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1 Introduction

Cosmological models with two real scalar fields produce natural generalizations of single

scalar field cosmology, which may be favored in fundamental theories of gravity [1–4]. Pairs

of real scalar fields arise naturally in supergravity and string theory. Indeed, the generic

supersymmetric compactification of such theories produces complex moduli, each of which

can be viewed as a pair of real scalars.

Scalar multifield models were considered in cosmology from various points of view

(see, for example, [5–11]), including numerically [12–14] and to some extent phenomeno-

logically [15]. However, current insight into their dynamics (which, as outlined in [16–18],

is quite interesting from the perspective of the geometric theory of dynamical systems [19])

is far more limited than for one-field models. In particular, numerous questions regarding

the behavior of such models have not been studied systematically.

In this paper, we address one fundamental problem regarding such models, namely the

question of symmetries and conserved quantities. A general two-field cosmological model

based on a simply connected and spatially-flat FLRW space-time with scale factor a(t)

is parameterized by a scalar manifold (Σ,G) (a complete and connected two-dimensional

Riemannian manifold which plays the role of target space for the non-linear sigma model

describing the two scalar fields ϕ1, ϕ2) and a scalar potential V (a smooth real-valued func-

tion defined on Σ, which describes the self-interacting potential of the scalars). Here Σ is the

internal manifold of the two scalar fields, which we allow to have non-trivial topology (such

as non-contractible cycles) while G is the scalar manifold metric, whose components locally

determine the kinetic terms of the two scalar fields. The scalar kinetic terms are specified

globally by the pair (Σ,G). Such models admit a description (known traditionally as the

“minisuperspace formulation”) as a Lagrangian system for the three degrees of freedom a,

ϕ1, ϕ2 subject to a constraint (namely the zero energy shell condition), which implements

the Friedmann equation. The minisuperspace formulation allows one to study symmetries

of such models using the Noether approach. We followed this method in reference [20] —

where we restricted to scalar manifolds which are rotationally invariant and we considered

only a special class of time-independent symmetries satisfying a certain separation of vari-

ables Ansatz. In the present paper, we still assume that the scalar manifold metric G is rota-

tionally invariant,1 but study the problem without making any other assumptions. This al-

lows us to give a complete description of all time-independent Noether symmetries for mod-

els with rotationally-invariant scalar manifold metric and to classify Noether-symmetric

1It is in fact possible to remove this assumption as well, as we will show in a separate paper by developing

a more general theory.
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models of this type. In particular, we find many new Noether symmetries that were never

considered before, the vast majority of which do not satisfy the separation of variables

Ansatz used in reference [20]. Most of these symmetries, which we describe explicitly, are

not invariant under the U(1) group of rotations which preserves the scalar manifold metric.

Using the minisuperspace description, we first show that any time-independent Noether

symmetry of a general two-field cosmological model is a direct sum of a visible symmetry

with a Hessian symmetry. The first of these are obvious symmetries, corresponding to

those continuous isometries of the scalar manifold which preserve the scalar potential V ;

such symmetries do not involve the cosmological scale factor a. On the other hand, Hessian

symmetries are hidden, in the sense that they are not immediately obvious; they involve a

as well as an auxiliary real-valued smooth function Λ (called the generating function of the

corresponding Hessian symmetry), which is defined on the scalar manifold Σ. For Hessian

symmetries, the Noether condition dictates that Λ must satisfy a system of two linear

partial differential equations, namely the so-called Hesse equation (a second order PDE

for Λ which depends only on the scalar manifold metric) and the Λ-V equation (a relation

which involves the scalar manifold metric and the first order partial derivatives of Λ and

V ). The Hesse equation relates the Hessian tensor of Λ to the symmetric tensor ΛG and a

solution of this equation will be called a Hesse function. The two-field cosmological model

is called weakly Hessian if its scalar manifold admits non-trivial Hesse functions. The model

is called Hessian if it admits a Hessian symmetry, i.e. if it is weakly Hessian and its scalar

potential V satisfies the Λ-V equation for some non-trivial Hesse function Λ of the scalar

manifold. A Hessian model can also admit visible symmetries, provided that its scalar

potential is sufficiently special. We show that the conservation law associated to a Hessian

symmetry allows one to compute the e-fold number along cosmological trajectories without

performing an integral, thereby providing a useful tool for extracting phenomenologically

relevant information in Hessian two-field models.

When G is rotationally invariant,2 we show that the model is weakly Hessian iff Σ

is diffeomorphic to a disk, a punctured disk or an annulus and G is a metric of constant

Gaussian curvature K = −3
8 . In particular, weakly-Hessian two-field cosmological models

coincide with those elementary two-field α-attractor models (in the sense of reference [22])

for which α = 8
9 (here and in the following we use the convention K = − 1

3α), being spe-

cial examples of the much wider class of two-field generalized α-attractors introduced and

studied in [21–24].3 We show that such weakly-Hessian models are Hessian iff their scalar

potential has a specific form which we determine explicitly in all cases, thereby classifying

all Hessian two-field models with rotationally invariant scalar manifold metric. When the

scalar manifold is a disk endowed with its complete metric of Gaussian curvature −3/8, we

find that Hessian models fall naturally into three classes (which we call “timelike”, “space-

2Notice that the Hesse symmetry generating function Λ is not assumed to be rotationally symmetric,

even though we assume that the scalar manifold metric is.
3Generalized two-field α-attractors extend ordinary two-field α-attractor models [25–32] (whose target

space is the hyperbolic disk) to models whose target space is allowed to be an arbitrary complete hyperbolic

surface. As explained in [21–24], such models can be approached through uniformization theory, which

relates them to the framework of modular inflation developed and studied in [33–37].
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like” and “lightlike”), distinguished by the orbit type of their Hesse generating function

under the natural action of the group of orientation-preserving isometries of the hyperbolic

disk. In this case, the space of Hesse functions is three-dimensional and can be identified

with the Minkowski space R1,2. Thus Hesse functions are naturally parameterized by a

Minkowski 3-vector B, whose timelike, spacelike or lightlike character determines the type

of the model. For each of the three types, we give the explicit general form of the scalar

potential which is compatible with a Hessian symmetry, as well as the explicit form of

the corresponding Hesse generator. When the scalar manifold is a punctured disk or an

annulus endowed with a metric of Gaussian curvature −3/8, we find that the space of

Hesse functions is one-dimensional and determine it, also giving the explicit form of the

scalar potential for which the two-field model is Hessian. In each case mentioned above,

we also describe the special situation when the Hessian model admits visible symmetries.

These results allow for a complete description of time-independent Noether symmetries in

two-field cosmological models with rotationally invariant scalar manifold metric. As we will

show in a separate paper, a deeper mathematical approach allows one to prove that these

are in fact the only Hessian models, hence the results derived herein provide a complete

classification of Hessian cosmological two-field models.

The paper is organized as follows. Section 2 briefly recalls the minisuperspace de-

scription of two-field cosmological models. Section 3 gives a geometric characterization of

time-independent Noether symmetries in such models, showing that any such symmetry

can be written as a direct sum between a visible and a Hessian symmetry. In particular,

we prove that the generating function Λ of a Hessian symmetry satisfies the Hesse and

Λ-V equations, showing how the latter can be used to determine V in terms of Λ through

the method of characteristics. We also discuss the integral of motion of a Hessian symme-

try, showing that it can be used to extract an algebraic (as opposed to integral) formula

in terms of the scalars ϕi for the number of e-folds along cosmological trajectories. Sec-

tion 4 gives the classification of weakly-Hessian models with rotationally-invariant scalar

manifold metric, summarizing the results proved in appendix C. This shows that the only

scalar manifolds which are allowed in such models are the disk, punctured disk and an-

nuli of constant Gaussian curvature K = −3
8 . It follows that weakly-Hessian models with

rotationally-invariant scalar manifold metric are elementary two-field α-attractors in the

sense of reference [22], for the specific value α = 8
9 . We next proceed to determine the gen-

eral form of the scalar potential of the corresponding Hessian models in each of the three

cases. The hyperbolic disk is discussed in section 5. In this case, the results of appendix C

imply that the space of Hesse functions is three dimensional and admits a basis formed by

the classical Weierstrass coordinates. This allows us to identify the space of Hesse functions

with the Minkowski 3-space R1,2, on which the group of orientation-preserving isometries

of the hyperbolic disk acts through proper and orthochronous Lorentz transformations (as

recalled in appendix B). This provides a natural classification of Hesse functions into func-

tions of timelike, spacelike and lightlike type. For each of these three cases, we use the

method of characteristics for the Λ-V equation and representation-theoretic arguments to

extract the explicit general expression for those scalar potentials V for which the model

admits the Hessian symmetry generated by a given Hesse function Λ. We also describe the

– 3 –
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special cases when a Hessian model admits visible symmetries. In section 6, we determine

explicitly the scalar potential of Hessian two-field cosmological models whose scalar mani-

fold is a punctured disk of Gaussian curvature −3
8 and explain when such models also admit

visible symmetries. In section 7, we perform the same analysis for models whose target is

a hyperbolic annulus of Gaussian curvature −3
8 . Finally, section 8 gives our conclusions

and some directions for further research. In the appendices, we review or derive various

technical results used in the main text.

Notations and conventions. Throughout this paper, all manifols considered are as-

sumed to be connected, paracompact, Hausdorff and smooth. The scalar manifold of a

two-field cosmological model is assumed to be complete, as required by conservation of

energy; for simplicity, we also assume it to be oriented. By a hyperbolic metric we always

mean a metric which is complete and of unit negative Gaussian curvature. The notation

D indicates the Euclidean disk of unit radius, while Ḋ
def.
= D \ {0} indicates the punctured

Euclidean disk. Finally, A(R) (where R > 1) indicates the Euclidean annulus of inner

radius 1/R and outer radius R. The notations D and D∗ indicate the surfaces D and

Ḋ when endowed with their unique hyperbolic metric, while A(R) indicates the annulus

A(R), when the latter is endowed with its unique hyperbolic metric of modulus µ = 2 logR.

The isometry group of an oriented Riemannian 2-manifold (Σ,G) is denoted by Iso(Σ,G),

while its subgroup of orientation-preserving isometries is denoted by Iso+(Σ,G). We refer

the reader to the appendices and to references [21, 22] for a summary of some relevant

information about elementary hyperbolic surfaces.

2 The minisuperspace Lagrangian of two-field cosmological models

In this section, we recall briefly the definition of two-field cosmological models and their

constrained Lagrangian description in the minisuperspace approach.

2.1 Two-field cosmological models

We consider cosmological models with two real scalar fields whose underlying space-time

is a simply-connected and spatially flat FLRW universe. Our models are parameterized

by a connected, oriented and complete Riemannian 2-manifold (Σ,G) (called the scalar

manifold), together with a scalar potential given by a smooth real-valued function V defined

on Σ. This data combines into a scalar triple (Σ,G, V ). The condition that Σ be connected

and oriented is purely technical and it could be relaxed. The condition that the metric G
is complete insures conservation of energy in such models.

The models are obtained from the following action,4 which describes the coupling of

Einstein gravity defined on R4 with the non-linear sigma model of target space (Σ,G) and

scalar potential V :

S[g, ϕ] := SΣ,G,V [g, ϕ]=

∫
R4

d4x
√
| det g|

[
R(g)

2
− 1

2
gµνGij∂µϕi∂νϕj − V (ϕ)

]
. (2.1)

4We work in units where the reduced Planck mass M equals one. The rescaling G̃ = M2G and Ṽ =

M2V gives S̃ = M2S, where S̃[g, ϕ] =
∫
R4 d4x

√
| det g|

[
M2

2
R(g)− 1

2
Trgϕ

∗(G̃)− Ṽ (ϕ)
]

is the action more

commonly found in the literature.
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Here R(g) is the scalar curvature of the space-time metric g (which has ‘mostly plus’

signature), while ϕ is a smooth map from R4 to Σ, whose components in local coordinates

on Σ (denoted ϕi with i = 1, 2) are the two real scalar fields of the model. The cosmological

model defined by the scalar triple (Σ,G, V ) is obtained from (2.1) by fixing g to be the

background metric of a simply-connected FLRW universe with flat spatial section:

ds2
g := −dt2 + a2(t)d~x2 (where x0 = t , ~x = (x1, x2, x3) and a(t) > 0 ∀t) (2.2)

and taking ϕ to depend only on the cosmological time t:

ϕ = ϕ(t) . (2.3)

Let H
def.
= ȧ

a denote the Hubble parameter, where ȧ
def.
= da

dt .

2.2 The minisuperspace Lagrangian

Substituting (2.2) and (2.3) in (2.1) and ignoring the integration over the spatial variables

~x gives the minisuperspace action :

S[a, ϕ] =

∫ +∞

−∞
dt a3

[
3(ȧ2 + aä)

a2
+

1

2
Gij(ϕ)ϕ̇iϕ̇j − V (ϕ)

]
, (2.4)

where ϕ̇
def.
= dϕ

dt . Notice that S depends explicitly on the scale factor a of the FLRW metric.

The functional (2.4) can be viewed as the classical action of a mechanical system with three

degrees of freedom. Indeed, integration by parts in the ä term of (2.4) allows us to write:

S[a, ϕ] =

∫ ∞
−∞

dt L(a(t), ȧ(t), ϕ(t), ϕ̇(t)) , (2.5)

where L := L(Σ,G,V ) is the minisuperspace Lagrangian :

L(a, ȧ, ϕ, ϕ̇)
def.
= −3aȧ2 + a3

[
1

2
Gij(ϕ)ϕ̇iϕ̇j − V (ϕ)

]
. (2.6)

In this formulation, the triplet (a, ϕi) provides local coordinates on the configuration space:

N def.
= R>0 × Σ (2.7)

of this mechanical system. The Euler-Lagrange equations of (2.6) take the form:

3H2 + 2Ḣ +
1

2
Gij(ϕ)ϕ̇iϕ̇j − V (ϕ) = 0 (2.8)

(∇t + 3H)ϕ̇j + Gij(ϕ)(∂iV )(ϕ) = 0 .

Here ∇tϕ̇i
def.
= ϕ̈i + Γijkϕ̇

jϕ̇k, where Γijk are the Christoffel symbols of the scalar manifold

metric G, ∂iV
def.
= ∂V

∂ϕi
and we used the relation:

2aä+ ȧ2

a2
= 3H2 + 2Ḣ .

– 5 –
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To recover the cosmological equations of motion, one must subject the Lagrangian (2.6) to

the zero energy constraint EL = ∂L
∂ȧ ȧ + ∂L

∂ϕ̇i
ϕ̇i − L = 0, which takes the following explicit

form:
1

2
Gij(ϕ)ϕ̇iϕ̇j + V (ϕ) = 3H2 , (2.9)

thus coinciding with the time-time component of the equations of motion derived from (2.1).

This is often called the Friedmann constraint. On solutions of the Euler-Lagrange equa-

tions (2.8), this constraint gives a relation between the integration constants, thus reducing

the number of independent constants by one (see, for instance, reference [38]). However,

one can also use the Friedmann constraint from the outset to solve algebraically for the

Hubble parameter H:

H =
1√
6

[
Gij(ϕ)ϕ̇iϕ̇j + 2V (ϕ)

]1/2
. (2.10)

To recapitulate, the system formed by the Euler-Lagrange equations (2.8) together with the

Friedmann constraint (2.9) is equivalent with the cosmological equations of the two-field

model obtained from (2.1).

3 Noether symmetries for general two-field models

In this section, we consider time-independent infinitesimal Noether symmetries of the min-

isuperspace Lagrangian (2.6). By analyzing the Noether symmetry condition, we show

that the corresponding Noether generator decomposes as a direct sum between a visible

and a hidden symmetry, the latter type of symmetry being determined by a Hesse function

Λ. For Hessian symmetries, we explain how the Λ-V equation allows one to extract the

general form of the scalar potential using the method of characteristics. We also discuss the

natural action of the isometry group of the scalar manifold on the linear space of all Hesse

functions and on the linear space of all scalar potentials which satisfy the Λ-V equation.

Finally, we consider the conservation law associated to a Hessian symmetry, showing that it

allows one to determine the number of e-folds along cosmological trajectories algebraically

in ϕi, instead of through an integral.

3.1 Noether generators and integrals of motion

Recall that the configuration space N = R>0×Σ of the minisuperspace model is a product

of the target space Σ (which is locally parameterized by ϕ1 and ϕ2) with the range R>0

of the scale factor a. Geometrically, the Lagrangian (2.6) is a smooth real-valued function

defined on the tangent bundle TN , which identifies naturally with the first jet bundle of

curves of N (see [39]). This tangent bundle decomposes as:

TN = T(a)N ⊕ T(ϕ)N ,

where T(a)N is the pullback of the tangent bundle of the half-line R>0 through the first pro-

jection and T(ϕ)N is the pullback of the tangent bundle of Σ through the second projection.

Hence any vector field X defined on N decomposes uniquely as:

X = X(a) +X(ϕ) ,

– 6 –
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where X(a) is a vector field defined on the half-line and X(ϕ) is a vector field defined on Σ.

In local coordinates on the configuration space N , we have:

X(a) = Xa(a, ϕ)
∂

∂a
, X(ϕ) = Xi(a, ϕ)

∂

∂ϕi
. (3.1)

The first jet prolongation X of X is a vector field defined on TN which is given in local

coordinates by the formula (see [39]):

X = X + Ẋa(a, ϕ, ȧ, ϕ̇)
∂

∂ȧ
+ Ẋi(a, ϕ, ȧ, ϕ̇)

∂

∂ϕ̇i
,

where:

λ̇(a, ϕ, ȧ, ϕ̇)
def.
= (∂tλ)(a, ϕ) + (∂aλ)(a, ϕ)ȧ+ (∂iλ)(a, ϕ)ϕ̇i

for any smooth function λ, where we use the notations ∂t
def.
= ∂

∂t , ∂a
def.
= ∂

∂a , ∂i
def.
= ∂

∂ϕi
. The

vector field X is a variational symmetry of the Lagrangian (2.6) provided that it satisfies

the Noether condition:

LX (L) = 0 , (3.2)

where LX denotes the Lie derivative with respect to the prolongation X . In local coordi-

nates on Σ, this condition takes the form:

P (a, ϕ, ȧ, ϕ̇) = 0 , (3.3)

where the polynomial P is given by:

P (a, ϕ, ȧ, ϕ̇)
def.
= Xa∂L

∂a
+Xi ∂L

∂ϕi
+ Ẋa∂L

∂ȧ
+ Ẋi ∂L

∂ϕ̇i
. (3.4)

Given a variational symmetry X of L, the associated integral of motion has the following

local expression (see [39]):

JX = Xa∂ȧL+Xi∂ϕ̇iL = −6aȧXa + Gij(ϕ)a3Xiϕ̇j . (3.5)

3.2 The characteristic system

In this subsection, we show that the Noether symmetry condition (3.2) for the minisu-

perspace Lagrangian (2.6) amounts to the requirement that X has the form X(a, ϕ) =

X(a)(a, ϕ) +X(ϕ)(a, ϕ) = Xa∂a +Xi∂i, with:

X(a)(a, ϕ) =
Λ(ϕ)√
a
∂a , X(ϕ)(a, ϕ) =

[
Y i(ϕ)− 4

a3/2
Gij(ϕ)∂jΛ(ϕ)

]
∂i , (3.6)

where Λ is a smooth real-valued function defined on Σ and Y = Y i∂i is a smooth vector

field defined on Σ, which satisfy the characteristic system:(
∂i∂j − Γkij∂k

)
Λ =

3

8
GijΛ

Gij∂iV ∂jΛ =
3

4
V Λ

∇iYj +∇jYi = 0 (3.7)

Y i∂iV = 0 .

