
J
H
E
P
0
9
(
2
0
1
9
)
0
7
1

Published for SISSA by Springer

Received: March 19, 2019

Revised: July 28, 2019

Accepted: August 30, 2019

Published: September 10, 2019

Entanglement of purification in holographic systems

Peng Liu,a Yi Ling,b,c Chao Niua and Jian-Pin Wud

aDepartment of Physics and Siyuan Laboratory, Jinan University,

Guangzhou 510632, China
bInstitute of High Energy Physics, Chinese Academy of Sciences,

Beijing 100049, China
cSchool of Physics, University of Chinese Academy of Sciences,

Beijing 100049, China
dCenter for Gravitation and Cosmology, College of Physical Science and Technology,

Yangzhou University,

Yangzhou 225009, China

E-mail: phylp@jnu.edu.cn, lingy@ihep.ac.cn, niuchaophy@gmail.com,

jianpinwu@yzu.edu.cn

Abstract: The holographic entanglement of purification (EoP) in AdS4 and AdS-RN

black hole backgrounds is studied. We develop an algorithm to compute the EoP for

bipartite configuration with infinitely long strips. The temperature behavior of EoP is

revealed for small, intermediate and large configurations: EoP monotonically increases

with the temperature for small configurations; while for intermediate configurations, EoP

is configuration-dependent; EoP vanishes for large configurations. Our numerical results

verify some important inequalities of EoP, which we also prove geometrically in Poincaré
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1 Introduction

Quantum entanglement, as a typical phenomenon of quantum system, has been widely

studied in quantum information and condensed matter physics since it is powerful in charac-

terizing quantum phase transitions involving strong correlations or topological order [1–4].

Recent studies also revealed that quantum entanglement plays a key role in understanding

spacetime emergence from a holographic viewpoint [5–8]. Quantum entanglement has been

becoming the core of the interdiscipline of quantum information, condensed matter physics

and quantum gravity.

Information-related quantities, such as entanglement entropy (EE), are usually ex-

tremely difficult to compute when the degree of freedom is large. Remarkably, gauge/

gravity duality provides an elegant geometric prescription of quantum entanglement. The

entanglement entropy of the sub-region on the boundary was proposed to be proportional

to the area of the minimum surface stretching into the bulk of the dual spacetime [5].

The holographic entanglement entropy (HEE) can diagnose holographic phase transitions,

which is one of the most important applications of HEE [9–13].

Although EE is widely accepted as a good measure to characterize the entanglement

of a pure state, it is not suitable for characterizing the entanglement of mixed states. Many

new measures have been proposed to characterize mixed state entanglement, such as the

non-negativity, entanglement of purification and the entanglement of formation [14, 15].
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Mixed states are ubiquitous in both nature and holographic systems. For instance, a

thermal quantum system dual to a black hole system is described by a mixed state. It is

desirable to study the entanglement properties of black hole systems by means of mixed

state entanglement measures.

Recently the entanglement of purification (EoP) was proposed to be proportional to

the area of the minimum cross-section of the entanglement wedge [16, 17]. This prescription

provides a novel tool for the study of the mixed state entanglement in holographic theory.

Recent progress on the holographic EoP can be briefly reviewed as follows. To support

this proposal, EoP in AdS3 and 3-d BTZ black hole was originally analyzed in [16]. EoP

can be computed analytically in both cases because only symmetrical configurations are

considered. In the case of AdS3, the general configuration EoP can be derived by conformal

map; while in the case of (2 + 1)-d planar BTZ black hole system, the special configuration

EoP with A ∪ B = boundary is considered, where the minimum cross-section is relatively

straightforward. Since BTZ black hole is the quotient spacetime of AdS3, the general

configuration EoP in general coordinates can be analytically solved by conformal map. The

holographic prescription satisfies all relevant inequalities of EoP, which indicates that the

minimum cross-section is indeed a good candidate for the holographic EoP. The multi-party

EoP was subsequently studied in [18], where the system was restricted to a symmetrical

configuration to simplify the calculation. EoP for a symmetrical configuration was also

studied in the quenched system [19]. More recently, the EoP has also been studied from

the viewpoint of dual density matrix, entanglement wedge reconstruction and holographic

bit thread [20–25].

The general configuration EoP is not yet fully investigated, and is therefore more

desirable to study than symmetrical configuration EoP. The main reason is that it is difficult

to locate the minimum cross-section in general configurations. There are two obstacles

in calculating EoP for general configurations. First, a group of highly non-linear partial

differential equations must be solved to locate a minimum surface in a gravitational system,

which is often hard to address. Second, it is often burdened with massive calculation to

locate the minimum cross-section in the entanglement wedge. One way to simplify the

calculation is by focusing only on homogeneous backgrounds. In recent years, homogeneous

backgrounds have been studied extensively in the holographic approach. In addition, one

can focus only on general but simple configurations, such as the infinite strips, where the

minimum surface can be obtained by solving ordinary differential equations.

In this paper, we study the EoP of bipartite infinite strips in AdS4 and AdS-RN black

hole background. We design an efficient algorithm to numerically calculate the EoP for

general configurations, by using the symmetry and nature of the system and the EoP.

