down to where the functional first becomes

negative.

Note that these conditions are clearly necessary to make sure that ω(∆) is positive for

∆ ≥ ∆g, see figure 1. The conditions (3.7) together (3.8) are the so-called Karush-Kuhn-

Tucker second order optimality conditions. They are necessary conditions for optimality,

with sufficiency being guaranteed as long as the functional ω is positive above ∆g.

For the kinds of problems we are interested in the conformal bootstrap, the fact that

the set of allowed ∆ is continuous typically leads to very sparse (extremal) solutions. For

the 1D bootstrap problems considered in this note and elsewhere in the literature, one

always finds (experimentally) that only dN−1
2 e operators appear in the extremal solution

(beyond the identity and that at ∆0).8

Thus, extremal functionals go hand in hand with extremal solutions to crossing. What

is perhaps less obvious is that at extremality we get not only the functional we were looking

for, but actually a full basis for WN . To see this very explicitly, let us consider the case

where none of the ∆n sit at the gap, set N to be an odd number and consider the case where

the extremal solution has only (N − 1)/2 non-zero an. In this case the N constraints from

the crossing equation neatly match up with the unknown (N + 1)/2 OPE coefficients (i.e

the previously mentioned (N − 1)/2 non-zero an and a0) and (N − 1)/2 scaling dimensions

of the extremal solution. We can then choose:

W∗N = span

{
~F∆0 ; ~F∆n , ∂∆

~F∆n , n = 1, . . . ,
N − 1

2

}
. (3.9)

We now construct a basis for the space of functionals WN by setting

WN = span

{
α0;αn, βn, n = 1, . . . ,

N − 1

2

}
(3.10)

with functionals α, β: satisfying the duality conditions:

αn(∆m) = δnm, ∂∆αn(∆m) = −δ0mCn,

βn(∆m) = 0, ∂∆βn(∆m) = δnm − δ0mDn.
(3.11)

8A similar statement apparently holds for the modular bootstrap when ignoring spin [16]. The most

general situation, which holds for instance in higher dimensions, is analysed in [10].
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with β0 ≡ 0 and some constants Cn, Dn. These constants, as well as the functionals, can

be obtained completely explicitly by putting the basis vectors of WN into a matrix and

computing its inverse [10], leading to expressions in terms of the original set of ω̂i. In

particular, we see that our original OPE maximization functional ωopt,N is nothing but α0,

as it satisfies (3.8). Essentially the α functionals provide OPE bounds while β functionals

provide bounds on dimensions of operators, subject to certain assumptions. These bounds

must exist, as they encode the uniqueness of the extremal solution under such assumptions.

To summarize, the message of this section is that optimal bounds are associated to

extremely simple solutions to crossing containing as few operators as possible, which sat-

urate these bounds. Such solutions in turn determine a pair of bases for W and W∗.
Hence, bounds on the CFT data follow from the study of these extremal solutions and

their associated functionals.9

3.2 Arguments for the new bases

From now on we shift our perspective from determining bounds to constructing extremal

solutions to the truncated crossing equations:

~F0 + a0
~F∆0 +

N−1
2∑

m=1

am ~F∆m = 0

⇔ ω̂n(0) + a0ω̂n(∆0) +

N−1
2∑

m=1

amω̂n(∆m) = 0, n = 1, . . . , N.

(3.12)

This is because as we have just reviewed, understanding and constructing these solutions

automatically leads to the desired bounds.

We are particularly interested in how the truncated solution approaches the exact one.

As we dial up N , the number of operators in the solution increases, and the CFT data of

those operators already in the solution changes, eventually approaching their exact values.

Depending on the choice of basis elements ω̂1, . . . ω̂N , the rate at which we approach the

exact extremal solution, and with it the exact bounds, can be very different as we shall see.

The original choice of [1] set ω̂n = ∂2n−1
z

∣∣
z= 1

2
, and this has been the default approach

ever since. We will argue that a better choice is to use the functionals αB,Fn , βB,Fn . Whether

bosonic or fermionic functionals should be used depends on the expected asymptotics of the

extremal solution. Although the full set of bosonic functionals is equivalent to the fermionic

one, for finite N we could choose a mixed basis combining elements from the two. For the

sake of the arguments in this section we will stick to just using the bosonic basis, and set

WN = span

{
αB0 ;αBn , β

B
n , n = 1, . . .

N − 1

2

}
, (3.13)

with N odd.

9Gliozzi [17] was the first to propose that sparseness (what we call extremality) can be used to bootstrap

interesting solutions to crossing, even in the absence of unitarity or positivity.
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To make our case we will focus on the OPE maximization problem of an operator with

dimension ∆0 < 2∆φ + 1, the same problem which will be considered numerically in the

next section. We will start by choosing ∆0 = 2∆φ and then discuss perturbations around

this point up to second order. This problem was already considered and solved in [4], but

here our focus will be on understanding the dependence of the solution on the truncation

size. At the end we will give a more general argument that justifies why this basis should

be generally useful for any bootstrap problem.

Perturbative arguments — zeroth order. Consider first the case where ∆0 = 2∆φ.

We must search for a functional ωopt,N in WN which will give us the best possible bound.

In this case it is not hard to see that the optimal functional is αB0 , independently of N .

Indeed it can be checked that αB0 (∆) ≥ 0 for ∆ ≥ ∆0 (and that αB0 (∆0) = 1). Hence αB0
definitely provides a valid bound. That this bound is optimal can be checked by computing

− αB0 (0) = afree
∆B

0
, (3.14)

which establishes optimality since the generalized free boson solution (2.6) saturates it.

