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Apartado Postal 70-543, CDMX 04510, México
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1 Introduction

Recently, there has been a growing interest in the study of chaotic properties of many-

body quantum systems, especially in the context of gauge/gravity correspondence [1–3]. It

turned out that the chaotic phenomena of the boundary theory have a rather simple de-

scription in the dual gravitational theory in terms of shock waves traveling in the vicinity

of the black hole horizon [4–7]. Since the properties of black hole horizons are connected

to transport properties of strongly interacting systems, this suggests a connection between

chaos and diffusion phenomena [8, 9]. Moreover, the chaotic properties of the boundary

theory have also shed light on the inner working mechanisms of gauge/gravity correspon-

dence. For example, a maximum Lyapunov coefficient seems to be a necessary condition

for a quantum system to have a description in terms of Einstein’s gravity [10, 11], whereas

the butterfly velocity seems to play an important role in determining the bulk causal struc-

ture [12].

The characterization of chaos in a quantum many-body system can be done by consid-

ering how much an early perturbation O1 is correlated with a later measurement of some

other operator1 O2. This can be conveniently quantified by

C(t, ~x) = −〈[O2(t, ~x),O1(0, 0)]2〉β , (1.1)

1It is customary to refer to these operators as V and W , but we brake this tradition to avoid confusion

with the metric functions.
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where 〈·〉β = Z−1tr(·) denotes a thermal expectation value at temperature β−1. We assume

O1 and O2 to be hermitian operators normalized such that 〈O1O1〉 = 〈O2O2〉 = 1. For

simplicity, let us first consider the case where the two operators are not separated in space,

i.e. ~x = 0. For a sufficiently chaotic system, C(t, 0) approaches a first order constant

value at large times [13]. The time scale t∗ at which this occurs is the so-called scrambling

time [14, 15]. Just before saturation, C(t, ~x) is expected to grow exponentially with time as

C(t, ~x) ∼ 1

N exp

[
λL

(
t− |~x|

vB

)]
, for td � t� t∗ , (1.2)

where N denotes the total number of degrees of freedom and td is the dissipation time of the

system, which characterizes the time decay of two point functions 〈O1(t)O1(0)〉 ∼ e−t/td .
The growth of C(t, ~x) with time is characterized by the Lyapunov exponent λL. For systems

with a large number of degrees of freedom and with a large hierarchy between td and t∗,
the Lyapunov exponent was shown to be bounded by the temperature λL ≤ 2πT [10]. The

butterfly velocity characterizes the rate at which the information about the operator O1

spreads in space. When O1 and O2 are separated in space, there is a delay in scrambling.

This delay is controlled by the butterfly velocity. This velocity defines a butterfly effect

cone as t − t∗ = |~x|/vB. Inside the cone, for t − t∗ ≥ |~x|/vB, we expect C(t, ~x) ∼ O(1),

while outside the cone, for t− t∗ < |~x|/vB, we expect C(t, ~x) ∼ 1/N � 1.

In the context of the gauge/gravity correspondence, the chaotic properties of the

boundary theory can be extracted from shock waves in the bulk.2 To do this it is convenient

to consider a thermofield double state made out of two copies of the boundary theory. Let

us call them L and R boundary theories, respectively. At the t = 0 slice, this state can be

schematically written as

|TFD〉 = Z−1/2
∑
n

e−
βEn
2 |En〉L|En〉R, (1.3)

where β is the inverse temperature of the system. From the gravitational point of view this

state is represented in a two-sided black hole geometry [33]. The two asymptotic theories

live at the two asymptotic boundaries of the geometry and do not interact with each other,

which is consistent with the fact that the wormhole is not traversable.

In order to diagnose chaos we perturb the L part of the system by acting with an oper-

ator O2(t0) at time t0 in the past. From the bulk perspective, this creates a ‘particle’ near

the boundary, which then falls into the black hole and generates a shock wave geometry,

as illustrated in figure 2.

The profile of this shock wave α(t, ~x) turns out to be related to C(t, ~x) in a simple way

and we can extract the Lyapunov exponent λL, the scrambling time t∗ and the butterfly

velocity vB from it. In systems that can be described by a black hole geometry, the

Lyapunov exponent is always maximal λL = 2π/β, while the leading order contribution to

the scrambling time always scales as t∗ ≈ β
2π logN . The only chaotic property that turns

out to be more interesting is the butterfly velocity, because it depends on more specific

characteristics of the system.

2Some works in this direction include, for instance, [16–32].
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If we consider a homogeneous perturbation, such that α(t, ~x) = α(t), we can also

diagnose the chaos in the boundary by studying the mutual information I(A,B) between

subsystems A and B of the L and R systems, respectively. This way of characterizing

chaos is interesting because it has some connections with spreading of entanglement.

The basic idea is that at t = 0, the TFD state has a very particular pattern of entan-

glement between the L and R systems and this can be diagnosed by a non-zero mutual

information I(A,B) between large subsystems A ⊂ L and B ⊂ R. When we perturb the

L system at a time t0 in the past, the perturbation scrambles the left-side Hilbert space

and destroys the pattern of entanglement that was present in the unperturbed system at

t = 0. Indeed, an initially positive mutual information smoothly drops to zero as we move

the perturbation further into the past. As we will explain in section 4, this phenomenon

has a very simple description in terms of Ryu-Takayanagi surfaces in the bulk.

From the Lyapunov exponent we can define a time scale known as Lyapunov time,

which is given by tL = 1/λL. The upper bound in λL implies a lower bound in the Lyapunov

time tL ≥ β
2π .3 For convenience, let us call τL the lower bound on the Lyapunov time.

In [34, 35] it was proposed that τL = ~/(2πkBT ) provides a fundamental dissipative

time scale that controls the transport in strongly coupled systems. Such a universal time

scale would be responsible for the universal properties of several strongly coupled systems

that do not a have a description in terms of quasiparticle excitations. Working on these

ideas and aiming to explain the linear-T resistivity behavior of strange metals, Hartnoll [36]

proposed the existence of a universal bound on the diffusion constants related to the collec-

tive diffusion of charge and energy D & ~v2/(kBT ), where v is some characteristic velocity

of the theory. As the thermoeletric diffusion constant D is proportional to the conductivity

σ, the saturation of the lower bound on D implies the scaling σ ∼ 1/T , that results in a

linear-T resistivity behavior.

In an holographic treatment, both the transport and the chaotic properties of the gauge

theory are determined by the dynamics close to the black hole horizon in the gravitational

dual. It is then natural to question if there is any connection between chaos and diffusion

phenomena. With this in mind, Blake proposed in [8, 9] that, for particle-hole symmetric

theories, the eletric diffusivity Dc should be controlled by vB and τL as

Dc ≥ Ccv2
BτL, (1.4)

where Cc is a constant that depended on the universality class of theory. The above

proposal works well for system where energy and charge diffuse independently, but it is

not valid in more general situations. See, for instance [37–40].

In [41] it was proposed that, for a general family of holographic Q-lattice models, the

thermal diffusivity DT should be generically related to chaos exponents at infrared fixed

points through

DT ≥ CT v2
BτL, (1.5)

3Here we are using units such that Planck and Boltzmann constants ~ and kB are both equal to unity.

If we reintroduce ~ and kB in our formulas we obtain λL ≤ 2πkB
~β or tL ≥ ~β

2πkB
.
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where CT is another universality constant different from Cc (this was latter generalized to

theories with an spatial anisotropy in [42]). These Q-lattice models do not have transla-

tional symmetry and feature a finite charge density, which makes DT finite.

In this work we use holographic techniques to study chaos, diffusivity and spreading of

entanglement in a gauge theory at a finite temperature T in the presence of a background

magnetic field of strength B. The theory flows between two fixed points of the renormal-

ization group, one in the ultraviolet corresponding to a four dimensional N = 4 super

Yang-Mills theory, and the other in the infrared where the theory is also conformal but,

due to the magnetic field, reduces to 1+1 dimensions. The gravity dual of this theory was

presented in [43] and has been used to investigate the effects of an external magnetic field

in several physical observables, of which a comprehensive list would be difficult to achieve,

but some studies relevant to our current topic are [44–49].

In [46] holographic methods were used to show that the energy scale at which the

crossover from one fixed point to the other occurs is a monotonically increasing function

of the dimensionless parameter B/T 2. It is this last result that allow us to investigate how

the chaotic properties of the theory are changed by the RG flow, because it indicates we

can explore it by varying B/T 2, since at a fixed energy scale large values of this ratio will

pull the theory closer to the IR limit and small values will move it towards the UV one.

The paper is organized as follows. In section 2 we review the gravity dual of the gauge

theory we work with and how the renormalization flow is realized in it. We show how to

extract the chaotic properties of the boundary theory in section 3. In section 4 we study

the disruption of the two-sided mutual information in shock wave geometries and show

how this is connected to spreading of entanglement. We discuss the connection between

chaos and diffusion phenomena in section 5. Finally, we discuss our results in section 6.

We relegate some technical details to the appendices A, B and C.

2 Gravity setup

The gravitational theory we will be working with is the consistent truncation [50] of type

IIB supergravity that will leave us with the action

S = − 1

16πG5

∫
d5x
√−g

(
R+ FµνFµν −

12

L2

)
, (2.1)

describing Einstein-Maxwell gravity with a negative cosmological constant.

Following [43], to obtain a gravitational background that accommodates a constant

magnetic field, we consider solutions to the theory governed by (2.1) that are of the form

ds2 = −U(r)dt2 + V (r)(dx2 + dy2) +W (r)dz2 +
dr2

U(r)
, (2.2)

where t, x, y and z are the directions of the holographic boundary.

Given that U, V and W depend exclusively on the radial coordinate, a field strength

of the form F = B dx ∧ dy will identically satisfy Maxwell equations, and to find a solu-

tion only Einstein equations will have to be solved to determine the specific shape of the

metric functions.
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We have not been able to solve this system analytically, so we have resorted to a

numerical construction, of which the particulars have been previously discussed and can

be found, for instance, in [45], so here we will only mention the properties relevant to the

present work while a minor necessary extension will be discussed in appendix A.

The solutions we construct have an event horizon at a value of the radial coordinate

that we will denote as rH, and in the region close to it, the geometry approaches BTZ×R2.

From the details in [45], it is easy to see that the temperature associated with the near

horizon geometry is determined to be T = 3rH
2π for the Euclidean continuation of the

background to be regular. As we move away from the horizon, all solutions start looking like

a five dimensional black brane and as r → ∞, they transits to another asymptotic region

where their geometry approaches AdS5. This backgrounds group into a one parameter

family of solutions where each physically different member4 is solely characterized by the

dimensionless ratio B/T 2, and as this quantity increases, so it does the dimensionless

radial position r̃ = r/rH at which the background undergoes the crossover between the two

asymptotic geometries. When B/T 2 → 0 the background becomes the five dimensional

black brane solution all the way to the horizon, and as B/T 2 →∞, the BTZ×R2 geometry

keeps on extending farther towards the boundary.

On the gauge side of the correspondence, the field theory is at temperature T and

subject to an external magnetic field of intensity B, while the behavior over the radial

coordinate is perceived as a renormalization flow between two fixed points corresponding to

the infrared and ultraviolet theories. The dimensionless radial position r/rH is roughly dual

to the energy scale [46], so, from the behavior of the gravitational background described

in the previous paragraph, we see that an increment of the ratio B/T 2 will increase the

amount of energy require to access the ultraviolet degrees of freedom [46]. Conversely, if

we work at fixed energy, moving from small to large values of B/T 2 will take us from the

ultraviolet theory to the infrared fixed point, which is the way that the results will be

presented in the following sections.