First, the bipartite EoP in AdS4 spacetime is fully studied by taking advantage of the

global scaling symmetry, which means that we fully reveal the small configuration EoP

properties of any background with asymptotic AdS4. Second, the EoP behaviors with

temperature for small, intermediate and large configurations are discussed for AdS-RN

black hole: EoP monotonically increases with temperature for small configurations; the

temperature behavior of EoP depends on the details of configurations for intermediate

configurations; EoP vanishes as MI vanishes for large configurations and high temperature
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limit. Numerical results in this paper also verify some important inequalities of EoP, which

we also prove in Poincaré coordinate in geometric manner.

The paper is organized as follows: we introduce the concept of entanglement of purifi-

cation and its holographic duality in section 2. In particular, we develop an algorithm to

calculate the EoP for bipartite infinite strip configuration in homogeneous backgrounds.

We then study the EoP behaviors for pure AdS4 spacetime in section 3, AdS-RN black

hole systems in 4. Our conclusion and discussion is given in section 5, and we provide

geometrical proofs of some inequalities of EoP in appendix A.

2 The minimum surface for infinite strip partition

First we introduce the concept and the holographic duality of EoP. We then develop an

algorithm to calculate holographic EoP for bipartite strips by using the EoP’s geometric

interpretation.

2.1 Holographic entanglement of purification

One of the most striking features of quantum mechanics is that subsystems can entangle

with each other. Especially, for a pure state |ψ〉 composed of two sub-systems A and B,

the entanglement between A and B can be captured by observers who have only access to

A or B. The subsystem A behaves as a reduced matrix ρA = TrB (|ψ〉〈ψ|) for observers

constrained to A. The mixed property of ρA comes from the entanglement between A and

B. A natural quantity to measure this entanglement is the von Newmann entropy of ρA,

SA(|ψ〉) = −Tr [ρA log ρA] , (2.1)

which is dubbed as the entanglement entropy (EE). Note that for pure states SA = SB [26].

The entanglement entropy S in field theory diverges with the area law due to the divergences

from the UV degree of freedom. Regularization is therefore necessary to achieve a final

EE for field theory. Given the definition of HEE, it is then readily to define the mutual

information (MI),

I (A,B) := S (A) + S (B)− S (A ∪B) , (2.2)

which measures the entanglement between two separate subsystems A and B. It is clear

that ρAB = ρA ⊗ ρB when I (A,B) = 0. Moreover the MI is always finite since the

divergence in EE is canceled out.

Entanglement entropy can describe pure state entanglement, but is not suitable for

characterizing the mixed state entanglement. The reason is that, not only the entanglement

property but also the mixed property contributes to the entanglement entropy for mixed

states. For example, the entanglement entropy for a product state ρA ⊗ ρB, where the

degrees of freedom in A and B do not entangle, can be non-zero. Many new measures to

diagnose the mixed state entanglement have been proposed [14, 15]. The EoP is one of

the useful measures for mixed state entanglement, which involves the purification of mixed

states. A mixed state ρ onHA⊗HB can be purified by introducing extra degrees of freedom

A′ (entangled with A) and B′ (entangled with B) such that ρ arises as the reduced matrix

– 3 –
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Figure 1. The left plot: The minimum surface for a given width w. The right plot: The minimum

cross-section (green surface) of the entanglement wedge.

from a pure state |ψ〉 ∈ HAA′ ⊗HBB′ . Obviously there exists infinite ways to purify ρ, and

the EoP Ep (ρ) is defined as [27]

Ep(ρ) := min
|ψ〉:ρ=TrA′B′ |ψ〉〈ψ|

SAA′(|ψ〉). (2.3)

The eq. (2.3) shows that the entanglement of purification involves a double minimization

procedure, over all possible purifications and all possible bipartitions of the extra degrees of

freedom. EoP can measure both quantum correlation and classical correlation of two sub-

regions [27]. EoP satisfies several important inequalities. Therefore, its correct holographic

dual must also satisfy these inequalities [16, 28].

The HEE (see the left plot of figure 1) was proposed as the area of the minimum

surface in dual gravity systems [5]. The success of HEE has prompted experts to study the

geometrical duality of more information-related physical quantities, which greatly simplifies

the study of the quantum information in strongly correlated systems. Takayanagi proposed

that the EoP EW (ρAB) is associated with a minimum cross-section ΣAB in connected

entanglement wedge [16], i.e., the configurations with non-zero MI (see the right plot in

figure 1),

EW (ρAB) = min
ΣAB

(
Area (ΣAB)

4GN

)
. (2.4)

EoP vanishes for configurations with disconnected entanglement wedge (zero MI). The

prescription of the EoP with minimum cross-section indeed satisfies all existing inequalities

of EoP [16].

The EoP computation depends on the MI and entanglement wedge, both related to the

minimum surface. Therefore, we discuss how to locate the minimum surface for infinitely

long strip on the boundary by Euler-Lagrange method.

2.2 Computations of minimum surface with arc length parameter

We start with a generic homogeneous background

ds2 = gttdt
2 + gzzdz

2 + gxxdx
2 + gyydy

2, (2.5)

– 4 –
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with z = 0 representing the asymptotic AdS boundary.1 The homogeneity means that all

metric components gµν are only functions of z.

The left plot in figure 1 shows a cartoon of the minimum surface for an infinitely strip.

