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1 Introduction

Often one can construct conformal field theories as fixed point models of several different

RG flows. RG flows might explicitly exhibit some of the properties of the fixed point

CFT while other properties might only emerge in the deep IR. These explicitly exhibited

properties can be very different depending on the flow.

A very rich plethora of examples of flows, terminating in interesting conformal field

theories in four dimensions with some supersymmetry, is given by compactifications of

(1, 0) theories on Riemann surfaces. The compactification depends first on the chosen

(1, 0) model of which we have a wide but controlled variety of examples [1–3]. The CFTs

inherit symmetry properties of the six dimensional model preserved by the details of the

compactification. The details which can have an effect on the symmetry are the back-

ground gauge fields one can turn on. These involve holonomies and fluxes, with the latter

giving a discrete set of different models while the former often parametrizing the conformal

manifolds of the fixed point. In some cases the same CFT can be obtained as an IR descrip-

tion of a UV complete four dimensional asymptotically free theory. This description might

exhibit the same symmetry properties as the flow starting with six dimensional model, or

they can appear only in the IR. In this paper we discuss a huge variety of examples of such

relations between six dimensional and four dimensional flows.

In particular we consider compactifications of (G, G̃) conformal matter on a torus

with flux for the global symmetry for the cases when G is the same as G̃. These models

can be engineered as the low energy description of M5 branes probing transverse G type

singularity of the corresponding ALE space. Such compactifications were considered before

for various special instances of G. For example, A0 [4–6], A [7–9], D [10, 11], and ADE on
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Figure 1. Compactification on a torus in six dimensions with flux F for the global symmetry is

constructed as a combination of blocks. Each block is associated with a tube and flux Fj such that∑
Fj = F . The blocks are obtained by first going to five dimensions, considering then interfaces

Bj , and then compactifying on an additional circle. This provides a systematic way to construct

compactifications.

a torus with no flux [12–14]. Here we will perform a uniform analysis for all ADE cases with

flux in the G ×G symmetry by realizing that there is a natural way to get the models in

four dimensions by first going through five dimensions. In five dimensions the theories are

given by G type affine quiver theories when the six dimensional models are put on a circle

with proper choices of holonomies. We will argue that the flux for the global symmetry

can be obtained in five dimensions as a sequence of duality interfaces relating affine quiver

models with different mass parameters. The non obvious part of the statement is to find the

description of the four dimensional theories living on the interfaces. In the cases relevant

for us we will identify these as constructed from weakly coupled fields. Upon reduction

to four dimensions we then will obtain theories having Lagrangians. These involve pairs

of quiver theories in the shape of affine Dynkin diagrams with N = 1 matter content and

where the links of the quiver are chiral bifundamentals. We will discover that there are

certain choices which define the interface theory, which in turn determine the details of the

chiral matter content of the theory. Altogether there are 2Rank(G) independent choices

and they correspond to fluxes which we believe will cover arbitrary flux in the G×G global

symmetry, as long as the flux is integral.1 We show that this is indeed the case in many

examples. It would be interesting to clarify whether we get all possible fluxes in this way

which we leave for future work. In the (A,A) case there is an additional U(1) and we do not

know how to construct interfaces corresponding to it. In fact the flux in the U(1) symmetry

of class S, that is A0 compactification, do not have known weakly coupled Lagrangian, see

for example [9, 15, 16], so we expect naively this should be rather non-trivial in general.

We will engineer theories corresponding to compactification on torus with flux F by

combining together block theories to which we associate flux Fi such that
∑

j Fj = F .

See figure 1. The block theories will exhibit only abelian symmetries corresponding to the

Cartan of the six dimensional model. For general values of flux this is also the expected

1By integral flux, we mean fluxes obeying the flux quantization condition. It is possible to also have

fluxes that do not obey the quantization condition, which we shall refer to as fractional fluxes, if they are

accompanied by additional elements compensating for it, see [10] for examples and details.
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symmetry of the theory compactified on the torus. However, for special values of flux

the symmetry will contain non abelian factors. The typical situation for us is that we

have a conformal manifold for the corresponding conformal theories each having (or arising

from the IR limit of) weak coupling gauge theories, involving distinct quiver like theories.

In some cases the dynamics of the gauge theories turns out to be rather interesting. For

example, a way to view the quiver theories will be as a sequence of flows starting from weak

coupled UV free theory flowing to IR which is strongly coupled, and then gauging additional

global symmetries. The enhancement to the non abelian symmetry will emerge in this way

of obtaining the models only at certain strongly coupled points. We will thus define a

dictionary between four dimensional quiver theories and six dimensional compactifications.

The check of this dictionary will involve anomaly computations and observation of the

expected symmetry. Moreover, for the consistency of the considerations certain dualities

should hold true. In some cases these are well known IR equivalences, while in other we

will obtain novel types of dualities.

Let us here mention an important puzzle we do not resolve in this paper. Although

our procedure passes all the tests for closed Riemann surfaces and tubes with integer flux,

our basic minimal blocks, naively associated to tubes with fractional flux, do not pass

the check of anomaly matching with six dimensional computation. There are two possible

resolutions of this puzzle. One is that the minimal blocks do not correspond to tubes and

only combining several of them such that the flux is integer corresponds to a tube. Second

would be that there are subtleties with anomaly computation that we miss. We will define

precisely our conjectures and leave this interesting puzzle for future work.

This paper is a third in a sequence following [10] and [11]. In the former we analyzed

the case of D4 minimal conformal matter, rank one E-string, on a torus and on general

surfaces. The latter discussed minimal D conformal matter on a torus but using a different

five dimensional description than we do here. The different five dimensional descriptions

lead to the interesting novel dualities we have mentioned.

The paper is organized as follows. In section 2 we discuss the six dimensional models

and general issues of their reduction to five dimensions. In section 3 we discuss the six

dimensional models on a circle. We will discuss the interface models and formulate the

general conjecture of the relation of these to compactifications down on an additional circle.

In section 4 we perform checks of the conjecture in four dimensions.

2 Six dimensions

We consider the 6d SCFT living on N M5-branes probing a transverse C2/Γ singularity.

Here Γ is a discrete subgroup of SU(2), which is known to have an ADE classification. We

shall use the notation G for the ADE Lie group associated with Γ.

We next summarize some of the properties of these SCFTs that will be useful later.

The most important property of the SCFTs that we need is their global symmetries. The

Lie algebra of the global symmetry of these SCFTs is known to be G×G, with the A case

having an extra U(1).2 To get a better understanding of both the global structure, and

2The symmetry is also enhanced in some special cases, as will become apparent from the low-energy

gauge theory descriptions of these SCFTs that shall be discussed momentarily.
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the 4d expectations from the compactification, we should also consider some elements of

the operator spectrum of these theories.

For this it is useful to consider a different representation of these SCFTs. Besides the

string theory construction, these theories can also be realized as UV completions of gauge

or semi-gauge quiver theories, which can be employed to uncover some of their properties.

In this description a special role is played by the N = 1 cases, the so called minimal (G,G)

conformal matter [2]. The reason for that is that the generic N cases can be built by

taking N minimal (G,G) conformal matter theories and connecting them by gauging the

symmetry G.

For example, take the Ak−1 case. Here the N = 1 case is just a theory of k2 free

hypermultiplets, that can be grouped to form an SU(k) × SU(k) bifundamental. The

N = 2 case is then given by taking two such bifundamentals and connecting them by

identifying and gauging an SU(k) group. This leads to the 6d gauge theory SU(k) with

2k fundamental hypermultiplets. For generic N we have N bifundamentals connected via

SU(k) gauging, leading to the 6d quiver gauge theory containing N−1 SU(k) gauge groups

connected by bifundamental hypermultiplets, with k fundamental hypermultiplets for each

of the groups at the ends of the quiver.

In the Dk case, the minimal conformal matter theory is a USp(2k − 8) gauge theory

with 2k hypermultiplets in the fundamental representation. Therefore, the general N case is

now an alternating SO−USp 6d quiver gauge theory. The low-energy description for the E

theories can also be constructed in this way, though the minimal conformal matter theories

get progressively more involved. We refer the reader to [2] for a complete description of

the low-energy theories for every G.

From the low-energy descriptions it is possible to read some of the operator spectrum

of the SCFTs, where we shall concentrate on the feature shared for every G. First there

are the moment map operators, which contain a scalar in the adjoint of G × G and in

the 3 of SU(2)R, the R-symmetry of the theory. Additionally, all the SCFTs contain a

bifundamental scalar operator in the (FG,FG) of G × G where FG is the fundamental

representation of G. This operator transform in the NpG + 1 dimensional representation

of SU(2)R, where pG is a group dependent constant whose values for the various groups is

given in table 1.