This is not too surprising, since the exact functional bases were constructed precisely so as

to be dual to the exact generalized free solutions. The extremal solution in this case will

consist of N+1
2 vectors with dimensions ∆B

0 , . . . ,∆
B
N−1

2

, with

~F0 + afree
∆B

0

~F∆0 +

N−1
2∑

n=1

afree
∆B
n

~F∆B
n

= 0 . (3.15)

That this equation holds is a simple consequence of the duality conditions (2.10). In other

words, the truncated extremal solution is obtained by simply considering the first few

operators in the exact generalized free boson solution, which appear with their exact scaling

dimensions and OPE coefficients. As we add more functionals by increasing N the solution

to crossing systematically approaches the exact one, one operator at a time, in the best way

possible. If we are only interested in obtaining the bound on a∆0 , a truncation with N = 1

will. Of course in the derivative basis the correct result would only be achieved with N =∞.

Perturbative arguments — first order. For a more interesting result, consider in-

stead maximizing the OPE coefficient of an operator whose dimension ∆0 is close to but

not quite 2∆φ. We expect that the extremal solution (and accordingly, the optimal bound)

can be obtained by perturbing around the generalized free boson. We will do our analysis

by expanding in g ≡ ∆0 − 2∆φ:

∆m ∼
2∑

k=0

gk∆(k)
m , a∆m ∼

2∑
k=0

gka(k)
m , (3.16)

where the zeroth order values are the free ones. Expanding to leading order the truncated

crossing equations (3.12) and using the duality relations (2.10) we find

a(1)
m = a

(0)
0 cm, a(0)

m ∆(1)
m = a

(0)
0 dm, (3.17)
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which fixes the extremal solution completely, including the new optimal bound

aopt
0 = a

(0)
0 (1 + g c0) +O(g2) . (3.18)

These results are completely independent of the truncation size, and are therefore exact

for any N . So, just as before, the only role that the truncation size has is to systematically

add more operators which appear with their correct dimensions and OPE coefficients (up

to O(g2) corrections). In particular, we again find that the exact OPE bound is captured,

to leading order in g, even with N = 1.

On the other hand, given this extremal solution to crossing we can also reconstruct

the new extremal functionals. Imposing the duality relations on the modified solution we

can find for instance10

α0 = (1 + gc0)

αB0 − g
N−1

2∑
k=1

∆
(1)
k ∂2

∆α
B
0 (∆

(0)
k )βBk

+O(g2) . (3.19)

Notice that this result now depends on the explicit truncation, and hence this is actually

not the correct exact functional for any finite N . The reason for this is that this functional

still has double zeros at ∆m = 2∆φ + 2m for m > N/2 (i.e. above the truncation level),

instead of the corrected O(g) ones. In spite of this, this functional does compute the correct

new bound to O(g2), −α0(0) = a
(0)
0 + ga

(1)
0 , independently of the truncation size.

Perturbative arguments — second order. We now go to quadratic order in g. In

this case the crossing equations lead to:

a(2)
m = a

(1)
0 cm −

1

2

N−1
2∑

n=0

a(0)
n (∆(1)

n )2∂2
∆α

B
m(∆(0)

n ) ,

a(0)
m ∆(2)

m + a(1)
m ∆(1)

m = a
(1)
0 dm −

1

2

N−1
2∑

n=0

a(0)
n (∆(1)

n )2∂2
∆β

B
m(∆(0)

n ) .

(3.20)

The results now depend explicitly on N , a dependence which is directly inherited from that

of the functionals at the previous order. To proceed we need to know something about

the functional actions and the anomalous dimensions. Using the asymptotics derived in [4]

(quoted below in equation (3.23)) as well as the large n behaviour of dn from (2.11), we have:

∆(1)
n ∼

n�1
1/n2, a(0)

n ∂2
∆ω

B
m(∆(0)

n ) ∼
n�1

1/n3, (3.21)

with ω = α, β, and holding m fixed in the last equality. We conclude that both scaling

dimensions and OPE coefficients are expected to converge to their exact (N = ∞) values

at a rate O(N−6).

10Note that in this process we are not free to choose the Cn, Dn, rather their precise values emerge

automatically after imposing the other duality relations.
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General argument. To conclude we will do a more general analysis that does not rely

on perturbation theory. As we will see in section 4, at large dimension the operator

spectrum and the OPE coefficients of an extremal solution often asymptote to those of

a generalized free solution. We show here that this implies that if we have solved the

functional equations (numerically) with N components, and N is large enough so that the

free asymptotics have kicked in, we can effectively complete the solution for arbitrarily high

dimensional operators.

The full constraints of crossing symmetry on the extremal solution are written in the

following way:

ω̂n(0) +

M∑
m=0

amω̂n(∆m) = −
+∞∑

m=M+1

amω̂n(∆m), 0 ≤ n ≤ N

∑
m=M+1

amω̂N+n(∆m) = −ω̂N+n(0)−
M∑
m=0

amω̂N+n(∆), 0 < n.

(3.22)

Truncating the solution means that we set to zero the righthand side of the first set of

equations, while ignoring the constraints arising from the second set. We have seen that

for extremal solutions we have M = N−1
2 , so we make that choice, and use for the functional

basis the one introduced in equation (3.13).

