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1 Introduction

A significant intuitive clue into the decoding of the holographic AdS/CFT dictionary has

come into gradual focus in recent years. A number of concrete constructions of approxi-

mately local physics in the bulk have been proposed, using states and operator algebras in

the CFT.

Perhaps the most explicit of such constructions is the so called HKLL prescription

(cf. [1–9]) which builds local bulk operators in a 1/N expansion in terms of a CFT oper-

ator algebra associated to causal domains of the CFT spacetime. This method uses the

machinery of Green’s functions in the bulk background to produce expressions of the form

φ(X)
∣∣
CWR

=

∫
DR

f(X;x)O(x) =

∫
dt

∫
R
dxR f(X;xR, t) O(xR, t) , (1.1)

where DR is the causal development of a spacelike region R on the CFT spacetime and

CWR is the causal wedge in the bulk of this set, that is to say, the intersection of past and

future of DR in the bulk: J+(DR)∩ J−(DR). The formula (1.1) constructs a local field on

CWR (in the sense of low-energy effective theory) out of CFT operators O defined on DR,

using an appropriate Green’s function f and a suitable amount of gauge dressing that we

are suppressing in the discussion. The second expression in (1.1) makes explicit that the

set of local operators on DR can be obtained by Heisenberg time-flow from the set of local

operators on R, once we are given a time foliation of DR which contains R itself.

The CFT operator algebra on R is known to be more powerful than what is revealed

by the expression (1.1). In fact, it has been argued that reconstruction of local fields
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beyond CWR is possible by replacing the standard Hamiltonian evolution of the CFT by

the modular evolution, which uses the so-called modular Hamiltonian

KR = − 1

2π
log ρR ,

derived from the density matrix on region R. The modular Hamiltonian KR is in general

non-local, but the modular analog of Heisenberg operators

OR(s) = eisKR OR e−isKR ,

can be used to write down a generalization of (1.1) of the form

φ(X)
∣∣
EWR

=

∫
ds

∫
R
dxR g(X;xR, s)O(xR, s) . (1.2)

In this case, the smearing function g(X;xR, s) can be obtained from the powerful statement

of [10] that modular flow restricted to appropriate low-energy operators is equal to its bulk

counterpart defined on the ‘entanglement wedge’ (cf. also [11, 12]). Even more ambitiously,

it has been argued that a complete reconstruction is possible wherever the bulk low-energy

effective field theory is defined, provided one uses sufficiently state-dependent prescriptions

(cf. [13–16]). This entanglement wedge, EWR, is defined as the bulk causal domain of the

spacelike region r whose boundary has components ∂r = R ∪ χR, where χR is the HRT

entangling surface anchored on R. In the leading large-N approximation, in which bulk

fields are free, one can give fairly explicit constructions of the kernel g(X,xR, s) using the

gaussian character of the bulk quantum states [17].

In this article we investigate effects of cosmological singularities on these reconstruc-

tion methods. By cosmological singularity in the holographic context we mean one that is

visible over all energy scales of the CFT, in particular in the UV (or boundary) descrip-

tion. Such singular states are typically engineered by a singular driving of the CFT by

a time-dependent operator. In this note we examine a particular example of AdS/CFT-

engineered cosmological singularity based on a marginal operator driving. On the QFT side

we consider a holographic CFT on a Kasner metric, which is Ricci flat, homogeneous, but

otherwise has a generic spacelike singularity. The bulk background is an AdS cone over

the Kasner metric, known as the Kasner-AdS background which extends the boundary

singularity into the bulk (cf. [18–21] for previous holographic studies of this background).

We will show that the Kasner-AdS model illustrates an interesting phenomenon: the

presence of the singularity puts limits to the power of causal reconstructions, even if we

allow ourselves to use the full CFT operator algebra on an infinite Cauchy slice. On the

other hand, it is found that modular reconstruction in this background, while based on

a finite-region operator subalgebra, is still capable of going beyond the most powerful

causal reconstruction. This is a somewhat stronger statement than the usual fact that the

entanglement wedge contains the causal wedge, CWR ⊂ EWR, for the same R (cf. [22–24]).
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t =
+
∞

t = 0

z
=

0

Figure 1. Penrose diagram of the (t, z)-projection of Kasner-AdS for t > 0. Horizontal (vertical)

dashed lines are constant t (constant z). The diagram for t < 0 is just the t→ −t reflection.