Besides these, there are various other operators which are group specific. For instance,

in the A case we naively have baryon operators.3 In the D case, it is known that the

minimal conformal matter theory possesses a non-perturbative state in the spinor of the

SO group [11, 18], and it is thus expected to lead to bispinor states in the non-minimal

case. While it may be interesting to gain a better understanding of the operator spectrum

of these SCFTs, we shall not follow this further here.

One interesting observation that follows from our studies so far is that the global

symmetry group of these SCFTs appear to be G×G
ZG

. Here ZG stands for the center of G,

and the modded group is the diagonal center of the two groups. For the readers convenience

we have summarized these discrete groups for the relevant choices of G in table 1.

3For a study of the Higgs branch chiral ring operators in the A type case, which are an interesting subset

of the operators of the SCFT, see [17].
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SU(k) SO(2k) E6 E7 E8

pG 1 2 4 6 12

ZG Zk
Z2 × Z2, k even

Z4, k odd
Z3 Z2 1

|Γ| k 4k − 8 24 48 120

rG k − 1 k 6 7 8

dG k2 − 1 k(2k − 1) 78 133 248

dF
1
2 1 3 6 30

tG 2k 2k − 8 0 0 0

uG 2 4 6 8 12

h∨ k 2k − 2 12 18 30

Table 1. Various data used in this paper. Here ZG, rG, and dG are the center, rank and dimension

of the group G respectively. |Γ| is the order of the finite group Γ. dF and h∨ are the Dynkin index

of the fundamental representation and the dual Coxeter number of the group G. pG, tG and uG are

various group dependent constants.

Anomalies from 6d. We can estimate the anomalies of the 4d theories resulting from

the compactification of the 6d theory, using the anomaly polynomial of the 6d SCFT. For

that we first need the expression for it, which was evaluated in [19]. The result can be

written down for any group G where it reads:

I =
1

24
(|Γ|2N3 − 2N(|Γ|rG + |Γ| − 1) + dG − 1)C2

2 (R)

− 1

48
(N(|Γ|rG + |Γ| − 2)− dG + 1)p1(T )C2(R) (2.1)

− (|Γ|N − h∨)

4dF
C2(R) (C2(G1)F + C2(G2)F) +

h∨

48dF
p1(T ) (C2(G1)F + C2(G2)F)

+
(36NuG + d2

FNtG − 3)

24Nd2
F

(
C2

2 (G1)F + C2
2 (G2)F

)
− 1

4Nd2
F

C2(G1)FC2(G2)F

− tG
12

(C4(G1)F + C4(G2)F) +
(30N + 7dG − 23)p2

1(T )− 4(30N + dG − 29)p2(T )

5760

Here C2(R) stands for the second Chern class in the fundamental representation of

SU(2)R, and p1(T ), p2(T ) stand for the first and second Pontryagin classes respectively.

We also employ the notation Cn(G)R for the n-th Chern class of the global symmetry G,

evaluated in the representation R (here F stands for fundamental). The rest of the symbols

are various group theoretic constants whose values are given in table 1.

Here we only write the anomalies for symmetries that appear generically. As previously

mentioned, in the A case there is an extra U(1) and the expression can be extended to

include it. This case was studied extensively in [9], and we refer the reader there for more

information.
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We next consider compactifying the theory on a torus and turning on non-trivial flux

under various U(1) subgroups of the global symmetry G×G. By integrating the anomaly

polynomial 8-form of the 6d theory on the Riemann surface we get the anomaly polynomial

6-form of the resulting 4d theory [5].

To do this we first need to decompose the various characteristic classes to those of the

symmetries preserved in the presence of flux. First, the flux breaks half of the supersym-

metry so that out of the original 8 supercharges only 4 remain. This corresponds to N = 1

in 4d. This also leads to the SU(2)R symmetry of the 6d theory being broken down to its

U(1) Cartan, which becomes an R-symmetry in 4d. At the level of characteristic classes,

these two are related by C2(R) = −C2
1 (R).

We also need to decompose the flavor symmetry characteristic classes to those of the

symmetry preserved by the flux. In general, a symmetry G is broken to G→ (
∏

U(1)i)×
(
∏
G′a), where G′a are assumed to be non-abelian. In that case we can decompose:

C2(G)F = −2
∑
i,j

ξijC1(U(1)i)C1(U(1)j) +
∑
a

iaC2(G′a)F, (2.2)

C4(G)F = −2
∑
i,j,k,l

λijklC1(U(1)i)C1(U(1)j)C1(U(1)k)C1(U(1)l) (2.3)

+
∑
i,j

∑
a

τaijC1(U(1)i)C1(U(1)j)C2(G′a)F +
∑
i

∑
a

ρaiC1(U(1)i)C3(G′a)F + . . . ,

with the additional terms integrating to zero.

We next need to take the flux into account. This is done by setting C1(U(1)i) =

−zit + εiC1(R) + C1(U(1)4d
i ), where t is a unit 2-form on the torus. The first term then

takes the flux into account as
∫
T 2 C1(U(1)4d

i ) = −zi. The other terms then account for the

4d curvature of the U(1), particularly the third term. The second term can be introduced

to take account of the possible mixing of the U(1) with the R-symmetry. With this terms

C1(R) measures the curvature of U(1)6d
R +

∑
i εiU(1)4d

i . If one desires, the anomalies for

the superconformal R-symmetry can be evaluated this way, with εi determined via a-

maximization.

All that remains is to evaluate the various constants appearing in the decomposition

and perform the integration. We will not detail these computations as they are quite

straightforward. In what follows we will only quote the result in various specific instances of

various reductions from six dimensions. Reader interested in more details on the integration

of anomaly polynomials from six to four dimensions can consult for example [5] and [8, 10].

3 Five dimensions

Let us consider 6d (G,G) conformal matter theories compactified on a long cylinder. When

the circle radius is small and with certain choices of holonomies for the global symmetries,

the conformal matter theories reduce to affine ADE quiver gauge theories in 5d [2]. We

can also consider flavor flux along the cylinder in 6d. As studied in [10, 11, 20], the 6d flux

introduces interfaces, which we call flux domain walls, in the 5d gauge theories. In this

section, we propose Lagrangian constructions of these flux domain walls in the 5d quiver
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gauge theories. The five dimensional models then will be compactified to four dimensions

leading to Lagrangians for torus or tube compactifications of the conformal matters.

3.1 A-type domain walls

We begin with flux domain walls in affine Ak−1 quiver gauge theories. For N M5-branes, the

5d theory is a circular quiver gauge theory consisting of k SU(N) gauge groups connected

via bifundamental hypermultiplets of SU(N)i × SU(N)i+1 symmetry (with SU(N)k+1 =

SU(N)1). Classically, this theory has U(1)k flavor symmetries of k bifundamental hy-

permultiplets and U(1)k topological instanton symmetries for the k gauge nodes. We

however expect that these classical abelian symmetries, when combined together, enhance

in the UV to the SU(k)β × SU(k)γ × U(1)t symmetry of the 6d (SU(k)β , SU(k)γ) con-

formal matter theory by quantum instanton states. Here one U(1) global symmetry is

identified with the Kaluza-Klein (KK) symmetry along the 6d circle which will be ignored

in what follows. In our notation, the i-th bifundamental hypermultiplet carries charges

(Qβi , Qγi , t) = (1,−1, 1) under the U(1)βi × U(1)γi × U(1)t ⊂ SU(k)β × SU(k)γ × U(1)t
flavor symmetry.

Interfaces. Domain walls in 5d theories can be constructed by joining two 5d theories

by a certain 4d interface which is defined with boundary conditions of 5d fields and their

couplings to extra degrees of freedom living at the interface. Since the 6d fluxes we are

interested in preserve one half of the supersymmetries, the corresponding flux domain walls

in 5d must be 1/2 BPS domain walls. We first suggest a type of 4d interfaces which can

consistently couple to 5d 1/2 BPS boundary conditions and then identify this domain wall

configuration with the flux domain wall of the 6d theory. The domain wall construction

discussed in this subsection works also for other domain walls in the D- and E-type cases

with minor changes.

The first step is to impose 1/2 BPS boundary conditions at the interface (x4 = 0) for

5d theories of the two chambers x4 < 0 and x4 > 0 respectively. We will choose Neumann

boundary condition for the vector multiplets which sets the gauge fields at x4 = 0 as

∂4Aµ = 0 (µ = 0, 1, 2, 3) , A4 = 0 . (3.1)

The 5d vector multiplets with this boundary condition reduce to 4d N = 1 vector multiplets

at x4 = 0. Therefore, we have G×G′ gauge symmetries at the interface coming from the

5d gauge fields in the left chamber (for G = SU(N)k) and in the right chamber (for

G′ = SU(N)′k) respectively. For non-minimal D and E cases which we will discuss later,

the gauge symmetry at the interface is a pair of two affine D- and E-type quiver gauge

symmetries, respectively. When N = 1, on the other hand, the SU(1) gauge nodes in the

affine quiver diagrams are replaced by two fundamental hypermultiplets for the adjacent

gauge nodes.