To compute the entanglement velocity we will need to know how the geometry extends

across the horizon. Given that the equations of motion degenerate at rH, in the past

we had only constructed the exterior solutions, as explained for instance in [45]. The

extension is simple and we show how to do it in appendix A, where it can also be seen

that the BTZ×R2 geometry extends to the interior of the horizon only down to a given

radial coordinate, below which, the solution again approaches that of the black brane close

to the singularity. Just as in the exterior, the size of the region where the geometry is

approximately BTZ×R2 grows with B/T 2, and the radial position at which the geometry

transits to the black brane solution gets closer to the singularity as B/T 2 increases.

4The only scale parameter in the background is rH, and since Faraday tensor is a 2-form, the intensity

of the magnetic field can only be measured in multiples of r2H, or equivalently, T 2. A solution with a given

value for B
T2 = B

(
3rH
2π

)2
and arbitrary values of rH and B can be brought to have rH = 1 through scaling the

radial coordinate by a constant, so, as long as B is adjusted to keep the actual intensity of the magnetic

field B/T 2 fixed, the two backgrounds will be physically equivalent. This is confirmed to be consistent with

the gravitational equations presented in [46].
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3 Shock wave geometry

In this section we explain how to extract some chaotic properties of the boundary theory

from shock waves in the bulk. We start with a generic black hole metric of the form

ds2 = Gmndx
mdxn = −Gttdt2 +Grrdr

2 +Gijdx
idxj , (3.1)

that in particular can accommodate (2.2), and in agreement with the previous sections,

the metric potentials depend solely on the radial coordinate r, the boundary is at r = ∞
and the black hole horizon at r = rH.5 In the near-horizon region, we assume that

Gtt = c0(r − rH) , Grr =
c1

r − rH
, Gij(rH) = finite , (3.2)

where c0 and c1 are constants. The black hole Hawking temperature can be written as

T =
1

4π

√
c0

c1
. (3.3)

We consider a maximally extended black hole solution that represents a wormhole geometry.

In this case it is more convenient to work with Kruskal coordinates that cover smoothly

the two sides of the geometry. We first define the Tortoise coordinate

r∗ = −
∫ ∞
r

√
Grr(r′)
Gtt(r′)

dr′ , (3.4)

and then we define the Kruskal coordinates as6

uv = −e
4π
β
r∗ , u/v = −e−

4π
β
t
. (3.5)

In terms of these coordinates the metric takes the form

ds2 = 2A(u, v)dudv +Gijdx
idxj , (3.6)

where

A(u, v) =
1

8π2T 2

Gtt
uv

, (3.7)

so the boundary is located at uv = −1, the horizon at u = 0 or v = 0, and the singularity

at uv = 1.

Figure 1 shows the Penrose diagram of this geometry, which is dual to a thermofield

double state made by entangling two copies of the boundary theory. We now want to know

how this background changes when we perturb it a very long time in the past.

Let us say that we act with some operator O2(t0) on the left-side boundary theory. In

the bulk description, this creates a ‘particle’ near the boundary of AdS, which then falls into

the black hole. If the perturbation is done early enough, the particle will follow an almost

5We emphasize that the shock wave solutions that we construct here do not assume that the geometry

is asymptoically AdS.
6These are actually the Kruskal coordinates for the left-exterior region. See figure 1.
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Interior
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Interior

Left

Exterior

Right

Exterior

Figure 1. Penrose diagram for the two-sided black branes we consider. This geometry is dual to

a thermofield double state |TFD〉 made by entangling two copies of the boundary theory.

null trajectory very close to the past horizon, as we will now see. Let (u, v) = (u0, v0) be

the initial position of the perturbation in Kruskal coordinates. Under time evolution these

coordinates change as (u0, v0)→ (e
− 2π
β
t
u0, e

2π
β
t
v0), and this means that, as time passes, the

perturbation gets more and more localized at u = 0, and stretched along the v-direction.

Besides that, from the point of view of the t = 0 frame, the energy of the perturbation

increases exponentially as t0,7 moves farther into the past, i.e. E = E0e
2π
β
t0 . As a result,

for t0 far enough into the past, the energy-momentum tensor of the perturbation can be

very well approximated by

T shock
uu = E0 e

2π
β
t0δ(u) a(xi) , (3.8)

where E0 is the asymptotic energy of the perturbation and a(xi) is some function rep-

resenting the localization of the operator O2(t0). Note that the shock wave divides the

geometry into two halves: the causal future of the shock wave (the region u > 0), and its

causal past (the region u < 0).

The backreaction to this perturbation on the geometry is actually very simple and can

be described by a shift v → v + α(t, xi) in the causal future of the shock wave, while the

causal past is unaffected.8 This is illustrated in figure 2.

The shock wave metric is simply given by [24, 51, 52]

ds2 = 2A(u, v)dudv +Gijdx
idxj − 2A(u, v)α(t, xi)δ(u)du2 , (3.9)

where the shock wave profile α(t, xi) has to obey[
Gii∂i∂i −

(
2π

β

)2 Gii(rH)G′ii(rH)

G′tt(rH)

]
α(t, xi) =

8πGNE

A(rH)
e2πt/βa(xi) , (3.10)

7In our convention the Killing time coordinate t runs forward on the right boundary and backwards on

the left. Hence, a perturbation on the left boundary at the time t0 > 0 is in the past of the t = 0 slice of

the geometry.
8This was first done in [51] for Minkowski spacetime, and then generalized for generic curved spacetimes

in [52]. More details about the case of anisotropic metrics can be found, for instance, in [24].
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O2(t0)|TFD〉 α

Figure 2. Penrose diagram for the shock wave geometry. This geometry is dual to a thermofield

double state perturbed at a time t0 in the far past.

and Gij has been considered to be diagonal. Taking a(xi) ∼ δ(xi) and assuming that

|~x| � 1, the above equation has a solution of the form

α(t, xi) ∼ exp

[
2π

β

(
t− t∗ −

|xi|
viB

)]
, (3.11)

where t∗ ∼ β
2π log 1

GN
∼ β

2π logN2 is the scrambling time and

viB =
1√

Gii(rH)

√
G′tt(rH)√

Gjj(rH)G′jj(rH)
, (3.12)

is the butterfly velocity along the xi-direction. By comparing (3.11) and (1.2) we can also

extract the Lyapunov exponent of the system as λL = 2π/β.

We now specialize our formula for the butterfly velocity of the magnetic brane solution

described in section 2.

Along the direction of the magnetic field, the butterfly velocity reads

v2
B,‖ =

U ′

W
(
2V
′

V + W ′

W

)∣∣∣
r=rH

, (3.13)

while the butterfly velocity along any direction perpendicular to the magnetic field is

given by

v2
B,⊥ =

U ′

V
(
2V
′

V + W ′

W

)∣∣∣
r=rH

. (3.14)

Both v2
B,‖ and v2

B,⊥ are functions of the ratio B/T 2, which controls the strength of the

magnetic field on the system. Figure 3 shows how these velocities are affected by the

presence of the external magnetic field.

vB at the UV fixed point (B/T 2 → 0). The gravitational dual to the UV fixed

point reads9

U(r) = (r + rH/2)2

(
1− (3rH/2)2

(r + rH/2)2

)
,

V (r) = W (r) = (r + rH/2)2 , (3.15)

9As explained in appendix A, the coordinate r in (3.15) has been shifted so that the Hawking temperature

is the same across the family of solutions.
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with Hawking temperature T = 3rH/(2π). In this case, as the system is isotropic, so is the

butterfly velocity, which is given by

vUV
B =

√
2

3
. (3.16)

This result is consistent with the result for a d-dimensional CFT, which is v2
B = d

2(d−1) [6].

This is expected, since the theory is effectively described by a 4-dimensional CFT at the UV.

vB at the IR fixed point (B/T 2 → ∞). The gravitational dual to the IR fixed

point reads10

U(r) =
(
3r2 − 3r2

H

)
,

V (r) = B/
√

3 ,

W (r) = 3r2 , (3.17)

with Hawking temperature T = 3rH/(2π). The butterfly velocity along the direction of the

magnetic field is

vIR

B,‖ = 1 , (3.18)

which is the expected result for a BTZ black hole. The butterfly velocity along any direction

perpendicular to the magnetic field is

vIR
B,⊥ =

2π

31/4

T√
B
� 1 , (3.19)

which, consistently with the dimensional reduction suffer by the theory at the IR fixed

point [46], vanishes as B/T 2 →∞ at any set temperature.

vB at intermediate values of B/T 2. As mentioned before, for intermediate values of

B/T 2 the metric functions can only be obtained numerically, so in figure 3 we show the

numerical results for the square of vB,‖ and vB,⊥ as function of B/T 2. We can see that, as

we increase the value of B/T 2, the butterfly velocities smoothly interpolate between the

UV result, given in equation (3.16), and the IR results, given in equations (3.18) and (3.19).

4 Two-sided mutual information

In this section we compute the two-sided mutual information for strip-like regions in the

boundary theory and show how this quantity drops to zero in shock wave geometries. For

simplicity, we only consider the case of homogeneous shock waves, in which the shock wave

parameter is given by α = const× e2πt0/β .

The two-sided mutual information between a region A in the left boundary and a

region B in the right boundary is given by

I(A,B) = SA + SB − SA∪B , (4.1)

10Although the numerical solutions need to be rescaled in order to approach AdS5 for r → ∞ (see

appendix A for details), they still go to (3.17) as B/T 2 →∞. In the notation of appendix A, this is because

the ratio V (r)/B is unchanged under the rescaling and w∞ → 1 as B/T 2 →∞.

– 9 –
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Figure 3. Butterfly velocity squared v2B versus the dimensionless parameter B/T 2. The blue curve

represents the butterfly velocity along the direction of the magnetic field, while the red curve stands

for the butterfly velocity along any direction perpendicular to the magnetic field. The horizontal

lines represent either the conformal result v2B = 2/3 or the speed of light.

where SX stands for the entanglement entropy of region X. This quantity is always pos-

itive and provides an upper bound for correlations between A and B [53]. The atypical

entanglement pattern of the thermofield double state at t = 0 is diagnosed by a positive

mutual information between large regions A and B. We compute the above entanglement

entropies holographically, using the Ryu-Takayanagi prescription [54, 55]. For simplicity,

we take A and B to be identical strip-like regions at the t = 0 slice of the geometry. SA(SB)

is given by 1
4GN

times the area of the co-dimension 2 extremal surface γA(γB) which is ho-

mologous to the region A(B). The surface γA (γB) is a U-shaped surface entirely contained

in the left(right) exterior region of the geometry. For the computation of SA∪B we have

two possible options for the extremal surface, and we have to choose the one with minimal

area. The first alternative is simply γA∪γB, whose area is area(γA)+area(γB). In this case

the mutual information is identically zero I(A,B) = 0. The other option is the surface

γwormhole that stretches through the wormhole, connecting the two sides of the geometry.

