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1 Introduction

In spite of the bulk of knowledge accumulated after almost half-century of studies of vec-

torlike gauge theories such as SU(3) quantum chromodynamics (QCD), partially based

on ever more sophisticated but basically straightforward approximate calculations (lattice

simulations), as well as some beautiful theoretical developments in models with N = 1 or

N = 2 supersymmetries [1]–[5], [6–8], surprisingly little is known today about strongly-

coupled ordinary (nonsupersymmetric) chiral gauge theories. Perhaps it is not senseless to

make some more efforts to try to understand this class of theories, which Nature might be

making use of, in a way as yet unknown to us.

Such a consideration has led two of us recently to give a systematic look into possible

phases of a large class of chiral gauge theories [9, 10], the first with M. Shifman. To be

concrete, we limited ourselves to SU(N) gauge theories with a set of Weyl fermions in a

reducible complex representation of SU(N). The gauge interactions in these models become

strongly coupled in the infrared. There are no gauge-invariant bifermion condensates, no

mass terms or potentials (of renormalizable type) can be added to deform the theories,

including the θ term, and the vacuum is unique.

The questions we addressed ourselves to are: (i) Do these systems confine, or experi-

ence a dynamical Higgs phenomenon (dynamical gauge symmetry breaking)? (ii) Do some

of them flow into an IR fixed-point CFT? (iii) Does the chiral flavor symmetry remain

unbroken, or if spontaneously broken, in which pattern? (iv) If there are more than one

apparently possible dynamical scenarios, which one is actually realized in the infrared?

(v) Does the system generate hierarchically disparate mass scales, such as the ones pro-

posed in the “tumbling” scenarios [11]? and so on. The general conclusion is that the

consideration based on the ’t Hooft anomaly matching conditions [12] and on some other

consistency conditions do restrict the list of possible dynamical scenarios, but are not

sufficiently stringent [9]–[22]. A more powerful theoretical reasoning is clearly wanted.

Recently the concept of generalized symmetries [23, 24] has been applied to Yang-

Mills theories and QCD like theories, to yield new, stronger, version (involving 0-form

and 1-form symmetries together) of ’t Hooft anomaly matching constraints [25]–[36]. The

generalized symmetries do not act on local field operators, as in conventional symmetry

operations, but only on extended objects, such as closed line or surface operators.1 The

generalized symmetries are all Abelian [23, 24]. This last fact was crucial in the recent

extension of these new techniques with color SU(N) center ZN to theories with fermions

in the fundamental representation. The presence of such fermions in the system would

normally simply break the center ZN symmetry and would prevent us from applying these

new techniques. A color-flavor locking by using appropriate discrete subgroups of global

U(1) symmetries associated with fermion fields, actually allows us to extend the use of

SU(N) center ZN symmetries in those theories.2

1A familiar example of a 1-form symmetry is the ZN center symmetry in SU(N) Yang-Mills theory,

acting on closed Wilson loops or on Polyakov loops in Eulidean formulation. As is well-known, a vanishing

(nonvanishing) VEV of the Polyakov loop can be used as a criterion for detecting confinement (Higgs) phase

of the theory.
2A careful exposition of these ideas can be found e.g., in [32].
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A key ingredient of these developments is the idea of “gauging a discrete symmetry”,

i.e., identifying the field configurations related by the 1-form (or a higher-form) symmetries,

and eliminating the consequent redundancies, effectively modifying the path-integral sum-

mation rule over gauge fields [38, 39]. Since these generalized symmetries are symmetries

of the models considered, even though they act differently from the conventional ones, it is

up to us to decide to “gauge” these symmetries. Anomalies we encounter in doing so, are

indeed obstructions of gauging a symmetry, i.e., a ’t Hooft anomaly by definition. And as

in the usual application of the ’t Hooft anomalies such as the “anomaly matching” between

UV and IR theories, a similar constraint arises in considering the generalized symmetries

together with a conventional (“0-form”) symmetry, which has come to be called in recent

literature as a “mixed ’t Hooft anomaly”. Another term of “global inconsistency” was also

used to describe a related phenomenon.

In this paper we take a few, simplest chiral gauge theories as exercise grounds, and

ask whether these new theoretical tools can be usefully applied to them, and whether they

provide us with new insights into the infrared dynamics and global symmetry realizations

of these models.3

For clarity of presentation, we focus the whole discussion here on a single class of

models (ψη models [9, 10]). In section 2 we review the symmetry and earlier results on

the possible phases of these theories. In section 3 the symmetry group of the systems is

discussed more carefully, by taking into account its global aspects. Section 4 and section 5

contain the derivation of the anomalies in odd N and even N theories, respectively. In

section 6 we discuss the UV-IR matching constraints of certain 0-form and 1-form mixed

anomalies, and their consequences on the IR dynamics in even N theories. In section 7

the mixed anomalies are reproduced without using the Stora-Zumino descent procedure

adopted in section 6. Summary of our analysis and Discussion are in section 8. We shall

come back to more general classes of chiral theories in a separate work.

2 The model and the possible phases

The model we consider in this work is an SU(N) gauge theory with Weyl fermions

ψ{ij} , ηBi , (i, j = 1, 2, . . . , N , B = 1, 2, . . . , N + 4) , (2.1)

in the direct-sum representation

⊕ (N + 4)
¯

(2.2)

of SU(N). This model was studied in [15, 16], [9, 10].4 This is the simplest of the class of

chiral gauge theories known as Bars-Yankielowicz models [13]. The first coefficient of the

beta function is

b0 = 11N − (N + 2)− (N + 4) = 9N − 6 . (2.3)

3In a recent work we discussed mixed anomalies for a class of chiral gauge theories for which a sub-group

of the center of the gauge group does not act on fermions [36].
4A recent application of this class of chiral gauge theories is found in [37].
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The fermion kinetic term is given by

ψγµ
(
∂ +RS(a)

)
µ
PLψ +

N+4∑
B=1

ηBγ
µ
(
∂ +RF∗(a)

)
µ
PLηB , (2.4)

with an obvious notation. In order to emphasize that this is the chiral gauge theory, we

explicitly write the chiral projector PL = 1−γ5

2 in the fermion kinetic terms. The symmetry

group is

SU(N)c × SU(N + 4)×U(1)ψη , (2.5)

where U(1)ψη is the anomaly-free combination of U(1)ψ and U(1)η,

U(1)ψη : ψ → ei(N+4)αψ , η → e−i(N+2)αη . α ∈ R . (2.6)

The group (2.5) is actually not the true symmetry group of our system, but its covering

group. It captures correctly the local aspects, e.g., how the group behaves around the iden-

tity element, and thus is sufficient for the consideration of the conventional, perturbative

triangle anomalies associated with it, reviewed below in this section.

Its global structures however contain some redundancies, which must be modded out

appropriately in order to eliminate the double counting. They furthermore depend crucially

on whether N is odd or even. These questions will be studied more carefully in section 3,

as they turn out to be central to the main theme of this work: the determination of the

mixed anomalies and the associated, generalized ’t Hooft anomaly matching conditions.

2.1 Chirally symmetric phase

It was noted earlier [9, 15, 16] that the standard ’t Hooft anomaly matching conditions

associated with the continuous symmetry group U(1)ψη × SU(N + 4) allowed a chirally

symmetric, confining vacuum in the model. Let us indeed assume that no condensates

form, the system confines, and the flavor symmetry is unbroken. The candidate massless

composite fermions (“baryons”) are:

B[AB] = ψijηAi η
B
j , A,B = 1, 2, . . . , N + 4 , (2.7)

antisymmetric in A↔ B. All the SU(N + 4)×U(1)ψη anomaly triangles are saturated by

B[AB] as can be seen by inspection of table 1.5

2.2 Color-flavor locked Higgs phase

As the theory is very strongly coupled in the infrared (see (2.3)), it is also natural to

consider the possibility that a bifermion condensate

〈ψ{ij}ηBi 〉 = cΛ3δjB 6= 0 , j, B = 1, 2, . . . N , c ∼ O(1) (2.8)

5There are discrete unbroken symmetries Zψ and Zψ which will be defined later (3.5), (3.6) which

are already contained in the covering space (2.5). The discrete anomalies Zψ SU(N)2, Zψ SU(N + 4)2,

Zη SU(N)2 and Zη SU(N + 4)2 are also matched as a direct consequence.

– 3 –
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fields SU(N)c SU(N + 4) U(1)ψη

UV ψ N(N+1)
2 · (·) N + 4

ηA (N + 4) · ¯
N · −(N + 2)

IR B[AB] (N+4)(N+3)
2 · (·) −N

Table 1. Chirally symmetric phase of the (1, 0) model. The multiplicity, charges and the repre-

sentation are shown for each set of fermions. (·) stands for a singlet representation.

fields SU(N)cf SU(4)f U(1)′ (Z2)F

UV ψ N(N+1)
2 · (·) N + 4 1

ηA1
¯ ⊕

¯

N2 · (·) −(N + 4) −1

ηA2 4 · ¯
N · −N+4

2 −1

IR B[A1B1]

¯
N(N−1)

2 · (·) −(N + 4) −1

B[A1B2] 4 · ¯
N · −N+4

2 −1

Table 2. Color-flavor locked phase in the ψη model, discussed in section 2.2. A1 or B1 stand for

1, 2, . . . , N , A2 or B2 the rest of the flavor indices, N + 1, . . . , N + 4. The fermion parity ψ → −ψ,

η → −η is defined below, eq. (3.19).

forms. Λ is the renormailization-invariant scale dynamically generated by the gauge inter-

actions. The color gauge symmetry is completely (dynamically) broken, leaving however

color-flavor diagonal SU(N)cf symmetry

SU(N)cf × SU(4)f ×U(1)′ , (2.9)

where U(1)′ is a combination of U(1)ψη and the elements of SU(N + 4) generated by(
−2 1N

N
2 14

)
. (2.10)

As (2.9) is a subgroup of the original full symmetry group (2.5) it can be quite easily

verified, by making the decomposition of the fields in the direct sum of representations

in the subgroup, that a subset of the same baryons B[AB] saturate all of the triangles

associated with the reduced symmetry group. See table 2.

The low-energy degrees of freedom are (N+4)(N+3)
2 massless baryons in the first, sym-

metric phase of section 2.1, and N2+7N
2 massless baryons together with 8N + 1 Nambu-

Goldstone (NG) bosons, in the second. They represent physically distinct phases.6 The

6The complementarity does not work here, as noted in [9], even though the (composite) Higgs scalars

ψη are in the fundamental representation of color.

