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formal gauge theory has a strongly coupled locus on the conformal manifold at which a

different, dual, conformal gauge theory becomes a good weakly coupled description. On

the other hand we discuss the possibility that strongly coupled theories, e.g. SCFTs in

class S, having exactly marginal N = 1 deformations admit a weakly coupled gauge theory

description on some locus of the conformal manifold. We present a simple algorithm to

search for such dualities and discuss several concrete examples. In particular we find con-

formal duals for N = 1 SQCD models with G2 gauge group and a model with SU(4) gauge

group in terms of simple quiver gauge theories. We also find conformal weakly coupled

quiver theory duals for a variety of class S theories: T4, R0,4, R2,5, and rank 2n Minahan-

Nemeschansky E6 theories. Finally we derive conformal Lagrangians for four dimensional

theories obtained by compactifying the E-string on genus g > 1 surface with zero flux. The

pairs of dual Lagrangians at the weakly coupled loci have different symmetries which are

broken on a general point of the conformal manifold. We match the dimensions of the con-

formal manifolds, symmetries on the generic locus of the conformal manifold, anomalies,

and supersymmetric indices. The simplicity of the procedure suggests that such dualities

are ubiquitous.
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1 Introduction

Let us consider conformal N = 1 supersymmetric gauge theories in four dimensions. Here

by conformal N = 1 gauge theories we shall mean gauge theories with a conformal manifold

passing through zero gauge couplings.1 A variety of such models have been widely studied

with the important examples being N = 4 SYM and, say, N = 2 SU(N) Nf = 2N SQCD.

To build such theories one should first choose the matter content so that the one loop

beta functions for all the gauge couplings and the gauge anomalies will vanish. Turning

on the gauge coupling by itself is a marginally irrelevant deformation. However, when

supplemented with superpotential terms in certain cases one can construct exactly marginal

deformations parametrizing the conformal manifold Mc of the theory. The dimension of

the conformal manifold, dimMc can be computed using a variety of techniques [4, 5].

Theories residing at different points of the conformal manifold are different SCFTs. For

example generic correlation functions computed for such models vary with the position on

the conformal manifold. However some quantities are invariants of such a position. These

quantities involve conformal anomalies a and c, supersymmetric protected quantities (which

often can be encoded in different indices), symmetry on generic points of the conformal

manifold GF , and ’t Hooft anomalies for these symmetries. The symmetry of the theories

1Conformal supersymmetric theories have a rich history dating back to, e.g., [1–3].
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can enhance on sub-loci of the manifold, however the symmetry on a generic point is

expected to be invariant. We will refer to the properties of SCFTs which do not change on

the conformal manifold as the Mc invariants.

An interesting question about such conformal maniflolds is whether cranking up the

coupling constants one can arrive at special loci where an alternative weakly coupled de-

scription is more suitable. This phenomenon is known as conformal duality. Well known

examples include the N = 4 SYM and N = 2 SU(N) Nf = 2N SQCD.

The dual theory can be again a gauge theory or it can be a more abstractly defined

strongly coupled SCFT [6, 7]. Alternatively, we know of a huge variety of strongly coupled

SCFTs which upon conformally gauging some symmetries are dual to usual gauge theories.

A natural question is then whether before gauging the global symmetries these SCFTs

reside on a conformal manifold of some conformal gauge theory. A necessary condition for

this is that these SCFTs admit exactly marginal deformations.

In this paper we give a plethora of novel examples of dualities of this type. We discuss

both non trivial conformal dualities between gauge theories, and dualities between known

strongly interacting SCFTs and simple gauge theories. In fact we present a very simple

algorithm to search for such dualities. We stress that a given model of the type discussed

here might or might not have a simple conformal dual, however applying the algorithm we

find that the conformal dualities are quite ubiquitous.

The structure of this article is as follows. We start with a brief description of the

algorithm in section two. In section three we apply it to construct conformal duals of

simple gauge theories. In section four we discuss strongly coupled N = 2 SCFTs, and

in section five we discuss N = 1 SCFTs obtained by compactifications of the rank one

E-string theory. We conclude in section six with some general comments.

2 The basic idea

Given a conformal theory T1 with conformal manifold Mc and the Mc invariants we can

systematically seek for a dual conformal gauge theory T2 which might reside on the same

conformal manifold. Such a theory might or might not exist, however if it does exist the

properties of this model are severely constrained. First, we look at conformal anomalies of

T1, which is part of the invariant information, and define,

a = avnv + aχnχ , c = cvnv + cχnχ . (2.1)

Here we define the contribution to the conformal anomalies of vector and chiral fields as

(av, cv) = ( 3
16 ,

1
8) and (aχ, cχ) = ( 1

48 ,
1
24). The numbers nv and nχ are the effective numbers

of vectors and chirals which the theory T1 has. The dual conformal gauge theory should

have these numbers of vector and chiral fields. If a and c determine these numbers to

be not integer a conformal dual gauge theory cannot exist. Also nv must be the sum of

dimensions of non-abelian gauge groups, which is quite restrictive for small nv. Next, we

search over all the conformal gauge theories with the given nv vectors and nχ chiral fields

for models such that all the gauge couplings have vanishing one loop β functions. The

number of possibilities to search through is finite and thus we will find some finite number
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of models which satisfy this constraint. Next, we should verify that these models have

a conformal manifold and that its dimension, dimMc, and symmetry on a generic locus,

GF , match the ones of T1. The computation of the dimension and the symmetries is most

efficiently done by listing all the marginal operators λα at the free point, determining the

symmetry at the free point Gfree, and then computing the Kahler quotient {λα}/GC
free [5]

(see also [8]). Note that in principle we need to include in this counting gauge couplings

and anomalous symmetries, but these typically cancel each other in the quotient. Finally,

we should match all the remaining invariant information which includes at the minimum

’t Hooft anomalies for GF and the protected spectrum. If a model satisfying all these is

found it is a candidate for a dual description. We stress that this very systematic algorithm

is not guaranteed to produce a dual theory, as such a conformal gauge theory might simply

not exist, but if it does exist the algorithm will find it. Surprisingly we do find that many

theories have such a conformal gauge theory dual.

We will apply this algorithm in three cases. First, we will search through low values of

nv for conformal gauge theories with a simple gauge group. Second, we will consider some

strongly interacting N = 2 theories of class S [6, 9] obtained by compactifications of AN−1
(2, 0) theories on Riemann surfaces with low values of N and seek for dual conformal gauge

theories for these. Third, we consider strongly interacting N = 1 theories obtained by

compactifications of the 6d rank 1 E-string SCFT on Riemann surfaces. Before discussing

the examples let us make some general comments.

Here we consider various examples of dualities between two conformal theories that

arise at different points on an N = 1 conformal manifold. The examples fall into three

types. In the first type both dual theories are Lagrangian N = 1 conformal gauge theories.

We want to consider the simplest case so we take one side to be just one simple gauge

group with matter such that the one loop beta function vanishes and there is a conformal

manifold. Ideally we would like the other side to also be a single simple gauge group,

however, in general it is hard to achieve this. This follows as the two dual theories must

have the same a and c conformal anomalies, which for conformal gauge theories translates

to equal numbers of vectors and chiral fields. Generally the dimension of each group is

unique with the general exception of USp(2N) and SO(2N+1) and a few sporadic ones like

E6, USp(12) and SO(13). As a result we do not usually expect a simple gauge group to be

dual to another simple group unless it is the exact same group, modulo a few exceptions.

