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How can I convert this from a problem
of infinite number of degrees of freedom,
which you can’t deal with anyhow, to a
problem which is finite even if it was so
large that you would have to have an as-
tronomical size computer. I just wanted
to convert it from an infinite number of
degrees of freedom to a finite number.

K. Wilson

1 Introduction

In recent years there have appeared various Gromov-Witten type theories. In all these
theories we study their partition functions or free energy functions, expressed as formal
power series in infinitely many formal variables. It is not convenient to study functions in
infinitely many variables. The well-established methods in mathematics usually deal with
only finitely many variables, especially when analyticity or smoothness of the functions are
concerned. It is then very desirable to develop some methods to convert the problems that
involves infinitely many variables to problems with only finitely many variables. Amazingly,
such situations were faced by Wilson when he studied renormalization theory. He discovered
that in doing renormalzations step by step, it is necessary to work with Hamiltonians with
all possible coupling constants hence it is necessary to work with a problem of an infinite
degrees of freedom. By considering the fixed points of the renormalization flow, a miracle
happens: in the limit the theory becomes soluble with finitely many degrees of freedom.
We will report in this work similar miracles happen in the case of some Gromov-Witten
type theories. In this paper we will focus on three examples: 1D topological gravity,
Hermitian one-matrix models, and 2D topological gravity. In subsequent work, we will
make generalizations to other models.

To explain our results, let us begin with the case of two-dimensional topological gravity.
Witten [26] interpreted the 2D topological gravity as the intersection theory of 1-classes on
the Deligne-Mumford moduli spaces M, ,,. The free energy of this theory is the generating
function defined by:

FZD(t)_iFQD ._i Z < no _ni,_nz 2D ﬁﬁﬁ
— 2D = 7oLt ...>g b b R (1.1)
9=0 9=0 no,n1m2-
where {t;}i>0 are formal variables understood as the coupling constants, and they will
be understood as coordinates on the big phase space of the 2D topological gravity. The
partition function is defined by

7P = 7 (1.2)
Witten conjectured that Z2P is a tau-function of the KdV hierarchy, i.e., u = 8281“;22[)
0
satisfies a system of nonlinear differential equations of the form:
ou 0
—— = R Uy Uty - - ), 1.3
At~ otg (W o) (1.3)



and furthermore, the free energy satisfies the string equation

8F2D t2 & 8F2D
TR DLt T (1.4
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Conversely, together with the string equation, the KdV hierarchy completely determines the
free energy. This conjecture was proved by Kontsevich [20, 21] by computing the partition
function in a different way-the Kontsevich matrix model, so the partition function Z2P
is also known as the Witten-Kontsevich tau-function and denoted by 7y g. For earlier
matrix model approach to two-dimensional gravity, see e.g. Brezin-Kazakov [5], Douglas-
Shenker [11] and Gross-Migdal [15].

There is another way to study the Witten-Kontsevich tau-function 7 k. Douglas [10]
proposed the connection to generalized KdV hierarchy (Gelfand-Dickey hierarchy) with
the additional condition called the string equation. Dijkgraaf-Verlinde-Verlinde [8] de-
rived from the KdV equation and the string equation that 7xy satisfies a system of
linear partial differential equations known as the Virasoro constraints, and furthermore
is uniquely determined by these constraints. See also the independent work by Fukuma-
Kawai-Nakayama [13]. For the derivation of the Virasoro constraints for the Hermitean
matrix model, see e.g. [4, 6, 16, 24]. For the derivation in the Kontsevich model, see
e.g. [14, 22, 27]. For further development for generalized Kontsevich matrix models, see
e.g. [18, 19].

One can use either the characterization by KdV hierarchy plus string equation or the
Virasoro constraints to compute the free energy functions FgQD . The results are of course
some formal power series in the coupling constants tg,t1,... which are too complicated to
expect any closed formulas directly. In [17], Itzykson and Zuber introduced another group
of variables Iy, I1,--- defined by:

82F2D
ug(t) == ——9—, (1.5)
ot3
up
I(t) == Zt%kﬁ, n>=0 (1.6)
k>0
and they proved that ug = Iy, i.e.
I
I(t) = thkg, n > 0. (1.7)
k=0

With these definitions, they made an ansatz on the shape of FQQD :

I 1 I 20 %2 I; b
F2P(t) = > <722733 e Tag s > Il (%) (1.8)
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for ¢ > 2. This is a finite sum of monomials in By inserting this ansatz

I.
(=175
into KdV hierarchy, they got some concrete results of free energies of low genus and they
remarked that “There is no difficulty to pursue these computations as far as one wishes”.



Such idea of introducing new variables so that the free energy depending on an in-
finite set of coupling constants can be rearranged into polynomials of finitely many new
variables is also developed and applied to the Hermitian matrix models in [2, 3]. Two
sequences of moment variables { M} }r>1 and {Jk}x>1 are introduced in the case of one-cut
solutions. They reduce to only one sequence in the double scaling limit. Note the Itzykson-
Zuber ansatz was used in [2] to derive the equivalence between the double scaling limit of
Hermitian one-matrix model and Kontsevich model.

Inspired by the Itzykson-Zuber ansatz especially the introduction of I, the second
named author carried out a comprehensive study of one-dimensional topological gravity
in [28] in the hope that this would lead to a better understanding of the Itzykson-Zuber
ansatz. He considered the action function:

1 9 oo $n+1
_ 1 _ 1.
S(@) = —5x +n§0jtn(n+1)!, (1.9)

and its renormalization by the iterated procedure of completing the square. In the limit of
this procedure, one reaches the critical point z., of the action function which satisfies the
following equation ([28], proposition 2.1):

xn
Too = Y a2, (1.10)

n
n=0

and the Taylor expansion of S(z) at * = xo is

(x — xoo)™

S(z) = S(zo0) + nz::?(f;” = Onp) (1.11)
where
, w8
I'(t) :thkﬂ, n>1. (1.12)

k>0

One can see that zo, and I are exactly Ip and Ij by definition! In [28], by Lagrange
inversion formula, the second named author derived an explicit formula for I in terms of

{tn}nZO:

=1 t t
10:t0+zg D (1.13)
k=2
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By plugging this into (1.7), one can get similar expressions for I. He also considered the
inverse transformation, and got the following result:
(_1)1:: Tk
by = ZIn+kTO, n >0, (1.14)
k>0

As we have mentioned, {t,},>0 are understood as coordinates on the big phase space.
Now {I,}n>0 can be understood as new coordinates on the big phase space. They are
called the renormalized coupling constants in [28]. The reason for this terminology is



because the striking analogy with Wilson’s renormalization theory in the sense that one
starts with an arbitrary set of infinitely many coupling constants and the fixed point of the
renormalization flow gives one another set of infinitely coupling constants. Another analogy
with Wilson’s theory is that with the introduction of these renormalized constants makes
the theory become soluble in finitely many degrees of freedom. This is our interpretation of
the Itzykson-Zuber ansatz (1.8). In fact, inspired by Itzykson-Zuber’s ansatz, the second
author proved that for the 1D topological gravity theory,

p29-1 lj
Io 1 !
Fng(t) = Z <722733 .. 229 11> H 3 o ( 71 )j+1> (1.15)
1

2
> ochgag—1(k—1l=29—-2

for g > 2, where FlD is the free energy of genus g of the 1D topological gravity.

Another example we treat in this work is the Hermitian one-matrix models of order
N (i.e. the matrix is of N x N). The second named author understood the 1D topological
gravity as the Hermitian one-matrix models of order 1 and extended some results for 1D
topological gravity to Hermitian one-matrix models in [29-31]. Using the same method,
he proved that for Hermitian one-matrix models,

9 . b
e C U [

> ochgag—1(k—1)lk=29—2 1—-0h)>

for g > 2, where FN is the free energy of genus g.

The proofs of (1.15) and (1.16) in previous works of the second named author are
based on rewriting the corresponding puncture equation and the dilaton equation in 1D
topological gravity and Hermitian one-matrix models in terms of the I-coordinates. It was
announced in [28] that the same method can be applied to establish the Itzykson-Zuber
ansatz. In this work we will achieve more than that. More precisely, we will show that
all the Virasoro operators {L, }m>—1 in all the above three examples can be rewritten in
terms of the I-coordinates, and using this fact, one can also calculate the free energies of
in arbitrary genus g recursively.

In [33] the second named author introduced some coupling constants ¢_, for n > 1
and call them the ghost variables. They were used to defined the following extension of
free energy F02D in genus zero:

P + Z(_l)n(tn - 5n,1)t—n—1' (1.17)
n>0
This was used to make sense of the following special deformation of Airy curve introduced
in [32]:

1 > t 1 = OFZP 3

2D 5 n n—sz 0 —n—3
=22 — _ — 2 —— . 1.18
v 7;](271—1)!!2 ’ 7;)( T (1.18)

See also section 5. In this paper we also consider the renormalizations of the ghost variables.
They will be denoted by I_j, for k > 1:

o In
I, = Ztn_kn&'. (1.19)
n=0 ’



When we impose the condition ¢_,,, = 0 for m > 0, the ghost variables I_,, can be expressed
as formal series in {Ij; }x>0:

PP RC
eSO = 2 K 1)1k + )

(1.20)

It turns out that certain shift, denoted by I_,, is more natural. An amazing result is that

FoP = I4le_ =0, m>1, (1.21)
FY =N-1_4|i 0, m>1, (1.22)
1 -
2D __ n
F2P = 5 ,;(_1) Ind_p1lt_,,=0, m>1- (1.23)

We also used the renormalized ghost variables to investigate the applications of the
I-coordinates to the study of the special deformations of the emergent spectral curves in
the three cases we consider in this paper. It turns out that they manifest some uniform
behaviors related to (1.9) in this new perspective. We summarize them in the end of the
paper where we present some concluding remarks.

In summary, we have studied the Itzykson-Zuber Ansatz and its analogues from the
point of view of Wilson’s renormalization theory. Omne can interpret the results stated
in such Ansatz as generalizations of the constitutive relations in the mean field theory
approach studied by Dijkgraaf and Witten [9]. It is interesting to see that renormalization
leads to the derivations of results in mean field theory in these theory. We believe this
should hold in general and hope to return to this in future investigations.

We arrange the rest of the paper in the following fashion. We treat the cases of 1D
topological gravity and Hermitian one-matrix models in section 2 and section 3 respectively.
We verify the Itzykson-Zuber Ansatz in section 4. We generalize the renormalized coupling
constants to include the ghost coupling constants in section 5, and use the renormalized
ghost variables to study the special deformation of the Airy curve induced by the Witten-
Kontsevich tau-function. In section 6 we rederive the constitutive relations in genus zero
due to Dijkgraaf and Witten [9] and derive their analogues for Fg? and F{¥. In the final
section 7 we comment on the uniform behavior of the special deformations of the spectral
curves in the perspective of I-coordinates.

2 Computations in 1D topological gravity by Virasoro constraints in
renormalized coupling constants

In this section we recall the 1D topological gravity [28]. The partition function of this theory
satisfies Virasoro constraints derived in [25] and further studied in [28]. We rewrite the
Virasoro constraints in the I-coordinates. Using these constraints, we derive a recursively
way to solve free energy in I-coordinates. We also study the special deformation of the 1D
gravity in I-coordinates.



2.1 Renormalized coupling constants in the 1D topological gravity

In order to understand how the I-coordinates in the Itzykson-Zuber Ansatz naturally arise,
the second named author proposed in [28] to start with the 1D topological gravity and
understand its action function from the point of view of Wilson’s renormalization theory.
The partition function of 1D gravity is the following formal Gaussian integral:

1 1
ZP = 3?5 dy; (2.1)
V2T / ’

where the action function of the 1D topological gravity is given by:

.,En+1

T (2.2)

1 oo
S(x) = —52 + > tn
n=0

The coefficients {t,,},>0 are the bare coupling constants of this theory. One can modify
the action by completion of square:

s (i +1 t3 +Ztn_1 to ”+~Ztn to \"
= 7§ In
TTo1 -t ol \1-1 n\1—¢t

n>2
to \"
—<1—Ztn+1,< ))96 +Z Zn—i—ml ( t)a
n>0 n 'n>0 1

where T = x — x1. A new set of coupling constants is then obtained in this fashion. As
explained in [28], by repeating this procedure for infinitely many times, one gets a limiting
set of coupling constants which are fixed by the procedure of completing the square. More
precisely, the action function has the following form:

o~ (-DF
(k+1)!

