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1 Introduction

Despite the measurement of a non-zero reactor angle, it remains an intriguing possibility

that the large mixing angles in the lepton sector can be explained using some discrete

non-Abelian family symmetry [1, 2]. The origin of such a symmetry could either be a

continuous non-Abelian gauge symmetry, broken to a discrete subgroup [3–9], or it could

emerge from extra dimensions [10–21], either as an accidental symmetry of the orbifold

fixed points, or as a subgroup of the symmetry of the extra dimensional lattice vectors,

commonly referred to as modular symmetry [22–24].

Recently it has been suggested that neutrino masses might be modular forms [25], with

constraints on the Yukawa couplings. The idea is that, since modular invariance controls

orbifold compactifications of the heterotic superstring, this implies that the 4d effective La-

grangian must respect modular symmetry, hence the Yukawa couplings (involving twisted

states whose modular weights do not add up to zero) are modular forms [25]. Hence the

Yukawa couplings form multiplets with well defined alignments, prescribed by the modular

form, which depend on a single complex modulus field τ .

This has led to a revival of the idea that modular symmetries are symmetries of

the extra dimensional spacetime with Yukawa couplings determined by their modular

weights [25, 26]. The finite modular subgroups considered in the literature include Γ2 [27–

30], Γ3 [25–28, 31–34], Γ4 [35–37] and Γ5 [38, 39]. The Γ3 case has been applied to grand

unified theories with the modulus fixed by the orbifold construction [40]. The formalism

with a single complex modulus field τ has also been extended to the case of multiple mod-

uli fields τi [41]. The generalized CP symmetry in modular invariant models are studied

in [42]. The formalism of modular invariant approach has extended to include odd weight

modular forms [43].
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In this paper, we shall study the finite modular group Γ3
∼= A4 with a single modulus

field τ and no other flavons, hence all masses and Yukawa couplings are modular forms.

Similar to previous analyses [25–28, 31–34], we discuss all the simplest neutrino sectors

arising from both the Weinberg operator and the type I seesaw mechanism, with lepton

doublets and right-handed neutrinos assumed to be triplets of A4. However, unlike all

previous analyses [25–28, 31–34], we allow right-handed charged leptons to transform as all

combinations of 1, 1′ and 1′′ representations of A4, using the simplest different modular

weights to break the degeneracy, leading to ten different charged lepton Yukawa matrices,

instead of the usual one. This implies ten different Weinberg models and thirty different

type I seesaw models, which we analyse in detail. We find that fourteen models for both

normal ordering (NO) and inverted ordering (IO) neutrino mass spectrums can accommo-

date the data, as compared to one in previous analyses, providing many new possibilities.

The structure of the paper is as follows. In section 2 we briefly outline the idea

of modular symmetry, and we specialize to Γ3 modular symmetry and give the modular

forms of level N = 3. Then in section 3 we systematically construct and classify the forty

simplest models based on Γ3
∼= A4, generalising previous analyses in the charged lepton

sector as outlined above. After that in section 4 we perform a comprehensive and systematic

numerical analysis for each of the forty models discussed in the previous section, giving

the best fit values of the parameters for each viable model with NO and the corresponding

predictions in a detailed compendium of tables and figures. Section 5 concludes the paper.

2 Modular symmetry and modular forms of level N = 3

In the following, we briefly review the modular symmetry and the its congruence subgroups.

The special linear group SL(2,Z) is constituted by 2× 2 matrices with integer entries and

determinant 1 [44, 45]:

SL(2,Z) =

{(
a b

c d

)∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1

}
. (2.1)

The upper half plane, denoted as H, is the set of all complex numbers with positive

imaginary part: H = {τ ∈ C | =τ > 0}. The SL(2,Z) group acts on H via fractional linear

transformations (or Möbius transformations),

γ =

(
a b

c d

)
: H → H, τ 7→ γτ = γ(τ) =

aτ + b

cτ + d
. (2.2)

It is straightforward to check that

=(γ(τ)) =
=τ

|cτ + d|2
, γ =

(
a b

c d

)
∈ SL(2,Z) , (2.3)

which implies if γ ∈ SL(2,Z) and τ ∈ H then also γ(z) ∈ H. Therefore the modular group

maps the upper half plane back to itself. In fact the modular group acts on the upper half

plane, meaning that I(τ) = τ where I is the 2× 2 identity matrix and (γγ′)(τ) = γ(γ′(τ))
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for any γ, γ′ ∈ SL(2,Z) and τ ∈ H. Furthermore, γ and −γ evidently give the same action,

therefore it is more natural to consider the projective special linear group PSL(2,Z) =

SL(2,Z)/{I,−I}, the quotient of SL(2,Z) by ±I. The group PSL(2,Z) is usually called

the modular group in the literature, and it can be generated by two elements S and T [44]

S =

(
0 1

−1 0

)
, T =

(
1 1

0 1

)
, (2.4)

which satisfy the relations

S2 = (ST )3 = 1 . (2.5)

The actions of S and T on H are given by

S : τ 7→ −1

τ
, T : τ 7→ τ + 1 . (2.6)

For a positive integer N , the principal congruence subgroup of level N of is defined as

Γ(N) =

{(
a b

c d

)
∈ SL(2,Z), a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
, (2.7)

which is a normal subgroup of the special linear group SL(2,Z). Obviously Γ(1) ∼= SL(2,Z)

is the special linear group. It is easy to obtain

TN =

(
1 N

0 1

)
, (2.8)

which implies TN ∈ Γ(N), i.e., TN is an element of Γ(N). Taking the quotient of Γ(1)

and Γ(2) by {I,−I}, we obtain the projective principal congruence subgroups Γ(N) =

Γ(N)/{I,−I} for N = 1, 2, and Γ(N > 2) = Γ(N) since the element −I doesn’t belong to

Γ(N) for N > 2. The quotient groups ΓN = Γ(1)/Γ(N) are usually called finite modular

groups, and the group ΓN can be obtained from Γ(1) by imposing the condition TN = 1.

Consequently the generators S and T of ΓN satisfy the relations

S2 = (ST )3 = TN = 1 . (2.9)

The groups ΓN with N = 2, 3, 4, 5 are isomorphic to the permutation groups S3, A4, S4

and A5 respectively [24].

The crucial element of modular invariance approach is the modular form f(τ) of weight

k and level N . The modular form f(τ) is a holomorphic function of the complex modulus

τ and it is required to satisfy the following modular transformation property under the

group Γ(N),

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for ∀ γ =

(
a b

c d

)
∈ Γ(N) and τ ∈ H . (2.10)

The modular forms of weight k and level N span a linear space Mk(Γ(N)) with finite

dimension. As has been shown in [25, 43], we can choose the basis vectors ofMk(Γ(N)) such
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that they can be organized into multiplets of modular forms Fr(τ) ≡ (f1(τ), f2(τ), . . . )T

which transform in certain irreducible representation of the finite modular group ΓN ,

Fr(γτ) = (cτ + d)kρr(γ)Fr(τ), γ ∈ Γ(1) , (2.11)

where γ is the representative element of the coset γΓ(N) in ΓN , and ρr(γ) is the represen-

tation matrix of the element γ in the irreducible representation r. When γ is the generators

S and T , eq. (2.11) gives

Fr(Sτ) = τkρr(S)Fr(τ), Fr(Tτ) = ρr(T )Fr(τ) , (2.12)

for even k.