2 The Kasner-AdS state

Let us consider a holographic CFT defined on the Kasner spacetime

ds2
CFT = −dt2 +

d−1∑
j=1

t 2pj dx2
j , (2.1)

where we have chosen to measure time in units of the average expansion rate. Despite

the fact that the CFT spacetime has no dynamical gravity, we shall choose the constants

pj satisfying the standard sum rules
∑

j pj =
∑

j p
2
j = 1, so that the metric is spatially

homogeneous, Ricci flat and singular at t = 0. At least one pj is negative, which implies one

direction of contraction out of the bang towards the future, or one direction of expansion

into the crunch from the past. For any such Ricci flat boundary metric, we can immediately

manufacture a bulk solution with constant (negative) bulk curvature in d+ 1 dimensions:

ds2 =
dz2 + ds2

CFT

z2
, (2.2)

where we measure the radial coordinate z > 0 in units of the radius of curvature. A Penrose

diagram showing the Rd−2-invariant causal structure is shown in figure 1.

In this spacetime, the t = 0 singularity of the CFT metric penetrates into the full

t = 0 slice of the bulk spacetime. In addition to this t = 0 singularity, there are milder

tidal singularities at t = ±∞. At any rate, this background defines a certain holographic

state on the CFT side and an associated ‘code subspace’ where low-energy bulk operators

may be defined implicitly by the standard machinery of low-energy effective QFT in curved

spacetime.
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t = 1

t

x

− −

−ch chchR

p > 0

t = 1

t

x

− −

−ch ch

p < 0

R

Figure 2. The lower tip of DR for the region R = [−ch, ch]×Rd−2 contacts the singularity (where

we omit the orthogonal directions due to translational invariance). For a super-horizon region R, i.e.

one with c > ch, its causal developmentDR ceases to be complete. Amongst the d−1 possible choices

for the compact direction of R, at least one behaves as in the contracting case of the right figure.

The basic building blocks for a reconstruction formula such as (1.1) are the causal

domains in the CFT spacetime, whose existence is not guaranteed in spacetimes with

singularities. To see this, we shall profit from the symmetries of the problem and consider

spacelike regions of the form R = [−c, c] × Rd−2. With no loss of generality, we can

place these regions at fixed time t = 1, since we may use a scaling argument to recover

the behavior of other time slices. We shall denote by p the Kasner exponent along the

compact direction of R. The associated causal domains, DR, are the product of a (1 + 1)-

dimensional causal domain oriented in the x direction and Rd−2. When drawn in the

Kasner coordinates, the (1 + 1)-dimensional factors appear curved inwards or outwards

depending on the sign of p. At any rate, the important fact about these causal domains is

their intersection with the singularity for a sufficiently large value of c. This happens for

c > ch = (1− p)−1, as we indicate in figure 2 for both possible signs of p.

A larger region R supports a formally larger operator subalgebra, and therefore boasts

a potentially larger reconstruction power. Evidently, the presence of the singularity puts

a sharp limit to any reconstruction method tailored to the causal domains DR. In fact, as

we show in the next section, there is an ultimate limit to Green-function reconstruction,

even if we summon the complete operator algebra on a non-compact Cauchy slice.

3 Maximal causal reconstruction

Even if we may consider regions R with c > ch, so that the corresponding causal de-

velopments DR are not defined, we may ask what information can be obtained from the

Heisenberg flow of operators sitting at t > 0. In other words, what reconstruction power is

held by the union of all critical domains of the form [−c, c]×Rd−2 for arbitrary real values

of c. Even more optimistically, we may ask for the causal reconstruction power of the full

– 4 –
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0I
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Figure 3. The causally reconstructible region I is separated from region II by the scale invariant

t = z hypersurface.

operator algebra at t > 0. The answer to this question is simple: causal reconstruction

extends to the full t > z region I in figure 3, i.e. the northeast of the Penrose diagram.