For each bifundamental hypermultiplet with scalar fields Φ = (X,Y ), we have two

choices of boundary conditions:

1) ∂4X = Y = 0 or 2) ∂4Y = X = 0 . (3.2)

– 7 –
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Under this 1/2 BPS boundary condition, a 5d hypermultiplet reduces to a 4d N = 1

chiral multiplet at x4 = 0 involving the scalar field, X or Y , with Neumann boundary

condition. We will denote the first boundary condition by + sign and the second boundary

condition by − sign. So the boundary condition of k bifundamental matters is labeled by

a vector B = {s1, s2, · · · , sk} with k signs si = ±. Since there are two 5d theories ending

on the interface from both sides, we need a set of boundary conditions (B,B′) for the 5d

hypermultiplets in the first and the second chambers of the 5d theory. For our domain

walls, we shall impose the same boundary conditions B = B′.
We now couple 4d degrees of freedom at the interface to the 5d boundary conditions.

First, we introduce at the interface 4d chiral multiplets qi in (N̄,N) representation of

SU(N)i × SU(N)′i symmetry for i = 1, 2, · · · , k. In addition, we add 4d bifundamental

chirals q̃i of SU(N)i+1 × SU(N)′i or SU(N)i × SU(N)′i+1 coupled to the other fields by the

cubic superpotential of the forms

Wx4=0 =
∑
i=+

(
q̃iqiXi + qi+1q̃iX

′
i

)
+
∑
i=−

(
Yiq̃iqi+1 + Y ′i qiq̃i

)
, (3.3)

where Xi, Yj and X ′i, Y
′
j stand for the 4d chiral multiplets involving 5d bifundamental

scalars with Neumann boundary condition in the first and the second chambers, respec-

tively. This superpotential equates the boundary conditions on two sides, i.e. B = B′,
as expected. Lastly, we add flip chiral fields coupled to the baryonic operators of the 4d

chirals qi. We wish to remind the reader that the flip field φO for the operator O is a gauge

singlet chiral field which couples to O through a superpotential, δW = φOO. The effect

of adding such a field is that the operator O is set to zero in the chiral ring. Note also

that the charges under flavor symmetries of φO are opposite to those of O and that is the

reason for the name flip field.

We can also consider similar domain walls by replacing the representations of 4d chiral

fields qi by (N, N̄) and by coupling 4d fields qi and q̃i to the 5d boundary conditions through

the superpotential of the form (3.3) accordingly. We remark here that these two choices

of 4d fields qi in either (N̄,N) or (N, N̄) lead to two different types of domain walls: the

former gives domain walls for the flux on SU(k)β , and the latter leads to domain walls for

the flux on SU(k)γ . We will distinguish these two types of domain walls by the subscript

T = β or γ. We will first discuss the domain walls for T = β with qi in (N̄,N) and then

discuss the domain walls for T = γ with qi in (N, N̄) later.

Figure 2 depicts two domain wall examples with boundary conditions B={+,+,+,−,−}
and B = {+,−,+,−,−} in the A4 quiver gauge theory. There are cubic superpotentials of

the form (3.3) for the triangles in the quiver diagrams. The boxes in the quiver diagrams

represent the G×G′ symmetries at the interface and these symmetries will be gauged by

the 5d vector multiplets with Neumann boundary condition in two chambers.4

The boundary conditions and the 4d couplings at the interface define a domain wall

in the 5d gauge theory. Let us now check if this domain wall is consistent with the 5d

4We shall generically use boxes for 4d global symmetries and circles for gauge symmetries. When

discussing interfaces in 5d we use boxes for symmetries gauged by 5d vector multiplets as, later when we

discuss the reduction to 4d on intervals, these become 4d global symmetries.

– 8 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
0

q1

q2

q3

q4

q5

q̃5

q̃4

q̃3

q̃2

q̃1

q1

q2

q3

q4

q5

q̃5

q̃4

q̃3

q̃2

q̃1

Figure 2. Quiver diagrams for the domain walls in the A4 quiver gauge theory. The domain wall

on the left is for the boundary condition B = {+,+,+,−,−} and the domain wall on the right is

for B = {+,−,+,−,−}. The square boxes denote the SU(N)5 × SU(N)′5 gauge symmetries of 5d

gauge theories on both sides of the walls. The symbol × denotes flip fields coupled to the baryonic

operator made from qi.

gauge theory. The boundary conditions of the 5d bulk fields induce non-trivial 4d gauge

anomalies at the interface. For being a consistent domain wall, these gauge anomalies must

be canceled by the extra 4d fields living on the boundary.

Let us first discuss cubic anomalies of the SU(N)k gauge symmetries. The i-th hy-

permultiplet with boundary condition si = ± leaves a bifundamental chiral multiplet of

SU(N)i×SU(N)i+1 gauge symmetry at the boundary. This chiral multiplet leads to cubic

gauge anomalies of the SU(N)i and SU(N)i+1 symmetries given by

Tr(SU(N)3
i ) =

siN

2
, T r(SU(N)3

i+1) = −siN
2

. (3.4)

Remember that we always need to multiply by the factor 1
2 to all anomaly contributions

from the 5d hypermultiplets at boundaries [21–23]. This comes from the fact that the

anomaly contributions of a chiral multiplet coming from the 5d boundary condition equals

one half of those from a 4d chiral multiplet with the same charges.

We also need to take into account the anomalies from the 4d bifundamental chi-

ral multiplets qi and q̃j . The 4d chiral field qi contributes to the SU(N)i anomaly as

Tr(SU(N)3
i ) = −N . Another chiral field q̃i has cubic gauge anomaly Tr(SU(N)i+1) = N

for si = + and Tr(SU(N)i) = N for si = −. One can easily see that the total cubic gauge

anomalies in the domain wall vanish when we sum over all anomaly contributions from the

boundary conditions and the 4d chiral multiplets. The cubic gauge anomalies of SU(N)′i
in the other chamber are canceled in the same way.

We then move on to the gauge-global mixed anomalies at the interface. Firstly, there

are anomaly inflow contributions from the 5d bulk gauge theory. The boundary condition

of the i-th bifundamental hypermultiplet with si in the first chamber induces the following
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anomalies at the boundary

Tr(U(1)tSU(N)2
i ) = Tr(U(1)tSU(N)2

i+1) =
siN

4
,

T r(U(1)βiSU(N)2
i ) = Tr(U(1)βiSU(N)2

i+1) =
siN

4
,

T r(U(1)γiSU(N)2
i ) = Tr(U(1)γiSU(N)2

i+1) = −siN
4

, (3.5)

with
∑

i U(1)βi =
∑

i U(1)γi = 0. Also, the 5d SU(N)i vector multiplet with Neumann

boundary condition leads to the anomaly inflow contributions toward the 4d boundary as

Tr(U(1)RSU(N)2
i ) =

N

2
, (3.6)

where U(1)R ⊂ SU(2)R.

In addition, there are anomaly inflows from the gauge kinetic terms 4π2

g2i
Tr(F 2

i ). These

terms can be considered as the 5d N = 1 mixed Chern-Simons terms between the U(1)Ii
instanton symmetry and the SU(N)i gauge symmetry with background scalar field 4π2

g2i
in

the U(1)Ii vector multiplet. In the presence of the 4d boundary, these CS-terms generate

anomaly inflows toward the boundary.

It should be noted that the contribution of this term is novel in this construction, and

did not appear in previous discussions of 5d domain walls in relation to the compactifica-

tions of 6d SCFTs to 4d, like in [10, 11]. The distinguishing feature in the cases discussed

here is that the 5d gauge theories contain more then one gauge group. Generically the

topological symmetries of the 5d gauge theory, together with the flavor symmetry, appear

to form an affine version of the global symmetry of the SCFT, where the affine extension

being associated with the Kaluza-Klein tower of the 5d conserved current, which is ex-

pected to build the 6d one. Therefore, these contain one additional U(1) which does not

survive the 4d reduction. In cases with a single gauge group in 5d, the topological U(1)

is usually related to this symmetry, and so the contribution of the gauge kinetic term is

unneeded as we are only concerned with anomalies of 4d symmetries after the 4d reduc-

tion. However, in the cases we consider here, the 5d gauge theory has many gauge groups,

and their topological symmetry should be related to symmetries appearing in 4d, with the

exception of one combination. Therefore, the 5d gauge kinetic terms should contribute to

the anomalies of the 4d theories and must be taken into account. In fact, the 4d chiral

fields qi and q̃i also carry the charges of this Kaluza-Klein symmetry and these charges are

uniquely fixed by the gauge-global mixed anomaly cancellation and cubic superpotential

terms. We will however ignore these charges as we are interested only in 4d symmetries.