In this case the mutual information is positive

I(A,B) =
1

4GN

(area(γA) + area(γB)− area(γwormhole)) ≥ 0 . (4.2)

In figure 4 we make a schematic representation of the surfaces γA, γB and γwormhole in a two-

sided black brane geometry with and without a shock wave at the horizon. In section 4.1

we will show that for large regions A and B, the surface γwormhole has the minimal area.

When we perturb the system in the asymptotic past we create a shock wave geometry,

in which the left and right exterior regions are not altered, but the wormhole becomes

longer. The strength of the shock wave and the length of the wormhole are both controlled

by the shock wave parameter α. In the shock wave geometry, only the quantities that

probe the interior of the black hole are affected by the shock wave. Hence, the U-shaped

– 10 –
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extremal surfaces γA and γB are not affected by the shock wave, while the surface γwormhole

becomes longer. As a result the entanglement entropy SA∪B(α) generically depends on the

shock wave parameter, and it actually is an increasing function of it. So, in the shock wave

geometry, we write the mutual information as I(A,B;α) = SA + SB − SA∪B(α), where we

indicate that SA and SB do not depend on α, while SA∪B does.

The quantities SA, SB and SA∪B are divergent because they are computed over surfaces

that extend all the way to one or two of the asymptotic boundaries in the geometry. None

the less, the mutual information is finite, because the divergences in SA and SB cancel the

divergence of SA∪B.

It is convenient to define a regularized version of SA∪B as

Sreg
A∪B(α) = SA∪B(α)− SA∪B(α = 0) , (4.3)

so that by writing

I(A,B;α) = SA + SB − [SA∪B(α)− SA∪B(0)]− SA∪B(0) = I(A,B; 0)− Sreg
A∪B(α) , (4.4)

the mutual information not only splits into two finite parts, but also one of them, I(A,B; 0),

is the mutual information of the unperturbed geometry. As we will show in section 4.1,

the value of I(A,B; 0) depends on the temperature of the system and on the width of the

strip-like regions A and B.

Notice that since Sreg
A∪B(α) is an increasing function of α, the mutual information

I(A,B;α) decreases as α gets bigger. Eventually, the area of γwormole becomes larger than

the area of γA ∪ γB and the mutual information has a transition to a constant vanishing

value. Finally, note that increasing α is equivalent to move the creation of the shock wave

to earlier times, leading us to conclude that the two-sided mutual information drops to

zero as we move the perturbation further into the past.

4.1 Two-sided mutual information versus strip’s width

In this section we compute the mutual information in the unperturbed geometry as a

function of the strip’s width. As we are dealing with an anisotropic system, we consider

two types of strips: the strips defined by the equation 0 ≤ x ≤ `, which we call parallel

strips, and those defined by the equation 0 ≤ z ≤ `, which we call orthogonal strips. The

above nomenclature is based on the fact that the magnetic field is oriented along the z-

direction, and rotational invariance in the xy-plane implies that no generality is lost when

the parallel strips are defined in the way we just described.

Orthogonal strips 0 ≤ z ≤ `. This region is delimited by two hyperplanes, one at z = 0

and the other at z = `. The appropriate embedding for this case is Xm = (0, x, y, z(r), r).

The components of the induced metric gab are

gxx = gyy = V (r) , (4.5)

grr =
1

U(r)
+W (r)z′(r)2 . (4.6)

– 11 –
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Figure 4. (a) Schematic representation of the t = 0 slice of the two-sided black brane geometry.

(b) Schematic representation of the shock wave geometry, in which the wormhole becomes longer.

In both cases the blue curves represent the U-shaped extremal surfaces γA (in the left side of the

geometry) and γB (in the right side of the geometry). The red curves represent the extremal surfaces

γ1 and γ2 connecting the two sides of the geometry. The extremal surface γwormhole defined in the

text is given by γwormhole = γ1 ∪ γ2.

Let us first compute SA. The corresponding area functional is

area(γA) =

∫
dx dy dr

√
det(gab)

= V2

∫
dr V (r)

√
1

U(r)
+W (r)z′(r)2 = V2

∫
drL(z, z′; r) ,

(4.7)

where V2 =
∫
dx dy is the volume of the hyperplanes at z = 0 and z = `. The ‘Lagrangian’

L(z, z′; r) does not depend on z, and hence there is a conserved quantity associated to

translations in z

γ =
∂L
∂z′

=
V (r)W (r)z′√

1
U +Wz′2

= V (rm)
√
W (rm) , (4.8)

where, in the last equality, we calculated γ at the point rm at which z′ →∞. The extremal

area11 can then be calculated as

area(γA) = 2V2

∫ ∞
rm

dr
V√
U

1√
1− γ2V −2W−1

. (4.9)

From the above result we can finally compute SA as

SA =
area(γA)

4GN

=
V2

2GN

∫ ∞
rm

dr
V√
U

1√
1− γ2V −2W−1

, (4.10)

with an identical result for SB. We proceed to the calculation of SA∪B. In this case the

surface is the union of two hyperplanes connecting the two sides of the geometry, so that

z′ = 0 and the extremal area is given by

area(γwormhole) = 4V2

∫ ∞
rH

dr
V√
U
, (4.11)

11In a slight abuse of language we use the same notation for the area functional and for the extremal area.
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where the overall factor of 4 comes from the two sides of the geometry and from the two

hyperplanes. We then find SA∪B to be

SA∪B =
V2

GN

∫ ∞
rH

dr
V√
U
. (4.12)

We finally compute the mutual information as

I(A,B; 0) =
V2

GN

[∫ ∞
rm

dr
V√
U

1√
1− γ2V −2W−1

−
∫ ∞
rH

dr
V√
U

]
, (4.13)

where,as before, the 0 indicates that I(A,B; 0) is computed in the unperturbed geometry.

Note that I(A,B; 0) depends on the temperature via rH and on the ‘turning point’ rm.

The value of rm defines the width of the strip as

` =

∫
dz =

∫ ∞
rm

dr z′(r) = 2

∫ ∞
rm

dr
1√
WU

1√
γ−2V 2W − 1

. (4.14)

As both the mutual information and the strip’s width depend on rm, we can make a

parametric plot of I(A,B; 0) versus ` that we show in figure 5(a).

Parallel strips 0 ≤ x ≤ `. This region is delimited by two hyperplanes, one at x = 0

and the other at x = `. The appropriate embedding for this case is Xm = (0, x(r), y, z, r).

The components of the induced metric are

gxx = V (r) , (4.15)

gzz = W (r) , (4.16)

grr =
1

U(r)
+ V (r)x′(r)2 . (4.17)

Proceeding as before we can compute the mutual information and the strip’s width respec-

tively as

I(A,B; 0) =
V2

GN

[∫ ∞
rm

dr

√
VW√
U

1√
1− γ2V −2W−1

−
∫ ∞
rH

dr

√
VW√
U

]
, (4.18)

and

` =

∫
dx =

∫ ∞
rm

dr x′r) = 2

∫ ∞
rm

dr
1√
V U

1√
γ−2V 2W − 1

, (4.19)

where γ = V (rm)
√
W (rm). As before we can make a parametric plot of I(A,B; 0) versus `.

Figure 5(a) shows the mutual information as a function of the strip’s width for or-

thogonal and parallel strips for various values of B/T 2. The figure 5(b) shows the mu-

tual information as a function of the magnetic field for parallel and orthogonal strips of

fixed width.
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Figure 5. (a) Mutual Information (in units of V2/GN) as a function of the strip’s width ` for

several values of B/T 2. The curves correspond to B/T 2 = 0 (black curve), B/T 2 = 14.8 (blue

curves), B/T 2 = 21.2 (purple curves), B/T 2 = 27.5 (red curves). (b) Mutual information (in units

of V2/GN) versus B/T 2 for strips of fixed width `/`AdS = 0.75. The continuous (dashed) curves

correspond to the results for orthogonal (parallel) strips.

α
2

r0

I II III

Figure 6. Extremal surface (horizontal, red) in the shock wave geometry. We split the left half

of the surface into three parts, I, II and III. The segments II and III have the same area and

they are separated by the point r0 at which the constant-r surface (blue, dashed curve, defined by

r = r0) intersects the extremal surface.

4.2 Disruption of the two-sided mutual information

In this section we study how the two-sided mutual information drops to zero in shock wave

geometries. In order to simplify the analysis, we first consider the case of semi-infinite

strips. The orthogonal strip is defined by 0 ≤ z < ∞, while the parallel strips is defined

by 0 ≤ x < ∞. In this case, by symmetry, we now that the extremal surface divides the

bulk into two parts, as shown in figure 6. Once we have the mutual information for a

semi-infinite strip we multiply this result by two to obtain the result for a finite strip.
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Orthogonal strip 0 ≤ z < ∞. Since SA and SB are not affected by the shock wave,

we only have to compute SA∪B. This region is delimited by the hyperplane z = 0. The

appropriate embedding in this case is Xm = (t, x, y, 0, r(t)). The components of the induced

metric are

gxx = gyy = V (r) , (4.20)

gtt = −U +
ṙ2

U
. (4.21)

The area functional is then calculated as

area(γwormhole) =

∫
dx dy dt

√
det(gab) = V2

∫
dt V

√
−U +

ṙ2

U
= V2

∫
dtL(r, ṙ; t) .

(4.22)

The above functional is invariant under t-translations and the associated conserved quantity

is given by

γ⊥ =
∂L
∂ṙ
ṙ − L =

V√
−U + ṙ2

U

ṙ2

U
= −V (r0)

√
−U(r0) , (4.23)

where, in the last equality, we computed γ⊥ at the point r0 at which ṙ = 0. This ‘turning

point’ is located inside the horizon, where U < 0. By solving (4.23) for ṙ we can write the

extremal area as

area(γwormhole) = V2

∫
dr

V√
γ2
⊥V
−2 + U

. (4.24)

We compute the above area in the left side of the geometry, and then we multiply the

obtained result by two to account for the two sides of the geometry. As shown in figure 6,

it is convenient to split the left half of the extremal surface into three segments I, II and

III. The segment I goes from the boundary to the horizon (at v = 0). The segment II

starts at the horizon (at v = 0) and ends at the point r0. The segment III goes from r0

to the horizon at u = 0. The segments II and III have the same area, so we can split the

above integral as
∫
I∪II∪III =

∫∞
rH

+2
∫ rH
r0

. Therefore, SA∪B can be written as

SA∪B(r0) =
area(γwormhole)

4GN

=
V2

2GN

∫ ∞
rH

dr
V√

γ2
⊥V
−2 + U

+ 2

∫ rH

r0

dr
V√

γ2
⊥V
−2 + U

 ,
(4.25)

where the overall factor of 2 accounts for the two sides of the geometry, and we indicate that

SA∪B depends on the turning point r0. Note that, for r0 = rH we recover one half of the

value given by (4.12) for the unperturbed geometry,12 indicating that r0 = rH corresponds

to the absence of a shock wave. We then define the regularized entanglement entropy

12We obtain one half of the value given by (4.12) because we are considering a semi-infinite strip, while

for a finite strip we should multiply the result by two, therefor recovering the result in (4.12).
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of A ∪B as

Sreg
A∪B = SA∪B(r0)− SA∪B(rH)

=
V2

2GN

∫ ∞
rH

dr

 V√
γ2
⊥V
−2 + U

− V√
U

+ 2

∫ rH

r0

dr
V√

γ2
⊥V
−2 + U

 . (4.26)

We would like to express this result in terms of the shock wave parameter α, so we write

the latter in terms of r0 as13

α(r0) = 2eK
⊥
1 (r0)+K⊥2 (r0)+K⊥3 (r0) (4.27)

where

K⊥1 (r0) =
4π

β

∫ r0

r̄

dr

U
, (4.28)

K⊥2 (r0) =
2π

β

∫ ∞
rH

dr

U

1− 1√
1 + γ−2

⊥ V 2U

 , (4.29)

K⊥3 (r0) =
4π

β

∫ rH

r0

dr

U

1− 1√
1 + γ−2

⊥ V 2U

 . (4.30)

Note that α(rH) = 0, corresponding to the absence of a shock wave. α increases as we

move r0 deeper into the black hole, and diverges at some critical point r0 = r⊥c which is

implicitly given by
(V 2U)′

V 2U

∣∣∣
r=r⊥c

= 0, (4.31)

where the prime indicates a derivative with respect to r. Finally, the mutual information

can be simply computed as

I(A,B; r0) = I(A,B; rH)− Sreg
A∪B(r0) . (4.32)

Since Sreg
A∪B(r0), I(A,B; r0) and α(r0) are functions of the turning point r0, we can make

parametric plots of Sreg
A∪B versus logα and I(A,B) versus logα. We choose to use logα

because this quantity is proportional to the shock wave time t0.