The case of N = 4 SYM with gauge groups USp(2N)/SO(2N + 1) is an example realizing

one of these exceptions.

The second type of duality we consider has on one side a Lagrangian N = 1 gauge

theory while on the other side we have an N = 2 SCFT. Here we shall concentrate

on the more interesting case where the N = 2 SCFT does not have a manifestly N = 2

Lagrangian, though in principle the same type of dualities may also be found in Lagrangian

N = 2 SCFTs. First, for such a duality to be possible the N = 2 SCFT must have an

N = 1 only preserving conformal manifold. Such conformal manifolds for N = 2 SCFTs

are relatively unstudied so we first would like to address under what conditions do these

appear. First, consider the N = 2 SCFT as an N = 1 SCFT. In that view point, the

SCFT has an U(1)t × G global symmetry where G is the N = 2 flavor symmetry and
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U(1)t is the commutant of the N = 1 U(1)R̂ R-symmetry in the N = 2 U(1)r × SU(2)R
R-symmetry. In Lagrangian theories, it is the symmetry that acts on the adjoint chiral in

the N = 2 vector multiplet, let us denote it as Φ, with charge −1 and on the chiral fields in

the hypermultiplet, let us denote them as χ1, χ2, with charge 1
2 . In order to have an N = 1

only preserving conformal manifold we must have marginal operators with a non-trivial

Kahler quotient under both U(1)t and G.

We next want to examine what types of marginal operators we can expect for N = 2

SCFTs. For simplicity we consider here only Lagrangian theories. We expect this to also

hold for non-Lagrangian theories that can be related to Lagrangian theories via gauging

some of their symmetries, which will be the ones we consider in this article. It might be

interesting to study this using N = 2 superconformal representation theory, but we reserve

this for future study. The marginal operators then are those built from three chiral fields.

We can generally separate them to three classes: Coulomb branch operators, Higgs branch

operators, and mixed branch operators. The first class, Coulomb branch operators, are

the ones built solely from the adjoint chiral in the N = 2 vector multiplet, and are usually

of the form Tr(Φ3) in Lagrangian theories. More generically, these are dimension three

Coulomb branch operators. They have charge −3 under U(1)t and are uncharged under G.

The second class are the Higgs branch operators, which in Lagrangian theories are

dimension three operators built solely from chiral fields in the hypermultiplets. In more

general theories they are Higgs branch chiral ring operators of dimension three. These have

charge 3
2 under U(1)t and are usually charged under G in some self-conjugate representa-

tion. The last class is that of mixed branch operators. In Lagrangian theories these are

dimension three operators built from chiral fields in both the vector and hyper multiplets.

Probably the most well known of these are the N = 2 preserving marginal operators that

exist in conformal N = 2 gauge theories, which are of the form χ1Φχ2. Besides these,

there can be additional operators of this type either in the form of χΦχ or Φ2χ. As an

example of an SCFT with the former we have the conformal N = 2 SU(N) gauge theory

with one hypermultiplet in the antisymmetric representation and one hypermultiplet in the

symmetric representation, which has marginal operators of the form χSΦχAS + χASΦχS .

As an example of the latter we have any conformal N = 2 USp type gauge theory with

hypermultiplets in the antisymmetric representation, which has marginal operators of the

form Φ2χAS . These type of operators have charge 0 and −3
2 , respectively, under U(1)t and

are charged under G in some self-conjugate representation.

As previously mentioned to have the N = 1 only preserving conformal manifold we

need the marginal operators to have a non-trivial Kahler quotient with respect to U(1)t
and G. Since the representations under G are self-conjugate it is not unreasonable for

there to be a Kahler quotient under it. However, the U(1)t charges are not coming in

pairs of opposite charges, and getting a Kahler quotient under it is quite non-trivial. This

requires having either the mixed branch operators with charge 0 or Higgs branch operators

and either Coulomb branch or the charged mixed branch operators. Here we shall concen-

trate on cases having both Higgs branch and Coulomb branch marginal operators. The

reason for this is that by now there are known techniques to extract these for the class of

non-Lagrangian theories in class S. Specifically, there are known methods to extract the
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dimension of Coulomb branch operators for class S theories, see for instance [10], and the

Higgs branch operators can be extracted from the Hall-Littlewood index for which there

are known expressions for class S theories, see [11]. Alternatively, to our knowledge, there

is no systematic way to extract mixed branch operators save for trying to infer them from

dualities with Lagrangian theories.

Finally, in the third type of duality, one side is a Lagrangian N = 1 gauge theory while

on the other side we have an N = 1 strongly coupled SCFT. Similarly to the N = 2 case,

we can use compactifications of 6d SCFTs on Riemann surfaces to generate interesting

examples of such theories. The specific case of a genus g > 1 Riemann surface without

punctures or flux is especially appealing for several reasons. First, these class of theories are

expected to have a large conformal manifold, related to complex structure deformations

of the Riemann surfaces and flavor holonomies, on a generic point of which the global

symmetry is completely broken [12, 13]. Also, the 6d construction allows us to compute

various quantities of interest like the a and c central charges, see for instance [12, 13], and

for this class of compactifications these are guaranteed to be rational. As a result, it is

possible that some of these have dual N = 1 conformal gauge theories.

3 Conformal duals of N = 1 gauge theories

Let us start by considering the duals of conformal gauge theories with a simple gauge group.

We will only consider models with minimal N = 1 supersymmetry although the search can

be done also for theories with extended supersymmetry. To do so one can systematically

scan through various values of nv. The smallest possible value is nv = 3, however we do not

have conformal N = 1 SU(2) gauge theories. Next, we can consider nv = 8 and here one

already can find several examples, see [14] for a classification. For example SU(3) SQCD

with nine flavors, SU(3) with chiral fields in 6⊕6⊕(4×3)⊕(4×3) are conformal. However

all these models have different nχ and so cannot be dual to each other. Moreover as 8 is

not divisible by 3 we cannot construct a quiver theory with SU(2) gauge groups to have

the same nv. Thus we conclude that SU(3) gauge theories, if they have a conformal gauge

theory dual on the conformal manifold, have to be self-dual. Increasing nv the next value

is 10 for the group USp(4) and here as for nv = 8 the only possibility is self duality. The

next case is G2, with nv = 14. Here we have two conformal N = 1 gauge theories, one

with matter in 3 × 7⊕ 27 and another with matter in 12 × 7. As 14 = 3 + 3 + 8, we can

have duals with SU(2)2×SU(3) gauge groups and we will proceed to discuss these cases in

detail. The next possible value of nv is 15 for SU(4). We have a large variety of conformal

gauge theories with SU(4) gauge group. As 15 = 3×5 these might have duals with 5 SU(2)

gauge groups and we will discuss one such example.