Let us suppose that the exact solution has a spectrum which asymptotes to the gen-

eralized free boson for high enough scaling dimension, that is, the high energy spectrum

consists of “double-trace” operators whose anomalous dimensions γm ≡ ∆m − ∆B
m fall

off with some power of m. For definiteness let us say that γm is sufficiently small for

m > M∗. The bounds derived in [4] imply that the corresponding OPE coefficients must

also approach the generalized free ones. In this case, as long as M = N/2 > M∗, the

righthand side of the first set equations is indeed small for all n < N . This follows from

the asymptotic behaviour, determined in the same reference:

βn(∆) ∼
∆→∞

sin
[π

2
(∆−∆B

n )
]2
(
afree

∆n

afree
∆

)
4∆(∆B

n )2

∆4 − (∆B
n )4

, with ∆/∆n fixed,

βn(∆) ∼
∆→∞

sin
[π

2
(∆−∆B

n )
]2
(
afree

∆n

afree
∆

)
4(∆B

n )2

∆3
, with ∆n fixed,

(3.23)

with similar expressions for the αn. In particular the effect of tails on the functional equa-

tions for fixed n falls off as ∼ γ2
N/N

2. In the OPE maximization problem, which will also be

analysed numerically in the next section, γn ∼ n−2 which leads to an overall expected 1/N6

convergence rate, which matches what we found in perturbation theory. More generally,

we expect a 1/N2 fall-off behaviour until N is large enough that we reach the scale where

anomalous dimensions are sufficiently small, followed then by the faster 1/N6 fall-off.

– 12 –
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Let us now discuss the second set of equations which we ignored. Again for large

enough N that we reach the weakly coupled regime, these equations become

an = −αn(0)−

N−1
2∑

m=0

amαn(∆m) +O(γ2
N ), n >

N − 1

2

anγn = −

N−1
2∑

m=0

amβn(∆m) +O(γ2
N ), n >

N − 1

2

(3.24)

In fact, we may freely drop terms in the sums above for which m is above the strongly

coupled scale. These equations tell us that at high scaling dimension the CFT data is

determined entirely in terms of the strongly coupled region where operators have order one

anomalous dimensions.

Overall we see that using our proposed basis, the truncation procedure effectively

converges as soon as N is large enough that we reach the weakly coupled regime of small

anomalous dimensions. This means that, in practice, we can use numeric algorithms to solve

for the low energy spectrum, and then use equations (3.24) to complete the solution up to

arbitrarily large scaling dimensions. The reason this is possible is because all functionals

in the basis automatically encode the asymptotics of the generalized free spectrum. In

particular any finite linear combination of functionals will have double zeros at the positions

of the free boson spectrum for sufficiently high dimension, and so truncation preserves

the asymptotics. Of course, it is clear that should the extremal solution asymptote to a

generalized free fermion we would do well then to use the associated functional basis.

4 Applications

In this section we will test our proposed functional basis in concrete numerical applications.

In the first application, we will bootstrap the generalized free boson solution using

the fermionic functional basis. This is interesting for several reasons. Firstly, we have

an exact solution to compare with. Secondly, the fermionic functionals are adapted to

solutions to crossing that asymptote to a spectrum of the form ∆n = 1 + 2∆φ+ 2n, i.e. not

the generalized free boson’s ∆n = 2∆φ + 2n. From the fermionic functionals perspective

the free boson is as strongly coupled as it is possible to get, so many of our motivating

arguments in the previous section aren’t applicable. It is interesting then to see how our

basis performs in this worse case scenario.

In our second application we will maximize the OPE coefficient of the first operator

above the identity, whose dimension ∆0 we take to continuously interpolate between the

bosonic value 2∆φ and the fermionic value 1 + 2∆φ. We find that right up to ∆0 =

1+2∆φ, where there is a discontinuity, the bound is saturated by a solution whose spectrum

asymptotes to the generalized free boson’s, and as such we will use the bosonic functional

basis throughout. This is a concrete numerical test of the analytic arguments of the previous

section. For ∆0 perturbatively close to 2∆φ the extremal solution matches with what would

be obtained by adding a φ4 interaction to a free scalar field in AdS2, and as such we call

this family of solutions the φ4 flow.
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All computations in this section were performed with JuliBootS [18]. As an input,

we need to provide to this program the functional actions αn(∆), βn(∆), analogously to

ω∂(∆) ≡ ∂2n+1
z z−2∆φG∆(z)|z=1/2 for the derivative basis. Unlike the latter, for the former

we do not yet have a way of obtaining efficient rational function representations, and hence

we simply computed a table of functional actions evaluated at several values of ∆ and fed

it into the linear programming algorithm. To improve the accuracy of the overall result,

interpolation was then used to iteratively generate new points on the table in the vinicity of

functional zeros until convergence was observed. Further details are available upon request.

Explicit forms of the functional kernels fω(z) for both the bosonic and the fermionic

functionals for any external dimension ∆φ are given in appendix A. We have chosen to focus

on ∆φ = 1/2 for the fermionic basis and ∆φ = 1 for the bosonic one, where these fω take

a simpler form. In this case we are able to compute the functional actions analytically, see

appendix B, making the numerical evaluation of the tables faster. We emphasize that apart

from this there is nothing special about these particular external dimensions: for a generic

∆φ it may take longer to compute the value of the functional actions, but once this is done

the linear programming part of the algorithm proceeds in the same way. In particular, all

nice properties of the functional bases, such as fast convergence, are generic.11

4.1 Bootstrapping bosons with fermions

As we have reviewed in the previous section, in 1D CFTs the OPE maximization problem

for an operator with dimension 2∆φ is solved by the generalized free boson, with the exact

functional providing this bound given by αB0 .12 We now attempt to reproduce this result

using the fermionic functional basis and compare with the same computation as done with

the derivative basis. In detail the two basis used are:

Wω
N ≡ span

{
αFn , β

F
n , n = 0, . . . ,

N − 2

2

}
,

W∂
N ≡ span

{
∂1+2n
z |z= 1

2
, n = 0, . . . , N − 1

}
.