– 7 –
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In index-free notation, the general Noether generator reads:

X = XΛ + Y , (3.8)

where:

XΛ =
Λ√
a
∂a −

4

a3/2
gradGΛ . (3.9)

Let us begin by computing the polynomial (3.4):

P = 3a2Xa

[
−H2 +

1

2
Gijϕ̇iϕ̇j − V

]
+ a3Xi

[
1

2
∂iGjkϕ̇jϕ̇k − ∂iV

]
−6a2HẊa + a3Gijϕ̇jẊi .

Using H = ȧ
a and expanding in powers of ȧ and ϕ̇ gives:

P = Po(a, ϕ) + P00(a, ϕ)ȧ2 + P0i(a, ϕ)ȧϕ̇i + Pij(a, ϕ)ϕ̇iϕ̇j ,

where:

P00 = −3Xa − 6a∂aX
a

P0i = −6a∂iX
a + a3Gij∂aXj

Pij = Pji =
3

2
a2GijXa + a3 1

2
(∇iXj +∇jXi) (3.10)

Po = −3a2V Xa − a3Xi∂iV .

Explicitly, the a3-term of Pij reads:

1

2
(∇iXj +∇jXi) =

1

2

(
∂iXj + ∂jXi − 2ΓkijXk

)
=

1

2

[
(∂kGij)Xk + Gki∂jXk + Gkj∂iXk

]
.

Using (3.10), the Noether symmetry condition (3.3) amounts to the system:

(coeff. of ȧ2) : Xa + 2a∂aX
a = 0

(coeff. of ȧϕ̇i) : −6∂iX
a + a2Gij∂aXj = 0

(coeff. of ϕ̇iϕ̇j) : 3GijXa + a (∇iXj +∇jXi) = 0 (3.11)

(potential term) : 3V Xa + aX i∂iV = 0 .

The first equation in (3.11) implies that the first relation in (3.6) holds for some smooth

function Λ(ϕ). Using this into the second equation of (3.11) gives:

Gij∂aXj = 6
∂iΛ

a5/2
. (3.12)

Integrating (3.12) with respect to a gives the second relation in (3.6):

Xi(a, ϕ) = − 4

a3/2
Gij∂jΛ(ϕ) + Y i(ϕ) , (3.13)

– 8 –
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where Y is a vector field defined on Σ. Substituting (3.6) into the third equation of (3.11)

gives:
1

a1/2
[3GijΛ− 4(∇i∂jΛ +∇j∂iΛ)] + a(∇iYj +∇jYi) = 0 . (3.14)

Since the terms multiplying powers of a in this relation are themselves independent of a,

taking the limits a→ 0 and a→∞ shows that (3.14) is equivalent with the first and third

equations of the characteristic system (3.7). Finally, substituting (3.6) into the fourth

equation of (3.11) gives:

1

a1/2

[
3V Λ− 4Gij∂jΛ∂iV

]
+ aY i∂iV = 0 . (3.15)

Again taking the limits a→ 0 and a→∞ shows that (3.15) is equivalent with the second

and fourth equations of (3.7). This completes the proof that the characteristic system (3.7)

is equivalent with the Noether symmetry condition (3.2).

The integral of motion (3.5) of the Noether symmetry (3.6) described by a solution

(Λ, Y ) of the characteristic system takes the form:

JX = −6aȧXa + Gij(ϕ)a3Xiϕ̇j = −6ȧ
√
aΛ(ϕ) + a3Gij(ϕ)Y i(ϕ)ϕ̇j − 4a3/2Λ̇ ,

i.e.:

JX = −4
d

dt

[
a3/2Λ(ϕ)

]
+ a3Gij(ϕ)Y i(ϕ)ϕ̇j . (3.16)

3.3 Natural subsystems of the characteristic system. Hessian and visible sym-

metries

Notice that those equations of the system (3.7) which contain Λ decouple from those equa-

tions which contain Y . Hence the characteristic system naturally splits into two subsystems

of partial differential equations, namely: the Λ-system:

∇i∂jΛ =
3

8
GijΛ

Gij∂iV ∂jΛ =
3

4
V Λ (3.17)

and the Y -system:

∇iYj +∇jYi = 0

Y i∂iV = 0 . (3.18)

A vector field of the form (3.6) for which Y = 0 and Λ is a smooth solution of the Λ-system

will be called an infinitesimal Hessian symmetry of (Σ,G, V ). A scalar triple which admits

Hessian symmetries will be called a Hessian triple; in this case, the corresponding two-field

cosmological model will be called a Hessian model. On the other hand, a vector field of

the form (3.6) for which Λ = 0 and the vector field Y is a non-trivial smooth solution of

the Y -system will be called an infinitesimal visible symmetry of (Σ,G, V ). A scalar triple

which admits visible symmetries is called a visibly symmetric triple and the corresponding

two-field cosmological model will be called a visibly-symmetric model.
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The result proved in the previous subsection implies that any time-independent in-

finitesimal Noether symmetry of the minisuperspace system decomposes as a direct sum of

a visible symmetry with a Hessian symmetry. Notice that infinitesimal visible symmetries

coincide with those Killing vector fields of (Σ,G) which generate isometries preserving the

scalar potential V ; they are the ‘obvious’ symmetries of the two-field cosmological model

defined by the scalar triple (Σ,G, V ). Unlike visible symmetries, Hessian symmetries are

not geometrically obvious and can be viewed as ‘hidden symmetries’ of the model. Also

notice that the first and third equations in (3.7) do not depend on V . For a given scalar

manifold (Σ,G), these equations can be solved for Λ and Y . Fixing solutions (Λ, Y ) of

these two equations, the second and fourth equations of the characteristic system can then

be used to determine the scalar potential in terms of Λ and Y .

3.4 Rescaling the scalar manifold metric. The Hesse and Λ-V equations

It is convenient to consider the rescaled scalar manifold metric:

G
def.
= β2G =

3

8
G ⇐⇒ G =

1

β2
G =

8

3
G , (3.19)

where:

β
def.
=

√
3

8
. (3.20)

Since the Levi-Civita connection of G is invariant under such a rescaling, the Λ-system

becomes:

∇dΛ = GΛ

〈dV, dΛ〉G = 2V Λ , (3.21)

while the Y -system preserves its form when expressed with respect to the rescaled metric G.

The first equation in (3.21):

∇dΛ = GΛ , (3.22)

(whose left hand side equals the Hessian tensor of Λ computed with respect to the scalar

manifold metric G) will be called the Hesse equation of the rescaled scalar manifold (Σ, G)

and its smooth solutions Λ will be called Hesse functions of (Σ, G). Let S(Σ, G) denote the

linear space of such functions. A Riemannian manifold (Σ, G) is called Hesse5 if it admits

non-trivial Hesse functions, i.e. if S(Σ, G) 6= 0. The second equation in (3.21):

〈dV, dΛ〉G = 2V Λ (3.23)

will be called the Λ-V equation of the rescaled scalar triple (Σ, G, V ). Let V(G,Λ) denote

the linear space of smooth functions V satisfying this equation.

The Hesse equation (3.22) is invariant under the natural action:

Λ→ Λ ◦ ψ−1 , ∀ψ ∈ Iso(Σ, G)

5This should not be confused with the notion of Hessian manifold, which is a different concept!
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of the isometry group Iso(Σ, G) = Iso(Σ,G) of the scalar manifold. In particular, such

transformations preserve the space S(Σ, G) of Hesse functions of (Σ, G). Similarly, equa-

tion (3.23) is invariant under the natural action of the isometry group of the scalar manifold

on the pair (V,Λ):

(Λ, V )→ (Λ ◦ ψ−1, V ◦ ψ−1) , ∀ψ ∈ Iso(Σ, G) .

Hence an isometry of (Σ, G) takes the general solution of (3.23) into the general solution

of the same equation, but with Λ replaced by Λ ◦ ψ−1:

V(G,Λ ◦ ψ−1) = V(G,Λ) ◦ ψ−1 , ∀ψ ∈ Iso(Σ, G) , ∀Λ ∈ S(Σ, G) . (3.24)

Remark 3.1. Equation (3.23) is invariant under rescalings Λ → CΛ, where C is any non-

zero constant. This implies that the general solution of this equation is unchanged if one

rescales Λ by C:

V(G,CΛ) = V(G,Λ) , ∀C ∈ R \ {0} .

In particular, the general solution of the Λ-V equation (3.23) depends only on the ray of

Λ in the real projective space PS(Σ, G).

3.5 The scalar potential of a Hessian symmetry

Given a Hesse function Λ ∈ S(Σ, G), consider the Λ-V -equation (3.23) with G = β2G as

defined in (3.19):

〈dV, dΛ〉G = 2β2V Λ , (3.25)

where 〈dV, dΛ〉G = 〈gradGV, gradGΛ〉G = Gij∂iV ∂jΛ.

One can solve (3.25) through the method of characteristics (see appendix A). For this,

let γ be a G-gradient flow curve of Λ with gradient flow parameter q:

dγ(q)

dq
= −(gradGΛ)(γ(q)) . (3.26)

Then (3.26) and (3.25) imply:

d

dq
V (γ(q)) = −〈gradGV, gradGΛ〉G

∣∣∣
γ(q)

= −〈dV, dΛ〉G
∣∣∣
γ(q)

= −2β2Λ(γ(q))V (γ(q)) ,

which gives:

V (γ(q)) = V (γ(q0)) e

−2β2
∫ q
q0

Λdq

γ . (3.27)

It is convenient to use the restriction λ = Λ◦γ (i.e. λ(q) = Λ(γ(q))) of Λ to γ as a parameter

on the gradient flow curve (notice that λ decreases with q). We have:

dλ

dq
= (dγ(q)Λ)

(
dγ(q)

dq

)
= −||(gradGΛ)(γ(q))||2G = −||(dΛ)(γ(q))||2G ,

which gives:

dq = − dλ

||dΛ||2G
. (3.28)
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Hence (3.27) becomes:

V (γ(q)) = V (γ(q0)) e

2β2
∫ Λ(γ(q))

Λ(γ(q0))
λdλ
||dΛ||2G

γ . (3.29)

This relation allows us to find the general solution of (3.25), provided that we can determine

the gradient flow of Λ. To deal with the initial conditions, one can choose a section of the

gradient flow, i.e. a (possibly disconnected) submanifold Q := QΛ of Σ with the property

that each gradient flow curve γ of Λ meets Q in exactly one point. For any p ∈ Σ, let γ be

the gradient flow curve which passes through p and meets Q at the point p0 (namely, we

have γ(q) = p and γ(q0) = p0. Then relation (3.29) gives:

V (p) = V (p0) e

2β2
∫ Λ(p)

Λ(p0)
λdλ
||dΛ||2G

γ .

The correspondence p → p0 defines a smooth function F = FQ : Q → Σ which allows us

to write the previous equation as:

V (p) = ω(p) e

2β2
∫ Λ(p)

Λ(F (p))
λdλ
||dΛ||2G

γ , (3.30)

where ω
def.
= V ◦ F is a real-valued smooth function defined on Q.

Remark 3.2. Given any non-zero constant C, the gradient flow of Λ coincides with that of

CΛ, up to a constant rescaling q → q/C of the gradient flow parameter.

3.6 The integral of motion of a Hessian symmetry

For a Hessian symmetry (Y = 0) with generator Λ, the integral of motion (3.16) gives:

a(t)3/2Λ(ϕ(t)) = C − JΛ

4
(t− t0) , where C = a

3/2
0 Λ0 (3.31)

and we defined:

a0
def.
= a(t0) , Λ0

def.
= Λ(ϕ(t0)) .

The conserved quantity JΛ is independent of t along every solution of the Euler-Lagrange

equations (but depends on the initial conditions of the solution). Differentiating (3.31)

with respect to time at t = t0 gives:

− JΛ

4
=

d

dt

[
a(t)3/2Λ(ϕ(t))

]∣∣∣
t=t0

= a
3/2
0

[
3

2
H0Λ0+(dϕ(t0)Λ)(ϕ̇0)

]
, (3.32)

where H0
def.
= H(t0) is determined by the Friedmann constraint (assuming that H(t) > 0):

H0 =
1√
6

[
||ϕ̇0||2G + 2V (ϕ0)

]1/2
.

Here:

ϕ0
def.
= ϕ(t0) and ϕ̇0

def.
= ϕ̇(t0) .
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Relation (3.32) allows one to determine JΛ from the initial conditions of the cosmological

trajectory, while (3.31) determines the t-dependence of the cosmological scale factor along

the trajectory:

a(t) =

[
C − JΛ

4 (t− t0)

Λ(ϕ(t))

]2/3

= a0

[
Λ0 +

(
3
2H0Λ0 + (dϕ0Λ)(ϕ̇0)

)
(t− t0)

Λ(ϕ(t))

]2/3

. (3.33)

In turn, this determines the e-fold function Nt0(t) = log
[
a(t)
a(t0)

]
along any given scalar field

trajectory ϕ(t), where t0 is a reference cosmological time:

Nt0(t) =
2

3
log

[
Λ0 +

(
3
2H0Λ0 + (dϕ0Λ)(ϕ̇0)

)
(t− t0)

Λ(ϕ(t))

]
. (3.34)

In particular, a scalar field trajectory which is inflationary for the cosmological time interval

[t0, t] will produce a desired number N of e-folds during that time interval provided that

its initial and final points ϕ(t0), ϕ(t) ∈ Σ satisfy the condition:

e
3N
2 Λ(ϕ(t))− Λ0 =

(
3

2
H0Λ0 + (dϕ0Λ)(ϕ̇0)

)
(t− t0) . (3.35)

Remark 3.3. The e-fold function is also determined as follows by the Friedmann constraint:

Nt0(t) =

∫ t

t0

H(τ)dτ =
1√
6

∫ t

t0

[
||ϕ̇(τ)||2G + 2V (ϕ(τ))

]1/2
dτ . (3.36)

This non-local relation involves integration of a complicated quantity depending on both

ϕ(τ) and ϕ̇(τ) for τ ∈ [0, t], unlike the much simpler formula (3.34) (which involves no

integrations).

Differentiating (3.34) with respect to t gives:

H(t) =
2

3

3
2H0Λ0+(dϕ0Λ)(ϕ̇0)

Λ0+

(
3
2H0Λ0+(dϕ0Λ)(ϕ̇0)

)
(t−t0)

−
(dϕ(t)Λ)(ϕ̇(t))

Λ(ϕ(t))
. (3.37)

The case ϕ̇0 = 0. When ϕ̇0 = 0, relation (3.35) reduces to:[
1 +

3H0

2
(t− t0)

]
Λ0

Λϕ(t)
= e

3
2
Nt0 (t) , (3.38)

where H0 = 1√
3
V

1/2
0 > 0 with V0

def.
= V (ϕ0) and we defined Λϕ(t)

def.
= Λ(ϕ(t)). On the other

hand, relation (3.37) reduces to the following condition when ϕ̇0 = 0:

H(t) =
2H0

2 + 3H0(t− t0)
− Λ̇ϕ(t)

Λϕ(t)
. (3.39)

Hence positivity of H requires:

Λ̇ϕ
Λϕ

<
2H0

2 + 3H0(t− t0)
i.e.

Λϕ(t)

Λ0
< [2 + 3H0(t− t0)]2/3 . (3.40)
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Let:

s(t)
def.
= 3H0 − [2 + 3(t− t0)H0]

Λ̇ϕ(t)

Λϕ
. (3.41)

Then condition (3.40) amounts to:

s(t) > H0 . (3.42)

Recall that the inflationary time periods of the cosmological trajectory are defined by the

condition that a is a convex and strictly increasing function of t, i.e. ȧ(t) > 0 and ä(t) > 0.

Using (3.38), this amounts to requiring that the function:

a(t) = a(t0)

([
1 +

3

2
H0(t− t0)

]
Λ0

Λϕ(t)

)2/3

(3.43)

be convex and strictly increasing. Let us assume that Λ(t) > 0 along the trajectory (hence

Λ0 > 0). Since (3.42) implies ȧ(t) > 0, the requirement for inflation amounts to ä(t) > 0,

i.e.:
Λ̈ϕ(t)

Λϕ(t)
<

s(t)[5s(t)− 18H0]

3[2 + 3H0(t− t0)]2
. (3.44)

Conditions (3.42) and (3.44) can be used to determine the upper limit tf of an inflationary

time interval [t0, tf ] for which ϕ̇0 = 0.

4 Weakly-Hessian models with rotationally-invariant scalar manifolds

In this section, we give the characteristic system for models with rotationally-invariant

scalar manifold metrics and the classification of weakly-Hessian two-field models. The

proof of this classification is given in appendix C. As shown in that appendix, the scalar

manifold of any weakly-Hessian model is a disk, a punctured disk or an annulus, endowed

with its complete metric of Gaussian curvature K = −3/8. We also list the general solutions

of the Hesse equation in each of the three cases, solutions which are derived in the same

appendix. In the next sections, we will consider each case in turn, extracting the explicit

form of the scalar potential for which the corresponding weakly-Hessian models admit a

Hessian symmetry.

4.1 The characteristic system

Consider the case when Σ is diffeomorphic with the unit disk D or with the punctured unit

disk Ḋ, endowed with a metric G which is rotationally-invariant:

ds2
G = dr2 + f(r)dθ2 . (4.1)

Here r and θ are normal polar coordinates for G and f is a smooth and everywhere-positive

real-valued function (which extends to the origin in the case Σ ' D). For application to

cosmological models, we must require that the scalar metric G is complete (otherwise

the dynamics of the cosmological model would violate conservation of energy). The non-

vanishing Christoffel symbols are:

Γrθθ = −f
′

2
, Γθrθ = Γθθr =

f ′

2f
,
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while the Gaussian curvature of G takes the form:

KG = −(
√
f)
′′

√
f

=
(f ′)2 − 2ff ′′

4f2
= −1

2

(
f ′

f

)′
− 1

4

(
f ′

f

)2

, (4.2)

where we use the notation ′ = d
dr . For such models, the Noether generator (3.6) takes the

form:

X =
Λ√
a
∂a +

[
Y r − 4

a3/2
∂rΛ

]
∂r +

[
Y θ − 4

a3/2f(r)
∂θΛ

]
∂θ (4.3)

Note that one can have both purely visible symmetries, i.e. with Λ = 0 and Y 6= 0, and

purely hidden symmetries, i.e. with Λ 6= 0 and Y = 0. Let us write down the Y - and

Λ-systems for the case of a rotationally-invariant metric G.