Parallel strip 0 ≤ z < ∞. Again, we only need to compute SA∪B. This region is

delimited by the hyperplane x = 0. The appropriate embedding is Xm = (t, 0, y, z, r(t))

and the components of the induced metric are

gyy = V (r) , (4.33)

gzz = W (r) , (4.34)

gtt = −U(r) +
ṙ2

U(r)
. (4.35)

13A detailed derivation of this expression is presented in appendix A of [24].
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Proceeding as before, we can compute the regularized entanglement entropy as

Sreg
A∪B = SA∪B(r0)− SA∪B(rH) (4.36)

=
V2

2GN

∫ ∞
rH

dr

 √
VW√

γ2
||V
−1W−1 + U

−
√
VW√
U

+ 2

∫ rH

r0

dr

√
VW√

γ2
||V
−1W−1 + U

 ,
where γ|| = −

√
W (r0)V (r0)

√
−U(r0). As before, the mutual information can be calculated

as I(A,B; r0) = I(A,B; rH) − Sreg
A∪B(r0). The shock wave parameter can be written as a

function of r0 as

α(r0) = 2eK
||
1 (r0)+K

||
2 (r0)+K

||
3 (r0) (4.37)

where

K
||
1 (r0) =

4π

β

∫ r0

r̄

dr

U
, (4.38)

K
||
2 (r0) =

2π

β

∫ ∞
rH

dr

U

1− 1√
1 + γ−2

|| VWU

 , (4.39)

K
||
3 (r0) =

4π

β

∫ rH

r0

dr

U

1− 1√
1 + γ−2

|| VWU

 . (4.40)

Note that α(rH) = 0 again, indicating the absence of a shock wave. α increases as we move

r0 deeper into the black hole, and diverges at some critical point r0 = r
||
c which is implicitly

given by
(VWU)′

VWU

∣∣∣
r=r

||
c

= 0, (4.41)

where the prime indicates a derivative with respect to r.

Once more, since Sreg
A∪B(r0), I(A,B; r0) and α(r0) are functions of the turning point

r0, we can make parametric plots of Sreg
A∪B versus logα and I(A,B) versus logα.

Figure 7(a) shows the shock wave parameter as a function of the turning point r0 for

several values of the magnetic field. Figure 7(b)shows how the critical points r⊥c and r
||
c

vary as a function of B/T 2. Both quantities start at the UV value rc/rH = (33/4−1)/2 when

B = 0. As we increase the magnetic field both r⊥c and r
||
c approach their corresponding IR

values, which are r⊥c = 0 and r
||
c /rH = 1/

√
2.

Figure 8(a) shows how the regularized entanglement entropy (in units of V2/GN) grows

as a function of logα. Figure 8(b) shows how the mutual information (in units of V2/GN)

drops to zero as we increase logα. Here we take I(A,B; 0) = 5 at α = 0. Note that both

Sreg
A∪B and I(A,B;α) have a sharp transition to a constant value for some value of the shock

wave parameter α = α∗. This happens when the area of γwormhole becomes larger than the

area of γA ∪ γB, in which case SA∪B has to be computed from the latter. Given that γA
and γB stay in the exterior region of the geometry, they are not affected by the shock wave

at the horizon and hence SA∪B does not depend on α whenever this parameter reaches or

surpasses α∗. As a consequence the mutual information becomes constant and identically

zero for α ≥ α∗.
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Figure 7. (a) Shock wave parameter α as a function of the turning point r0 normalized by rH for

some values of B/T 2. The continuous (dashed) curves represent the results for orthogonal (parallel)

strips. The black curve represents the result at the UV fixed point (B/T 2 = 0), while the red curves

represent the results at the IR fixed point (B/T 2 � 1). The blue curves represent the results for

B/T 2 = 12.3, while the purple curves represent the results for B/T 2 = 133. (b) Critical point

r0 = rc (at which α(r0) diverges) versus B/T 2. The continuous (dashed) blue curve represents the

result for an orthogonal (parallel) strip. The dashed horizontal line in the middle indicates the

result at the UV fixed point, rc/rH = (33/4 − 1)/2, while the top and bottom ones show the results

at the IR fixed point, r
||
c /rH = 1/

√
2 and r⊥c /rH = 0, respectively.
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Figure 8. (a) Regularized entanglement entropy Sreg

A∪B (in units of V2/GN) as a function of logα.

(b) Mutual information I(A,B) (in units of V2/GN ) as a function of logα. All the curves have the

same mutual information I(A,B; 0) = 5 at α = 0. In both (a) and (b) the curves correspond (from

right to left) to B/T 2 = 0 (black curves), B/T 2 = 12.3 (blue curves), B/T 2 = 133 (purple curves).

4.3 Spreading of entanglement

In this section we show that the disruption of the mutual information is controlled by the

so-called entanglement velocity vE . This quantity plays an important role in the spreading

of entanglement after a global quench [56–59]. We show that the dependence of Sreg
A∪B with

the shock wave time t0 is very similar to the time behavior of entanglement entropy after

global quenches. This shows that the gravitational set up of shock waves in a two-sided

black hole provides an additional example of a holographic quench protocol.
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Figure 9. Regularized entanglement entropy of orthogonal strips Sreg

A∪B (in units of V2/GN) as

a function of logα. The curves correspond (from bottom to top) to B/T 2 = 0 (black curves),

B/T 2 = 12.3 (blue curves) and B/T 2 = 29.1 (red curves). The dashed lines have an angular

coefficient given by the equation (4.42). We are considering strips of very large width, such that

the transition to a constant value (not shown in the figure) occurs at very large α.

Let us first consider the case of finite orthogonal strips. In the vicinity of r0 = r⊥c one

can show that14

Sreg
A∪B ≈

V2

GN

V (r⊥c )
√
−U(r⊥c )

2πT
logα . (4.42)

In principle, as this approximation requires r0 to be very close to r⊥c and α diverges at

this point, one would expect the approximation to be valid only for large α. However, the

results of figure 9 actually show that (for large enough regions) the linear approximation

is valid within the range 1 . α ≤ α∗, where α∗ is the value of α where Sreg
A∪B has a sharp

transition to a constant value.

Since α = const × e
2π
β
t0 , equation (4.42) implies that Sreg

A∪B grows linearly with the

shock wave time t0, and therefore

dSreg
A∪B
dt0

=
V2

GN

V (r⊥c )
√
−U(r⊥c ) . (4.43)

By using the thermal entropy density sth =
√
V 2(rH)W (rH)/(4GN) we can eliminate GN

from the above equation that reduces to

dSreg
A∪B
dt0

= 4V2 sth v
⊥
E , (4.44)

where

v⊥E =
V (r⊥c )

√
−U(r⊥c )√

V 2(rH)W (rH)
, (4.45)

14The equivalent equation for parallel strips is Sreg
A∪B ≈

V2
GN

√
V (r

||
c )W (r

||
c )

√
−U(r

||
c )

2πT
logα .
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is the entanglement velocity for orthogonal strips. Likewise we can define the entanglement

velocity for parallel strips as

v
||
E =

√
V (r

||
c )W (r

||
c )

√
−U(r

||
c )√

V 2(rH)W (rH)
. (4.46)

vE at the UV fixed point. At the UV fixed point the system is isotropic, and so is the

entanglement velocity which in any direction is given by

vUV
E =

√
2

33/4
, (4.47)

coinciding with the result for a d-dimensional CFT as reported, for instance, in equa-

tion 2.11 of [56].

vE at the IR fixed point. At the IR fixed point the entanglement velocity for orthogonal

strips is given by

vIR
E,⊥ = 1, (4.48)

in agreement now with the result for a BTZ black hole. The entanglement velocity for

parallel strips is dictated by the expression

vIR

E,|| =
π

31/4

T√
B
, (4.49)

that vanishes in the IR limit as B/T 2 →∞ at fixed temperature.

vE at intermediate values of B/T 2. As made clear previously, at intermediate values

of B/T 2 the metric functions can only be determined numerically, and so is the entan-

glement velocity. In figure 10 we plot vE for parallel and orthogonal strips as a function

of B/T 2. We show that, as we increase the value of B/T 2, these quantities smoothly

interpolate between the UV and IR values.

5 Chaos and diffusivity

In this section we study the relationship between the chaos parameters and diffusion phe-

nomena. For isotropic theories and in the absence of thermoelectric conductivity, the

thermal and electric diffusion constants along a given direction can be calculated with the

Einstein relations

Dc =
σ

χ
, DT =

κ

Cρ
. (5.1)

The different objects in (5.1) are the electric susceptibility χ, the specific heat Cρ at fixed

charge density ρ, the electric conductivity σ at vanishing thermal current, and the thermal

conductivity κ at vanishing electric current. The object of attention in this work is an

anisotropic systems with non-vanishing thermoelectric conductivity, and for general sys-

tems of this kind, each component of the driving electric field ~E and temperature gradient
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Figure 10. Entanglement velocity vE versus B/T 2. The continuous (dashed) blue curve represents

the entanglement velocity for an orthogonal (parallel) strip, while the bottom horizontal black line

represent the entanglement velocity at the UV fixed point, which is equal to the conformal result

vUV
E =

√
2/33/4. The top horizontal gray line is the speed of light.

~ζ ≡ (~∇T )/T can in principle induce a heat or electric current in any direction. The general

coupled equations relating these driving forces and currents are given by

~J = σ̄ ~E − Tϑ~ζ,
~Q = Tϑ~E − T κ̄~ζ, (5.2)

where, for a d dimensional system, σ̄ is the d× d electric conductivity matrix, κ̄ is the cor-

responding thermal conductivity matrix, and ϑ is the thermoelectric mixing matrix, which

presence implies that a thermal gradient can create an electric current and, conversely, an

electric field can cause a thermal current. We see then, that given the anisotropic nature of

our system, the expressions in (5.1) have to become a pair of matrix equations in terms of

some d× d matrices σ and κ. Since we began defining σ and κ respectively as the electric

conductivity at vanishing thermal current and the thermal conductivity at vanishing elec-

tric current, their matrix extension has to be done by finding the combination of electric

field and temperature gradient that either cause an electric current without a thermal one,

or the other way around, hence (5.2) dictates

σ = σ̄ − Tϑκ̄−1ϑ, κ = κ̄− Tϑσ̄−1ϑ. (5.3)

It should be noted that the above expressions are well defined only if κ̄ and σ̄ are invertible.