2.1 Modular forms of level N = 3

In the present work, we present a comprehensive analysis of neutrino mass and lepton

mixing in theories with Γ3 modular symmetry. The finite modular group Γ3 is isomorphic

to A4 which is the symmetry group of the tetrahedron. It contains twelve elements and

it is the smallest non-abelian finite group which admits a three-dimensional irreducible

representation. The A4 group has three singlet representations 1, 1′, 1′′ and a triplet

representation 3. In the singlet representations, we have

1 : S = 1, T = 1 ,

1′ : S = 1, T = ω2 ,

1′′ : S = 1, T = ω ,

(2.13)

with ω = e2πi/3 = −1/2 + i
√

3/2. For the representation 3, we will choose a basis in which

the generator T is diagonal. The explicit forms of S and T are

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

1 0 0

0 ω2 0

0 0 ω

 , (2.14)

The basic multiplication rule is

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A , (2.15)

where the subscripts S and A denotes symmetric and antisymmetric combinations respec-

tively. If we have two triplets α = (α1, α2, α3) ∼ 3 and β = (β1, β2, β3) ∼ 3, we can obtain

the following irreducible representations from their product,

(αβ)1 = α1β1 + α2β3 + α3β2 ,

(αβ)1′ = α3β3 + α1β2 + α2β1 ,

(αβ)1′′ = α2β2 + α1β3 + α3β1 ,

(αβ)3S = (2α1β1 − α2β3 − α3β2, 2α3β3 − α1β2 − α2β1, 2α2β2 − α1β3 − α3β1) ,

(αβ)3A = (α2β3 − α3β2, α1β2 − α2β1, α3β1 − α1β3) . (2.16)
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The linear space of the modular forms of integral weight k and level N = 3 has dimension

k + 1 [25, 46]. The modular space M2k(Γ(3)) can be constructed from the Dedekind

eta-function η(τ) which is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn), q = e2πiτ . (2.17)

The eta function η(τ) satisfies the following identities

η(τ + 1) = eiπ/12η(τ), η(−1/τ) =
√
−iτ η(τ) . (2.18)

There are only three linearly independent modular forms of weight 2 and level 3, which

are denoted as Yi(τ) with i = 1, 2, 3. We can arrange the three modular functions into a

vector Y
(2)
3 = (Y1, Y2, Y3)T transforming as a triplet 3 of A4. The modular forms Yi can be

expressed in terms of η(τ) and its derivative as follow [25]:

Y1(τ) =
i

2π

[
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

]
,

Y2(τ) =
−i
π

[
η′(τ/3)

η(τ/3)
+ ω2 η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

]
,

Y3(τ) =
−i
π

[
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2 η

′((τ + 2)/3)

η((τ + 2)/3)

]
. (2.19)

Notice that 12η′(τ)/η(τ) ≡ iπE2(τ), where E2(τ) is the well-known Eisenstein series of

weight 2 [44]. The q-expansions of the triplet modular forms Y
(2)
3 are given by

Y
(2)
3 =

Y1(τ)

Y2(τ)

Y3(τ)

 =

1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .

−6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )

−18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

 . (2.20)

They satisfy the constraint [25, 43]

(Y
(2)
3 Y

(2)
3 )1′′ = Y 2

2 + 2Y1Y3 = 0 . (2.21)

Multiplets of higher weight modular forms can be constructed from the tensor products of

Y
(2)
3 . Using the A4 contraction rule 3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A, we can obtain five

independent weight 4 modular forms,

Y
(4)
3 = (Y

(2)
3 Y

(2)
3 )3 = (Y 2

1 − Y2Y3, Y
2

3 − Y1Y2, Y
2

2 − Y1Y3)T ,

Y
(4)
1 = (Y

(2)
3 Y

(2)
3 )1 = Y 2

1 + 2Y2Y3 ,

Y
(4)
1′ = (Y

(2)
3 Y

(2)
3 )1′ = Y 2

3 + 2Y1Y2 . (2.22)

Similarly there are seven modular forms of weight 6, and they decompose into a singlet 1

and two triplets 3 under A4,

Y
(6)
1 = (Y

(2)
3 Y

(4)
3 )1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 ,

Y
(6)
3,1 = Y

(2)
3 Y

(4)
1 = (Y 3

1 + 2Y1Y2Y3, Y
2

1 Y2 + 2Y 2
2 Y3, Y

2
1 Y3 + 2Y 2

3 Y2)T ,

Y
(6)
3,2 = Y

(2)
3 Y

(4)
1′ = (Y 3

3 + 2Y1Y2Y3, Y
2

3 Y1 + 2Y 2
1 Y2, Y

2
3 Y2 + 2Y 2

2 Y1)T . (2.23)

Notice that (Y
(2)
3 Y

(2)
3 )1′′ is vanishing as shown in eq. (2.21).
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3 Neutrino mass models based on Γ3 modular symmetry

In this section, we shall perform a systematical classification of all minimal neutrino mass

models with the Γ3 modular symmetry. We adopt the N = 1 global supersymmetry, the

most general form of the action can be written as [25]

S =

∫
d4xd2θd2θ̄K(ΦI , Φ̄I ; τ, τ̄) +

∫
d4xd2θW (ΦI , τ) + h.c. , (3.1)

where K(ΦI , Φ̄I , τ, τ̄) is the Kähler potential, and W denotes the superpotential. ΦI is set

of chiral superfields, under the modular transformation of eq. (2.2), it transforms as

τ → γτ =
aτ + b

cτ + d
, ΦI → (cτ + d)−kIρI(γ)ΦI . (3.2)

where −kI is the modular weight, and ρI(γ) is the unitary representation of the repre-

sentative element γ in ΓN . There are no restrictions on the possible value of kI since the

supermultiplets ΦI are not modular forms. The Kähler potential should be invariant up to

Kähler transformations under the modular transformation of eq. (3.2). We shall use the

following Kähler potential in this work [25],

K(ΦI , Φ̄I ; τ, τ̄) = −h log(−iτ + iτ̄) +
∑
I

(−iτ + iτ̄)−kI |ΦI |2 , (3.3)

where h is a positive constant h > 0. After the modulus τ gets a vacuum expectation

value (VEV), the above Kähler potential leads to the following kinetic term for the scalar

components of the supermultiplets ΦI and the modulus superfield τ ,

h

〈−iτ + iτ̄〉2
∂µτ̄ ∂

µτ +
∑
I

∂µφ̄I∂
µφI

〈−iτ + iτ̄〉kI
. (3.4)

For a given value of the VEV of τ , the kinetic term of φI can be made into canonical form

by rescaling the fields φI . This effect can be absorbed into the unknown free parameters

of the superpotential in a specific model.

The superpotential W (ΦI , τ) can be expanded in power series of the involved super-

multiplets ΦI ,

W (ΦI , τ) =
∑
n

YI1...In(τ) ΦI1 . . .ΦIn , (3.5)

where YI1...In is a modular multiplet of weight kY and it transforms as the presentation ρY
of ΓN ,

τ → γτ =
aτ + b

cτ + d
, Y (τ)→ Y (γτ) = (cτ + d)kY ρY (γ)Y (τ) . (3.6)

The requirement of modular invariance of the superpotential implies

kY = kI1 + . . .+ kIn , ρY ⊗ ρI1 ⊗ . . .⊗ ρIn 3 1 . (3.7)

Then we proceed to discuss all possible simplest models for lepton masses and mixing with

the A4 modular symmetry. In order to construct models with the smallest number of free
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parameters, we don’t introduce any flavon field other than the modulus τ . The Higgs

doublets Hu and Hd are assumed to transform as 1 under A4 and their modular weights

kHu,Hd are vanishing. We consider two scenarios where the neutrino masses arise from the

Weinberg operator and the type I seesaw mechanism. Similar to previous analyses [25], we

assign the three generations of left-handed lepton doublets L ≡ (L1, L2, L3)T and of the

right-handed neutrino N c ≡ (N c
1 , N

c
2 , N

c
3)T to two triplets 3 of A4 with modular weights

denoted as kL and kNc . Unlike previous work [25–28, 31–34], we allow right-handed charged

leptons Ec1,2,3 to transform as all combinations of 1, 1′ and 1′′ representations of A4,

using the simplest different modular weights kE1,2,3 to break the degeneracy, leading to ten

different charged lepton Yukawa matrices, instead of the usual one.

3.1 Charged lepton sector

Firstly we investigate the charged lepton sector. Since we do not allow any flavons (beyond

the single modulus field τ), we shall not attempt to explain the charged lepton mass hierar-

chy, which remains a challenge for modular symmetry models. In order to avoid a charged

lepton mass matrix with rank less than 3, when two or all of Ec1, E
c
2 and Ec3 have same rep-

resentation of Γ3 , we assume that Ec1, E
c
2 and Ec3 have different modular weights such that

they are distinguishable. For simplicity, we use lower weight modular forms as much as pos-

sible. Hence the model in the charged lepton sector can be divided into three possible cases.

(i) ρEc1 = ρEc2 = ρEc3 .