– 4 –
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general consensus so far has been that it was not known which of the phases, section 2.1,

section 2.2, or some other phase, was realized in this model. We shall see below that our

analysis based on the mixed anomalies and generalized ’t Hooft anomaly matching con-

straints strongly favors the dynamical Higgs phase, with bifermion condensate (2.8). The

chirally symmetric phase of section 2.1 will be found to be inconsistent.

3 Symmetry of the system

In this section we examine the symmetry of the system more carefully, taking into account

the global aspects of the color and flavor symmetry groups. This is indispensable for the

study of the generalized, mixed ’t Hooft anomalies, as will be seen below.

The classical symmetry group of our system is given by

Gclass = Gc ×Gf

= SU(N)c ×
U(1)ψ ×U(N + 4)η

ZN
. (3.1)

The color group is Gc = SU(N)c, and its center acts non-trivially on the matter fields:

ZN : ψ → e
4πin
N ψ , η → e−

2πin
N η , n ∈ {1, . . . , N} . (3.2)

The flavor group is Gf =
U(1)ψ×U(N+4)η

ZN . The division by ZN is understood by the fact

that the numerator overlaps with the center of the gauge group, so this has to be factored

out in order to avoid double counting. Another, equivalent way of writing the flavor part

of the classical symmetry group is

Gf =
U(1)ψ ×U(1)η × SU(N + 4)

ZN × ZN+4
. (3.3)

Quantum mechanically one must consider the effects of the anomalies which reduce

the flavor group down to its anomaly-free subgroup. This reduction of the symmetry is

compactly summarized by the ’t Hooft instanton effective vertex

Leff ∼ e−SinstψN+2
N+4∏
B=1

ηB , (3.4)

(where the color, spin and spacetime indices are suppressed) as is well known. This vertex

explicitly breaks the independent U(1) rotations for ψ and η. Three different sub-groups

left unbroken can be easily seen from (3.4). First there is the discrete sub-group of U(1)ψ:

(ZN+2)ψ : ψ → e
2πik
N+2ψ , k ∈ {1, . . . , N + 2} , (3.5)

which leaves η invariant. Then there is the discrete sub-group of U(1)η:

(ZN+4)η : η → e
2πip
N+4 η , p ∈ {1, . . . , N + 4} (3.6)

– 5 –
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U(1)ψη

U(1)ψ

U(1)η

Figure 1. The torus U(1)ψ × U(1)η for N = 3. The edges are identified as the arrows show,

the corners represent the identity of the group. The unbroken subgroup U(1)ψη (red line) passing

through all the points of the lattice (Z5)ψ × (Z7)η. The dots indicate the elements of the center of

the gauge group Z3.

which leaves ψ invariant. Finally there is a continuous anomaly-free combination of U(1)ψ
and U(1)η:

U(1)ψη : ψ → ei(N+4)αψ , η → e−i(N+2)αη . α ∈ R . (3.7)

The question that arises now is which is the correct anomaly-free sub-group of U(1)ψ×U(1)η.

Clearly all the three listed above are part of the anomaly-free sub-group, but one must find

the minimal description, in order to avoid the double-counting. It is actually sufficient to

consider only U(1)ψη with one of the two discrete group. For example by combining the

generator of (ZN+2)ψ with k = 1 with the element of U(1)ψη with α = − 2π
(N+2)(N+4) one

can obtain the generator of (ZN+4)η. But still U(1)ψη × (ZN+2)ψ contains redundancies.

From this point on, we must distinguish the two cases, N odd or N even.

3.1 Odd N theories

For odd N , the U(1)ψη transformation parameter α, eq. (3.7), exhibits 2π periodicity. If we

consider the torus U(1)ψ×U(1)η, U(1)ψη is a circle that winds N+4 times in the ψ direction

and −(N + 2) times in the η direction before coming back to the origin. See figure 1 for

the case N = 3 where the torus is described as a square with the edges identified, the

four corners all correspond to the identity of the group. Both (ZN+2)ψ and (ZN+4)η are

sub-groups of the anomaly-free U(1)ψη. For example by taking α = 2π
N+2

(N+2)+1
2 in (3.7) η

is left invariant and we recover exactly the generator of (ZN+2)ψ. The anomaly-free flavor

group for odd N is thus:

Gf =
U(1)ψη × SU(N + 4)

ZN × ZN+4
. (3.8)

The division by ZN is due to the fact that the numerator, U(1)ψη×SU(N+4), overlaps

with the center of the gauge group ZN ⊂ SU(N). To see this, we ask whether a U(1)ψη
transformation eq. (3.7) can act as the minimal element of ZN ⊂ SU(N):

ψ → e−
4πi
N ψ , η → e

2πi
N η . (3.9)

– 6 –
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The solution is

α =
2π

N

N − 1

2
, (3.10)

as can be easily verified.

The division by ZN+4 can be understood in a similar manner: we consider U(1)ψη with

α =
2π

N + 4

N + 3

2
, (3.11)

this element acts on fields as

ψ → ψ , η → e−
2πi
N+4 η , (3.12)

which is the center of SU(N + 4) flavor symmetry.

The charges of the fields for odd N theory are the same as given in table 1.

3.1.1 A remark

The choice of the generator of ZN , (3.9) is a little arbitrary. If one required instead

ψ → e
4πi
N ψ , η → e−

2πi
N η , (3.13)

to be reproduced by U(1)ψη the solution would be

α =
2π

N

N + 1

2
. (3.14)

Similarly for ZN+4,

ψ → ψ , η → e
2πi
N+4 η , (3.15)

can be reproduced by a U(1)ψη rotation with

α =
2π

N + 4

N + 5

2
. (3.16)

The charges appearing in (4.9) below would have to be modified accordingly as

N − 1

2
→ N + 1

2
;

N + 3

2
→ N + 5

2
. (3.17)

The conclusion of section 4 below however remains unmodified.

3.2 Even N theories

For even N , the U(1)ψη transformation parameter α, with the charge convention of (3.7),

exhibits instead π periodicity. It is convenient thus to redefine the U(1)ψη charges as

ψ → eiN+4
2
βψ , η → e−iN+2

2
βη . (3.18)

With this assignment, the parameter β is 2π periodic. U(1)ψη is thus “half” as long as the

one for the odd N case; this is compensated by the fact that now the unbroken sub-group

has two disconnected components. See figure 2 for the cases N = 2 and N = 4.

– 7 –
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U(1)ψη

U(1)η

U(1)ψ

��
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U(1)η

U(1)ψ

U(1)ψη

Figure 2. The torus U(1)ψ × U(1)η (for N = 2 on the left and N = 4 on the right) and its

unbroken subgroup U(1)ψη × (Z2)F (red line for U(1)ψη × {1} and blue line for U(1)ψη × {−1})
passing through all the points of the lattice (ZN+2)ψ × (ZN+4)η. The dots indicate the elements

of the group (ZN ), diamonds indicate the elements of (Z2)F . (Z2)F is defined below, eq. (3.19).

Let us consider the fermion parity defined by

ψ → −ψ , η → −η , (3.19)

which is equivalent to a 2π space rotation. It is clear that (Z2)F is not violated by the ’t

Hooft vertex, so let us check if this is not a part of U(1)ψη. If it were included, there would

be β such that

eiN+4
2
β = e−iN+2

2
β = −1 . (3.20)

Multiplying these equations, we get eiβ = 1, which is a contradiction.7

It can be checked that any discrete transformation keeping ’t Hooft vertex invariant

can be made of U(1)ψη × (Z2)F . For example, (ZN+2)ψ generated by ψ → e
2πi
N+2ψ can also

be given by
(
β = 2π

N+2 ,−1
)
∈ U(1)ψη × (Z2)F . Similarly for (ZN+2)η.

For even N , we thus find that the symmetry group is

Gf =
U(1)ψη × SU(N + 4)× (Z2)F

ZN × ZN+4
. (3.21)

The division by ZN in eq. (3.21) is because the center of the color SU(N) is shared by

elements in U(1)ψη × (Z2)F . Indeed, the gauge transformation with e
2πi
N ∈ ZN ⊂ SU(N),

ψ → e
4πi
N ψ , η → e−

2πi
N η , (3.22)

can be written equally well as the following (Z2)F ×U(1)ψη transformation:

ψ → (−1) eiN+4
2

2π
N ψ = e−iN

2
2π
N eiN+4

2
2π
N ψ , η → (−1) e−iN+2

2
2π
N η = eiN

2
2π
N e−iN+2

2
2π
N η .

(3.23)

Note that the odd elements of ZN belong to the disconnected component of U(1)ψη×(Z2)F
while the even elements belong to the identity component.

7Here we observe a crucial difference with the case of an odd N theory. There, the requirement ei(N+4)α =

e−i(N+2)α = −1 leads to e2iα = 1, i.e., α = 0, π, showing that (Z2)F ⊂ U(1)ψη.

– 8 –
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fields SU(N)c SU(N + 4) U(1)ψη (Z2)F

ψ (·) N+4
2 +1

η
¯ −N+2

2 −1

BAB (·) −N
2 −1

Table 3. The charges of various fields with respect to the unbroken symmetry groups for even

N . BAB are the possible massless composite fermion fields discussed in section 2.1. The (Z2)F
“charge” in the table corresponds to the transformation ψ → eiπψ, η → e−iπη.

The division by ZN+4 is understood in a similar manner. The center element e
2πi
N+4 ∈

SU(N+4) of the flavor group can be identified as the element of U(1)ψη× (Z2)F as follows:

ψ → ψ = (−1) eiN+4
2

2π
N+4ψ = ψ , η → (−1) e−iN+2

2
2π
N+4 η = ei 2π

N+4 η . (3.24)

Again, the odd elements of ZN+4 belong to the disconnected component of U(1)ψη× (Z2)F
while the even elements belong to the identity component.

The anomaly-free symmetries and charges for various fields even N are summarized in

table 3.

3.3 Symmetry in the Higgs phase

In the Higgs phase the group (2.9) is actually a covering space of the true symmetry group

which is given for any N by

SU(N)cf × SU(4)f ×U(1)′ × (Z2)F
ZN ×Z4

, (3.25)

where U(1)′ has charges given in table 2. The fermion parity (Z2)F is left unbroken by the

condensate but is not contained in U(1)′ so it must be kept in the numerator. The center

of SU(N)cf overlaps completely with U(1)′ so it must be factorized (in fact we may write

it as U(N)cf). The center of SU(4)f also overlaps with U(1)′ × (Z2)F which explains the

division by Z4.