The Y -system. The Y -system (3.18) takes the form:

∂rY
r = 0

∂θY
r + f∂rY

θ = 0

∂θY
θ +

f ′

2f
Y r = 0 (4.4)

Y r∂rV + Y θ∂θV = 0 ,

where the first three equations form the condition that Y be a Killing vector.

Let K(Σ,G) denote the R-vector space consisting of all Killing vector fields of (Σ,G).

Since the metric G is rotationally-invariant, the Killing equation has the obvious solution:

Y = ∂θ

and hence K(Σ,G) contains the one-dimensional subspace R∂θ. For a generic rotationally

invariant metric, we have K(Σ,G) = R∂θ, though in some cases6 the space of Killing vectors

may be higher-dimensional. In the generic case, the last equation in (4.4) amounts to the

condition that V is SO(2)-invariant, i.e.:

V = V (r) (indep. of θ) .

The Λ-system. The Λ-system (3.17) takes the form:

∂2
rΛ =

3

8
Λ

∂r∂θΛ−
f ′

2f
∂θΛ = 0

∂2
θΛ +

f ′

2
∂rΛ =

3

8
fΛ (4.5)

∂rV ∂rΛ +
1

f
∂θV ∂θΛ =

3

4
V Λ ,

where the first three equations are equivalent with the Hesse condition (3.22).

6For example, we have dimK(Σ,G) = 3 when (Σ,G) is the Poincaré disk. In that case, the first three

equations of (4.4) give: Y r = c̃1 sin θ+c̃2 cos θ, Y θ = β coth(βr) (c̃1 cos θ−c̃2 sin θ)+c̃3, where c̃1,2,3 = const.
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Remark 4.1. In reference [20], we studied two-field rotationally invariant models with the

separation of variables Ansatze: Xa=A1(a)R1(r)Θ1(θ) and Xi=Ai(a)Ri(r)Θi(θ), assum-

ing that each of the functions A1, R1, Θ1, Ai, Ri and Θi is non-constant. Comparing

with (3.6), one finds that these assumptions imply Y = 0 as well as:

A1 =
1√
a
, Ai = − 1

a3/2
, R1(r)Θ1(θ) = Λ , Ri(r)Θi(θ) = 4Gij∂jΛ , (4.6)

in agreement7 with [20]. Substituting Λ = R1(r)Θ1(θ) in the first equation of (4.5) gives:

R1(r) = C1 cosh(βr) + C2 sinh(βr) , β2 =
3

8
, (4.7)

which agrees with [20, eq. (3.19)]. Similarly, the second equation of (4.5) gives ∂rR1 =
f ′

2fR1, where we used the assumption that Θ1 is not constant. Substituting ∂rR1 = f ′

2fR1

into the third equation of (4.5) gives:

8f Θ′′1(θ) + (2f ′2 − 3f2) Θ1(θ) = 0 , (4.8)

which coincides with [20, eq. (3.37)].

4.2 Classification of weakly-Hessian models with rotationally-invariant scalar

manifold metric

The system formed by the first three equations in (4.5) is studied in detail in appendix C;

here we summarize the results of that analysis. As before, let β
def.
=
√

3
8 . For a rotationally-

invariant Riemannian 2-manifold (Σ,G), it is shown in appendix C that the first three

equations of the system (4.5) admit solutions iff the metric G has Gaussian curvature equal

to −β2, i.e. iff the rescaled metric G = β2G has Gaussian curvature −1. In particular, the

rescaled scalar manifold (Σ, G) is a Hesse manifold in the sense of subsection 3.4 iff it is

a hyperbolic surface. Since (Σ, G) is rotationally-invariant, a well-known result (which is

summarized in appendix D) implies that (Σ, G) must be elementary hyperbolic, i.e. that

it is isometric with the Poincaré disk D, with the hyperbolic punctured disk D∗ or with

a hyperbolic annulus A(R) of modulus µ = 2 logR (where R > 1). We refer the reader

to appendix D and to reference [22] for the description of elementary hyperbolic surfaces.

We will use the notations Dβ , D∗β and Aβ(R) for the disk, punctured disk and annulus

endowed with the metric G = 1
β2G of Gaussian curvature equal to −β2. Then the following

statements hold (see appendix C):

1. If (Σ,G) = Dβ , then we have:

f(r) =
1

β2
sinh2(βr) (4.9)

and:

ds2
G = dr2 +

1

β2
sinh2(βr) dθ2 , (4.10)

7Note that the overall constant in AiRiΘi is distributed differently between the factors Ai and RiΘi

in (4.6) when compared to reference [20].
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with r ≥ 0. In this case, the general solution of the Hesse equation of (Σ, G) is given

by:

Λ(r, θ) = B0 cosh(βr) + σ sinh(βr) cos(θ − θ0) , (4.11)

where B0 (denoted B̂1 in appendix C) and θ0 are arbitrary real constants, while σ ≥ 0

is a non-negative constant (denoted ζ
β in appendix C).8

In particular, the space of Hesse functions on the hyperbolic disk is three-dimensional.

Let (ρ, θ) be Euclidean polar coordinates on the disk, related to the normal polar

coordinates (r, θ) of the metric G through (cf. (C.31)):

ρ=tanh(βr/2) ∈ [0, 1)⇐⇒ r=
2

β
arctanh(ρ)=

1

β
log

1+ρ

1−ρ
∈ [0,+∞) . (4.12)

Then (4.10) becomes:

ds2
G =

4

β2(1− ρ2)2
(dρ2 + ρ2dθ2) =

4

β2(1− ρ2)2
(dx2 + dy2) , (4.13)

where x = ρ cos θ and y = ρ sin θ, while (4.11) takes the form:

Λ(ρ, θ) =
B0(1 + ρ2) + 2σρ cos(θ − θ0)

1− ρ2
. (4.14)

Notice the relations:

βr = 2 arctanh(ρ) = log
1 + ρ

1− ρ
i.e. ρ = tanh

(
βr

2

)
=
eβr − 1

eβr + 1
, (4.15)

the second of which implies:

cosh(βr) =
1 + ρ2

1− ρ2
, sinh(βr) =

2ρ

1− ρ2
. (4.16)

2. If (Σ,G) = D∗β , then we have:

f(r) =
1

(2πβ)2
e−2βr (4.17)

and:

ds2
G = dr2 +

1

(2πβ)2
e−2βrdθ2 , (4.18)

with r ∈ R. In this case, the general solution of the Hesse equation (3.22) is given

by:

Λ(r) = Ce−βr , (4.19)

where C (denoted B̂ in appendix C) is an arbitrary constant.9 In particular, the

space of Hesse functions on the hyperbolic punctured disk is one-dimensional. Let

8The result of [20], namely Λ(r, θ) = (C1 sin θ + C2 cos θ) sinh(βr), is obtained from (4.11) for B0 = 0

and C1 = σ sin θ0 , C2 = σ cos θ0.
9The Noether condition is solved locally by Λ(r, θ) = (C̃1θ + C̃2)e−βr [20]. Requiring Λ to be globally

defined on the scalar manifold implies that one must set C̃1 = 0, in agreement with (4.19).
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(ρ, θ) be Euclidean polar coordinates on the punctured disk, related to the normal

polar coordinates (r, θ) of the metric G through (cf. eqs. (C.38)):

ρ = e−2πeβr ∈ (0, 1)⇐⇒ r =
1

β
log

(
| log ρ|

2π

)
∈ (−∞,∞) . (4.20)

Then (4.18) becomes:

ds2
G =

1

β2(ρ log ρ)2
(dρ2 + ρ2dθ2) =

1

β2(ρ log ρ)2
(dx2 + dy2) , (4.21)

while (4.19) takes the form:

Λ(ρ) =
2πC

| log ρ|
. (4.22)

3. If (Σ,G) = Aβ(R), then we have:

f(r) =
`2

(2πβ)2
cosh2(βr) (4.23)

and:

ds2
G = dr2 +

`2

(2πβ)2
cosh2(βr) dθ2 , (4.24)

where r ∈ R and ` > 0 is given in (D.10). In this case, the general solution of the

Hesse equation is:

Λ(r) = C sinh(βr) , (4.25)

where C (denoted B̂2 in appendix C) is an arbitrary constant.10 In particular, the

space of Hesse functions on any hyperbolic annulus is one-dimensional. Let (ρ, θ) be

Euclidean polar coordinates on the annulus, related to the normal polar coordinates

(r, θ) of the metric G through (cf. eqs. (C.43)):

ρ = e
−µ
π

arccos
[

1
cosh(βr)

]
⇐⇒ |r| = 1

β
arccosh

 1

cos
(
π
µ | log ρ|

)
 . (4.26)

Then (4.24) becomes:

ds2
G=

(
π

2β logR

)2 dρ2+ρ2dθ2[
ρ cos

(
π log ρ
2 logR

)]2 =

(
π

2β logR

)2 dx2 + dy2[
ρ cos

(
π log ρ
2 logR

)]2 , (4.27)

while (4.25) takes the following form:

Λ(ρ) = C tan

(
π

µ
log ρ

)
. (4.28)

10For hyperbolic annuli, the Hesse equation is solved locally by Λ(r, θ) =[
Ĉ1 cosh(CRθ) + Ĉ2 sinh(CRθ)

]
cosh(βr) + Ĉ3 sinh(βr) with CR = π

2 logR
. When ∂θΛ 6= 0, one is

left with the term cosh(βr) (see [20]). Requiring that the solution is globally defined on the scalar manifold

forces the choice Ĉ1 = Ĉ2 = 0 in the local solutions of loc. cit.
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5 Hessian models for the hyperbolic disk

In this section, we show that the space S(D) of Hesse functions on the hyperbolic disk

identifies naturally with the 3-dimensional Minkowski space R1,2 such that the natural

action of the orientation-preserving isometry group of D on such functions identifies with

the fundamental action of the group of proper and orthochronous Lorentz transformations

in 3 dimensions. The identification follows from the fact that the general Hesse function on

the hyperbolic disk is a linear combination of the components of the classical Weierstrass

map and hence the classical Weierstrass coordinates of D form a basis for the space of Hesse

functions. This leads to a description of Hesse functions on the hyperbolic disk in terms

of three-dimensional Minkowski geometry and allows for a natural classification of such

functions into functions of timelike, spacelike and lightlike type. We also discuss the level

sets and critical points of such functions, showing that they behave quite differently in each

of the three cases. For each type, we show that the gradient flow of a Hesse function can be

described explicitly in certain classical coordinate systems on the hyperbolic disk. Finally,

we combine these results and the method of characteristics to extract the explicit form of the

most general scalar potential which solves the Λ-V equation, thus classifying all Hessian

two-field cosmological models whose rescaled scalar manifold is a hyperbolic disk. We

find that such scalar potentials admit a natural description in terms of three-dimensional

Minkowski geometry. The results of this section are summarized in subsection 5.6, which

the reader may consult first. Throughout this section, G denotes the Poincaré metric (which

has Gaussian curvature equal to −1), while G denotes the physically-relevant metric (which

has Gaussian curvature equal to −β2 = −3/8).

5.1 The space of Hesse functions

We start by studying the space of Hesse functions on the hyperbolic disk D = (D, G).

The Weierstrass basis. The general Hesse function (4.11) of D can be written as:

Λ=B0 cosh(βr)+B1 sinh(βr) cos θ+B2 sinh(βr) sin θ =
B0(1+ρ2)+2B1x+2B2y

1− ρ2
, (5.1)

where (see equation (C.33)):

B1
def.
= σ cos θ0 , B2

def.
= σ sin θ0 . (5.2)

Here x = ρ cos θ and y = ρ sin θ are Euclidean Cartesian coordinates on the disk (with

ρ =
√
x2 + y2) while (r, θ) are normal polar coordinates for the physically-relevant metric

G = 1
β2G; for the relation between ρ and r, see (C.31). Relation (5.1) shows that the

functions:

Ξ0 def.
=

1 + ρ2

1− ρ2
=coshβr , Ξ1 def.

=
2x

1− ρ2
=sinh(βr) cos θ , Ξ2 def.

=
2y

1− ρ2
=sinh(βr) sin θ

(5.3)

form a basis of the linear space S(D) of smooth solutions to the Hesse equation. The

fundamental solutions (5.3) coincide with the classical “Weierstrass coordinates” of D, i.e.
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Figure 1. The Weierstrass map Ξ : D → S+ coincides with the projection of D from the point

(−1, 0, 0) of three-dimensional Minkowski space, when the Poincaré disk is placed in the plane

X0 = 0. Notice that the conformal boundary of D is mapped to the circle at infinity of S+. When

u ∈ D approaches the conformal boundary, the 3-vector Ξ(u) (shown in red) becomes lightlike.

with the components of the Weierstrass map Ξ : D→ R3 (see appendix B) which realizes

the hyperbolic disk as the future sheet:

S+ def.
=
{
X = (X0, X1, X2) |X0 =

√
1 + (X1)2 + (X2)2

}
of the unit hyperboloid in the 3-dimensional Minkowski space R1,2 = (R, ( , )) (see figure 1).

Here:

(X,X ′)
def.
= X0X ′

0 −X1X ′
1 −X2X ′

2 ∀X,X ′ ∈ R3 (5.4)

is the Minkowski pairing of signature (1, 2), whose coefficients we denote by ηµν :

(ηµν)µ,ν=0,...2 = diag(1,−1,−1)

and which we use to raise and lower indices.

The Weierstrass coordinates of any point u ∈ D satisfy:(
Ξ0(u)

)2 − (Ξ1(u)
)2 − (Ξ2(u)

)2
= 1 and Ξ0(u) > 0

and we have:

Ξ(u) = Ξµ(u)Eµ , B = BµEµ ,

where E0
def.
= (1, 0, 0), E1

def.
= (0, 1, 0) and E2

def.
= (0, 0, 1).

The 3-vector parameterization. The general Hesse function (5.1) reads:

ΛB(u) = BµΞµ(u)=ηµνB
µΞν(u)=(B,Ξ(u))=B0Ξ0(u)−B1Ξ1(u)−B2Ξ2(u) , (5.5)

where we defined Bµ def.
= ηµνBν and we combined the constants B0 = B0, B1 = −B1 and

B2 = −B2 into the 3-vector:

B
def.
= (B0, B1, B2) = BµEµ ∈ R3 .
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Notice the relation Ξµ(u) = (Ξ(u), Eµ). Since the Weierstrass coordinates form a basis of

the space of Hesse functions, the linear map Λ : R3 ∼→ S(D) defined through:

Λ(B)
def.
= ΛB , ∀B ∈ R3 (5.6)

is an isomorphism of vector spaces from R3 to the space S(D).

Action of orientation-preserving isometries. Since the Hesse equation is invariant

under isometries of the scalar manifold, the group PSU(1, 1) ' Iso+(D) of orientation-

preserving isometries of D acts linearly on the space S(D) of Hesse functions through the

representation H defined through:

H(U)(Λ)
def.
= Λ ◦ ψ−1

U , ∀U ∈ PSU(1, 1)

i.e.:

H(U)(Λ)(u) = Λ(ψ−1
U (u)) , ∀U ∈ PSU(1, 1) , ∀u ∈ D .

Here ψU ∈ Iso+(D) is the orientation-preserving isometry of D corresponding to an element

U of PSU(1, 1) (see appendix B). The equivariance property (B.19) of the Weierstrass map

gives:

Ξµ(ψU (u)) = (Ad0(U)(Ξ(u)), Eµ) = (Ξ(u),Ad0(U−1)(Eµ)) .

while equation (5.5) implies:

ΛB(ψU−1(u)) = (B,Ad0(U−1)(Ξ(u))) = (Ad0(U)(B),Ξ(u)) = ΛAd0(U)(B)(u) .

This gives:

H(U)(ΛB) = ΛAd0(U)(B) , ∀U ∈ PSU(1, 1) , ∀B ∈ R3 , (5.7)

i.e.:

H(U) ◦Λ = Λ ◦Ad0(U) , ∀U ∈ PSU(1, 1) ,

showing that the linear isomorphism (5.6) is an equivalence of representations between H
and Ad0. As recalled in appendix B, the representation Ad0 (which is equivalent with

the adjoint representation of PSU(1, 1)) preserves the Minkowski pairing (5.4). In fact,

this representation defines an isomorphism of groups Ad0 : PSU(1, 1)
∼−→ SOo(1, 2), where

SOo(1, 2) denotes the connected component of the identity of the Lorentz group, i.e. the

group of proper and orthochronous Lorentz transformations in three dimensions.

Definition 5.1. The Hesse function ΛB on the hyperbolic disk is called spacelike, timelike

or lightlike if its parameter 3-vector B ∈ R3 is spacelike, timelike or lightlike, respectively.

Similarly, ΛB is called future (resp. past) timelike or lightlike if it is timelike or lightlike

and B0 > 0 (respectively B0 < 0).

5.2 Degenerate and non-degenerate Hesse functions

Definition 5.2. A non-trivial Hesse function ΛB is called non-degenerate if B0 6= 0 and

degenerate if B0 = 0.

Notice that a degenerate Hesse function is necessarily spacelike.
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Rescaling non-degenerate Hesse functions. Recall from (5.2) that σ =
√
B2

1 +B2
2 .

When B0 6= 0, we define:

∆ =
σ

B0
=

√
B2

1 +B2
2

B0
, b1

def.
=

B1

B0
= −∆ cos θ0 , b2

def.
=

B2

B0
= −∆ sin θ0 (5.8)

and ~b
def.
= (b1, b2), so that B = B0(1, b1, b2) = B0(1,~b) and b21 + b22 = ∆2. This allows us to

write non-degenerate Hesse functions as:

ΛB = B0λ~b (when B0 6= 0) ,

with

λ~b
def.
=

1 + ρ2 − 2b1x− 2b2y

1− ρ2
=

1 + ρ2 + 2∆ρ cos(θ − θ0)

1− ρ2

def.
= λ∆,θ0 .

In normal polar coordinates (r, θ) for the metric G we have:

λ∆,θ0 = cosh(βr) + ∆ sinh(βr) cos(θ − θ0) . (5.9)

Notice that a non-degenerate Hesse function is:

• timelike, iff |∆| < 1.

• spacelike, iff |∆| > 1.

• lightlike, iff |∆| = 1, i.e. if ∆ = +1 (future lightlike) or ∆ = −1 (past lightlike).

When σ 6= 0, we have sign(B0) = sign(∆). The shape of non-degenerate Hesse functions on

D is illustrated in figures 2, 3 and 4 for the case B0 = 1 (i.e. ∆ = σ ≥ 0) with θ0 = −π/2,

which gives B = (1, 0,∆) and:

ΛB = Λ1,0,∆ =
1 + ρ2 − 2∆y

1− ρ2
.