I
(Ik+6k1 Ik+1+z 1—(5712)(:871'0) (2.3)

n=2

S(z) =
k=0

in the limit. The limiting set of coupling constants {I},>0 will be referred to as the
renormalized coupling constants. Here I, are defined by:

TL
le= Yt (2.4

n>0

where Iy = x satisfies the equation

87(3300) =0,

:L.TL
Loo = Ztnn—o;’. (2.5)

n>0

or, more explicitly,

This situation is analogous to Wilson’s renormalization theory. First of all, Wilson con-
sidered the space of Hamiltonians with all possible coupling constants. In our case, we
allow our action function S to have all possible coupling constants ¢,, at the expense of



considering only formal Gaussian integrals instead of addressing the issue of convergence
of the Gaussian integrals. Secondly, Wilson started with a theory with arbitrary coupling
constants and modified it to get a new theory of the same form with different coupling
constants. In our case, we use the completion of square to modify our coupling constants.
Thirdly, Wilson introduced the notion of a fixed point to describe the limiting theory of
the renormalization flow. In our case the situation is similar. We reach the critical point of
the action function and use the expansion there to obtain the limiting coupling constants.
Furthermore, in [28] it was proved that the transformation from {¢,},>0 to {I }»n>0 can be
regarded as a nonlinear change of coordinates, and the space of the theory of 1D topological
gravity can be regarded as an infinite-dimensional manifold with at least two coordinate
patches given by local coordinates {t,},>0 and {I,,},>0 respectively.

It turns out that the analogue of the Itzykson-Zuber Ansatz also holds in 1D topological
gravity. The free energy of 1D topological gravity is defined by:

F'P =1og Z1P. (2.6)
There is a genus expansion for FP:
oo
F'P =) " \92F)P, (2.7)
g=0
where {Fng }g=0 are formal power series of ¢y, t1,---. By [28], if we define
degt, =n—1, n=0,1,2,--- (2.8)
then Fng is weighted homogeneous in tg,t1,--- with
deg F;P =29-2, ¢g=0,1,2,-- (2.9)
By (2.4), it is natural to define
degl,=n—-1, n=0,1,2,--- (2.10)

and then Fng can be viewed as weighted homogeneous formal series of degree 2g — 2 in
I-coordinates. In [28], the second named author used two different methods, the Feynman
diagram technique and the Virasoro constraints, to get the following results:

Theorem 2.1.1. ([28, theorem 6.4 and 6.6])

FID — — I, + 6p ) IFH! 2.11

0 kE_O TR (2.11)
1 1

FIP =~ 2.12

1 9 og 1_ 1—17 ( )

29—1 D 9g—1 1 7 m;
1D _ mj J
L > <H7jj> Hmj,<()g;1> ; 922, (213)

S ocheng 1 mi(k—1)=2g-2 \ j=2 g =2 1-1h
where the correlators are defined by:

n ;1D
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2.2 Virasoro constraints for 1D topological gravity in I-coordinates

Let us now recall how to prove the above theorem by Virasoro constraints. First one has
the following theorem:

Theorem 2.2.1. (Virasoro constraints [28]) The partition function Z'P of 1D topological

gravity satisfies the following equations for m > —1:
LIP 7D —q, (2.15)
where
1p _ o 9
L= +) (tn — Do — - (2.16)
2 n—
D 0
= 1+Z(n+1)(tn_5n,l)877 (2.17)
n=0 n
+n+1)! d
LlD 2 1 mi n—O0nl)=— 2.1
N(m+ D0t ) St = St g, (2.18)

n>0
for m > 1. Furthermore, {L}! DY =1 satisfies the following commutation relations:

(L2 LIP] = (m —n)LE,, (2.19)

form,n > —1.

Next the change of coordinates between {t, }n>0 and {I,, },>0 induces the linear trans-
formations between {%}nzo and {%}nzo- The concrete expressions are given by:

Lemma 2.2.1. (/28], corollary 2.7 and proposition 2.8) The vector fields {%};@0 can be

expressed in terms of the vector fields {%};@0 as follows:

810 oty Z P15 6t (2:20)

! z kyl—k
Iy" 0
[>1 2.21
Z k)! 8tk ( )

and conversely,

0 ! ZI +Z I k>0 (2.22)
ot 1-1 k' l“@[ k—0lor, 7 ‘

Using these expressions, the following formula for Llff and L(l)D has been proved [28,
(192), (196)]:

’VLI’VL
1D __ 0
LY = + 33 § j AALLE & (2.23)

) e (1 11— 1. 2.24
0 B, 011+Z DI+ (2.24)



From these one can derive (2.11)—(2.13). The main result of this section is that by express-
ing LLP for higher m in I-coordinates, one can find an algorithm to explicitly compute
Fng . In this subsection we first express L.P in I-coordinates. The applications to the
computations of Fng will be presented in the next subsection.

Theorem 2.2.2. In the I-coordinates, the Virasoro operators LP (m > 1) for 1D topo-
logical gravity can be rewritten as follows:

LlD )\2( + 1) 1 Ll + + Ll_li
m 1—1I; (m— 1) Z l+16[ D (m —1— 1) 0],
1<i<m—1
0 T /m+1 (p+1i)! 0
— e (I —6p1) —-. 2.25
0 al, + z; < i > pz; p! ( p p,l)alpﬂ;l ( )

Proof. The first term in the definition of LLP in (2.18) is

0 1! .
Ot 1-1I (m—1)! +ZI”1 D i (22

1<li<m—1

This is the first term of right hand of (2.25). By (1.14) and (2.22),

1)! 0
3 (m+”'+ ) o (2.27)
>0 n. m+n
m+n—|—1 (—1)F1k 1 5, 5,
= I
; n! % ! n+k(m+n)'l I 310+Z oL
(mAn+1)I S (—1)k1E et g
n=0 k=0 1<I<m+n
m+n+1 1 0 0
=2 > o VT Lk | oD gy
p=0 n+k=p ! 0 =1 !

(m+n+1)! 0
Im—l—n—l—k ZI
+ZZ Z nlk! (m—+n— 1)( 1) “har
1>1 p=20n+k=p

+1
(m4+1+0) I [ 0 o) m+1 I+1 map_i, O
= I 16 s I
-1 a1, +Z *1o1 +z>§>o; i) o PalL,
+1
(m4+14+0)I [ 0 ) m+1 I+1 L )
= —_ L= AT
-1 aIOJ“; "o, +lz>1:z; i oL

We have used the following identity:

I+1
Z n'(];rz; ij; i)'l)l (-1)F = Z <m + 1> <l —2_ 1>1'5 A1 (2.28)

1
n+k=p




This can be proved as follows:

m+n+1)! m+n+1\ (I +1)!
2 n!(k:!(m—i—n—)l)!(l)k: 2 < I+1 )(n!k!) (=1)f

’I’L+k:p n+k:p

E 5 6 e

n+k=pit+j=Ii+1

m+ 1\ (I +1)! (—1)k
- ("S5 e

i+j=l+1 n+k=p

B lii mA 1\ (T4

= ‘ ; i Op l4+1—i-
1=0

By (2.22):

B, ottt I, O =ty
+ Z b 0oy Jo 0 g 5g)
Gtmﬂ 1-1 (m—i—l)'@[o (m+1 ' 1-1 0I; I<igmt1 (m—i—l—l)'@[l

Therefore,

Z (m+n+1)! (tn—5n,1) o

’I’L! 8tm+n
n=0

_ (m+1+ 1) d m+1 I+ a1 d
- -1 +ZIZ+181 +ZZ@ (I+1—i)! Iy Ti1- ~oI,
>1 >1 1

(m+2) " [ 8 0 (m+2)! my1-1 0
-1 afo+ZIl+1an > =110 oL
1>1 1<i<m+1
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Sl 35 DA B v o] () R LR

>1 121 i=1

m1 m+1 (+1! m+1—li_ M m+1-1 0
+Y I3 Il“az +Z<l+1> L o~ 2. gl ap

=1 1<I<m+1

m+1

m+1
_m+1_09 mA1\ 1 (I+1)! 9 (m+1)! m41-1 9
0™ 31, +2( i )I ZZ:(zH il i-igy ZZ; (m+1—l)!<l+1)[ oI,
= ; =

1 1

_m+1 9 +m§: m+1 - zz(pﬂ')!_, 9 _mi: m+1 (L 1)+ -1 0

0 8] 7 Z 1 p! paIp+i71 = l 811
= p= =

m—+1

m+1 0 m+1 m—+1—1 (p+1i)! g
=—1I 810+Z< . o Z o Up=0p1) g

i=1 p=1

Together with (2.22), the proof is completed. O

~10 -



2.3 Computations of F;D by Virasoro constraints in I-coordinates

As applications of the expressions of the Virasoro operators expressed in I-coordinates
derived in last subsection, we use them in this subsection to compute Fng . The formulas
for FgP and F1P in the I-coordinate are already known. We will focus on Fng(t) for g > 2.

Theorem 2.3.1. For free energy of 1D gravity of genus g > 2, the following equations hold:

HF1D 1 2g9—1 9F1D
g = I+ 1)[—2 2.30
oL~ 2(1—1y) g( + DI ar (2.30)
1D 293 1D 29—2 1D
e e St < ) S L YA i IR
ol 3(1-1n) \1-1 & ol S\ YOI,
OF!P 1 OFID, R ko) OFMP
- ool y <p+ * >ng : (2.32)
Olipr (k+3)(1—1) \ 0Ol = p Ol ipt1
where k =1,2,--- ,2g — 3.
Proof. The Virasoro constraints for partition function
LIPZYP =0, m=>0
can be rewritten as the following equations for free energy in I-coordinate:
oFtP 9P oFP
0=—Ip———2— I+1)1 1, 2.33
0 0l ol +ZZ( 1, oI, T ( )
=t [ oF'P OFP m—1 oFtP
0=\ (m+1)m-=L I 1-1 "yt
(metDm g | gyt 2T g+ A=1) - ) < z > 0 8l
I>1 1<i<m—1
OFD T i1\ X (i+p)! ., OFD
—tt Iy —8p 1) I : 2.34
0 8[0 +Z < i )Z p| ( p p,l) 0 aI’i+p71 ( )
=1 p=1
Recall the genus expansion of the free energy:
o
FD Z \29-2 1D
g )
g=0
we have by (2.33):
aFlD 8F1D 8F1D
T2 +2—9% =) 1+ 1Y 2.35
a1, "7 an ;(Jr)lﬁll (2:35)
OFP OFP
21 = DL +1 2.
AT lZ(H Mg+ (2.36)
oF,P OF, P
2—24— =% (I+1),—Z 1 2.37

>
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and by (2.34):

7t OFD m—1 OFD
= 1)m =2 I g 1-1 1) putt 2.
0=(m+ )ml_h ; 1751, +(1-0) ) ( z ) T (2.38)

m—+1 o0 4. 1D
m+1 (i +p)! i1 OF,
+> S I, — 6, ) [~ 9
i=1 ( ¢ >p:1 p' ( b p71) 0 8IZ+P—1

for m > 1, g > 2. Comparing the coefficients of I} in (2.38) for k = m + 1,m — 1,m —

2,-++,0, we have:
oF,P
_ g
0=> (p+1)(I, — 6p1) o, (2.39)
p=1
I, OF}P (p + 2) OF1P
0=>" +) (I — 6p1) =2 (2.40)
= 1-1, 09I = 2 0lpt1
OF,") p4+1+2 OF1P
0=—"2—+ < )I—d g . 2.41
aIl I; 14+2 ( p p71)6[p+l+1 ( )
By (2.13), Fng depends only on Iy, I, -+, Is4_1, this completes the proof. ]

Remark 2.3.1. Theorem 2.3.1 can be derived in another way: one can firstly rewrite Llff
in I-coordinates, this will give FOID and show that F ng is independent of Iy for g > 0. To
solve Fng for g > 0, one can let Iy = 0, in this case, ty = 0,

tr=1, k>0 (2.42)
and
0 _ 1 0 5 dm 0
oty 1—1;0I 1—-16LoL’
i1 (2.43)
9 _9 o0
Oty N oI’

hence one can rewrite {L1”},,~0 in I-coordinates in a simpler way.