(4.1)

We focus on ∆φ = 1/2, for which the functional actions can be computed more effi-

ciently, as shown in appendix B. Our results are shown in figures 2 and 3. We find the

functional basis outperforms the derivative basis in two different ways. Firstly, as expected

for both bases the extremal solution gains a new operator every time that N is increased

by two units (meaning we have two additional functional components), however with func-

tionals this operator appears already with a small initial error, which is in fact bounded

in absolute value by ∼ 0.6. No such bound is observed with the derivative basis, with this

initial error seemingly growing linearly with N . After their initial appearance operators

systematically approach their correct generalized free values as N is increased further. In

the derivative basis this takes longer than with functionals, since not only the initial error is

larger, but also the rate at which the correct value is approached is worse. Experimentally

11As a sanity check, we have explicitly checked this up to N = 10 for some non half-integer external

dimension in the fermionic basis.
12To be precise this assumes a certain minimum gap in the spectrum. This gap can be chosen to be the

scaling dimension, always below 2∆φ, where αB0 first becomes negative.
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Figure 2. Spectrum of the solution saturating an OPE maximization bound for ∆0 = 2∆φ, with

∆φ = 1/2, using the fermionic functional basis (top) and derivatives (bottom). As N is increased

by two units a new operator appears, while previous operators approach their correct values shown

as dashed lines. With functionals the initial error is smaller and convergence is faster.
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Figure 3. Spectrum of the solution saturating OPE maximization bound at ∆0 = 2∆φ with

∆φ = 1/2. δ∆n ≡ |∆n −∆B
n |. Left: using the fermionic functional basis, as N is increased by two

units a new operator appears with initial bounded absolute error in dimension, which converges to

about ∼ 0.6 at large N . As N increases further this error then rapidly decreases. Right: convergence

of scaling dimension ∆1. In red the derivative basis, in blue the functional basis. The lines represent

fits to a 1/N and 1/N2 behaviour respectively.

Figure 4. The single bin functional ∪, here shown for ∆φ = 1
2 . Contributions to the OPE in the

region where the functional is negative must cancel those where it is positive. Given our gap assump-

tions on the extremal solution, this implies an operator must appear between 2∆φ+ 1 and 2∆φ+ 3.

we find convergence rates of order N−2 and N−1 for the functional and derivative bases re-

spectively. The former is consistent with our analysis of the previous section setting γn ∼ 1.

The reason why the initial error of operators is bounded when using the functional basis

can be understood from the results of [4]. There it was shown that by combining functionals

it is possible to find lower bounds on the OPE density. This forces operators to appear

in certain bins in scaling dimension space. These bounds can be obtained by combining a

finite number of functionals, and hence hold even in our truncated numerical setting. To

see this explicitly, in figure 4 we plot the functional combination ∪1 := βF1 − cβF0 , where

c is a suitably chosen coefficient. For N ≥ 4, this functional lies inside WN . Any solution

to crossing, and in particular the extremal solution for the same N , has to be compatible
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Figure 5. OPE maximization at ∆φ = 1 with N = 19 components, although no visible changes are

seen beyond N = 5. Main plot: bound on the OPE coefficient of the first operator as a function of

its dimension ∆0. Inset: dimension of the second operator ∆1 at extremality as a function of ∆0.

In both plots, the dashed lines represent analytic perturbation theory computations up to cubic

order in g ≡ ∆1 − 2∆φ, as described in the main text.

with the constraints imposed by this functional. This constraint is that contributions

from the OPE density in regions where ∪1 is positive have to be cancelled by those where

it is negative. Since we are imposing a gap in the spectrum up to 2∆φ, the constraint

from ∪1 here implies a non-zero OPE density inside the region (1 + 2∆φ, 3 + 2∆φ). At

extremality this will be achieved by a single operator inside this region, and so the error on

the dimension of this operator is bounded by one unit (since the correct value is 2 + 2∆φ).

This argument generalizes to higher values of n.

4.2 OPE maximization, or φ4 flow

For our next application, we will derive bounds on the OPE coefficient of an operator

whose dimension ∆0 is varied between 2∆φ and 2∆φ + 1. As mentioned earlier, we will

set ∆φ = 1 for simplicity and use the bosonic functional basis since as it turns out, the

extremal solution saturating the bound has a spectrum which rapidly asymptotes to that

of a free boson. That is, we will now do the numerical version of what we examined in

section 3.2. The basis of functionals was given in (3.13). Note that the existence of the

αB,F0 functionals imply that the exact bound will be saturated by the bosonic solution

when ∆0 = 2∆φ and by the fermionic solution when ∆0 = 1 + 2∆φ. Hence we expect that

using the bosonic basis should be less optimal as we approach ∆0 = 1 + 2∆φ (but still

better than derivatives, since in the worse case scenario we go back to a similar situation

to that of the previous subsection).
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Figure 6. Extremal spectrum as a function of the lowest dimension operator with N = 19 com-

ponents. The dashed lines represent the generalized free boson spectrum, while the red dots stand

for the free fermion spectrum.