If this matrices are singular, that as we will see is our case, the analysis is more subtle and

one has to rely on the physical definitions of σ and κ given before.

Given that Dc and DT in (5.1) bear important information about the system that

they are associated with, their relationship with relevant velocities in chaotic systems, like

the butterfly velocity, has been explored [8, 9]. Similarly, the components of the matrix
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extension of Dc and DT in (5.1) contain relevant information about the system we are

studding, and we will compare some of that information with the butterfly velocity, but it

is important to mention that these are not the constants that appear in the coupled diffusion

equations. These latter constants constitute the diffusivity matrix described in appendix C.

Decoupling the diffusion equations is equivalent to diagonalizing the diffusivity matrix,

and the relationships held by its eigenvalues with the electric, thermal, and thermoelectric

conductivities, generalize the Einstein relations (5.1) [36]. Only under very particular

circumstances the eigenvalues of the diffusivity matrix reduce to Dc and DT in (5.1) while

in general they encode complementary information, making it interesting to also compare

them with the butterfly velocity. In our case this proves unfruitful, since, as can be seen

in appendix C, the eigenvalues of the diffusivity matrix do not provide meaningful bounds

for the chaotic velocities.

There are many holographic methods to compute all the elements of the conductivity

matrices [60–66]. However, as remarked in the references just cited, in order to obtain a

finite result it is necessary to either break the translation invariance of the theory or intro-

duce a mechanism that does not conserve momentum. Our model, even if anisotropic, is

translationally invariant, since, on the one hand, there are not gauge independent quantities

that depend on the position, and on the other, there are no fields to which the gauge po-

tential, which is indeed position dependent, should be minimally coupled to. Now, despite

Lorentz force not conserving momentum in the directions perpendicular to the magnetic

field, it does in the direction parallel to it, so inconsistencies arise when applying the cited

methods directly to our system as a whole.15

To properly carry the calculation it would be necessary to consider a modification of our

theory that breaks translation invariance or does not conserve momentum in any direction,

compute the conductivity matrix, and then take the appropriate limit to restore translation

invariance and momentum conservation in the way our system does. Fortunately the better

part of this work is done, since the conductivity matrix in a more general system, that can

be reduce to ours, has already been studied in [60], where the authors break translation

invariance by adding position dependent axions.16 Thus, in order to obtain the conductivity

matrix for our system, we just evaluate (6.10) of [60] with the appropriate substitutions

and in the right limit. The result is

σ̄ =

0 0 0

0 0 0

0 0 4V (rH)√
W (rH)

 , ϑ =

 0 4π
V (rH)

√
W (rH)

B 0

−4π
V (rH)

√
W (rH)

B 0 0

0 0 0

 , and

κ̄ =

4π2T
V (rH)2

√
W (rH)

B2 0 0

0 4π2T
V (rH)2

√
W (rH)

B2 0

0 0 ∞

 , (5.4)

15Actually, it is possible to apply the method described in [61, 66] directly to our system by studying

only the directions perpendicular to the magnetic field. The results obtained by this procedure agree with

the ones presented here, as it should be. The details of this calculation can be found in appendix B.
16We thank Jerome Gauntlett for pointing this reference to us.
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from which, in principle, we could compute σ and κ, and where the divergent thermal

conductivity in the z direction is recovered as expected in the translational invariant and

momentum conserving limit.

We would like to take a moment to list a few benchmarks that indicate the expressions

in (5.4) to be correct and consistent with previous results. It is reassuring to see that

σ̄xx = σ̄yy = 0 in (5.4), which is the result previously obtained in [44, 60] by yet another

two different methods, where σ̄zz also coincides with (5.4). In [61, 62] the authors study the

effects of a magnetic field on transport in 2+1 dimensional systems at finite charge density

ρ and broken translational invariance. We verified that, when evaluated at ρ = 0 and in

the translationally invariant limit, the results in [61, 62] for σ̄, ϑ and κ̄ are consistent with

ours in the directions they study, namely, x and y. Moreover, the Hall effect is zero in our

system, which is consistent with the results of [63] at zero charge density. As a final check,

we note that our thermoelectric coefficients in the x− y plane are consistent with the ones

presented in equation (3.39) of [64] at ω = 0 and at zero charge density.17

Before presenting the results for the actual conductivity matrices σ and κ, there are a

few remarks we would like to make about what we should expect to find.

In a system with translational invariance, a driving force would lead to an infinite

current if a net free density of the charge that it acts upon is present. In our case the

driving force E acts on the electric charge while the temperature gradient acts on any

matter. Our system is a neutral strongly coupled plasma at finite temperature subject to

an external magnetic field, so there is a uniform translational invariant matter density, but

a vanishing net electric charge. We would then expect an infinite thermal conductivity

κ in any direction in which momentum is conserved, but a finite electric conductivity

σ. Despite ρ = 0 we do not expect σ to vanish entirely since, as pointed out in [66],

for a neutral system constituted by charged particle-hole pairs, a current is expected to

appear in reaction to E as particles and holes are driven to flow in opposite directions. In

this scenario, momentum dissipation will occur as constituents with different charges are

dragged with respect to each other. In our system there are no quasi-particles, but the

former observation still applies since, even for neutral strongly coupled plasmas, there are

exited degrees of freedom with opposite electric charge.

We can now proceed to compute the σ and κ matrices. The discussion of the previous

paragraph is reflected in our results (5.4), but we need to pay particular attention to some

of the components, since, if we turn on a thermal gradient perpendicular to the magnetic

field to generate a thermal current in this direction, ϑxy = −ϑyx 6= 0 implies that an electric

current will be induced in a direction that is also perpendicular to the magnetic field, that,

given σ̄xx = σ̄yy = 0, will not be possible to stop by applying an electric field. Conversely,

if we turn on an electric driving force perpendicular to the magnetic field, ϑxy = −ϑyx 6= 0

implies that a thermal current is generated, while σ̄xx = σ̄yy = 0 shows that this happens

at vanishing electric current, even if the thermal driving force is zero. The conclusion is

that the only combination of driving forces that will lead to a thermal current in the x− y

17To compare our results with the ones presented in [64], one should notice that ωc ∼ ρ = 0 and that

γ ∼ B2. We thank Sean Hartnoll for suggesting these comparison.
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plane at vanishing electric current does not involve a thermal component, leading to an

ill-defined κ along these directions.

The previous analysis shows that in our case DT is not the right quantity to compare

to the butterfly velocity, because it either diverges in the direction parallel to the magnetic

field or is not well defined in the directions perpendicular to it.

In contrast, σ is indeed a well defined diagonal matrix. From (5.4) we see that the only

current that an electric field in the z direction generates is electric and parallel to it, so

we have σzz = σ̄zz. To compute σxx and σyy it is necessary to determine the combination

of driving electric field and thermal gradient that generates an electric current without a

thermal one, which can be accomplished because ϑxy = −ϑyx 6= 0. The final result is

σxx = σyy = 4
√
W (rH), σzz =

4V (rH)√
W (rH)

. (5.5)

Note that the explicit dependence on the magnetic field has been eliminated, and the effect

of B only appears indirectly through the metric functions V (r) and W (r), of which the only

information we need is at the horizon. Also, σ has a smooth limit for any value of B/T 2,

unlike σ̄ which is discontinuous in the limit B/T 2 → 0. In order to evaluate (5.5) for any

value of B/T 2 it is necessary to extract V (rH) and W (rH) from the numerical solutions.

To compute the electric diffusivity we also need the susceptibility

χ =

(
∂ρ

∂µ

)
B,T

, (5.6)

where ρ is the charge density and µ is the chemical potential. Given that in our theory

both ρ and µ are zero, the differential, obtained by adding these quantities perturbatively,

is evaluated at µ = 0. The details of the calculation are contained in appendix B, with the

final result given by

χ−1 =

∫ ∞
rH

dr

4V (r)
√
W (r)

, (5.7)

that also needs to be evaluated numerically for arbitrary values of B/T 2.

The electric diffusivity in any direction can be calculated by using (5.5) and (5.7)

in (5.1), which gives

D⊥c =
√
W (rH)

∫ ∞
rH

dr

V (r)
√
W (r)

, D‖c =
V (rH)√
W (rH)

∫ ∞
rH

dr

V (r)
√
W (r)

, (5.8)

where we use the superscript ⊥ to denote the diffusivity along any direction perpendicular

to the magnetic field and ‖ for the direction parallel to it. In figure 11 we show the

diffusivity (5.8) as a function of B/T 2. In the limit B/T 2 → 0 the electric diffusivity is the

same along any direction and equal to the well known result Dc = 1
2πT , thus in this limit

the relation between the electric diffusivity and the chaos parameters is

Dc =
3

2
v2
BτL, (5.9)
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Figure 11. Electric diffusivity Dc versus the dimensionless parameter B/T 2. The purple (top)

curve represents the electric diffusivity along the direction of the magnetic field, while the orange

(bottom) one stands for the electric diffusivity along any direction perpendicular to the magnetic

field. The horizontal line is at the value of the conformal result Dc = (2πT )−1.

which is consistent with the results from [8] for a d dimensional CFT, Dc = d
∆χ
v2
BτL,

where ∆χ is the scaling dimension of the susceptibility. Figures 12 and 13 show that for

an arbitrary value for B/T 2 the inequality

Dc ≥
3

2
v2
BτL, (5.10)

is indeed satisfied along any direction.

A simple calculation shows that both D⊥c and D
‖
c diverge when computed a the IR limit

T 2/B → 0. Their ratio, however, is well defined, and one can show that D⊥c /D
‖
c ∼ T 2/B as

the infrared limit is approached. This is consistent with the results of figure 11 and with

the fact that
(
vB,⊥/vB,‖

)2 ∼ T 2/B also in this limit.

6 Discussion

We have used holographic methods to study chaos, diffusion and spreading of entanglement

of a super Yang-Mills theory at temperature T in the presence of a background magnetic

field of constant strength B. The dual geometry can be viewed as a renormalization group

flow from an AdS geometry in the ultraviolet to a BTZ-like geometry in the infrared

and the parameter controlling this transition is the dimensionless ratio B/T 2, which is

very small(large) close to the UV(IR) fixed point. As explained in more detail below,

all of our results can be explained on the basis of the aforementioned RG flow and the

apparent strengthening of the internal interaction of the system due to the presence of the

magnetic field.
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Chaotic properties of the boundary theory. In section 3 we study localized shock

waves in the background (2.2) and extract the chaotic properties of the boundary theory

from the shock wave profile α(t, ~x). We find that the Lyapunov exponent is maximal

λL = 2π/β and the leading order contribution to the scrambling time is controlled by the

number of degrees of freedom of the system t∗ ∼ β logN2, as expected on general grounds.

The results for the butterfly velocity are shown in figure 3. Due to the presence of the

magnetic field the butterfly velocity is anisotropic in the z-direction, but it still displays

rotational symmetry in the xy-plane. For simplicity, we only compute the butterfly velocity

parallel to the magnetic field vB,‖ and perpendicular to it vB,⊥.