3.1 Dual of N = 1 G2 SCFT with 3× 7⊕ 27

Let us consider N = 1 SQCD with gauge group G2, three fundamentals Qi, and one chiral

field in the 27, Q̃. The one loop beta function of this model vanishes implying that the

superconformal R charges of all the chiral fields are 2
3 . The symmetry at the free point is

U(1) × SU(3). The fundamentals Qi are a triplet of SU(3) and have U(1) charge −3 and
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the 27 charge +1. This theory has a number of marginal operators. Note that the 7 has an

antisymmetric cubic invariant using which we can build a marginal superpotential. Since

we have three fundamental fields this gives rise to one such term, εijkQiQjQk, which is a

singlet of SU(3) and has U(1) charge −9. The 27 has two independent symmetric cubic

invariants giving rise to two marginal operators, we denote them as (Q̃)31 and (Q̃)32, which

are singlets of SU(3) and have U(1) charge +3. Finally we can build marginal operators as

Q̃Q(iQj), which have U(1) charge −5 and are in the 6 of SU(3). We can now compute the

dimension of the conformal manifold [5] by computing the Kahler quotient generated by

the marginal couplings. Just considering εijkQiQjQk, (Q̃)31, (Q̃)32, and the gauge coupling

we can build two independent singlets giving rise to two exactly marginal directions. We

can build one independent singlet of SU(3) from the marginal coupling of Q̃Q(iQj) which

gives rise to an additional exactly marginal coupling. We thus deduce that the theory

is conformal and has a three dimensional manifold of exactly marginal couplings. Note

that the U(1) symmetry is broken by all the exactly marginal deformations while SU(3) is

preserved by the first two. The last deformation breaks SU(3) down to SO(3) which is the

symmetry preserved at a generic point of the conformal manifold.

Finally let us mention that the conformal anomalies of this model are,

a = 14 av + 48aχ =
29

8
, c = 14 cv + 48cχ =

15

4
. (3.1)

Let us seek a conformal dual of this theory. We are after a theory with 14 vectors and 48

chirals. As previously mentioned, besides G2 we can have 14 vector multiplets also from

two SU(2) gauge groups and one SU(3) group, and this is the only possibility. Now we

need to make sure the one loop beta function of each gauge group vanishes and that the

total number of chiral fields is 48. One can accomplish this and the result is depicted in

figure 1. Here s and s stand for the 6 and 6 representations of SU(3). By construction

the conformal anomalies of this model agree with the G2 SQCD. We mention that this

choice of matter content is not the only one which satisfies matching the anomalies and

vanishing beta functions, for example orienting differently some of the arrows will do this

but will give an inequivalent model. However, we claim as will be discussed below, that the

quiver in figure 1 is the dual to the G2 SQCD. Let us now analyze the symmetries and the

conformal manifold. The theory at the free point has symmetry SU(3) × SU(2)2 × U(1)2.

The U(1)2 charges of the bifundamentals between the two SU(2)s are (+1, 0), between the

SU(2)s and the SU(3) (−1, 0), and of s and s are (45 ,±1) respectively.

There are three types of marginal operators. The First one corresponds to the tri-

angles in the quiver and these are in the representation (3,2,2)(−1,0). The second one

correspond to the cubic invariants of the symmetric and conjugate symmetric which have

charges (1, 1, 1)( 12
5
,±3). The third one are the (conjugate) symmetric times the square of

the bifundamentals between SU(3) and the two SU(2)s with charges (1, 1, 1)(− 6
5
,±1). The

last two types of deformations have a non trivial Kahler quotient of dimension two along

which the two U(1) symmetries are broken but SU(3)× SU(2)2 is preserved. Then we can

build an additional exactly marginal operator using the first type of deformations. This

will break all the symmetry but the diagonal combination of the two SU(2)s and SO(3)

– 6 –
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Figure 1. The dual of G2 with 3 × 7 ⊕ 27. In this and the following figures one should think of

the models with all the possible gauge invariant cubic superpotentials turned on.

Figure 2. The structure of the conformal manifold.

in SU(3). All in all, as above we get a three dimensional conformal manifold with SU(2)

symmetry preserved on a general locus. We have a two dimensional locus with enhanced

SU(3)× SU(2)2 symmetry. Note that both duality frames have two dimensional loci with

enhanced symmetry which are however different. This is not a contradiction of the duality

as the two do not have to intersect. See figure 2.

The only anomalies we need to match are the ones for symmetries on general points

of the conformal manifold. As we already matched the conformal anomalies, which implies

matching of R-symmetry anomalies, the only anomaly left is TrU(1)RSU(2)
2. In the G2

model the SO(3) is imbedded in SU(3) and we have one triplet in the fundamental of G2.

This gives us then TrU(1)RSU(2)
2 = (−1

3) × 7 × 2. On the quiver side the SU(2) is the

diagonal of the two SU(2)s in the quiver and SO(3) ∈ SU(3). This gives us

TrU(1)RSU(2)
2 =

(
− 1

3

)(
6× 1

2
+ 6× 1

2
+ 4× 2

)
. (3.2)

We see that this anomaly precisely matches.

Finally we can match the supersymmetric indices [15]. The index computed at the

free point of the G2 theory is,

I = 1 + (pq)
2
3

(
x2 +

1

x6
6SU(3)

)
(3.3)

+pq

(
2x3 +

1

x5
6SU(3) +

1

x9
− 8SU(3) − 1

)
+ · · · .

Here we use the standard notations [16, 17] for the index and x is the fugacity for the U(1).
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The index at the free point of the quiver theory is,

I = 1 + (pq)
2
3 (a

8
5 + a26SU(3)) + pq

(
a

12
5

(
b3 +

1

b3

)
+

1

a
2SU(2)12SU(2)23SU(3)

+
1

a
6
5

(
b+

1

b

)
− 3SU(2)1 − 3SU(2)2 − 8SU(3) − 2

)
+ · · · . (3.4)

Here a and b are the fugacities for the two U(1)s. Note that specializing to symmetries

preserved on a generic locus of the conformal manifold, that is a = b = x = 1 and

3SU(3) = 3SU(3) = 3SO(3) for G2 and 3SU(2)1 = 3SU(2)2 = 3SU(3) = 3SO(3) for the quiver, the

two indices precisely agree,

I = 1 + (pq)
2
3 (2 + 5) + pq(3− 3) + · · · . (3.5)

This can be checked to rather high order in the expansion in terms of the fugacities. We

thus have compelling evidence that in fact the two models are conformally dual to each

other. That is that there should be a map between the conformal manifolds of the two

models which will describe equivalent theories. The manifold has at least two cusps at

which one of the two models is weakly coupled.

An additional simple check of the duality we can perform is to study RG flows. We

can only compare flows which exist on a generic point of the conformal manifold. One

such flow is giving a vacuum expectation value to one of the 7 on the G2 side. On the

dual side this corresponds to giving a vev to one of the three bifundamentals between

the two SU(2)s. Let us first analyze the flow in the latter frame. Giving the vev locks

the two SU(2) gauge groups together, and gives a mass to the remaining bifundamentals

between the two SU(2)s and to two out of the four bifundamentals between the SU(2)s

and the SU(3). The remaining two acquire R-charge 1
3 . The theory in the IR is just an

SU(2) × SU(3) gauge theory with two bifundamentals and the symmetric and conjugate

symmetric for the SU(3). The SU(2) gauge node has three flavors and thus flows in the IR

to a Wess-Zumino model with 15 gauge singlet fields [18]. The R-charge of these fields is
2
3 and in terms of SU(3) the representations are 1 + 8 + 3 + 3. Thus in the end we get a

conformal theory which consists of a single decouple chiral field and N = 2 SU(3) gauge

theory with one fundamental and one symmetric hypermultiplet. On the G2 side giving a

vev to one of the 7s breaks the gauge group to SU(3). The remaining two 7s get a mass

and the 27 decomposes under the remaining gauge SU(3) as 27 = 1 + 3 + 3 + 6 + 6 + 8.