Our results are summarized in figures 5 and 6. In the main plot in figure 5 we show

the upper bound on the OPE coefficient. The bound is essentially unchanged beyond

truncations with N = 5 with even N = 3 already providing an excellent approximation to

the bound except very close to ∆0 = 1 + 2∆φ = 3. The results shown have N = 19. In the

inset of the same figure we show the scaling dimension ∆1 of the subleading scaling operator

(since ∆0 is fixed by hand) of the extremal solution saturating the bound.13 The numerical

results are in excellent agreement with the analytic results of reference [4], where CFT data

for the φ4 deformation was determined up to two loops. Our numerics can be thought of as

providing a non-perturbative completion of these results into the strongly coupled regime.

When ∆0 = 2∆φ or ∆0 = 1 + 2∆φ the OPE bound is saturated by the free values 2

and 2∆φ respectively (which for ∆φ = 1 are the same), as expected, and ∆1 also correctly

interpolates between 2∆φ + 2 = 4 and 1 + 2∆φ + 2 = 5. Inbetween those values, we have a

non-trivial bound and an interacting solution to crossing. Figure 6 shows a more complete

picture of the spectrum obtained from the same truncation with N = 19. We see that

most of the spectrum is essentially identical to that of the free boson for almost all values

of ∆0, which explains why using the bosonic functional basis is such a good idea here. It is

only when ∆0 approaches 1 + 2∆φ that we see rapid rearrangements in the spectrum. For

sufficiently large ∆ the spectrum essentially jumps nearly discontinuously from that of the

free boson to the free fermion one. This is consistent with the fact that there are no UV-

13A different way to think of this curve is as an upper bound on the dimension of the first subleading

scalar in a solution to crossing, where the leading scalar is assumed to have dimension ∆0. In other words,

the extremal solution that saturates the OPE bound can also be found by doing gap maximization on the

subleading scalar.
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Figure 7. Bound on a0 for ∆0 = 2∆φ+ 1
2 = 2.5 as a function of the number of components. In black

the bound obtained using functionals, in red the one with derivatives. The dashed line corresponds

to a prolongation of the N = 19 functional result. The inset allows us to better see how fast the

functional basis result converges. In particular these results show that in this case the bound using

the functional basis with N = 3 significantly outperforms the derivative basis with N = 90.

preserving deformations of the generalized free fermion that do not introduce new states,

as follows from the duality conditions (2.9). Presumably irrelevant contact interactions in

AdS2 should account for the spectrum close to the free fermion point.

We observe that as we increase N , new operators appear with a value of the scaling

dimension which is essentially already their correct final value. That is, after an operator

appears, increasing N does not significantly change its OPE or scaling dimension. In this

sense, we find quite remarkably that the solution to the numerical problem converges. This

is in line with the expectations of section 3.2: once we have successfully bootstrapped the

region of the spectrum where scaling dimensions are very different from the free ones, there

is very little interest in pursuing the computation, since the OPE data of higher dimension

operators may be determined by equations (3.24). We have checked that those equations

are indeed satisfied to high accuracy.

It is illuminating to compare the relative merits of the functional and derivative bases

in the current setup. In figure 7 we compare the bounds on a0 obtained using the derivative

and the functional bases for the case ∆0 = 2∆φ + 1
2 = 2.5, which is halfway between the

cases ∆0 = 2∆φ = 2 and ∆0 = 2∆φ + 1 = 3 (where the theories saturating the bounds

are the free boson and fermion respectively) and hence “maximally interacting” in some

sense. We see that the functional basis outperforms the derivative basis dramatically:

using just three functional components in this case outperforms (at least) 90 derivative

components. In figure 8 we show more detailed convergence properties of the functional
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Figure 8. Convergence of OPE maximization. Shown are the relative errors in the determination

of ∆1 (as compared to its value for N = 19), for two distinct values of ∆0, namely close to the

bosonic and fermionic points. Although the initial error is smaller in the former (since we are using

the bosonic basis), the rate of convergence is the same in either case and compatible with a 1/N6

behaviour.

basis. Although it is hard to estimate the correct fall-off power from our data (we have

considered only functionals up to N = 19), the results are consistent with a very fast

convergence rate ∼ N−6, as argued in section 3.2. For the derivative basis, there is no

special difference between setting ∆0 = 2∆φ or some other value, and so the convergence

properties look the same as those of the previous section. In particular, one again finds

that increasing N successive operators appear in with larger and larger initial errors, and

converge then with a power law falloff ∼ 1/N .

5 Outlook — higher dimensions

The main conclusion of this note is that the subset of constraints arising from the z = z̄

section of the crossing equation are efficiently captured by the functional bases introduced

in [4]. In particular, we have argued and shown that for 1D CFTs these functionals provide

what is perhaps the best possible choice of basis with which to compute numerical bounds.

Our results make even more exciting the possibility that there are analytic functionals

in higher dimensions, analogous to the ones in 1D, which would allow us to distinguish

between different spin channels. If such functionals can be constructed, even discounting

their analytic implications, they will surely revolutionize what is possible to do in the

numerical bootstrap. Since such functionals are not yet available, we would like to comment

on what can be done right away using the functionals we do have.

Upon restriction to the z = z̄ line, higher dimension solutions to crossing equation

take the form. ∑
∆,`

a∆,`F∆,`(z, z|∆φ) = 0. (5.1)
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Hence there are now many kinds of functional actions, depending on spin:

ω(∆)→ ω(∆, `). (5.2)

However, it is straightforward to show that the functional actions still encode generalized

free asymptotics in every spin channel, i.e. we have relations such as

αBn (∆B
m, `) = δn,m, for m ≥ n (5.3)

independently of spin.14

When bootstrapping higher dimensional CFTs, the class of functionals typically used

amounts to derivatives in the two cross-ratios z, z̄, which may be taken along directions

parallel and transverse to the z = z̄ line. So, one obvious thing to do is to replace purely

parallel derivatives by the functional basis proposed here. More generally one could imagine

Taylor expanding the F∆,`(z, z̄) along the z = z̄ line and acting with our functionals on

each coefficient function. However, there are good reasons to believe that by simply adding

our functionals to the existing approach will already lead to significant and in some cases

dramatic improvements.