Rescaling degenerate Hesse functions. Non-trivial but degenerate (i.e. with B0 = 0)

Hesse functions have the form:

Λ0,B1,B2 = σµθ0 ,

where B1 = −σ cos θ0, B2 = −σ sin θ0 with σ =
√
B2

1 +B2
2 > 0 and:

µθ0
def.
=

2x cos θ0 + 2y sin θ0

1− ρ2
=

2ρ

1− ρ2
cos(θ − θ0) = sinh(βr) cos(θ − θ0) . (5.10)

See figure 5 for a contour plot of the function:

Λ0,0,1 = µ−π/2 = − 2y

1− ρ2
. (5.11)

Remark 5.3. When σ 6= 0, we have ∆ 6= 0 and B0 = σ
∆ . In this case, we can write

ΛB = σ
∆λ∆,θ0 and we have:

lim
∆→±∞

λ∆,θ0(u)

∆
= µθ0(u) =⇒ lim

∆→±∞
ΛB(u) = σµθ0(u) .

Hence a non-degenerate Hesse function with σ 6= 0 point-wisely approximates the degen-

erate Hesse function with the same θ0 in the limits ∆→ ±∞.
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(a) B = (1, 0, 0). (b) B = (1, 0, 0.3). (c) B = (1, 0, 0.8).

Figure 2. Contour plot of Λ := Λ1,0,∆ for the non-degenerate timelike case (∆ < 1), where the

gradient flow of Λ is indicated by purple arrows. The values of Λ decrease from lightest brown to

darkest green. The critical point of Λ is shown in blue. In this case, the level sets are hyperbolic

circles centered at the critical point. From left to right, the figure shows the cases ∆ = 0, 0.3, 0.8.

(a) B = (1, 0, 1.01). (b) B = (1, 0, 1.1). (c) B = (1, 0, 2).

Figure 3. Contour plot of Λ := Λ1,0,∆ for the non-degenerate spacelike case, where the gradient

flow of Λ is indicated by purple arrows. The values of Λ decrease from lightest brown to darkest

green. In this case, Λ has no critical point but vanishes along the curve shown in red. In this case,

the level sets are hypercycles with axis given by the vanishing locus of Λ. From left to right, the

figure shows the cases ∆ = 1.01, 1.1, 2.

Remark 5.4. It is easy to see that a Hesse function is separated in the coordinates (r, θ)

or (ρ, θ) iff it is either degenerate or non-degenerate with ∆ = 0. Hence ΛB separates in

these coordinates only for ∆ = 0 or in the limits ∆→ ±∞.

5.3 Critical points of Hesse functions

Definition 5.5. A non-trivial Hesse function Λ on the hyperbolic disk is called critical if

it has at least one critical point, and non-critical if it has no critical points.

Proposition 5.6. A non-trivial Hesse function ΛB on the hyperbolic disk is critical iff it

is timelike (and hence non-degenerate). In this case, ΛB has exactly one critical point on
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Figure 4. Contour plot of Λ1,0,1 (non-degenerate lightlike case with ∆ = 1), where the gradient

flow of Λ is indicated by purple arrows. The values of Λ decrease from lightest brown to darkest

green. The point where Λ tends to zero on the conformal boundary of the hyperbolic disk is shown

in magenta. In this case, the level sets are horocycles centered at this ideal point.

(a) B = (0, 0, 1).

Figure 5. Contour plot of the degenerate spacelike Hesse function Λ0,0,1, where the gradient flow

of Λ is indicated by purple arrows. The values of Λ decrease from lightest brown to darkest green.

The vanishing locus of Λ is the horizontal segment shown in red. The level sets are hypercycles

with axis given by the vanishing locus.
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D, namely:

uc =

{
0 if ∆ = 0√

1−∆2−1
∆ eiθ0 if 0 < |∆| < 1

(5.12)

and the critical value of ΛB is given by:

Λc
def.
= Λ(uc) = B0

1 + ∆2

√
1−∆2

. (5.13)

Moreover, uc is an absolute minimum when B0 > 0 (i.e. when ΛB is future-timelike) and

an absolute maximum when B0 < 0 (i.e. when ΛB is past-timelike).

Proof. It is easy to see that a non-trivial degenerate Hesse function has no critical points

in D. If Λ = ΛB = B0λ∆,θ0 is a non-degenerate Hesse function, then a counterclockwise

rotation of the coordinates by an angle θ0 allows us to assume, without loss of generality,

that θ0 = 0. Hence it suffices to study the critical points of the function:

λ := λ∆,0 =
1 + x2 + y2 + 2∆x

1− x2 − y2
.

The condition (dλ)(x, y) = 0 amounts to the system:

∆(1 + x2 − y2) + 2x = 0

y(∆x+ 1) = 0 . (5.14)

Multiplying the first equation by y and the second equation by x and subtracting the two

gives:

∆y(1− x2 − y2) = 0 ,

which implies ∆y = 0 since 1 − x2 − y2 > 0 for all points u = x+ iy ∈ D. Using this, the

second equation of (5.14) reduces to y = 0, while the first equation becomes:

∆x2 + 2x+ ∆ = 0 . (5.15)

Distinguish the cases:

1. ∆ = 0. Then Λ is timelike, equation (5.15) gives x = 0 and the only critical point of

Λ is uc = 0.

2. ∆ 6= 0 (hence Λ is timelike or lightlike). Then (5.15) has real solutions iff |∆| ≤ 1,

in which case the two solutions are x± = −1±
√

1−∆2

∆ . The case ∆ = 1 leads to

x+ = x− = 1, which is forbidden since the points (x, y) = (1, 0), (0, 1) do not lie

in the interior of the unit disk. Hence critical points inside D can exist only if

|∆| < 1, i.e. when Λ is timelike. In this case, we have |x+| < 1 < |x−|, so the point

(x, y) = (x−, 0) lies outside D, while (x, y) = (x+, 0) lies inside D. We conclude that

Λ is critical iff it is timelike, in which case the only critical point is at uc =
√

1−∆2−1
∆ .
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Since Λ satisfies the Hesse equation HessG(Λ) = 3
8ΛG, it follows that its Hessian at uc

is positive definite when B0 > 0 and negative definite when B0 < 0. Thus uc is a local

minimum or maximum according to the sign of B0. Substituting uc in the expression for

Λ gives (5.13).

The conclusion of the theorem now follows by performing a clockwise rotation of the

coordinates by θ0, in order to restore the θ0-dependence in the position of the critical

point.

5.4 Level sets of Hesse functions

Relation (5.1) shows that the λ-level set {u ∈ D |ΛB(u) = λ} of a non-trivial Hesse function

ΛB has the equation:

(B0 + λ)(x2 + y2) + 2B1x+ 2B2y +B0 − λ = 0 . (5.16)

We distinguish the cases:

1. λ 6= −B0. Then (5.16) takes the form:

(x− x0)2 + (y − y0)2 =
λ2 − (B,B)

(B0 + λ)2
, (5.17)

where x0
def.
= − B1

B0+λ and y0 = − B2
B0+λ . This equation has solutions only for λ2 ≥

(B,B), in which case it describes a Euclidean circle of radius R
def.
=

√
λ2−(B,B)

|B0+λ| cen-

tered at the point:

u0 = x0 + iy0 =
B1 + iB2

B0 + λ
,

which is reduced to this point for λ2 = (B,B). The radius R tends to infinity for

λ = −B0, in which case the circle degenerates to a line.

2. λ = −B0. Then (5.16) takes the form:

B1x+B2y = −B0 .

Since ΛB is non-trivial, existence of solutions to this equation requires B2
1 + B2

2 > 0

i.e. σ > 0, in which case the equation describes a line in the u plane which passes

through the points u1 = −B0
B1

and u2 = −iB0
B2

of the one point compactification of

this plane. The relations B1 = σ cos θ0 and B2 = σ sin θ0 give:

u1 = − 1

∆ cos θ0
, u2 = − i

∆ sin θ0
.

and bring the equation to the form:

ρ cos(θ − θ0) = −B0

σ
= − 1

∆
,

where the case B0 = 0 is included for ∆→ ±∞.
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One can show that the Euclidean circles defined by equation (5.17) are contained

inside D iff B is lightlike and that they meet the Euclidean circle of radius one at one point

when B is timelike and at two points when B is spacelike. It follows that the level sets

of a timelike Hesse function are hyperbolic circles, while they are horocycles for a lightlike

Hesse function and hypercycles for a spacelike Hesse function. These facts also follow

more directly from the similar statements satisfied by the level sets of the three canonical

Hesse functions discussed in subsection 5.5, upon acting on those canonical forms with an

orientation-preserving isometry of D.

The vanishing locus of a Hesse function. Let:

Z(Λ)
def.
= {u ∈ D |Λ(u) = 0}

denote the set of zeroes of the Hesse function Λ. The proof of the following statement

follows by inspection of equation (5.9).

Proposition 5.7. A non-trivial Hesse function Λ = ΛB on the hyperbolic disk has zeroes

iff it is spacelike, lightlike or degenerate. In this case, the vanishing locus of Λ is a curve

given by the following quadratic equation in Euclidean Cartesian coordinates on D:

B0(1 + x2 + y2) + 2B1x+ 2B2y = 0 . (5.18)

Moreover:

• When Λ is non-degenerate (B0 6= 0), equation (5.18) is equivalent with:

(x+ b1)2 + (y + b2)2 = b21 + b22 − 1(≥ 0) , (5.19)

where b1 = B1
B0 and b2 = B2

B0 . When Λ is non-degenerate spacelike (b21 + b22 > 1),

the vanishing locus is a hypercycle which coincides with the intersection of D with a

Euclidean circle of radius
√
b21 + b22 centered at the point u0 = −b1 − ib2, which lies

outside of D. When Λ is non-degenerate lightlike (b21 + b22 = 1), the vanishing locus

degenerates to the single point u0, which lies on the conformal boundary of D (the

unit Euclidean circle). In this case, the function Λ tends to zero at this point of the

conformal boundary.

• When Λ is degenerate (B0 = 0) and hence spacelike, the vanishing locus coincides

with the intersection of D with the line obtained by rotating the y axis counterclockwise

by an angle equal to θ0.

5.5 The scalar potential determined by a Hesse function

In this subsection, we solve the Λ-V equation (3.25) for a general Hesse function Λ ∈
S(D). We shall do so by combining representation-theoretic arguments with the method

of characteristics. First, we notice that acting with an appropriate element U of the

group PSU(1, 1) (and possibly rescaling by a constant) allows us to bring any non-trivial

Hesse function Λ to one of three specific canonical forms, depending on whether Λ is
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timelike, spacelike or lightlike. We next determine the scalar potential V by solving the

Λ-V equation for each of these three canonical choices of Λ. Finally, we act with the inverse

of U in order to recover the form of V for a general Hesse function of timelike, spacelike

or lightlike type. Equivalently, we write the scalar potentials for the three canonical cases

in manifestly Lorentz-invariant form, which allows us to extend them to general Hesse

functions of lightlike, spacelike and timelike type.

Reduction to canonical cases. Let VB be the general solution of equation (3.25), where

Λ = ΛB is a non-trivial Hesse function of D. Relations (3.24) and (5.7) imply:

VB(u) = VAd0(U)(B)(ψU (u)) , ∀B ∈ R3 ∀U ∈ PSU(1, 1) ∀u ∈ D . (5.20)

Moreover, the discussion of subsection 3.5 shows that the general solution of the Λ-V equa-

tion (3.25) is unchanged when one rescales Λ by a non-zero constant. These observations

imply the following:

• If B is timelike or lightlike, there exists a proper orthochronous Lorentz transforma-

tion which brings B to either of the following two forms:

• B′ = (C, 0, 0) with C = sign(B0)
√

(B,B) (when B is timelike)

• B′ = (C, 0, C) with C = B0 (when B is lightlike).

• If B is spacelike, there exists a proper orthochronous Lorentz transformation (namely

a spatial rotation) which brings B to the form B′ = (0, 0, C), where C =
√
|(B,B)|.

Moreover, Remark 3.1 of subsection 3.4 shows that we can rescale Λ by 1/C without

changing V . This allows us to further reduce to one of the thee canonical cases B =

Bcan ∈ {(1, 0, 0), (1, 0, 1), (0, 0, 1)}. In each of the three cases, we have B′ = CBcan and:

VB′ = VBcan = VB′/C

as well as:

VB(u) = VB′(ψU (u)) ,

where B′ = Ad0(U)(B) and Ad0(U) ∈ SO0(1, 2) (with U ∈ PSU(1, 1)) is the corresponding

Lorentz transformation.

In conclusion, we can reduce the problem of determining V to the three canonical cases

B = Bcan ∈ {(1, 0, 0), (0, 0, 1), (1, 0, 1)}, depending on whether B is timelike, spacelike or

lightlike. We next study each case in turn.

5.5.1 The case of timelike Λ

In this case, there exists a proper and orthochronous Lorentz transformation Ad0(U) which

brings B = (B0, B1, B2) to the form B′
def.
= Ad0(U)(B) = (C, 0, 0) = CBcan with C =

ε
√

(B,B) (where ε
def.
= sign(B0)) and Bcan = E0 = (1, 0, 0). We can take U = U(t, a, 0) ∈

PSU(1, 1), with t > 0 and a determined by the relations:11

t = arccosh

[
|B0|√
(B,B)

]
, cos(a) = −ε B1√

B2
1 +B2

2

, sin(a) = ε
B2√

B2
1 +B2

2

. (5.21)

11The parameter a (see appendix B) should not be confused with the scale factor a(t).
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Figure 6. Contour plot of the canonical timelike Hesse function Λ1,0,0. The values of the function

decrease from lightest brown to darkest green. The critical point is shown as a blue dot. The

gradient vector field is shown in purple. This coincides with figure 2a, which we recall here for

convenience of the reader.

The canonical timelike Hesse function. For B = Bcan = (1, 0, 0), we have ∆ = 0

and the corresponding Hesse function:

ΛBcan(u) = Λ1,0,0(u) = Ξ0(u) =
1 + ρ2

1− ρ2
=

2

1− ρ2
− 1 (5.22)

has a single critical point located at uc = 0, which is an absolute minimum with Λ1,0,0(uc) =

1; moreover, Λ1,0,0 tends to ∞ at the conformal boundary of D. For each λ ∈ [1,+∞), the

level set Λ1,0,0 = λ is the Euclidean circle centered at the origin of radius Rλ =
√

λ−1
λ+1 ,

which varies from R1 = 0 to R∞ = 1 as λ increases from 1 to +∞. The level sets are

hyperbolic circles, since they are all contained inside D.

The scalar potential in the canonical timelike case. The gradient flow equations of

Λ1,0,0 with respect to the metric G have the following form in polar Euclidean coordinates

(ρ, θ):
dρ

dq
= −β2ρ ,

dθ

dq
= 0 , (5.23)

with the solution θ = const and ρ = e−β
2q, where q ∈ (0,+∞) and we chose the integration

constant such that ρ → 1 for q → 0. Hence the gradient flow curves of Λ1,0,0 are straight

line segments flowing from the conformal boundary to the origin of D as q varies from 0 to

+∞ (see figure 6). Let γθ denote the gradient flow line of polar angle θ.

For Λ = Λ1,0,0, relation (3.28) becomes:

dq

dλ
= − 1

||dΛ1,0,0||2G
= − 1

β2 (λ2 − 1)
.

Along the gradient flow curve γθ, we have:

λ =
1 + ρ2

1− ρ2
⇐⇒ ρ =

√
λ− 1√
λ+ 1
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and: ∫ λ

(γ)

λ′dλ′

||dΛ1,0,0||2G
=

1

2β2
log
(
λ2 − 1

)
+ C(θ) ,

where γ(λ) = ρ cos θ+ iρ sin θ and where C(θ) is a constant of integration which can depend

on θ in a 2π-periodic manner. Relation (3.29) gives:

VBcan(ρ, θ) = ω(θ)(ΛBcan(ρ)2 − 1) = ω(θ)
4ρ2

(1− ρ2)2
, (5.24)

where ω(θ)
def.
= e2β2C(θ) is a positive 2π-periodic smooth function of θ.

Accidental visible symmetries in the canonical timelike case. It is clear that V1,0,0

is invariant under a continuous subgroup of Iso+(D) ' PSU(1, 1) iff ω is independent of θ, in

which case V1,0,0 is stabilized by the U(1) subgroup R corresponding to rotations of the disk

around its origin (see appendix B). The image of this subgroup in the adjoint representation

Ad0 coincides with the SO(2) group of spatial rotations which stabilizes the timelike 3-

vector Bcan = (1, 0, 0) in the Lorentz group. Hence the Hessian two-field model defined by

V1,0,0 also admits visible symmetries iff ω is independent of θ, in which case the space of

infinitesimal visible symmetries is one-dimensional and generated by the vector field ∂θ.

The scalar potential when B = B′ = CBcan. Recalling the relations VB′ = VBcan

for B′ = CBcan as well as ΛBcan = ΛB′/C (where C = ε
√

(B′, B′), relation (5.24) gives:

VB′(ρ, θ) = ω(θ)

[
ΛB′(ρ)2

(B′, B′)
− 1

]
(when B′1 = B′2 = 0) . (5.25)

Lorentz-invariant form of the scalar potential. When B = B′ = CE0, the polar

angle θ on the hyperbolic disk parameterizes the unit spacelike vector nB(u)
def.
= cos θE1 +

sin θE2 obtained by normalizing the projection ΞB(u) of Ξ(u) onto the spacelike plane

orthogonal to B (see figure 7), which in this case is spanned by the three-vectors E1 and E2.

We have:

ΞB(u) = Ξ(u)− (B,Ξ(u))B

(B,B)
,

and nB(u) = ΞB(u)
||ΞB(u)||E , where the Euclidean norm of ΞB(u) is given by:

||ΞB(u)||E =
√
−(ΞB(u),ΞB(u)) =

√
(B,Ξ(u))2

(B,B)
− 1 ,

where we used the relation (Ξ(u),Ξ(u)) = 1. Combining these formulas gives:

nB(u) =
(B,B)Ξ(u)− (B,Ξ(u))B√
(B,B)(B,Ξ(u))2 − (B,B)2

=
(B,B)Ξ(u)−BΛB(u)√
(B,B)ΛB(u)2 − (B,B)2

. (5.26)

Since this relation is manifestly Lorentz invariant, it is valid not only for B = B′, but also

for any lightlike vector B. In particular, ω can be viewed as a function of the unit spacelike

vector nB and relation (5.25) can be written in the manifestly Lorentz-invariant form:

VB(u) = ω(nB(u))

[
ΛB(u)2

(B,B)
− 1

]
. (5.27)
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Figure 7. The unit spacelike vector nB(u) (shown in gray) determined by the unit timelike 3-vector

Ξ(u) (shown in red) and a timelike 3-vector B (shown in blue); the projection ΞB(u) is shown in

orange. We also show the future sheet of the unit hyperboloid. As u varies in D, the vector nB(u)

describes a circle of unit radius (shown in gray) contained in the spacelike plane orthogonal to B;

one can think of the function ω as being defined on this circle. The figure shows the case when B

is future-pointing with (B,B) = 1.

Direct computation using (5.5) gives:

ΛB(u)2

(B,B)
−1=

B2
1(1+2x2−2y2 +ρ4)+B2

2(1−2x2 +2y2 +ρ4)+4B2
0ρ

2 +4B0(1+ρ2)(B1x+B2y)+8B1B2xy

(B,B)(1−ρ2)2
.