4 Mixed anomalies: odd N case

In this section we probe the system with a finer tool, i.e., by gauging possible 1-form

center symmetries and studying possible mixed ’t Hooft anomalies, to see if a stronger

constraint emerges. In order to detect the ’t Hooft anomalies, one needs to introduce the

background gauge fields for the global symmetry Gf , and check the violation of associated

gauge invariance. Correspondingly to the symmetry of the system, eq. (3.8), we thus

introduce

• A: U(1)ψη 1-form gauge field,

• Af : SU(N + 4) 1-form gauge field,
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• B(2)
c : ZN 2-form gauge field,

• B(2)
f : ZN+4 2-form gauge field.

The field A = Aµdx
µ gauges the nonanomalous U(1)ψη symmetry discussed in the previous

subsection and the field Af = Af µdx
µ gauges the SU(N + 4) symmetry.

We recall that in order to gauge a Zn discrete center symmetry of an SU(n) theory, one

introduces a pair of U(1) gauge fields
(
B(2), B(1)

)
, 2-form and 1-form fields respectively,

satisfying the constraint [24, 25]

nB(2) = dB(1), (4.1)

where B(1) satisfies
1

2π

∫
Σ2

dB(1) = Z . (4.2)

Existence of the pair of gauge fields
(
B(2), B(1)

)
satisfying relation (4.1) presumes one to

have put the system in a topologically nontrivial spacetime M . In such a setting

e
i
∫
Σ2

B(2)

∈ Zn (4.3)

corresponds to a nontrivial cocycle of PSU(n) ≡ SU(n)
Zn

bundle: an elements of w2(M) ∈
H2(M,Zn) known as the second Stiefel-Whitney class. The constraint (4.1) satisfies the

invariance under the U(1) 1-form gauge transformation,

B(2) → B(2) + dλ , B(1) → B(1) + nλ . (4.4)

The idea is to couple these gauge fields appropriately to the standard gauge and matter

fields, and to impose the invariance under the 1-form gauge transformation, eq. (4.4),

effectively yielding a PSU(n) gauge theory.

This procedure will be applied below both to the color SU(N) and flavor SU(N + 4)

center symmetries. Actually, the whole analysis of this work could be performed, consid-

ering only the gauging of one of the 1-form symmetries, i.e., ZN or ZN+4. In other words,

one may set B
(2)
f = B

(1)
f ≡ 0, or B

(2)
c = B

(1)
c ≡ 0, throughout. We are free to choose which

one of the 1-form global symmetries, or both, to gauge. In principle, the implication of

our analysis may depend on such a choice. It turns out, however, that none of the main

conclusions of this work (see Summary in section 8) changes by keeping only one set of the

two-form center gauge fields, (B
(2)
f , B

(1)
f ), or (B

(2)
c , B

(1)
c ), but this was not a priori known.

The SU(N) dynamical gauge field a is embedded into a U(N) gauge field,

ã = a+
1

N
B(1)

c , (4.5)

and one requires invariance under U(N) gauge transformations. Similarly, we introduce

U(N + 4) gauge connection by

Ãf = Af +
1

N + 4
B

(1)
f , (4.6)
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and require U(N + 4) gauge invariance instead of the SU(N + 4) gauge invariance. The

pairs of the 1-form−2-form U(1) gauge fields are constrained as

NB(2)
c = dB(1)

c , (N + 4)B
(2)
f = dB

(1)
f . (4.7)

The 1-form gauge transformations are defined by

B(2)
c → B(2)

c + dλc , B(1)
c → B(1)

c +Nλc ,

B
(2)
f → B

(2)
f + dλf , B

(1)
f → B

(1)
f + (N + 4)λf ; (4.8)

λc and λf are U(1) gauge fields. Under the ZN and ZN+4 1-form transformations, U(N)

and U(N + 4) transform as

ã→ ã+ λc , Ãf → Ãf + λf . (4.9)

At the same time, U(1)ψη gauge field is required to transform as

A→ A+
N − 1

2
λc +

N + 3

2
λf . (4.10)

The transformation law for A field is determined by the considerations made around

eqs. (3.10) and (3.11).

In order to have the invariance of the system under the 1-form gauge transformations

the matter fermions must also be appropriately coupled to the 2-form gauge fields. Naively,

the minimal coupling procedure gives the fermion kinetic term,

ψγµ
(
∂ +RS(ã) + (N + 4)A

)
µ
PLψ

+ ηγµ
(
∂ +RF∗(ã) + Ãf − (N + 2)A

)
µ
PLη . (4.11)

However, this is not invariant under (4.9)–(4.10). Indeed, the above combinations of gauge

fields vary as

δ
[
RS(ã) + (N + 4)A

]
=
N + 3

2
Nλc +

N + 3

2
(N + 4)λf ,

δ
[
RF∗(ã) + Ãf − (N + 2)A

]
= −N + 1

2
Nλc −

N + 1

2
(N + 4)λf . (4.12)

We therefore require the correct fermion kinetic term with the background gauge fields to be

ψγµ
(
∂ +RS(ã) + (N + 4)A− N + 3

2
B(1)

c − N + 3

2
B

(1)
f

)
µ

PLψ

+ ηγµ
(
∂ +RF∗(ã) + Ãf − (N + 2)A+

N + 1

2
B(1)

c +
N + 1

2
B

(1)
f

)
µ

PLη . (4.13)

The two-index symmetric fermion ψ feels the gauge field strength

RS

(
F (ã)

)
+ (N + 4)dA− N(N + 3)

2
B(2)

c − (N + 4)(N + 3)

2
B

(2)
f

= RS

(
F (ã)−B(2)

c

)
+ (N + 4)

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
. (4.14)
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Note that the combination F (ã)−B(2)
c is traceless, hence an expression such as RS

(
F (ã)−

B
(2)
c

)
defined for an SU(N) representation (in this particular case, a symmetric second-

rank tensor representation) is well defined. Similarly, the anti-fundamental fermion η feels

the gauge field strength

RF∗
(
F (ã)

)
+F (Ãf)−(N+2)dA+

N(N−1)

2
B(2)

c +
(N+4)(N+1)

2
B

(2)
f

=RF∗
(
F (ã)−B(2)

c

)
+
(
F (Ãf)−B

(2)
f

)
−(N+2)

[
dA−N−1

2
B(2)

c −
N+3

2
B

(2)
f

]
. (4.15)

The low-energy “baryons” B[AB] introduced in eq. (2.7) for the chiral symmetric phase

are described by the kinetic term,

B γµ
(
∂ +RA(Ãf)−NA

)
µ
PLB , (4.16)

yielding the 1-form gauge invariant form of the field tensor (see eqs. (4.9)–(4.10)),

RA
(
F (Ãf)−B

(2)
f

)
−N

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
. (4.17)

We are now ready to compute the anomalies following the standard Stora-Zumino

descent procedure [40, 41], as done also in [32]. A good recent review of this renowned

procedure can be found in [42]. The contribution from ψ to the 6D Abelian anomaly is

1

24π2
trRS

[{(
F (ã)−B(2)

c

)
+ (N + 4)

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]}3
]

=
N + 4

24π2
tr
[(
F (ã)−B(2)

c

)3]
+

(N + 2)(N + 4)

8π2
tr
[(
F (ã)−B(2)

c

)2] ∧ [dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
+
N(N + 1)

2

(N + 4)3

24π2

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]3

. (4.18)

When we write simply “tr” without an index the trace is taken in the fundamental repre-

sentation. The contribution from η is

1

24π2
tr

(
−[F (ã)−B(2)

c ] + [F (Ãf)−B
(2)
f ]− (N + 2)

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

])3

= −(N + 4)

24π2
tr
[(
F (ã)−B(2)

c

)3]
− (N + 2)(N + 4)

8π2
tr
[(
F (ã)−B(2)

c

)2] ∧ [dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
+

N

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− N(N + 2)

8π2
tr
[(
F (Ãf)−B

(2)
f

)2] ∧ [dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
− N(N + 4)(N + 2)3

24π2

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]3

. (4.19)
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By summing up these contributions, we obtain

N

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− N(N + 2)

8π2
tr
[(
F (Ãf)−B

(2)
f

)2] ∧ [dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
− (N + 3)(N + 4)

2

N3

24π2

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]3

. (4.20)

Note that each factor in the square bracket in eqs. (4.18)–(4.20) is 1-form gauge invariant.

By picking up the boundary terms one finds the 5D Wess-Zumino-Witten (WZW)

action. For instance, in the limit the 1-form gauging is lifted (i.e., by setting B
(1)
f =B

(1)
c =0,

F (Ãf)→ F (Af)), one recovers, by using the identities

tr
(
F 2

f

)
= d

{
tr

(
AfdAf +

2

3
A3

f

)}
, tr

(
F 3

f

)
= d

{
tr

(
Af(dAf)

2+
3

5
(Af)

5+
3

2
A3

f dAf

)}
,

(4.21)

the well-known 5D action. The variations of the latter lead, by anomaly-inflow, to the

famous 4D Abelian and nonAbelian anomaly expressions.

Note that the dependence on the color gauge field ã disappeared from all terms. This

is as it should be, for N odd, as we are studying the ’t Hooft anomaly matching conditions

for nonanomalous, continuous flavor symmetries.8

As for the candidate massless “baryons” B the anomaly functional is given by

N + 4− 4

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− N(N + 4− 2)

8π2
tr
[(
F (Ãf)−B

(2)
f

)2] ∧ [dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]
− (N + 3)(N + 4)

2

N3

24π2

[
dA− N − 1

2
B(2)

c − N + 3

2
B

(2)
f

]3

, (4.22)

as can be seen easily from eq. (4.17).

We are now in the position to compare the anomalies in the UV and IR. Some-

what surprisingly, we find that the IR anomalies eq. (4.22) exactly reproduce the same

SU(N + 4)×U(1)ψη ’t Hooft anomalies of the UV theory eq. (4.20), independently of

whether or not the 2-form gauge fields
(
B

(2)
c , B

(2)
f

)
are introduced!

Actually, this is a simple consequence of the fact that without the 1-form gauging,

these anomalies matched in the UV and IR (the earlier observation, see section 2.1). The

coefficients in various triangle diagrams involving SU(N+4) and U(1)ψη vertices, computed

by using the UV and IR fermion degrees of freedom, are equal. Upon gauging the 1-

form center symmetries, the external SU(N + 4) and U(1)ψη gauge fields are replaced by

the center-1-form-gauge-invariant combinations, both in the UV and IR, as in eq. (4.14),

eq. (4.15), eq. (4.17), but clearly the UV-IR matching of various anomalies continue to hold.

8Vice versa, in an even N theory there are anomalies associated with a discrete Z2 symmetry. The

anomaly functionals such as (5.18) do contain expressions depending on the color U(N)c gauge fields ã. See

the discussions below in section 5.3, section 6 and section 8.
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It turns out that the situation is different when the UV-IR anomaly matching involves a

discrete symmetry, as in even N theories discussed below. See below.