In order to show this, we simply argue for the existence of the appropriate Green

function on region I, with initial data on the holographic boundary. For simplicity, we

consider a scalar generalized free field O(t, ~x) in Kasner, and its dual bulk field φ(t, z, ~x)

at leading large-N

(�−m2) φ(t, z, ~x) = 0 . (3.1)

The Rd−1 translational isometries guarantee that we can diagonalize the wave operator

in the Fourier basis

φ~k(t, z) =

∫
dd−1~x e−i

~k·~x φ(t, z, ~x) , (3.2)

i.e. the dynamics of each of these non-local modes is effectively two-dimensional(
∂2
z +

1− d
z

∂z −
1

t
∂t (t ∂t)−

d−1∑
i=1

t−2pi (ki)
2 − m2

z2

)
φ~k(t, z) = 0 . (3.3)

We can redefine the field mode Φ~k(t, z) = z
1−d
2 t

1
2 φ~k(t, z) so that (3.3) becomes more

revealing1 (
�(0) − V~k (t, z)

)
Φ~k(t, z) = 0 , (3.4)

1The solution to (3.3) as a sum over momentum modes in the z-coordinate is not advantageous for causal

reconstruction purposes, since these modes probe the bulk too deep (region II) in order for the problem to

have a solution in terms of data on the holographic boundary.
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• z
=

ε

Φ�k(t, z)

S

Figure 4. The support of the Green function G
(−)
�k

in gray for a given point in region I and its

intersection with the ε-regularized boundary. The blue volume S is conveniently taken to apply

Gauss’ law to the point in question.

where �(0) = −∂2
t + ∂2

z is the two-dimensional wave operator in flat spacetime, and the

effective potential corresponds to

V�k (t, z) =
m2

c

z2
+

1

4t2
+

d−1∑
i=1

k2i
t2pi

, (3.5)

once the renormalized mass m2
c = m2 + (d2 − 1)/4 is defined. The advantage of effectively

reducing the number of dimensions to two is that we can switch space and time just by

adding an overall minus sign, and this way reformulate the problem as an initial-value

problem in an open set of flat spacetime. Assuming analyticity in mc and �k for the corre-

sponding retarded Green function, it is possible to formally build it from a series expansion

with the bare free massless retarded Green function. It is not hard to see that each term

in this expansion will actually have the appropriate support.

As a consequence, the desired “spacelike retarded” Green function can be assumed to

exist in two dimenisons, solving

D′
�k
G

(−)
�k

(t, z; t′, z′) = δ(z − z′) δ(t− t′) , (3.6)

where D′
�k
= �(0)−V�k is the differential operator in (3.4) acting over the prime coordinates,

with G
(−)
�k

supported only when z − z′ > 0 together with (z − z′)2 − (t− t′)2 ≥ 0.

Having argued for the existence of such a Green function, it is straightforward at this

point to write down an expression for the general solution in region I in terms of boundary

data. We consider a regularized boundary at ε coordinate distance and integrate over the

blue region S in figure 4 to get

Φ�k
(t, z)

∣∣
I
=

∫
S
dt′ dz′ δ(z − z′) δ(t− t′) Φ�k

(t′, z′) =

∫
S
dt′ dz′ Φ�k

(t′, z′) D′
�k
G

(−)
�k

(t, z; t′, z′) ,

(3.7)
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and now integrate by parts, using Gauss’ law, to get

Φ~k(t, z)
∣∣
I

=

∫ ∞
0

dt′
(
G

(−)
~k

(t, z; t′, ε) ∂z′Φ~k(t
′, ε)− Φ~k(t

′, ε) ∂z′G
(−)
~k

(t, z; t′, ε)
)
, (3.8)

where we used that the remaining volume integral vanishes since D′~k Φ~k = 0, and moreover

that both ∂S ∩ supp(G
(−)
~k

) and ∂S ∩ supp(∂G
(−)
~k

) lie on the ε-regularized boundary.