The instanton number Ii and the baryon symmetry Bi for the i-th gauge node are

related to the Cartan generators Hi,± of the enhanced SU(k)×SU(k) symmetry as [24, 25]

Hi,± =
1

4

∑
j

AijIj ±
Bi
2N

, (3.7)
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where Aij is the Cartan matrix of Ak−1 symmetry. The mass parameters mi,± for the Car-

tans Hi,± are associated to the gauge couplings gi and the mass parameters mB,i for Bi as

8π2

g2
i

=
1

2

∑
i

Aij(mj,+ +mj,−) , mB,i =
mi,+ −mi,−

Ni
, (3.8)

where Ni is h∨i for i-th gauge node. This implies that the kinetic term for the SU(N)i
symmetry induces the 4d anomaly inflows as

Tr(U(1)βiSU(N)2
i ) = Tr(U(1)γiSU(N)2

i ) =
N

4
,

T r(U(1)βiSU(N)2
i+1) = Tr(U(1)γiSU(N)2

i+1) = −N
4
. (3.9)

We have similar anomaly inflow contributions for the SU(N)′i gauge symmetries from the

5d boundary conditions in the other chamber.

The bulk contributions to the gauge-global mixed anomalies are not canceled by them-

selves, so the U(1)βi and U(1)γi symmetries will be broken unless these anomalies are can-

celed by those from the 4d fields at the interface. It turns out that all the U(1) flavor

symmetry charges of the 4d chiral multiplets at the interface are uniquely fixed by requir-

ing that all the Cartans of SU(k)β×SU(k)γ×U(1)t are gauge anomaly free, and that there

are no additional flavor symmetries together with the superpotential constraints, with the

exception of the two cases with the most symmetric boundary conditions, i.e. si = + or

si = − for all i’s. We demand this property for the domain walls realizing the 6d flux be-

cause the 6d flux compactified on a circle breaks no Cartans of the flavor symmetry. Under

this requirement, for example, U(1)R charges for the 4d chiral multiplets qi and q̃i are fixed

to be 0 and +1 respectively. Two examples of domain walls in the A4 quiver theory are

presented in figure 3. Here the U(1) charges of the 4d fields, which are determined by this

requirement, are denoted by the U(1)k−1
β ×U(1)k−1

γ ×U(1)t fugacities.

On the other hand, when B = (+,+,+, · · · ,+) or B = (−,−,−, · · · ,−) (so when

B is the most symmetric), we find that there exists an additional U(1) global symmetry

apart from the bulk symmetry which does not arise from the circle reduction of the 6d

theory with flux. Thus, we lose an interpretation for the most symmetric cases as a

compactification of the six dimensional theory with flux. So we will not discuss the most

symmetric boundary conditions from now on, however see the next section for a possible

roundabout interpretation in four dimensions.

The relation between four and six dimensions. We have constructed consistent

domain wall configurations for 5d boundary condition B’s. Let us now relate these domain

walls in the 5d gauge theory to the 6d theory compactified on a 2d surface with flux.

We note that this domain wall permutes the U(1) global symmetries of the 5d theory.

More precisely, when we pass through it, the U(1)βi symmetries acting on the hypermul-

tiplets with the ‘+’ boundary condition are cyclically permuted among themselves, and

similarly the U(1)βj symmetries on the hypermultiplets with ‘−’ boundary condition are

permuted. We will label such permutations for U(1)k−1
β and U(1)k−1

γ by σβ and σγ respec-

tively. For a given B, the σβ(B) is defined as a clockwise permutation of U(1)βi symmetries
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Figure 3. Domain walls for B = {+,+,+,−,−} (left) and B = {+,−,+,−,−} (right). The U(1)

global charges of the 4d chiral fields denoted by their fugacities are fixed by the gauge-global mixed

anomaly cancellation and superpotential terms. Here the permutation σβ = (1 2 3)( 4 5) and

σγ = ∅ for the left tube. For the right tube σβ = ( 1 3 )(2 5 4 ) amd σγ = ∅.

with si = + and a counterclockwise permutation of U(1)βj symmetries with sj = −. The

permutation σγ(B) is trivial for the above domain walls involving the 4d chiral fields qi
with representations associated with the choice T = β. As we will propose soon, these do-

main walls are associated to SU(k)β flux in 6d. We will construct another type of domain

walls with non-trivial σγ(B) below which come with 4d fields qi of other type with T = γ.

Note however that the permutations will not specify the domain wall model in a unique

way. This is because the permutations are invariant under cyclic permutations of + and −,

whereas the corresponding interface theories are different.

The definition of the permutations coming with the interfaces theory suffices for us to

make the basic statement about relation of the interface models and compactifications to

four dimensions. We conjecture the following:

Conjectures

1. A flux domain wall with total flux Ftot in the 5d affine G quiver theory on a circle

realizes the 6d (G,G) conformal matter theory with flux Ftot on a torus.

2. When
∏l
i=1 σ

ti = 1, the flux domain wall with total flux Ftot in the 5d affine G quiver

theory on an interval realizes the 6d (G,G) conformal matter theory with flux Ftot

on a cylinder.

Here, G = Ak for A-type domain walls and we defined σti = (σβ(Bi), σγ(Bi)) for i-th

domain wall with boundary condition Bi. We will propose the same conjectures also with

G = Dk, Ek for D-type and E-type flux domain walls which will be discussed below in detail.

The flux of the single domain wall, which we will call basic domain wall, is to be

computed soon and the precise procedure to glue tubes together will be discussed. The total
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flux Ftot will be the sum of the contributions from each domain wall with the permutation

of the symmetries properly considered. Therefore, even when we naively connect a domain

wall to a copy of itself, as we are required to permute the symmetries, the flux we shall

associate with the resulting domain wall is not twice the flux of the original one. Also

when closing a tube on itself, to make a torus compactification, some symmetries may be

broken. This then forces the flux to distribute accordingly, eliminating the flux from broken

symmetries. As a result the flux associated with the closed surfaces may not be the same

as the one associated with the tube when symmetries are broken upon closing the surface.

For combinations of the domain walls which do not satisfy the condition,
∏n
j=1 σ

tj = 1,

in particular the basic domain wall, we do not have a suggestion for the Riemann surface it

is to be associated with. We merely use the basic walls as building blocks for constructing

theories which we can identify with the compactifications. There are several reasons we

do not make claims about the basic walls and we will discuss them here. First, we have

not found an association of the flux to the basic domain wall such that the anomalies will

agree with the six dimensional computation. This can be because either the walls not

satisfying the condition do not correspond to compactifications or that there are subtleties

with the computation of anomalies we miss. Another issue is that, as we will see soon,

there is a natural way to associate flux to the basic blocks such that for surfaces satisfying

the conditions given above, the anomalies of the 4d theories agree with the computations

of anomalies from 6d. This flux however for a single wall is not properly quantized, which

again hints that there is an issue with treating basic walls as arising in compactifications.

Here we should mention that improperly quantized fluxes for surfaces with punctures have

occurred before [8, 10]. While it is important to resolve the fate of the basic tubes and

the way they can be related to compactification, we will leave this for the future. Here we

stress again that we only claim the statements appearing in the conjectures.5

We also mention that we can construct different looking theories which are associated

to the same flux. If our procedure is correct all such theories should be dual to each

other. Such examples are easy to construct, for example by gluing tubes with small flux

in different order to form a tube with bigger flux in certain cases, and the dualities can

be easily checked by computing indices and anomalies. We will refrain from explicitly

detailing such computations for the sake of brevity, however we do stress that in a large

variety of cases where we made these checks our procedure was found to be consistent.

Below we will provide evidence for these conjectures with examples by comparing

anomalies of the 5d theory with flux domain walls against the expected anomalies of the

6d theory with the corresponding flux.

5Let us mention in which way fractional fluxes can appear when one considers theories with punctures.

In 6d, we can turn on a flux for the SU(k)β symmetry, like F =
( r︷ ︸︸ ︷

1/r, · · · , 1/r,−1/(k−r), · · · ,−1/(k−r)
)
.

This flux breaks the SU(k)β symmetry to U(1)×SU(r)×SU(k−r). In this case, since the flux is fractional,

we also need to turn on center fluxes in the subgroup SU(r) × SU(k− r). These center fluxes lead to

a cyclic Zr × Zk−r rotation on the SU(r) × SU(k−r) holonomies. In the 5d reduction, the flux should

be realizable as a domain wall and the corresponding Zr × Zk−r actions become cyclic permutations of

U(1)r × U(1)k−r ⊂ SU(k)β symmetries as we move across the domain wall. The basic domain wall models

we constructed behave in many ways like these tubes, for example they give same permutations, yet we do

not claim that they are the same models.

– 13 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
0

Gluing. Let us explain how to connect two flux domain walls with boundary conditions

B1 and B2 together. General domain walls can be constructed by repeating this gluing

procedure. We consider the first domain wall with boundary condition B1 located at

x4 = t1 and then add the second domain wall with boundary condition B2 at x4 = t2.