Thus in the end we get manifestly the same model as in the dual frame. This is yet another

direct check of the proposed duality.

We can also consider mass deformations to get IR dualities, in the sense of [18], from

this conformal duality though we shall not analyze this in detail here.

3.2 Dual of N = 1 G2 SCFT with 12× 7

Let us now consider N = 1 SQCD with gauge group G2 and 12 fundamentals Qi.
2 This

theory is conformal. The symmetry group at the free point is SU(12). The marginal

2The IR dualities of G2 with Nf < 12 fundamentals were discussed by Pouliot in [19].
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Figure 3. The dual of G2 with 12× 7.

operators are built from the antisymmetric cubic invariant of the fundamentals. One can

perform the Kahler quotient and find that on the conformal manifold all the symmetry

is broken and thus the number of exactly marginal operators is the number of marginal

operators minus the number of currents, 1
610× 12− 122 + 1 = 77.

The conformal anomalies are,

a = 14 av + 84aχ =
35

8
, c = 14 cv + 84cχ =

21

4
. (3.6)

The relevant operators are built from the symmetric square of the fundamentals and their

number is 78.

We now look for a conformal dual gauge theory. As in the previous example the only

possible gauge group is SU(3) × SU(2)2. An example of a quiver with the correct number

of chiral fields and vanishing one loop beta function is in figure 3. We can next count the

number of relevant operators. We have 9×3 from mesons of the SU(3) gauge group, 1
26×5

from flavor gauge invariants of the upper SU(2) and 1
29× 8 from flavor gauge invariants of

the lower SU(2). All in all, we get 3 × 9 + 1
26× 5 + 1

29× 8 = 78 matching the G2 side.

Next we count the marginal operators. First we have the gauge invariants built from

operators winding the quiver, whose number is 9× 9+ 9× 2× 6. Second we have baryonic

operators of the SU(3) gauge group which give rise to 84+12+1 marginal operators. All in

all we get 286 marginal operators. The non-anomalous global symmetry at the free point

is SU(9)2×SU(6)×SU(3)×SU(2)×U(1)3 which gives 209 conserved currents. Computing

the Kahler quotient here also all the symmetry is broken on a generic locus of the conformal

manifold giving rise to 77 exactly marginal deformations, which agrees perfectly with the

G2 SQCD.

We can compare the indices switching off all the fugacities for global symmetries as

these are absent on the general point of the conformal manifold, and obtain in both cases

the same result,

I = 1 + 78(qp)
2
3 + 77qp+ 78(qp)

2
3 (q + p) + 2850(qp)

4
3

+76qp(q + p) + 4446(qp)
5
3 + 78(qp)

2
3 (q2 + p2) + · · · . (3.7)

We can check the matching to relatively high order in expansion in fugacities.
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3.3 Dual of N = 1 SU(4) SCFT with 4× 6⊕ 8× 4⊕ 8× 4

So far we have considered conformal duals for gauge group G2, but here we would like to

try and consider at least one other group. One reason for this is a desire to explore how

common are these types of dualities. For this it is useful to try at least one more case. To

try to keep things simple, we shall consider the group SU(4) whose dimension, 15, comes

right after G2. Like G2 there is only one other combination of simple groups with the same

number, five SU(2) groups, and we shall seek a dual with this vector content.

Next we need to choose a conformal SU(4) gauge theory. First, we can consider the

case with just fundamentals, specifically, 12 fundamental and 12 antifundamental chirals.

While with this combination the one loop beta function at the free point vanishes, there

are no marginal operators one can turn on so this theory is actually IR free. Next then, we

can consider the case with fundamentals and antisymmetric representations. Here we do

have marginal operators connecting the antisymmetric chirals to a pair of fundamental or

antifundamental chirals. However, we can consider the U(1) acting on the antisymmetrics

with one sign and on the fundamentals and antifundamentals with another with charges

chosen so that it is non-anomalous. The marginal operators are all going to have the

same charge under this symmetry and so there is no Kahler quotient, unless the marginal

operators happen to be uncharged under it. There is precisely one choice that is consistent

with gauge anomaly cancellation, vanishing of the one loop beta function and existence of

a Kahler quotient. The miraculous combination is four antisymmetrics, eight fundamentals

and eight antifundamentals.

This leads us to consider an SU(4) gauge theory with four chiral fields in the 6 and eight

fundamental flavors (4,4). One can perform the Kahler quotient and conclude that this

theory is indeed conformal with an 82 dimensional conformal manifold. On a generic point

on the conformal manifold all the symmetry is broken, except the previously mentioned

U(1), under which the marginal operators are uncharged enabling the quotient. Under this

U(1) symmetry the fundamentals and antifundamentals have charge +1 and the 6s are

charged −2. The model has 10 relevant operators built from 6s with charge −4 and 64

mesons with charge +2. The conformal anomalies of the model are

a = 15 av + 88aχ =
223

48
, c = 15 cv + 88cχ =

133

24
. (3.8)

As previously mentioned, we seek a dual for this theory with five SU(2) gauge groups. The

quiver is in figure 4. Let us define here a U(1) symmetry which assigns charge +1 to the

bifundamentals of SU(6)s and SU(2)s and to bifundamentals of the perimeter SU(2)s and

the center SU(2), and charge −2 to the rest of the fields. Note that then all the marginal

operators have zero charge. The conformal manifold of this model is again 82 dimensional

and has a preserved U(1). The index of the two models perfectly agrees in an expansion

in fugacities with the refinement for the preserved U(1) with fugacity b,

I = 1 + (qp)
2
3 (1 + q + p)

(
10b−4 + 64b2

)
+ 81qp (3.9)

+
(
55b−8 + 576b−2 + 2002b4

)
(qp)

4
3 + 80(q + p)qp+ · · · .
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Figure 4. The dual of SU(4) with 4× 6⊕ 8× 4⊕ 8× 4.

We should also verify the anomalies for the U(1). In both theories we have 64 chiral fields

with free R charge and U(1) charge +1 and 24 chiral fields with free R charge and U(1)

charge −2. The anomalies thus manifestly match.

4 Conformal duals of class S theories

Let us now apply the algorithm to search for dual conformal gauge theories for some of the

strongly coupled SCFTs in class S of type AN−1. Many of the SCFTs we discuss here and

their properties appear in [10]. We will concentrate on the simplest models corresponding

to spheres with three punctures. We can organize the search by increasing the value of

N . For N = 2 the theories are quivers with SU(2) gauge groups and we do not have any

strongly coupled SCFTs. For N = 3 the model T3 is strongly coupled but it does not have

a conformal manifold and thus our technology does not apply. For N = 4 however we have

several interesting models. The E7 MN theory again does not have a conformal manifold

and thus we cannot discuss it, but the R0,4 and the T4 models do and we will consider

them. We will also discuss one example for N = 5, the R2,5 model, and a sequence of

models with N = 6n, the so call rank 2n E6 MN theories.

All the examples we discuss have both dimension three Coulomb and Higgs branch

operators suggesting the existence of a conformal manifold. A priori they may also have

mixed branch operators. Besides the R0,4 model, where the full index is known [20], we do

not know how to systematically extract these for the other models. In some cases, like the

R2,5 model, one can use dualities with gauge theories to infer these. Here, when matching

the conformal manifold, we shall assume these are not present.