When all the three right-handed charged leptons Ec1,2,3 transform as the same irre-

ducible representation of Γ3, they should carry different modular weights to distinguish

from each other. As a consequence, the charged leptons Ec1,2,3 could couple with the

modular forms Y
(2)
3 , Y

(4)
3 and Y

(6)
3 respectively, and the superpotential for the charged

lepton masses can be written as:

We = α(Ec1LY
(2)
3 )1Hd + β(Ec2LY

(4)
3 )1Hd + γ(Ec3LY

(6)
3 )1Hd . (3.8)

The condition of modular invariance requires

kE1 = kE2 − 2 = kE3 − 4 = 2− kL . (3.9)

(ii) ρEc1 = ρEc2 6= ρEc3 .

If two of the three right-handed charged leptons Eci transform in the same way under

A4,1 they could be assigned to different modular weights which are compensated by

the lower weight modular forms Y
(2)
3 and Y

(4)
3 . Thus the superpotential for the charged

lepton masses are given by,

We = α(Ec1LY
(2)
3 )1Hd + β(Ec2LY

(4)
3 )1Hd + γ(Ec3LY

(2)
3 )1Hd , (3.10)

where the condition of weight cancellation entails

kE1 = kE2 − 2 = kE3 = 2− kL . (3.11)
1It is irrelevant that which two of the right-handed charged leptons share the same A4 representation.

Because this amounts to a row permutation of the charged lepton matrix Me in the right-left basis EcMeL,

and the results for lepton mixing matrix is not changed. We shall choose ρEc
1
= ρEc

2
for this case hereinafter.
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(iii) ρEc1 6= ρEc2 6= ρEc3 .

When the three right-handed charged leptons Eci are assigned to three different singlets

1, 1′ and 1′′ of A4 as in previous works [25–28, 31–34], their modular weights could be

identical, and only the lowest weight modular form Y
(2)
3 is necessary in the minimal

model. Then the superpotential for the charged lepton masses takes the form

We = α(Ec1LY
(2)
3 )1Hd + β(Ec2LY

(2)
3 )1Hd + γ(Ec3LY

(2)
3 )1Hd . (3.12)

The invariance of We under modular transformations implies the following relations

for the weights,

kE1 = kE2 = kE3 = 2− kL . (3.13)

To be more specific, making use of the Clebsch-Gordan coefficients given in eq. (2.16),

we can expand the superpotentials of eqs. (3.8), (3.10), (3.12) into the following forms for

all possible singlet assignments of right-handed charged leptons.

• ρEc1,2,3 = 1, kEc1,2,3 + kL = 2, 4, 6.

We = αEc1(LY
(2)
3 )1Hd + βEc2(LY

(4)
3 )1Hd + γ1E

c
3(LY

(6)
3,1 )1Hd + γ2E

c
3(LY

(6)
3,2 )1Hd

= αEc1(L1Y1 + L2Y3 + L3Y2)Hd (3.14)

+ βEc2[L1(Y 2
1 − Y2Y3) + L2(Y 2

2 − Y1Y3) + L3(Y 2
3 − Y1Y2)]Hd

+ γ1E
c
3[L1(Y 3

1 + 2Y1Y2Y3) + L2(Y 2
1 Y3 + 2Y 2

3 Y2) + L3(Y 2
1 Y2 + 2Y 2

2 Y3)]Hd

+ γ2E
c
3[L1(Y 3

3 + 2Y1Y2Y3) + L2(Y 2
3 Y2 + 2Y 2

2 Y1) + L3(Y 2
3 Y1 + 2Y 2

1 Y2)]Hd .

• ρEc1,2,3 = 1′, kEc1,2,3 + kL = 2, 4, 6.

We = αEc1(LY
(2)
3 )1′′Hd + βEc2(LY

(4)
3 )1′′Hd + γ1E

c
3(LY

(6)
3,1 )1′′Hd + γ2E

c
3(LY

(6)
3,2 )1′′Hd

= αEc1(L2Y2 + L3Y1 + L1Y3)Hd (3.15)

+ βEc2[L2(Y 2
3 − Y1Y2) + L3(Y 2

1 − Y2Y3) + L1(Y 2
2 − Y1Y3)]Hd

+ γ1E
c
3[L2(Y 2

1 Y2 + 2Y 2
2 Y3) + L3(Y 3

1 + 2Y1Y2Y3) + L1(Y 2
1 Y3 + 2Y 2

3 Y2)]Hd

+ γ2E
c
3[L2(Y 2

3 Y1 + 2Y 2
1 Y2) + L3(Y 3

3 + 2Y1Y2Y3) + L1(Y 2
3 Y2 + 2Y 2

2 Y1)]Hd .

• ρEc1,2,3 = 1′′, kEc1,2,3 + kL = 2, 4, 6.

We = αEc1(LY
(2)
3 )1′Hd + βEc2(LY

(4)
3 )1′Hd + γ1E

c
3(LY

(6)
3,1 )1′Hd + γ2E

c
3(LY

(6)
3,2 )1′Hd

= αEc1(L3 Y3 + L1 Y2 + L2 Y1)Hd (3.16)

+ βEc2[L3(Y 2
2 − Y1Y3) + L1(Y 2

3 − Y1Y2) + L2(Y 2
1 − Y2Y3)]Hd

+ γ1E
c
3[L3(Y 2

1 Y3 + 2Y 2
3 Y2) + L1(Y 2

1 Y2 + 2Y 2
2 Y3) + L2(Y 3

1 + 2Y1Y2Y3)]Hd

+ γ2E
c
3[L3(Y 2

3 Y2 + 2Y 2
2 Y1) + L1(Y 2

3 Y1 + 2Y 2
1 Y2) + L2(Y 3

3 + 2Y1Y2Y3)]Hd .
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• ρEc1,2,3 = 1,1,1′, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1Hd + βEc2(LY

(4)
3 )1Hd + γEc3(LY

(2)
3 )1′′Hd

= αEc1(L1Y1 + L2Y3 + L3Y2)Hd + βEc2
[
L1(Y 2

1 − Y2Y3) + L2(Y 2
2 − Y1Y3)

+ L3(Y 2
3 − Y1Y2)

]
Hd + γEc3(L2Y2 + L3Y1 + L1Y3)Hd . (3.17)

• ρEc1,2,3 = 1,1,1′′, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1Hd + βEc2(LY

(4)
3 )1Hd + γEc3(LY

(2)
3 )1′Hd

= αEc1(L1Y1 + L2Y3 + L3Y2)Hd + βEc2
[
L1(Y 2

1 − Y2Y3) + L2(Y 2
2 − Y1Y3)

+ L3(Y 2
3 − Y1Y2)

]
Hd + γEc3(L3Y3 + L1Y2 + L2Y1)Hd . (3.18)

• ρEc1,2,3 = 1′,1′,1, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1′′Hd + βEc2(LY

(4)
3 )1′′Hd + γEc3(LY

(2)
3 )1Hd

= αEc1(L2Y2 + L3Y1 + L1Y3)Hd + βEc2
[
L2(Y 2

3 − Y1Y2) + L3(Y 2
1 − Y2Y3)

+ L1(Y 2
2 − Y1Y3)

]
Hd + γEc3(L1Y1 + L2Y3 + L3Y2)Hd . (3.19)

• ρEc1,2,3 = 1′,1′,1′′, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1′′Hd + βEc2(LY

(4)
3 )1′′Hd + γEc3(LY

(2)
3 )1′Hd

= αEc1(L2Y2 + L3Y1 + L1Y3)Hd + βEc2
[
L2(Y 2

3 − Y1Y2) + L3(Y 2
1 − Y2Y3)

+ L1(Y 2
2 − Y1Y3)

]
Hd + γEc3(L3Y3 + L1Y2 + L2Y1)Hd . (3.20)

• ρEc1,2,3 = 1′′,1′′,1, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1′Hd + βEc2(LY

(4)
3 )1′Hd + γEc3(LY

(2)
3 )1Hd

= αEc1(L3Y3 + L1Y2 + L2Y1)Hd + βEc2
[
L3(Y 2

2 − Y1Y3) + L1(Y 2
3 − Y1Y2)

+ L2(Y 2
1 − Y2Y3)

]
Hd + γEc3(L1Y1 + L2Y3 + L3Y2)Hd . (3.21)

• ρEc1,2,3 = 1′′,1′′,1′, kEc1,2,3 + kL = 2, 4, 2.