Now we explain how to use theorem 2.3.1 to calculate free energies of higher genus.
By (2.13), Fng depends only on Iy, ..., Isg—1 for g > 2. By (2.32), we have:

oFP 1 OF}P, -
Olrg—1  29(1—1I1) \ 0I5 |’ (2.44)
OF,P ) et OF,P
g = 1 g-1 + 29 IQ ¢ 9 (245)
0lyg—2 (29 —1)(1—11) \ Olzg—4 2 0lrg_1
oF1D HFD 2973 HF1D
g _ 1 g1 Z <p + 3> I, g (2.46)
613 4(1 - Il) 8]1 =1 P 8Ip+2
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1D OF 1D

For 85—;72 and —57— we have by (2.30) and (2.31):

oI, 31-IL) \1-15 & "5 =\ p )P0l )
HF1D 1 29—-1 1D

F]
_ I
o 20-1) g(H =57

1D

OF
By equations (2.44)—(2.48), we can solve { g }
v (2:44)(2.48) Ol J g2 k=02g-129-2, 1

(2.47)

(2.48)

recursively, given the

computation for F, glf)l. Since Fng is weighted homogeneous of degree 29 — 2 in I, with

deg I, = k — 1, we have

pp_ L OFLP

)= 5o 22‘1(1{—1)@ T

Example 2.3.1. Let us compute F21D by the above procedure. We have

OFP 1 OFPYN 1
oI;  4(1—nhL)\ o, ) 8(1—1)?
oFmP 1 L, OFP 74 I OF}P\ 5 I
oI,  31—-I)\1—-1, > oL 2)% 0, ) 12(1—1)%
oF}P 1 or}P or}P 5 12 I
2" _ R T~
oL, 201—1y) al, a1 8(1—1)* " 41—1)3
therefore
or)P or}P 5 12 1 I
FP=- (=2 qop—2 J)=—_"2 455
ol ol 24(1-1)3  8(1—1I)?
Similarly, we have with the help of a computer program:
p_ 15 I3 25 1213 1 I3 7 Ll 1 I
by = Racne Twa-ny Tza-nr Tasa-nt T s a=n®
1105 IS 985 I31s 445 IZ1? 11 I3 161 1314 7 LIzl
FiP = 115, (=1)° " 384 (1=1)° +@(1711)7+%(1711)6+@(1711)7+E(1711)6
L2 13 s 1315 45 Il +i Lls_ 1 I

640 (1—1,)5 ' 576 (1—11)6 ' 96 (1—11)> ' 32 (1—1;)> ' 384 (1—1;)*"

(2.49)

(2.50)
(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

2.4 Special deformation of the spectral curve of 1D topological gravity in

I-coordinates

In [28], the second named author defined the special deformation of 1D topological

gravity by:

tn— n,1 n \6 n! 6F01D
\fz 2 +\@Z ontl ({%n—l.

n=0 n=1

(2.56)

This is a deformation of the Catalan curve [31]. Now we rewrite it in I-coordinates. We

get the following result:
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Theorem 2.4.1. In the I-coordinates, the special deformation of the spectral curve of 1D
topological gravity can be written as:

y'P = Z — Ip)™. (2.57)

Z= IO n>1

Proof. This is just the N =1 case of [31, theorem 2.1]. O

3 Computations in Hermitian one-matrix models by the renormalized
coupling constants

In this section we recall the results on Hermitian one-matrix models in [29-31]. The
partition function of this theory satisfies Virasoro constraints. Similar to the case of 1D
topological gravity, we rewrite the Virasoro constraints for Hermitian one-matrix models
in I-coordinates and use them to derive the explicit formulas for the free energy in I-
coordinates.

3.1 Free energy functions of the Hermitian one-matrix models

For standard references on matrix models, see e.g. [7, 23]. Here we follow the notations
in [29-31]. The partition function of the Hermitian N x N-matrix model is defined by the
formal Gaussian integral:

ot (1 (-0 0050

zN = . , (3.1)
fHN dM exp <—@trM2>
where Hy is the space of Hermitian N x N-matrices. One can see that for N = 1,
zZN=t = 71D, (3.2)

The following result is well known, for the proof, one can see [7, 23].
Proposition 3.1.1. For the Hermitian one-matrix integrals, one has:
N
/ dM exp (trV ) / H (A — ) exp( ZV )Hd)‘i’
Hy g 1<i<j<N i=1
where A1, Aa, -+, An are eigenvalues of M.

By taking V(M) = —%MQ + 30 o tn (J\r/l[_H), in this proposition, we get the following

analogue of the renormalization of 1D topological gravity:

Proposition 3.1.2. For the Hermitian one-matrix integrals, one has:

1 ML
/HN dM exp (gstr (—M2+Z (1! )) (3.4)
B N (—1)F 1 1 = M
=exp (95;0 1] (Ik+5k71)l(’)‘:+l> -/HN dM exp <gt7‘ (—M2+Z (n+1)! >>
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Proof. By 3.1.1 and renormalization of the action function of 1D gravity, one has:

1 1 = Mt

dMexp | —tr | —= M2+ t,———
[ e (o (-3 S )

1L 1., & At N
_ ) .)2 . s v 3 .
_/RN H (Ai—=Xj) exp( Z( 2/\Z+T§tn(n+l)!>>1}d>\z

1<i<j<N 9s i1 i=1
2 [ (1) "
= H ()\i_IO_()\j_IO)) exp 722 (k+1)'(lk+5k’1)10
RY i< s 21 k=0 :
N o) N
1 1 (Ni—1Io)"H!
: — —~(Ni— D)+ ) I, ——— d\;
o (5 32 (a0 ) )T
N & (-1
—exp (sZ (k+1)! (Ik+5k,1)f§+1>
k=0

/ H (Ai—X;)%exp 1% _1)\24_%[& Hd)“
N v s 27 T (1) ) ) !

R 1 <icig i=1 i=1

=exp Ei (-1)* (I 4051 )IET! / dM exp i757“ —1M2+§:I
RS IR R N g\ 2 ="

Mn+1
(n—l—l)!)) '

9s 120
O
The free energy F'V of Hermitian one-matrix models is defined by:
FN :=1log ZV. (3.5)
There is a genus expansions for FV:
o0
FN=3 g 'F), (3.6)
g=0
where {F’ gN }g=0 are formal power series of tg, t1,---. This is called the thin genus expansion
in [30]. By a result in [30], if we define
degt,=n—1, n=0,1,2,--- (3.7)
then FgN is weighted homogeneous in tg,t1, -+ with
degF)Y =29-2, ¢g=0,1,2,-- (3.8)

The following analogue of the Itzykson-Zuber Ansatz and theorem 2.1.1 is proved in [30]:

~15 —



Theorem 3.1.1. ([30, theorem 5.1 and 5.2])

e’} _1)k
EN =N ( I, + 8 ) IFH! 3.9
0 ;;:o (k+1)!( ket 0ka) Iy, (3.9)
N2 1
FN =~ log —— 1
S NG R (3.10)

29—1 N 991 1 7 ™m;
N _ mj J
Fy = Z <H7j]> Hm,<ﬁ1> , 922 (3.11)
S ocnczg_1 mr(k—1)=2g—2 \ j=2 AN SV
where the correlators are defined by:
omFY
<Ta1...Tan>éV - -9 |
Otay -+ Ota, |1—p

In the literature another type of genus expansion is used. By introducing the 't Hooft

(3.12)

coupling constant

t = Ngs, (3.13)

FN can be rewritten as: -
FN =% "g9F}, (3.14)

g=0
where {th}g>0 are formal power series of fp,t1,--- and t. This is called the fat genus

expansion in [30]. We will study both thin and fat genus expansions for the free energy
function of Hermitian one-matrix model by the correspondence Virasoro constraints.
3.2 Virasoro constraints of Hermitian one-matrix model

See the Introduction for more references on Virasoro constraints of Hermitian one-matrix
models.

Theorem 3.2.1. (Virasoro constraints for thin genus expansion [30]) The partition func-
tion ZN of Hermitian one-matriz model satisfies the following equations for m > —1:

LN7ZN =, (3.15)
where
Nt 0
N _ Nto B
LY, = : +3 (tn—6n1) T (3.16)
n=1
d
Ly :N2+Z(n+1)(tn—5n,1)37, (3.17)
n=0 n
B (m+n+1)! B e B 0
LN =2Ngym! tn—0n 2N Tkl (m—k)! —
m = £ gsm atm_ﬁ;;; al o) Gt ; (m =k S Bt
(3.18)

for m > 1. Furthermore, {L)},.,~_1 satisfies the following commutation relations:

(LY, L] = (m — n)LY)

m+n?

(3.19)

form,n > —1.
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Theorem 3.2.2. (Virasoro constraints for fat genus expansion [30]) The partition function
ZN of Hermitian one-matriz model with t = Ngs satisfies the following equations for
m > —1:

Lt zN =, (3.20)
where
tto G,
It = 21
—-1= 5 +Z 8tn 1 (3 )
n=>1
8
s n>0 n
0 (m+n-+1)! 0 s 0 0
Lt =92tm! T 2N Tkl (m—k)! -
L T +7;) n! ( ’1)3tm+n T ; (m=k) Otg—1 Oty—k—1
(3.23)

for m > 1. Furthermore, {Lt },,>_1 satisfies the following commutation relations:

[LL,,LL] = (m —n)L!

M (3.24)
form,n > —1.