We can move the boundary to spatial infinity by taking ε → 0. The extrapolate

dictionary dictates that this mode will asymptote to the corresponding mode of the dual

CFT field

Φ~k(t, ε) ∼ ε
1
2

+ν O~k(t) , (3.9)

where ν2 = d2/4 + m2 and the unusual scaling is simply a consequence of the previous

field redefinition. Likewise, since the Green function satisfies the homogeneous version

of (3.6) for any point at finite z as we take ε → 0, it will have both a normalizable and a

non-normalizable component

G
(−)
~k

(t, z; t′, ε) ∼ (2ν)−1
(
ε
1
2

+ν L~k(t, z; t′) + ε
1
2
−ν K~k

(t, z; t′)
)
. (3.10)

The normalizable part L~k gives terms in (3.8) proportional to ε2ν , in contrast with the

ε-independent terms that come from K~k
. Accordingly,

Φ~k(t, z)
∣∣
I

=

∫ ∞
0

dt′K~k
(t, z; t′) O~k(t

′) , (3.11)

which, after undoing the field redefinition and the Fourier transform, results in

φ(t, z, ~x)
∣∣
I

= t−
1
2 z

d−1
2

∫
dd−1~k

(2π)d−1
ei
~k·~x

∫ ∞
0

dt′K~k
(t, z; t′) O~k(t

′) . (3.12)

The t′ integral has compact integration range, hence we expect that it converges for all
~k, and moreover that it decays fast enough for large |~k|, so that we can swap both integrals

to re-express (3.11) in the more familiar form

φ(t, z, ~x)
∣∣
I

=

∫
t′>0

dt′
∫
dd−1~x′K(t, z, ~x, t′, ~x′) O(t′, ~x′) , (3.13)

where the smearing function is, up to some multiplicative factors, the inverse Fourier

transform of K~k
, understood in the distributional sense

K(t, z, ~x; t′, ~x′) = t−
1
2 z

d−1
2

∫
dd−1~k

(2π)d−1
ei
~k·(~x−~x′) K~k

(t, z; t′) . (3.14)

These considerations extend trivially for t < 0, the causal reconstruction horizon being z =

−t in this case. An analogous construction exists in terms of a faithful coordinate system

covering region I alone (see appendix 1). At any rate, we see that causal reconstruction

is completely explicit outside the horizons z = |t|, either to the past or the future of the

singularity.

– 7 –
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4 Modular supremacy

In this section we turn to the study of entanglement wedges in the Kasner-AdS state. These

conform the geometrical data for modular reconstruction, and our main question is wether

the reconstruction horizon z = |t| is modular-traversable or not. In other words, we are

interested in detecting HRT surfaces which penetrate beyond z = |t| in the bulk.

Our choice of boundary region R = [−c, c] × Rd−2 is essentially motivated by symme-

tries, and its convenience for calculating extremal surfaces resides in the fact that its HRT

will factorize as χR = γ × Rd−2, where γ is a spacelike trajectory on the (t, z, x)-plane,

and the Rd−2 factor corresponds to the orthogonal directions.

We can therefore restrict to the family of surfaces that factorize in the same manner,

so that the volume functional reduces to

Vold−1 =

∫ sf

s0

ds

∫
dd−2xj

√
h =

∫
dd−2xj

∫ sf

s0

ds
t1−p

zd−1

√
(z′)2 − (t′)2 + t2p(x′)2 , (4.1)

where s is a parameter along the trajectory, and prime is d/ds. The xj integrals yield the

contribution from the orthogonal directions, which needs to be regularized

Vold−1 = Vold−2

∫ τf

τ0

dτ . (4.2)

Since the HRT extremizes (4.2), its first factor γ will correspond to a spacelike geodesic

in the effective background

dτ2 =
t2(1−p) dz2 − t2(1−p) dt2 + t2 dx2

z2(d−1)
, (4.3)

subject to the boundary conditions

z (τ0) = z (τf ) = ε (4.4)

t (τ0) = t (τf ) = 1 (4.5)

x (τ0) = −c , x (τf ) = c , (4.6)

where ε is the bulk regulator that brings the boundary to finite spatial distance.

The evaluation of the on-shell volume for the HRT is just

Vold−1 [χR] = Vold−2 2τmax , (4.7)

where 2τmax = 2τmax(ε, λ) is the regularized proper length of the geodesic γ.