We = αEc1(LY
(2)
3 )1′Hd + βEc2(LY

(4)
3 )1′Hd + γEc3(LY

(2)
3 )1′′Hd

= αEc1(L3Y3 + L1Y2 + L2Y1)Hd + βEc2
[
L3(Y 2

2 − Y1Y3) + L1(Y 2
3 − Y1Y2)

+ L2(Y 2
1 − Y2Y3)

]
Hd + γEc3(L2Y2 + L3Y1 + L1Y3)Hd . (3.22)

• ρEc1,2,3 = 1,1′′,1′, kEc1,2,3 + kL = 2, 2, 2.

We = αEc1(LY
(2)
3 )1Hd + βEc2(LY

(2)
3 )1′Hd + γEc3(LY

(2)
3 )1′′Hd

= αEc1(L1Y1 + L2Y3 + L3Y2)Hd + βEc2(L3Y3 + L1Y2 + L2Y1)Hd

+ γEc3(L2Y2 + L3Y1 + L1Y3)Hd . (3.23)

This is exactly the original A4 modular symmetry model considered in the litera-

ture [25–28, 31–34]. The resulting charged lepton mass matrices for each possible

model considered above are summarized in table 1.
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ρEc1,2,3 kEc1,2,3 +kL Charged lepton mass matrices

C1 1, 1, 1 2, 4, 6 Me =


αY1 αY3 αY2

β(Y 2
1 −Y2Y3) β(Y 2

2 −Y1Y3) β(Y 2
3 −Y1Y2)

γ1(Y 3
1 +2Y1Y2Y3) γ1(Y 2

1 Y3 +2Y 2
3 Y2) γ1(Y 2

1 Y2 +2Y 2
2 Y3)

+γ2(Y 3
3 +2Y1Y2Y3) +γ2(Y 2

3 Y2 +2Y 2
2 Y1) +γ2(Y 2

3 Y1 +2Y 2
1 Y2)

vd

C2 1′, 1′, 1′ 2, 4, 6 Me =


αY3 αY2 αY1

β(Y 2
2 −Y1Y3) β(Y 2

3 −Y1Y2) β(Y 2
1 −Y2Y3)

γ1(Y 2
1 Y3 +2Y 2

3 Y2) γ1(Y 2
1 Y2 +2Y 2

2 Y3) γ1(Y 3
1 +2Y1Y2Y3)

+γ2(Y 2
3 Y2 +2Y 2

2 Y1) +γ2(Y 2
3 Y1 +2Y 2

1 Y2) +γ2(Y 3
3 +2Y1Y2Y3)

vd

C3 1′′, 1′′, 1′′ 2, 4, 6 Me =


αY2 αY1 αY3

β(Y 2
3 −Y1Y2) β(Y 2

1 −Y2Y3) β(Y 2
2 −Y1Y3)

γ1(Y 2
1 Y2 +2Y 2

2 Y3) γ1(Y 3
1 +2Y1Y2Y3) γ1(Y 2

1 Y3 +2Y 2
3 Y2)

+γ2(Y 2
3 Y1 +2Y 2

1 Y2) +γ2(Y 3
3 +2Y1Y2Y3) +γ2(Y 2

3 Y2 +2Y 2
2 Y1)

vd

C4 1, 1, 1′ 2, 4, 2 Me =


αY1 αY3 αY2

β(Y 2
1 −Y2Y3) β(Y 2

2 −Y1Y3) β(Y 2
3 −Y1Y2)

γY3 γY2 γY1

vd

C5 1, 1, 1′′ 2, 4, 2 Me =


αY1 αY3 αY2

β(Y 2
1 −Y2Y3) β(Y 2

2 −Y1Y3) β(Y 2
3 −Y1Y2)

γY2 γY1 γY3

vd

C6 1′, 1′, 1 2, 4, 2 Me =


αY3 αY2 αY1

β(Y 2
2 −Y1Y3) β(Y 2

3 −Y1Y2) β(Y 2
1 −Y2Y3)

γY1 γY3 γY2

vd

C7 1′, 1′, 1′′ 2, 4, 2 Me =


αY3 αY2 αY1

β(Y 2
2 −Y1Y3) β(Y 2

3 −Y1Y2) β(Y 2
1 −Y2Y3)

γY2 γY1 γY3

vd

C8 1′′, 1′′, 1 2, 4, 2 Me =


αY2 αY1 αY3

β(Y 2
3 −Y1Y2) β(Y 2

1 −Y2Y3) β(Y 2
2 −Y1Y3)

γY1 γY3 γY2

vd

C9 1′′, 1′′, 1′ 2, 4, 2 Me =


αY2 αY1 αY3

β(Y 2
3 −Y1Y2) β(Y 2

1 −Y2Y3) β(Y 2
2 −Y1Y3)

γY3 γY2 γY1

vd

C10 1, 1′′, 1′ 2, 2, 2 Me =


αY1 αY3 αY2

βY2 βY1 βY3

γY3 γY2 γY1

vd

Table 1. The charged lepton mass matrices for different possible assignments of the right-handed

charged leptons, where the charged lepton mass matrix Me is given in the right-left basis EcMe L

with vd = 〈H0
d〉.
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3.2 Neutrino sector

We don’t know the nature of neutrinos which can be either Dirac particles similar to

electron or Majorana particles. In this section, we shall consider the case of Majorana

neutrinos, Dirac neutrinos can be analyzed in a similar manner. Thus the neutrino masses

can arise from the effective Weinberg operator or the seesaw mechanism. In order to

construct minimal models, we consider the cases that the complex modulus τ is involved

through the lowest nontrivial weight 2 modular form Y
(2)
3 in the following. If neutrino

masses are described by the Weinberg operator and the three lepton doublets are assigned

to an A4 triplet 3, the simplest superpotential for neutrino masses is

Wν =
1

Λ

(
HuHuLLY

)
1

= 2
[
(L2

1−L2L3)Y1 + (L2
2−L1L3)Y2 + (L2

3−L1L2)Y3

]H2
u

Λ
. (3.24)

Obviously the modular weight of the lepton doublet L should be kL = 1 in this case. The

resulting prediction for the neutrino mass matrix is

Mν =

2Y1 − Y3 − Y2

−Y3 2Y2 − Y1

−Y2 − Y1 2Y3

 v2
u

Λ
. (3.25)

If neutrino masses are generated through the type-I seesaw mechanism, for the triplet

assignments of both right-handed neutrinos N c and left-handed lepton doublets L, the

most general form of the superpotential in the neutrino sector is

Wν = g (N cLHufN (Y ))1 + Λ (N cN cfM (Y ))1 , (3.26)

where fN (Y ) and fM (Y ) are generic functions of the modular forms Y (τ). Motivated

by the principle of minimality, we consider the cases that fN (Y ) and fM (Y ) are either

constant or proportional to Y
(2)
3 . Then we have the following three possible cases.

• fN (Y ) ∝ Y (2)
3 and fM (Y ) ∝ 1.

Wν = g1((N c L)3SY
(2)
3 )1Hu + g2((N cL)3AY

(2)
3 )1Hu + Λ (N cN c)1

= g1

[
(2N c

1 L1 −N c
2 L3 −N c

3 L2)Y1 + (2N c
3 L3 −N c

1 L2 −N c
2 L1)Y3

+ (2N c
2L2 −N c

1L3 −N c
3L1)Y2

]
Hu + g2

[
(N c

2L3 −N c
3L2)Y1

+ (N c
1L2 −N c

2L1)Y3 + (N c
3L1 −N c

1L3)Y2

]
Hu + Λ(N c

1N
c
1 + 2N c

2N
c
3) . (3.27)

In this case the weights of N c and L should be kNc = 0, kL = 2. The Dirac neutrino

mass matrix and the right-handed neutrino heavy Majorana mass matrix read as

MD =

 2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2

(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1

(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3

 vu, MN =

1 0 0

0 0 1

0 1 0

Λ ,

(3.28)

with vu ≡ 〈H0
u〉.
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kL, kNc Neutrino mass matrices

W1 1, — Mν =

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3

 v2u
Λ

S1 2, 0 MD =

 2g1Y1 (−g1 +g2)Y3 (−g1−g2)Y2
(−g1−g2)Y3 2g1Y2 (−g1 +g2)Y1
(−g1 +g2)Y2 (−g1−g2)Y1 2g1Y3

vu, MN =

1 0 0

0 0 1

0 1 0

Λ

S2 −1, 1 MD = g

1 0 0

0 0 1

0 1 0

vu, MN =

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3

Λ

S3 1, 1 MD =

 2g1Y1 (−g1 +g2)Y3 (−g1−g2)Y2
(−g1−g2)Y3 2g1Y2 (−g1 +g2)Y1
(−g1 +g2)Y2 (−g1−g2)Y1 2g1Y3

vu, MN =

2Y1 −Y3 −Y2
−Y3 2Y2 −Y1
−Y2 −Y1 2Y3

Λ

Table 2. The predictions for the neutrino mass matrices, where we assume that only the lowest

weight 2 modular forms are involved, and the neutrino masses are generated through the Weinberg

operator for W1 and the type-I seesaw mechanism for the models S1,2,3.