Similarly as in the 1D topological gravity theory, one can rewrite the Virasoro operators
in I-coordinates:

Theorem 3.2.3. The Virasoro operators for thin genus expansion can be written in

I-coordinates as follows:

0 N (-1)"Ip
N=— 4N 0 2
-1 8]0+gsnz_0 ol (3.25)
LY =1, (1 117 N2, 3.26
0 08[0 8[1+Z g+ (3.26)
1 Im 1 Im 1-1 8
LY =2Ng, 0 -0 2
m = 2Ngem | T T T 2. (m—1-0)101, (3:27)
1<i<m—1
gl 9 +m§ <m—|—1>lm+1 Zz(p+i)!(l 5,02
0 = p! D p,1 8Ip+i71
o (m+1\ ((m=2)I"3 o I, (m—2)[6”*3 I 20
D 0 gy d3% d
+95< 3 )( -n  “onTa-ny (02 (=n)p)™

m m—2—j
9 m+1 Lo 0 0
+295]§_:2< +3>(]—|—1). =5 \a1, 1+dX3[

+ 2mimi L Gz 29
9s i+j+3 J a1, 01,

i=1 j=1
where

0 0
dy = — L1 —. 2
X 810+; M3 (3.28)
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Moreover, by taking N = ;—g, one get the Virasoro operators for fat genus expansion in
I-coordinates:

9t N (—1)Ip

Lt =—— 4+ Or, 3.29
t 510+93n:o o , (3.29)
o) 9 g 12
Lh=—T——2— I+ —+— 3.30
0~ %1, 8[1+lz>1:(+ ) o, T 2 (3.30)
1 Im 1 Im 1—-1 b
Lt =2tm) 3.31
m = N T 1) X+1<;1 (m—1=0)1 9], (3.31)
o " im1 > (p+i)! 0
_Im+17 Im+1 7 I _
0 aIO—I_Z < i ) Z p! ( D 5p71)afp+i—1
=1 p=1
o (m+1\ ((m=2)"3 o I, ((m=2)I"% I
= 20 gy d% d
+98< 3 )( o on Ty ooy ) ™
m—2 m—2—j
+1 I G, B,
9242 m i+1)120 d
" gsj; (j+3>(]+ I (afj TR
i Tnz:2m 2 m—l—l Z-f-l)( —l-l)'.[m 2—i—j 6 8
gsz < Lo \it+j+3 J oI, 01,

Proof. We have proved the following identity in the proof of theorem 2.2.2:

m+1
(m+n+1)! 0  tmg1 D m+1\ i, (p+9)! 0
Z n! (t”_‘snvl)atm+n__10 aTOJFZ i Iy Z Pl (Ip_épvl)afp+i,l'

n>0 i=1 p=1
(3.32)
Now we rewrite S 7" k!(m — k)!% Btmiq in I-coordinates:
m—1
0 0
Km— k=2 %
— Otg—1 Ot —g—1
m—1 k—1 k—1—1
1 Iy 1 0
— El(m — k) _% Y
(m =B = =1 +Z ”131 iy (k—1—4) o],
k=1 1<i<k—1
TR (it R g
1—L (m—k—1)\ oI +Z oI 1<j<%:_k_1(m—k—1—j)!8lj
m—1 k-1 k—1—i
kI ) ) kU )
¥ KU S AN I L S
1 1-— 11 6]0 =1 8[1 I<ich—1 (k‘ —1- Z). OIi
(m—k) P+ 8 o (m— k)1 9
i I — —
11, TP IRLE i I D Dy vy ey w al,

I>1 1<j<m—k—1
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2
m—1 -9
m ) )
= — _— - I N
k(m k)(l—ll) (6[0+l§>; ”Han)

m—1 m—2—j
Km—k) 12 [ 9 o\ o
LD DID DI ey sy s T gy 8IO+ZIZ+18[ al;

k=1 1<j<m—k—1

m—1 m—2—1
(m —k)k! I} 0
9 I
+ ; (k—1—-0)! 1-1; 0I; 310 Z "o
k=1 1<i<k—1 =
REISERS (m — k)lk! gm-2-i—j 00
L (k—1—i)l(m—k—1—j)° 0L 91;

0 0
>1

(S km—k)! I 0
(m—k—Q—j)! 1—[1 an

m—1 m—3
(m— )k I} ) )
T2 T yra-ne\an +;Il+131

Denote these summations by (a)-(g) respectively, then using the following identity:

m—b
El(m — k)! m+1 |
= 15! 3.33
g(k a)l(m — k —b)! <a+b+1>a ’ (3.33)
we have:
) 2
m+1\ I~ 0 d
- a-12 \ o lio7 3.34
(@ ( ; )(1—11>2 (8IO+EZ+18[Z) | (3.34)
m—2
m—+1 o 1 0 0 ) o
= Iy A Lji5r 1)l 3.35
m—2
m+1 9 1 . 0 0 0
= L Doz 157 3.36
<C) =1 <Z+3) 0 1—]1<Z+ )8IZ (8[0+; l+18[l> ( )
m—2
_ m+1 m—2—1i 1 a 8 | 8
_21<z+3>° 1-1 (afﬁlzl“af i+
m—2
m—+1 o 1 o
Im (2 1
+i:2<i+3>0 UtV
m—2m—2—im—j—1
(m — k)!k! m_9—i_; O 0
d) = I 3.37
@ =1 j=1 k;—l (k=1—=i)l(m—k—1-3)"!" 0I; 01; (3:37)
m—2m—2—1i
m+1 2 . o 0
= I G )1+ 1)
4 z—l—j+3) R AR T TA
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m+1\ IS im0\ [0 9
= (2 _f 1L [ 0 ;0 |
2 ( ( 4 ) (1—1)? * ( 3 > 1-1)3) \ a1 + ; Hgn | (3.38)

m—3 m—3—j
m+ 1\ I, ) 0
_ 21— 3.39
0 jl(j+4> L2 (3.39)
m+1\ I3 0 d

=2 — | = L— . 3.40

(9) < 4 >(1 —1)2 \ a1 +l§>; oI (340)
Plus all these equations together, we complete the proof. ]

3.3 Computations of F é\f by Virasoro constraints for thin genus expansion in

I-coordinates

As applications of the expressions of the Virasoro operators expressed in [-coordinates
derived in last subsection, we use them in this subsection to compute FgN .

Theorem 3.3.1. For the free energies {FgN}gﬂ of the Hermitian one-matriz model, the
following equations hold:

OFN 1] OFN

9 _ E I, 9 A1
oL 2(1-1I)) & TR (3.41)
oFN N 1 2972 I, OFN

dy (FN )+Z (n+2)!

42
Sl 1—1, Olpey’ (342)

L, 3(1-L)1-1

oFY N OFN, W (ni3) I aFN
g g—1 T in g N N
_ (FN F}
ol;  6(1—1;) oL ZQ Wl 1=, 0Lpsn 41— 113gZIdX Jx (Fy=1-41)
n= 1
1 1 2 N
d FN ) +6,0— 4
+4!(1—II) (1—]1 X) ( 9—2)+ 9724[(1_[1)2’ (3.43)
N N 2g—4 N g—2 N
OF, ___ N OFy~, Z (n+4)! I, OF I 1 Z OFy, dy (FN, )
0Ly — 10(1—h) 0L, 4 5l 1-5 0Ly 30(1-0)* <= ol 9=l
1 OFN,
— | dx (FN.,)+2(1—1))d g 44
+60(1_]1)3<X( 2)+2(1-1) X( ol >>, (3.44)
OF) _ 2N(p+3)! OF), QQi‘p (p+n+4)! I, OFN (3.45)
s (p+5)!(1—11) Do n\(p+5)! 1—1 0Ly i3 ‘
9—2 p+1 N N 9—2 N
+ X5 Gt O Yoiar 'z% D (FY )
— ks p—l—5 1 11 8Ik 1 OL p+2—k (1 Il ! 8[ g =g

;il K3k PFY, 1 (p+2) 8F;V_2+2d OFY
S (p+5)(1—=1) 0l 1010 (1=1)2 (p+5)! \ 01, X\l ) )

where p=1,2,--- ,2g — 5.
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Proof. The first equation has been proved in [30]. For the rest equations, we first rewrite
Virasoro constraints for partition function into Virasoro constraints for free energy:

N N
+n+1)! OF
= (ZN)y LN ZN — 2Ny, (m tn— 1) 4
0=(27)" gsmig— ﬁ;) o (o) g (3.46)
oFN  9FN iy o2FN
+9; El(m—k)! V— Em-k)—r——,
gz atkzlatmklgkg( T —
Let
=> g 'FY, (3.47)
g=1
then FV does not depend on I, and
 OF (m+n+1)! oFN OFN OFN
0=2Nm 0o+~ —(t, — ¢ o 4 kl(m—k o _~0
tm—1  Gs 20 n! ( )3tm+n ; ( )atk 10tm—k—1
m—1
OFN  OFN O*FYN
+2g5 Y kl(m — k)2 +gs Y Kl(m—Fk)l "0
g; )atk 1 O g—1 gz atk 10tm—g—1
OFN (m+n+1)! OFN
2N gsm! " (ty — O
gt 1;) T Vo
m—1 ~ ~ m—1 ~
OFN  OFN O*FN
2 2
k! k e — k! B )————— 3.48
02 3 MmO g Kt S (3.43)
Now we let Iy = 0, under this condition, one has:
to :Oa
ty =1, k>0
and
0 1 0 Iiyy O
= . i 3.49
Bt 1—118]0+;1—118]l’ (3.49)
0 0
—=—, k>0 3.50
oty oL, " (3:50)
By (3.9)
OFY
= Nt 3.51
dl, 0 (3:51)
OFy (—Dkg*
=N k> 1. 3.52
ol (k+1)! ’ ( )
So one has: Jy Jy
F F
0 =0 =0, (3.53)
Olo |f,=0 9k l1y=0
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and therefore,

oFY OFy
0 =0 =0. (3.54)
dto Ir=0 oty Ir=0
Moreover,
O*FY
=N(1-t 3.55
o =N (3.55)
PEY (VI
=N——— k2>1 3.56
Olp0I} k7 ( )
2R
=0, k,l>1. 3.57
8Ik8[l ) ) ( )
When restrict Iy = 0, these equations give
O*EYN
=N(1-1), (3.58)
OI§ | jy=o
O*FY O*FY
0 =0 =0, k1>1. (3.59)
0Io0ly | =y  OLkOL |1,
Therefore
2
aQFéV o 1 d Iy 0 N
o2 =\ icnon t2-i-nan (£5") (3.60)
0= I>1 lo=0
2
1 (2 O ) (pN L9 O ) (pN
T (1-h)? 8IO+ZIZ+1OII (Fo') +(1—11)3 610+ZI“‘1811 (£57)
I>1 Ip=0 >1 Ip=0
1 PR
(=172 98 |, _,
N
T 1-1
FN 1 0 i1 0 <aF5V>
=+ o (3.61)
OtoOty T9=0 1-1 9ly = 1-1 91, o) To=0
o 1 i I i (‘Uklgﬂ
“\1rnant21-nan <N (k+1)!
I>1 Io=0
=0 k>1,
PFY PFY
- =0, ki1>1. (3.62)
Ot 0t To=0 01,01, To=0
Hence (3.48) becomes
Ngs OFN (m+n+1) OFN
0=0mo—— +2N ! t, — 6 3.63
m2y_ -+ 2Ngamls— +nz>1 o (ta "’1)6tm+n (3.63)

m—1 ~ ~ m—1 ~
oFN  oFN 0?FN
2 2
Kl(m —k)! _— Kl(m-k)——rnu-——
T ; (m = k) Otg—1 Oty —g—1 9 ; (m = ) Otj—10tm—k—1’
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or

N

OF, (m+n+1)! OFN
0= 62041 INm!—2 by — 0 Fyt 3.64
m20g1 7 matm_ﬁ; ar e 0n) g (3.64)
6FN 8FN m—1 82FN
+ El(m — k)! + k'(m — k)!
1-%2: gk:zl 8tk 1 0tm—g—1 ; ( )atk latm k-1
with
0 1
Bt 1-1, dx, (3.65)
0 0
=57 k>0 3.66
ot, oI’ ( )
for m=1:
Iy, OF) (n+2)! OF%,
0=2N I —§
Z 1-1, @[l Z ol (In = 0n,1) TR (3.67)
>1 n>1
for m = 2:
1 N N
n—|—3 +1 - Il+1 OF Ik-i—l OF;"
0 an2ky +Z Iy = bn1) % +3° 3 15 -1
oh n>1 8I2+ ol 1-1 oI pt 1—1; OI
2
Il+l 0 N N
F v
+ le_llal'l ( g_l)+69711_117
(3.68)
for m = 3:
oF) (n 4 4)! . L OFN 1., OFN
0=12N—2 (L. — & 9+ g1 +1 9—g1
ol 2 o U ”1013+n Z Z1—11 oI,
- (3.69)
1— I, 01,01, 1-1)2 oL °
I>1 1>1
for m > 4:
oFY (m+n+1)! R 8FN oFN
0=2Nm!——+% ~————(I 9++ k! (m—Fk)l——9=9L
D ST T ;% T AT S
OFN Iy, OF; O°F]
2 | S 1 0Fyy, Kl(m—k)l 971
* gzl (T ;1—11 al, +Z m=k) 18[m_k_1
1 —
Ly OPEY 1 OF)Y,
2(m—1)! —_— 1) 3.70
+2(m );1—11 T U vy o (3.70)
The proof is completed. O
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Now we explain how to use theorem 3.3.1 to calculate free energies of higher genus.
By (3.11), FgN depends only on Ii,...,Isg—1 for g > 2. By (3.45), we have:

2 2g—4
OFY  2N(2g—2)! OFY, 1 (20-3)! OFN 2+g S Ri(2g—2—k)! OFN OFN |
Ol2g—1 (29)!(1—1) 0lzg—3 = (1-1)? (29)! Olzgs5 Rt (29)!(1—11) OIx—1 Ol2g_3_s
glz =
(3.71)
2(2g—3)! =2 oRY kl(2g—2—k)!  9*FN
9g— N g1 g g—2
+(2g)!(1—11)2 18[2 dX - - +Z (1—11) 0l 10125 5 1’
g1=
oF)Y __2N(2g-3)! oF) | (29)! I 6FgN (3.72)
812972 (2g 1) (1 ]1) 8129 4 (2g—1)'1—]1 8[2971 ’
g—2 29—
kl(2g—3—Fk)! OF) OF),_,, 2 (2g—4)! OFL, N
+Z Z 29 1 ]. I1 alk 1 8129 4— k+(1_Il)2 (29—1)!6[2975dx (Fl )
g1=1 k=2
29—5

kl(29—3—F)! O*FN 1 2g—4)! [ OF). OFN.
+Z (29 ) i 2(9 ) 12 {9y 2 7
P (2g—1)'(1—[1) 6Ik,18]2g,4,k (1—]1) (29—1)' 8129 6 6[2g 5

29—
OFN N  OFN 5! I, OFY
== o1y § () g (3.73)
8[5 15(1—[1) 8]3 > G'n' 1—[1 8In+4
n=
1 OF) OF) |, 1 aFN
+Z 180(1—11) 8[1 onL Jr60(1—11) ] dX( 1eg)
gl— g1=

1 OPFN, 1 OFN OF)Y
tisoa—n) anon "oz \ an T24x\ 5 ) )

oy PN |

or 5751 = 2,1, we have by (3.41)—(3.44):

OFy __ N 6F;£1 292_4 (n+4)! I, OFN 1 922 3F£dx (Y
oI,  10(1—1I) Ol slnl 1—1, 8In+3 U AL 2 on 9-1-g1

1 OFY,

N N 293 N
OFy _ N0 N~ 3t o OFy S e (Y ay (1)
813 6(1—[1) 8[1 o 41n! 1—[1 8[2+n 1 Il g 1=

g1=1
1 1 2 N
d FN ) +6,9— .
+4!(1—[1) <1—11 X> ( 9—2)+ 9724!(1_]1)2’ (3.75)
oFN N 1 W2 (nt2) 1, OFN
dx (FN, S g 3.76
8]2 3(1 11)1 Il ( )+nz::2 3in! 1—[18]n+1’ ( )
OFN R, OFN
g — I, —2. .
oI, 2(1-1,) D (nt DI (3.77)
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N

By equations (3.71)—(3.77), we can solve {5812

} recursively, given the
922,k=2g—1,2g—2,,1

computation for F,£V< g- Since Fé\] is weighted homogeneous of degree 2g — 2 in I} with
deg I, = k — 1, we have

2g—1 N
1 OF
FN = k—1)I,—2. i
; 29_2;( iy (3.78)

Example 3.3.1. Let us compute F2N by the above procedure. We have

OFY N OFN N N +2N3
= + = : (3.79)
oIy  6(1—1,) oI,  4(1—1)2  24(1—1))2
OFyN N 1 N I, OF) (N +4N3)I,
= dx (F 2 = ‘ .
al,  3(1—-I)1-1, x (A7) + 1—1; 0y  12(1—1)3° (3:80)
I 1 5 FEN (N +4N3I2 (N +2N3)I
OFy _ Z(l+1)[la > (V4 )42+( ki )33, (3.81)
oL 2(1-1) & oI, 8(1—1)) 12(1 - 1))
therefore
1 (. OoF) OFN (N +4N3I? (N +2N3I3
FN = (=2 4+2[3—=2 ) = 2 . .82
2 7 ( 2o o0, ) 2U(1—T)7 | 24(1—1) (3:82)
Stmilarly, we have with the help of a computer program:
FY = (216N* + 189N?) I3 + (216N* + 234N?) I31; + (18N* + 30N?) I3 (3.83)

+ (45N* + 60N?) Iy + (5N* + 10N?) I,
FY = (13608N5 + 26892N° + 85205N> IS + (22032N° + 49248 N + 8505N) I3

(TTT6N + 20304N® + 3960N) 1313 + (288N° + 1056N° + 240N) I3
(5400N® + 13770N® + 2565N) I3 14 + (2160N® + 6480N> + 1440N) Lo I3 14

I
X
+ (90N? + 300N3 + 12ﬁ N) I3 + (1080N® + 3330N° + 675N) I315
X
i

(144N° + 600N? + 156N) I35 + (168N° + 630N? + 147N) L1
(14N® + 7T0N® + 21N) I, (3.84)
where
A 1 I
Iy = g (3.85)

(k+1)! (1 — Ip)t4D)/2

3.4 Special deformation in thin genus expansion of the Hermitian one-matrix
models in I-coordinates

In [31], the second named author studied the special deformation of the Hermitian one-
matrix models which is defined by:

1 tn — 0 V2N n! OFN

N n n,1 n 0

== PAE +v2) - . (3.86)
V2 = n! z = 2"t ot 1

Now we rewrite it in /-coordinates, we have:
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Theorem 3.4.1. In I-coordinates, the special deformation of the Hermitian one-matriz
models is as follows:

yN = Z_IO \f; (2 — Io)"™. (3.87)

Proof. This is just [31, theorem 2.1]. O
3.5 Special deformation in fat genus expansion of the Hermitian one-matrix
models in I-coordinates

In [31], the second named author also studied another special deformation of the Hermitian
one-matrix models based on the fat genus expansion, which is defined by

- nl n, V2 n!  OF}
y' fz S V2 P T (3.88)

n=0 n=1

We can also rewrite this special deformation in I-coordinates, and we get:

Theorem 3.5.1. In I-coordinates, the special deformation (3.88) can be written as:

— 1 1 - (1+1)! OF!

f= z—1, dx (F§ 9
Y z—Io \[; o) M CES e x( O)+lz>1:(z—fo)l+2 oI,
(3.89)

Here F‘g is defined as follows:
Ff = F§ — F}, (3.90)

where F{ is free energy of genus 0 in fat genus expansion and F(l;,o is defined as follows:
Fio = t/todIo = tFP. (3.91)

Proof. Similar to the proof of theorem 2.4.1. O

In fact, in [30, section 7], the second named author has pointed out that one can get
Fg from the thin genus expansion, and one has the following result:

Proposition 3.5.1. 15'5 has an expansion in 't Hooft coupling constant t:

Fy ="t E (3.92)
k>1
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with Fg . weighted homogeneous of degree 2k — 2, and it satisfies the following equations:

2g—1

8F5,k 1 1
oL 2(1-I) ZQ( +1)I" 31 +5k12(1_h)7 (393)
n=
OF§, 1 1 . ~ (n+2)! I, OF¢,
o, 3(1-6L)1-1 dx (Fo,k,1)+ Z 3! 1—1 8,1’ (394)
n=2
2k—3 —92
OFgr 1 OFgi, (n+3)! I, OFj, 1 ; .
ol; — 6(1—1) ohL +Z 4! 1-1 812+n+4!(1—11)3 ZdX (FO,kl)dX (FO,k—l—kl)a
n=2 k1=1
(3.95)
OFf, 1 0F .  x— (n+4) I, OFy: 8F0k1
ly — 10(1—-1) Ol +Z Sl 1—1, Olnrs 1 INE Z dx ( FOk: k) >
=2 k=1
(3.96)
OFg s 2(p+3)!  OF; i_p (p+n+4)! I, OF},
61p+4 - (p+5)!(1*11) 8Ip+2 — n'(p+5)' 1-1, (9[p+n+3
k-2 p+1
il(p+3—i)! OF; 4, OFg 1k, 2 (p+2)! 8F0 by
+Z§(p+5) (1—11) 0Li=1  Olpya—i - (1-1)2% (p+5)! dX FOk 1— kl)
1=1i=
(3.97)

This proposition gives a recursively way to compute F('i g» Which is similar to the com-
putation of F| év . We have:

1 1
/4 [
Foy=log— (3.98)
1 I 1 I3
Flo=>-—2 — :
027 6 (1—1,)3 +12(1—11)2’ (3.99)
1 I3 1 21 1 12 1 LI 1 I
t 2 243 3 244 5
- - — — — 0 1
037 6(1—1)6  4(1—-11)6 ' 32(1—1p)* 16(1—11)4+144(1—11)3’ (3-100)
g 713 17 LIy 3 I3 1 I3 5 B 1 Lzl
047924 (1-1)9 " 24(1-0)8 "8(1—-1)7 48(1—1)6 ' 24(1—1;)7 ' 8 (1—1;)°
N 1 2 1 121 1 I 1 L 1 I; (3.101)
160 (1—1;)° ' 24 (1—1;)6 120 (1—1;)> ' 180 (1—11)% ' 2880 (1—1y)*"
In general,
Dog—1 I Io o I3l 3
Fl, = 102
0,k al(l — L) +a2(1 A a3(1 A - (3.102)
1
- - 3.103
R AT (3.103)
]{72
= 3.104
2T RE (3.104)
2
g-(k—1)
=_Z 3 -/ 1
BT Rk 1) (3.105)
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Remark 3.5.1. One can also get the proposition 3.5.1 by Virasoro constraints for fat genus
expansion as follows. By proposition 3.1.2, one can rewrite the partition function ZV as

ZN = ewT0 ZN (3.106)

with Z& does not depend on Iy. Then ZV can be viewed as partition function of Hermitian
one-matrix model with g = 0 and g = (i - The free energy function FV = log ZV has
a genus expansion (the fat genus expansion)

=> g¥’F, (3.107)

g=0

then the two definitions of Fé are coincident. By the proof of theorem 3.3.1, ZV satisfies
the following constraints:

LLZN =0, m>0 (3.108)
where
Ly =—-2— 1+ 1)1, 1
611+Z + e (3.109)
- 2t (n+2). 0
t __ —
Li= 1_Ildx+z (I 5"’1)81n - (3.110)
n=>1 +
2
P — 1) +g2 = dy ) +—— (3.111)
on In = n, Ol,.o °\1-1L 1-1’ '
= +n+1)! 0
It =otm! <mifn—(sn 3.112
m e +n§>:1 P Vo (3:112)
G d 1
2
—1)! d d
+9u(m=1) (1 R T ) M X>
m—2
d 0 t
k( k — + 0,
o % (=B Ol 101 Tom2T -1’

for m > 3. This gives another proof of the proposition 3.5.1.

4 TItzykson-Zuber Ansatz in 2D topological gravity
In this section we will prove the validity of Itzykson-Zuber Ansatz in 2D topological gravity.

4.1 Preliminary results of the 2D topological gravity

According to Witten [26], the mathematical theory of the 2D topological gravity studies
the following intersection numbers on the Deligne-Mumford moduli spaces:

(a7 / A (4.1)
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The free energy of the 2D topological gravity is the generating series of these intersection
numbers:

totnlt
PO SRRy Y e Wy

no! ny! na!
g=0 g=0mng,n1,n2-- 0= Th1 102

ng_ni_na ”>2D

It is well known that intersection number (7,°7"' 7, satisfies the following selection

rule:
> (i—1)n; =3g—3. (4.3)
In other words, if we define
degt;, =i —1, (4.4)

then FQZD is weighted homogeneous of degree 3g — 3. The partition function of the 2D
topological gravity is defined by:
72D = oF*7 (4.5)

4.2 Virasoro constraints for 2D topological gravity

The following theorem is a consequence of the famous Witten Conjecture/Kontsevich the-
orem [20, 26]. See also [8] or [17]. More references can be found in the Introduction.