(5.28)

Remark 5.8. Equation (5.20) shows that the general solution of (3.25) for a Hesse function

of timelike parameter B is obtained by acting on D with the PSU(1, 1) transformation

U = U(t, a, 0), with a and t given in (5.21):

VB(u) = VB′(ψU (u)) ,

where B′ = Ad0(U)(B). This amounts to replacing (ρ, θ) in expression (5.25) by polar

semi-geodesic coordinates (ρ̃, θ̃) centered at the critical point uc of ΛB. In these new

coordinates, the curves ρ̃ = const (which coincide with the level sets of ΛB) are hyperbolic

circles with center uc, while the curves θ̃ = const (which coincide with the gradient flow

curves of ΛB) are hyperbolic geodesics orthogonal to these hyperbolic circles and passing

through uc (see figure 2). We have:

VB(x, y) = ω(θ̃(x, y))

[
ΛB(u)2

(B,B)
− 1

]
, (5.29)

where:

θ̃(x, y) = arg

sign(B0) (B1 − iB2) (x+ iy) +
(
|B0| −

√
(B,B)

)
(
|B0| −

√
(B,B)

)
(x+ iy) + sign(B0) (B1 + iB2)

 .
Accidental visible symmetries in the general timelike case. The potential (5.29)

is stabilized by a non-trivial continuous subgroup of PSU(1, 1) ' Iso+(D) (and hence
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the corresponding cosmological model also admits visible symmetries) iff the function ω

is constant on the unit circle. In this case, the group of visible symmetries of the model

coincides with the stabilizer of VB in Iso+(D). This is an elliptic U(1) subgroup of PSU(1, 1)

which identifies with the stabilizer of the 3-vector B under the adjoint representation:

StabPSU(1,1)(VB) = StabPSU(1,1)(B) ' U(1)

and is conjugate to the canonical rotation subgroup R through the adjoint action of the

group element U = U(t, a, 0):

StabPSU(1,1)(VB) = U−1RU .

5.5.2 The case of spacelike Λ

In this case, there exists U = U(t, a, π2 − a) ∈ PSU(1, 1) such that Ad0(U)(B) = B′ =

CBcan, where Bcan = (0, 0, 1) = E2, C =
√
|(B,B)| and the parameters t, a are determined

by the relations:

t =− arcsinh

(
B0√
|(B,B)|

)
, sin(2a)=

B1√
B2

1 +B2
2

, cos(2a)=
B2√

B2
1 +B2

2

. (5.30)

The canonical spacelike Hesse function. We have:

ΛBcan(u) = Λ0,0,1(u) = −Ξ2(u) = − 2y

1− ρ2
. (5.31)

This Hesse function has no critical point on D (see figure 8). It vanishes along the horizontal

segment (−1, 1) defined by y = 0, being positive in the lower half plane (where it tends to

+∞ for ρ → 1) and negative in the upper half plane (where it tends to −∞ for ρ → 1).

For each λ ∈ R \ {0}, the level set Λ0,0,1 = λ is the intersection with D of the circle with

center u = i
λ and radius Rλ =

√
1 + 1

λ2 , which is the hypercycle consisting of all points of

D located at signed hyperbolic distance dλ = − arcsinh(λ) from the axis (−1, 1).

Fermi coordinates with axis (−1, 1). To describe the gradient flow lines of (5.31),

it is convenient to pass to hypercyclic (a.k.a. Fermi) coordinates (τ, σ) with axis (−1, 1).

These are semi-geodesic coordinates defined through:12

sign(y)σ
def.
= arccosh

√
1+

4y2

(1−ρ2)2
=arccosh

√
Ξ0(u)2−Ξ1(u)2 =arccosh

√
1+Ξ2(u)2

τ
def.
= arcsinh

(
2x√

4y2+(1−ρ2)2

)
=arcsinh

(
Ξ1(u)√

Ξ0(u)2−Ξ1(u)2

)
=arcsinh

(
Ξ1(u)√

1+Ξ2(u)2

)

i.e.:

Ξ0(u) = coshσ cosh τ , Ξ1(u) = coshσ sinh τ , Ξ2(u) = sinhσ .

12The Fermi coordinate σ should not be mistaken with σ =
√
B2

1 +B2
2 defined in (5.2).
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(a) Λ0,0,1 on the hyperbolic disk. (b) Λ0,0,1 in Fermi coordinates.

Figure 8. Contour plot of the canonical spacelike Hesse function Λ0,0,1 and of its gradient flow.

The values of the function decrease from lightest brown to darkest green. The figure to the left

is figure 5 recalled here for convenience of the reader. The vanishing locus of the function is the

horizontal segment shown in red. The gradient vector field is shown in purple. The figure to the

right shows only a portion of the (τ, σ)-plane.

In Fermi coordinates, the metric G = G/β2 takes the form:

ds2
G =

1

β2

[
dσ2 + cosh2(σ)dτ2

]
.

We have sign(σ(u)) = sign(y) = sign(Ξ2(u)) and τ, σ ∈ R. The curves σ = const are

hypercycles with axis given by the horizontal geodesic (−1, 1), while the curves τ = const

are hyperbolic geodesics orthogonal to these hypercycles (and hence also orthogonal to the

x-axis). In these coordinates, the point u = 0 corresponds to (τ, σ) = (0, 0) while the

conformal boundary of D corresponds to σ2 + τ2 →∞, being mapped to a circle at infinity

of the (τ, σ)-plane. The y-axis x = 0 corresponds to the line τ = 0 while the x-axis y = 0

corresponds to the line σ = 0. The squeeze transformation T (t) ∈ PSU(1, 1) acts by:

σ → σ , τ → τ + t .

In particular, the hypercycles with axis (−1, 1) are the orbits of the squeeze subgroup T of

PSU(1, 1) under the action of the latter on D by fractional transformations. Since Λ0,0,1 =

− sinh(σ), the level sets of the canonical spacelike Hesse function coincide with the curves

σ = const, which are hypercycles located at signed hyperbolic distance σ from the x-axis.

The scalar potential in the canonical spacelike case. The gradient flow equations

of Λ0,0,1 take the following form in hypercyclic coordinates:

dσ

dq
= β2 cosh(σ) ,

dτ

dq
= 0 ,
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with the solution τ = const and σ = 2 arctanh
[
tan

(
β2q
2

)]
= arcsinh(tan(q)), where q runs

in the interval (−π/2, π/2) and we chose q = 0 to correspond to σ = 0, i.e. to the unique

point uτ = tanh(τ/2) ∈ (−1, 1) where the gradient flow curve corresponding to τ intersects

the x-axis. We denote by γτ this gradient flow curve.

We have λ = − sinh(σ) and equation (3.28) becomes:

dq

dλ
= − 1

||dΛ0,0,1||2G
= − 1

β2 (λ2 + 1)
.

Along the gradient flow curve γτ which passes through the point u = x + iy = ρ(cos θ +

i sin θ) ∈ D, we have: ∫ λ

(γ)

λ′dλ′

||dΛ0,0,1||2G
=

1

2β2
log
(
λ2 + 1

)
+ C(τ) ,

where γ(λ) = u and where C(τ) is a constant of integration which can depend on τ =

arcsinh

(
2x√

4y2+(1−ρ2)2

)
. Equation (3.29) gives:

VBcan = ω(τ) cosh2(σ) = ω(τ)(1 + ΛBcan(σ)2) , (5.32)

i.e.:

VBcan(u)=ω(τ)
[
1+ΛBcan(σ)2

]
= ω(τ)

1−2x2+2y2+ρ4

(1−ρ2)2
, (5.33)

where ω ∈ C∞(R) is a positive smooth real-valued function defined through ω(τ) = e2β2C(τ).

Accidental visible symmetries in the canonical spacelike case. It is clear that

VBcan is invariant under a continuous subgroup of isometries of D iff ω is independent of τ , in

which case the stabilizer of VBcan coincides with the squeeze subgroup T of PSU(1, 1). This

corresponds to the group of boosts Ad0(T (t)) in the two-plane (X0, X1) of the Minkowski

space R1,2 (see appendix B) which stabilize the 3-vector Bcan =(0, 0, 1). This subgroup is

isomorphic with (R,+). Hence the Hessian two-field model defined by VBcan also admits

visible symmetries iff ω is independent of τ , in which case the group of visible symmetries

coincides with T .

The scalar potential when B = B′ = CBcan. Recalling the relations VB′ = VBcan

for B′ = CBcan as well as ΛBcan = ΛB′/C (where C =
√
|(B′, B′)|), equation (5.33) gives:

VB′(τ, σ) = ω(τ)

[
1 +

ΛB′(σ)2

|(B′, B′)|

]
(when B′0 = B′1 = 0) . (5.34)

Lorentz-invariant form of the scalar potential. When B = Bcan = (0, 0, 1), the

hyperbolic angle τ parameterizes the unit timelike vector nB(u) = (cosh τ)E0 +(sinh τ)E1,

which lies in the direction of the projection ΞB(u) = Ξ0(u)E0 + Ξ1(u)E1 of Ξ(u) onto the

Minkowski plane orthogonal to B (see figure 9).

We have:

ΞB(u) = Ξ(u) +
(B,Ξ(u))B

|(B,B)|
,
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Figure 9. The unit timelike vector nB(u) (shown in gray) determined by the unit timelike vector

Ξ(u) and by the spacelike 3-vector B (shown in blue). The timelike 3-vector Ξ(u) is shown in red,

while ΞB(u) is shown in orange. As u varies in D, the vector nB(u) describes the hyperbola (shown

in gray) obtained by intersecting the future sheet of the unit hyperboloid with the Minkowski plane

orthogonal to B; one can think of the function ω as being defined on this hyperbola.

which gives:

(ΞB(u),ΞB(u)) = 1 +
(B,Ξ(u))2

|(B,B)|
,

where we used the relation (Ξ(u),Ξ(u)) = 1. Thus:

nB(u)=
ΞB(u)√

(ΞB(u),ΞB(u))
=
|(B,B)|Ξ(u)+(B,Ξ(u))B√
(B,B)2+|(B,B)|(B,Ξ(u))2

=
|(B,B)|Ξ(u)+ΛB(u)B√
(B,B)2+|(B,B)|ΛB(u)2

.

(5.35)

Since this relation is manifestly Lorentz invariant, it is valid not only for B = Bcan but also

for any spacelike vector B. In particular, ω can be viewed as a function of the unit timelike

vector nB and relation (5.34) can be written in the manifestly Lorentz-invariant form:

VB(u) = ω(nB(u))

[
1 +

ΛB(u)2

|(B,B)|

]
= −ω(nB(u))

[
ΛB(u)2

(B,B)
− 1

]
, (5.36)

where the quantity
Λ2
B

(B,B) − 1 has the form given in (5.28).

Remark 5.9. Equation (5.20) shows that the general solution of the Λ-V equation (3.25) for

a Hesse function of spacelike parameter B is obtained by acting on D with the PSU(1, 1)

transformation U = U(t, a, π/2−a), with t and a given in (5.30). This amounts to replacing

(τ, σ) in expression (5.32) by hypercyclic coordinates (τ̃ , σ̃) with axis given by the vanishing

locus ZB of the spacelike Hesse function ΛB (which is a hyperbolic geodesic). In the new

coordinates, the curves σ̃ = const (which coincide with the level sets of ΛB) are hypercycles

with axis ZB while the curves τ̃ = const (which coincide with the gradient flow curves of

ΛB) are hyperbolic geodesics orthogonal to these hypercycles (see figure 3). We have:

VB(x, y) = ω(τ̃(x, y))

[
1 +

ΛB(x, y)2

|(B,B)|

]
. (5.37)
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with:

sinh τ̃(x,y)=
2
√
|(B,B)|(B1y−B2x)√

(B2
1+B2

2)
[
B2

1(1+2x2−2y2+ρ4)+B2
2(1−2x2+2y2+ρ4)+4B2

0ρ
2+4B0(1+ρ2)(B1x+B2y)+8B1B2xy

]
(5.38)

Accidental visible symmetries in the general spacelike case. It is clear that the

potential (5.37) is stabilized by a non-trivial continuous subgroup of Iso+(D) ' PSU(1, 1)

(and hence the corresponding cosmological model also admits visible symmetries) iff the

function ω is constant. In this case, the group of visible symmetries of the model coincides

with the stabilizer of VB. This is a hyperbolic subgroup isomorphic with (R,+) which

identifies with the stabilizer of the spacelike 3-vector B under the adjoint representation:

StabPSU(1,1)(VB) = StabPSU(1,1)(B) ' (R,+)

and is conjugate to the squeeze subgroup T of PSU(1, 1):

StabPSU(1,1)(VB) = U−1T U ,

where U = U(t, a, π/2− a).

5.5.3 The case of lightlike Λ

In this case, there exists U = U(0, a, 0) ∈ PSU(1, 1) such that Ad0(U)(B) = (C, 0, C),

where C = B0 and a is determined by the relations:

sin(2a) =
B1

B0
, cos(2a) =

B2

B0
. (5.39)

Using (5.20), we can thus always reduce to the case B = B′ = (C, 0, C), while a rescaling

of Λ allows us to further reduce to the case B = Bcan = (1, 0, 1) = E0 + E2.

The canonical lightlike Hesse function. We have:

ΛBcan(u) = Λ1,0,1(u) = Ξ0(u)− Ξ2(u) =
ρ2 − 2y + 1

1− ρ2
. (5.40)

This Hesse function has no critical points on D and is positive everywhere inside D (see

figures 10 and 4). It tends to +∞ at all points of the conformal boundary of D except for

the point u0 = i, where it tends to zero. For any λ ∈ (0,+∞), the level set Λ1,0,1 = λ is a

horocycle with center u0 = i.

Horocyclic coordinates centered at i. To describe the gradient flow of Λ1,0,1, it is

convenient to pass to horocyclic coordinates (which we again denote by (τ, σ)) centered at

u = i. These are the hyperbolic polar geodesic coordinates defined through:

σ
def.
= log

(
ρ2 − 2y + 1

1− ρ2

)
= log

[
Ξ0(u)− Ξ2(u)

]
τ

def.
=

2x

ρ2 − 2y + 1
=

Ξ1(u)

Ξ0(u)− Ξ2(u)
, (5.41)
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(a) Λ1,0,1 on the hyperbolic disk. (b) Λ1,0,1 in horocyclic coordinates.

Figure 10. Contour plot of the canonical lightlike Hesse function Λ1,0,1 and of its gradient flow.

The values of the function decrease from lightest brown to darkest green. In the figure on the left

(which coincides with figure 4), the single point on the conformal boundary of D where the function

tends to zero is shown as a red dot. The gradient vector field is shown in purple. The figure to the

right shows only a portion of the (τ, σ)-plane.

i.e.:

Ξ0(u) =
1

2
τ2eσ + coshσ , Ξ1(u) = τeσ , Ξ2(u) =

1

2
τ2eσ − sinhσ .

In particular, we have ΛBcan(u) = Ξ0(u)−Ξ2(u) = eσ. In horocyclic coordinates, the metric

G = G/β2 takes the form:

ds2
G =

1

β2
(dσ2 + e2σdτ2) .

In these coordinates, the curves σ = const are the horocycles centered at u = i while the

curves τ = const are the geodesics normal to these horocycles, which have i as a limit point.

In coordinates (τ, σ), the disk D is mapped to the entire plane R2, the conformal boundary

of D corresponding to a circle at infinity. The origin of the disk corresponds to the origin

of the (τ, σ)-plane. The y-axis x = 0 is mapped to the σ-axis τ = 0, while the Euclidean

circle of radius 1/2 centered at u = i
2 (which is a horocycle of D) is mapped to the τ -axis

σ = 0. The interior of this horocycle is mapped to the half-plane σ < 0, while its exterior

is mapped to the half-plane σ > 0; moreover, the limit u→ i corresponds to σ → −∞ and

τ → ±∞, where τ → +∞ if u approaches i from the half-disk defined by Reu > 0 and

τ → −∞ if u approaches i from the half-disk defined by Reu < 0. The horocycles with

center i correspond to the curves σ = const, while the hyperbolic geodesics which asymptote

to i correspond to the curves τ = const. The shear transformation P (κ) ∈ SU(1, 1) acts as:

σ → σ , τ → τ + 2κ .
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In particular, the horocycles centered at i coincide with the orbits of the shear subgroup

P under the action by fractional transformations. Since Λ1,0,1 = eσ, the level sets of Λ

correspond to the curves σ = const, which are horocycles passing through the point i.

The scalar potential in the canonical lightlike case. In horocyclic coordinates, the

gradient flow equations of Λ take the form:

dσ

dq
= −β2eσ ,

dτ

dq
= 0 ,

with the solution τ = const and σ = − log
[
β2q + 1

]
, where we chose the integration

constant such that q runs between −1/β2 and +∞, with q → −1/β2 corresponding to

σ → +∞ and q → +∞ corresponding to σ → −∞. In the first limit, the gradient flow

approaches a point on the conformal boundary of D where Λ1,0,1 tends to plus infinity,

while in the second limit the gradient flow approaches the ideal point u = i (where Λ1,0,1

tends to zero). The value q = 0 corresponds to the horocycle defined by the equation

σ = 0, which is the level set where Λ1,0,1 = 1.

We have λ = eσ = ρ2−2y+1
1−ρ2 and equation (3.28) becomes:

dq

dλ
= − 1

||dΛ1,0,1||2G
= − 1

β2λ2
.

Along a gradient flow curve γτ of Λ1,0,1 which passes through the point u = x + iy =

ρ(cos θ + i sin θ) ∈ D, we have:∫ λ

(γ)

λ′dλ′

||dΛ1,0,1||2G
=

1

β2
log(λ) + c(τ) ,

where γ(λ) = u and c(τ) is a constant of integration which can depend on τ = 2x
ρ2−2y+1

.

Relation (3.29) gives:

VBcan(τ, σ) = ω(τ)e2σ = ω(τ)ΛBcan(σ)2 , (5.42)

i.e.:

VBcan(u)= ω(τ)e2σ= ω(τ)

(
ρ2−2ρ sin θ+1

)2
(1− ρ2)2

= ω

(
2x

ρ2−2y+1

)(
ρ2−2y+1

)2
(1− ρ2)2

, (5.43)

where the function ω ∈ C∞(R) is defined through ω(τ) = e2β2c(τ).

Accidental visible symmetries in the canonical lightlike case. It is clear that

V1,0,1 is invariant under a continuous subgroup of PSU(1, 1) iff ω is independent of τ , in

which case the stabilizer of V1,0,1 is the shear subgroup P. Notice that P identifies with

the stabilizer of Bcan = (1, 0, 1) under the adjoint representation Ad0 of PSU(1, 1). Hence

the Hessian two-field model with potential V1,0,1 also admits visible symmetries iff ω is

independent of τ , in which case the group of visible symmetries coincides with the shear

subgroup P of PSU(1, 1) ' Iso+(D).
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The scalar potential when B = B′ = CBcan. Recalling the relations VB′ = VBcan

for B′ = CBcan as well as ΛBcan = ΛB′/C (where C = B′0), relation (5.42) gives:

VB′(τ, σ) = ω(τ)
ΛB′(σ)2

(B′0)2
(when B′1 = 0) . (5.44)

Lorentz invariant form of the scalar potential. Let ΞB(u) denote the projection

of the timelike vector Ξ onto the light cone of R1,2, taken parallel to the lightlike vector

B (hence the 3-vector ΞB(u) lies in the intersection of the light cone with the Minkowski

plane spanned by Ξ(u) and B (see figure 11). We have ΞB(u) = Ξ(u)− αB, where α ∈ R
is determined by the condition (ΞB(u),ΞB(u)) = 0, which gives α = 1

2(B,Ξ(u)) . Thus:

ΞB(u) = Ξ(u)− B

2(B,Ξ(u))
.