4.1 Dual of N = 2 R0,4 SCFT

Let us now consider the R0,4 N = 2 SCFT. This is a strongly coupled model which can be

obtained in class S construction as a compactification of A3 (2, 0) theory on a sphere with

two maximal and one next to maximal puncture [10]. In particular, turning on certain

vevs it flows to the Minahan-Nemeschansky E7 SCFT. Several facts are known about this

model. In particular the conformal anomalies are,

a = 12 av + 72aχ =
15

4
, c = 12 cv + 72cχ =

9

2
. (4.1)

The model has SU(8) × SU(2) global symmetry. The spectrum of protected operators is

also known. For example it was computed in [20] using a construction with a singular La-
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Figure 5. The N = 1 conformal dual of R0,4.

grangian. In such constructions one starts with a Lagrangian and then gauges a symmetry

which only appears at a strongly coupled cusp, see [21]. The result is,

I = 1 + t(63SU(8) + 3SU(2))(pq)
2
3

+

(
t
3
270SU(8)2SU(2) +

1

t3
− 1− 63SU(8) − 3SU(2)

)
qp+ · · · . (4.2)

In N = 1 language the theory has an additional U(1)t symmetry coming from the enhanced

R-symmetry. From the index we can read off the marginal operators as being in represen-

tation 70SU(8)2SU(2) with U(1)t charge
3
2 and a singlet with charge −3. The latter is the

dimension three Coulomb branch operator that is known to exist in this theory while the

former is a dimension three Higgs branch operator. Using these operators we can construct

74 exactly marginal directions with all the symmetry broken along the general direction.

All the marginal deformations break N = 2 to N = 1.

To construct a conformal dual we are after a theory with 12 vectors and 72 chiral fields.

The unique possibility with 12 vectors is four SU(2) groups. The quiver in figure 5 has

the right matter content and all gauge groups have vanishing one loop beta function. The

model at the free point has SU(6)4×U(1)6 non-anomalous global symmetry. The marginal

deformations correspond to triangles for each of the 4 faces of the quiver, and to cubic

gauge singlets starting and ending at two different SU(6) global symmetry groups. All in

all we have 220 marginal operators and 146 conserved currents. Computing the Kahler

quotient we get precisely 74 exactly marginal deformations and on a generic point of the

conformal manifold all the symmetry is broken. The index of this theory at a generic point,

that is switching off fugacities for global symmetries, is

I = 1 + 66(qp)
2
3 + 74qp+ · · · , (4.3)

which precisely agrees with the result for R0,4. This can be easily verified to higher orders

in expansion in fugacities. We thus can conjecture that the tetrahedral quiver and R0,4

are dual to each other. That is they are descriptions at two different points on the same

conformal manifold.
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It is instructive the study the Kahler quotient of both theories in a bit more detail.

First we begin with the R0,4 side. While on a generic point the global symmetry is entirely

broken, there are various subspaces where some symmetries are preserved. Particularly,

there is a 1d subspace along which a U(1) × SU(4)2 subgroup is preserved. The symme-

try breaking pattern is such that SU(8) → U(1) × SU(4)2, and the preserved U(1) is a

combination of this U(1) and the Cartan of the SU(2). In the language of the class S
description, along this subspace we are preserving the SU(4) symmetries of the two maxi-

mal punctures, but break U(1)t completely and the SU(2)×U(1) symmetry of the next to

maximal puncture is broken to a U(1).

We can proceed and break the symmetry further by identifying the two SU(4) groups

and break the U(1). This leads to a 4d subspace along which we preserve an SU(4)

global symmetry.

The conformal manifold on the quiver side is more complicated and we will not try

to analyze it in detail. However, there appears to be a 4d subspace along which the U(1)

groups of the free locus are broken, and one preserves only an SU(4) embedded into the

diagonal SU(6) as its SO(6) subgroup. We then find that both descriptions share a subspace

with the same dimension and symmetry, and so it is possible that they can be related solely

on that subspace without needing to break all the symmetries. We can check this proposal

by comparing anomalies for these symmetries as well as the superconformal index refined

by them.

First we can consider matching the anomalies. In the R0,4, since the theory has

N = 2 supersymmetry, the only non-vanishing anomaly involving this symmetry is the

U(1)RSU(4)2, which in turn is related to the contribution to the beta function upon gaug-

ing the symmetry. As a result it is sufficient to compare the latter. Since the SU(4) comes

from the diagonal of two maximal puncture, and each maximal puncture contributes half

the matter required for an N = 2 SU(4) gauge theory to be conformal, we get that gauging

this SU(4) contributes as 16 fundamental chirals.

On the dual side the SU(4) comes from the diagonal SO(6) subgroup of the four SU(6)

groups, and therefore gauging it contributes as 8 antisymmetrics of SU(4). We first note

that the antisymmetric is a real representation and so does not contribute to the cubic

anomaly. This is good as that means that the SU(4)3 anomaly matches. Finally, as the

antisymmetric contributes like two fundamentals to the beta functions, we see that gauging

the SU(4) contributes as 16 fundamental chirals, matching the result of the class S theory.

We can next check the index. For this we can evaluate the index of the quiver theory

refined by these symmetries. We find:

I = 1 + (6 + 4 15)(qp)
2
3 + (4 + 2 20′ + 2 15)qp+ · · · . (4.4)

This matches the index computed in [20] when restricted to these symmetries.

4.2 Dual of N = 2 T4 SCFT

Next we consider the T4 N = 2 SCFT. This is a strongly coupled model which can be

obtained in class S construction as a compactification of the A3 (2, 0) theory on a sphere
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Figure 6. The N = 1 conformal dual of T4. The dashed lines are two index antisymmetric fields.

with three maximal punctures. Several facts are known about this model. In particular

the conformal anomalies are,

a = 19 av + 99aχ =
45

8
, c = 19 cv + 99cχ =

13

2
. (4.5)

The model has SU(4)3 global symmetry. It does not have dimension two Coulomb branch

operators. However, it has a dimension three Coulomb branch operator as well as two

dimension four ones that are not going to be important here. Additionally, it has dimension

three Higgs branch chiral ring operators in the (4,4,4) and (4,4,4) of SU(4)3. This implies

that there is an N = 1 only preserving conformal manifold. One can analyze the Kahler

quotient and conclude that the conformal manifold is 83 dimensional and on a generic point

of which the SU(4)3 global symmetry is completely broken. We also note for future use

that this SCFT has 45 relevant operators coming from the moment map operators with

N = 1 R charge 4
3 .

As we have 19 vector fields there are two possibilities for a conformal dual gauge group,

SU(3)2 × SU(2) and USp(4) × SU(2)3. It turns out that it is possible to find a dual with

the second option and it is depicted in figure 6. The number of chiral fields is 99 and

all the gauge groups are conformal. The relevant operators are built from quadratics of

bifundamentals and from the three two index antisymmetric fields, and a simple counting

reveals that there are 45 of those.