The area of the minimum surface is given by

AΣ =

∫∫ √
gyy (gxxdx2 + gzzdz2)dy =

∫∫ √
gyy (gxx + gzzz′(x)2)dxdy. (2.6)

Note that the minimum surface is invariant along the direction of y, so one can integrate

out y and calculate the minimum surface for a one-dimensional system. As a result, we

can transform (2.6) into

AΣ = Ly

∫ w

0

√
gyy (gxx + gzzz′(x)2)dx, (2.7)

where L̃y =
∫
dy, and the width of the strip w̃ =

∫
dx. Hence the minimum surface can

be described by z (x). From now on, we will denote the minimum surface as z(x) and call

it the minimum curve or geodesic. Ignoring several common factors, we label the EE as

S̃A ≡
∫ w

0

√
gyy (gxx + gzzz′(x)2)dx for convenience. It is worth noting that the asymptotic

AdS boundary will result in a common divergence in the HEE. We subtract this divergence

to retrieve finite results of HEE. Treating (2.7) as an action, the geodesic is given by the

solution of the Euler-Lagrange equation,

2gyygzzz
′(x)2g′xx + gxx

(
gyy
(
−2gzzz

′′(x)− z′(x)2g′zz + g′xx
)

+ gzzz
′(x)2g′yy

)
+ g2

xxg
′
yy = 0,

(2.8)

where g′## ≡ g′##(z). Eq. (2.8) usually requires numerical treatments due to its high

non-linearity. Given z(0) = ε and z′(0), a numerical solution can be obtained by NDSolve

with Mathematica. With the solution z(x), it is readily to obtain the width w̃ of the strip.

In addition, the arc length parameter s(x) can be obtained by integrating the AΣ from

x = 0 to x.

The above method involves time-consuming numerical integration. Alternatively, (2.8)

can be solved by treating it as a two-variable system with arc length parameter s,

gxxg
′
yy + gyy

(
g′xx − 2gxxgzzz

′2g′yy
)
− g2

yy

[
gxxz

′2g′zz + gzz
(
z′2g′xx + 2gxxz

′′)] = 0, (2.9)

gxxx
′(s)2 + gzzz

′(s)2 − g−1
yy = 0. (2.10)

Again, the g′## ≡ g′##(z), but z′′ ≡ z′′(s), z′ ≡ z′(s), x′ ≡ x′(s) represent derivatives with

respect to arc length parameter s. EOMs (2.9)–(2.10) can be derived from

AΣ = Ly

∫ w

0

√
gyy (gxxx′(s)2 + gzzz′(s)2)ds, (2.11)

gyy
(
gxxx

′(s)2 + gzzz
′(s)2

)
= 1, (2.12)

where (2.12) is the constraint from setting s as the arc length parameter. In this way, the

time-consuming numerical integration is unnecessary.

Once the geodesic is solved, we are ready to calculate the EoP with the area of minimum

cross-section.
1The numerical method we will show next is also applicable to metric with off-diagonal components.
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a b c

p1

p2z'(x)

Ca,b,c

Cb

Figure 2. One bipartite configuration can be specified by three parameters (a, b, c), where a and

c are the width of two infinitely long strips,respectively, while b is the separation. C## represents

the minimum surface ending on configuration #∪#. The red curve z(x) is the geodesic connecting

p1 and p2, and the brown arrow represents the tangent vector z′(x)|p1
.

2.3 Computations of holographic EoP

Given a configuration (a, b, c) with non-zero MI (see figure 2), the EoP corresponds to the

length of the minimum geodesic. In order to locate the minimum geodesic, the first step is

to find the geodesic connecting connecting p1 ∈ Cb and p2 ∈ Ca,b,c. This can be obtained

by the following method. Given a slope z′(x)|p1 at p1 ∈ Cb, a unique geodesic can be

obtained by solving (2.9)–(2.10). For a large enough z′(x)|p1 , the geodesic intersects with

Ca,b,c at p2, and the length l(p1, p2) between p1 and p2 can be read off as |s(p2)− s(p1)|.2

The EoP can thus be obtained by searching for the minimum value of l(p1, p2) in space

(p1 ∈ Cb, p2 ∈ Ca,b,c), or equivalently in space (p1 ∈ Cb, z′(x)|p1). From the above method

we can see that EoP calculation is hard, because it needs to search for the minimum value

in 2-d space, and each search requires cumbersome calculations.

We present some tricks to speed up the computation of EoP. First, we only need to

focus on the area near the bottom of Cb. Due to the singularity of the asymptotic AdS

boundary, the region closer to the boundary contributes more to the minimum surface area.

Therefore, the minimum cross-section will end only on the region near the bottom of the

Cb. This observation is also verified by subsequent numerical computations (see section 3

and section 4). Second, the homogeneity of the background and the infinite length of the

strip can be used to further narrow the search space. The symmetry shows that the EoP

of (a, b, c) is equal to that of (c, b, a), so that we only need to calculate the situation for

a > c. Moreover, a necessary condition for non-zero MI is (a > b) ∧ (c > b).3 Given the

above considerations, we narrow down the search space to,

(a > b) ∧ (c > b) ∧ (a > c) . (2.13)

Furthermore, the homogeneity of the background guarantees that a geodesic is still geodesic

after a translation. This fact can be used to significantly reduce the amount of computation,

2The arc length parameter s(p) of p ∈ (z(s), x(s)) can be obtained by solving s from x(s) = x|p.
3If a < b|c < b then the MI will be zero since lCa,b,c > lCa , lCa,b,c > lCb . Note also that this holds only

for Poincaré patch.
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a b c a b c

Figure 3. Left plot: a demonstration of shifting a curve to cut the Cb and Ca,b,c. The red dots

are endpoints. Right plot: a demonstration of solving curves at different v = z′(0), and use them

to cut Cb and Ca,b,c. The red curves in each plot are the minimal segments connecting each pair of

intersections.

because we can get another geodesic by translating a geodesic, without having to re-solve

the equations of motion (see the left plot of figure 3). Furthermore, for a background

like AdSd spacetime, scaling symmetries can be used to greatly simplify the numerical

computation of EoP, which we will elaborate in section 3.