Theorem 4.2.1. The partition function Z*P of the 2D topological gravity satisfies the
following equations:

L2P7?P =0, n>-1 (4.6)
where
t2 %)
=2 (tn — On1) 5 (4.7)
2 = Otn—1
op 1 0
n=0 n
2n + 2m + 1)!! 0 1 0?
20— § tn — On1) e + = 2k + 1)1N(21 + 1 4.
w =2 (2n — 1) ( ’1)8tm+n+2 > @k+nre+ Oteot, (4.9)
n>0 k+l=m—1
for m > 1.Furthermore, {L2P},,~_1 satisfies the following commutation relations:
[L2P L2P] = (m —n)L25,, (4.10)

form,n > —1.

4.3 The Itzykson-Zuber Ansatz

It was announced in [28] that the first two Virasoro constraints L?5 and L3P in I-
coordinates can be used to solve free energies in genus g = 0, 1 and establish the Itzykson-
Zuber ansatz. Here we present some details which are similar to the 1D topological gravity
case in [28].
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Theorem 4.3.1. (Itzykson-Zuber Ansatz [17]) For free energy of 2D gravity, we have:

1 (_1)nln+2 1 (_1)j+klj+k+1
F02D — 7[8_270[71_’_, Z —OIIk
| 11 IR
6 = (n+2)! 2j’k>0¢].k.(]+k+1)
1 1
F2D - ] -
LT o Ty

and for g > 2,

39—2
2D 1 I;
F2P(t) = > (remstoms) I g <( e

2o<kgag—2(k—1)lk=39-3 j=2

Proof. We first rewrite L?% in I-coordinates:

This gives

8[0 N 2 n! "

By analyzing degree of FQQD , one has

OR” _1(§~ (U i
oy 2 4 nl "]

OF;P 0 0
a1, g >
This gives
F02D :1 3 B Z (_1)n161+21 1 (_1)n+k161+k+1

n>0

and Fg2D is independent on Iy. By

LgPZ°P =0
one has -
1 oF
n>0 n
Let Iy = 0, we have
1 oF?D
0=+ 2n+1)ITn — 6n1) .
8 = ol,
This is equal to
aFZD 1
0= (2n+1)(In = 6p1)—2— + < dg,1-
= oI, 8

— 30 —

- II
(n+2)! n+2n%0n!k!(n+k+1) ik

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



Write F g2D as formal power series in I, with coefficients a priori formal series in Io, I3, - - -:

o]
ngD _ Z%,n(b’[& I (4.22)
n=0
Write
m Ih
Z Qly I3, ] lZ“ . (4.23)
:2 (A

Since Iy = 0 is equivalent to tg = 0 and t; = Ix(k > 0),
la I3 I \ 2P
Oy I I Ty Tg® =+ Ty , (4.24)
This vanishes unless the following selection rule is satisfied:

m

> (1)l =3g-3. (4.25)

1=2

So l; = 0 unless ¢ < 3g — 2. Therefore

3g 2 [l
ago =3 (el riz) U T 3 (4.26)
I =2
where the summation is taken over all nonnegative integers I, l3,- -+ ,l34_2 such that
39—2
D (i — 1)l =3g-3. (4.27)
i=2
bet %1, O
_|_
E= 1, 4.28
> 5 g (4.28)
k>2
Then the equation (4.21) gives us the following recursion relations:
1
ag1 = Elago) + ﬂdg,lv (4.29)
magm = (m—1)agm—1 + E(agm—1)- (4.30)
When g = 1, we have a9 = 0 by selection rule. One can see that a1, = ﬁ forn > 1.
Therefore,
1 1 1
FFP =N — 1= _1 . 4.31
L ;24711 21 %11, (431)

When g > 1, one finds

39—2 -7\ 39—2 1l;
o 1 I 2D g— 1— Z 7 jl I
agn = Z <722733 733; 22> (_1)n< =2 L, (4.32)

g
>395%(-1)l;=3g—3
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This proves

39—2 ]
2D lo 1 lsg—2\ 2D 1 I
Fg = Z <7_227_33 o '7_3?;;9—22> 992 5 i1 l?' (4.33)
3g—2/,. o 9 (1 — Il) j=2 =9 =2 1
3952 (j-1)l; =393

39—2 )

— Z la, I3 . l3972 2D f l IJ ZJ
3952 (j— 1)1, =393 i=

O

Remark 4.3.1. The formula for FZP in (4.11) is equivalent to the version announced in [28].
It is different from the original formula given by Itzyskon-Zuber [17]. Their version will be
proved in corollary 5.3.1.

In [28], the second named author studied another kind of coordinates {%ﬁ?}ngo, and
proved the following transformation equations between this coordinates and I-coordinates:

oh_ 5 S04 hmt L L% (4.34)
oy o 2 TLG+UD™ml (1 1) 00T |
oIty
(> (G +1)my)! HJ <_ atg“D)
L= ¥ j (4.35)

Z]->1 jmj=n—1

Hj((j + D))mim;! ' <%>2j(j+1)mj+1'
dto

In an earlier work by Euguchi, Yamada and Yang [12], the Itzykson-Zuber Ansatz is
written in two forms:

(u//)lz . (u(3g—2))lgg,2

F2P = > Alyerlyy s TEEWE=tre (4.36)
S3,2(j-1) =393 (w217 2= Tl
j=2 i=
1ty
= by ... " 4.
Z farlag—2 (u/)2(179)+23152117 (4.37)

$395% (-1l =39-3

where u = Iy, and u(™ = %{f)}). They proved (4.36) by KdV hierarchy plus string equation,

and derived (4.37) by (4.36) following a proposal by Itzyson and Zuber [17]. In this subsec-
tion, we have proved (4.37) by Virasoro constraints, and by (4.35), one can derives (4.36)
by (4.37). Our proof seems to be simpler because we use only two linear equations while
the KdV hierarchy is a sequence of nonlinear equations. Furthermore, in our proof, we
have only used L?5 and L3P in I-coordinates. In the next subsection, we will show that
it is possible to use the higher Virasoro constraints in /-coordinates to derive a recursive
method to solve free energies in higher genera.

4.4 Computations of FQZD by Virasoro constraints in I-coordinates

In the above we have shown that for g > 2, FgQD is independent of I. It follows that after
we rewrite the Virasoro constraints in I-coordinates, we can take Iy = 0 to compute F, 92D .
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Theorem 4.4.1. For free energy of the 2D topological gravity of g = 2, the following
equations hold:

oF2D 39—2 J 9F2D
9  _ 2 1 p g 4.
o0 2 TSy g (4.38)
. . 2
oF2D 39—3 J 9F2D 1 1 3g—4 J 9
g_ _ 2p41)—P 9_ 4 ol43)- 2L 2 ) (g2 4.39
0.5 z::( Pt )1—3J10J1+p+21—3,]1 l;( + )1—3J18Jl (F5L)  (439)
—13g1—-2 2D 39—391—2
Ji+1 OF, Jipr1 OF
2l 3 1 g1 2l 3 2 9 91
To1C 3le D (et ey oy, >, 243175, oy,
g1=1 I1=1 lo=1
HF2D 39—4 J 9F2D 9~ anp 39—391—2 J 9F2D
—9 Ip+1)—L 9_ 4 g1 9] 4+3) — Lt 991 4.40
a3 ];( R vy Ay glzl aJy ; ) T3 "0 (4.40)

39—5 92 2D 39—5 2D
Jip1  O°F; Jis1 OFy5

2[+3) 3 (2143)
+;( pR 3J128J18J1+ 2_: Ty ATR YA

oF2D 392 Jy 8F2D 9—1 gp2D 39- 3912 J oF2Db
= 5 (2p+1) +y Z (20+3) L 99 (4.41)
0Jr41 = 1-3J; 8Jr+p = 0Jy— — (1-3J1)? 9J,
3g—3—r 2D 2D
+ ) (243 hin PS5 L 2=t OFn
p (1-3J1)20J,0J,—1 (1-3J1)2 0J,—2
1 g—1 r— 28F2D aFgQDgl r—2 82F2D
2 Z Z aJh OJr_1-1, Z&IZI&IT -1y ’
forr=3,4,---3g — 3, where
I,
Jp= —.
P 2k+ DN
Proof. By the constraint L2PZ%P = 0 for m > 1, one gets:
(2n + 2m + 1)!! OFFP 1 32F92£)1
0= tn — Op — 2k + (20 + 1 4.42
7;) G ’l)atm+n+2k+l§;n 1( ORI+ D (442)

82 2D8F2D
2k +1)11(20 +1 7M.
FIY X R TR

91 =0 k+l=m—1

We want to rewrite these equations in I-coordinates under the condition Iy = 0. By (4.11),

2

OFP 1 (—1)k1k
== 07 44
A PO I (4.43)
k>0
8F2D -1 n+1In+2 -1 n+k1n+k+1
o _ G, > CO™ 1 s (4.44)
oI, (n+2)! Pt nlkl(n+k+1)
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Hence

8F2D BFQD
0 = —0 =0, (4.45)
oIy Ip=0 oI, Ip=0
and this gives
OFFP OFFP
0 =0 = 0. (4.46)
dto Ip=0 Otn Ip=0

Now we restrict equation (4.42) in Iy = 0, and g > 2, we have:

for m = 1:
2g—1 2
(2n 4 3)!! OFFP 1 Iy O -
0= — (I, — ¢ — — F 4.47
= (2n— 1)!!( " "’1)6In+1 T3 lz; 1— 1,01 (Fy=1) (447)
—1 /29-1 2g—1
—l—l 3 gz Ly OF;P gz I OFE,
2 1-1 9] 1-1; 0] ’
g1=1 =1 =1
for m = 2:
2n + 5)!1 I 31 I OF2D
0= (2n + )”(In . +3”Z I+1 ol I+1 . g—1
n> (27”L - 1) n+2 1-— Il 6[18]1 2 =1 (1 - Il) 8[[
g—1 02F2D i HF2D
I+1 g—agi1
+ 3! , 4.48
2N T (4.48)
for m > 3:
(2n+2m+1)! OF2P 1~ ! 92 F2D,
0= ; Gt Un=On1) g3 Z 2k+1)1(2m — 2k~ 1)l 5= — (4.49)
n :
Ly OPF2P0  (2m—1)N OF.P
—1\ 9
+@m=D1) 7 anar 2 Olm»
I>1
i ) o L (OPEEP <~ Iy OF,
z I I 9-91 g 91
+3 > (@2k+1)1(2m—2k—1)! F T 1—|—Z(2m D DR iy ol
g1=1 k=1 g1=1 I>1
Together with theorem 4.3.1, we complete the proof. 0
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We explain how to use these equations to solve F2D for g > 2. By above theorem,

13g—5
OF2P 697 aF;, Z 92 F2D, “’z: gz: OFZP 9F2", - (4.50)
032  (1—3J1)2 0J3(g—1)- 21 3J1 0J1, 0J39—4-1, — = 0y DJsg—ac, '
g1=1li1=
OF;” 51, OF;P 5J> OFEP aF;Pl O*F2P, (4.51)
0Jsg—3  1—3J1 0Jsg—s ' (1-3J1)2 \ 0J1 0Js(g-1)—2 = 0J10J3(91)2 '
1 3g—6
I 6g—9 OF;", +1 1 gz: gz: OF2P aF;Dg1 gz: 92 F2D,
(=372 0ay— ' 21=371 | £t Lt D Dsgso, 0J1, 0J39—5-1,
gi= 1= :
—1 39—3g1—2
oF2® 5 QFZP 1+Z (2p+1)J, OF2P %~ 9F2P gi (20+3)Ji41 OF2D,, (4.52)
oJs  (1—-3J1)% 0.1 1-3J1 0Jprs 0 (1—-3J1)2  0J, :
g1= =1
-1
+Z QU4+3) S PFD 1 1 [~ 9F2P OFS,, O
(1-3J1)2 0J10J2  21-3J: 1 oJi 041 8J? ’
1=
3g—4 g—1 39—3g1—2
OF;P oFzP oFzP Jip OFF2,
0J3 2(2 +1)1 3J1 8J2+p+ 0J1 Z (21+3) (1-3J1)2 9J, (453)
p=2 a1=1 =1
39—5 2n, 39—5 2D
Ji OPFE Jip1  OF;D
+Z (2I43) =372 970, +32 I43) 3758 a0,
gpzr 7 g, o 1 1 [& AT
9 _ p 9 2 +1 9 2D
a2 22 (2p+1)1—3J1 8J1+p+2 1-3J1 (Z (2l+3)1—3J1 ajl> (Fg—l) (4.54)
p= =1
g—13g1— 39—3g1—2
1 Jll+1 aFg21D Jl2+1 3F92Pgl
2 Z Z 2l1+3 1 3J1 3J11 lz: (2l2+3)173J1 ale 9
=1 1= 2=1
39—2
or," oF,"
o= (2 le)1 37, 0, (4.55)
p=2
Since FgQD is weighted homogeneous of degree 3g — 3 with deg Jr = k — 1, one has:
39—2 2D
1 OF,
F2P = i—1)J;—=%—. 4.56

Example 4.4.1. Let us compute FQD by the above procedure.