The first basic reason is that even the set of z = z̄ constraints in higher dimensions are

non-trivial, especially for moderate and large values of ∆φ. Consider for instance the typi-

cal bootstrap problem, which is a bound on the leading scalar dimension, while allowing for

higher spin operators with dimensions above or equal to the unitarity bound d−2+`. Since

all higher D CFTs are also D = 1 CFTs, this bound must be equal to or stronger than the

1D result 1 + 2∆φ for 1 + 2∆φ ≤ d.15 The point now is that even mustering sufficient com-

putation firepower to obtain a bound as strong as the D = 1 result takes some work. As a

simple example for instance, in D = 4 (cf. [19], figure 2) with ∆φ = 3/2, the usual derivative

bound only becomes competitive with the D = 1 result after using at least 21 derivative

components, whereas the same result would be obtained with a single functional (βF0 ).

More interestingly, higher dimensional bounds can in fact sometimes be saturated by

1D solutions, where our functionals can then provide the optimal bound immediately. A

trivial example is that if we take the free theory solution in any spacetime dimension, from

a 1D perspective this is nothing but the generalized free boson, for which we already have

associated extremal functionals. In particular, this predicts that the free theory solution

maximizes the OPE bound on the scalar operator of dimension 2∆φ = d−2. Hence, in the

neighbourhood of the free points, using the functional basis above should not be too bad,

since using a truncation containing a single functional αB0 (i.e. the analog of using a single

derivative) already yields the exact optimal bound at that point.

Two more interesting examples occur in D = 2. There the bound on the leading

scalar dimension looks schematically as in figure 9.16 The first example is at the point

14This is a consequence that the derivation of the functional action (2.14), with the characteristic sine

squared oscillations, actually depends on very little details of the conformal blocks.
15When we set a gap from a 1D perspective we are gapping all spin channels in higher dimensions. The

restriction then arises since we don’t want to gap spin 2 operators above the unitarity bound.
16The first 2D bound appeared in [20], and a wider plot where the second kink at (1,4) is visible has

appeared recently in [21]. However, the existence of this kink was communicated to us by S. El-Showk a

long time ago, who seems to have been the first to notice it.
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Figure 9. Schematic bound on leading scalar dimension ∆ε in 2D CFTs. Three notable points

(∆φ,∆ε) are the 2D Ising model 〈σσσσ〉 correlator at (1/8, 1), the large m limit of the minimal

model φ1,2 four-point correlator at (1/2, 2) and the 2D Ising 〈εεεε〉 correlator at (1, 4). The dashed

lines correspond to the 1D generalized free fermion (∆ε = 1+2∆φ) and boson (∆ε = 2∆φ) theories.

(∆φ,∆ε) = (1/2, 2), where the bound crosses the 1D generalized free fermion line. This

point corresponds to the m→∞ limit of the minimal model correlator of four φ1,2 [22],17

which for z = z̄ is indeed the same as the generalized free fermion. Hence, at this point we

already have the extremal functional available which determines the exact optimal bound,

namely βF0 . Establishing this with the derivative basis, even approximately, is highly non-

trivial. The bound determined by βF0 alone is suboptimal everywhere below ∆φ = 1/2 as it

should, and above this value it gaps the spin-2 channel as well, so there is no inconsistency

with higher-D results.

The second example is at (∆φ,∆ε) = (1, 4) which is the four ε correlator for the 2D

Ising model. This correlator restricted to the z = z̄ line becomes a generalized free boson.

From the 1D perspective the operator of dimension 2∆φ = 2 is the 2D stress tensor, and ε

is the operator with dimension 2+2∆φ = 4. In particular the OPE bound on an operator of

dimension 2∆φ is saturated by the free boson, which in higher D terms translates into the

statement that central-charge minimization will be saturated by the ε four point function,

with corresponding functional αB0 .

In both cases, we see that in our basis truncations with even a single component already

yield exact optimal bounds, so that transverse derivatives are only required to disentangle

the spin structure of the extremal spectrum. It is reasonable to expect that in the vicinity

of these points including our functionals in the basis should lead to great improvements

in current numerical results. It would be very interesting to investigate this in a more

systematic fashion.

17This is also the correlator of four energy operator in the 4-state Potts model at criticality, see for

example [23].
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A Functional kernels

In this section we show how to obtain the explicit kernels corresponding to functionals

αn, βn. For further details the reader should consult [4]. We start with the results:

fβF0
(z|∆φ) = −κ(∆φ)

2z−1

w3/2

[
3F̃2

(
−1

2
,
3

2
,2∆φ+

3

2
;∆φ+1,∆φ+2;− 1

4w

)
(A.1a)

+
9

16w
3F̃2

(
1

2
,
5

2
,2∆φ+

5

2
;∆φ+2,∆φ+3;− 1

4w

)]
,

fαF0
(z|∆φ) = κ(∆φ)

2(z−2)(z+1)

(2z−1)w3/2

[
3F̃2

(
−1

2
,−1

2
,2∆φ+

3

2
;∆φ+2,∆φ+2;− 1

4w

)
(A.1b)

+
(2∆φ+3)(2∆φ+5)