5 Mixed anomalies: even N case

We discuss now the even N theories. The calculation of the anomalies, 1-form gauging

and anomaly matching checks go through mostly as in the odd N case discussed above, by

taking into account appropriately the difference in the U(1)ψη charges of the matter fields

and in the center symmetries themselves, as well as the presence of an independent discrete

(Z2)F symmetry. However the conclusion turns out to be qualitatively different.

5.1 Calculation of anomalies

To detect the anomalies of global symmetry Gf , eq. (3.21), we introduce the gauge fields

• A: U(1)ψη 1-form gauge field,

• A(1)
2 : (Z2)F 1-form gauge field,

• Af : SU(N + 4) 1-form gauge field,

• B(2)
c : ZN 2-form gauge field,

• B(2)
f : ZN+4 2-form gauge field.

(Z2)F is an ordinary (0-form) discrete symmetry, and we introduced accordingly a 1-form

gauge field

A
(1)
2 , δA

(1)
2 =

1

2
d δA

(0)
2 . (5.1)

The (Z2)F variation in the 4D action is described by,

δA
(0)
2 = ±2π , i.e. , ψ → eiπψ = −ψ, η → e−iπη = −η . (5.2)

In order to avoid misunderstandings, let us repeat that A
(1)
2 is a gauge field formally

introduced to describe an ordinary (0-form) (Z2)F symmetry. In this sense it is perfectly

analogous to the U(1)ψη gauge field, A.
(
B

(2)
c , B

(2)
f

)
are instead introduced to “gauge”

the 1-form center (ZN and ZN+4) symmetries.9 The procedure was reviewed briefly at the

beginning of section 4, in the case of odd N theories.

9In order to completely dispel the risk of confusion, it might have been a good idea to put suffix such as

in (Z2)
(0)
F , Z(1)

N , or Z(1)
N+4, to show explicitly which types of symmetry we are talking about. We refrained

ourselves from doing so in this work, however, in order to avoid cluttered formulae, and confiding in the

attentiveness of the reader. Another reason is that the symbol ZN , e.g., is used both to indicate the

particular symmetry type and to stand for the cyclic group CN itself.
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For even N theories under consideration here, the construction is similar. We introduce

two pairs of gauge fields
(
B

(2)
c , B

(1)
c

)
and

(
B

(2)
f , B

(1)
f

)
, satisfying the constraints10

NB(2)
c = dB(1)

c ; (N + 4)B
(2)
f = dB

(1)
f . (5.3)

Under the gauged (1-form) center transformations, these fields transform as

B(2)
c → B(2)

c + dλc , B(1)
c → B(1)

c +Nλc , (5.4)

B
(2)
f → B

(2)
f + dλf , B

(1)
f → B

(1)
f + (N + 4)λf , (5.5)

which respect the constraints (5.3). Now the whole system must be made invariant un-

der these transformations, and this requires the gauge fields A, A2, Af , color SU(N)

gauge field a, as well as the fermions, be all coupled appropriately to
(
B

(2)
c , B

(1)
c

)
and(

B
(2)
f , B

(1)
f

)
fields.

To achieve this we first embed the dynamical SU(N) gauge field a into a U(N) gauge

field ã as

ã = a+
1

N
B(1)

c , (5.6)

and the SU(N + 4) flavor gauge field as U(N + 4) gauge field Ãf as

Ãf = Af +
1

N + 4
B

(1)
f . (5.7)

Under the center of SU(N), the symmetry-group element (eiα, (−1)n, gf) ∈ U(1) × Z2 ×
SU(N + 4) is identified as (see eq. (3.23))

(eiα, (−1)n, gf) ∼
(

ei(α− 2π
N

), (−1)nei 2π
N
N
2 , gf

)
. (5.8)

This means that U(1)ψη gauge field A has charge −1, (Z2)F gauge field A
(1)
2 has charge N

2 ,

and U(N + 4) gauge field Ãf has charge 0 under the U(1) 1-form gauge transformation λc

for B
(2)
c .

Similarly, the division by ZN+4 means that we identify (see eq. (3.24))

(eiα, (−1)n, gf) ∼
(

ei(α− 2π
N+4

), (−1)neiN+4
2

2π
N+4 , gf e

2πi
N+4

)
, (5.9)

and this determines the charges under λf .

These considerations determine uniquely the way the 1-form gauge fields transform

under (5.4) and (5.5):

ã→ ã+ λc ,

A→ A− λc − λf ,

A
(1)
2 → A

(1)
2 +

N

2
λc +

N + 4

2
λf ,

Ãf → Ãf + λf . (5.10)

10See the discussion at the beginning of section 4 for the meaning of these constraints.
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The crucial ingredient in our analysis now is the nontrivial ’t Hooft fluxes carried by

the (ZN and ZN+4) 2-form gauge fields B
(2)
c and B

(2)
f ,

1

2π

∫
Σ2

B(2)
c =

n1

N
, n1 ∈ ZN , (5.11)

1

2π

∫
Σ2

B
(2)
f =

m1

N + 4
, m1 ∈ ZN+4 , (5.12)

in a closed two-dimensionl space, Σ2. On topologically nontrivial four dimensional space-

time of Euclidean signature Σ2 × Σ2 one has then

1

8π2

∫
Σ4

(B(2)
c )2 =

n

N2
,

1

8π2

∫
Σ4

(B
(2)
f )2 =

m

(N + 4)2
, (5.13)

where n ∈ ZN and m ∈ ZN+4, and an extra factor 2 with respect to (5.11) is due to the

two possible ways the two B
(2)
c fields are distributed on the two Σ2’s (similarly for B

(2)
f ).

The fermion kinetic term with the background gauge field is obtained by the minimal

coupling procedure as

ψγµ
(
∂ +RS(ã) +

N + 4

2
A+A2

)
µ

PLψ

+ ηγµ
(
∂ +RF∗(ã) + Ãf −

N + 2

2
A−A2

)
µ

PLη . (5.14)

Here, A2 represents the coupling to the fermion parity (−1)F , so its coefficient is meaningful

only modulo 2, and we fix the convention here.11 With this assignment of charges, each

covariant derivative turns out to be invariant under 1-form gauge transformations without

introducing extra terms. This is of course a direct reflection of the equivalence, (3.22)

and (3.23), or (5.8), (5.9), i.e., of the requirement that the ZN ⊂ SU(N) transformation is

canceled by U(1)ψη ×Z2 (and similarly for the ZN+4 symmetry).

We compute the anomalies again by applying the Stora-Zumino descent procedure

starting with a 6D anomaly functional. The two-index symmetric fermion ψ feels the

gauge field strength

RS

(
F (ã)

)
+
N + 4

2
dA+ dA2 = RS

(
F (ã)−B(2)

c

)
+
N + 4

2

[
dA+B(2)

c +B
(2)
f

]
+

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
, (5.15)

where appropriate 2-form gauge fields have been introduced so that each term is now 1-form

gauge invariant. Similarly, the anti-fundamental fermion η feels the gauge field strength

RF∗
(
F (ã)

)
+ F (Ãf)−

N + 2

2
dA− dA2

= −
[
F (ã)−B(2)

c

]
+
[
F (Ãf)−B

(2)
f

]
− N + 2

2

[
dA+B(2)

c +B
(2)
f

]
−
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
. (5.16)

11If the Z2 charges were assigned as (+1,+1), rather than (+1,−1), as in eq. (5.14), some coefficients in

eq. (5.20) would change, but the final results would not change.
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The low energy “baryons” gives

RA

(
F (Ãf)

)
−N

2
dA−dA2

=RA

[
F (Ãf)−B

(2)
f

]
−N

2

[
dA+B(2)

c +B
(2)
f

]
−
[
dA

(1)
2 −

N

2
B(2)

c −
N+4

2
B

(2)
f

]
. (5.17)

Before proceeding to the calculation, let us make a brief pause. We have already noted

that in contrast to the odd N systems considered in section 4, the fermion kinetic terms

in an even N theory (5.14) are invariant under the center gauge transformations, eq. (5.4),

eq. (5.5), eq. (5.10), without explicit addition of terms involving B
(2)
c and B

(2)
f (cfr. see

eq. (4.12) for the odd N case). Thus the rewriting made above (5.15)–(5.17) might look

redundant at first sight: these expressions appear to be actually independent of B
(2)
c and

B
(2)
f . This, however, is not quite correct. If one were to proceed with calculation without

making each term 1-form gauge invariant, as done above, the resulting anomaly expressions

would not be invariant under the 1-form (ZN and ZN+4) center gauge transformations, so

that there would be no guarantee that the mixed anomalies have been correctly evaluated

in the reduced PSU(N) or PSU(N + 4) theories. We thus prefer to work with explicitly

1-form gauge invariant forms at each step of the calculation below.12

Let us proceed to the 6D anomaly functionals due to these fermions: ψ gives, from

eq. (5.15),13

1

24π2
tr

(
RS

(
F (ã)−B(2)

c

)
+
N + 4

2

[
dA+B(2)

c +B
(2)
f

]
+

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

])3

=
(N + 4)

24π2
tr
[(
F (ã)−B(2)

c

)3]
+

(N + 2)(N + 4)

16π2
tr
[(
F (ã)−B(2)

c

)2] ∧ [dA+B(2)
c +B

(2)
f

]
+
N(N + 1)

2 · 24π2

(
N + 4

2

)3 [
dA+B(2)

c +B
(2)
f

]3

+
N + 2

8π2
tr
(
F (ã)−B(2)

c

)2 [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
+

1

8π2

(
N + 4

2

)2 N(N + 1)

2

[
dA+B(2)

c +B
(2)
f

]2
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
+

1

8π2

(
N + 4

2

)
N(N + 1)

2

[
dA+B(2)

c +B
(2)
f

] [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]2

+
1

24π2

N(N + 1)

2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]3

. (5.18)

12In the standard anomaly calculation in 4D à la Fujikawa (section 7), the introduction of these center

gauge fields are seen more straightforwardly as a modification of the theory.
13Actually, B

(2)
f (but not B

(2)
c !) drops out completely from the expression below (5.18), as can be seen

from the first line. This is correct, as ψ is a singlet of SU(N + 4) and consequently eq. (5.15) does not

contain the SU(N + 4) gauge fields. This can be used as a check of the calculations below.
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The contribution of η is (from eq. (5.16)):

1

24π2
tr

{
− [F (ã)−B(2)

c ] + [F (Ãf)−B
(2)
f ]− N + 2

2

[
dA+B(2)

c +B
(2)
f

]
−
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]}3

= −(N + 4)