OF2D 5 OFP 1 1 (a?pr <8F12D>2>_105 1 A57)
> .

—

8y (1-3J1)% 0Ji  21-3J; \ 0J2 a5 ) | T 128(1-31)%
OFF’  5Jy OFFP 5 <<8F12D>2 62F12D> 15J, QF?P

—

- 4.
0Js  1-3J; 0J, +(1—3J1)2 .1 0J? (1-3J1)3 0.J; 58)

1015 J,
© 128 (1-3J)Y
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0Jy 1-3J, 0J5 T1-3J; 05 2137,
1 25J2 [9F2D\?
2(1—3J1)3< ., )
6300 J2 1015 Js

OF2D 5, OFXP  7Jy OFFP 1 1 5h 0 T 9 2(F2D)
1-3J,0J,  1-3J,0.Js !

_ . 4.59
128 (1_3J1)5+ 128 (1—3J;) (4.59)
so we have
1/105 3J, 1015 2J5J3 6300  J3 1015 JoJs
F2P -~ (== 2 4.60
2 73 <128(1—3J1)3+ 128 (1—3J1)4+ 128 (1—3111)5+ 128 (1—3J,) (4.60)
2100 J3 L1015 JpJy 105 Jy
© 128 (1-3J1)° 384 (1-3J1)% 128 (1-3J1)3°
This can be written in I-coordinates as:
7 .. 29 1 .
F20 — B+ =iy +-——1I, 4.61
2 T1420°2 T 5760720 T 1152 (4.61)
where
f— i (4.62)
J = (1 _ Il)(2j+1)/3' ’
Stmilarly, we have with the help of a computer program:
245 .. 193 . 205 .. 583 .. 53 1121
2D 6 273 3
— iy 27 I B Iolsl 4.63
3 T 073672 T 6012 23 T 138247273 T 58060878 T 6912 2"+ T 241020 213" (4.63)
607 ., 17 .- 503 . . 7 1
I? DPls+———Is1 I, I
190030204 T 115202 T 14515203 T 414720 2 ¢ T 82044 "
259553 ., 475181 145693 . -, 43201 134233 . ., 14147
F2P J T+ —— 212+ B3+ LI+ IS
4 = 9488320 2 T 1244160 2 2 T 33177623 T 248832 23 T 7062624 23 T 124416 2
83851 wyv » 26017 wun~ 185251 wow 5609 wow 177 - -
I3l + ———12]2 Ve B2+ — 1?2
414720 2314 5377767234 T 19766400734 T 276480 2+ T 20480 34
175 ., 21329 ... 13783 .. . 1837 . .  T597 . -
227 BT ERALANNY Y,
1905328 4 T 82044072 T 41472072315 950200 23 T 1380400 121415
N P Lha 03 o 2ATL nn o T8IT Bl 1997 ., -
829440 > *7° 71035360 27° " 552960 2% 2073600 2 37° " 6635520 3 °
L1081 o ST Lo 4907 e 16243 oo 17SL L
2322432 20T 18579456 0 8204400 277 58060800 2 7 " 92897280 1T
53 ., 047 . . 149 . . 1 .
2 Phea T fet——— oo+ ——T10. 4.64
* 92160028 " 92897280 %8 T 30813120 2 ° T 7062624 1° (4.64)

5 Special deformation of the Airy curve in renormalized coupling
constants

In this section we reformulate the special deformation of Airy curve introduced in the
setting of 2D quantum gravity in [32] using renormalized coupling constants. It is re-
markable that we need to consider ghost variables introduced in [33] and consider their

renormalizations.
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5.1 Special deformation of the Airy curve and ghost variables in 2D
topological gravity

In [32], the second named author studied the following special deformation of Airy curve
defined by:

1 JE OFs" _,_3
— 2 DN——2"""2, 5.1
= Z: 2n—1 ’ nzo(n+) ot, -~ (5:1)

n

When all t,, are set to be equal to 0, one gets a plane algebraic curve
(w?P)? = 2. (5.2)

This is called the Airy curve because its quantization gives the Airy equation.
To make sense of the right-hand side of (5.1), the following extension of the free energy
F2P was introduced in [33]:

P4 (=Dt = 1)t on1, (5.3)
n>0

where t_1,t_o,... are formal variables referred to as the ghost variables. The reason for
adding these extra terms to F02D is that the moduli spaces Mo,l and Moo do not make
sense geometrically, however, from the following formula for n > 3:

> Ty T g = (A )", (5.4)

mi,...,mn>0

it is customary to use the following conventions:

<Tn>0 = 571,727

(ThT—k—1)0 = (—1)k.

Consider the generating series

OEZP - OFG” ¢
D o =) e+ Y (G O+ (D e )2 (55
ot . |

neL n>0 n>0

and its Laplace transform:

Z 8FOQD . Ooiefzmanrldx
0 V&

=Z<—1>"<tn—6n,1>r<—n+ ) S (B eyt ) o (pe )

n>0 n>0
2D
=5 (b= 1)(—1)"T <—n+;> 1243 (3(1;0 (t)+2(—1)”t_n_1> -I‘(n—i—;) 32,
nez n>0 n

(5.6)

After setting t_,, = 0 for n > 1, the right-hand side of the last equality gives us w?”, up
to a factor of /7.
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5.2 Renormalized ghost variables
From the above discussions we are lead to consider:
n 1 n—1
Z(—l) t,I'| —n + 5)* (5.7)
nez

This seems to play the role of S(z) in 1D topological gravity. Recall the renomralization
of the coupling constants in S(z) leads us to the following identity

> vt x — I
Z(tn - 5n,1)m IO + Z n—1— 7'0), (5.8)
n=0 ’ )

where I_; is defined by:

ITL—|—1

1= Zt
Also recall for k& > 0,

Iy
I = Z tn+kﬁ

n>0

Therefore, after the introduction of the ghost variables {t_,},cz,, we can introduce the

renormalized ghost variables {I_j}rez, as follows:

[o.¢]
ITL
I, = Ztn,k;ﬂ. (5.9)
n=0 ’

Recall for n > 0 we have [28, Prop. 2.4]:
k[k
tn = Z A (5.10)
Proposition 5.2.1. The identity (5.10) holds for all n € Z.
Next we present an analogue of (5.8) in 2D topological gravity:

Proposition 5.2.2. The following identity holds:

Sarnr(-nt g )t =S erpr(na 3 ) ot s

nez PEZL

VI

1
where we use the following convention for expanding (z — Ip)’™2:

(z—Ip)P"2 = 2P2 i (p; 5) <_ZIO>k (5.12)

k=0

[
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Proof. By (5.10),

2("tT (‘” " ;> Y=Y %ﬂfﬁkr <—n + ;) 2

nez

5.3 F02D in I-coordinates with renormalized ghost variables

When we impose the condition ¢_,, = 0 for n > 0, the ghost variables I_,, can be expressed
as formal series in {t,, }m>0 by the following equation:

Ik—‘rn

—nlt_p=0m>1 = Z k it n) (5.13)
k=0

The case of I_; is first introduced in [28, (26)], and can be also expressed as:

k]'k‘—l—l
Il p=0m>1 = ka TSI (5.14)

The following result generalizes this identity:

Proposition 5.3.1. Under the same condition, one can also rewrite I_, in terms of
{Im}m>0 as follows:
ka-i—n

m 5.15
—nlt_p=0,m>1 = Z kk| CESO (5.15)

Proof. By (5.10) again, we get:

Im+n
I—n’t m=0m>1 — Z mm

lIO I
— Z ZIm-i-l ! (m+ n)

m=0 [=0

:i[ oy 7(71)1
— k%0 IN(m+n)!

m+l=k

_Z kk:' n—l) (k+n)

-39 —



We have used the following identity:

—1)¢ _1\k
> i (=1) = (=1) : (5.16)

| | k!
o m+n+1)!  nlkln+k+1)

This can be proved as follows. By the following well known identity:

<n+?+1>:<7+f>+<njk>’ (5.17)

we have
Lkl "+ k "tk
S (e =X (e X (M ey
=0 =1 =0
k—1 k
n+k n+k
:Z< l )(_1)l+1+z< l )(_1)l
=0 =0
n+k k
= -1~
e
Then, divide (n + k + 1)! on both side of this equation, we get (5.16). O

We also denote the shifted I-coordinates by I,,, the definitions are as follows:

= Mg, — - A (5.18)
T LT T )l '

where tj, = tj, — 0k,1. Then one can see by above proposition,

B Il—i—n ( ) Ik—i—n
_ _ =1 - - 5.19
n‘t_m—[),mzl n|t_m—0,m21 (1 + n Z kk' n — 1) (/{7 n n) ( )
We can express the free energy of genus 0 with these notations as below:
Theorem 5.3.1. The following formula for FOQD holds:
1 ..
F2P = 3 S (D" Il nali=0m>1. (5.20)
n>1
Proof. Recall in theorem 4.3.1 we have proved the following expression of FOZD :
1 (71)n1n+2 1 (71)n+kln+k+1
FP =13 -y =01+ > 0O 7.1 (5.21)
| In!
6 = (n+2)! 2 o0 Enlln+k+1)
One can rewrite this formula using I,, as follows:
1 (71)n+klg+k+l o
;" == L 1. (5.22)
0 2 nél Enl(n +k+1)"
Together with equation (5.19), the proof is completed. O
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Remark 5.3.1. Note we can rewrite (2.11) as follows:
FP =Tl y=on>1- (5.23)

For the thin expansion of Hermitian one-matrix model of size N x N, because we have
de =N FolD , we also have

FN =N -T 4|t ,—0mn>1- (5.24)

As a corollary, we now recover the following formula in [17, (5.12)]:

Corollary 5.3.1. The genus zero free energy of 2D gravity satisfies the following equality:

In+k+1

Zklk—}-z b+ 3 Zzn|k|n+k+1) (5.25)

n=0 k>0

Proof. We have,

p In+p+z+1

Z:E Zzt”p il( n+p+1 ZZ D i1

Gl
1:]:
n=>20 p=1i>0 n<0  5>0 >0 J
( )pInJrkJrl

. Ik
Al VR tpil —1)itn =0
il(n+p+1)! + Z —1%k+4n Z (=17

Ii +J

|
~
32
T
=

, - 5!
n,k>0 p+i=k n,k=0 i+j=k
R RS o S
- — 0 i+ ) Tt 1.
nlk!
n>0k>0 k! (n+k+1) n=>0
Hence,
1 I
5Z(—l) I s (5.26)
n=1
zz e
tk+ n - nl)t—n—l
11
n>0k> nlk! n+k+1 n>0
In+k+1
t t t - too 1

The proof is completed by invoking the condition that ¢_,,_1 =0 for n > 0 to (5.20). O
It is a remarkable coincidence that the right-hand side of (5.26) is almost the same

as FO2D in (5.3) used to interpret the special deformation of the Airy curve using ghost
variables. Inspired by this coincidence, we have the following result.
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Theorem 5.3.2. The extension FgD of the free energy F2P satisfies the following equality:

. 1 3 1 ( )n+k161+k+1
o= — - E 1,1 g
T 2 e Hl(n k1) " ’“+n>1

Proof. We have,

Z(_l)ptpt—p—l

p=0
= ZH)”Z : OIHPZ -1
p=0 i>0 ! j>o
= Z Z —p—1 Z IO Tivp
n€Z j—p—1=n ! i>0

n+z+1 [”+p+l+ 1

TL_

IO B D N D B Y

n=0 p=0 >0
p+n+k‘+1 In+k+1

n<0 7=0 >0

On, 1) —p—1.