We can next compare the structure of the conformal manifold. In the quiver theory

we have 178 marginal operators. Four come from the bi-fundamental triangles, and 48

come from the three gauge invariants going from one global SU(4) to another. Nine come

from the gauge invariants made from the SU(2)×USp(4) bifundamentals and the USp(4)

antisymmetrics, and 45 come from the invariant made from the antisymmetric and two

flavors of USp(4). The rest come from the three gauge invariants going from one global

SU(4) to the global SU(6). At the free point the theory has the non-anomalous SU(6) ×
SU(4)3 × SU(3) × U(1)7 global symmetry. It is possible to show that there is a non-

trivial Kahler quotient implying that this theory is conformal, and that on a generic point
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the global symmetry is broken completely. Therefore, this theory has an 83 dimensional

conformal manifold, matching the one of the T4 SCFT.

Finally, We can also match the superconformal index of the T4 theory to the one

computed using the gauge theory description. For example in the Schur limit t = q [22, 23]

the index was computed to high orders in expansion in q in [24] and it can be matched to

the one computed using the Lagrangian. As we tune the R charges to be free t = (qp)
2
3 we

need farther to set q = p2 to obtain the Schur index.3

4.3 Dual of N = 2 R2,5 SCFT

We consider now the R2,5 N = 2 SCFT. This is a strongly coupled model which can be

obtained in class S construction as a compactification of the A4 (2, 0) theory on a sphere

with one maximal puncture and two non-maximal punctures [10].4 Several facts are known

about this model. In particular the conformal anomalies are,

a = 14 av + 86aχ =
53

12
, c = 14 cv + 86cχ =

16

3
. (4.6)

The model has SO(14)×U(1) global symmetry. It does not have dimension two Coulomb

branch operators but has one dimension three and one dimension five operators. It also has

dimension three Higgs branch operators that are in the 64 and 64 with equal but opposite

charges under the U(1). For convenience we shall normalize the U(1) so that the Higgs

branch operators have charge ±1. It is straightforward to see that these have a non-trivial

Kahler quotient implying the existence of an N = 1 only preserving conformal manifold.

One can work out the Kahler quotient and conclude that there is a 36 dimensional conformal

manifold on a generic point of which the symmetry is broken completely. We also note

that it has 92 relevant operators coming from the moment map operators with N = 1 R

charge 4
3 .

Like in the previous cases, we can seek a dual N = 1 gauge theory. Here, as in the

G2 gauge theory case, we have 14 vectors and thus we should look for SU(2)2 × SU(3)

gauge theory dual. The model which has all the right properties is depicted in figure 7.

We have 86 chiral fields and all gauge groups are conformal. The relevant operators are

mesons of SU(3) which gives 49 operators, quadratic combinations of bifundamentals of

SU(7) and SU(2) giving 21 + 21 = 42 operators, and finally the quadratic combination of

the bi-fundamental of the two SU(2) gauge symmetries giving an additional operator. All

in all we get 92 operators as expected.

We can next compare the structure of the conformal manifold for the two theories.

We shall start with the quiver theory. Ignoring gauge coupling constants, we have 232

marginal operators: one associated with the triangle, 147 coming from the three flavor

SU(7)×SU(7) bi-fundamental operators connected using each face of the triangles, 35+35

SU(3) baryons and anti-baryons from the fundamental flavors, and finally 7 + 7 SU(3)

baryons and anti-baryons made from the bi-fundamental and one fundamental flavor. At

the free point the gauge theory has U(1)4 × SU(7)4 non-anomalous global symmetry. We

3We are grateful to Chris Beem and Carlo Meneghelli for pointing out this to us.
4The punctures correspond to Young tableaux with a row with two boxes and row with three boxes.
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Figure 7. The N = 1 conformal dual of R2,5.

can check that 232− 4− 4× 48 = 36 so the number of marginal operators minus conserved

currents matches between both theories.

We next want to analyze the structure of the conformal manifold. First, it is straight-

forward to show that the triangle and the three SU(7) × SU(7) bi-fundamental operators

have a Kahler quotient by themselves. Turning only them on then gives a 1d subspace

along which the global symmetry is broken as U(1)4 × SU(7)4 → U(1) × SU(7). Here

the preserved SU(7) is a diagonal combination, which up to global charge conjugation

can be chosen as 7SU(2)left = 7SU(2)right = 7SU(3)F = 7SU(3)F
. The preserved U(1) is

such that the SU(3) fundamentals have charge +4, the antifundamentals charge −4, the

SU(3)×SU(2)left bi-fundamental has charge +7, the SU(3)×SU(2)right bi-fundamental has

charge −7, the SU(2)left flavors have charge −3, the SU(2)right flavors have charge +3, and

the SU(2)× SU(2) bi-fundamental is uncharged.

At a generic point on this subspace the relevant and marginal operators take the form:

Irel =
(
2 + 48+

1

x6
21+ x621

)
(qp)

2
3 , (4.7)

Imar =

(
1 + x1235+

1

x12
35+ x187+

1

x18
7

)
(qp) , (4.8)

where we use the fugacity x for the unbroken U(1).

We note two things about these expressions. First the marginal operators along this

subspace form a self-conjugate representation. This suggests that we can indeed continue

and break all the symmetry on a generic point on the conformal manifold, so that the

conformal manifolds indeed agree between the two theories. Another interesting observa-

tion is that the relevant operators look like 1 plus the adjoint of SO(14) when represented

using its U(1) × SU(7) subgroup. This suggests that the two theories may actually be

related along this 1d subspace, and we shall next show that this conjecture passes several

non-trivial tests.

First let us consider the conformal manifold of the R2,5 SCFT. It also has a 1d subspace

preserving U(1)× SU(7), where SO(14) is broken to U(1)× SU(7), and the preserved U(1)

is a combination of this and the U(1) part of the R2,5 SCFT global symmetry. Specifically,

consider using the fugacity h for the U(1) and decomposing SO(14) to U(1)s × SU(7) such

that 14 → 7s2 + 1
s2
7, 64 → 1

s7
+ 1

s3
21 + s35 + s57. Then the preserved U(1) is given by

the identification h = s7, corresponding to inserting the SU(7) singlet opertaors appearing

in the decomposition of the 64 and 64 to the superpotential. It is straightforward to show
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that the relevant and marginal operators form the characters as in (4.7) and (4.8) if we

identify s4 = 1
x6

.

Finally we can compare anomalies. Since one side is an N = 2 SCFT, all anomalies

for these symmetries must vanish save for the one linear in the U(1) R-symmetry. Indeed

in the quiver side it is easy to see that this is obeyed as the SU(7) representations and

U(1)x charges come in self-conjugate pairs. This leaves us with the Tr(U(1)RSU(7)2) and

Tr(U(1)RU(1)2x) anomalies. These can be computed to give:

Tr(U(1)RSU(7)2) = −1

3
× 1

2
(2 + 2 + 3 + 3) = −5

3
, (4.9)

Tr(U(1)RU(1)2x) = −1

3
(12(7)2 + 42(4)2 + 28(3)2) = −504.

It is straightforward to show that the SU(7) anomaly matches as the SO(14) flavor central

charge is such that the contribution to the beta function from gauging the SO(14) is that

of five chiral vectors.