24π2
tr
[(
F (ã)−B(2)

c

)3]
+

N

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− (N + 2)(N + 4)

16π2
tr
[(
F (ã)−B(2)

c

)2] ∧ [dA+B(2)
c +B

(2)
f

]
− N

8π2

N + 2

2
tr[F (Ãf)−B

(2)
f ]2

[
dA+B(2)

c +B
(2)
f

]
− N(N + 4)(N + 2)3

8 · 24π2

[
dA+B(2)

c +B
(2)
f

]3

− N + 4

8π2
tr
(
F (ã)−B(2)

c

)2 [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− N

8π2
tr[F (Ãf)−B

(2)
f ]2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

(
N + 2

2

)2

N(N + 4)
[
dA+B(2)

c +B
(2)
f

]2
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

(
N + 2

2

)
N(N + 4)

[
dA+B(2)

c +B
(2)
f

] [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]2

− 1

24π2
N(N + 4)

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]3

. (5.19)

The sum of the UV anomalies is

+
N

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− N

8π2

N + 2

2
tr[F (Ãf)−B

(2)
f ]2

[
dA+B(2)

c +B
(2)
f

]
− N3(N + 4)(N + 3)

16 · 24π2

[
dA+B(2)

c +B
(2)
f

]3

− 2

8π2
tr
(
F (ã)−B(2)

c

)2 [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− N

8π2
tr[F (Ãf)−B

(2)
f ]2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

N(N + 4)(N2 + 3N + 4)

8

[
dA+B(2)

c +B
(2)
f

]2
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

N(N + 3)(N + 4)

4

[
dA+B(2)

c +B
(2)
f

] [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]2

− 1

24π2

N(N + 7)

2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]3

. (5.20)
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In the IR, the “baryons” eq. (2.7) yield, from eq. (5.17), the 6D anomaly14

1

24π2
tr

(
RA(F (Ãf)−B

(2)
f )− N

2

[
dA+B(2)

c +B
(2)
f

]
−
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

])3

=
N + 4− 4

24π2
tr
[(
F (Ãf)−B

(2)
f

)3]
− N3(N + 4)(N + 3)

16 · 24π2

[
dA+B(2)

c +B
(2)
f

]3

− N + 2

8π2

N

2
tr[F (Ãf)−B

(2)
f ]2

[
dA+B(2)

c +B
(2)
f

]
− N + 2

8π2
tr[F (Ãf)−B

(2)
f ]2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

(
N

2

)2 (N + 4)(N + 3)

2

[
dA+B(2)

c +B
(2)
f

]2
[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
− 1

8π2

N

2

(N + 4)(N + 3)

2

[
dA+B(2)

c +B
(2)
f

] [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]2

− 1

24π2

(N + 4)(N + 3)

2

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]3

. (5.21)

Note that the second-from-the-last term, corresponding to [Z2]2 − U(1)ψη anomaly, is

identical in the UV and in the IR, see eq. (5.20) and eq. (5.21).

5.2 An almost flat (Z2)F connection, generalized cocycle condition, and the

’t Hooft fluxes

Before proceeding to the actual determination of various mixed anomalies, let us recapit-

ulate some formal points involved in our analysis. The first is the meaning of the gauge

field for (Z2)F introduced above. The combination

2A
(1)
2 −B

(1)
c −B(1)

f = dA
(0)
2 , (5.22)

is the modification of the (Z2)F gauge field, 2A
(1)
2 = dA

(0)
2 , such that it is invariant under

the 1-form gauge transformations, (5.4)–(5.10). By taking the derivatives of the both sides

of eq. (5.22) it might appear that one gets

2 dA
(1)
2 −NB

(2)
c − (N + 4)B

(2)
f = 0 : (5.23)

this would erase all terms containing 2 dA
(1)
2 − NB

(2)
c − (N + 4)B

(2)
f from the 6D ac-

tion, (5.18)–(5.21). This, of course, is not correct as A
(0)
2 is a 2π periodic (angular) field.

Indeed, the left hand side of eq. (5.22) is “an almost flat connection”: eq. (5.23) is correct

14Note that B
(2)
c actually drops out completely from this expression, as is clear from the first line. This

is as it should be, as the baryons are color SU(N) singlets: they are coupled neither to SU(N) gauge fields

nor to ZN gauge fields B
(2)
c . This can again be used as a check in the following calculations.
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locally, but cannot be set to zero identically, as it can give nontrivial contribution when

integrated over Σ2.

Actually, by integrating the both sides of eq. (5.22) over a noncontractible cycle, one

gets ∮
dxµ

(
2A

(1)
2 −B

(1)
c −B(1)

f

)
µ

=

∮
dA

(0)
2 = 2πn , n ∈ Z ,∮

A
(1)
2 =

2πm

2
, m ∈ Z , (5.24)

and ∫
Σ2

N B(2)
c +

∫
Σ2

(N + 4)B
(2)
f = 2πk , k ∈ Z , (5.25)

where Σ2 is taken to be a nontrivial closed two-dimensional surface. Eq. (5.24) is a trade-

mark of a Z2 gauge field. Eq. (5.25) is consistent with mutually independent fluxes of B
(2)
c

and B
(2)
f , (5.11)–(5.13). In passing, we note that this is in line with the remark made in

section 4, that the whole analysis of this work could have been done possibly by keeping

only one of the 2-form gauge fields, B
(2)
c or B

(2)
f .

All this can be rephrased in terms of the generalized cocycle. In the case of standard

QCD with massless left-handed and right-handed quarks, the relevant symmetry involves

ZN ⊂ SU(N)c and ZN ⊂ U(1)V . By compensating the failure of the cocycle condition

at a triple overlap region of spacetime manifold by a color ZN factor15 by a simultaneous

ZN ⊂ U(1)V transformation, one can formulate a consistent SU(N)
ZN

“QCD”.16

In our case, the failure of the straightforward cocycle condition by color ZN center

factor can be compensated by a simultaneous ZN ⊂ U(1)ψη × Z2 phase transformation

of the fermions. See eq. (3.22) and eq. (3.23). Similarly for the ZN+4 center.17 The

consistency for ψ and η gauge transformations in a triple overlapping region thus reads(
ei 2π
N
nij
)2

= ∓e−iN+4
2

∆αij , (5.26)

and (
ei 2π
N
nij
)−1

e
2πi
N+4

mij = ∓eiN+2
2

∆αij , (5.27)

respectively. Finding ei∆αij by multiplying eq. (5.26) and eq. (5.27) and inserting it back,

one gets a consistency condition

eπi(nij+mij) = ∓1 . (5.28)

If (5.26) and (5.27) were to be interpreted in terms of ’t Hooft’s twisted periodic

conditions, the exponents in these formulas, 2π
N nij ,

2π
N+4mij , ±π, ∆αij would respectively

15In pure SU(N) theory this would not be a problem, as the gauge fields do not feel the ZN transformation:

it corresponds to the well-known statement that the pure SU(N) theory (or a theory with matter fields in

adjoint representation) is really an SU(N)
ZN

gauge theory. Alternatively, one can introduce nontrivial ’t Hooft

fluxes by introducing doubly periodic conditions with nontrivial ZN twists.
16This has been worked out explicitly in [32], section 2.3.
17In fact, this is the content of the 1-form gauge invariance we impose. Eqs. (5.4)–(5.10) can be regarded

as the local form of the conditions, (5.26)–(5.27) below.
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be the SU(N), SU(N + 4), (Z2)F and Uψη(1) fluxes through a closed two dimensional

surface, Σ2. This requires some care, because of the discrete periodicity of the (Z2)F gauge

field. In particular the presence of such a flux means that, if Σ2 is taken as a torus, there

should be a point-like singularity on it (2-dimensional surfaces, from the point of view

of the four dimensional spacetime), carrying a (Z2)F flux. Actually, it seems to us more

natural, in the presence of a (Z2)F gauge field, to take as Σ2 not a torus with a singularity,

but a smooth Riemann surface of genus 2 (a double torus).

As already noted in section 4, these indices nij (or mij) correspond exactly to the

second Stiefel-Whitney class of SU(N)
ZN

(or SU(N+4)
ZN+4

) connections. In other words, the con-

dition (5.28) translates into the B
(2)
c and B

(2)
f flux relation, eq. (5.25).

5.3 Anomaly matching without the gauging of the 1-form center symmetries

As another little preparation for our calculations, let us first check that our gauge fields and

their variations are properly normalized, by considering the anomalies in the ordinary case,

i.e., where the 1-form ZN and ZN+4 symmetries are not gauged. In other words, we set

B(2)
c = B(1)

c = B
(2)
f = B

(1)
f = 0 . (5.29)

The first three terms (the triangles involving U(1)ψη and SU(N + 4)) of eq. (5.21) match

exactly those in the UV anomaly, eq. (5.20), whether or not
(
B

(2)
c , B

(2)
f

)
fields are present.

The second-from-the-last terms in eq. (5.20) and in eq. (5.21) describe the nontrivial

[(Z2)F ]2 − U(1)ψη anomaly, which are identical in UV and IR, again, whether or not

the 1-form gauging of ZN and ZN+4 is done.

To compute the (Z2)F anomaly in the UV, one collects the terms∫
Σ6

(. . .) dA
(1)
2 , (5.30)

and integrate to get the boundary 5D effective WZW action∫
Σ5

(. . .)A
(1)
2 . (5.31)

The (Z2)F transformations of the fermions are formally expressed as the transformation

of the (Z2)F “gauge field” A
(1)
2 ,

A
(1)
2 → A

(1)
2 +

1

2
d(δA

(0)
2 ) , δA

(0)
2 = ±2π , (5.32)

yielding the anomaly-inflow in 4D

δS4
UV = − 2

8π2

∫
Σ4

tr[F (a)]2
δA

(0)
2

2
− N

8π2

∫
Σ4

tr[F (Af)]
2 δA

(0)
2

2

− 1

8π2

N(N + 4)(N2 + 3N + 4)

8

∫
Σ4

[dA]2
δA

(0)
2

2
. (5.33)
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The first line is the standard chiral anomaly expression associated with the field transfor-

mation

ψ → −ψ , η → −η , δA
(0)
2 = ±2π (5.34)

due to SU(N) and SU(N + 4) gauge fields. They are actually both trivial (no anomalies)

due to the integer instanton numbers:

1

8π2

∫
Σ4

tr[F (a)]2 = Z ,
1

8π2

∫
Σ4

tr[F (Af)]
2 = Z . (5.35)

Note that, crucially, their coefficients (2 and N) are both even integers. This confirms that

the field A
(1)
2 and its variation δA

(0)
2 are correctly normalized.