Since the area near the AdS boundary is divergent, we take a cut off at z = ε at which

the geodesic ends. A geodesic C(x, z′) can then be specified by (x(s), z′(s)) with z(s) = ε.

Note that the cutoff can not be too small because it can lead to an large z′(x), making

numerical findings unreliable. A better approach is to set a finite ε, but we can only get a

fragment of the minimum surface in this way. To get the full solution of z(x), we can solve

eom in a large range of s to get (x(s), z(s)). Setting a large range of s ensures that the

other endpoint of the smallest surface is sufficiently close to the AdS boundary. Then, we

can find the position of the turning point by solving z′(s∗) = 0. The minimum surface is

symmetrical about the line x(s∗), which allows us to mirror the curve from s∗ to the right

endpoint and stitch it to the complete solution of z(x). Notice that the right endpoint

can be arbitrarily close to the boundary, hence we can go beyond the original cutoff ε and

obtain the minimal surface with two endpoints arbitrarily close to the boundary by mirror

method. We show the method to solve the complete solution of z(x) as figure 4. Finally,

we divide the algorithm into the following steps,

1. Given a background and a configuration (a, b, c) with non-zero MI, one finds the

geodesic Cb and Ca,b,c with finite cutoff at certain values of (x(s), z′).

2. Solve the geodesic C(x, v) with a width w1 > c on the boundary such that one

endpoint of the curve falls into the region b, and then find its intersections with Cb
and Ca,b,c at p1 and p2. The area of the cross-section is E(x, v) = |s(p2)− s(p1)|.

3. Translate C(x, v) along x direction with fixed v, and find the local minimum E(v) ≡
minxE(x, v) (see the left plot in figure 3).

4. Vary v and repeat the last two steps at each v such that the global minimum of

– 7 –
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0.5 1.0 1.5 2.0
x

0.2

0.4

0.6

0.8

1.0

z

p: (0.0, 0.2)

c: (1.11, 0.942)

Mirror the right to the left

Figure 4. The cartoon of obtaining the full z(x). The red dashed curve is the minimal curve

started from p = (0, 0.2) (red dot) with z′(x) = 10637.3. The bottom point is at c = (1.11, 0.942)

(purple dot), and the purple dashed line is the segment from c to the right endpoint. The green

curve is the mirror image with respect to the gray vertical line through c. Therefore, the union of

the green line and the purple line is the full solution of z(x).

E(x, v) can be obtained as,

EW (a, b, c) = min
v
E(v). (2.14)

See the right plot in figure 3.

In the subsequent two sections, we apply the above algorithm to explore the property

of EoP over AdS4 spacetime and AdS-RN black hole.

3 EoP for AdS4

The EoP of a small configuration is dictated by the asymptotic boundary, therefore it is

worthwhile to study the EoP in pure AdS4. Compared with AdS3 where the EoP is available

in terms of analytical expression of minimum surface, it is difficult to compute the EoP for

AdS4 analytically because the expressions of analytical geodesics are too complicated for

practical use [29, 30].

Following the algorithm outlined in the previous section, we numerically compute the

EoP of AdS4. In pure AdS4 the equation of motion for the minimum surface reads

z(x)z′′(x) + 2z′(x)2 + 2 = 0. (3.1)

Note that the above equation is invariant under x→ λx, z → λz due to the global scaling

symmetry of pure AdS4. Therefore z1(x) with width w1 can be rescaled to z2(x) with width

w2 by z2(x) = w2/w1z1 (w1x/w2). This is verified with numerics in figure 5. The scaling

symmetry of the area of the minimum surface also significantly simplifies the calculation

of EoP. The HEE reads as

SAdS4 =

∫ x2

x1

√
1 + z′ (x)2

z2
dx. (3.2)

– 8 –
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Figure 5. The small red curve is z1(x) with w1 = 0.536, and the large blue curve is z2(x) with

w2 = 1.20. The red dotted curve is w2

w1
z1

(
w1x
w2

)
, which matches perfectly with z2(x).

It is then readily seen that SAdS4 → SAdS4/λ, and hence SAdS4 has scaling dimension [−1].

Thanks to the scaling symmetry of SAdS4 , one only needs to solve one curve numerically

and then rescale it to any other case. Obviously, the scaling symmetry can also simplify

the computation of EoP for general AdSd.

Subsequently, we deduce the condition for non-zero MI since the EoP is non-zero only

when MI is non-zero. The bipartite configuration can be specified by (1, b, c) due to the

scaling symmetry. Using the scaling relation SAdS4 ∼ 1/w we see that the non-zero MI

requires4

1

c
+ 1 <

1

c+ b+ 1
+

1

b
. (3.3)

Solving (3.3) we obtain

(0 < b < 1) ∧

(
c >

1

2

√
b3 − 3b2 − 5b− 1

b− 1
− 1

2
(b+ 1)

)
. (3.4)

Therefore for pure AdS4 the EoP is only non-zero in parameter space (b, c) satisfying (3.4)

(see figure 6). It is worth to mention that for more complex systems, such as black hole

systems, we may need to directly use numerical calculations to determine the condition for

MI non-zero. Next, we explore the details of EoP.