First, the vector multiplets in three chambers satisfy Neumann boundary condition, so

the theory with the domain walls has SU(N)k1 × SU(N)k2 × SU(N)k3 gauge symmetry. The

hypermultiplets in the first and the third chambers will couple to the 4d chiral fields qi, q̃i
and q′i, q̃

′
i at two interfaces through cubic superpotentials of the form (3.3). Now the 5d

theory in the second chamber is put on a finite interval between t1 and t2. So at low

energy the theory in the second chamber reduces to a 4d theory with SU(N)k2 gauge group.

The chiral halves of the hypermultiplets satisfying Neumann boundary conditions at both

ends reduce to 4d chiral multiplets. If a hypermultiplet in the second chamber satisfies

opposite boundary conditions at the two ends, this hypermultiplet becomes massive and at

low energy they are truncated. After integrating out the massive hypermultiplet, the cubic

superpotentials involving this hypermultiplet turn into quartic superpotentials between the

4d chiral fields q and q̃:

W ′ =
∑

i=(+,−)

(
qi+1q̃iq̃

′
iq
′
i+1

)
+

∑
i=(−,+)

(
qiq̃iq̃

′
iq
′
i

)
, (3.10)

where i = (s1, s2) runs over the massive hypermultiplets with boundary conditions sa at ta.

We shall consider various combinations of basic domain walls aligned along a spatial

direction x4. The gluing of two basic domain walls can naturally be generalized to the cases

with multiple domain walls. In particular, when we identify the first and the last chambers,

we will get a 5d system compactified on a circle along which a number of basic domain

walls are distributed. Note that, when the first and the last chambers are identified, the

hypermultiplets in the new chamber reduce to 4d chiral fields or are truncated in the same

way as those in the second chamber in the two domain wall example above. Thus this

system reduces to a 4d N = 1 quiver gauge theory at low energy. Following the above

conjectures, we expect the resulting 4d theories implements torus compactifications of the

6d theory with fluxes.

Assignment of fluxes. To derive an assignment of flux let us study the structure of

the linear anomaly in six dimensions. We here will make the treatment general for G type

conformal matter. The fluxes we will discuss are for the Cartan of the G×G symmetry. For

A type we have an additional U(1) symmetry but we do not construct models corresponding

to flux for this symmetry. From the anomaly polynomial in six dimensions we obtain that

this anomaly in four dimensions is,

TrGi = niN
h∨

dF
Qi . (3.11)

Here Qi is the flux for the U(1) subgroup Gi in G and ni is determined by the embedding of

the U(1) in G. Here N is the number of branes probing the singularity. We can absorb N

into the definition of ni however, in the way we will normalize the symmetries in all cases,
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N will appear linearly in linear anomaly. On the other hand with a little thought, and we

will discuss this in examples below, the only fields contributing to this anomaly in the field

theory construction are the flip fields for non-minimal cases. It is thus natural to define the

flux in the symmetry Gi to be the sum of Gi charges of the flip fields. The logic, assuming

the theories built from the two punctured spheres and correspond to closed surfaces are

the correct ones, and we conjecture they are, is as follows. The gravity anomalies are

proportional to the sum of charges of the flip fields for non-minimal cases

TrGi = a
(G,G)
i N

∑
f

qi,f . (3.12)

Here the sum is over flip fields and a
(G,G)
i is a constant which depends on the symmetry

and the type of conformal matter, we have that

Qi = a
(G, G)
i

dF
nih∨

∑
f

qi,f . (3.13)

That is the flux is the same as sum over charges up to normalization which only depends

on the compactification type and the symmetry. Note that the anomaly scales as N in

six dimensions and the only fields giving a scaling with N are the flip fields with other

behaving quadratically. It is then that in case the models correspond to compactifications

the anomalies only come from the flips. For all the cases we studied, we find a rather simple

formula for the flux as

Qi =
1

Nh∨

∑
f

qi,f , (3.14)

in the orthogonal basis of the flavor symmetry G×G′ which is the basis we will use in this

section for the flavor symmetries of ADE conformal matters.

The fluxes for minimal cases, on the other hand, are not solely determined by the

charges of flip fields. Here we shall instead use the full linear anomalies, where the flux is

chosen such that the linear anomalies of the 4d theories match those expected from 6d. For

example, the flux of a basic domain wall can be determined by using the 4d tube theory

with this domain wall. We compare the linear anomalies of this tube theory with those

of the 6d theory on a tube involving both the geometric contributions and the puncture

contributions which we will discuss in detail soon. Although we do not expect this tube

theory matches the compactification of the 6d theory since σ 6= 1 for this case, we use this

comparison to fix the flux of the basic domain wall.

We claim that with this identification of flux the anomalies for tori match between all

the different computations both for minimal and non-minimal cases. This will be true for

any closed Riemann surface if the total flux is integer in proper sense. If it is not then the

anomaly only agrees for components of symmetry which have integer flux.

Our basic domain walls carry fluxes only on either Gβ or on Gγ of the Gβ × Gγ
symmetry depending on the representations of the 4d chiral fields qi denoted by T = β, γ,

and the explicit form of Qi is fixed by the boundary condition B = {±,±, · · · ,±}. So we
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Figure 4. Gluing two domain walls with D1 = {+,+,+,−,−}β and D2 = {+,−,+,−,−}β .

The total flux of the final domain wall is Ftot = (3/5, 1/5, 1/5,−1/5,−4/5)β + (2/5, 3/5,−2/5,

−2/5,−1/5)β = (1, 4/5,−1/5,−3/5,−1)β .

will label the basic domain walls by D = BT . General flux domain walls carrying both Gβ
and Gγ fluxes can be built by joining flux domain walls of two types T = β and T = γ.

We will now discuss examples of compactifications of different types of conformal mat-

ter. We will discuss the prescription to associate theories to surfaces in more detail and

give examples of various checks one can perform.

More general models and useful examples. For example, when we connect two do-

main walls in figure 3, we get a bigger domain wall with flux F = (1, 4/5,−1/5,−3/5,−1)β
for SU(5)β drawn in figure 4. Note that the flip fields of the left diagram in figure 3 have

charges (qβ1 , qβ2 , qβ3 , qβ4 , qβ5) as

(N, 0, 0, 0,−N), (0, N, 0, 0,−N), (0, 0, N, 0,−N), (N, 0, 0, 0,−N), (N, 0, 0,−N, 0) ,

(3.15)

from the top to the bottom, respectively, and those of the right diagram have charges

(N, 0, 0, 0,−N), (0, 0, N, 0,−N), (0,−N,N, 0, 0), (N,−N, 0, 0, 0), (N, 0, 0,−N, 0) ,

(3.16)

respectively. When we combine these two domain walls as in figure 4 and compute the

total flux for it, we should take into account the permutation of the U(1)βi symmetry. So,

regarding the permutations σ1
β = (1 2 3)(4 5), σ2

β = (1 3)(2 5 4) and using the flux relation

given in (3.14) with h∨ = 5, we obtained the total flux F = (1, 4/5,−1/5,−3/5,−1)β for

the domain wall in figure 4. Three or more domain walls can also be connected together

by using the above gluing rules for each pair of adjacent domain walls. Also, by identifying

two 5d theories in the first and the last chambers, we can construct the 5d Ak quiver gauge

theory on a circle with flux domain walls that corresponds to the 6d theory compactified

on a torus with flux.
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Figure 5. Domain walls of type T = γ related to SU(k)γ fluxes. The left one is related to the flux

F = (−1/4,−1/4,−1/2, 1)γ and the right one is related to the flux F = (−1/2, 1/2,−1/2, 1/2)γ in

the 6d SU(k)γ symmetry.

So far we discussed the domain walls of type T = β with fluxes only on the SU(k)β
symmetry. We can construct the domain walls of type T = γ for SU(k)γ flux in a similar

way. As discussed above, the main difference for a given boundary condition B is the

representation of the 4d chiral fields qi. We flip the representation of qi from (N̄,N) to

(N, N̄) of the SU(N)i × SU(N)′i gauge symmetry. It then follows that the interface hosts

the following superpotentials:

Wx4=0 =
∑
i=+

(
qi+1q̃iXi + q̃iqiX

′
i

)
+
∑
i=−

(
Yiqiq̃i + Y ′i q̃iqi+1

)
. (3.17)

The representations of the other chiral fields q̃i need to be chosen accordingly. We also

add flip chiral fields coupled to the baryonic operators of qi’s. One can easily check

that this domain wall configuration has no cubic gauge anomalies and also that all U(1)

charges for the 4d fields are uniquely fixed with no additional abelian symmetry other than

U(1)βi × U(1)γi × U(1)t symmetries. Two examples in the A3 quiver gauge theory are

depicted in figure 5.