Similarly in the IR one has

∆S4
IR = −N + 2

8π2

∫
tr[F (Af)]

2 δA
(0)
2

2

− 1

8π2

(
N

2

)2 (N + 4)(N + 3)

2

∫
[dA]2

δA
(0)
2

2
. (5.36)

Again, the first term is trivial, as N + 2 is an even integer.

The second terms in eq. (5.33) and in eq. (5.36) describe the nontrivial (Z2)F−[U(1)ψη]
2

anomaly, present both in the UV and in the IR.18 However, their difference is given by

− N(N + 4)

2

∫ (
1

8π2
[dA]2

)
· δA

(0)
2

2
. (5.37)

Since the coefficient N(N+4)
2 is any even integer the discrete (Z2)F − [U(1)ψη]

2 anomaly is

matched modulo Z2 in the IR and UV.

All in all, we reproduce the earlier results reported in section 2, that a chirally symmet-

ric vacuum, with no condensates, with no NG bosons but with massless baryons eq. (2.7),

satisfy all the conventional ’t Hooft anomaly matching constraints.

6 UV-IR matching of various mixed anomalies in even N theories

Now we come to the main issues of our analysis: studying the various mixed anomalies

involving the fermion parity (Z2)F , in the presence of the 2-form gauge fields B
(2)
c and

B
(2)
f , in an even N theory. Starting from the 6D action, eq. (5.18)–eq. (5.21), one collects

the terms of the form,

S6D =

∫
6

[. . .]

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
. (6.1)

Integrating, one gets the 5D boundary WZW action

S5D =

∫
5

[. . .]

[
A

(1)
2 −

1

2
B(1)

c − 1

2
B

(1)
f

]
. (6.2)

18This is so for even N of the form, N = 4m+ 2, m ∈ Z.
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This allows us to calculate various anomalies in 4D involving (Z2)F , by anomaly inflow,

considering the variations

δ[A
(1)
2 −

1

2
B(1)

c − 1

2
B

(1)
f ] =

1

2
d δA

(0)
2 , (6.3)

δS4D =
1

2

∫
4

[. . .] δA
(0)
2 , δA

(0)
2 = ±2π . (6.4)

6.1 Mixed (Z2)F − [ZN ]2 anomaly

Collecting all terms of the form

N2

∫
(B(2)

c )2A
(1)
2 (6.5)

in the 5D WZW action, one finds at UV,

S
(5)
UV = 1 · 1

8π2

∫
Σ5

N2(B(2)
c )2 ·A(1)

2 . (6.6)

The coefficient in front of the above expression (6.6) is the result of the sum from various

ψ and η contributions in (5.18) and (5.19):

− N + 2

N
+

(N + 1)(N + 4)2

8N
− (N + 4)(N + 1)

4
+
N(N + 1)

8

+
N + 4

N
− (N + 4)(N + 2)2

4N
+

(N + 2)(N + 4)

2
− N(N + 4)

4
= 1 . (6.7)

The result (6.6) leads to the 4D mixed (Z2)F − [ZN ]2 anomaly in the UV,

∆S
(4)
UV = ±iπZ , δA

(1)
2 = d

1

2
δA

(0)
2 , δA

(0)
2 = ±2π . (6.8)

In other words, the partition function changes sign under the Z2 transformation, ψ → −ψ,

η → −η, in appropriate background B
(2)
c fields19

1

8π2

∫
Σ4

N2(B(2)
c )2 = Z . (6.9)

On the other hand, in the infrared, assuming the chirally symmetric scenario, sec-

tion 2.1, the “massless baryons” (5.21) lead to no anomalies of this type:

0 ·N2(B(2)
c )2A

(1)
2 = 0 , (6.10)

due to the cancellation

− (N + 4)(N + 3)

8
− (N + 4)(N + 3)

8
+

(N + 3)(N + 4)

4
= 0 , (6.11)

among the 4th, 6th and 7th terms of (5.21). Actually the absence of the mixed A
(1)
2 −B

(2)
c

terms can be seen directly from the first line of (5.21). (See footnote 13.)

The conclusion is that the mixed (Z2)F − [ZN ]2 anomaly is present in the UV but

absent in the IR. They do not match.

19Equivalently, in the presence of appropriate fractional ’t Hooft fluxes.
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6.2 Mixed (Z2)F − [ZN+4]2 anomaly

We now study the terms

(N + 4)2

∫
(B

(2)
f )2A

(1)
2 (6.12)

in the 5D action. The ψ and η both give vanishing contribution to the coefficient:

−N(N + 1)

8
+
N(N + 1)

4
− N(N + 1)

8
= 0 ,

N

N + 4
− N(N + 2)2

4(N + 4)
+
N(N + 2)

2
− N(N + 4)

4
= 0 . (6.13)

On the other hand, the massless baryons in the IR gives:

− (N + 3)(N + 4)

8
+
N + 2

N + 4
− N2(N + 3)

8(N + 4)
+
N(N + 3)

4
= −1 . (6.14)

Therefore, the result here is opposite: the mixed (Z2)F − [ZN+4]2 anomaly is absent in the

UV but present in the IR! However the conclusion is the same: they do not satisfy the ’t

Hooft anomaly matching requirement.

6.3 Mixed (Z2)F − ZN − ZN+4 anomaly

Let us now consider the mixed anomalies of the type, (Z2)F −ZN −ZN+4. We collect the

terms of the form

N(N + 4)

∫
B(2)

c B
(2)
f A

(1)
2 (6.15)

in the 5D action. The result in the UV is that ψ gives the coefficient

(N + 4)(N + 1)

4
− N + 1

4
· (2N + 4) +

N(N + 1)

4
= 0 , (6.16)

whereas η yields

−
(
N + 2

2

)2

· 2 +
N + 2

2
(2N + 4)−N(N + 4)

1

2
= 2 . (6.17)

Thus there are no mixed (Z2)F −ZN −ZN+4 anomaly in the UV.

In the IR, the baryons produces the terms of this type with the coefficient:

− (N + 3)(N + 4)

2

1

2
− N(N + 3)

4
+
N + 3

4
(2N + 4) = 0 . (6.18)

(Again this result could have been read off from the first line of (5.21).) Therefore there are

no anomalies of this type in the IR either. Therefore no question of ’t Hooft consistency

condition arises from the consideration of the mixed (Z2)F −ZN −ZN+4 anomalies.
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6.4 Mixed (Z2)F − ZN − U(1)ψη anomaly

In the UV, one collects the terms of the form,

N

∫
B(2)

c dAA
(1)
2 (6.19)

in the 5D action. One finds the coefficient,(
N + 4

2

)2

(N + 1)− N + 4

2

N(N + 1)

2
−
(
N + 2

2

)2

2(N + 4) +
N + 2

2
N(N + 4)

= −N − 4 , (6.20)

which is an even integer. This means that no mixed (Z2)F − ZN − U(1)ψη anomaly is

present in the UV. We know already that there are no terms mixing A
(1)
2 and B

(2)
c in the

infrared: there are no mixed anomalies of this type in the infrared either.

6.5 Mixed (Z2)F − ZN+4 − U(1)ψη anomaly

One must collect the terms of the form,

(N + 4)

∫
B

(2)
f dAA

(1)
2 . (6.21)

One finds the coefficients, in the UV,

ψ :
N + 4

4
N(N + 1)− 1

2

N(N + 1)

2
(N + 4) = 0 ,

η : −2N

(
N + 2

2

)2

+
N + 2

2
N(N + 4) = N(N + 2) , (6.22)

the sum of which is an even integer: there are no anomaly of this type in the UV. In the

IR, the massless baryons give

−
(
N

2

)2

(N + 3) +
N

2

(N + 3)(N + 4)

2
= N(N + 3) , (6.23)

which is again an even integer. There are no anomaly of this type in the IR either.

6.6 Physics implications

Of all types of mixed anomalies involving the fermion parity (Z2)F considered above, we

thus find that (Z2)F − [ZN ]2 and (Z2)F − [ZN+4]2 anomalies provide us with the most

interesting information. Namely the anomaly of the first type is present in the UV but

absent in the IR; the situation is opposite for the second type of anomaly: it is absent in

the UV but present in the IR. All other types of mixed anomalies as well as conventional

anomalies are found to match in the UV and IR, assuming the chirally symmetric vacuum

of section 2.1.

We are thus led to conclude that the chirally symmetric vacuum of section 2.1 cannot

be the correct vacuum of the ψη theory with even N .
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No problem arises if the system is in the dynamical Higgs phase, discussed in sec-

tion 2.2. One might however wonder how the failure of the matching of these mixed

anomalies in the UV and IR might be accounted for by the bifermion condensate, 〈ψη〉, in

view of the fact that the fermion parity (2π space rotation) does not act on it. The answer is

that the failure of the ’t Hooft matching condition in this case means that the 1-form gaug-

ing of the [U(1)ψη×(Z2)F−SU(N)]-locked ZN , and the [U(1)ψη×(Z2)F−SU(N+4)]-locked

ZN+4, center symmetries is not allowed. The condensates 〈ψη〉 indeed breaks spontaneously

both of the global 0-form U(1)ψη and the global 1-form ZN color center (or the flavor ZN+4

center) symmetry, the infrared system being in a dynamically induced Higgs phase.

Still, a little more careful argument is necessary, before jumping to the conclusion that

everything is consistent in the Higgs phase. The reason is that the 〈ψη〉 condensates leaves

a nontrivial subgroup (3.25) unbroken, and that some massless fermions are present in

the IR so that the conventional perturbative anomaly matching works. This means that

the generalized anomaly matching requirement (in the presence of some combination of

the 2-form gauge fields
(
B

(2)
c , B

(2)
f

)
appropriate for the unbroken symmetry group (3.25))

might fail to be satisfied in the dynamical Higgs phase, too.

Actually, an attentive inspection of table 2 dispels the last worry. When the Dirac

pair of massive fermions (ψ and the symmetric part in η̃Ai ) are excluded, the rest of the

massless fermions in the UV are identical to the set of the massless “baryons” in the IR,

in all their quantum numbers, charges, and multiplicities. This means whatever subset of(
B

(2)
c , B

(2)
f

)
are retained, the UV-IR matching is automatically satisfied.