We demonstrate the EoP behavior with configurations in figure 7, from which we can

see that the EoP increases with c and decreases with b. This behavior can be understood

since the entanglement usually decays with the increase of the separation, and increases

with the increase of the size of sub-region.

We also notice that the MI is continuous, while the EoP undergoes a disentangling

phase transition at the point where MI starts to vanish. And we can also see that EoP

is always greater than one half of MI. This is actually an important inequality that EoP

satisfies [16].

4Notice that after subtracting a common divergence 1/ε with ε the cutoff, the non-zero part of the HEE

is always negative. Hence (3.3) is required to obtain the non-zero MI.

– 9 –
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0.2 0.4 0.6 0.8
b

0.5

1.0

1.5

2.0

2.5

3.0

c

Non-zero MI region

Figure 6. The purple shaded region is the configuration space with non-zero MI for AdS4.

EW

MI/2

0.5 1.0 1.5 2.0 2.5 3.0
c

0.5

1.0

1.5

a=1, b = 0.627

EW

MI/2

0.2 0.4 0.6 0.8
b

2

4

6

8

a = 1, c = 0.908

Figure 7. Left plot: EoP and MI/2 along c at (a, b) = (1, 0.627). Right plot: EoP and MI/2

along b at (a, c) = (1, 0.908).

The above phenomena actually reflect three important inequalities of EoP, which we

prove in geometrical manner in appendix A. We also demonstrate the EoP EW over the

full parameter space (b, c) in figure 8.

4 EoP for AdS-RN black hole

In this section, we explore the EoP over the background of AdS-RN black hole. First we

discuss the EoP computation in AdS-RN black hole. And then we explore the EoP at

small, intermediate, and large configurations respectively.

The AdS-RN black hole geometry reads as [31]

ds2 =
1

z2

[
− (1− z)U (z) dt2 +

dz2

(1− z)U (z)
+ dx2 + dy2

]
,

At = µ (1− z) ,

(4.1)

where U (z) = 1 + z + z2 − µ2z3, and Aa is the gauge field. The asymptotic boundary is

z = 0 and the horizon locates at z = 1. AdS-RN black hole is a two-parameter system(
T̃ , µ

)
with T̃ = 6−µ2

8π the Hawking temperature, and µ the chemical potential. Moreover,

– 10 –
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b

c

ln(EW)

0.33
0.66
0.99
1.32
1.65
1.98
2.31
2.64
2.97
3.30

Figure 8. The contour plot of lnEW (b, c) over (b, c) space. The purple curve corresponds to the

critical line of non-zero MI from the right plot of figure 6.

the system is invariant under the rescaling xα → λxα and µ → µ/λ, g## → g##/λ
2.

Adopting µ as the scaling unit, the scaling-invariant system only has one free parameter

T = T̃ /µ. We shall only focus on scaling-invariant quantities throughout this paper. The

scaling-invariant width of a strip and HEE are w ≡ w̃µ and S ≡ S̃/µ, respectively. Note

that w̃ =
∫
dx and S̃ represent the dimensionfull width and HEE, respectively. In this

paper, we label the dimensionful quantities with tilded symbols, while the dimensionless

quantities are labeled as symbols without a tilde.

The minimum surface in AdS-RN black hole has to be solved case by case since the

global scaling symmetry is lost. For a generic black hole system, the minimum surface

approaches the horizon and becomes more singular as the width of the strip increases

(figure 9), which poses two difficulties for solving the minimum surface. First, the numerical

computation of geodesic and other related quantities could fail easily due to the coordinate

singularity at the horizon. This difficulty can be overcome by implementing the following

coordinate transformation in radial direction.

z → 1− ẑ2, (4.2)

where z = 0 ↔ ẑ = 1, z = 1 ↔ ẑ = 0. Second, the singular behavior of the minimum

surface prevents us from solving arbitrarily large minimum surface. Despite the absence

of large minimum surface, interesting behaviors can still be revealed by relatively small

minimum surfaces.

Next, we study the EoP in three different ranges of configurations: small, intermediate

and large configurations. We refer the small configurations to the situations when the AdS

controls the leading order of the HEE. The HEE behavior gradually deviates from that of

– 11 –
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Figure 9. Each blue curve is z(x) with different widths, and the black horizontal line is the horizon

of AdS-RN black hole. Apparently the curve approaches the horizon as w increases.

the AdS when increasing the size of the configuration. When the HEE behavior begins

to deviate significantly from the HEE behavior of the AdS, we refer the configurations

at this time as the intermediate configurations. When further increasing the size of the

configuration, we can expect the behavior of HEE at certain size of configurations to be

similar to the behavior of HEE at infinitely large configurations, which we refer to large

configurations.