16w
3F̃2

(
1

2
,
1

2
,2∆φ+

5

2
;∆φ+3,∆φ+3;− 1

4w

)
−

3(4∆φ+5)

256w2 3F̃2

(
3

2
,
3

2
,2∆φ+

7

2
;∆φ+4,∆φ+4;− 1

4w

)]
.

where w ≡ z(z − 1) and we have added an extra argument to the kernel f(z) → f(z|∆φ)

to keep track of which ∆φ it corresponds to. Here 3F̃2 stands for the regularized hyperge-

ometric function, w = z(z − 1) and the normalization factor is given by

κ(∆φ) =
Γ(4∆φ + 4)

28∆φ+5Γ(∆φ + 1)2
. (A.2)

Recall that gω(z) = −(1 − z)2∆φ−2fω( 1
1−z ) in the fermionic case (for bosons, the overall

minus sign isn’t there). We can now constructed shifted functionals:

fsωFm(z|∆φ) =

[
1 + z(z − 1)

z(z − 1)

]2m

fωF0
(z|∆φ +m) (A.3)

where ω can be α or β. The corresponding shifted functionals sβFm, sαFm satisfy the correct

duality conditions for ∆n > ∆m, and hence we have e.g.

βFn =
n∑

m=0

qn sα
F
n + rn sβ

F
n (A.4)

for some qn, rn. The constants may be determined by imposing the full duality rela-

tions (2.9). We note that the solution to this orthonormalisation step is not currently

known in closed form for all n, i.e. it has to be done case by case, except for special values

of ∆φ. However, it is clear that for the purpose of the numerical computations we are
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interested in any basis will do, and so we may as well work with the shifted functionals

instead of the orthonormal ones.

Now let us turn to the bosonic functionals. We now define:

fsωBm+1
(z|∆φ) = − 1

z(z − 1)

[
1 + z(z − 1)

z(z − 1)

]2m

fωF0
(z|∆φ + 3/2 +m). (A.5)

That is, the bosonic kernels can be obtained from the fermionic ones. The kernels above

correspond to shifted bosonic functionals analogous to the fermionic ones, and again an

orthonormalisation procedure may be applied if so wished, by imposing the duality con-

ditions (2.10). The above should be used for m ≥ 0. The αB0 functional must be treated

separately, and is given by:

fαB0
(z|∆φ) = −z(z − 1)

[
fαF0

(z|∆φ − 3/2) +
1

2∆φ − 1
fβF0

(z|∆φ − 3/2)

]
. (A.6)

B Computation of the functional action for special cases

In this section we compute the action of the bosonic functionals for external dimension

∆φ = 1 and the fermionic ones for ∆φ = 1/2. We will give the explicit forms of these

functionals and show how to evaluate them. The techniques shown here apply in the

bosonic case with integer external dimension and fermionic case with half integer external

dimension, where the functional kernels have a simpler form.

B.1 The functional kernels

The functionals act on F∆(z) via the formula:

ωn[F∆] ≡ ωn(∆) =
1

2

∫ 1
2

+i∞

1
2

dzfωn(z)F∆(z) +

∫ 1

1
2

dzgωn(z)F∆(z) (B.1)

where g(z) = ±(1 − z)2∆φ−2f
(

1
1−z

)
and the +(-) sign for the boson (fermion) basis

respectively. This can be massaged into the alternative expression:

ωn(∆) = [1± cosπ(∆− 2∆φ)]

∫ 1

0
dz gωn(z)

G∆(z)

z2∆φ
. (B.2)

For the fermionic functionals at external dimension ∆φ = 1/2, the functional kernels are

g−βn(z) =
2Γ(2 + 2n)2

π2Γ(3 + 4n)

[
1

z
P1+2n

(
2− z
z

)
− P1+2n(2z − 1)

]
,

g−αn(z) =
2 Γ(2 + 2n)2

π2Γ(3 + 4n)

[
1

z
DP1+2n

(
2− z
z

)
−DP1+2n(2z − 1)− Γ(2 + 2n)2

Γ(4 + 4n)

G∆n(1− z)

1− z

]
=

1

2
∂ngβ−n (z)− 2

π2

Γ(2 + 2n)4

Γ(3 + 4n)Γ(4 + 4n)

G∆n(1− z)

1− z
.
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where ∆n = 2n + 2, Pn(z) is the Legendre polynomial and the derivative with respect to

its parameter is:

DPn(y) := Pn(y) log

(
1 + y

2

)
+ 2

n−1∑
k=0

[
(−1)k+n 2k + 1

(n− k)(n+ k + 1)
Pk(y)

]
=

Γ(2n+ 1)

Γ(n+ 1)2
∂n

[
Γ(n+ 1)2

Γ(2n+ 1)
Pn(y)

]
.

(B.3)

The motivated reader can check these expressions are perfectly compatible with those of

appendix A. The bosonic functional kernels for external dimension are ∆φ = 1 are instead

g+
βm

(z) =
2

π2

Γ(2 + 2m)2

Γ(3 + 4m)

[
P2m+1

(
2− z
z

)
+ P2m+1 (2z − 1)

−P1

(
2− z
z

)
− P1 (2z − 1)

]
,

g+
αm(z) =

1

2
∂mg

+
βm

(z)− 2

π2

Γ(2 + 2m)4

Γ(3 + 4m)Γ(4 + 4m)
G∆m(1− z) .

(B.4)

Numerically, the integral (B.2) converges only for ∆ > ∆n, and below that value we must

use (B.1). Instead, we will now compute (B.2) exactly for ∆ > ∆n and analytically continue

the result to general ∆.