7 Calculating the mixed anomalies without Stora-Zumino

In the above we made use of the Stora-Zumino descent method to calculate the various

anomaly expressions. It has a great advantage of being systematic, yielding the Abelian,

nonAbelian and other, mixed types of anomalies all at once with the correct coefficients, and

showing certain aspects of symmetries. Nevertheless, it is basically a technical aspect of our

analysis: it is not indispensable. Indeed, one can stay in four-dimensional spacetime, and

calculate the anomalies of the chiral transformation, ψ → −ψ, η → −η, in the underlying

(UV) theory, in the standard fashion, e.g. by Fujikawa’s method [43, 44]. By taking into

account the 1-form gauge invariance requirement, eq. (5.4), eq. (5.5), eq. (5.10), however,

one finds (iπ times)

− N + 4− (N + 2)

8π2

∫
Σ4

tr
(
F (ã)−B(2)

c

)2
, (7.1)

− N

8π2

∫
Σ4

tr[F (Ãf)−B
(2)
f ]2 , (7.2)

− 1

8π2

N(N + 4)(N2 + 3N + 4)

8

∫
Σ4

[
dA+B(2)

c +B
(2)
f

]2
, (7.3)

− 1

8π2

N(N + 3)(N + 4)

4

∫
Σ4

[
dA+B(2)

c +B
(2)
f

] [
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]
, (7.4)

− 1

24π2

N(N + 7)

2

∫
Σ4

[
dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f

]2

, (7.5)
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due to the external fields,

[SU(N)]2 , [SU(N + 4)]2 , [U(1)ψη]
2 , U(1)ψηZ2 , [Z2]2 , (7.6)

dressed by the 2-form gauge fields
(
B

(2)
c , B

(2)
f

)
, respectively.20 A similar consideration can

be made for the calculation of anomaly in the IR. Collecting various terms of the same

types, one ends up with the results presented in section 6.

It might be of interest to recall a subtle aspect in the descent procedure, noted after

eq. (5.16). In a 4D calculation described here, it is manifest that we are modifying our the-

ory, in going from the original SU(N)×SU(N+4) gauge theory to SU(N)
ZN
× SU(N+4)

ZN+4
theory.

8 Summary and discussion

To summarize, in this note we have examined the symmetries of a simple chiral gauge

theory, SU(N) ψη model, by use of the recently found extension of the ’t Hooft anomaly

matching constraints, to include the mixed anomalies involving some higher-form symme-

tries (in our case, some 1-form center symmetries). A particular interest in this model lies

in the fact that the conventional ’t Hooft anomaly matching constraints allow a chirally

symmetric confining vacuum, with no condensates breaking the U(1)ψη×SU(N + 4) flavor

symmetries, and with a set of massless baryonlike composite fermions saturating all the

anomaly triangles. Another possible type of vacuum, compatible with the anomaly match-

ing conditions, is in a dynamical Higgs phase, with a bifermion condensates breaking color

completely, but leaving some residual flavor symmetry. The standard anomaly matching

constraints do not tell apart the two possible dynamical possibilities, which represent two

distinct phases of the theory.

The result of our investigation is that, a deeper level of consistency requirement, taking

into account also certain possible mixed (0-form−1-form) anomalies, allows us, for even N

theory at least, to exclude the first, chirally symmetric type of vacua. One is led inevitably

to the conclusion that the system is likely to be in a dynamical Higgs phase.

More concretely, among all possible mixed anomalies involving the (Z2)F symmetry

of the system, which corresponds actually to 2π space rotation, the anomalies of the types

(Z2)F − [ZN ]2 and (Z2)F − [ZN+4]2 are present, and do not match in the UV and in the

IR, if the chirally symmetric vacuum is assumed.

Our extension of the idea of gauging 1-form center symmetries such as ZN ⊂ SU(N)

and of finding possible associated mixed anomalies, as compared to the existent litera-

ture [24]–[36], involves a few new concepts. Thus it may be useful to summarize them.

The first concerns the fact that the presence of fermions in the fundamental representation

of the color SU(N) (or of the flavor SU(N+4)) group, requires us to work with color-flavor

locked center symmetries, see eq. (3.23), eq. (3.24). This involves the centers of the SU(N)

or SU(N + 4) locked with some subgroups of the anomaly-free U(1)ψη. A similar idea has

been studied and tested in several papers already, see [28, 29, 32].

20Eqs. (7.1)–(7.5) are obtained by taking (Z2)F to be ψ → eiπψ; η → e−iπη, in accordance with the

convention used in eqs. (5.15)–(5.16). If the phase of η were to be chosen as +iπ, the coefficients in

eqs. (7.4) and (7.5) will get modified, but the final result for (Z2)F anomaly remains unchanged.

– 27 –



J
H
E
P
0
9
(
2
0
2
0
)
0
0
1

The second nontrivial conceptual extension here involves the discrete (Z2)F symmetry

for even N theory. In this case the center symmetry of interest is the diagonal combination

of ZN ⊂ SU(N) and ZN ⊂ U(1)ψη × (Z2)F . Similarly for ZN+4. This means that both

U(1)ψη and (Z2)F gauge fields transform nontrivially under the (gauged) center symmetries,

see eqs. (5.4)–(5.10).

From the formal point of view, therefore, the position of U(1)ψη and (Z2)F symmetries

(hence of the associated background gauge fields) is therefore similar. Even though these

are both 0-form symmetries they carry charges under the gauged center ZN or ZN+4

symmetry. The anomalies involving U(1)ψη and (Z2)F are both modified nontrivially by

the presence of the 2-form gauge fields,
(
B

(2)
c , B

(2)
f

)
.

There is an important difference, however. In the case of the continuous SU(N + 4)×
U(1)ψη symmetries, the anomaly triangles were all matched in the UV and IR before the

introduction of
(
B

(2)
c , B

(2)
f

)
. For instance, the [U(1)ψη]

3 anomaly takes the simple form in

the 6D action, C (dA)3. The anomaly coefficients satisfy, in the chirally symmetric vacuum

of section 2.1, the matching condition,

CUV = CIR . (8.1)

Now the introduction of the 2-form gauge fields
(
B

(2)
c , B

(2)
f

)
modifies all the fields, e.g.,

dA→ dA+B(2)
c +B

(2)
f , dA

(1)
2 → dA

(1)
2 −

N

2
B(2)

c − N + 4

2
B

(2)
f , (8.2)

etc., but clearly the matching condition (8.1) for the conventional Uψη(1)3 anomaly is

sufficient to guarantee automatically the matching of the anomaly

C
(

dA+B(2)
c +B

(2)
f

)3
, (8.3)

in the modified theory. The same applies to all triangle anomalies involving the continuous

SU(N + 4)×U(1)ψη symmetries.

It is a different story for the anomalies involving the discrete symmetry (Z2)F . Before

the introduction of
(
B

(2)
c , B

(2)
f

)
, (Z2)F was a nonanomalous symmetry of the system. But

this was so due to the integer instanton numbers, not because of an algebraic cancellation

between the contributions from different fermions, as for Uψη(1). Also, the (Z2)F anomaly

“matching” was not due to the equality of the coefficients as in (8.1), but only due to

an equality modulo Z2 of the coefficients, and under the assumption of integer instanton

numbers
1

8π2

∫
Σ4

F 2 ∈ Z . (8.4)

This means that the introduction of the 2-form gauge fields (which can introduce nontrivial

’t Hooft fluxes, hence fractional instanton numbers) may make it anomalous, and as a

consequence may invalidate the discrete anomaly matching. Our calculation shows that it

indeed does.

The result found here is somewhat reminiscent of the fate of the time reversal (or CP)

symmetry in the infrared, in pure SU(N) YM theory with θ = π [25]. Note that before
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introducing the ZN 1-form gauging, time reversal invariance at θ = π holds because of the

integer instanton numbers, just as the fermion parity symmetry (Z2)F of our system. From

this prospect, what is found here, (Z2)F − [ZN ]2 and (Z2)F − [ZN+4]2 mixed anomalies, are

very much analogous to the time reversal — 1-form ZN mixed anomaly discovered in the

pure YM at θ = π. Here the time reversal (CP symmetry) is replaced by 2π space rotation.

Note however that the way the failure of the ’t Hooft anomaly matching is reflected in

the infrared physics is different here from the CP invariance for the pure YM at θ = π. In

the latter case, a double vacuum degeneracy and the spontaneous breaking of CP in the

infrared “take care” of the eventual inconsistency which would arise if we were to gauge

the 1-form ZN center symmetry.

Here, the failure of the mixed-anomaly matching is “accounted for” in the infrared,

dynamically Higgsed phase, not by the spontaneous breaking of the fermion parity symme-

try, but by the breaking of the 1-form ZN and ZN+4 symmetries. Note that in our system,

the 1-form symmetries are locked with U(1)ψη symmetry, which is spontaneously broken

by the bifermion condensate 〈ψη〉. It is true, as noted at the end of section 6, that some

subgroup of the original symmetry group with nontrivial global structure (3.25) survives

the bifermion condensates. But as noted also there, the eventual anomalies with respect

to the surviving symmetries match completely in the UV and in the IR, in the case of the

dynamical Higgs phase. The hypothesis of gauge noninvariant bifermion condensate (2.8)

is therefore consistent with our symmetry arguments. On the contrary, the chirally sym-

metric vacuum contemplated earlier in the literature is, at least for even N , inconsistent:

it cannot be realized dynamically.

Acknowledgments

The work is supported by the INFN special research grant, “GAST (Gauge and String

Theories)”. We thank Yuya Tanizaki for the collaboration at the early stage of the work

and for useful discussions. K.K. thanks Erich Poppitz for prodding him to investigate the

implications of the mixed anomalies in chiral gauge theories such as the ones studied here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions

and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].

[2] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric Instanton

Calculus (Gauge Theories with Matter), Nucl. Phys. B 260 (1985) 157 [INSPIRE].

[3] D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative Aspects in

Supersymmetric Gauge Theories, Phys. Rept. 162 (1988) 169 [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(85)90408-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB256%2C557%22
https://doi.org/10.1016/0550-3213(85)90316-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB260%2C157%22
https://doi.org/10.1016/0370-1573(88)90182-2
https://inspirehep.net/search?p=find+J%20%22Phys.Rept%2C162%2C169%22


J
H
E
P
0
9
(
2
0
2
0
)
0
0
1

[4] N. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic

monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123

[hep-th/9905015] [INSPIRE].

[5] F. Cachazo, N. Seiberg and E. Witten, Chiral rings and phases of supersymmetric gauge

theories, JHEP 04 (2003) 018 [hep-th/0303207] [INSPIRE].

[6] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and

confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

[7] N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2

supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

[8] Y. Tachikawa, N = 2 supersymmetric dynamics for pedestrians, Lect. Notes Phys. 890

(2014) [arXiv:1312.2684] [INSPIRE].