The terms “small/intermediate/large configurations” can also be described in a more

precise way. As stated in the previous paragraph, the size of the subregion is determined by

whether the corresponding minimum surface is close to the horizon. This can be expressed

by comparing the width w with the horizon radius rh. In this paper, the scaling-invariant

horizon radius rh/µ can be solved as,

rh
µ

=
1

6

(√
16π2T 2 + 3 + 4πT

)
. (4.3)

Therefore, for a configuartion (a, b, c), we can refer the “small/intermediate/large configu-

ration” with 
wb �

rh
µ
, wa∪b∪c �

rh
µ

small

wb �
rh
µ
, wa∪b∪c ∼

rh
µ

intermediate

wb ∼
rh
µ
, wa∪b∪c ∼

rh
µ

large

. (4.4)

4.1 Small configurations

The EoP for small configuration is dominated by the asymptotic AdS geometry. The

sub-leading terms come from the deviation from AdS, which results from the operator

deforming the AdS. The deformation effect on EoP of small configuration is thus encoded

in sub-leading terms, which can be analyzed by asymptotic expansion.

First we discuss the effect of temperature on HEE for small configurations, from which

the behavior of EoP can be deduced. The expression (2.11) of AdS-RN black hole differs

– 12 –
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from the case of AdS4 only at gzz,

δgzz =
1

z2

1

(1− z) (1 + z + z2 − µ2z3)
− 1

z2
=

z + µ2(1− z)z

1− z3 (1 + µ2(1− z))
. (4.5)

At width w̃, the HEE of RN differs from HEE of AdS as,

δS̃ = S̃(AdS-RN) − S̃(AdS) =

∫ w̃

0

z2z′(x)2δgzz

2z2
√
z′(x)2 + 1

dx+

∫ w̃

0
EOMAdSδz(x)dx

=

∫ w̃

0

z2z′(x)2δgzz

2z2
√
z′(x)2 + 1

dx,

(4.6)

where δz(x) is the deformation of the minimum surface z(x) in response to δgzz.

Eq. (4.6) indicates that only the metric deformation accounts for the temperature behavior

of the HEE.

We now explore the effect of temperature on HEE by studying

∂S

∂T

∣∣∣∣
w

. (4.7)

The HEE for AdS-RN is,

S(AdS-RN) = S(AdS) + δS. (4.8)

It is easily seen that ∂SAdS
∂T = 0, which leaves us with

∂S

∂T

∣∣∣∣
w

=
∂δS

∂T

∣∣∣∣
w

=
∂
(
δS̃/µ

)
∂µ

∣∣∣∣∣∣
w

∂µ

∂T
=

(
1

µ

∂δS̃

∂µ

∣∣∣∣∣
w

− δS̃

µ2

)
∂µ

∂T
. (4.9)

Notice also that in AdS-RN black hole,

∂µ

∂T
= 4π

[(
1 +

3

8π2T 2

)−1/2

− 1

]
< 0. (4.10)

δS̃ is a function of w̃ and µ: δS̃ = δS̃(w̃, µ), therefore we have

∂δS̃

∂µ

∣∣∣∣∣
w

=
∂δS̃

∂w̃

∣∣∣∣∣
µ

∂w̃

∂µ
+
∂δS̃

∂µ

∣∣∣∣∣
w̃

= − w
µ2

∂δS̃

∂w̃

∣∣∣∣∣
µ

+
∂δS̃

∂µ

∣∣∣∣∣
w̃

, (4.11)

which follows from that ∂w̃
∂µ

∣∣∣
w

= ∂(w/µ)
∂µ

∣∣∣
w

= − w
µ2

. Therefore, by inserting (4.6) we have,

∂S

∂T

∣∣∣∣
w

=

− w
µ2

∂δS̃

∂w̃

∣∣∣∣∣
µ

+
∂δS̃

∂µ

∣∣∣∣∣
w̃

− δS̃

µ2

 ∂µ

∂T

=

[
−
w
(
µ2/2 + 1

)
µ3

∂Ω

∂w̃
+

(
1

2
− 1

µ2

)
Ω +O

(
z2
)] ∂µ

∂T
.

(4.12)
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Figure 10. HEE behavior with temperature at different widths.

with Ω ≡
∫ z(x)z′(x)2

2
√
z′(x)2+1

dx > 0, and O
(
z2
)

represents the contribution from the second order

expansion of z. The integral Ω ∼ [w̃]2, therefore ∂Ω
∂w̃ = 2Ω/w̃. Hence (4.10) and (4.12) leads

to that,
∂S

∂T

∣∣∣∣
w

= −Ω

(
1

2
+

3

µ2

)
∂µ

∂T
> 0. (4.13)

Therefore we arrive at the conclusion that ∂TS > 0. This is also testified by numerical

results in figure 10.

Now we point out that EoP for small configurations monotonically increase with tem-

perature as well. The EoP for small configurations of AdS-RN black hole can be ex-

panded as

E
(AdS-RN)
W = E

(AdS)
W + δEW , (4.14)

where δEW is the correction of AdS-RN to pure AdS4. The geodesic for small configurations

in AdS-RN can be seemed as unchanged compared with AdS case, as we argued above.

Therefore, the δEW can be expanded as

δEW = δE
(csd)
W + δE

(md)
W , (4.15)

where δE
(csd)
W is the contribution from deformation of the minimum cross-section, and

δE
(md)
W is the contribution from the metric deformation. Since E

(AdS)
W is the area of the

minimum cross-section, any deformation to the cross-section will only increase the EoP,

therefore δE
(csd)
W > 0. To minimize the δS is to take δE

(csd)
W = 0, i.e., the minimum

cross-section of AdS-RN is the same as that of AdS4. Therefore the δEW comes only

from the metric deformation. That is to say, we only need to study the influence of the

metric deformation on the area of minimum cross-section (one line segment) in the AdS

space. Notice that the HEE is the area of the minimum surface, and we also proved

that the HEE monotonically increases with temperature under the influence of the metric

deformation. Therefore, following this argument, we arrive at the conclusion that EoP for

small configurations monotonically increase with temperature.