At zero magnetic field we have vB,‖ = vB,⊥ =
√

2/3, which is the value of vB at

the UV fixed point, at which the system is isotropic. As we increase the intensity of the

magnetic field v2
B,‖ increases and approaches the speed of light, while v2

B,⊥ decreases and is

highly suppressed at large values of B/T 2. This is consistent with the IR results vIR

B,‖ = 1

and vIR
B,⊥ = 2π

31/4
T√
B � 1, obtained using the formulas (3.13) and (3.14) with the metric

functions given by (3.17).

In [59] it was shown that, for (d+1)-dimensional isotropic black branes, the null energy

condition implies an upper bound for the butterfly velocity, which is given by the conformal

result v2
B ≤ d

2(d−1) , of which the right hand sides in a 5-dimensional solution is 2/3. Figure 3

shows that as B/T 2 increases, v2
B,‖ surpasses this bound, while v2

B,⊥ stays below it. This

does not contradicts [59], since as seen in [46, 67], the theory undergoes a dimensional

reduction in the IR fixed point, and the limiting values in the plots are consistent with the

IR theory.18

As proved in [12], the butterfly velocity should be bounded by the speed of light

in asymptotically AdS geometries. This is consistent with our results. In [12] it was also

proved that, for isotropic systems, the null energy condition implies that vB should decrease

at the infrared. This is what happens for vB,⊥, but our results show that vB,‖ increases

at the infrared. This does not contradicts [12] because of the aforementioned dimensional

reduction.

Note that, although our results for vB,‖ violate the upper bound proposed in [59], they

remain bounded by their corresponding values at the infrared effective theory, as suggested

in [24]. This only happens because vB is bounded by the speed of light in asymptotically

AdS geometries. If the UV geometry is not asymptotically AdS we do not expect vB to be

bounded by the speed of light. This indeed happens, for instance, in theories defined in

non-commutative geometries [68].

Mutual information versus strip’s width. The unperturbed two-sided black brane

solution has a very particular entanglement pattern between the left and the right side of

the geometry, which can be characterized by a positive mutual information between large

regions in the left and right boundaries of the geometry. For simplicity, we calculate the

two-sided mutual information for strip-like regions. Figure 5(a) shows how the two-sided

mutual information in the unperturbed geometry varies as a function of the strip’s width

18The IR fixed point is a CFT that lives in 1+1 dimensions. In this case, the upper bound proposed

in [59] reads v2B ≤ 1, which is consistent with the results obtained for v2B,‖.
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`. If we define the critical width `c as the value of ` below which the mutual information

is zero, this quantity measures how large the strips should be so that the system can

have two-sided correlations at t = 0. Note that `c decreases with the intensity of the

magnetic field and this effect is more pronounced for parallel strips than for the orthogonal

ones, but in general, the magnetic field permits for smaller regions in our system to share

mutual information.

To more explicitly notice the impact of the magnetic field, in figure 5(b) we plot the

mutual information against B/T 2 at fixed `, and we see that I(A,B) is a monotonically

increasing function of B/T 2 growing faster for parallel strips than for perpendicular ones.

The different behavior for the two orientations can be understood by realizing that the

increment on I(A,B) has two contributions. On the one hand, the presence of the magnetic

field, could have a direct impact on the mutual information between two regions due to a

physical process, but on the other hand, increasing B/T 2 makes it so that a separation in

the x or y directions in the UV fixed point corresponds to a larger distance for energy scales

closer to the IR theory. For parallel strips the width ` lies on the x − y plane, so, on top

of any physical impact of the magnetic field, they are subject to the geometric effect just

described. For orthogonal strips ` lies along the z direction while their extension in the x−y
planes is infinite, so their geometry is not modified by B/T 2, leaving them only exposed

to the physical impact that the magnetic field could have on their mutual information.

From the fact that even for orthogonal strips the mutual information increases with B/T 2,

we infer that the magnetic field indeed contributes for the correlation between regions to

become stronger by increasing the left-right entanglement of the thermofield double state

at t = 0.

Disruption of the two-sided mutual information. By considering homogeneous

shock waves, for which α = constant × e
2π
β
t0 , we study how the two-sided mutual in-

formation drops to zero when the system is (homogeneously) perturbed far in the past.

In this case it turned out to be convenient to write the shock wave parameter in terms

of a point inside the horizon r0, which also characterizes the area of the extremal surfaces

relevant for the computation of I(A,B). Figure 7(a) shows the shock wave parameter as

a function of the turning point r0. Note that r0 = rH gives α(rH) = 0, which corresponds

to the absence of a shock wave. Moreover, α increases as we move r0 deeper into the black

hole, and diverges at some critical point r0 = rc.

Figure 7(b) shows the critical point r0 = rc versus B/T 2. When B/T 2 = 0 both

r⊥c and r
||
c have the UV value rc/rH = (33/4 − 1)/2. As we increase the value of B/T 2

both quantities approach their corresponding IR values, which are given by r⊥c = 0 and

r
||
c /rH = 1/

√
2.

Note that, for orthogonal strips, we can probe a larger region inside the black hole as

we increase B/T 2. Indeed, for high values of B/T 2 we can probe a region arbitrarily close

to the singularity at r = 0. The opposite happens for parallel strips. In this case, as we

increase the value of B/T 2, the value of r
||
c increases, becoming closer to the horizon. This

means that the extremal surface probes a smaller region inside the horizon, as compared

to the B/T 2 = 0 case.
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Figure 8(a) shows Sreg
A∪B versus logα for orthogonal and parallel strips and for several

values of B/T 2. The physical interpretation of these results will be done together with

those of the mutual information in section 7, but for the moment we just notice that

the regularized entanglement entropy grows faster as we increase the magnetic field and,

for fixed α, the result for a orthogonal strip is larger than the corresponding result for a

parallel strip. At some value of the shock wave parameter α = α∗, this quantity has a sharp

transition to a constant value. This happens when the area of γwormhole becomes larger

than the area of γA∪γB, in which case Sreg
A∪B has to be computed from the area of γA∪γB.

Since γA and γB stay in the exterior region of the geometry, they are not affected by the

shock wave at the horizon and hence Sreg
A∪B does not depend on α whenever α ≥ α∗. The

saturation value of Sreg
A∪B depends on the width ` of the strips defining the regions A and

B. We choose ` such that, at α = 0 we have I(A,B; 0) = 5 (in units of V2/GN). Note that,

for a fixed temperature (or fixed rH), the mutual information in the unperturbed geometry

only depends on `. As we have fixed rH = 1 in our calculations, the mutual information

I(A,B; 0) only depends on `.

Figure 8(b) shows how the mutual information I(A,B;α) drops to zero as we increase

the value of logα, what is equivalent to move the perturbation that created the shock

wave further into the past. Given that I(A,B;α) = I(A,B; 0)− Sreg
A∪B, the information of

this figure is basically the same as the information of figure 8(a). Notice that the mutual

information drops to zero faster as we increase the ratio B/T 2, and the mutual information

for orthogonal strips drops to zero faster than the corresponding results for a parallel strip.

So, the magnetic field increases the two-sided correlations in the unperturbed system, but

it makes them drop to zero faster when the system is perturbed. This behavior was also

observed in another anisotropic systems [24, 68].

Spreading of entanglement. Figure 9 shows that the linear approximation given by

equation (9) is indeed correct whenever α & O(1). The linear behavior persists up the

saturation (not shown in the figure) of Sreg
A∪B to a constant value. As explained in section 4.3,

the linear behavior is controlled by the entanglement velocities associated to the orthogonal

and parallel strips. Note that the magnetic field delays the start of the linear behavior of

Sreg
A∪B with logα.

As pointed out in [24], the behavior of Sreg
A∪B with the shock wave time t0 is very

similar to the time behavior of entanglement entropy of subregions in the context of global

quenches [56–59]. This indicates that the gravitational setup used in this paper provides

an additional example of a quench protocol. Note that the quench effectively starts after a

scrambling time α & 1, so maybe this setup can be thought of as a holographic model for

a slow quench.

Figure 10 shows how the entanglement velocities v
||
E and v⊥E vary as a function of B/T 2.

When B/T 2 = 0, both velocities are equal to the UV result vUV
E =

√
2

33/4
. The entanglement

velocity for orthogonal strips v⊥E increases as we increase B/T 2, and approaches the speed

of light for large values of B/T 2, while the entanglement velocity for parallel strips v
||
E

decreases as we increase B/T 2 and it is highly suppressed for large values of B/T 2. This is

consistent with the IR results vIR
E,⊥ = 1 and vIR

E,|| =
π

31/4
T√
B � 1.

– 29 –



J
H
E
P
0
9
(
2
0
1
8
)
1
3
1

As well as the butterfly velocity, the entanglement velocity of isotropic systems was

also shown to be bounded by its corresponding value for a Schwarzschild black hole vE ≤
vSch
E [59]. For a 5-dimensional black brane, this upper bound is equal to

√
2/33/4. Note

that the entanglement velocity for perpendicular strips vE,⊥ violate this bound, but remain

bounded by the speed of light. This does not contradicts [59] because, at the IR, the system

flows to a CFT that lives in 1+1 dimensions and, in this case, the upper bound is given

by vE ≤ 1.

Unfortunately, our numerical solution for the metric functions inside the horizon does

not have enough precision to calculate vE for larger values of the ratio B/T 2 (we consider

B/T 2 up to 200). However, our numerical results strongly suggests that v⊥E approaches the

speed of light for very large B/T 2.

Chaos and diffusivity. Previous work [37–42] considered theories with a non-zero charge

density. This couples the charge and momentum transport, which means that the thermo-

electric conductivity ϑ in (5.2) is non-zero. However, because they also break translational

symmetry by adding position dependent axion fields, the thermal conductivity κ is finite.

In our case, the magnetic field B also couples the charge and momentum transport, as

is reflected in a non-zero ϑ matrix. However, as previously mentioned, since translational

symmetry is not broken, a well define κ matrix is not expected. This is also intuitive, since

translational invariance along a particular direction implies that shifting the vacuum of the

theory along that direction comes at no cost, so any driving thermal force could have an

infinite effect.

Figures 12 and 13 shows that the lower bound (5.10) for the electric diffusivity in terms

of the chaos parameters proposed by Blake [8, 9] is valid in our case. Along the direction of

the magnetic field the bound is saturated only for B/T 2 = 0. As explained by Blake [8, 9],

for B/T 2 > 0 the integral (5.7) is dominated by the UV region of the geometry, whereas the

chaos parameters are determinate by the IR data. On the other hand, for the directions

perpendicular to the magnetic field the bound is saturated for B/T 2 = 0 and B/T 2 →∞,

where both the butterfly velocity and the diffusivity tend to zero.

Finally, note that our numerical results for D⊥c and D
‖
c are consistent with their cor-

responding results at the IR fixed point, in the sense that D⊥c /D
‖
c ∼ T 2

B → 0 in this case.

This is also consistent with the fact that
(
vB,⊥/vB,‖

)2 ∼ T 2

B → 0 in the IR limit.