• fN (Y ) ∝ 1 and fM (Y ) ∝ Y (2)
3 .

Wν = g((N c L)1Hu + Λ((N cN c)3S Y
(2)
3 )1

= g(N c
1 L1 +N c

2 L3 +N c
3 L2)Hu + 2Λ

[
(N c

1N
c
1 −N c

2N
c
3)Y1

+ (N c
3N

c
3 −N c

1N
c
2)Y3 + (N c

2N
c
2 −N c

1N
c
3)Y2

]
. (3.29)

The condition of weight cancellation requires kNc = −kL = 1. We can read out the

expressions of MD and MN as follow,

MD = g

1 0 0

0 0 1

0 1 0

 vu, MN =

2Y1 − Y3 − Y2

−Y3 2Y2 − Y1

−Y2 − Y1 2Y3

Λ . (3.30)

• fN (Y ) ∝ Y (2)
3 and fM (Y ) ∝ Y (2)

3 .

Wν = g1((N c L)3SY
(2)
3 )1Hu + g2((N c L)3AY

(2)
3 )1Hu + Λ((N cN c)3S

Y )1

= g1

[
(2N c

1L1 −N c
2L3 −N c

3L2)Y1 + (2N c
3L3 −N c

1L2 −N c
2L1)Y3

+ (2N c
2L2 −N c

1L3 −N c
3L1)Y2

]
Hu + g2

[
(N c

2L3 −N c
3L2)Y1 + (N c

1L2 −N c
2L1)Y3

+ (N c
3L1 −N c

1L3)Y2

]
Hu + 2Λ

[
(N c

1N
c
1 −N c

2N
c
3)Y1 + (N c

3N
c
3 −N c

1N
c
2)Y3

+ (N c
2N

c
2 −N c

1N
c
3)Y2

]
. (3.31)
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The modular weights of N c and L should be kL = kNc = 1. We find MD and MN take

the following form

MN =

2Y1 − Y3 − Y2

−Y3 2Y2 − Y1

−Y2 − Y1 2Y3

Λ ,

MD =

 2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2

(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1

(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3

 vu . (3.32)

We listed the predicted neutrino mass matrices for the above four cases in table 2. Taking

into account the possible structures of the models in the charged lepton and neutrino

sectors discussed in above, we find there are totaly forty minimal neutrino mass models

based on the A4 modular symmetry: ten different Weinberg models and thirty different

type I seesaw models, these models are named as Ai, Bi, Ci and Di (i = 1, . . . , 10). Notice

that the modular weights of the matter fields can be fixed uniquely in each model, and

they are listed in table 3.

4 Phenomenological predictions

In the following, we shall investigate whether the models summarized in table 3 can be

compatible with the experimental data for certain values of the free parameters. It is

notable that some phases are physically irrelevant and can be absorbed by field redefinition.

For example, the coupling constants α, β, γ and γ1 in the charged lepton mass matrix can

be taken to be positive and real by rephasing the right-handed charged lepton superfields

Ec1,2,3, while it is impossible to remove the phase of γ2 simultaneously. As a consequence,

the charged lepton mass matrix will depend on four real parameters β/α, γ1/α, |γ2/α|,
arg (γ2/α) for the models C1,2,3 and only two real parameters β/α, γ/α for the remaining

models Ci (i = 4, . . . , 10) besides the energy scale αvd. As regards the neutrino sector,

each element of the light neutrino mass matrix is a modular form which is a function of

the complex modulus τ . If the neutrino masses originate from the Weinberg operator,

the effective neutrino mass matrix is determined by τ and the overall factor v2
u/Λ. If the

neutrino masses arise from the type I seesaw mechanism, the light neutrino mass matrix

depends on two real parameters |g2/g1|, arg (g2/g1) and the mass scale g2
1v

2
u/Λ (or g2v2

u/Λ)

which controls the absolute neutrino masses, as can seen from table 2. We summarize the

free parameters of each model in table 4.

The values of the free parameters in each model given in table 4 (but not the overall

scales) are determined by the six dimensionless observable quantities:

sin2 θ12, sin
2 θ13, sin

2 θ23,∆m
2
21/∆m

2
3`,me/mµ,mµ/mτ , (4.1)

where ∆m2
21 = m2

2 − m2
1, ∆m2

3` = m2
3 − m2

1 > 0 for NO and ∆m2
3` = m2

3 − m2
2 < 0 for

IO [47].
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Models mass matrices ρEc1,2,3
modular weights

kEc1,2,3 kL kNc

A1 W1,C1 1, 1, 1 1,3,5 1 —

A2 W1,C2 1′, 1′, 1′ 1,3,5 1 —

A3 W1,C3 1′′, 1′′, 1′′ 1,3,5 1 —

A4 W1,C4 1, 1, 1′ 1,3,1 1 —

A5 W1,C5 1, 1, 1′′ 1,3,1 1 —

A6 W1,C6 1′, 1′, 1 1,3,1 1 —

A7 W1,C7 1′′, 1′′, 1 1,3,1 1 —

A8 W1,C8 1′′, 1′′, 1′ 1,3,1 1 —

A9 W1,C9 1′, 1′, 1′′ 1,3,1 1 —

A10 W1,C10 1, 1′′, 1′ 1,1,1 1 —

B1(C1)[D1] S1(S2)[S3],C1 1, 1, 1 0(3)[1],2(5)[3],4(7)[5] 2(−1)[1] 0(1)[1]

B2(C2)[D2] S1(S2)[S3],C2 1′, 1′, 1′ 0(3)[1],2(5)[3],4(7)[5] 2(−1)[1] 0(1)[1]

B3(C3)[D3] S1(S2)[S3],C3 1′′, 1′′, 1′′ 0(3)[1],2(5)[3],4(7)[5] 2(−1)[1] 0(1)[1]

B4(C4)[D4] S1(S2)[S3],C4 1, 1, 1′ 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B5(C5)[D5] S1(S2)[S3],C5 1, 1, 1′′ 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B6(C6)[D6] S1(S2)[S3],C6 1′, 1′, 1 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B7(C7)[D7] S1(S2)[S3],C7 1′, 1′, 1′′ 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B8(C8)[D8] S1(S2)[S3],C8 1′′, 1′′, 1 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B9(C9)[D9] S1(S2)[S3], C9 1′′, 1′′, 1′ 0(3)[1],2(5)[3],0(3)[1] 2(−1)[1] 0(1)[1]

B10(C10)[D10] S1(S2)[S3],C10 1, 1′′, 1′ 0(3)[1],0(3)[1],0(3)[1] 2(−1)[1] 0(1)[1]

Table 3. Summary of the minimal neutrino mass models with the A4 modular symmetry. Notice

that the neutrino masses are described by the Weinberg operator in Ai, and the models Bi, Ci and

Di (i = 1, . . . , 10) are based on the type I seesaw mechanism and they differ in the Dirac neutrino

Yukawa coupling fN (Y ) and the right-handed neutrino mass term fM (Y ).