In affine parametrization, the equations of motion read

z′′ =
d− 1

z

(
(z′)2 + (t′)2 − t2p (x′)2

)
− 2(1− p)

t
t′ z′ (4.8)

t′′ =
2(d− 1)

z
t′ z′ − (1− p)

t

(
(t′)2 + (z′)2

)
− t2p−1 (x′)2 (4.9)

x′′ = −2

t
x′ t′ +

2(d− 1)

z
x′ z′ . (4.10)

– 8 –
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Our first observation is that there must be a turning point for which t′ (τ?) = 0, as

required by the boundary condition (4.5). The second is that every point with t′ (τ?) = 0

is a maximum of t(τ) and there is thus only one such turning point. This implies that

t(τ) ≥ 1 throughout the geodesic. By x→ −x inversion symmetry, the turning point must

be at x (τ?) = 0, and thus it must also have z′(τ?) = 0, being a maximum of z (τ) too.2 We

will conveniently choose the affine parameter to set the turning point at τ? = 0.

Given these considerations, we can reformulate the geodesic problem in terms of the

turning conditions

z (τ = 0) = z? z′ (τ = 0) = 0 (4.11)

t (τ = 0) = t? t′ (τ = 0) = 0 (4.12)

x (τ = 0) = 0 x′(τ = 0) = x′? . (4.13)

The affine parametrization fixes x′? = zd−1
? t−1

? , which means that we can use the two

coordinates of the tip, z? and t?, to specify the geodesic. Generically, such geodesics will

not end at t = 1 in the boundary, contrary to what we requested previously in (4.5). We

can nevertheless solve for generic z? and t?, and obtain the time tb at which the endpoints

of the geodesic touch the regularized boundary. Then, we can rescale everything by tb so

that the new geodesic intersects the boundary at t = 1, as we demanded for our choice of

region R.

In other words, the only significant parameter that survives this rescaling and labels

unequivocally the geodesics that end at t = 1 is the ratio λ = t? / z?. This is in accordance

with the fact that the only boundary parameter we can play with is the length c in the

x-direction. It is reasonable to expect a one-to-one correspondence between both of them,

of the form c = c (λ).

4.1 Qualitative behavior of the entanglement wedges

We are now in the position to examine the existence of HRTs in Kasner-AdS that explore

region II, and see the shape of the corresponding entanglement wedges. Since our choice

of boundary regions R allows for a parametrization of the corresponding HRTs in terms of

λ = t?/z?, the interesting HRTs are the ones with λ < 1 . In particular, we will next show

that these do not correspond to regions R which are super-horizon necessarily.

Unfortunately, we lack of analytical solutions to the geodesic equations, so all the

following results will have a numerical origin. Remarkably, the qualitative features of the

HRTs seem to be almost insesitive to the exact number of boundary spacetime dimensions3

d as well as to the value of the Kasner coefficient p in the compact direction of R. For

this reason, we can pick p = −1/2 in d = 5 as a good representative of what happens

in general. This choice satisfies the Kasner constraints with all the orthogonal directions

being pj = 1/2 (j = 1, 2, 3).

2This is not true if there was a twofold degeneracy on the length, which we assume not to be the case here.
3Kasner solutions to the system

∑
j pj =

∑
j p2j = 1 only exist when the total number of spacetime

dimensions d is greater than 3. The value of the smallest Kasner coefficient pmin is bounded by bellow by

−1+2/(d−1). We will not contemplate Milne-type solutions in this article, that is. some Kasner coefficient

being one (and all the others vanishing), since these correspond to a boundary flat metric.

– 9 –
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z

t

x

RRR

I

II
χR

Figure 5. The entanglement wedge EWR for a sub-critical c < ccr boundary region R in the

contracting branch (p < 0) stays in region I. Its boundary causal domain DR is complete since the

region R is sub-horizon length. The entanglement wedge has a spacelike profile due to caustics.

It is clearly more illuminating to think in terms of the length c of the boundary region

R rather than in terms of λ, so we will explain our results this way. We begin with the

zero-length region and gradually start increasing its length c. For small enough regions R,

which we shall refer to as sub-critical, the situation is shown in figure 5, where the HRT

χR remains in region I. Besides, in this regime, R has sub-horizon length c < ch.

For sub-critical regions R, the entanglement wedge EWR is contained within region I.