Consider the lightlike 3-vector:

nB(u)
def.
=

ΞB(u)

(B,Ξ(u))
=

2(B,Ξ(u))Ξ(u)−B
2(B,Ξ(u))2

=
2ΛB(u)Ξ(u)−B

2ΛB(u)2
,

which satisfies (nB, B) = 1 and hence lies inside the affine plane ΠB ⊂ R1,2 defined by the

equation (X,B) = 1. We have ΛBcan(u) = (Bcan,Ξ(u)) = eσ and:

ΞBcan(u) = eσ
(
τ2 + 1

2
, τ,

τ2 − 1

2

)
,

which gives:

nBcan(u) =

(
τ2 + 1

2
, τ,

τ2 − 1

2

)
.

This shows that the horocyclic coordinate τ parameterizes the light-like vector nBcan . We

have ΠBcan = n0 + Π0, where the 3-vector n0 = (1/2, 0,−1/2) lies inside the light-cone and

Π0 is the linear plane defined by the equation (X,Bcan) = 0, i.e. X0 = X2. The vectors ε1 =

(0, 1, 0) and ε2 = (1, 0, 1) form a basis of this linear plane. Thus nBcan(u) = n0+ν(u), where:

ν(u) =

(
τ2

2
, τ,

τ2

2

)
= τε1 +

τ2

2
ε2 ∈ Π0 ,

which shows that nBcan(u) describes the parabola obtained by intersecting the light cone

with the plane ΠBcan . The apex of this parabola is the 3-vector ν0, which corresponds to

τ = 0.

In particular, ω can be viewed as a function of the unit timelike vector nB and rela-

tion (5.44) can be written in the manifestly Lorentz-invariant form:

VB(u) = ω(B0nB(u))
ΛB(u)2

B2
0

. (5.45)

where:
ΛB(u)2

B2
0

=

(
B0(1 + ρ2) + 2B1x+ 2B2y

)2
B2

0(1− ρ2)2
, (5.46)
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Figure 11. The lightlike vector nB(u) (shown in gray) determined by Ξ(u) (shown in red) and by

a lightlike 3-vector B (shown in blue), where the 3-vector ΞB(u) is shown in orange. As u varies

in D, the vector nB(u) describes the parabola (shown in gray) obtained by intersecting the light

cone with the plane defined in Minkowski 3-space by the equation (X,B) = 1; one can think of the

function ω as being defined on this parabola. The 3-vector n0 corresponding to the apex of this

parabola is shown in green. The figure shows the case when B is future-lightlike.

Remark 5.10. Equation (5.20) shows that the general solution of (3.25) for a Hesse function

of lightlike parameter B is obtained by acting on D with the PSU(1, 1) transformation U :=

U(0, a, 0), where a is given in (5.39). This amounts to replacing (τ, σ) in expression (5.42)

by horocyclic coordinates (τ̃ , σ̃) centered at the point u0
def.
= ψU−1(i) of the conformal

boundary of D where the lightlike Hesse function ΛB tends to zero. In the new coordinates,

the curves σ̃ = const (which coincide with the level sets of ΛB) are horocycles centered

at u0, while the curves τ̃ = const (which coincide with the gradient flow lines of ΛB) are

hyperbolic geodesics having uB as a limit point. This gives:

VB(x, y) = ω(τ̃(x, y))
ΛB(x, y)2

B2
0

, (5.47)

where τ̃(x, y)
def.
= τ(ψU (x+ iy)) is given by:

τ̃(x, y) =
2(B1y −B2x)

B0(1 + ρ2) + 2B1x+ 2B2y
. (5.48)

Accidental visible symmetries in the general lightlike case. The potential (5.47)

is stabilized by a non-trivial continuous subgroup of PSU(1, 1) ' Iso+(D) (and hence the

corresponding cosmological model also admits visible symmetries) iff the function ω is

constant on R. In this case, the stabilizer of VB is a parabolic subgroup isomorphic with

(R,+) which coincides with the stabilizer of the 3-vector B under the adjoint representation:

StabPSU(1,1)(VB) = StabPSU(1,1)(B) ' (R,+) .

We have:

StabPSU(1,1)(B) = U−1PU ,

where U = U(0, a, 0).
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5.6 Summary

The results of the previous subsections are summarized by the following theorem, which

gives a complete classification of Hessian two-field models with scalar manifold Dβ :

Theorem 5.11. The space of Hesse functions of the hyperbolic disk is 3-dimensional. A

basis of this space is given by the classical Weierstrass coordinates Ξ0,Ξ1,Ξ2 and the general

Hesse function has the form:

ΛB(u) = (B,Ξ(u)) ∀u ∈ D , (5.49)

where Ξ = (Ξ0,Ξ1,Ξ2) : D → R3 is the Weierstrass map, B = (B0, B1, B2) ∈ R3 is an

arbitrary non-vanishing 3-vector parameter and ( , ) is the Minkowski pairing of signature

(1, 2) on R3. Moreover, the following statements hold for the weakly-Hessian two-field

cosmological model whose scalar manifold is the disk Dβ = (D,G), where G is the complete

metric of constant negative curvature K = −3
8 :

1. When B is timelike, the two-field model with scalar manifold Dβ admits the Hessian

symmetry generated by (5.49) iff the scalar potential V has the form:

VB(u) = ω(nB(u))

[
ΛB(u)2

(B,B)
− 1

]
, (5.50)

where ω ∈ C∞(S1) is an arbitrary smooth function defined on the unit circle and

nB(u) is the 3-vector given by:

nB(u)=
(B,B)Ξ(u)−(B,Ξ(u))B√
(B,B)(B,Ξ(u))2−(B,B)2

=
(B,B)Ξ(u)−BΛB(u)√
(B,B)ΛB(u)2−(B,B)2

, (5.51)

which lies on the circle of unit radius located in the spacelike plane orthogonal to B in

R1,2 (see figure 7). Here, the function ω is thought of as being defined on this circle.

The model also admits visible symmetries iff ω is constant, in which case the group

of visible symmetries is an elliptic subgroup of PSU(1, 1) conjugate to the canonical

rotation subgroup R ' U(1); moreover, the group of visible symmetries coincides with

the stabilizer of B under the adjoint representation Ad0 of PSU(1, 1).

2. When B is spacelike, the two-field model with scalar manifold Dβ admits the Hessian

symmetry generated by (5.49) iff its scalar potential V has the form:

VB(u) = ω(nB(u))

[
ΛB(u)2

|(B,B)|
+ 1

]
, (5.52)

where ω ∈ C∞(R) is an arbitrary smooth function defined on the real line and nB(u)

is the unit timelike 3-vector given by:

nB(u)=
|(B,B)|Ξ(u) + (B,Ξ(u))B√
(B,B)2+|(B,B)|(B,Ξ(u))2

=
|(B,B)|Ξ(u) + ΛB(u)B√
(B,B)2+|(B,B)|ΛB(u)2

, (5.53)

which lies on the hyperbola obtained by intersecting the unit hyperboloid with the

Minkowski plane orthogonal to B (see figure 9). Here, the function ω is thought of
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as being defined on this hyperbola. The explicit form of V in Euclidean Cartesian

coordinates is given in equations (5.37) and (5.38). The model also admits visible

symmetries iff ω is constant, in which case the group of visible symmetries is a hyper-

bolic subgroup of PSU(1, 1) conjugate to the canonical squeeze subgroup T ' (R,+);

moreover, the group of visible symmetries coincides with the stabilizer of B under the

adjoint representation Ad0 of PSU(1, 1).

3. When B is lightlike, the two-field model with scalar manifold Dβ admits the Hessian

symmetry generated by (5.49) iff its scalar potential V has the form:

VB(u) = ω(B0nB(u))
ΛB(u)2

B2
0

, (5.54)

where ω ∈ C∞(R) is an arbitrary smooth function defined on the real line and nB(u)

is the lightlike 3-vector given by:

nB(u) =
2(B,Ξ(u))Ξ(u)−B

2(B,Ξ(u))2
=

2ΛB(u)Ξ(u)−B
2ΛB(u)2

, (5.55)

which lies on the parabola obtained by intersecting the light cone of R1,2 with the

affine plane defined by the equation (X,B) = 1 (see figure 11). Here, the function ω

is thought of as being defined on this parabola. The explicit form of V in Euclidean

Cartesian coordinates is given in equations (5.47) and (5.48). The model also admits

visible symmetries iff ω is constant, in which case the group of visible symmetries is a

parabolic subgroup of PSU(1, 1) conjugate to the canonical shear subgroup P ' (R,+);

moreover the group of visible symmetries coincides with the stabilizer of B under the

adjoint representation Ad0 of PSU(1, 1).

In each of the three cases, there exists an orientation-preserving isometry of the scalar

manifold which brings the Hesse generator and the scalar potential to the corresponding

canonical forms (see equations (5.22) and (5.42) for the timelike case, (5.31) and (5.33)

for the spacelike case, (5.40) and (5.42) for the lightlike case).

Notice that VB depends only on the ray of the 3-vector B in the projective Minkowski

space PR1,2. The explicit forms of the scalar potential in the three cases are as follows:

• For timelike B (i.e., for (B,B)
def.
= B2

0 −B2
1 −B2

2 > 0):

VB(x, y)=ω(θ̃(x, y))
P

(B,B)(1− ρ2)2
, (5.56)

where:

P =(B2
1 +B2

2)(1+ρ4)+2(B2
1−B2

2)(x2−y2)+4B2
0ρ

2+4B0(1+ρ2)(B1x+B2y)+8B1B2xy (5.57)

and:

θ̃(x, y) = arg

sign(B0) (B1 − iB2) (x+ iy) +
(
|B0| −

√
(B,B)

)
(
|B0| −

√
(B,B)

)
(x+ iy) + sign(B0) (B1 + iB2)

 . (5.58)
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• For spacelike B (i.e., for B2
0 −B2

1 −B2
2 < 0):

VB(x, y)=ω(τ̃(x, y))
P

|(B,B)|(1− ρ2)2
, (5.59)

where P is given by (5.57) and:

τ̃(x, y) = arcsinh

[
2
√
|(B,B)| (B1y −B2x)√

(B2
1 +B2

2)P

]
. (5.60)

• For lightlike B (i.e., for B2
0 −B2

1 −B2
2 = 0):

VB(x, y) = ω(τ̃(x, y))

(
B0(1 + ρ2) + 2B1x+ 2B2y

)2
B2

0(1− ρ2)2
, (5.61)

where:

τ̃(x, y) =
2(B1y −B2x)

B0(1 + ρ2) + 2B1x+ 2B2y
. (5.62)

6 Hessian models for the hyperbolic punctured disk

In this case, all Hesse functions are rotationally-invariant. Taking C = 1 in (4.19), we find

that the gradient vector field of the Hesse function Λ = e−βr has the following components

in the rescaled normal polar coordinates (r, θ):

(gradGΛ)r = −βe−βr

(gradGΛ)θ = 0 . (6.1)

Since ρ = e−2πeβr , the level sets of Λ are Euclidean circles centered at the origin of D∗,
while the gradient flow curves are half lines passing through the origin (which corresponds

to r → +∞); the gradient curves flow from the outer component of the conformal boundary

of D∗, which is the Euclidean circle of radius 1 corresponding to r → −∞. The gradient

flow equations of Λ:
dr

dq
= βe−βr ,

dθ

dq
= 0

give θ = const and:

eβr = 1 + β2q ⇐⇒ q =
1

β2

(
eβr − 1

)
, (6.2)

where we chose the constant of integration such that r|q=0 = 0, i.e. such that ρ|q=0 =

e−2π; this amounts to using the Euclidean circle C0 of radius ρ0
def.
= e−2π (which has unit

hyperbolic circumference) as a section Q for the gradient flow. We have:∫ q

0
Λ(γ(q′))dq′ =

∫ q

0
e−βr(q

′)dq′ =

∫ q

0

1

1 + β2q′
dq′ =

1

β2
log
(
1 + β2q

)
=

1

β
r .

Relation (3.27) gives:

V = ω(θ)e−2βr = ω(θ)e
−
√

3
2
r

= ω(θ)
4π2

(log ρ)2
, (6.3)
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where we used equation (4.20) and we defined ω(θ)
def.
= V (r, θ)|r=0 = V (ρ, θ)|ρ=ρ0 . Notice

that ω (which can be viewed as a smooth function defined on the unit circle) can be

identified with the restriction of V to the circle C0, which plays the role of section for the

gradient flow of Λ.

The space of Killing vector fields of D∗ is generated by ∂θ, which is a visible symmetry

iff ∂θV = 0, which amounts to the condition that ω be independent of θ. The following

statement summarizes these results:

Theorem 6.1. The space of Hesse functions of the hyperbolic punctured disk is one-

dimensional, being generated by:

Λ = e−βr =
2π

| log ρ|
, (6.4)

where (r, θ) are polar semi-geodesic coordinates for the complete metric G of Gaussian

curvature −β2 = −3/8. For C 6= 0, this Hesse function generates a Hessian symmetry of

the two-field cosmological model with scalar manifold D∗β iff the scalar potential has the form:

V (r, θ) = ω(θ)e−2βr = ω(θ)
4π2

(log ρ)2
, (6.5)

where ω ∈ C∞(S1) is an arbitrary smooth function defined on the unit circle (viewed as a

2π-periodic smooth function of the polar angle θ). In this case, the corresponding Hessian

symmetry is generated by the vector field:

XΛ =
Λ√
a
∂a −

4

a3/2
gradΛ = e−βr

(
1√
a
∂a +

4β

a3/2
∂r

)
= 2π

[
1√

a| log ρ|
∂a − 4β2 ρ

a3/2
∂ρ

]
.

When ω is not constant, the space of Noether symmetries of such a model is one-

dimensional and coincides with the space of Hessian symmetries, being spanned by the

vector field XΛ. When ω is constant, the model also admits visible symmetries, whose

generators form a one-dimensional vector space spanned by ∂θ. In this special case, the

space of Noether symmetries is two-dimensional and admits a basis given by the vector

fields XΛ and ∂θ.

The radial profiles of Λ and V are plotted in figure 12.

7 Hessian models for the hyperbolic annuli

In this case, all Hesse functions are rotationally-invariant. Using (4.25) with C=1, we find

that the gradient vector field of Λ=sinh(βr) has the following components in normal polar

coordinates (r, θ) for the metric G of Gaussian curvature −β2:

(gradGΛ)r = β cosh(βr)

(gradGΛ)θ = 0 . (7.1)

The gradient flow equations of Λ:

dr

dq
= −β cosh(βr) ,

dθ

dq
= 0 (7.2)
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(a) Plot of Λ(ρ)/C. (b) Plot of V (ρ, θ)/ω(θ).

Figure 12. Plot of the radial profiles of Λ/C and V for the hyperbolic punctured disk.

give θ = θ0 = const and:

tanh(βr/2) = − tan(β2q/2) , (7.3)

where we chose the gradient flow parameter such that r|q=0 = 0 (i.e. ρ|q=0 = 1) and we

used the formula: ∫
dr

cosh(βr)
=

2

β
arctan

[
tanh

(
βr

2

)]
+ const .

In this case, the section Q for the gradient flow of Λ is the Euclidean circle C1 of radius

ρ = 1 (which separates the two funnel regions of A(R)). Using (7.2), more precisely:

dq′ = − 1

β cosh(βr′)
dr′ ,

gives:∫ q

0
Λ(γ(q′))dq′ =

∫ q

0
sinh(βr(q′))dq′ = − 1

β

∫ r

0
tanh(βr′)dr′ = − 1

β2
log [cosh(βr)] . (7.4)

Hence, relation (3.27) implies:

V (r, θ) = ω(θ)e2 log[cosh(βr)] = ω(θ) cosh2(βr) =
ω(θ)

cos2
(
π
µ | log ρ|

) , (7.5)

where we defined ω(θ)
def.
= V (r, θ)|r=0 = V (ρ, θ)|ρ=1. Notice that ω can be viewed as a

smooth function defined on the unit circle, which identifies with the restriction of V to the

Euclidean circle C1.

The space of Killing vector fields of A(R) is generated by ∂θ. The latter is a visi-

ble symmetry iff ∂θV = 0, which amounts to the condition that ω be independent of θ.

Summarizing everything, we have:

Theorem 7.1. The space of Hesse functions of the hyperbolic annulus A(R) is one-

dimensional, being generated by the function:

Λ = sinh(βr) = tan

(
π

µ
log ρ

)
, (7.6)
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(a) Plot of Λ(ρ)/C. (b) Plot of V (ρ, θ)/ω(θ).

Figure 13. Plot of the radial profiles of Λ/C and V on the hyperbolic annulus of modulus

µ = 2 log 2 (i.e. for R = 2). In this case ρ runs from 1/2 to 2.

where (r, θ) are polar semi-geodesic coordinates for the complete metric G of Gaussian

curvature −β2 = −3/8. This function generates a Hessian symmetry of the two-field

cosmological model with scalar manifold Aβ(R) iff the scalar potential has the form:

V (r, θ) = ω(θ) cosh2(βr) =
ω(θ)

cos2
(
π
µ | log ρ|

) , (7.7)

where ω ∈ C∞(S1) is an arbitrary smooth function defined on the unit circle (viewed as a

2π-periodic smooth function of the polar angle θ). In this case, the corresponding Hessian

symmetry is generated by the vector field:

XΛ =
Λ√
a
∂a −

4

a3/2
gradΛ =

sinh(βr)√
a

∂a − 4β
cosh(βr)

a3/2
∂r

=
tan

(
π
µ log ρ

)
√
a

∂a −
(

4β2µ

π

)
ρ

a3/2
∂ρ .

When ω is not constant, the space of Noether symmetries of such a model is one-

dimensional and coincides with the space of Hessian symmetries, being spanned by the

vector field XΛ. When ω is constant on S1, the model also admits visible symmetries,

whose generators form a one-dimensional linear space spanned by ∂θ. In this case, the

space of Noether symmetries is two-dimensional and admits a basis given by the vector

fields XΛ and ∂θ.

The radial profiles of Λ and V are plotted in figure 12 for the hyperbolic annulus of

modulus µ = 2 log 2 (i.e. R = 2).