We define this type of domain walls with Bγ as the basic flux domain walls with

flux F = (n1, n2, · · · , nk) for the SU(k)γ symmetry where ni = −1/r for si = + or

ni = 1/(k − r) for si = −, and r is the number of + signs in B. Note that this domain wall

permutes cyclically U(1)rγ and U(1)k−rγ symmetries respectively. More precisely, the σγ(B)

is the counterclockwise permutation of U(1)γi symmetries with si = + and the clockwise

permutation of U(1)γi symmetries with si = −, and σβ(B) = 1. Following the conjectures

above, we propose that a domain wall configuration constructed by these domain walls

realize the flux compactification of the 6d theory when
∏
i σ

ti = 1 or when the system is

compactified on a circle (so when the 6d theory is put on a torus).

For more general fluxes in both SU(k)β and SU(k)γ symmetries, we can simply combine

the domain walls for SU(k)β flux with the domain walls of the second type for SU(k)γ flux.

Gluing these two different types of domain walls is straightforward. As the cases above, we

will have a new chamber between two domain walls and at low energy the 5d theory in this

chamber reduces to a 4d theory. The hypermultiplets with the same boundary conditions
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Figure 6. A combination of a domain wall with SU(k)β flux and a domain wall with SU(k)γ
flux in the affine A3 quiver gauge theory. The total flux becomes Ftot = (1/2, 1/4, 1/4,−1)β +

(−1/2, 1/2,−1/2, 1/2)γ . The top gauge group has four N flavors, which means it is free in the IR.

The way to think about this theory is to perform a Seiberg duality on the second node which will

remove N flavors from the first gauge groups. The resulting theory is free in the ultra violet. The

theories we consider might have complicated dynamics when we flow to the IR. In all examples we

consider there is a way to make sense of the models as complete in the ultra-violet.

at the two ends leave 4d chiral fields coupled to the degrees of freedom at the interfaces and

integrating out massive hypers with opposite boundary conditions at the two ends induces

quartic superpotential couplings as discussed above. An example of gluing a flux domain

wall of type T = β and another flux domain wall with T = γ in the A3 quiver theory is given

in figure 6. Here, there is a quartic superpotential of the form q3q̃2q
′
2q̃
′
2 where q, q̃ are the 4d

chiral fields in the first domain wall and q′, q̃′ are the 4d fields in the second domain wall.

4d reduction and punctures. Let us now compare our 5d domain wall configurations

and the 6d theory with fluxes on Riemann surfaces. We first consider the 4d reduction of

the 6d theory compactified on a tube (or a two punctured sphere). We can compute ’t

Hooft anomalies of the resulting 4d theories from the 6d anomaly polynomial by integrating

it on a tube. In addition, there are anomaly inflow contributions from the 6d bulk theory

toward two punctures. We will call the former as the geometric contribution and the latter

as the inflow contribution [10, 11]. By adding these two contributions, we can compute

the total ’t Hooft anomalies of the 4d compactification. The geometric contribution can be

computed using the method studied in section 2. The inflow contribution can be obtained

from the 5d quiver gauge theories ending on a boundary. We will now explain how to

compute this inflow contribution. See [10, 11] for more discussions.

We can deform the 6d theory near a puncture as a long and thin tube ending on a

boundary. Since we topologically twist the 6d theory on the 2d surface, this deformation

has no effect in the 4d reduction. The 6d theory around the puncture at low energy

reduces to the 5d affine quiver gauge theory ending on the boundary. This picture suggests

a one-to-one correspondence between the type of punctures and the choice of boundary

conditions in the 5d theory. Thus, for a given puncture on a Riemann surface, we can

find the corresponding boundary condition. This boundary condition leads to additional

’t Hooft anomalies in the 4d theory through the inflow mechanism.
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So punctures on a Riemann surface are associated to boundary conditions in the 5d

theory. In this work, we will focus only on maximal punctures, which are defined by

boundary conditions similar to those appearing in the domain walls, and without additional

4d degrees of freedom at the boundary. These are so named as they generalize the maximal

punctures appearing in class S theories to the case of generic ADE group. These types

of punctures depend on a discrete parameter, called color, denoted by the permutations

among the Cartans of G × G′ symmetry. This additional degree of freedom comes from

the option of performing G×G′ Weyl transformations. The puncture with this boundary

condition is defined as follows.

We first give Dirichlet boundary condition to the vector multiplets, so the gauge sym-

metries in the bulk 5d theory become 4d global symmetries at the boundary. This endows

the puncture with an affine quiver type global symmetry in addition to the G × G′ sym-

metry. The hypermultiplets satisfy the standard 1/2 BPS boundary condition B defined

in (3.2), and thus they give rise to 4d chiral multiplets charged under the affine quiver

global symmetry of the puncture. When each hypermultiplet leaves a 4d chiral multiplet

at the 4d boundary, we will call this type of punctures as maximal punctures for any 5d

affine quiver gauge theory.

The boundary conditions for the 5d theory induce anomaly inflows toward the maximal

puncture and thus the punctures in general carry non-trivial anomalies. These anomalies

depend on the boundary condition B and can be considered as a defining property of the

punctures. In particular, two or more maximal punctures for a 6d theory have the same

type of affine quiver global symmetries, but, due to the permutations by flux, they can have

different colors with respect to the Cartan of G×G′ symmetry. This results in different ’t

Hooft anomalies of the punctures.

As we studied above, the anomaly inflows consist of matter contributions and the gauge

kinetic term (or gauge-global mixed Chern-Simons term) contributions. The hypermulti-

plet contributions and the kinetic contributions are the same as before. As explained above,

a chiral fermion from a 5d hypermultiplet with Neumann boundary condition induces half

of the anomalies from a 4d chiral fermion with the same charges. Also, the gauge kinetic

terms provide inflow contributions for mixed anomalies between the affine quiver global

symmetry and subsets of G × G′ associated to the instanton symmetry as (3.7). That is

for the gauge group Gi

Tr(U(1)G2
i ) =

1

2
Qi , (3.18)

where Qi is the U(1) global charge of a unit instanton state. On the other hand, the

vector multiplets now satisfy Dirichlet boundary condition. So their inflow contributions

are minus of those for the Neumann boundary condition, which we compute

Tr(U(1)R) = Tr(U(1)3
R) = −dGi

2
, T r(U(1)RG

2
i ) = −h

∨

2
, (3.19)

from the vector multiplet of the gauge group Gi. Collecting all these contributions, we can

compute the anomalies assigned for a maximal puncture.

Let us discuss some more details of the punctures in the (Ak−1, Ak−1) conformal matter

theory. A maximal puncture in this theory supports SU(N)k global symmetry. The anoma-
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lies of this puncture can be computed as follows. The vector multiplets induce anomaly

inflows given by

Tr(U(1)R) = Tr(U(1)3
R) = −k(N2 − 1)

2
, T r(U(1)RSU(N)2

i ) = −N
2

for all i . (3.20)

The i-th hypermultiplet provides the inflow contributions as

Tr(U(1)t) =
∑
i

siN
2

2
, T r(U(1)βi) =

siN
2

2
, T r(U(1)γi) =−siN

2

2
,

T r(U(1)tSU(N)2
i ) =

(si+si−1)N

4
, T r(U(1)βiSU(N)2

i ) =Tr(U(1)βiSU(N)2
i+1) =

siN

4
,

T r(U(1)γiSU(N)2
i ) =Tr(U(1)γiSU(N)2

i+1) =−siN
4

,

T r(U(1)aU(1)bU(1)c) =
∑
i

siQaQbQcN
2

2
(with a,b,c∈{t,βi,γi}) ,

T r(SU(N)3
i ) = (si−si−1)

N

2
, (3.21)

where si is the boundary condition and Qa denotes the U(1)a global charge of the i-th

hypermultiplet. Also the SU(N)k Yang-Mills terms provide additional contributions as

Tr(U(1)βiSU(N)2
i ) = Tr(U(1)γiSU(N)2

i ) =
N

4
,

T r(U(1)βiSU(N)2
i+1) = Tr(U(1)γiSU(N)2

i+1) = −N
4
. (3.22)

Then the full anomaly inflow for a maximal puncture with B on a Riemann surface is

given by a sum over these inflow contributions. We note that proper permutations (σβ , σγ)

should be taken into account when there are two or more punctures.

Consider now the 5d affine Ak−1 quiver gauge theory with domain walls on an interval

0 < I < L. We impose maximal boundary conditions giving maximal punctures at x4 =

0, L. At low energy E � 1
L , this theory reduces to a 4d N = 1 quiver gauge theory.

The resulting 4d theory will have SU(N)k × SU(N)′k global symmetries arising from the

Dirichlet boundary conditions at x4 = 0, L and U(1)k−1
β ×U(1)k−1

γ ×U(1)t flavor symmetries

from the hypermultiplets. We propose that this 4d theory, when
∏
i σ

ti = 1, corresponds

to the 6d (Ak−1, Ak−1) theory with fluxes on a tube with maximal punctures at both ends.