The reason is that EWR ⊂ U × Rd−1 ⊂ region I, where U is the region in the (t, z)-plane

delimited by the light rays that emanate from the tip of the geodesic (t�, z�) and reach the

boundary, i.e. U is exactly the support of the spacelike retarded Green function of figure 4.

Eventually, the length of R reaches the critical value c = ccr for which the tip of the

HRT χR contacts the hyperplane that separates region I from II. The same argument as

above assures that, still at this point, EWR does not intersect region II. For any Kasner

solution, the critical length in any of the (d − 1)-directions ccr (d, p) is smaller than the

cosmological horizon length ch, as we show in figure 6. In particular, for p = −1/2 in

d = 5, it is around 72% of ch.

Slightly above the critical length, the region R becomes super-critical while preserving

its sub-horizon character. As we show in figure 7, the HRT χR will finally enter region II,

and the entanglement wedge EWR will still be complete. This last property is a consequence

of the fact that EWR ⊂ [0, z�] × Dz × Rd−2, where Dz is the (t, x)-diamond (as the

ones in figure 2) for the interval with x(z)-length and placed at constant t(z) time, both

of which are given by the corresponding coordinates of the HRT χR at that particular

value of z. Since time t(z) grows monotonically with z for the HRT χR, while the length

x(z) decreases monotonically, each of these causal diamonds will be complete only if the

boundary diamond DR is complete, i.e. when the region R has a sub-horizon size.

– 10 –
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Figure 6. The critical length ccr is smaller than the horizon length ch for any Kasner-AdS, for

which pmin (d) = −1 + 2/(d− 1).

RR

I

II
χR

z

t

x

Figure 7. The entanglement wedge EWR for a super-critical c > ccr but still sub-horizon boundary

region R in the contracting branch (p < 0) probes region II. Its boundary causal domain DR is

complete, and so is the entanglement wedge EWR.
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RR

z

t

x

I

II

χR

Figure 8. The entanglement wedge EWR for a super-critical c > ccr and super-horizon boundary

region R in the contracting branch (p < 0) probes region II. Its boundary causal domain DR is

incomplete, and so is the entanglement wedge EWR.

Lastly, we will reach the cosmological horizon length c = ch. By the previous ar-

gument, it is at this same moment when the entanglement wedge EWR will first touch

the singularity. From this point forward, the region R becomes super-critical and, at the

same time, has super-horizon length. The entanglement wedge EWR intersects the bulk

singularity in the way shown in figure 8.

Naturally, the larger the compact direction of R is, the more its HRT χR will explore

region II. By entanglement wedge nesting, we can generate a bulk Cauchy slice just fixing

the compact direction of R and considering the union of all possible HRTs, as shown in

figure 9.

5 Conclusions

In this note we have mapped entanglement wedges in a holographic model, the Kasner-AdS

solution, where cosmological singularities severely restrict the power of causal reconstruc-

tion methods (i.e. those based on Green’s functions). namely local bulk operators supported

on the region |t| < z cannot be ‘linearly sourced’ from single-trace CFT operators at leading

order in the 1/N expansion. On the other hand, entanglement wedges for certain regions

on a boundary slice do penetrate beyond the causal reconstruction horizon and an entire

bulk Cauchy surface can be reached by nesting larger and larger regions of the CFT slice.

We have emphasized the fact that modular reconstruction, based on a strip region

R of finite transverse extent inside a fixed t-slice of the boundary, is more penetrating

that the more powerful causal reconstruction using the entire CFT operator algebra on

the full fixed-t slice. It would be interesting to study other examples of reconstruction in

the presence of cosmological singularities to assess the generality of this phenomenon. For

instance, one can engineer singularities in the interior of expanding bubbles in AdS, similar

– 12 –
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• {R}∞c=0•

ccr

•

t = 1

Σ ch

I

II

Figure 9. Given the one-parameter family of regions {R}∞c=0 oriented along some fixed compact

direction, the corresponding one-parameter family of HRTs {χR}∞c=0 generates a bulk Cauchy slice

Σ. Its (t, z)-projection is produced by the family of endpoints of the HRTs. The endpoint of the

HRT for the critical region R lies on the green hypersurface, while for the region R of cosmological

horizon size, it gets deeper into the bulk.