The U(1) anomaly is trickier. To check it we utilize the duality in [25, 26] where an

N = 2 gauging of the SO(7) subgroup of the above SU(7) subgroup of the symmetry of R2,5

SCFT is dual to an N = 2 SU(6) gauge theory with one symmetric and one antisymmetric

hypermultiplets. We can next compare the operators between the two dual sides. On the

SU(6) side we have two types of interesting marginal operators. One type is that of the

Higgs branch operators built from baryons of the antisymmetric hyper, χ3
AS , χ3

AS
, while

the other is that of the mixed branch operators χASΦχS , χSΦχAS . These can be matched

to the dual side. The Higgs branch operators must match to Higgs branch operators of the

R2,5 SCFT, and there are precisely two of these, the ones coming from the singlets in the

decomposition of the spinors. The mixed branch operators come from the gauge invariant

made from the SO(7) adjoint chiral and the components in the moment maps in the adjoint

representation of SO(7). There are three of these with charges s4, 0 and 1
s4

. The middle

one is just the N = 2 preserving marginal deformation while the other two map to the

mixed branch operators. Note that the mixed branch operators on one side then are not

mapped to ones in the R2,5. This is consistent with the duality as we have mapped the

conformal manifold under the assumption that these are absent so their presence would

spoil the duality.

We can now use the Lagrangian description to calculate the anomaly of the R2,5 SCFT.

As we previously mentioned, the marginal deformation that we are turning on is associated

with the singlets in the spinor decomposition which in turn is mapped to the SU(6) baryon

from the antisymmetric. This breaks the antisymmetric U(1), and the remaining U(1),

the one acting on the symmetric, should then map to the one preserved on the conformal

manifold. We can now compute its anomaly from the SU(6) theory:

Tr(U(1)RU(1)2x) = −1

3
42(6)2 = −504, (4.10)

and the anomaly non-trivially matches.

Note that this implies that the SU(6) + 1S+ 1AS gauge theory has a Lagrangian dual

given by the SO(7) gauging of all the SU(7) groups in the quiver theory, which should

emerge when going on a 1d subspace of its conformal manifold associated with turning on

– 17 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
6

Figure 8. The N = 1 conformal dual of rank 2n E6 SCFT. The dashed lines are two index

antisymmetric fields.

the operators χ3
AS , χ

3
AS

. As both sides are Lagrangian we can compare the full indices of

both theories, refined under the preserved U(1), which is a non trivial check of this proposal.

Furthermore, the R2,5 SCFT participates in another duality [10] where gauging the USp(4)

group in the SU(2)×USp(4)× SO(6) subgroup of SO(14) with one fundamental hyper for

the USp(4) is dual to the N = 2 gauge theory SU(5)+2AS+4F .5 We can use this as well

to also get an N = 1 gauge theory dual for SU(5)+2AS+4F , and for another consistency

check. We have compared indices in expansion in fugacities and verified that to order (qp)
4
3

in expansions the indices indeed agree giving additional support for our conjecture. Note

that these two dualities are between N = 2 conformal Lagrangian theories and conformal

Lagrangians having only explicitly N = 1 supersymmetry.

4.4 Dual of N = 2 rank 2n E6 SCFT

As our final class S example we consider the case of the Minahan-Nemeschansky E6 theories

for general rank. Among the three Minahan-Nemeschansky E type theories this is the only

family with a dimension three Coulomb branch operator. Additionally, for rank 2 and

higher, it also has dimension three Higgs branch operators, and as a result can have an

N = 1 preserving conformal manifold. This class of theories have a rather uniform behavior

at high rank. Specifically, for rank higher than 1 they have an SU(2)×E6 global symmetry

and a dimension three Higgs branch operator in the (2,78). Above rank 2 they also have a

dimension three Higgs branch operator in the 4 of the SU(2). As a result it is not difficult

to work out the Kahler quotient for the entire family. Specifically, we find that when the

rank is 2 there is a 75 dimensional conformal manifold on a generic point of which the

global symmetry is completely broken. This remains also for the higher rank cases, but

the dimension of the conformal manifold grows to 79 due to the existence of the additional

marginal operators.

We again note that this theory has 81 relevant operators associated with the SU(2)×E6

moment maps. Like the previous cases we seek an N = 1 Lagrangian dual on the conformal

manifold. The conformal anomalies of the rank N E6 SCFT give [27],

a = nv(N) av + nχ(N)aχ =
3

4
N2 +N − 1

24
, (4.11)

c = nv(N) cv + nχ(N)cχ =
3

4
N2 +

3

2
N − 1

12
,

5The 7SU(7) becomes 3× 1USp(4) ⊕ 4USp(4).
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with

nv(N) = N(3N + 2) , nχ(N) = 9N2 + 30N − 2 . (4.12)

For even N = 2n the quiver in figure 8 has the right number of fields and the gauge

groups are conformal. We have a quiver gauge theory with two USp(2n) and one USp(4n)

groups. We conjecture that this quiver is dual to the rank 2n E6 Minahan-Nemeschansky

model. We can first count the relevant operators. These are given by antisymmetric

squared combinations of fundamentals, and by symmetric squared of the antisymmetric

and bifundamentals fields. All in all we get 2 6×5
2 + 10×9

2 + 3 + 3 = 81 as expected. Next

we can analyze the conformal manifold. The non-anomalous symmetry at the free point is

SU(6)2× SU(10)× SU(2)×U(1)4, giving 176 currents. The computation of the number of

marginal deformations differes between n = 2 and higher n. For n > 2 the cubic symmetric

power of the antisymmetric fields contains a singlet and it does not for n = 2. Thus these

contribute additional 2×3×4
6 = 4 operators for n > 2 as expected. The rest of the marginal

operators are 60+60+36+1+2× 10×9
2 +4 = 251. Assuming that all the symmetry is broken

on general point of the conformal manifold we get the expected result of 75 deformations

for n = 2 and 79 for n > 2.

5 Conformal duals of N = 1 E8 SCFTs

One can obtain strongly coupled SCFTs by taking arbitrary (1, 0) theories in six dimensions

and compactifying them on Riemann surface with a proper twist to preserve N = 1 super-

symmetry. In general these models are some SCFTs for which Lagrangian constructions

are not known. Let us discuss here one example of such an interesting model and construct

a conformal Lagrangian for it. We consider the 6d rank one E-string theory compactified

on genus g Riemann surface with zero flux for its global E8 symmetry. One can compute

anomalies of this model [28] and find that for g > 1,

a

g − 1
= 16av + 81aχ =

75

16
,

c

g − 1
= 16cv + 81cχ =

43

8
. (5.1)

The number of vectors is thus 16(g − 1). This implies for example that for genus two

we might have a conformal description with two SU(3) groups or USp(4) and two SU(2)

groups, and 81 chiral fields. We find a dual using two SU(3) groups. Several facts are

known about this model. First it has no supersymmetric relevant deformations and second

it has a conformal manifold on which the E8 global symmetry is completely broken on a

generic locus. The dimension of the manifold is, dimMc = 3 + 248 + 1. Here 3 = 3g − 3

comes from complex structure moduli, 248 = dimE8(g − 1) comes from flat connections,

and the additional 1 is a deformation which does not have a generic origin as the rest but

as the index of this theory is known [28] it can be inferred from it using [29].

We then can construct a putative dual depicted in figure 9. The model has no su-

persymmetric relevant deformations as one cannot build mesonic operators. The marginal

operators come from baryons, 2( 9×8×76 )+10, and from cubic composites winding the quiver,

9× 3× 9. All in all we have 421 marginal operators. The non-anomalous symmetry at the
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Figure 9. The conformal dual of rank one E-string compactified on genus two surface with no flux.

Figure 10. The conformal dual of rank one E-string compactified on genus g surface with no flux.