8 Conclusions and further directions

We studied time-independent Noether symmetries in two-field cosmological models, show-

ing that any such symmetry decomposes as a direct sum of a visible and a Hessian symme-

try. While visible symmetries correspond to those isometries of the scalar manifold which
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preserve the scalar potential (and in this sense are “obvious” symmetries), Hessian sym-

metries are “hidden” in the sense that they are not apparent upon direct inspection. We

showed that any Hessian symmetry is determined by a generating function Λ. The latter is

a Hesse function of the scalar manifold (Σ, G = 3
8G), i.e. a real-valued function Λ defined

on Σ and which obeys the Hesse equation of (Σ, G) (a certain second order linear PDE

for Λ which involves the rescaled scalar manifold metric G = 3
8G). Moreover, the scalar

potential V of a model which admits a Hessian symmetry must obey the Λ-V equation (a

certain first order PDE for V which involves Λ and G).

When the scalar manifold metric G is rotationally invariant, we showed that the two-

field model admits a Hessian symmetry iff Σ is a disk, a punctured disk or an annulus and

G is a complete metric of Gaussian curvature K = −3
8 , i.e. iff the model is an elementary

two-field α-attractor in the sense of reference [22], for the particular value α = 8/9 of the

α-parameter. In all cases, we determined the explicit general form of the scalar potential

V which is compatible with a given Hessian symmetry. We also discussed the special cases

when such a model also admits a visible symmetry. Finally, we discussed the integral of

motion of a Hessian symmetry — showing that it allows one to simplify the computation

of the number of e-folds along cosmological trajectories.

The present paper opens up a few avenues for further research, some of which we plan to

address in future work. First, we will show in a separate paper (using a more general frame-

work) that the classification of Hessian models given in this paper is in fact valid without

assuming rotational invariance of the scalar manifold metric. One can also show that the ex-

istence of a Hessian symmetry enables an effective one-field model description (as far as one

is concerned with determining classical trajectories) for each fixed value of the correspond-

ing integral of motion,13 a fact which has interesting implications for contact with observa-

tional data. Furthermore, the approach of the present paper can be extended to the study of

symmetries in n-field cosmological models, for which it leads to a rich mathematical theory.

Another direction for future studies concerns the possible embeddings of such models

into supergravity or string theories, where we expect them to arise as points of “enhanced

symmetry” in the moduli spaces of various compactifications. It is also worth noting that in

recent years there have been a number of investigations of novel behavior arising from non-

trivial angular motion in two-field models on the hyperbolic disk (see references [31, 40–46]).

Our results provide a vast arena for even deeper and more involved studies along those lines.

Indeed, having a Noether symmetry enables one to find exact (as opposed to numerical)

solutions of the cosmological equations of motion, in particular obtaining explicit expres-

sions for the Hubble parameter as a function of time; see [20] (as well as [47] and references

therein, in the context of extended theories of gravity). This would facilitate investigating

with analytical means a variety of new regimes of expansion. It would be especially inter-

esting to find new non-slow-roll inflationary regimes, which are perturbatively stable and

produce a nearly scale-invariant spectrum of fluctuations (as needed for consistency with

observations). Even for single-field models, such a regime was established only relatively re-

13Although, of course, the fluctuations of both real scalar fields would be important, for example, for

addressing the issue of perturbative stability of a given trajectory.
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cently [48, 49]. For two-field models the problem is more challenging, but may also present

new opportunities. As already mentioned, the presence of a Noether symmetry in the class

of models, considered in the present paper, may prove to be of great help in that regard.

It would also be interesting to explore whether the present work can be useful for a

wider program (which was touched upon briefly in reference [16]) aimed at studying mul-

tifield cosmological models with methods from the geometric theory of dynamical systems

(see [19] for an introduction). As pointed out in [16], the dynamics of such models is quite

rich and in particular it is amenable to certain methods originating in asymptotic analysis.

It would be interesting to gain a deeper understanding of the simplifications which the

presence of a Hessian symmetry may afford in that context. We hope to report on these

and related problems in future work.
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A Geometric formulation of the method of characteristics

In this appendix, we recall the geometric formulation of the method of characteristics for

solving a first order PDE of the form:

ιXdf = g (A.1)

for an unknown smooth function f ∈ C∞(Σ) defined on a manifold Σ, where X is a vector

field given on Σ, g ∈ C∞(Σ) is a given function and ιX denotes contraction with X. The

method relies on the observation that the identity LX = dιX + ιXd allows us to write (A.1)

in the equivalent form:

LXf = g , (A.2)

where LX is the Lie derivative with respect to X. This shows that f is determined by the

flow of X as follows. If γ : [t1, t2]→ Σ is a flow curve of X (i.e. dγ(t)
dt = X(γ(t))), then (A.2)

gives:14

f(γ(t2))− f(γ(t1)) =

∫ t2

t1

g(γ(t))dt , (A.3)

which allows one to determine f if the flow of the vector field X is known.

As an example, notice that equation (3.25) can be written in the form (A.1) by setting

f = log V , X = gradG log Λ =
gradGΛ

Λ and g = 2β2, in which case one can easily see

14Recall that (LXf)(γ(t)) = X(f)(γ(t)) = (dγ(t)f)(X(γ(t))) = (dγ(t)f)
(

dγ(t)
dt

)
= d

dt
[f(γ(t))].
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that (A.3) is equivalent with (3.27) upon taking into account that the flow parameter t

of the vector field gradG log Λ is related to the gradient flow parameter q of Λ through

dt = −Λdq.

B Orientation-preserving isometries of the hyperbolic disk

The group Iso+(D) = Isoo(D) of orientation-preserving isometries of the Poicaré disk identi-

fies naturally with the group PSU(1, 1) as well as with the connected component SOo(1, 2)

of the Lorentz group in three dimensions. In this appendix, we recall these well-known

identifications in the conventions used in the present paper.

The group SU(1, 1). Consider the matrix:

J
def.
=

[
1 0

0 −1

]
,

which satisfies J† = J = J−1. Recall that SU(1, 1) is the closed subgroup of SL(2,C)

defined through:

SU(1, 1)
def.
= {U ∈ Mat(2,C)

∣∣∣U † = JU−1J & detU = +1} ,

Let Q
def.
=

[
1 i

i 1

]
. Then SU(1, 1) can be identified with SL(2,R) through the Cayley

isomorphism:

SU(1, 1) 3 U → QUQ−1 ∈ SL(2,R) . (B.1)

The complex parameterization of SU(1, 1). We have:

SU(1, 1) = {U(η, σ)
∣∣∣ η, σ ∈ C : |η|2 − |σ|2 = 1} ,

where:

U(η, σ)
def.
=

[
η σ

σ̄ η̄

]
.

The following relations hold in this parameterization:

U(η, σ)−1 = U(η̄,−σ) , U(η, σ)† = U(η̄, σ) , (U(η, σ)−1)† = U(η,−σ)

The group of orientation-preserving isometries of D. Consider the non-linear ac-

tion (i.e. morphism of groups ψ : SU(1, 1)→ Diff(D)) given by fractional transformations:

ψU (u) =
ηu+ σ

σ̄u+ η̄
(u ∈ D) , (B.2)

where ψU
def.
= ψ(U). This action is non-effective with kernel given by {−I2, I2}. It descends

to an effective action of the group PSU(1, 1)
def.
= SU(1, 1)/{−I2, I2}, which we denote by
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ψ̄ : PSU(1, 1)→ Diff(D). Then the image of ψ̄ coincides with the group Iso+(D) = Isoo(D)

of orientation-preserving isometries of the Poincaré disk:

ψ̄(PSU(1, 1)) = Iso+(D)

and the isomorphism of groups obtained by co-restricting ψ̄ to its image intertwines the

action of PSU(1, 1) by fractional transformations and the tautological action of Iso+(D) on

D. Thus Iso+(D) identifies with PSU(1, 1) and its tautological action identifies with the

fractional action of the latter.

Remark B.1. Notice the relation:

∂u[ψU (u)] =
1

(σ̄u+ η̄)2
∀u ∈ D . (B.3)

The angle-boost parameterization of SU(1, 1). One can also parameterize the ele-

ments of SU(1, 1) by unconstrained quantities t ∈ R≥0 and a, b ∈ R/(2πZ) defined through:

η = cosh(t/2)eia , σ = sinh(t/2)eib ,

so that:

U(t, a, b) =

[
cosh(t/2)eia sinh(t/2)eib

sinh(t/2)e−ib cosh(t/2)e−ia

]
.

Then t is called the boost parameter of U , while a and b are called its angle parameters.

Notice the relations:

U(t, a, b)−1 = U(t,−a, π + b) , U(t, a, b)† = U(t,−a, b) , (U(t, a, b)−1)† = U(t, a, π + b) .

and

U(t, a, b) = R(a+ b)T (t)R(a− b) . (B.4)

Canonical subgroups. The map R : R/(4πZ) ' U(1)→ SU(1, 1) defined through:

R(θ) =

[
e

iθ
2 0

0 e−
iθ
2

]
∈ SU(1, 1) (θ ∈ R/(4πZ))

is an injective morphism of groups whose image R (called the subgroup of rotations) is the

U(1) subgroup of SU(1, 1) defined by t = 0 (with a = θ/2), which acts on D by rotations

around the origin:

R(θ) • u = ueiθ .

This coincides with the elliptic subgroup of all transformations which fix the origin of D.

Since the map R is a deformation retract, we have π1(SU(1, 1)) ' π1(U(1)) ' Z.

On the other hand, the map T : R→ SU(1, 1) defined through:

T (t)
def.
=

[
cosh(t/2) sinh(t/2)

sinh(t/2) cosh(t/2)

]
(t ∈ R) (B.5)
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is an injective morphism of groups from (R,+) to SU(1, 1) whose image T is called the

squeeze subgroup. The squeeze subgroup is the hyperbolic subgroup consisting of all trans-

formations which fix the points u = +1 and u = −1 on the conformal boundary of D.

Finally, the map P : R→ SU(1, 1) defined through:

P (κ)
def.
=

[
1 + iκ κ

−κ 1− iκ

]
(B.6)

is an injective morphism of groups from (R,+) to SU(1, 1) whose image P is called the shear

subgroup. The sheer subgroup coincides with the parabolic subgroup of SU(1, 1) consisting

of all transformations which fix the point u = i on the conformal boundary of D.

Remark B.2. An arbitrary parabolic element Π ∈ SU(1, 1) can be parameterized as:

Π = Π(κ, ψ)
def.
=

[
1 + iκ − iκeiψ

iκe−iψ 1− iκ

]
where κ ∈ R and ψ ∈ R/(2πZ). In this parameterization, we have P (κ) = Π(κ, π/2).

Conjugacy classes of SU(1, 1). Any elliptic element PSU(1, 1) conjugates in PSU(1, 1)

to a rotation, while any hyperbolic element is conjugate to a boost. Moreover, any parabolic

element conjugates to P0 or −P0, where:

P0
def.
= Π(1/2, 0) =

[
1 + i/2 − i/2

i/2 1− i/2

]
More precisely, we have:

1. If E ∈ SU(1, 1) is elliptic, then E = V R(θ)V −1 with V = 1√
1−|α|2

[
1 α

ᾱ 1

]
, where

α ∈ C and θ ∈ R. In this case, we have tr(E) = 2 cos( θ2).

2. If H ∈ SU(1, 1) is hyperbolic, then H= V T (t)V −1 with V = 1√
1−|α|2

[
e−i

θ
2 αe−i

θ
2

ᾱei
θ
2 ei

θ
2

]
,

where α ∈ C, t > 0 and θ ∈ R. In this case, we have tr(H) = 2 cosh( t2).

3. If Π = Π(κ, ψ) ∈ SU(1, 1) is parabolic, then Π = ±V P0V
−1 with V =

U(x, ψ/2, ψ/2) =

[
eiψ/2 cosh(x) eiψ/2 sinh(x)

e−iψ/2 sinh(x) e−iψ/2 cosh(x)

]
, where x = log(2κ). In this case,

we have tr(Π) = ±2.

The Lie algebra and adjoint representation of SU(1, 1). The 3-dimensional real

Lie algebra of SU(1, 1) is given by:

su(1, 1) = {A ∈ Mat(2,C) |A† = −JAJ & tr(A) = 0} ,

with the Killing form:15

(A,A′)K = 4tr(AA′) , (B.7)

15The isomorphism of groups (B.1) induces an isometry between the Lie algebras su(1, 1) and sl(2,R),

where each Lie algebra is viewed as a quadratic space when endowed with its Killing form.
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which is non-degenerate and of signature (2, 1). When endowed with this pairing, the Lie

algebra of SU(1, 1) becomes a three-dimensional Minkowski space and the adjoint repre-

sentation Ad : SU(1, 1)→ AutR(su(1, 1)):

Ad(U)(A)
def.
= UAU−1 , ∀U ∈ SU(1, 1) , ∀A ∈ su(1, 1) . (B.8)

identifies with the group of proper and orthochronous Lorentz transformations of this space.

It is convenient to perform these identifications in two steps.

First, consider the linear isomorphism FJ : Mat(2,C)
∼→ Mat(2,C) defined through:

FJ(A)
def.
=

i√
8
AJ ,

which identifies su(1, 1) with the following linear subspace of Mat(2,C):

suJ(1, 1)
def.
= FJ(su(1, 1)) = {Z ∈ Mat(2,C) |Z† = Z & tr(JZ) = 0}

and transports the Killing form (B.7) to the opposite of the following bilinear form defined

on suJ(1, 1):

(Z,Z ′)J
def.
=

1

2
tr(JZJZ ′) . (B.9)

Next, notice that a matrix Z ∈ Mat(2,C) satisfies the two conditions Z† = Z and tr(JZ) =

0 iff it can be written as:

Z = Z(X)
def.
=

[
X0 X1 + iX2

X1 − iX2 X0

]
,

for some unique real 3-vector X
def.
= (X0, X1, X2) ∈ R3. This gives a linear isomorphism

Z : R3 ∼→ suJ(1, 1). The bilinear form (B.9) corresponds through this isomorphism to the

canonical Minkowski pairing of signature (1, 2) on R3:

(Z(X), Z(Y ))J = (X,Y )
def.
= X0Y 0 −X1Y 1 −X2Y 2 . (B.10)

Hence Z allows us to identify (suJ(1, 1), ( , )J) with the three-dimensional Minkowski

space R1,2 = (R3, ( , )). Combining the above shows that the composite map Z ◦ FJ :

(su(1, 1), ( , )K)→ R1,2 is an isomorphism of quadratic spaces.

The linear isomorphism FJ : su(1, 1) → suJ(1, 1) transports (B.8) into the equivalent

representation AdJ
def.
= FJ ◦Ad(U)◦F−1

J : SU(1, 1)→ AutR(suJ(1, 1)), which acts through:

AdJ(U)(Z) = UZJU−1J = UZU † .

Since FJ is an isometry and the adjoint representation preserves the Killing form (B.7), it

follows that AdJ preserves the bilinear form (B.9):

(AdJ(U)(Z),AdJ(U)(Z ′))J = (Z,Z ′)J , ∀Z,Z ′ ∈ suJ(1, 1) , ∀U ∈ SU(1, 1) .
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Now the linear isomorphism Z : R3 ∼→ suJ(1, 1) transports AdJ to an equivalent represen-

tation Ad0
def.
= Z−1 ◦AdJ(U) ◦ Z : SU(1, 1)→ AutR(R3), which acts though:

Z(Ad0(U)(X)) = AdJ(Z(X)) = UZ(X)U † , ∀X ∈ R3 , ∀U ∈ SU(1, 1) . (B.11)

Since Z is also an isometry, it follows that Ad0 preserves the Minkowski pairing (B.10):

(Ad0(U)(X),Ad0(U)(Y )) = (X,Y ) , ∀X,Y ∈ R3 , ∀U ∈ SU(1, 1) .

Hence the operators Ad0(U) are three-dimensional Lorentz transformations. The fact that

( , ) is Ad0-invariant amounts to the ( , )-orthogonality condition:

Ad0(U)∨ = Ad0(U)−1 i.e. Ad0(U)∨ = Ad0(U−1) , ∀U ∈ SU(1, 1) , (B.12)

where A∨ ∈ EndR(R3) denotes the adjoint of a linear operator A ∈ EndR(R3) with respect

to the Minkowski pairing (B.10). Since PSU(1, 1) is connected, the image of Ad0 coincides

with the connected component of the identity SOo(1, 2), which is the group of proper and

orthochronous Lorentz transformations in three space-time dimensions. Since Ad0(−I2) =

idR3 , we have an induced morphism of groups:

Ad0 : PSU(1, 1)→ SOo(1, 2) , (B.13)

It is a classical fact that (B.13) is an isomorphism of groups.

Remark B.3. Notice the relation:

detZ(X) = (Z(X), Z(X))J = (X,X) = (X0)2 − (X1)2 − (X2)2 .

Explicit expressions for Ad0(U). The explicit form of the morphism of groups Ad0 :

SU(1, 1)→ SO0(1, 1) can be determined using relation (B.11). In the complex parameter-

ization of SU(1, 1), this gives:16

Ad0(U) =

 |η|2 + |σ|2 2Re(η̄σ) 2Im(η̄σ)

2Re(ησ) Re(η2 + σ2) Im(σ2 − η2)

2Im(ησ) Im(η2 + σ2) Re(η2 − σ2)

 (B.14)

while in the angle-boost parameterization one has:

Ad0(U) =

 cosh(t) cos(a−b)sinh(t) −sin(a−b)sinh(t)

cos(a+b)sinh(t) cos(2a)cosh2
(
t
2

)
+cos(2b)sinh2

(
t
2

)
sin(2b)sinh2

(
t
2

)
−sin(2a)cosh2

(
t
2

)
sin(a+b)sinh(t) sin(2a)cosh2

(
t
2

)
+sin(2b)sinh2

(
t
2

)
cos(2a)cosh2

(
t
2

)
−cos(2b)sinh2

(
t
2

)
 .

(B.15)

In particular, we have:

Ad0(R(θ)) =

 1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 , Ad0(T (t)) =

 cosh(t) sinh(t) 0

sinh(t) cosh(t) 0

0 0 1

 ,
Ad0(P (κ)) =

 2κ2 + 1 2κ −2κ2

2κ 1 −2κ

2κ2 2κ 1− 2κ2

 . (B.16)

16Notice that Im(η̄σ) = Im(σ)Re(η)− Im(η)Re(σ).
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Thus R(θ) acts as a counterclockwise rotation by θ in the spacelike (X1, X2) plane which

fixes the time axis, while T (t) acts as a boost transformation17 in the direction X1 which

fixes the spacelike coordinate X2. Notice that R(θ), T (t) and P (κ) fix respectively the

three-vectors (1, 0, 0), (0, 0, 1) and (1, 0, 1).

The hyperboloid model and the Weierstrass map. Consider the future sheet of the

unit hyperboloid (X,X) = 1:

S+ def.
= {X ∈ R3 | (X,X) = 1 & X0 > 0} = {X ∈ R3 |X0 =

√
1 + (X1)2 + (X2)2} .

Let Z
def.
= X1 + iX2, so the condition (X,X) = 1 amounts to (X0)2 = 1 + |Z|2. For any

X ∈ S+, define:

u
def.
=

Z

X0 + 1
=
X1 + iX2

X0 + 1
∈ D . (B.17)

Then the condition (X0)2 = 1 + |Z|2 amounts to:

|u|2 =
X0 − 1

X0 + 1
⇐⇒ X0 =

1 + |u|2

1− |u|2
.