to Coleman-de Luccia instabilities (cf. for example [25–27] and references therein). These

states exist in the CFT defined on a sphere, and deformed by a time-dependent relevant

operator. The acceleration horizon of such bubbles is a causal reconstruction horizon for

the operator algebra on a Cauchy slice of the CFT sphere. On the other hand, the RT

surface of a hemisphere clearly penetrates into the interior of the expanding bubble, giving

a simple example of the supremacy of modular reconstruction. In this case, however, both

CFT operator algebras are supported on a compact spatial region, so that the supremacy

is not as neat a phenomenon as in the Kasner-AdS state.

It is interesting to notice that the presence of the tidal singularities at t = ±∞ is crucial

for the significant limitation of the causal reconstruction methods, even when supported

on an entire non-compact Cauchy slice of the boundary. To illustrate this, we can replace

the bare Kasner-AdS metric by a Kasner-AdS soliton metric which regularizes the z =∞
limit of the spacetime. Here, we add an extra compact circle with thermal boundary

conditions, introducing a ‘cigar’ factor in the bulk metric, capped at a finite value of the

radial coordinate z = z0 (cf. for example [18]). Causal reconstruction effectively treats

z = z0 as a timelike surface with reflection boundary conditions. This is enough to solve

for any bulk operator in terms of operators supported at |t| > z, which in turn can be

mapped to the boundary by HKLL methods. This brings the whole bulk under the control

of causal reconstruction, but only if we use the full operator algebra on a non-compact

Cauchy slice of the CFT. In this sense, it is still significant that modular reconstruction

will only use the operator algebra on a proper subregion of that Cauchy slice.

– 13 –
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A Different smearing for region I modes

The holographic representation of bulk approximately local degrees of freedom is highly

non-unique. In this appendix, we will explicitly construct a smearing function for region

I modes which is not compactly supported on the t direction and, hence, it differs from

the one in section 3. To do so, we first introduce a somewhat more convenient coordinate

system to describe region I, and change the CFT frame, as shown in figure 10 eτ = t τ ∈ (−∞,∞) ,

e−ρ =
z

t
ρ ∈ (0,∞) .

(A.1)

The metric in these coordinates is

ds2 = dρ2 − 2dρ dτ − (e2ρ − 1) dτ2 + e2ρ
d−1∑
i=1

e2(pi−1)τ dx2
i , (A.2)

and the (1+1)-dimensional problem for the field mode φ~k (τ, ρ) reduces to(
(e2ρ − 1) ∂2

ρ − 2 ∂ρ ∂τ + d e2ρ ∂ρ − e2ρm2 − ∂2
τ −W~k

(τ)
)
φ~k (τ, ρ) = 0 , (A.3)

with effective potential

W~k
(τ) =

d−1∑
i=1

e2τ(1−pi) k2
i . (A.4)

A.1 The zero mode

For ~k = ~0, the potential W~k
(τ) vanishes, and the problem (A.3) becomes time-independent.

It is therefore appropriate to use the Fourier basis

φ~0, ω (ρ) =

∫ ∞
−∞

dτ e−iωτ φ~0 (ρ, τ) , (A.5)

which has 1-dimensional dynamics(
(e2ρ − 1)

d2

dρ2
+ (de2ρ − 2iω)

d

dρ
− e2ρm2 + ω2

)
φ~0, ω (ρ) = 0 , (A.6)

with normalizable boundary conditions fixed by the extrapolate dictionary in the new frame

φ~0, ω (ρ) ∼ e−∆ρ O~0, ω as ρ→∞ . (A.7)

– 14 –



J
H
E
P
0
9
(
2
0
1
9
)
0
2
6

I

τ
=

+
∞

ρ
=
∞
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0

Figure 10. The (τ, ρ) coordinate system faithfully covers region I. Horizontal (vertical) dashed

lines are constant τ (constant ρ). The CFT singularity happens infinitely far in the past.