7 Conclusions and future directions

One of the things that we care the most to comment is that the results of the different

quantities that we have computed seam to indicate that, loosely speaking, the magnetic field

makes our system more rigid, in the sense that it increases the mutual information between

regions but also makes the impact of a perturbation to propagate faster by disrupting the

entanglement across it. We are uncertain of the mechanism behind this observation, and

consider that further investigation is necessary to clarify it. One possibility is that, as shown

in [69–71] and references therein, the internal interaction of the system gets intensified for

strengths of the magnetic fields above the square of the temperature of the system, which
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is certainly the regime that we explore in detail. The resolution we use for magnetic fields

smaller than the square of the temperature was not thought to test the effect of inverse

magnetic catalysis on the chaotic properties of our system, which is a directions worth

exploring in future work.

Our results for the butterfly and entanglement velocity also strongly suggests that

both quantities are very useful tools for diagnosing RG flows. It would be interesting to

investigate the behavior of these quantities under other examples of RG flows.

Another interesting extension of this work would be to consider shock waves in two-

sided black holes as an holographic quench protocol and investigate further the connections

between chaos and spreading of entanglement, following the ideas of [21].
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A Interior extension of the background

Since the equations of motion for the background are degenerated at rH, in the past [45] we

have used a small distance from the horizon as an expansion parameter ε to perturbatively

solve the equations of motion near rH. The perturbative solution is then evaluated at

rp = rH + ε to provide boundary conditions for the numeric integration that is to be done

towards the boundary. To extend this solution to the interior of the horizon in such a

way that it connects smoothly across it, all that needs to be done is evaluate the same

perturbative solution at rp = rH − ε, providing then boundary conditions for the numeric

integration that now will be performed towards the singularity at r = 0. Using the same

perturbative solution, evaluated in the corresponding side of the horizon, to generate the

interior and exterior boundary conditions guaranties that the metric functions are smooth

across the horizon, see figure 14, just as long as the same value for B is used in both cases.

There is a subtlety that is relevant to mention here. The generic solution obtained

in the way just described has an asymptotic behavior for large r given by Ur→∞ → r2,

Vr→∞ → v∞r2 and Wr→∞ → w∞r2, where v∞ and w∞ are constants that differ from

the unit and therefore some scaling has to be done to attain a geometry that approaches

AdS5. As can be seen in [45], the scaling allowed by the equations of motion is given

by Ṽ (r) = V (r)/v∞, B̃ = B/v∞ and W̃ (r) = W (r)/w∞, so the background that actually

approaches AdS5 has an intensity for the magnetic field given by B̃. Once v∞ and w∞ have

been numerically obtained from the exterior solution, the interior solution has to be scale

accordingly and we need to keep in mind that the intensity of the magnetic field is given
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Figure 14. (a) Metric functions U(r) (red) and V (r) = W (r) (blue) for B/T 2 = 0. (b) Metric

functions U(r) (red), V (r) (blue) and W (r) (green) for B/T 2 ≈ 78.006. In both cases the dashed

vertical line corresponds to the horizon.

by B̃. To keep the notation simple, we will refer to this normalized quantity simply as B,

since it is the actual intensity of the field in the gauge theory.

As mentioned in the body of this work, the interior geometry transits from BTZ×R2

close to the horizon, to a black brane solution as we get closer to the singularity. This is

the case because for 0 ≤ B/T 2 <∞, the black brane metric is an attractor as either r →∞
or r → 0 in the equations of motion coming from (2.1), so any solution will approach this

geometry in both limiting regions.19

We will now studying the behavior of the metric functions to show that the transition,

from the BTZ×R2 near horizon geometry to the black brane solution, occurs at a radial

position that gets closer to the singularity as B/T 2 increases.

The BTZ×R2 geometry is given by

UBTZ(r) = 3(r2 − r2
h), VBTZ(r) =

B√
3

and WBTZ(r) = 3r2, (A.1)

while the metric functions for the black brane solutions are given by

UBB (r) =
(
r +

rh
2

)2
(

1−
(

3
2rh
)4(

r + rh
2

)4
)
,

VBB (r) =
4V0

9r2
h

(
r +

rh
2

)2
, (A.2)

WBB (r) =
4

3

(
r +

rh
2

)2
.

The coordinate r in (A.2) has been shifted so that its Hawking temperature is the

same as that of (A.1).

19This can also be confirmed by directly solving the equations of motions close to the boundary and close

to the singularity.
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To study the near horizon behavior we can write (A.1) exactly as

UBTZ(r) = 6rh(r − rh) + 3(r − rh)2,

VBTZ(r) =
B√
3
, (A.3)

WBTZ(r) = 3rh
2 + 6rh(r − rh) + 3(r − rh)2,

and approximate (A.2) by

UBB(r) = 6rh(r − rh)− 2(r − rh)2 +
8

3rh
(r − rh)3 +O(4)

VBB(r) = V0 +
4V0

3rh
(r − rh) +

4V0

9r2
h

(r − rh)2, (A.4)

WBB(r) = 3r2
h + 4rh(r − rh) +

4

3
(r − rh)2,

where the only series that needs higher order corrections is that of UBB. The fact that the

two solutions share the same temperature is now apparent.

Lets start by analyzing U , about which, from the last two sets of equations, we notice

that the leading term for UBTZ and UBB is the same when expanded around the horizon.

Nonetheless, the second term is not only different, but is contrary in sign. The second

derivative of UBTZ is positive at all points between the singularity and the horizon, so an

indicator of a radial position at which the geometry has already departed from BTZ×R2

is the place, that we will call rCross, at which the second derivative becomes negative. In

figure 15 we have plotted our numerical solutions for a number of values of B/T 2 ranging

from 0 to 500, along with (A.1) and (A.2). We have marked the points in which the second

derivative changes signs for each solution, showing that rCross is indeed smaller for plots

with larger B/T 2. In the inset we have plotted rCross as a function of B/T 2 to make explicit

the decreasing nature of this radius with respect to this parameter.

The behavior of W is better analyzed closer to the singularity. From (A.1) we see that

WBTZ remains as 3r2 everywhere, approaching zero at r = 0, but, since the singularity

was shifted in (A.2), WBB approaches r2
H/3. In a logarithmic plot this two behaviors are

clearly separated, so in figure 16 we plot log(W (r)/W (rH)) versus log(r), where the metric

functions was normalized by its value at the horizon to facilitate the comparison. We can

see that as we get closer to the singularity the plots become horizontal, indicating that

the solution is approaching the black brane solution. In this case we proceed conversely,

and determine how far from the singularity the black brane behavior extends, taking as

an arbitrary indicator the point where the solution remains a constant up to one part in

a hundred. By marking this point in each plot of figure 16 we confirm that as B/T 2 gets

smaller, the black brane solution extends closer to the horizon, pushing the transition region

along with it. To bond the transition region from above, we also indicate the evaluation of

each W at the rCross determined from the behavior of its corresponding U . This analysis

also indicates that the BTZ×R2 geometry penetrates further inside the horizon as B/T 2

increases, moving the transition to the black brane behavior closer to the singularity.
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Uprq

r

rCross

B{T 2

Figure 15. The numerical solutions for the metric function U inside the horizon for values of

B/T 2 ≈0, 0.68, 1.4, 2.1, 2.8, 3.6, 4.5, 5.4, 6.4, 7.5, 8.7, 10, 12, 14, 16, 19, 23, 28, 34, 43, 57, 78, 118,

207, 534, are shown in dashed lines from bottom to top. For each solution U we indicated the place

where its second derivative, with respect to r, changes sign, and in the inset we depict the radius

rCross where this change takes place as a function of B/T 2. The bottom solid line is the black brane

solutions and the top solid line is the BTZ×R2.

B Diffusion perpendicular to the magnetic field

All the elements of the conductivity matrix can be computed holographically in a back-

ground solution {GBG
mn, F

BG} by introducing small perturbations of the metric and the

Maxwell field

F = FBG + εdA, Gmn = GBG
mn + εgmn, (B.1)

and solving the equations of motion for dA and gmn to first order in ε. The electric and

thermal currents appearing in (5.2) are then related to first integrals of the equations of

motion of the perturbations. The procedure outlined in [61, 66] indicates that to this end

it suffice to consider a perturbation given by

Ai = tδfi(r) + δai(r),

gti = tδhi(r) + δgti(r),

gri = δgri(r), (B.2)

that can be consistently studied in on our background (2.2) to first order in ε without the

need to perturb any other component of the metric or the gauge potential. In fact, the

perturbations along the direction of the magnetic field and the perturbations along the
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Figure 16. The numerical solutions for the metric function W inside the horizon for values of

B/T 2 ≈0, 0.68, 1.4, 2.1, 2.8, 3.6, 4.5, 5.4, 6.4, 7.5, 8.7, 10, 12, 14, 16, 19, 23, 28, 34, 43, 57, 78, 118,

207, 534, are shown in dashed lines from top to bottom. For each solution W we indicated with a

circle the place up to which, when moving away from the singularity, it remains constant up to one

part in a hundred, and the vertical line indicates where the black brane solution fails to satisfy this

condition. Whit an “x” we mark the evaluation of each function W at the rCross obtained from its

corresponding U in figure 15. The top solid line is the black brane solutions and the diagonal solid

line on the right is the BTZ×R2.

directions perpendicular to the magnetic field decouple. Thus, here we will study only

the directions perpendicular to the magnetic field, being the {x, y} plane in this particular

choice of coordinates.

The resulting equations of motion further decouple in two groups. The first group

couples Ax, gry and gty. Focusing on Ax, Maxwell equations reads

∂r

(
−U
√
W

(
tδf ′x + δa′x +

B
V
δgry

))
+
B
√
W

UV
δhy = 0. (B.3)

The only way the time dependence drops from this equation is to fix δfx to a constant

value which, from the definition of Az, gives the intensity of the driving electric field in the

x-direction

δfx = −Ex. (B.4)

After this choice (B.3) can be immediately integrated, defining a constant quantity which

we identify as the electric current along the x-direction

Jx = −4U
√
W

(
δa′x +

B
V
δgry

)
+ 4

∫ r

rH

B
√
W

UV
δhy. (B.5)
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On the other hand, Einstein equations are

δa′x +
B
V
δgry =

V 2

4BU ∂r
(
δhy
V

)
,

∂r

(
U2
√
W

4
∂r

(
t
δhy
U

+
δgty
U

))
+
B
√
W

V
Ex = 0. (B.6)

The time dependence drops out completely only if δhy is proportional to U . The propor-

tionality constant gives the intensity of the driving thermal gradient in the y-direction

δhy = −ζyU, (B.7)

given that δhy appears on the definition of gty. Then the first equation in (B.6) completely

determinates δgry in terms of δa′x

δgry = −ζy
V 3

4B2U
∂r

(
U

V

)
− V

B δa
′
x. (B.8)

Remarkably, (B.7) and (B.8) solve (B.3). After this choices the equation for gty can be

integrated, from which we obtain the thermal current in the y-direction. The final result is

Jx = ζy

(
V 2
√
W

B ∂r

(
U

V

)
−M(r)

)
,

Qy = −U2
√
W∂r

(
δgty
U

)
− ExM(r), (B.9)

where

M(r) = 4

∫ r

rH

B
√
W

V
, (B.10)

corresponds to the total magnetisation density of the boundary theory as r →∞ [61].

The second group, which involves Ay, gtx and grx, is analogous to the previous one.