Models model parameters overall scales

A1 ∼ A3 <τ,=τ, β/α, γ1/α, |γ2/α|, arg (γ2/α) αvd, v
2
u/Λ

A4 ∼ A10 <τ , =τ , β/α, γ/α αvd, v
2
u/Λ

B1[D1] ∼ B3[D3]
<τ,=τ, β/α, γ1/α, |γ2/α|,
arg (γ2/α), |g2/g1|, arg (g2/g1)

αvd, g
2
1v

2
u/Λ

B4[D4] ∼ B10[D10] <τ , =τ , β/α, γ/α, |g2/g1|, arg (g2/g1) αvd, g
2
1v

2
u/Λ

C1 ∼ C3 <τ , =τ , β/α, γ1/α, |γ2/α|, arg (γ2/α) αvd, g
2v2
u/Λ

C4 ∼ C10 <τ , =τ , β/α, γ/α αvd, g
2v2
u/Λ

Table 4. The independent free parameters of the models in table 3, where the physically irrelevant

phases have been absorbed into the fields such that the input parameters take real and positive

values.
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In order to exploring the parameter space fully and efficiently, we use the popular scan

tool MultiNest [50, 51]. This has advantages over traditional approaches, for instance, χ2

optimization by a grid or random sample, using pre-determined ranges and step sizes for

each parameter, where the number of points required scales as kN , where N is the dimen-

sions of the parameter space and k is the number of points chosen for each parameter. In

such a traditional approach, as N increases, the number of points in parameter space rises

exponentially so much so that this approach becomes highly inefficient. Also, key informa-

tion for narrow “wedges” region of parameter space can be missed in such an approach.

In the MultiNest approach followed here, in order to quantitatively measure how

well the models can describe the experimental data, we use a χ2 function defined in the

usual way to serve as a test-statistic for the goodness-of-fit. The central values and 1σ

errors of the oscillation parameters are taken from [47], and the charged lepton mass ratios

me/mµ and mµ/mτ are from [48, 49]. Since the indication of a preferred value of the

Dirac CP violating phase δCP coming from global data analyses is rather weak [47], we

do not include the contribution from δCP to the χ2 function. By scanning the parameter

space, we find the minimum χ2 values, and hence determine the best fit values of the free

dimensionless parameters. Finally, to determine the overall scale factors, we use the two

quantities which have absolute magnitude, i.e. me and ∆m2
21, which are the best measured

dimensional quantities in the charged lepton and neutrino sectors. We randomly vary the

free parameters space in the following regions,

arg (γ2/α), arg (g2/g1) ∈ [0, 2π) ,

β/α, γ/α, γ1/α, |γ2/α|, |g2/g1| ∈ [0, 104] . (4.2)

The complex modulus τ is restricted to lie in the fundamental domain, since the under-

lying theory has the modular symmetry Γ, and consequently vacua related by modular

transformations are physically equivalent [36]. Moreover, under the transformation

τ → −τ?, gi → g?i , (4.3)

the mass matrices become complex conjugated, hence the lepton masses and mixing angles

are unchanged while the signs of both Dirac and Majorana CP phases are reversed [36].

As a consequence, it is sufficient to limit the range <τ > 0 in the numerical analysis.

So in practice, we restrict τ to be in the right-hand part of the fundamental region, as

follows: <τ ∈ [0, 0.5], =τ > 0, |τ | > 1. The predictions of the mixing parameters in the

left-hand part of the fundamental region <τ ∈ [−0.5, 0] can simply be obtained by shifting

the overall signs of the Dirac as well as Majorana CP phases. Hence the sign of the CP

violating phases can not be fixed in our models, and this is generally true in the modular

invariant models. For the sake of readability and simplicity, all the numerical results as

well as figures given in the following are for the modulus τ in the right-hand part of the

fundamental region. We would like to remind the readers that all the numerical results

should come in pairs with opposite CP violating phases although only one of each pair is

shown. We list the final numerical results in the following subsection.
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Models NO IO Models NO IO Models NO IO Models NO IO

A1 8 8 B1 4 4 C1 8 8 D1 4 4

A2 8 8 B2 4 4 C2 8 8 D2 4 4

A3 8 8 B3 4 4 C3 8 8 D3 4 4

A4 8 8 B4 8 8 C4 8 8 D4 8 4

A5 8 8 B5 8 8 C5 8 8 D5 4 8

A6 8 8 B6 8 4 C6 8 8 D6 4 8

A7 8 8 B7 8 8 C7 8 8 D7 4 4

A8 8 8 B8 8 8 C8 8 8 D8 4 4

A9 8 8 B9 4 4 C9 8 8 D9 4 4

A10 8 8 B10 4 4 C10 8 8 D10 4 4

Table 5. The summary of numerical results of all models for NO and IO orderings. “4” signifies the

models whose best-fit values fall in the 3σ range of the global fits of the experimental results [47]. In

contrast, “8” means that the best-fit values of the models exceed the 3σ range of the experimental

data [47]. It can be seen that the models A1 ∼ A10 and C1 ∼ C10 are not consistent with the

experimental data.

4.1 Numerical results of the models

We have extensively scanned over the parameter space of for each model. The results of

the numerical analysis are summarized in table 5. Henceforth we focus on the details of

the numerical results of the some of these models whose predictions can lie in the 3σ range

of the experimental data [47], which are denoted by “4”. Our main interest is the case of

NO ordering, preferred by the latest global fits, in particular those models containing as

few parameters as possible. Thus we provide a detailed numerical analysis of the models

B9, B10, D5 ∼ D10 with eight parameters giving NO ordering (where D10 is the original

model presented in [25] and the other examples are new cases discussed here for the first

time). For the case of IO ordering, we just give one example: model B10. Later we also

present detailed numerical results for the successful cases B1,2,3 which contain two more

free parameters.

The results of the numerical analysis are summarized in tables 6–10. In particular

we highlight the new cases D7 and D9 which have a very small χ2 and predict δCP /π ≈
1.42− 1.45. We display some interesting correlations of the parameters and observables in

these models in figures 1–9, where the colour of the points in these figures indicates the

corresponding χ2 value. Note that many of these figures show very tightly constrained

regions of observable parameters. For models B1,2,3 and D1,2,3 with two more parameters

(which can be see from table 4), we only report the predictions for the observables at the

best-fit point, with the results summarized in table 11. The allowed regions of the input

parameters and observables are determined by requiring all the lepton mixing angles and

the squared mass splittings ∆m2
21 and ∆m2

31 (∆m2
32) within the 3σ intervals [47].

Most of these models B9, B10, D5 ∼ D10 (apart from D5 and D6) predict large (but

allowed) neutrino masses and observable neutrinoless double beta decay. The latest Planck

result on the neutrino mass sum is
∑

imi < 0.12 eV−0.60 eV [52]. Since the upper bound

– 16 –
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Figure 1. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model B9 with NO. The 3σ bounds of the

mixing angles are shown by vertical red dashed lines [47]. Since δCP is less constrained, we allow

the regions to be in the range 0 ∼ 2π, and similarly for α21 and α31. The last panel of |mee| versus

mmin indicates large tightly constrained values for both these neutrino mass observables. Notice

that we restrict the complex modulus τ in the right-hand part of the fundamental region: <τ ∈
[0, 0.5], =τ > 0, |τ | > 1. Consequently the conjugate points with the same mixing angles and

opposite CP phases are not shown here.
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Figure 2. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model B10 with NO. Here we adopt the

same conventions as figure 1.
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Figure 3. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model D5 with NO. Here we adopt the same

conventions as figure 1.
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Figure 4. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model D6 with NO. Here we adopt the same

conventions as figure 1.
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Figure 5. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model D7 with NO. Here we adopt the same

conventions as figure 1.

of the neutrino mass sum sensitively depends on the cosmological model and the choice of

other experimental data, we display the full range 0.12 eV − 0.60 eV as “disfavoured by

cosmology” in the figures. Our predictions for neutrino masses could also be probed in next

generation neutrinoless double beta decay experiments which is the only feasible experiment

having the potential of establishing Majorana nature of neutrinos. The measurement of

neutrinoless double beta decay could provide unique information on the neutrino mass

spectrum, Majorana phases and the absolute scale of neutrino masses. The decay amplitude
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Figure 6. The predictions for the correlations among the input free parameters neutrino mixing

angles, CP violation phases and neutrino masses in the model D8 with NO. Here we adopt the same

conventions as figure 1.
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Figure 7. The predictions for the correlations among the input free parameters neutrino mixing

angles, CP violation phases and neutrino masses in the model D9 with NO. Here we adopt the same

conventions as figure 1.

is proportional to the effective Majorana mass mee with the absolute value [53],

|mee| =
∣∣∣m1c

2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δCP )
∣∣∣ . (4.4)

The neutrinoless double beta decay experiments can provide valuable information on the

neutrino mass spectrum and constrain the Majorana phases. Most of the above models pre-

dict neutrino masses in the “cosmologically disfavoured region” and observable neutrinoless

double beta decay, which can be tested in forthcoming experiments, with the exception of

D5 and D6 which however predict tiny neutrinoless double beta decay, deep into the NO

“hole”, together with small Dirac CP violation.
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Figure 8. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model D10 with NO. Here we adopt the

same conventions as figure 1.