In order to solve (A.6), we first rescale the mode Φ~0, ω (ρ) = eiωρ φ~0, ω (ρ), and then

perform a change of variable σ = e2ρ, to reduce the equation into the hypergeometric

equation. It can be solved around the ρ = ∞ pole with the correct asymptotic behavior,

yielding4

φ~0 (τ, ρ) = e−ρ∆

∫ ∞
−∞

dω

2π
O~0, ω e

iωτ
2F 1

(
∆− iω

2
,

∆− iω
2

, 1 +
d

2
−∆ , e−2ρ

)
, (A.8)

with the hermiticity condition O†~0, ω = O~0,−ω . These CFT creation/annihilation operators

have already been implicitly defined by the extrapolate dictionary (A.7)

O~0, ω =

∫ ∞
−∞

dτ e−iωτ O~0 (τ) , (A.9)

and plugging this definition in the mode expansion, we get

φ~0 (τ,ρ) = e−ρ∆

∫ ∞
−∞

dω

2π

∫ ∞
−∞

dτ ′ e−iω(τ ′−τ)O~0 (τ ′) 2F 1

(
∆−iω

2
,

∆−iω
2

, 1+
d

2
−∆ , e−2ρ

)
=

=

∫ ∞
−∞

dτ ′K~0 (τ,ρ;τ ′)O~0 (τ ′) , (A.10)

where we exchanged the order of integration assuming convergence in the distributional

sense, to get that the smearing function is basically a Fourier transform of the hypergeo-

metric function

K~0 (τ,ρ;τ ′) = e−ρ∆

∫ ∞
−∞

dω

2π
e−iω(τ ′−τ)

2F 1

(
∆−iω

2
,

∆−iω
2

, 1+
d

2
−∆ , e−2ρ

)
. (A.11)

4This result is only valid when d
2
−∆ is not an integer. For the integer case, the solution is more involved.
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A.2 Generic modes

Assuming analyticity in ~k, we can expand the mode φ~k formally as5

φ~k (τ, ρ) =
∞∑
n=0

φ
(n)
~k

(τ, ρ) , (A.12)

where φ
(n)
~k

is the term of order |~k|2n which satisfies the recursive differential equation

(
(e2ρ − 1) ∂2

ρ − 2 ∂ρ ∂τ + d e2ρ ∂ρ − e2ρm2 − ∂2
τ

)
φ

(n)
~k

(τ, ρ) = W~k
(τ) φ

(n−1)
~k

(τ, ρ) , (A.13)

for n ≥ 1, whereas for φ
(0)
~k

the equation becomes homogeneous. The extrapolate dictionary

will hold independently for each of the φ
(n)
~k

since the right hand side of (A.13) is negligible

at the asymptotic boundary

φ
(n)
~k

(ρ, τ) ∼ e−∆ρ O(n)
~k

(τ) as ρ→∞ , (A.14)

where the expanded CFT single trace mode O(n)
~k

(τ) corresponds to the order |~k|2n term

in the analogous expansion.

The solution for n = 0 is obviously the zero mode φ
(0)
~k

= φ~0 and it can be read off

from (A.10), with the clear identification O(0)
~k

= O~0.

For n = 1, the solution φ
(1)
~k

will consist of an homogeneous and an inhomogeneous

components. The homogeneous piece will be of the form
∫
K

(0)
~k
O(1)
~k

, with K
(0)
~k

= K~0 the

one in (A.11). The inhomogeneous part will be of the form
∫
K

(1)
~k
O(0)
~k

with

K
(1)
~k

=

∫
bulk

G W~k
K

(0)
~k
, (A.15)

where G is a Green’s function of the time-independent differential operator on the left hand

side of (A.13), which can be expanded in terms of hypergeometric functions.

For n ≥ 2 the only difference is that the inhomogeneous part of φ
(n)
~k

will correspond

to multiple terms. For instance, for the case n = 2, there will be two terms
∫
K

(2)
~k
O(0)
~k

and
∫
K

(1)
~k
O(1)
~k

, where K
(2)
~k

corresponds to two bulk vertices of the form (A.15).

The complete formal resummation yields

φ~k =

∫
K

(0)
~k
O(0)
~k

+

∫
K

(1)
~k
O(0)
~k

+

∫
K

(0)
~k
O(1)
~k

+ . . . =

∫
K~k
O~k (A.16)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

5The odd terms in the expansion will vanish due to the inversion symmetry.
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