This implies 1− |u|2 = 2
X0+1

, whereby (B.17) gives:

Z =
2u

1− |u|2
.

Thus S+ is diffeomorphic with D through the Weierstrass map Ξ : D→ S+, which is given

by:

Ξ(u)
def.
=

(
1 + |u|2

1− |u|2
,

2Reu

1− |u|2
,

2Imu

1− |u|2

)
. (B.18)

The components Ξ0(u),Ξ1(u),Ξ2(u) (which are not independent but satisfy the relation

[Ξ0(u)]2 = 1 + [Ξ1(u)]2 + [Ξ2(u)]2) are the classical Weierstrass coordinates of u ∈ D. The

Weierstrass map can be viewed as a projection of the disk D from the point x = (−1, 0, 0)

onto S+. Direct computation shows that the Weierstrass map has the equivariance prop-

erty:

Ξ(ψU (u)) = Ad0(U)(Ξ(u)) , ∀u ∈ D , ∀U ∈ SU(1, 1) , (B.19)

where ψ is the fractional action (B.2) of SU(1, 1) on D.

C Solution of the Hesse equation for rotationally-invariant surfaces

For a rotationally-invariant surface (Σ,G) with Σ ∈ {C, Ḋ}, the Hesse equation (3.22) is

equivalent with the first three equations of the system (4.5):

∂2
rΛ =

3

8
Λ

∂r∂θΛ−
f ′

2f
∂θΛ = 0 (C.1)

∂2
θΛ +

f ′

2
∂rΛ =

3

8
fΛ .

17The Lorentz factor of this boost is Υ = cosh(t) ≥ 1 while its speed in units where the speed of light

equals one is v =
√

1− 1
Υ2 = tanh(t). We have Υ = 1√

1−v2
.
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It is convenient to define β
def.
=
√

3
8 (see equation (3.20)). Recall that a rotationally-

invariant metric G on Ḋ has the form (4.1):

ds2
G = dr2 + f(r)dθ2 ,

where f : R>0 → R>0 is a smooth positive function.

C.1 Solving the Hesse equation

Proposition C.1. Assume that G is a rotationally-invariant metric on Σ ∈ {C, Ḋ}. Then

the Hesse equation (3.22) for (Σ,G) (which is equivalent with the system (C.1)) admits

non-trivial solutions iff the Gaussian curvature K of G satisfies:

K = −β2 = −3

8
.

In this case, the radial function f has the form:

f(r) = [A1 cosh(βr) +A2 sinh(βr)]2 , (C.2)

where A1 and A2 are real constants which are not both zero. When f is given by (C.2),

the general solution of (C.1) is as follows:

1. If |A1| < |A2|, the general solution is:

Λ(r, θ) = B̂1cosh(βr) + B̂2 sinh(βr) +

+ζ cos
(
β
√
A2

2−A2
1(θ − θ0)

)
[A1 cosh(βr) +A2 sinh(βr)] (C.3)

where θ ∈ R/(2πZ), ζ ≥ 0 and A1, A2, B̂1, B̂2 are constants subject to the condition:

A1B̂1 = A2B̂2 , (C.4)

which implies:

|B̂1| > |B̂2| (C.5)

In this case, the constants B̂1 and B̂2 can be written as:

B̂1
def.
= A1

A1B1 −A2B2

A2
2 −A2

1

+B1 , B̂2
def.
= A2

A1B1 −A2B2

A2
2 −A2

1

+B2 , (C.6)

where B1 and B2 are arbitrary constants.

2. If |A1| > |A2|, the general solution is:

Λ(r, θ) = B̂1 cosh(βr) + B̂2 sinh(βr) , (C.7)

where B̂1 and B̂2 are given by (C.6) and hence satisfy (C.4), which implies:

|B̂1| < |B̂2| (C.8)
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3. If A1 = εA2 with ε ∈ {−1, 1}, then the general solution is:

Λ(r, θ) = B̂ [cosh(βr) + ε sinh(βr)] =

{
B̂eβr if ε = +1

B̂e−βr if ε = −1
, (C.9)

where B′ is an arbitrary constant.

Proof. The first equation in (4.5) gives:

Λ(r, θ) = Θ1(θ) cosh(βr) + Θ2(θ) sinh(βr) (C.10)

where Θ1,Θ2 ∈ C∞(S1,R) are arbitrary real-valued smooth functions defined on the circle,

i.e. 2π-periodic smooth functions of θ.

The second equation in (4.5) can be written as:

∂r log
∂θΛ√
f

= 0

and hence gives:

(∂θΛ)(r, θ) = C(θ)
√
f(r)

for some smooth function C ∈ C∞(S1,R). Using (C.10), this relation becomes:√
f(r) = A1(θ) cosh(βr) +A2(θ) sinh(βr) , (C.11)

where Ai(θ)
def.
=

Θ′i(θ)
C(θ) for i = 1, 2. Since cosh(βr) and sinh(βr) are functionally independent

on the interval (0,+∞) (they have non-vanishing Wronskian determinant), condition (C.11)

requires that A1, A2 are independent of θ and hence that they are constant. Indeed,

differentiating (C.11) with respect to r gives:

f ′(r)

2β
√
f(r)

= A1(θ) sinh(βr) +A2(θ) cosh(βr) . (C.12)

Relations (C.11), (C.12) can be viewed as a system of two linear equations for A1(θ) and

A2(θ), whose discriminant equals:

W = det

[
cosh(βr) sinh(βr)

sinh(βr) cosh(βr)

]
= cosh2(βr)− sinh2(βr) = 1 .

Hence the unique solution of this system is:

A1(θ) =
√
f(r) cosh(βr)− f ′(r)

2β
√
f(r)

sinh(βr)

A2(θ) =
f ′(r)

2β
√
f(r)

cosh(βr)−
√
f(r) sinh(βr) .

Since the right hand side of these equations depends only on r while the left hand side

depends only on θ, we conclude that A1 and A2 must be constant. Thus:

Θ1(θ) = A1D(θ) +B1 , Θ2(θ) = A2D(θ) +B2 , (C.13)
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where B1, B2 are constants and D ∈ C∞(S1,R) is any fixed primitive of C(θ). Moreover,

condition (C.11) becomes (C.2). Notice that A1 and A2 cannot both vanish since f(r) is

strictly positive for all r > 0. Thus:

A2
1 +A2

2 > 0 .

Using (C.2) in equation (4.2) shows that the Gaussian curvature is fixed to the value:

KG = −β2 = −3

8
. (C.14)

Combining (C.10) and (C.13) gives:

Λ(r, θ) = [A1D(θ) +B1] cosh(βr) + [A2D(θ) +B2] sinh(βr) . (C.15)

It remains to analyze the third equation in (4.5). Substituting (C.2) and (C.15) in

that equation gives:

[A1 cosh(βr) +A2 sinh(βr)]
[
D′′(θ) + β2(A2

2 −A2
1)D(θ)− β2(A1B1 −A2B2)

]
= 0 .

Since A2
1 +A2

2 6= 0, this is equivalent with the following second order linear inhomogeneous

ODE with constant coefficients:

D′′(θ) + β2(A2
2 −A2

1)D(θ) = β2(A1B1 −A2B2) . (C.16)

Differentiating this with respect to θ shows that D′ satisfies the corresponding homogeneous

second order ODE:

D′′′(θ) + β2(A2
2 −A2

1)D′(θ) = 0 . (C.17)

Since D(θ) is periodic, the same is true of D′(θ). Hence D′ must be constant or the

characteristic equation of (C.17) (viewed as a second order ODE for D′) must have non-

vanishing imaginary roots. We therefore distinguish the disjoint cases:

(a) The characteristic equation of (C.17) has non-zero imaginary roots, i.e. we have:

|A1| < |A2| . (C.18)

This implies A2 6= 0 since A1 and A2 are not both zero. In this case, setting D(θ) =

E(θ) + A1B1−A2B2

A2
2−A2

1
shows that (C.17) is equivalent with the homogeneous equation:

E′′(θ) + β2(A2
2 −A2

1)E(θ) = 0 ,

whose general solution is:

E(θ) = ζ1 cos

(
β
√
A2

2 −A2
1 θ

)
+ ζ2 sin

(
β
√
A2

2 −A2
1 θ

)
(ζ1, ζ2 = const) .

Hence the general solution of (C.16) takes the form:

D(θ)=
A1B1−A2B2

A2
2 −A2

1

+ζ1 cos

(
β
√
A2

2−A2
1 θ

)
+ζ2 sin

(
β
√
A2

2−A2
1 θ

)
. (C.19)
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Let ζ
def.
=
√
ζ2

1 + ζ2
2 ≥ 0 and θ0 ∈ [0, 2π) be defined through:

ζ1 = ζ cos

(
β
√
A2

2 −A2
1 θ0

)
, ζ2 = −ζ sin

(
β
√
A2

2 −A2
1 θ0

)
,

where we take θ0
def.
= 0 when ζ = 0. Then (C.19) takes the form:

D(θ) =
A1B1 −A2B2

A2
2 −A2

1

+ ζ cos

[
β
√
A2

2 −A2
1(θ − θ0)

]
.

Performing a shift θ → θ − θ0 of the angular coordinate θ, we can assume without

loss of generality that θ0 = 0, which we shall do from now on. Then (C.19) becomes:

D(θ) =
A1B1 −A2B2

A2
2 −A2

1

+ ζ cos

[
β
√
A2

2 −A2
1 θ

]
, (C.20)

while (C.15) becomes (C.3), where B̂1 and B̂2 are given by (C.6) and hence are

subject to condition (C.4). This condition implies (C.5) upon using the relations

|A1| < |A2| 6= 0.

(b) D′ is constant and the characteristic equation of (C.17) has real roots. In this case,

we have:

|A1| ≥ |A2| . (C.21)

Since A1 and A2 are not both zero, relation (C.21) implies A1 6= 0. (C.16) and (C.17)

become:

(A2
2 −A2

1)D = A1B1 −A2B2 , (A2
2 −A2

1)D′ = 0 . (C.22)

Distinguish the sub-cases:

(b.1) |A1| > |A2|. Then the second equation in (C.22) gives D′ = 0 (i.e. D is constant),

while the first equation gives:

D =
A1B1 −A2B2

A2
2 −A2

1

.

In this case, relation (C.15) gives (C.7), where B̂1 and B̂2 are defined

through (C.6) and hence satisfy (C.4), which implies:

|B̂1| < |B̂2| (C.23)

upon using the relations |A2| < |A1| 6= 0. Notice that (C.7) can be obtained

by formally setting A1 = A2 = 0 in (C.3) (in which case (C.4) is automatically

satisfied) and replacing condition (C.5) with (C.8).

(b.2) |A1| = |A2|. Since A2
1 +A2

2 6= 0, we must then have:

A2 = εA1 6= 0 ,

where ε ∈ {−1, 1}. On the other hand, the first equation in (C.22) gives:

B2 = εB1 . (C.24)
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In this case, D is an arbitrary constant and (C.15) gives (C.9), where:

B̂
def.
= A1D +B1 ,

so B̂ is an arbitrary constant. Notice that (C.9) can be obtained by formally

setting A1 = A2 = 0 in (C.3) (in which case (C.4) is automatically satisfied)

and replacing condition (C.5) with:

|B̂1| = |B̂2| . (C.25)

Both sub-cases (b.1) and (b.2) of case (b) can be recovered by formally setting

A1 = A2 = 0 in (C.3) (in which case (C.4) is automatically satisfied) and replac-

ing condition (C.5) with:

|B̂1| ≤ |B̂2| . (C.26)

Remark C.2. Notice that (C.16) can also be obtained by setting r = 0 in the second

equation of (4.5). Using the relations:

Λ(0, θ) = A1D(θ) +B1 , (∂rΛ)(0, θ) = β[A2D(θ) +B2]

f(0) = A2
1 , f ′(0) = 2βA1A2 ,

this gives:

A1[D′′(θ) + β2(A2
2 −A2

1)D(θ)− β2(A1B1 −A2B2)] = 0 .

C.2 Reduction to standard cases

Condition (C.14) shows that the rescaled metric G defined through:

G = G/β2 i.e. G = β2G

satisfies KG = −1 and hence it is a hyperbolic metric on Σ ∈ {C, Ḋ}. We have:

ds2
G = β2ds2

G = dr2 + fβ(r) dθ2 ,

where:

r
def.
= βr (C.27)

is the hyperbolic normal radial coordinate (i.e. the normal radial coordinate on (Σ, G))

and:

fβ(r)
def.
= β2f

(
r

β

)
i.e. f(r) =

1

β2
fβ(βr) .

Since we require G (hence also G) to be complete, well-known results from the theory

of hyperbolic surfaces (see appendix D) imply that (Σ, G) is isometric with either of the

following:

• The hyperbolic disk D
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• The hyperbolic punctured disk D∗

• A hyperbolic annulus A(R) of modulus µ = 2 logR, where R > 0.

Hence we can always reparameterize the radial coordinate r so as to bring ds2
G to one of

the following four forms:

1. The hyperbolic disk:

ds2
G = dr2 + sinh2(r) dθ2 (C.28)

In this case, we have: fβ(r) = sinh2(r) and:

f(r) =
1

β2
sinh2(βr) i.e. A1 = 0 & A2 = 1/β . (C.29)

Since |A1| < |A2|, the general solution has the form (C.3):

Λ(r, θ) = B̂1 cosh(βr) +
ζ

β
sinh(βr) cos(θ − θ0) , (C.30)

where we noticed that condition (C.4) requires B̂2 = 0. Here B̂1 is an arbitrary

constant while ζ ≥ 0. One can also write Λ in Euclidean polar coordinates (ρ, θ) on

D, which are related to the normal polar coordinates (r, θ) of G through (cf. eqs. (D.5)

and (C.27)):

ρ = tanh(βr/2) ∈ [0, 1)⇐⇒ r =
2

β
arctanh(ρ) =

1

β
log

1 + ρ

1− ρ
∈ [0,+∞) . (C.31)

Substituting this in (C.30) gives:

Λ(ρ, θ) =
B0(1 + ρ2) + (2ζ/β)ρ cos(θ − θ0)

1− ρ2
. (C.32)

Defining:

B1 =
ζ

β
cos θ0 , B2 =

ζ

β
sin θ0 , (C.33)

this can also be written as follows in Euclidean Cartesian coordinates x = ρ cos θ and

y = ρ sin θ on D:

Λ(x, y) =
B0(1 + ρ2) + 2B1x+ 2B2y

1− ρ2
, (C.34)

where ρ =
√
x2 + y2.

2. The hyperbolic punctured disk:

ds2
G = dr2 +

1

(2π)2
e−2rdθ2 (C.35)

In this case, we have fβ(r) = 1
(2π)2 e

−2r and:

f(r) =
1

(2πβ)2
e−2βr i.e. A1 = −A2 =

1

2πβ
. (C.36)
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Since A2 = −A1, the general solution (C.3) has the form (C.9) with ε = −1:

Λ(r, θ) = B̂e−βr , (C.37)

where B̂ is an arbitrary constant. One can also write Λ in Euclidean polar coordinates

(ρ, θ), which are related to the normal polar coordinates (r, θ) of G through (cf.

eqs. (D.7) and (C.27)):

ρ = e−2πeβr ∈ (0, 1)⇐⇒ r =
1

β
log

(
| log ρ|

2π

)
∈ (−∞,∞) . (C.38)

Substituting this in (C.37) gives:

Λ(ρ, θ) =
2πB̂

| log ρ|
. (C.39)

3. A hyperbolic annulus:

ds2
G = dr2 +

`2

(2π)2
cosh2(r) dθ2 , (C.40)

where ` > 0 is given by (D.10). In this case, we have fβ(r) = `2

(2π)2 cosh2(r) and:

f(r) =
`2

(2πβ)2
cosh2(βr) i.e. A1 =

`

2πβ
& A2 = 0 . (C.41)

Since |A1| > |A2|, the general solution has the form (C.7):

Λ(r, θ) = B̂2 sinh(βr) , (C.42)

where we noticed that relation (C.4) gives B̂1 = 0. Here B̂2 is an arbitrary constant.

Relation (C.6) gives B̂2 = B2. One can also write Λ in Euclidean polar coordinates

(ρ, θ), which are related to the normal polar coordinates (r, θ) of G through (cf.

eqs. (D.9) and (C.27)):

ρ = e
−µ
π

arccos
(

1
cosh(βr)

)
⇐⇒ r =

1

β
arccosh

 1

cos
(
π
µ | log ρ|

)
 ∈ (−∞,+∞) (C.43)

Substituting this in (C.42) gives:

Λ(r, θ) = B̂2 tan

(
π

µ
log ρ

)
. (C.44)

D Elementary hyperbolic surfaces

A complete and connected hyperbolic surface (Σ, G) is called elementary if it coincides with

either of the hyperbolic disk D, the hyperbolic punctured disk D∗ or one of the hyperbolic

annuli A(R). Here R > 1 and A(R) denotes the hyperbolic annulus of modulus µ = 2 logR.

These three surfaces are defined as the following open subsets of the complex plane with

complex coordinate u:
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• D
def.
= {u ∈ C | 0 ≤ |u| < 1}

• Ḋ
def.
= D \ {0}

• A(R)
def.
= {u ∈ C | 1

R < |u| < R}, where R > 1 ,

endowed with the following hyperbolic metrics:

ds2
D =

4

(1− ρ2)2

(
dρ2 + ρ2dθ2

)
ds2

D∗ =
1

(ρ log ρ)2
(dρ2 + ρ2dθ2) (D.1)

ds2
A =

(
π

2 logR

)2 dρ2 + ρ2dθ2[
ρ cos

(
π log ρ
2 logR

)]2 ,

where ρ
def.
= |u| and θ = arg(u) are polar coordinates in the complex plane.

Elementary hyperbolic surfaces admit special semi-geodesic coordinates (r, θ) in which

the hyperbolic metric takes the form:

ds2
G = dr2 + f(r)dθ2 , (D.2)

where f is a smooth real-valued function which is strictly positive everywhere and satisfies

the condition:
∂2
√

f

∂r2
=
√

f . (D.3)

More precisely, one has (see [22]):

• hyperbolic disk D:

ds2
D = dr2 + sinh2(r)dθ2 , (D.4)

where:

r = 2 arctanh(ρ) = log
1 + ρ

1− ρ
∈ (0,+∞) . (D.5)

• hyperbolic punctured disk D∗:

ds2
D∗ = dr2 +

e−2r

(2π)2
dθ2 , (D.6)

where:

r = log

(
| log ρ|

2π

)
∈ (−∞,+∞) . (D.7)

• hyperbolic annulus A(R):

ds2
A = dr2 +

`2

(2π)2
cosh2(r)dθ2 , (D.8)

where:

r = sign(r) arccosh

 1

cos
(
π
µ | log ρ|

)
 ∈ (−∞,+∞) (D.9)
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and the positive quantity ` is given by:

` =
π2

logR
. (D.10)
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