For example, we can engineer a 4d quiver gauge theory by connecting two basic do-

main walls of D = {+,+,−}β in the 5d affine A2 theory as drawn in figure 7. The fluxes

associated with these domain walls are F1 = (2/3, 1/3,−1)β , F2 = (1/3, 2/3,−1)β , respec-

tively, and their combination gives a flux of F = (1, 1,−2)β . Note that the combination of

the two permutations becomes trivial, i.e. σt1σt2 = 1 where σt1 = σt2 = (1 2)β . We thus

propose that this 4d theory is the 6d (A2, A2) conformal matter theory on a tube with two

maximal punctures and flux F = (1, 1,−2)β .
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Figure 7. Flux domain wall for Ftot = (1, 1,−2)β in the affine A2 quiver theory. The permutations

in the first and second domain walls are σt1 = σt2 = (1 2) and thus σt1σt2 = 1.

t�1/�1

t�2/�2

t�1�3/�3 t�1�3/�3 t�1�3/�3

t�2/�1

t�1/�2

�3/�1

�3/�2

�3/�1

�3/�1

�3/�2

�3/�2

t�1�3/�3

t�1/�1
t�1/�1 t�1/�1

�1/�2

�1/�3

�1/�2

t�1�2/�3

�1/�3

�1/�3

�1/�2

t�1�3/�2

t�1�2/�2

Figure 8. A combination of four flux domain wall with Ftot = (1, 1,−2)β + (−2, 1, 1)γ in the

affine A2 quiver theory. The permutations in four domain walls are σt1 = σt2 = (1 2)β and

σt3 = σt4 = (2 3)γ , and thus
∏4
i=1 σ

ti = 1.

Combining the geometric contribution, which is given by

Tr(U(1)β1,2) = 9N , Tr(U(1)2
RU(1)β1,2) = −27(N2 − 1) , T r(U(1)2

tU(1)β1,2) = 27N2 ,

T r(U(1)tU(1)2
β1,2) = −9N2 , T r(U(1)tU(1)β1U(1)β2) = −36N2 ,

T r(U(1)3
β1,2) = 9(3N3−2N2) , T r(U(1)2

β1U(1)β2) = Tr(U(1)2
β2U(1)β1) = 18(3N3−2N2) ,

T r(U(1)β1,2U(1)γaU(1)γb) = 18N2 for a = 1, 2 , (3.23)

and the inflow contributions written in (3.20), (3.21), (3.22) with (s1, s2, s3) = (+,+,−)

for the two punctures, we find the anomalies of the 6d theory on a tube perfectly agree

with the ’t Hooft anomalies of the 4d quiver gauge theory in figure 7. Also, one can easily

show that the 4d quiver gauge theory obtained by combining any number n ∈ 2Z of the

basic domain walls for D = {+,+,−}β has the same ’t Hooft anomalies as those from the

6d theory with flux F = n(1/2, 1/2,−1)β and two maximal punctures.

A more complicated example with D1 = D2 = {+,+,−}β and D3 = D4 = {+,−,−}γ
is given in figure 8. We expect that this 4d quiver gauge theory corresponds to the 6d

(A2, A2) theory on a tube with flux Ftot = (1, 1,−2)β + (−2, 1, 1)γ . In this case, two punc-

tures amount to two different boundary conditions, B1 = {+,+,−} and B2 = {+,−,−}
respectively. We checked that the ’t Hooft anomalies of this 4d theory agree with the

geometric and inflow results of the 6d theory with the Ftot and these two punctures.

We now consider gluing two boundaries of the 5d quiver theory on an interval in the

presence of domain walls. From 5d perspective, this gluing can be simply considered as
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identifying the first and the last chambers without boundaries. Or we can also consider this

as connecting two 5d theories in the first and the last chamber by a trivial interface between

them. The 4d viewpoint of gluing two punctures will be presented in the next section. At

low energy after gluing two ends of the 5d theory, we will have a 4d quiver gauge theory.

We conjecture that this 4d theory realizes a torus compactification the 6d (Ak−1, Ak−1)

conformal matter theory with flux. We expect that this conjecture, for the 6d theory on

a torus, holds also for more general domain wall configurations with
∏
i σ

ti 6= 1. When∏
i σ

ti 6= 1, the corresponding 6d theory has fractional flux with non-trivial center flux. This

fractional flux breaks some subsets of SU(k)β × SU(k)γ symmetries. The same symmetry

breaking occurs in the 5d quiver theory on a circle when the global symmetries in the first

chamber and those in the last chamber are identified due to the non-trivial permutation.

In the next section, we will see a number of examples of 4d quiver theories corresponding

to the 6d theory on a torus with various fluxes and test them using superconformal indices

and anomaly matchings.

We remark here that our domain wall construction fails to realize the compactifications

of 6d conformal matters on a tube with fractional fluxes. The 4d theories we obtain using

our domain walls on an interval with fractional fluxes have wrong ’t Hooft anomalies against

the expected anomalies of the compactification of the 6d theories. This may imply that

our flux domain wall is not the correct domain wall for 6d fractional fluxes. We may have

missed some 4d degrees of freedom and associated superpotentials at the interfaces, but

they disappear or decouple when we combine domain walls so that
∏
i σ

ti becomes trivial

or when we locate the domain walls on a circle. Another possibility is that the 6d flux

leaves non-trivial Chern-Simons terms for the global symmetries in the 5d reduction in the

presence of flavor holonomies. These 5d Chern-Simons terms do not affect the dynamics

of the 5d gauge theory, but they may induce additional inflow contributions toward the 4d

boundaries. We leave further investigations on this mismatch to future research.

Generalization to D and E. The same idea in this subsection will be used to build

the D-type and E-type domain walls below. For these cases, the symmetry G×G′ at the

interface will be different, but, apart from this, all other ingredients will be essentially

identical. All domain walls will be constructed by first specifying boundary conditions

B = {±,±, · · · ,±} for the 5d hypermultiplets and then coupling them to the 4d chiral

multiplets qi and q̃i and flip fields. The 4d bifundamental field qi is in either a Gi → G′i
representation or a Gi ← G′i representation and these two choices will be denoted by

T = β or γ, respectively. All quiver nodes are connected to each other through the cubic

superpotentials of the form in (3.3). The representations of the other 4d fields q̃i are fixed

by the boundary condition B and the superpotential terms accordingly. When the quiver

node involves U(1) gauge symmetries, we replace them by two fundamental hypermultiplets

of the adjacent SU(2) gauge nodes. In this case, we will add another cubic term like

W̃ = XqX ′ between the chiral fields X and X ′ coming from the SU(2) fundamentals and

SU(2)′ fundamentals in the two chambers. Abelian charges of the 4d chiral multiplets are

fixed by the gauge-global mixed anomaly cancellation and the superpotentials. In particular

the 6d U(1)R charges of the 4d chiral multiplets qi and q̃i are always fixed to be 0 and +1
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respectively. The resulting domain walls labelled by D = BT turn out to have no cubic

gauge anomalies, therefore they can consistently couple to the 5d boundary conditions

without introducing additional flavor symmetries. We expect the same conjectures hold

for D- and E-type domain walls which we will discuss now.

3.2 D-type domain walls

Let us now turn to the construction of flux domain walls in the 5d reductions of 6d D-type

conformal matter theories. The 5d theory without the domain walls is an affine Dk+3

quiver gauge theory with SU(N)2 × SU(2N)k × SU(N)2 gauge group. When N = 1 the

vertical lines at the edge of the quiver become free fields which form a mass term with the

flip fields, as the SU(1) gauge groups are empty. In these cases the SU(1)2× SU(1)2 gauge

nodes at the two ends of the quiver can be replaced by four fundamental hypermultiplets

for the first SU(2) gauge node and another four fundamentals for the last SU(2) gauge

node. We will discuss the cases for N = 1 separately at the end of this section.

The 6d global symmetry SO(2k+ 6)β × SO(2k+ 6)γ is broken by non-zero holonomies

to U(1)2k+6 =
∏k+3
i=1 U(1)βi × U(1)γi Cartans and the remaining abelian symmetries are

mapped to certain combinations of the flavor symmetries acting on the bifundamental

hypers and the topological instanton symmetries in the 5d gauge theory. In our notation,

the bifundamental hypermultiplets Φi = (Xi, Yi) carry the U(1)2k+6 charges Qi as follows:

Φ1 : (Qβ1 , Qβk+2
, Qγ1 , Qγk+2

) =
1

2
(1, 1,−1,−1) ,

Φ2 : (Qβ1 , Qβk+2
, Qγ1 , Qγk+2

) =
1

2
(1,−1,−1, 1) ,

Φi : (Qβi−1
, Qγi−1) =

1

2
(1,−1) for 3 ≤ i ≤ k + 1 ,

Φk+2 : (Qβk+1
, Qβk+3

, Qγk+1
, Qγk+3

) =
1

2
(1, 1,−1,−1) ,

Φk+3 : (Qβk+1
, Qβk+3

, Qγk+1
, Qγk+3

) =
1

2
(1,−1,−1, 1) . (3.24)

Here, the fields Φ1,Φ2,Φk+2,Φk+3 are in the fundamental represntations of four SU(N)

gauge groups, which we will denote by SU(N)1,2,3,4, respectively.