That is, time dependence drops out completely if

δfy = −Ey, δhx = −ζxU, (B.11)

which fixes

δgrx =
V

B δa
′
x − ζx

V 3

4B2U
∂r

(
U

V

)
, (B.12)

and thus the currents are given by

Jy = −ζx
(
V 2
√
W

B ∂r

(
U

V

)
+M(r)

)
,

Qx = −U2
√
W∂r

(
δgtx
U

)
+ EyM(r). (B.13)
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After gathering all our results we are left then with the set of perturbations given by

Ax = −Ext+ δax(r),

Ay = −Eyt+ δay(r),

gtx = −ζxtU(r) + δgtx(r),

gty = −ζytU(r) + δgty(r),

grx = δgrx(r),

gry = δgry(r), (B.14)

which components need to satisfy infalling boundary conditions at the horizon

Ax = −Exν, Ay = −Eyν, gtx = U(r)(grx − ζxν), gty = U(r)(gry − ζyν),

(B.15)

where ν is the infalling Eddington-Finklestein coordinate given by

ν = t+
1

4πT
log(r − rH) +O(r − rH). (B.16)

This conditions in turn imply that

δax(r) = − Ex
4πT

log(r − rH) +O(r − rH),

δay(r) = − Ey
4πT

log(r − rH) +O(r − rH),

δgtx(r) = U(r)δgrx(r)− ζxU(r)

4πT
log(r − rH) +O(r − rH),

δgty(r) = U(r)δgry(r)−
ζyU(r)

4πT
log(r − rH) +O(r − rH),

δgtz(r) = O(r − rH)0. (B.17)

The electric and thermal currents can then be expressed in terms of Ei and ζi after

using (B.17) to perform some evaluations at the horizon (also using the fact that V (r) and

W (r) are regular at rH and that U(r) = 4πT (r − rH) near the horizon). The final result is

Jx = ζyT

(
4π
V (rH)

B
√
W (rH)

)
,

Jy = −ζxT
(

4π
V (rH)

B
√
W (rH)

)
,

Qx = −EyT
(

4π
V (rH)

B
√
W (rH)

)
− ζxT

(
4π2T

V (rH)2

B2

√
W (rH)

)
,

Qy = ExT

(
4π
V (rH)

B
√
W (rH)

)
− ζyT

(
4π2T

V (rH)2

B2

√
W (rH)

)
. (B.18)

Another necessary quantity to calculate the diffusion constants is the electric suscep-

tibility, and to compute it we need to perturbatively add

At = δat(r). (B.19)
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It is important to note that even if we decide to turn on (B.2) and (B.19) simultaneously,

both decouple allowing us to analyse them separately. The equation of motion for At
then reads

∂r(−V
√
Wδa′t) = 0, (B.20)

which defines a constant quantity that we identify as the charge density

ρ = −4V
√
Wδa′t. (B.21)

The holographic dictionary relates the chemical potential µ to value of δat at the boundary,

thus integration of (B.21) gives

µ = ρ

∫ ∞
rH

dr

4V
√
W
, (B.22)

from where (5.7) is obtained.

C Eigenvalues of the diffusivity matrix

Following [36] and references therein, the diffusion of charge and energy in a strongly

coupled system can be described by the conservation equations

∂tδρ = −∂iJi, ∂tδs = −∂i
Qi
T
. (C.1)

Here Ji and Qi are the components of the electric and thermal currents described in the

main text, while δρ and δs are perturbations in the charge and entropy density respectively.

To obtain the coupled diffusion equations for δρ and δs it is necessary to consider the

constitutive relations

Ji = −σ̄ij∂jµ− ϑij∂jT,
Qi
T

= −ϑij∂jµ−
1

T
κ̄ij∂jT, (C.2)

that give the electric and thermal currents generated by a given temperature and chem-

ical potential gradient (in the absence of an external electric field). From (C.2) in (C.1)

we obtain

∂tδρ = σ̄ij∂i∂jµ+ ϑij∂i∂jT, ∂tδs = ϑij∂i∂jµ+
1

T
κ̄ij∂i∂jT. (C.3)

The crucial point here is that if the system features a constant magnetic field, which is the

case of interest in this work, then the conductivity matrices in the directions perpendicular

to such field can be decomposed into longitudinal and Hall components in the particular

form σ̄ij = σ̄Lδij + σ̄Hεij . The antisymmetric nature of εij makes it so that the contri-

bution of the Hall components will cancel completely after index contraction with ∂i∂j
in (C.3). The next step is to express the changes of the chemical potential and tempera-

ture in terms of the perturbations of charge and entropy density. This is achieved with the

thermodynamic identity (
δµ

δT

)
=

(
χ ξ

ξ
Cµ
T

)−1(
δρ

δs

)
. (C.4)
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After direct substitution of (C.4) in (C.3) we obtain the diffusion equations for δρ

and δs

∂t

(
δρ

δs

)
= D · ∇2

(
δρ

δs

)
, (C.5)

where D is the diffusion matrix for our system, that using (5.4) can be explicitly written as

D =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 4V (rH)

χ
√
W (rH)

0 0 0

0 0 0 4π2 V (rH)2
√
W (rH)

CµB2 0 0

0 0 0 0 4π2 V (rH)2
√
W (rH)

CµB2 0

0 0 0 0 0 ∞


. (C.6)

Note in particular that given that the longitudinal components of our thermoelectric con-

ductivity matrix are identically zero, ϑ doesn’t enter the diffusion equations at all. As a

result, the diffusion equations are already decoupled and we can read the eigenvalues of D

directly from (C.6).

Of the six eigenvalues of D, only four are independent, and are associated to electric

and thermal diffusion in directions parallel and perpendicular to the magnetic field. We

see that the eigenvalue corresponding to the perpendicular electric diffusion vanishes, so

no electric diffusion occurs in this plane as a result of σ̄xx = σ̄yy = 0. Also, the divergence

of one of the eigenvalue associated to thermal diffusion is a consequence of momentum

conservation along the direction of the magnetic field, coming from the fact that κ̄zz =∞.

The other two eigenvalues, associated to electric and thermal diffusion in parallel and

perpendicular directions respectively, need to be evaluated numerically. One of them is

directly D
‖
c , which relation with the butterfly velocity has already been studied in the

main text. The only quantity that we have not yet computed and is necessary to evaluate

the remaining eigenvalue

D⊥T = 4π2V (rH)2
√
W (rH)

CµB2
, (C.7)

is Cµ, given by

Cµ = T

(
∂s

∂T

)
µ,B

, (C.8)

where as usual the entropy density s is related to the area of the horizon

s = 4πV (rH)
√
W (rH). (C.9)

To compute Cµ we need the derivative of the entropy density with respect to the temper-

ature at fixed chemical potential and magnetic field. Given that in our solutions µ = 0

the former is immediately achieved, while for the latter it is convenient to note that the

entropy density is related to a function H that only depends on the dimensionless ratio
B
T 2 by

s

B 3
2

= H

( B
T 2

)
. (C.10)
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Figure 17. (a) Eigenvalue D⊥T of the diffusion matrix (green curve) and 3
2v

2
B,⊥τL (red curve).

(b) Eigenvalue D⊥T of the diffusion matrix and 3
2v

2
B,⊥τL (blue curve).

The function H can be computed numerically using (C.9). After a little algebra one can

show that the derivative of H is related to the specific heat Cµ by

Cµ = −2B 5
2

T 2
H ′
( B
T 2

)
. (C.11)

In figure 17 we show D⊥T as a function of the dimensionless quantity B/T 2, and compare

it to the butterfly velocity. We conclude that for generic values of B/T 2 this diffusion

eigenvalue is not a good bound for the butterfly velocity along any direction. It is possible

that this is because this eigenvalue has information about both thermal and electric effects

while Dc, as mentioned in the main text, contains information about charge currents only.
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[50] M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl.

Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].

[51] T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.

B 253 (1985) 173 [INSPIRE].

[52] K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995)

721 [hep-th/9408169] [INSPIRE].

[53] M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area Laws in Quantum Systems:

Mutual Information and Correlations, Phys. Rev. Lett. 100 (2008) 070502

[arXiv:0704.3906] [INSPIRE].

[54] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[55] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[56] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole

Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

[57] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems,

Phys. Rev. D 89 (2014) 066012 [arXiv:1311.1200] [INSPIRE].

[58] H. Liu and S.J. Suh, Entanglement Tsunami: Universal Scaling in Holographic

Thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:1305.7244] [INSPIRE].

[59] M. Mezei, On entanglement spreading from holography, JHEP 05 (2017) 064

[arXiv:1612.00082] [INSPIRE].

[60] A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity of Magnetised

Holographic Matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].

[61] M. Blake, A. Donos and N. Lohitsiri, Magnetothermoelectric Response from Holography,

JHEP 08 (2015) 124 [arXiv:1502.03789] [INSPIRE].

[62] K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric Conductivities at Finite

Magnetic Field and the Nernst Effect, JHEP 07 (2015) 027 [arXiv:1502.05386] [INSPIRE].

[63] S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76

(2007) 066001 [arXiv:0704.1160] [INSPIRE].

– 43 –

https://doi.org/10.1007/JHEP10(2016)158
https://arxiv.org/abs/1606.03068
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.03068
https://doi.org/10.1007/JHEP11(2017)104
https://arxiv.org/abs/1703.03428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.03428
https://doi.org/10.1007/JHEP03(2016)164
https://arxiv.org/abs/1601.02125
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02125
https://doi.org/10.1007/JHEP04(2017)067
https://arxiv.org/abs/1701.05565
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05565
https://doi.org/10.1103/PhysRevD.98.026004
https://arxiv.org/abs/1803.01754
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.01754
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1016/S0550-3213(99)00419-8
https://arxiv.org/abs/hep-th/9903214
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903214
https://doi.org/10.1016/0550-3213(85)90525-5
https://doi.org/10.1016/0550-3213(85)90525-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B253,173%22
https://doi.org/10.1016/0550-3213(94)00573-W
https://doi.org/10.1016/0550-3213(94)00573-W
https://arxiv.org/abs/hep-th/9408169
https://inspirehep.net/search?p=find+EPRINT+hep-th/9408169
https://doi.org/10.1103/PhysRevLett.100.070502
https://arxiv.org/abs/0704.3906
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3906
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
https://doi.org/10.1007/JHEP05(2013)014
https://arxiv.org/abs/1303.1080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1080
https://doi.org/10.1103/PhysRevD.89.066012
https://arxiv.org/abs/1311.1200
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1200
https://doi.org/10.1103/PhysRevLett.112.011601
https://arxiv.org/abs/1305.7244
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7244
https://doi.org/10.1007/JHEP05(2017)064
https://arxiv.org/abs/1612.00082
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00082
https://doi.org/10.1007/JHEP01(2016)113
https://arxiv.org/abs/1511.00713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00713
https://doi.org/10.1007/JHEP08(2015)124
https://arxiv.org/abs/1502.03789
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03789
https://doi.org/10.1007/JHEP07(2015)027
https://arxiv.org/abs/1502.05386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05386
https://doi.org/10.1103/PhysRevD.76.066001
https://doi.org/10.1103/PhysRevD.76.066001
https://arxiv.org/abs/0704.1160
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1160


J
H
E
P
0
9
(
2
0
1
8
)
1
3
1

[64] S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near

quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B 76

(2007) 144502 [arXiv:0706.3215] [INSPIRE].
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