Throughout this paper we focus on the scale-invariant quantities. Some recent studies

on dimensional EoP have come to different conclusions from our paper. This is actually as
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Figure 11. EoP EW vs T at various (a, b, c). Different curves correspond to different c at (a, b) =

(2, 0.6) (left plot) and (a, b) = (2, 0.8) (right plot).

expected, as the scale invariance is essential to our conclusions. For example, if we focus

only on dimensionful quantities, eq. (4.13) becomes,

∂S

∂T

∣∣∣∣
w

=
Ω

2

∂µ

∂T
< 0. (4.16)

Therefore, the dimensionful EoP now decrease with temperature, following the arguments

of deducing the temperature behavior of dimensionless EoP.

The above analysis can be directly applied to other black hole systems, because the

deformation of the AdS black hole can be studied by the asymptotic expansion. Despite the

simple monotonic behavior in AdS-RN black hole, the EoP behavior with system parameter

for small configurations could be more diverse in other holographic models.

Asymptotic expansion does not apply to the intermediate configurations, so we can

only study it directly using numerical methods.

4.2 Intermediate configurations

Next we numerically compute the intermediate configurations EoP for AdS-RN black hole.

We intend to investigate the behavior of EoP with temperature at a fixed configuration

(a, b, c) and then consider the dependence of EoP on configuration parameters at fixed

temperature.

Despite the monotonic temperature behavior for small configurations, the intermediate

configuration EoP presents more diverse phenomena. Figure 11 shows EW vs T at different

configurations. For (a, b) = (2, 0.6), the EoP first decrease with temperature and then

increase with temperature (see the left plot of figure 11); while for (a, b) = (2, 0.8) EoP

increases with temperature monotonically (see the right plot of figure 11). Therefore the

temperature behavior is configuration-dependent. The reason for configuration dependent

EoP behavior is that the definition of EoP itself is complicated. Like many other quantum

information-related quantities, there may be a complex relationship between EoP itself and

system parameters [2].

Another interesting phenomenon is that the temperature behavior of EoP is more

sensitive to the value of b than the value of a and c. We can see from figure 11 that the

temperature behavior of the different curves (corresponding to different c values) in each

plot are similar. However, by directly comparing the left and right plot (where b values are
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Figure 12. EoP and MI/2 at different configurations. Left plot: EW vs c at (a, b, T ) =

(15, 1, 0.005). Right plot: EW vs b at (a, c, T ) = (15, 5, 0.005).

different), it can be found that their temperature behavior are different. This is expected

since the EoP is mainly contributed from the region near the bottom of Cb. During phase

transitions, however, the EoP could be sensitive to a and c since phase transition are usually

accompanied by deformations of near horizon geometry, at which the Ca,b,c locates.

Next we study the EoP dependence on configurations (see figure 12). Again, we find

that EW increases (decreases) with c (b), and EoP is always greater than one half of the MI.

The disentangling phase transition of EoP can also be observed when MI starts to vanish.

4.3 Large configurations

For large configurations, where (a, b, c) are all large, the EoP vanishes as the MI vanishes.

The geodesics for large subregions are close to the horizon (see figure 9), hence the HEE will

be dominated by the thermal entropy. Subsequently, the MI for large configurations must

vanish5 and result in vanishing EoP. This property also naturally results from statistical

mechanics. For large sub-regions, EE is mainly contributed by thermal entropy because

thermal entropy exhibits volume law, while EE exhibits area law. Therefore the density

matrix of two separate large subsystems tends to be a product of thermal states of each

subsystem, and leads to the vanishing of MI and EoP.

The EoP and MI also vanishes in high temperature limit. The high temperature limit

µ→ 0 indicates that a finite w corresponds to an infinite w̃. Therefore Ca, Cb, Cc, Ca,b,c for

finite (a, b, c) are all close to the horizon, and the corresponding HEE are again dominated

by thermal entropy. The MI and EoP will vanish, following the explanation of the large

configuration limit. Therefore it is the same gravitational nature that leads to the vanishing

EoP in high temperature limit, and in large configuration limit. From the viewpoint of

statistical mechanics, the total density matrix of bipartite systems at large temperatures

can be approximated as direct products of the thermal density matrix of each subsystem.

Therefore, the EoP and MI will vanish in high temperature limit.

5For large configuration limit, all of Ca, Cb, Cc, Ca,b,c are close to the horizon and the HEE are dictated

by the thermal entropy. Consequently, S(A ∪ B ∪ C) + S(B) ' S(A) + 2S(B) + S(C) > S(A) + S(C).

Therefore we have S(A ∪ C) = S(A) + S(C) and I(A,C) = 0. Strictly speaking, we should also take into

account the area of the geodesic from boundary to the horizon, since the HEE for large configurations are

contributed from the near horizon region and the straight line from the boundary to the horizon. But this

contribution is small compared to the thermal entropy for large configurations, and hence can be neglected.
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5 Discussion

We have investigated the EoP for general strip configurations in AdS4 spacetime and AdS-

RN black hole in this paper. In both cases we have found that EoP increases (decreases)

with subregions (separation), and EoP is greater than half of the MI. For AdS4 the scaling

symmetry simplifies the computation. For AdS-RN black hole we study the EoP behavior

for three different ranges of configurations: the EoP monotonically increase with tempera-

ture for small configurations; for intermediate configurations the temperature behavior of

EoP depends on configurations; for large configuration, and also for high temperature limit,

the EoP vanishes. Our work offers a general discussion on EoP in holographic black hole

systems, which can inspire more investigations in the future. Next, we point out several

topics worthy of further exploration.