+
zlnI

I S R D DA S 3

n>=0 k>0 pti=k n=>0 k>0 i+j=k
Z Z n+k+1]61+k+1 Z
= Iy + V' LI _p—1,
k!
n=0 k=0 nik! n+k+1 n=0
and 1D
tp =2 T2
=
By theorem 4.3.1,
B 1 ( )nInJrQ 1 ( 1)n+kln+k+1
FgP =13 =y 01, + 5 O T Iy +t o+ (-
In!
6 = (n+2)! 2 o (n+k+1)kn =
1 -1 nI'rL+2 1 n+kI7L+k+1
63_2(@)—1—;)' In+§ Enﬁk‘—i-(i)k:'n' ndk
n>0 ) n,k=0 o
Z 0 Z Z ( n+k+1161+k+1 Z
— 2+ LI +
k!
n=0 n=0 k>0 e k n thk+ 1 n=0
1 1 (_1)n+kln+k+l
=L -5 > Ll +Ioa =TI+ (~1)"Ind-n-
In!
6 2 o (n+k+1)kIn! =
1 1 ( 1)n+k1n+k+l
=-I5-- > LDy + > (=1)"(In = 6n1) I —n—1.
In!
6 2 o (n+k+1)kn =
5.4 Special deformation of Airy curve in I-coordinates
Recall the special deformation of Airy curve:
8F2D z—n—%

o0
P=zi o Z 2n—1 n_%_;@wﬂ)

_ 492 —

oty

IIfnl

(5.27)

Ierjflfn

iyl

(5.28)

1)t nt—p_1

(5.29)



Now we consider a related deformation in a slightly different normalization as follows:

oD . 1 1 n 1\ ,_1 1 8F3D 3\ _,_3
y .-z?——zz:(—l) tnF<—n+2>z 2_ﬁnzo Bt P(n+5 )22 (530)

Now we rewrite it in I-coordinates, we get the following result:

Theorem 5.4.1. In I-coordinates, we have:
1 1 _1
P =(2—1Ip)? — ——= Z "I F( 2) (z—1Io)"" 2, (5.31)

and conversely, this property determined FOQD uniquely.
Proof. One can easily check that,
8fn . Ik_n IO in—l—l

— = 5.32
atk (]{7 — n) k'l —Il ( )
for all n, k € Z. Therefore, by (5.20)
oFg" _ Z I’“ n +I[§ It [ [htntl +1{; I,
oty —n)! K10 ) T (k4 +1)! T RI-1
1 Ik n ~ Ik+n+1
SO NEIIACE BUPE 3 G At e
2n20 (k—mn)! n>1 "(k+n+1)!
Ik no_
_ Z n [/_n_b (5.33)
n=0
where f’ =Ipnlt_,,=0, m>1. Hence,
(9F02D 3 k3 I 3 3
Tk pTRe = T LD N (e
() S gter(g)
k
=) ( 1)nfln12k0'1“(k+n+2>z ken—3
n=0 k>0
3
— ( 1)nI~/ L F(n+§)
n>0 o (Z—Io)n+%
Together with proposition 5.2.2; one has
o0 2D
2D 1 1 n 1 n—= 1 a‘FO 3 —n—32
=22——— 1), T —n+= - r =
Yy z2 Qﬁnzo( )"tn ( n+2)z 2 2\/777;) ot n+2 z 2
L1 1 11 I'(n+3)
—te o S (—n g ) -t ST,
QﬁnEZ 2 2\/%n>0 (2 I) T2
| 1 | 2 T'(n+3)
=22 ———= (—1)”I’F<—n—|—>(z—lo)"_2+ (1)
2\/7?11220 " 2 2\/7?1;) (n+2)! (z—Ip)" n+3
1 1
=(z—Ip)z———=> ( 1)”Inr< n+> (z—Ip)" "2
2\/7?n21
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The proof is completed.
O

Remark 5.4.1. When we impose the condition t_,, = 0 for n > 0, we have FZ = F’OQD. By
theorem 5.3.2

1 1 ( 1)n+kln+k’+l
FPP=_p3_ = LI "Iy = )
0 T 60 2 2 (n+k+ 1)k!n! et (-1 W n-ts

n,k=0 n>1

if we take derivatives of FZ with respect to {I,, }nez formally, we have,

8F2D
’t m=0, m>1 — Z
ol, =

(_1)n+kln+k+1

(n+k+ (1))/€!n! Ie+ (=D)"Lnali=0, m>1 =0,  (5.34)

OF3P
6Ln,1

— (1), (5.:35)

for n > 1. Consider the generating series

8F ?’L n —n
Z ol It =0, m>1 - 2" ZZ(—U (In = Opa)z™ " (5.36)

neZ—{0} n>1

and its Laplace transform:

8FO2D <1 —zZx n+1 n 1 = 1/2
Z a[n . ﬁe T dr = Z(—l) (In - 6n,1)r —n+g 2 (5'37)

nez—{0} 0 n>1

we get 4P by taking Z = z — I,.

6 Applications: constitutive relations

In this section we will use our results to rederive the following constitutive relations in 2D
topological gravity:
1 i+j+1
0i0j) = ——u'TIT 6.1
@) = 1 (6.1)
This is (2.34) derived by Dijkgraaf and Witten [9] as an example of constitutive relations
derived from topological recursion relations in genus zero. We will also derive the analogous

relations for FgP and Fy.
6.1 Constitutive relations in 2D topological gravity
In our notations, (6.1) is just:
2 72D k+j+1
0°Fy” Iy

= . 2
otote  Kjlk+j+1) (62)

This can be proved by our results as follows. We have proved the following equation in the

proof of theorem 5.4.1:
Ik:—n

2D )
e = S e T (63)
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where I' = I,,|;_, —0. m>1. By this equation and (5.32), one has,

82F02D:%Z(_1)n I(/)f—l—n T 1+Z(_1)n I(I)C_n 8I/—n—l
8tj8tk 8tj >0 (k—l—n)! " >0 (k—n)' 8t]’
1 Ié Ik*lf’n _ Ik‘fn Ij+n+1 I] f/_
= AN (T Y (- 0 40 =
—I; f! Z( —1—p) 1 o)\ (5 T
1 Ilj'n>0 (k—1—n)! = (k—n)!'\ (j+n+1)! j'1-1
k— j+nt1
L M
= (k—n)! (j+n+1)!
B I(l]c+j+1
RN k1)

This gives a proof of Constitutive Relations (6.1).

We can now interpret the Itzykson-Zuber Ansatz as given by formulas (4.11)—(4.13)
from the point of view of constitutive relations. The formula for FZP can be obtained from
the genus zero m-point functions on the small phase space by changing ¢ to (—1)”_113,
tr — I for k > 1 as follows. Because

(1000 = 03, (6.4)

3 3
the 0-point function in genus zero on the small phase space is %‘), it gives the term %0. The
one-point function can be computed by

<7_n7'6n>0 = 5m,n+27 (6.5)
I to+2 o (=) pt? . :
it is EnZO mtn, and so it gives the term — ano WI”' The two-point function
is computed by
(j +k)!
(TjTh70" )0 = W(smd-i-k—&-la (6.6)
o1 t6+k+1 . 1 (71)j+klg+k+1 .
it is 52, k>0 TRy Litk, and so it gives us the term 5 > k>0 SGahry Lilk Since

for g > 1, F}; does not involve Iy, one can further restrict to the origin ¢y = 0 in the small
phase space, compute a few n-point functions and change ¢, to I, for n > 1. Such formulas
generalize the constitutive relations in the mean field theory considerations of Dijkgraaf-
Witten [9]. So our discussions suggest that renormalization naturally leads to constitutive
relations.

6.2 Analogues for FolD and Fév

By (5.23) and (5.32),0ne has:

oFgP It 6.7)
oty N (k + 1)!. '
Since Fév = NFolD, one also has,
N k+1
Ofy _y too (6.8)
Oty (k + 1)!
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We regard them as the analogues of (6.1). Furthermore, the Hessians are given by:
2R Ikor, 1 I
ooty kKl ot;  1—1Ip klj!’
?FY IkoL, N I
ooty kKl ot;  1—1I kljl
Note the appearance of I; on the right-hand sides means FolD and F({V do not satisfy the

(6.9)

(6.10)

topological recursion relations, hence they do not give us topological field theories in the
sense of [9].

7 Concluding remarks

In this paper, we have further studied the I-coordinates. By rewriting LgD in I-coordinates,
we have proved the Itzykson-Zuber ansatz. Furthermore, we have developed the techniques
of rewriting all the Virasoro constraints for free energies in I-coordinates and solving free
energies recursively.

As pointed out by the second named author in [28], we understand the I-variables
as new coordinates on the big phase space. In this paper, we have checked that at least
in the cases of 1D topological gravity, Hermitian one-matrix model and 2D topological
gravity, the free energies have good properties in these new coordinates. We believe this
is a general phenomenon and hope to make generalizations in subsequent work. We have
also seen that the use of renormalized coupling constants shed some lights on the mean
field theory approach to the original theories.

Furthermore, we extend the definitions of I, for n > —1 to include I,, for all n € Z.
These are inspired by the introduction of ¢, for all n € Z in [33]. They suggest to study
an even larger phase space to include the ghost variables.

A surprising consequence is that we discover a connection between the emergent spec-
tral curve of 2D topological gravity and the action of the 1D topological gravity. The
special deformations of spectral curves of the three theories considered in this paper are:

— O, n n! OFP
Z 1 +\/>Z on+l 375071' (71)

n>0 n=1
1 tn — 0 V2N nl OFN
N n n,1 n 0
pe Ly VAN DR 72
\/§n20 n! z = 2o,
o0
op _ 11 n 1\ .1 1 OF; 3\ .3
= - — -1, I'| — - . (7.3
r 2ﬁ,§()”<”+2)“zfo ntg)E T (18)

When rewritten in the I-coordinates they take the followmg unified form:

P — Z — (z — Ip)™ (7.4)

z — Ig n>1
N -
= — Iy)™. 7.5
2D 7T I, — 671,1 n—i
_ _ S (T, 2. 7.6
y 2 nzl T(n+ ) (z = To) (7.6)
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Furthermore, if we define their action functions by:

1 I, — 96

1D 1D n n,l n+1
= d = 21() — I = Y E— — I

S /y z f g(z 0) + \/i nil (n 1)' (Z 0) ,

1 I, — 0n1
SN:/Ndz:\/iNlo z—1y) + — LR (p— o),
n=1
oo
I, — o 1
2P —/ydez— —ﬁ e Gy ) a
> S T(nr )
Then one has:
st 1 V2 +z—10
oty  1-Iz—1I V2
oSN 1 V2N +z—10
6750 B 1—]12—]0 \@ ’
08%P 1
= —(z—1Ip)2.
dto (2= To)>
These are deformations of spectral curves:
Jgo_v2 =
z V2
N_VEIN =
y - ~ \/57
y2D _ Z%

(7.10)
(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

L.e., the spectral curves are related to the action functions defined above in the following

way:
N o5*
Yy = — 8t )
0 1Ip=I1=0

(7.16)

for* = 1D, N, and 2D. We hope to understand and generalize this in future investigations.
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