B.2 Computation of beta functionals

Let us start by showing how to compute the integral for the β functionals. First of all we

notice that P1+2n(2
z − 1) is an eigenfunction of the Casimir C2 = z2(1− z) d

2

dz2
− z2 d

dz with

eigenvalue c2(∆n) = ∆n(∆n − 1) = (2n + 2)(2n + 1). We use the fact that the measure

z−2 makes the Casimir operator self adjoint∫ 1

0

dz

z2
f(z)(C2g(z)) =

[
(1− z)(f(z)g′(z)− f ′(z)g(z))

]1
0

+

∫ 1

0

dz

z2
(C2f(z))g(z) . (B.5)

Combining this with the fact that both G∆(z) and P2n+1(2
z − 1) are eigenfunctions of the

Casimir, we get ∫ 1

0

dz

z2
P1+2n

(
2

z
− 1

)
G∆(z) =

1

c2(∆)− c2(∆n)

Γ(2∆)

Γ(∆)2
. (B.6)

The l.h.s. converges for ∆ > ∆n only, but we use this formula as the analytic continuation.

There is a pole at ∆ = ∆n, which when combined with the prefactor in (B.2) is responsible

for the single zero of βn, see (2.9).

There is no such trick for the second part of the β functional. Evaluating the Legendre

polynomial for a given n just leaves us to evaluate a finite number of integrals of the kind

Ia(∆) =

∫ 1

0

dz

z2
zaG∆(z) . (B.7)

This can be evaluated for generic values of a and turns out to be

Ia(∆) =
3F2(∆,∆, a+ ∆− 1; 2∆, a+ ∆; 1)

a+ ∆− 1
. (B.8)

– 25 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
6

However, it can be convenient to compute Ia(∆) recursively, since this is numerically faster.

Using the fact that the conformal block is an eigenvalue of the Casimir operator

0 =

∫ 1

0

dz

z2
za (C2 − c2(∆))G∆(z)

=
Γ(2∆)

Γ(∆)2
−
∫ 1

0

dz

z2
C2(za)G∆(z)− c2(∆)Ia(∆)

=
Γ(2∆)

Γ(∆)2
+ (c2(a)− c2(∆))Ia(∆)− a2Ia+1(∆) ,

(B.9)

we get the recursion relation

Ia+1(∆) =
1

a2

Γ(2∆)

Γ(∆)2
+
c2(a)− c2(∆)

a2
Ia(∆) . (B.10)

Now, we can find the value of Ia(∆) for any a ∈ Z using that

I0(∆) =
Γ(2∆)

(∆− 1)∆Γ(∆)2
, (B.11)

I1(∆) =
Γ(2∆)Γ(∆ + 1)

(
ψ(1)

(
∆
2

)
− ψ(1)

(
∆+1

2

))
2Γ(∆)3

, (B.12)

where for the second one we used equation (B.11) of [24]. By using this recursion relation

there is no need to evaluate 3F2 at unit argument, and this helps speeding up the numerics.

B.3 Computation of the alpha functionals

The computation of the α functional is a bit more complicated. Using the derivative

relation (B.3) between DPn and Pn and the result (B.6) we get that∫ 1

0

dz

z2
DP2n+1

(
2

z
− 1

)
G∆(z) =

=

[
2 (H2n+1 −H4n+2) +

2∆n − 1

c2(∆)− c2(∆n)

]
1

c2(∆)− c2(∆n)

Γ(2∆)

Γ(∆)2
,

(B.13)

where Hn is the nth Harmonic number. We can see that this integral has a double pole at

∆ = ∆n, and therefore αn is finite at this point, see (2.9).

The term with G∆n(1 − z) can be computed in terms of 4F3 with unit argument by

using the result (3.38) of [25], which we report here for completeness:∫ 1

0

dz

z2

(
z

1−z

)p
G∆(z)G∆n(1−z) =

=
Γ(2∆n)Γ(p+∆−1)2Γ(−p−∆+∆n+1)

Γ(∆n)2Γ(p+∆+∆n−1)

× 4F3 (∆,∆,p+∆−1,p+∆−1;2∆,p+∆−∆n,p+∆+∆n−1;1)+ (B.14)

+
Γ(2∆)Γ(p+∆−∆n−1)Γ(−p+∆n+1)2

Γ(∆)2Γ(−p+∆+∆n+1)

× 4F3 (∆n,∆n,−p+∆n+1,−p+∆n+1;2∆n,−p−∆+∆n+2,−p+∆+∆n+1;1) .
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Finally, we are left with expanding the DP2n+1(2z − 1) term and doing a finite number of

integrals of the kind

Ja(∆) =

∫ 1

0

dz

z2
za log(z)G∆(z) , (B.15)

which have the solution

Ja(∆) = − 4F3(∆,∆, a+ ∆− 1, a+ ∆− 1; 2∆, a+ ∆, a+ ∆; 1)

(a+ ∆− 1)2
. (B.16)

When computing the action of the functionals the bottleneck is given by the evaluation of

the 4F3 at unit argument, and so we would like to compute the least possible amount of

them. By noting that Ja(∆) = ∂aIa(∆) and deriving formula (B.10), we get

Ja+1(∆) = − 2

a3

Γ(2∆)

Γ(∆)2
+
a+ 2c2(∆)

a3
Ia(∆) +

c2(a)− c2(∆)

a2
Ja(∆) (B.17)

so that every Ja(∆) can be expressed in terms of J1(∆) and J0(∆) = − Γ(2∆)
(∆−1)2Γ(∆+1)2

.
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