Using the techniques developed in this paper, we can study the EoP in more general

holographic systems. First, the discussion on EoP for AdS4 can be immediately general-

ized to general AdSd. Second, our algorithm can be applied to a general multi-partition

configuration on any homogeneous background. Moreover, general configuration EoP is

also worthy to study, but this usually involves in solving complicated partial differential

equations. More importantly, the intimate connection between entanglement and physics

suggests that EoP is closely related to the physical properties of holographic systems. For

example, the HEE exhibits interesting phenomena during a thermal phase transition [32].

It can be expected that EoP in these thermal phase transitions will also have important

applications. For quantum phase transitions, we can expect that the system will exhibit

novel behaviors in zero temperature limit, such as the scaling behavior of EoP in critical

region. EoP can also be used to explore the properties of dynamic systems. We plan to

explore above directions in the future.

Acknowledgments

We are very grateful to Long Chen, Wu-Zhong Guo, Peng-Xu Jiang, Wei-Jia Li for helpful

discussions and suggestions. Peng Liu would like to thank Yun-Ha Zha for her kind encour-

agement during this work. This work is supported by the Natural Science Foundation of

China under Grant No. 11575195, 11875053, 11805083, 11847055, 11905083 and 11775036.

A Geometrical proof of inequalities related to EoP

In [16] several inequalities related to EoP have been discussed and proved in global coordi-

nates. The satisfaction of these inequalities for EoP is one of the major motivations for the

proposal of holographic EoP. Here we prove three important inequalities of EoP directly

in Poincaré coordinates. These inequalities have been verified by the numerical results for

AdS4 and AdS-RN black hole as presented in previous sections.

1.

EW (a, b, c+ δc) > EW (a, b, c) with δc > 0 (A.1)
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Figure 13. Left plot: the cartoon for the proof of inequality (A.1). Two blue curves are Cb, Ca,b,c

respectively, and the dashed curve in light blue is Ca,b,c′ . The red and pink curve are the minimum

cross-sections for (a, b, c), (a, b, c′) with EoP as l (c) , l (c′), respectively. The blue dashed curve is

the segment of the minimum cross-section for (a, b, c) with length l (c′)
(1)

. Right plot: the cartoon

for the proof of inequality (A.2). Two blue curves correspond to Cb, Ca,b,c respectively. The dashed

light blue curve is Ca,b′,c. The red and pink curve are the minimum cross-sections for (a, b′, c′),

(a, b, c) with EoP as l (b′) , l (b), respectively. The blue dashed curve is the segment of the minimum

cross-section for (a, b, c) with length l (b′)
(1)

.

For a fixed (a, b), when increasing c→ c+ δc, the Ca,b,c+δc encapsulates larger region

than Ca,b,c. Therefore, EoP will increase with c. The proof is quite transparent, as

illustrated in figure 13. Suppose l(c) > l(c′), then l(c) > l(c′)(1), which contradicts

with the fact that l(c) is the minimum cross-section. Therefore, there must be l(c) 6
l(c′). This is equivalent to EW

(
ρA(BC)

)
> EW (ρAB) as discussed in [16].

2.

EW (a, b+ δb, c− δb) 6 EW (a, b, c) with δb > 0 (A.2)

This inequality says that when increasing b to b′ with fixed a+b+c, the entanglement

wedge of (a, b′, c) is smaller than that for (a, b, c). Therefore, EoP will decrease with

increasing b. If l(b′) > l(b), then l(b′) > l(b)(1), which contradicts with the fact that

l(b′) is the minimum cross-section.

3. The relation to MI:

EW (ρAB) = l(2)
m >

I (A : B)

2
=

1

2
(l1 + l3 − l2 − l4) . (A.3)

The EoP EW (a, b, c) = l
(2)
m (the length of the red dashed curve in figure 14), which

is a segment of lm. Then we have the following relation,

EW (ρAB) = l(2)
m = lm − l(1)

m > lm −
l2
2

=

(
lm +

l4
2

)
− l4

2
− l2

2
. (A.4)

The first inequality in (A.4) is derived from l1m 6 l2/2, which can be easily proved.

Therefore the proof is completed if lm + l4
2 > l1+l3

2 . This is readily seen if we break

the l4 into l
(1)
4 and l

(2)
4 . It is seen that l

(1)
4 + lm > l1, l

(2)
4 + lm > l3. Therefore (A.3)

is proved.
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Figure 14. A cartoon for the proof of inequality (A.3). Two purple curves are minimum surfaces

with disconnected entanglement wedge, and two blue curves are minimum surfaces with connected

entanglement wedge. l1, l2, l3, l4 are the lengths of the curves of the geodesic Ca, Cb, Cc, Ca,b,c re-

spectively. The green curve is the geodesic intersecting with Cb and Ca,b,c from which the minimum

cross-section is obtained. The length of the green curve is lm and the EoP of configuration (a, b, c)

is l
(2)
m .
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