[9] S. Bolognesi, K. Konishi and M. Shifman, Patterns of symmetry breaking in chiral QCD,

Phys. Rev. D 97 (2018) 094007 [arXiv:1712.04814] [INSPIRE].

[10] S. Bolognesi and K. Konishi, Dynamics and symmetries in chiral SU(N) gauge theories,

Phys. Rev. D 100 (2019) 114008 [arXiv:1906.01485] [INSPIRE].

[11] S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169

(1980) 373 [INSPIRE].

[12] G. ’t Hooft, Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking, in

Recent Developments In Gauge Theories, G.’t Hooft et al. eds., Plenum Press, New York

(1980), reprinted in Dynamical Symmetry Breaking, E. Farhi et al. eds., World Scientific,

Singapore (1982).

[13] I. Bars and S. Yankielowicz, Composite Quarks and Leptons as Solutions of Anomaly

Constraints, Phys. Lett. B 101 (1981) 159 [INSPIRE].

[14] C.Q. Geng and R.E. Marshak, Two Realistic Preon Models With SU(N) Metacolor Satisfying

Complementarity, Phys. Rev. D 35 (1987) 2278 [INSPIRE].

[15] T. Appelquist, A.G. Cohen, M. Schmaltz and R. Shrock, New constraints on chiral gauge

theories, Phys. Lett. B 459 (1999) 235 [hep-th/9904172] [INSPIRE].

[16] T. Appelquist, Z.-y. Duan and F. Sannino, Phases of chiral gauge theories, Phys. Rev. D 61

(2000) 125009 [hep-ph/0001043] [INSPIRE].

[17] Y.-L. Shi and R. Shrock, AkF̄ chiral gauge theories, Phys. Rev. D 92 (2015) 105032

[arXiv:1510.07663] [INSPIRE].

[18] Y.-L. Shi and R. Shrock, Renormalization-Group Evolution and Nonperturbative Behavior of

Chiral Gauge Theories with Fermions in Higher-Dimensional Representations, Phys. Rev. D

92 (2015) 125009 [arXiv:1509.08501] [INSPIRE].

[19] E. Poppitz and Y. Shang, Chiral Lattice Gauge Theories Via Mirror-Fermion Decoupling: A

Mission (im)Possible?, Int. J. Mod. Phys. A 25 (2010) 2761 [arXiv:1003.5896] [INSPIRE].

[20] A. Armoni and M. Shifman, A Chiral SU(N) Gauge Theory Planar Equivalent to

Super-Yang-Mills, Phys. Rev. D 85 (2012) 105003 [arXiv:1202.1657] [INSPIRE].

[21] E. Eichten, R.D. Peccei, J. Preskill and D. Zeppenfeld, Chiral Gauge Theories in the 1/n

Expansion, Nucl. Phys. B 268 (1986) 161 [INSPIRE].

– 30 –

https://doi.org/10.1016/S0550-3213(99)00434-4
https://arxiv.org/abs/hep-th/9905015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9905015
https://doi.org/10.1088/1126-6708/2003/04/018
https://arxiv.org/abs/hep-th/0303207
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0303207
https://doi.org/10.1016/0550-3213(94)90124-4
https://arxiv.org/abs/hep-th/9407087
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9407087
https://doi.org/10.1016/0550-3213(94)90214-3
https://arxiv.org/abs/hep-th/9408099
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9408099
https://doi.org/10.1007/978-3-319-08822-8
https://doi.org/10.1007/978-3-319-08822-8
https://arxiv.org/abs/1312.2684
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2684
https://doi.org/10.1103/PhysRevD.97.094007
https://arxiv.org/abs/1712.04814
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.04814
https://doi.org/10.1103/PhysRevD.100.114008
https://arxiv.org/abs/1906.01485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01485
https://doi.org/10.1016/0550-3213(80)90093-0
https://doi.org/10.1016/0550-3213(80)90093-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB169%2C373%22
https://doi.org/10.1016/0370-2693(81)90664-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2C101B%2C159%22
https://doi.org/10.1103/PhysRevD.35.2278
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD35%2C2278%22
https://doi.org/10.1016/S0370-2693(99)00616-4
https://arxiv.org/abs/hep-th/9904172
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904172
https://doi.org/10.1103/PhysRevD.61.125009
https://doi.org/10.1103/PhysRevD.61.125009
https://arxiv.org/abs/hep-ph/0001043
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0001043
https://doi.org/10.1103/PhysRevD.92.105032
https://arxiv.org/abs/1510.07663
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07663
https://doi.org/10.1103/PhysRevD.92.125009
https://doi.org/10.1103/PhysRevD.92.125009
https://arxiv.org/abs/1509.08501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.08501
https://doi.org/10.1142/S0217751X10049852
https://arxiv.org/abs/1003.5896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.5896
https://doi.org/10.1103/PhysRevD.85.105003
https://arxiv.org/abs/1202.1657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.1657
https://doi.org/10.1016/0550-3213(86)90206-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB268%2C161%22


J
H
E
P
0
9
(
2
0
2
0
)
0
0
1

[22] J. Goity, R.D. Peccei and D. Zeppenfeld, Tumbling and Complementarity in a Chiral Gauge

Theory, Nucl. Phys. B 262 (1985) 95 [INSPIRE].

[23] O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional

gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

[24] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP

02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[25] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and

Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[26] A. Karasik and Z. Komargodski, The Bi-Fundamental Gauge Theory in 3+1 Dimensions:

The Vacuum Structure and a Cascade, JHEP 05 (2019) 144 [arXiv:1904.09551] [INSPIRE].

[27] Y. Tanizaki and Y. Kikuchi, Vacuum structure of bifundamental gauge theories at finite

topological angles, JHEP 06 (2017) 102 [arXiv:1705.01949] [INSPIRE].

[28] H. Shimizu and K. Yonekura, Anomaly constraints on deconfinement and chiral phase

transition, Phys. Rev. D 97 (2018) 105011 [arXiv:1706.06104] [INSPIRE].

[29] Y. Tanizaki, Y. Kikuchi, T. Misumi and N. Sakai, Anomaly matching for the phase diagram

of massless ZN -QCD, Phys. Rev. D 97 (2018) 054012 [arXiv:1711.10487] [INSPIRE].

[30] M.M. Anber and E. Poppitz, Two-flavor adjoint QCD, Phys. Rev. D 98 (2018) 034026

[arXiv:1805.12290] [INSPIRE].

[31] M.M. Anber and E. Poppitz, Anomaly matching, (axial) Schwinger models, and high-T super

Yang-Mills domain walls, JHEP 09 (2018) 076 [arXiv:1807.00093] [INSPIRE].

[32] Y. Tanizaki, Anomaly constraint on massless QCD and the role of Skyrmions in chiral

symmetry breaking, JHEP 08 (2018) 171 [arXiv:1807.07666] [INSPIRE].

[33] M.M. Anber and E. Poppitz, Domain walls in high-T SU(N) super Yang-Mills theory and

QCD(adj), JHEP 05 (2019) 151 [arXiv:1811.10642] [INSPIRE].

[34] Z. Komargodski, A. Sharon, R. Thorngren and X. Zhou, Comments on Abelian Higgs Models

and Persistent Order, SciPost Phys. 6 (2019) 003 [arXiv:1705.04786] [INSPIRE].

[35] Z. Wan and J. Wang, Adjoint QCD4, Deconfined Critical Phenomena, Symmetry-Enriched

Topological Quantum Field Theory, and Higher Symmetry-Extension, Phys. Rev. D 99

(2019) 065013 [arXiv:1812.11955] [INSPIRE].

[36] S. Bolognesi, K. Konishi and A. Luzio, Gauging 1-form center symmetries in simple SU(N)

gauge theories, JHEP 01 (2020) 048 [arXiv:1909.06598] [INSPIRE].

[37] G. Cacciapaglia, S. Vatani and Z.-W. Wang, Tumbling to the Top, arXiv:1909.08628

[INSPIRE].

[38] N. Seiberg, Modifying the Sum Over Topological Sectors and Constraints on Supergravity,

JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

[39] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04 (2014) 001

[arXiv:1401.0740] [INSPIRE].

[40] J. Manes, R. Stora and B. Zumino, Algebraic Study of Chiral Anomalies, Commun. Math.

Phys. 102 (1985) 157 [INSPIRE].

[41] B. Zumino, Chiral Anomalies And Differential Geometry: Lectures Given At Les Houches,

August 1983, in Current Algebra and Anomalies, S.B. Treiman et al. eds. (1983) [INSPIRE].

– 31 –

https://doi.org/10.1016/0550-3213(85)90065-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB262%2C95%22
https://doi.org/10.1007/JHEP08(2013)115
https://arxiv.org/abs/1305.0318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.0318
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.5148
https://doi.org/10.1007/JHEP05(2017)091
https://arxiv.org/abs/1703.00501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00501
https://doi.org/10.1007/JHEP05(2019)144
https://arxiv.org/abs/1904.09551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.09551
https://doi.org/10.1007/JHEP06(2017)102
https://arxiv.org/abs/1705.01949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01949
https://doi.org/10.1103/PhysRevD.97.105011
https://arxiv.org/abs/1706.06104
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.06104
https://doi.org/10.1103/PhysRevD.97.054012
https://arxiv.org/abs/1711.10487
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.10487
https://doi.org/10.1103/PhysRevD.98.034026
https://arxiv.org/abs/1805.12290
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.12290
https://doi.org/10.1007/JHEP09(2018)076
https://arxiv.org/abs/1807.00093
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.00093
https://doi.org/10.1007/JHEP08(2018)171
https://arxiv.org/abs/1807.07666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.07666
https://doi.org/10.1007/JHEP05(2019)151
https://arxiv.org/abs/1811.10642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10642
https://doi.org/10.21468/SciPostPhys.6.1.003
https://arxiv.org/abs/1705.04786
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.04786
https://doi.org/10.1103/PhysRevD.99.065013
https://doi.org/10.1103/PhysRevD.99.065013
https://arxiv.org/abs/1812.11955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11955
https://doi.org/10.1007/JHEP01(2020)048
https://arxiv.org/abs/1909.06598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.06598
https://arxiv.org/abs/1909.08628
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.08628
https://doi.org/10.1007/JHEP07(2010)070
https://arxiv.org/abs/1005.0002
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.0002
https://doi.org/10.1007/JHEP04(2014)001
https://arxiv.org/abs/1401.0740
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.0740
https://doi.org/10.1007/BF01208825
https://doi.org/10.1007/BF01208825
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C102%2C157%22
http://inspirehep.net/record/192970


J
H
E
P
0
9
(
2
0
2
0
)
0
0
1
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