The number of gauge nodes is 2g − 2. Here we have example of g = 4.

free point is SU(9)2 × SU(3) × U(1) which gives us 80 + 80 + 8 + 1 = 169 currents. On

a general point of the conformal manifold all the symmetry is broken and we obtain 252

exactly marginal operators as expected. We also can compute the index and compare it

to the one obtained in [28] and find a match to low orders in expansion in fugacities. We

thus conjecture that this is a Lagrangian description of the compactification of rank one

E-string on genus two surface with no flux. As a result, we expect that on some point on

the conformal manifold of this model the symmetry is expected to enhance to E8.
6

We can generalize the above to arbitrary genus g > 2. The quiver theory is in figure 10.

The number of fields is as expected. We have 8 × (2g − 2) = 16(g − 1) vectors and

27× (2g − 2) + 9× (3g − 3) = 81(g − 1) chiral fields. We have no relevant operators. The

marginals are (4+1)(g−1)+84(2g−2) baryons, and 81×(2+1)×(g−1) cubic combinations

winding between the SU(9) groups. All in all this gives 416(g−1) marginal operators. The

symmetry at the free point is SU(9)2g−2× SU(2)g−1×U(1)2g−2 giving 165(g− 1) currents.

The symmetry is broken on a general point of the conformal manifold and thus we have

251(g − 1) = 3g − 3 + 248(g − 1) exactly marginal deformations as expected. Note that

when g = 2 an SU(2)×U(1) symmetry enhances to SU(3) giving us 8 instead of 4 currents,

and we have 10 baryons instead of 4 + 1 for bifundamentals of SU(3). Thus, relative to

the general case we have four more currents and five more marginal operators giving us

an additional exactly marginal direction. Thus we conjecture that the quiver of figure 10

describes the compactification of rank one E-string on genus g surface with zero flux. In

6Incidentally the same quiver has a different geometric origin as twisted compactification on a sphere with

four maximal twisted punctures of minimal SU(3) (1, 0) SCFT [30]. Such equivalences of compactifications

are common but deep understanding of them is lacking at the moment.
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Figure 11. The index of a genus g quiver is consistent with such crossing symmetry duality moves.

We assume that superpotentials are turned on breaking all the symmetry.

Figure 12. The two different pair-of-pants decompositions of the genus two theory corresponding

to figure 9 and figure 13.

particular we expect the symmetry to enhance to E8 somewhere on the conformal manifold.

Note that we can turn on superpotentials which break only part of the symmetry.

In particular turning on cubic superpotentials locking all the SU(9) symmetries together,

as well as baryonic superpotentials for the bifundamentals, we obtain a submanifold of

Mc. Moreover E8 has an SU(9) maximal subgroup with the decomposition 248E8 →
84⊕ 84⊕ 80. We note that all the representations of SU(9) in the index combine into E8

representations under this branching rule. For example, for the theory corresponding to

genus g, after identifying all SU(9) groups, it is easy to see that we get (g−1)248E8 exactly

marginal operators such that g − 1 84 and 84 come from baryons and g − 1 80 coming

from operators winding between SU(9) groups. We have more operators which are singlets

of SU(9) whose number is 3g − 3. Furthermore, the Tr(U(1)RSU(9)
2) = −(g − 1) matches

the result expected from the strongly coupled theory where the SU(9) is embedded inside

E8. All this suggests that the two theories might both sit on a shared subspaces where at

least the Cartan subalgebra of E8 is preserved.

Note that in the dual of genus g compactification of E-string the number of gauge

groups is 2g − 2 and number of bifundamentals is 3g − 3 suggesting a possibility of a

geometric interpretation with gauge groups playing the role of the “pairs of pants” and

the bi-fundamental fields being the tubes. The pairs-of-pants then are associated to the

SU(3) gauge groups and the tubes to the bi-fundamentals. This interpretation is different
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Figure 13. The crossing symmetry move implies this dual for genus two theory.

than the usual class S logic where pairs-of-pants are matter and tubes are gauge groups.

If such a geometric interpretation is correct we expect that the theories will be invariant

under duality moves a la crossing symmetry, see figure 11. We indeed find that with generic

superpotentials such duality moves give equivalent theories as far as anomalies and indices

are considered. In particular such a duality move for genus two theory, figure 9, gives the

model in figure 13. Here we “glue” two punctures of the same pair-of-pants together, see

figure 12. The tubes are associated to the bi-fundamental matter and here the group is the

same meaning 3× 3 → 6⊕ 3. We checked for the index that indeed this duality holds.

6 Discussion

In this paper we have discussed a simple algorithm to seek for conformal gauge theory

duals of SCFTs. We have illustrated the power of this simple procedure by finding the

duals of a variety of interesting models. Some of these models are strongly coupled SCFTs

and our procedure provides a conformal Lagrangian description for them. Although we

concentrated on specific examples the procedure we have outlined here can be used to

systematically search for conformal gauge theory duals of any SCFT. For example we

can extend the discussion to duals of theories with non simple gauge groups, or in class

S setting to theories corresponding to more complicated surfaces. The procedure can be

modified for the sought after dual to include also strongly coupled ingredients.

Our procedure has provided conjectured dual Lagrangians for some of the strongly

coupled SCFTs so let us make several comments on this. First, some of the strongly cou-

pled SCFTs have already Lagrangian constructions of two types. First, one can construct

“singular Lagrangians” by starting with a Lagrangian gauge theory T and gauging a sym-

metry which appears only at some strong coupling cusp [21]. This procedure was applied

for rank one E6 MN model in [21], to R0,4 in [20], to some of the class Sk theories [31]

in [13], and to some of the theories engineered by the compactification of the 6d rank one

E-string SCFT [28]. Second type of Lagrangians was obtained by engineering the models

of interest, such as Argyres-Douglas theories, as IR fixed points of an RG flow [32, 33]. All

these constructions have an RG flow and the symmetries and/or supersymmetries of the

model of interest are not manifest in the description. However, the symmetry seen in the

UV is of the same rank as the symmetry of the fixed point. The descriptions we have found

do not have an RG flow on one hand but on the other hand the rank of the symmetry of the

Lagrangian description on a generic point on the conformal manifold is smaller than the

rank of the global symmetry of the dual strongly coupled SCFT. In particular, consider

constructing a model T by gauging some symmetry of two theories, T1 and T2, for which a

conformal gauge theory dual has been found using our procedure. Then if for either T1 or
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T2 the conformal gauge theory dual cannot be reached by going on the conformal manifold

without breaking the gauged symmetry then the conformal dual of T , if exists, is a priori

not obviously related to those for T1 and T2. It would be very interesting to figure out if

an interesting relation exists.

Let us also mention that there are other examples of conformal N = 1 dualities dis-

covered in recent years which have a geometrical interpretation by engineering the models

of interest as compactifications of six dimensional SCFTs. For example the duality group

acting on the conformal manifold of SU(3) SQCD theory with nine flavors was argued to be

related to the mapping class group of a ten punctured sphere in [30], and conformal dual-

ities between intricate quiver gauge theories following from five dimensional dualities were

deduced in [34]. It will be also extremely interesting to understand whether the dualities

suggested here have a geometrical interpretation of a sort.

Of course it will be extremely interesting to understand whether the conformal gauge

theory duals obtained in the procedure discussed here follow any interesting patterns and

satisfy some general rules.
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