5 Conclusion

In this paper we have provided a comprehensive analysis of lepton masses and mixing in the-

ories with Γ3
∼= A4 modular symmetry, where the single modulus field τ is the unique source

of flavour symmetry breaking, with no flavons allowed, and all masses and Yukawa couplings

are modular forms. Similar to previous analyses, we have discussed all the simplest neutrino

sectors arising from both the Weinberg operator and the type I seesaw mechanism, with lep-

ton doublets and right-handed neutrinos assumed to be triplets of A4. Unlike previous anal-

yses, we have allowed right-handed charged leptons to transform as all combinations of 1, 1′
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Figure 9. The predictions for the correlations among the input free parameters, neutrino mixing

angles, CP violation phases and neutrino masses in the model B10 with IO. Here we adopt the same

conventions as figure 1.
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Model B9 Model B10
NO NO

Best-fit Allowed regions Best-fit Allowed regions

<〈τ〉 0.0003 [0,0.368] 0.0129 [0,0.431]

=〈τ〉 1.824 [1.351,1.856] 1.824 [0.905,1.168]∪ [1.305,1.861]

β/α 0.018 [0.008,0.020] 205.72 [192.39,215.01]∪ [3054.25,4093.49]

γ/α 17.560 [16.046,19.063] 3612.07 [192.40,215.01]∪ [3066.47,4092.98]

|g2/g1| 2.41 [2.40,2.70] 2.41 [2.40,2.71]∪ [2.95,3.86]

arg(g2/g1)/π 0.0096 [0,0.148]∪ [1.989,2] 1.995 [0,0.157]∪ [1.986,2]

αvd/MeV 106.523 — 0.5179 —

(g21v
2
u/Λ)/eV 0.011 — 0.0111 —

me/mµ 0.0048 [0.0046,0.0050] 0.0048 [0.0046,0.0050]

mµ/mτ 0.0564 [0.0520,0.0610] 0.0564 [0.0520,0.0610]

sin2 θ12 0.3096 [0.2750,0.3500] 0.3096 [0.2750,0.3500]

sin2 θ13 0.02263 [0.02046,0.02439] 0.0226 [0.02045,0.02439]

sin2 θ23 0.4637 [0.4180,0.4674] 0.4638 [0.4180,0.4676]

δCP /π 0.510 [0.174,0.514]∪ [1.239,1.492] 1.486 [0.165,0.772]∪ [1.228,1.843]

α21/π 0.068 [0,0.232]∪ [1.784,2] 0.068 [0,0.229]∪ [1.765,2]

α31/π 1.056 [0.937,1.270] 0.948 [0.683,1.311]

m1/eV 0.0430 [0.0228,0.0476] 0.0430 [0.0225,0.0478]

m2/eV 0.0438 [0.0244,0.0484] 0.0439 [0.0241,0.0485]

m3/eV 0.0661 [0.0525,0.0716] 0.0661 [0.0524,0.0716]∑
imi/eV 0.1529 [0.0997,0.1676] 0.1530 [0.0991,0.1679]

|mee|/eV 0.0435 [0.0206,0.0483] 0.0436 [0.0202,0.0483]

χ2
min 30.77 — 30.72 —

Table 6. The predictions for the best-fit values and the allowed ranges of the input parameters

and observables in the models B9 and B10 with NO. We would like to emphasize that the Dirac CP

phase δCP ' 1.49π at the conjugate best fit point τ → −τ∗, gi → g∗i in model B9.

and 1′′ representations of A4, using the simplest different modular weights to break the de-

generacy, leading to ten different charged lepton Yukawa matrices, instead of the usual one.

The above considerations imply ten different Weinberg models, labelled as A1-A10,

and thirty different type I seesaw models, labelled as B1-B10, C1-C10, D1-D10, which we

have analyzed in detail, in the form of extensive sets of figures and tables. The results of

the numerical analysis are summarised in table 5, where we see that fourteen models for

both NO and IO can accommodate the data, indicated by “4”, where the original model

corresponds to the case of D10 and all the other successful models are new. Interestingly,

most of the successful patterns B9, B10, D5 ∼ D10 (apart from D5 ∼ D6) predict tightly

constrained values for the mixing parameters and large neutrino mass observables |mee| and

mmin, together with approximately maximal Dirac phase. There are also other interesting

correlations among the mixing parameters for these models.
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Model D5 Model D6

NO NO

Best-fit Allowed regions Best-fit Allowed regions

<〈τ〉 0.280 [0.248, 0.300] 0.279 [0.0, 0.300]

=〈τ〉 0.960 [0.957, 1.056] 0.960 [0.957, 1.394]

β/α 244.708 [216.359, 266.608] 2774.426 [1954.8, 3290.0]

γ/α 3397.7 [2991.9, 3880.4] 302.315 [118.236, 327.297]

|g2/g1| 1.293 [1.143, 1.308] 1.294 [1.034, 1.314]

arg (g2/g1)/π 0
[0, 0.071] ∪ [0.959, 1.070]

1.000
[0, 0.093] ∪ [0.907, 1.075]

∪[1.941, 2] ∪[1.900, 2]

αvd/MeV 0.4174 — 0.4177 —

(g2
1v

2
u/Λ)/eV 0.01321 — 0.01321 —

me/mµ 0.0048 [0.0046, 0.0050] 0.0048 [0.0046, 0.0050]

mµ/mτ 0.0569 [0.0520, 0.0610] 0.0561 [0.0520, 0.0610]

sin2 θ12 0.3169 [0.3011, 0.3244] 0.3161 [0.2752, 0.3241]

sin2 θ13 0.02189 [0.02045, 0.02439] 0.0220 [0.02045, 0.02439]

sin2 θ23 0.6171 [0.5754, 0.627] 0.5396 [0.4186, 0.5845]

δCP /π 0 [0, 0.411] ∪ [1.796, 2] 1.000 [0.572, 1.330]

α21/π 1.000 [0.959, 1.071] 1.000 [0.888, 1.098]

α31/π 1.000 [0.746, 1.603] 1.000 [0.495, 1.396]

m1/eV 0.0067 [0.0052, 0.0069] 0.0067 [0.0042, 0.0069]

m2/eV 0.0109 [0.0100, 0.0110] 0.0109 [0.0095, 0.0110]

m3/eV 0.0499 [0.0476, 0.0520] 0.0501 [0.0476, 0.0539]∑
imi/eV 0.0675 [0.0628, 0.0699] 0.0677 [0.0613, 0.0717]

|mee|/eV 10−8 [10−8, 10−7] 10−7 [10−8, 10−7]

χ2
min 6.82 — 4.857 —

Table 7. The predictions for the best-fit values and the allowed ranges of the input parameters

and observables in the models D5 and D6 with NO.

The most successful models B9, B10, D5 ∼ D10 all contain six real free parameters and

two overall mass scales, describing the entire lepton sector (three charged lepton masses,

three neutrino masses, three lepton mixing angles and three CP violating phases). These

are the minimal models of Γ3 modular-invariant supersymmetry theories allowed by ex-

periment. The results presented here provide new opportunities for A4 modular symmetry

model building, including possible extensions to the quark sector.
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Model D7 Model D8

NO NO

Best-fit Allowed regions Best-fit Allowed regions

<〈τ〉 0.0428 [0.026,0.5] 0.471 [0.424,0.5]

=〈τ〉 2.105 [1.468,3.006] 0.886 [0.872,0.964]

β/α 0.473 [0.048,339.73] 2646.6 [2327.7,3181.7]

γ/α 0.002 [0.002,1140.03] 208.094 [197.1,217.356]

|g2/g1| 1.154 [1.084,1.385] 1.113 [1.094,1.212]

arg(g2/g1)/π 0.625 [0.368,0.630]∪ [1.368,1.630] 1.390 [0.379,0.630]∪ [1.381,1.631]

αvd/MeV 1702.3 — 0.368 —

(g21v
2
u/Λ)/eV 0.0405 — 0.036 —

me/mµ 0.0048 [0.0046,0.0050] 0.0048 [0.0046,0.0050]

mµ/mτ 0.0565 [0.0520,0.0610] 0.0565 [0.0520,0.0610]

sin2 θ12 0.3100 [0.2750,0.3500] 0.3105 [0.2750,0.3500]

sin2 θ13 0.0224 [0.02045,0.02439] 0.0224 [0.02045,0.02439]

sin2 θ23 0.580 [0.418,0.551] 0.4698 [0.418,0.491]

δCP /π 1.602 [0.307,1.702] 1.522 [0.292,0.652]∪ [1.522,1.687]

α21/π 1.992 [0,0.139]∪ [1.845,2] 0 [0.125,0.155]∪ [1.859,2]

α31/π 0.986 [0.806,1.100] 1.002 [0.898,1.115]

m1/eV 0.0805 [0.0250,0.2437] 0.1003 [0.0505,0.1885]

m2/eV 0.0810 [0.0264,0.2438] 0.1007 [0.0512,0.1887]

m3/eV 0.0949 [0.0537,0.2495] 0.1122 [0.0695,0.1956]∑
imi/eV 0.2564 [0.1051,0.7370] 0.3132 [0.1712,0.5729]

|mee|/eV 0.0805 [0.0235,0.2438] 0.1004 [0.0501,0.1887]

χ2
min 0.0003 — 27.5 —

Table 8. The predictions for the best-fit values and the allowed ranges of the input parameters

and observables in the models D7 and D8 with NO.
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Model D9 Model D10

NO NO

Best-fit Allowed regions Best-fit Allowed regions

<〈τ〉 0.0387 [0.033,0.056]∪ [0.44,0.469] 0.0386 [0.0307,0.1175]

=〈τ〉 2.233 [0.887,0.908]∪ [2.0,2.282] 2.230 [1.996,2.50]

β/α 23.195 [21.24,38.95]∪ [737.8,1599.9] 207.908 [198.963,217.263]

γ/α 410.532 [352.32,700]∪ [2520.65,3983.95] 3673.38 [3254.84,4170.84]

|g2/g1| 1.138 [1.127,1.190] 1.129 [1.094,1.162]

arg(g2/g1)/π 0.373
[0.368,0.386]∪ [0.614,0.632]

0.381
[0.372,0.399]∪ [0.561,0.621]

∪[1.369,1.386]∪ [1.614,1.632] ∪[1.372,1.399]∪ [1.560,1.620]

αvd/MeV 4.585 — 0.512 —

(g21v
2
u/Λ)/eV 0.0476 — 0.0475 —

me/mµ 0.0048 [0.0046,0.0050] 0.0048 [0.0046,0.0050]

mµ/mτ 0.0565 [0.0520,0.0610] 0.0565 [0.0520,0.0610]

sin2 θ12 0.3098 [0.2750,0.3500] 0.3098 [0.2750,0.3500]

sin2 θ13 0.0224 [0.02045,0.02439] 0.0224 [0.02045,0.02439]

sin2 θ23 0.5807 [0.5353,0.6270] 0.580 [0.5456,0.6270]

δCP /π 1.420
[0.352,0.403]∪ [0.579,0.661]

1.604 [1.325,1.455]∪ [1.554,1.700]
∪[1.361,1.428]∪ [1.583,1.629]

α21/π 0.006 [0,0.014]∪ [1.985,1.995] 0.015 [0.009,0.037]

α31/π 1.005 [0.978,1.027] 1.007 [1.003,1.029]

m1/eV 0.0948 [0.0601,0.1044] 0.0946 [0.0658,0.1378]

m2/eV 0.0952 [0.0607,0.1048] 0.0950 [0.0663,0.1381]

m3/eV 0.1073 [0.0765,0.1167] 0.1071 [0.0811,0.1476]∑
imi/eV 0.2974 [0.1973,0.3259] 0.2966 [0.2132,0.4234]

|mee|/eV 0.0949 [0.0599,0.1045] 0.0945 [0.0651,0.1379]

χ2
min 0.0023 — 0.0003 —

Table 9. The predictions for the best-fit values and the allowed ranges of the input parameters

and observables in the model D9 and D10 with NO.
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Model B10

IO

Best-fit Allowed regions

<〈τ〉 0.096 [0, 0.102]

=〈τ〉 0.987 [0.98, 1.049] ∪ [1.052, 1.109]

β/α 79.47 [59.68, 86.37] ∪ [892.67, 1446.02]

γ/α 1232.58 [60.97, 86.34] ∪ [870.16, 1443.84]

|g2/g1| 2.093 [1.038, 2.453]

arg (g2/g1)/π 1.501 [0.422, 0.584] ∪ [1.365, 1.592]

αvd/MeV 1.1669 —

(g2
1v

2
u/Λ)/eV 0.004 —

me/mµ 0.0048 [0.0046, 0.0050]

mµ/mτ 0.0565 [0.0520, 0.0610]

sin2 θ12 0.3100 [0.2750, 0.3500]

sin2 θ13 0.02264 [0.02068, 0.02463]

sin2 θ23 0.584 [0.423, 0.629]

δCP /π 1.458 [0.068, 1.933]

α21/π 0.138 [0, 0.192] ∪ [1.808, 2]

α31/π 0.997 [0, 2]

m1/eV 0.0494 [0.0464, 0.0526]

m2/eV 0.0501 [0.0472, 0.0533]

m3/eV 0.0013 [0.0007, 0.0015]∑
imi/eV 0.1008 [0.0942, 0.1074]

|mee|/eV 0.0475 [0.0439, 0.0516]

χ2
min 10−7 —

Table 10. The predictions for the best-fit values and the allowed ranges of the input parameters

and observables in the model B10 with IO.
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Models
B1 B2 B3 D1 D2 D3

Best-fit values for NO

<〈τ〉 0.485 0.468 0.487 0.101 0.099 0.109

=〈τ〉 1.150 1.222 1.574 1.250 1.428 1.359

β/α 632.056 2610.95 288.448 111.715 143.544 253.671

γ1/α 59.950 218.726 1177.58 1306.5 1109.25 21.804

|γ2/α| 9.452 211.488 1201.62 796.746 801.233 3.549

arg (γ2/α)/π 0.914 0.970 1.121 1.291 0.792 1.407

|g2/g1| 0.992 1.122 1.647 1.109 1.543 1.264

arg (g2/g1)/π 0.701 0.763 0.662 1.917 0.283 0.005

αvd/MeV 2.374 0.613 1.499 1.201 1.597 6.965

(g2
1v

2
u/Λ)/eV 0.0109 0.0103 0.0114 0.0155 0.0122 0.0173

me/mµ 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048

mµ/mτ 0.0565 0.0565 0.0565 0.0565 0.0565 0.0565

sin2 θ12 0.3100 0.3100 0.3100 0.3100 0.3100 0.3100

sin2 θ13 0.02241 0.02241 0.02241 0.02241 0.02241 0.02241

sin2 θ23 0.5800 0.5800 0.5800 0.5800 0.5800 0.5800

δCP /π 0.556 1.391 1.200 1.586 0.320 0.893

α21/π 0.811 1.015 0.997 1.623 1.363 0.927

α31/π 0.403 1.071 0.154 1.167 0.118 1.042

m1/eV 0.0204 0.0162 0.0335 0.0048 0.0212 0.0063

m2/eV 0.0222 0.0183 0.0346 0.0098 0.0229 0.0107

m3/eV 0.0542 0.0528 0.0604 0.0505 0.0545 0.0506∑
imi/eV 0.0969 0.0872 0.1285 0.0651 0.0987 0.0677

|mee|/eV 0.0080 0.0061 0.0131 0.0061 0.0136 0.00036

χ2
min 10−6 10−6 10−6 10−7 10−7 10−6

Table 11. The predictions for the best-fit values of the input parameters and observables in the

models B1,2,3 and D1,2,3 with NO ordering.
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