The flux in the 6d theory is expected to be realized as a certain domain wall configura-

tion in this 5d theory. We will first propose basic domain walls and then construct general

flux domain walls by gluing a series of basic domain walls in the appropriate manner.

As discussed the domain wall construction in the D-type quiver theory is similar to that

of the A-type theory. The domain wall comes with a 4d interface between two 5d affine

Dk+3 quiver gauge theories, and 4d degrees of freedom and superpotentials at the interface

linking boundary conditions of two 5d theories on both sides of the wall.

The 1/2 BPS boundary condition at the interface (x4 = 0) is the same as that in the A-

type domain wall dicussed before. The vector multiplets of the SU(N)2×SU(2N)k×SU(N)2

gauge group satisfy the Neumann boundary condition defined in equation (3.1). Thus we

will have (SU(N)2 × SU(2N)k × SU(N)2)2 gauge symmetries at the interface. The i-th

bifundamental hypermultiplet satisfies the boundary condition in equation (3.2) labelled by
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Figure 9. Basic domain wall for D = {+,+, · · · ,+}β in the affine Dk+3 quiver theory. The boxes

with 1 denote the 5d SU(N)i=1,2,3,4 gauge nodes and the boxes with 2 denote the 5d SU(2N)i=1,··· ,k
gauge nodes.

a sign si = ±. Thus the boundary condition of the 5d theory at the interface is defined by

a vector B = {s1, s2, · · · , sk+3} with si = ±. Basic domain walls have the same boundary

condition for two 5d theories on both sides.

At the interface, we introduce additional 4d chiral multiplets qi and q̃i coupled to the

5d boundary conditions through cubic superpotentials. Like the A-type cases, the 4d chiral

field qi is a bifundamental field between Hi×H ′i, where Hi and H ′i represent the i-th gauge

group in the quiver diagram in the first and the second chamber respectively, and q̃i is a

bifundamental field between either Hi×H ′i+1 or Hi+1×H ′i which is determined by the 4d

cubic superpotentials. For a given boundary condition B, we can construct two types of

basic domain walls, which we call as T = β and T = γ, related to the fluxes on SO(2k+6)β
and the fluxes on SO(2k + 6)γ respectively.

Let us first consider the basic domain walls for SO(2k + 6)β fluxes. The simplest

boundary condition is B = {+k+3} where all Xi in Φi satisfy Neumann boundary condition.

In this case we propose a basic domain wall as dipicted in figure 9. The 5d chiral fields Xi

with Neumann boundary condition in the bottom (or first) chamber are denoted by the

horizontal arrows in the bottom forming an affine Dk+3 diagram with boxes of 1 and 2.

Similarly, the horizontal arrows in the top forming another affine Dk+3 diagram correspond

to another 5d chiral multiplets X ′i with Neumann boundary condition in the top (or second)

chamber. These 5d chiral multiplets Xi and X ′i couple to additional 4d chiral multiplets

q and q̃ living at the interface represented by the vertical arrows and diagonal arrows,

respectively, connecting the top and the bottom affine quiver diagrams. There is a cubic

superpotential for each triangle in the figure 9. Also, the baryonic operators from the 4d

chiral fields q couple to the flip fields denoted by ×.

The system with a basic domain wall inserted between two 5d affine Dk+3 quiver

theories with boundary condition B = {+k+3} is consistent in a sense that it has no gauge

anomalies. We will show this now. First, we compute the anomaly inflows toward the

4d interface from the boundary conditions of the 5d theory. As we discussed above, there

are two inflow contributions: one from the 5d Yang-Mills terms and another one from the
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matter multiplets with Neumann boundary condition. We first compute the contributions

from the YMs terms. The Cartans of the SO(2k+ 6)β ×SO(2k+ 6)γ symmetry are related

to the instanton and the baryon charges as given in (3.7) with the affine Dk+3 Cartan

matrix Aij . This relation and the charge assignment for the hypermultiplets in (3.24) tells

us that the gauge kinetic terms induce anomaly inflows given by

Tr(U(1)β1,γ1SU(N)2
1,2) =

N

2
, T r(U(1)β1,γ1SU(2N)2

1) = −N
2
,

T r(U(1)βk+2,γk+2
SU(N)2

1) =
N

2
, T r(U(1)βk+2,γk+2

SU(N)2
2) = −N

2

Tr(U(1)βi,γiSU(2N)2
i−1) =

N

2
, T r(U(1)βi,γiSU(2N)2

i ) = −N
2
,

T r(U(1)βk+1,γk+1
SU(N)2

3,4) = −N
2
, T r(U(1)βk+1,γk+1

SU(2N)2
k) =

N

2
,

T r(U(1)βk+3,γk+3
SU(N)2

3) = −N
2
, T r(U(1)βk+3,γk+3

SU(N)2
4) =

N

2
, (3.25)

with 2 ≤ i ≤ k. There are also matter contributions to the anomaly inflows. The vector

multiplets with Neumann boundary condition contribute to the anomaly inflow as

Tr(U(1)R) = Tr(U(1)3
R) = 2(k + 1)N2 − k/2− 2 ,

T r(U(1)RSU(N)2
1,2,3,4) =

N

2
, T r(U(1)RSU(2N)2

i ) = N for 1 ≤ i ≤ k . (3.26)

The hypermultiplet contributions depend on the boundary condition B. For the boundary

condition B = {+k+3}, the anomaly inflow contributions from the hypermultiplets are

given by

Tr(U(1)βi) =N2 , T r(U(1)γi) =−N2 for 1≤ i≤ k+1 , (3.27)

Tr(U(1)β1,βk+2
SU(N)2

1) =−Tr(U(1)γ1,γk+2
SU(N)2

1) =
N

4
,

T r(U(1)β1,γk+2
SU(N)2

2) =−Tr(U(1)γ1,βk+2
SU(N)2

2) =
N

4
,

T r(U(1)βi,βi+1
SU(2N)2

i ) =−Tr(U(1)γi,γi+1SU(2N)2
i ) =

N

4
for 1≤ i≤ k ,

Tr(U(1)βk+1,βk+3
SU(N)2

3) =−Tr(U(1)γk+1,γk+3
SU(N)2

3) =
N

4
,

T r(U(1)βk+1,γk+3
SU(N)2

4) =−Tr(U(1)γk+1,βk+3
SU(N)2

4) =
N

4
,

T r(U(1)aU(1)bU(1)c) =
∑
i

Qa,iQb,iQc,ini
2

, T r(SU(N)3
1,2)=N , Tr(SU(N)3

3,4)=−N,

where Qa,i and ni denote the U(1)a flavor charge and the number of the i-th hypermultiplet

respectively. The total anomaly inflows from the 5d theory with the boundary condition

B = {+k+3} are sum of these three contributions in (3.25), (3.26), (3.27). Anomaly inflows

for other cases with different boundary conditions can be computed in the same way.

We shall check the gauge anomaly cancellation at the interface. There are cubic gauge

anomalies coming from the anomaly inflow in (3.27) and they cancel out beautifully by the
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Figure 10. Basic domain walls in the affine D6 quiver theory. The left wall is for D1 = {+ + | −
+|+ +}β and the right wall is for D2 = {+− | −+|+ +}β .

cubic anomalies from the 4d chiral multiplets q and q̃ given in figure 9. Also, the gauge-

global anomaly cancellation for the 6d global symmetries as well as the conditions from

the 4d superpotentials uniquely fix all the charges of the additional 4d degrees of freedom

inserted at the interface which we find as drawn in figure 9. For convenience, we scaled the

fugacities as βi → β2
i and γi → γ2

i in the quiver diagrams for D-type domain walls in this

section. This domain wall configuration is thus consistent with no gauge anomaly and no

additional global symmetry.

As a consequence, we constructed a consistent domain wall configuration interpolat-

ing two 5d affine Dk+3 quiver gauge theories. Note that the U(1)β1 ,U(1)β2 , · · · ,U(1)βk+1

symmetries are cyclically permuted, and U(1)βk+2
and U(1)βk+3

symmetries are flipped as

we move across the domain wall. Namely,

σ(β1, β2, · · · , βk, βk+1, βk+2, βk+3) → (β2, β3, · · · , βk+1, β1, 1/βk+2, 1/βk+3) , (3.28)

in terms of fugacities βi. All other basic domain walls for other DT can be similarly

constructed.

For example, two other basic domain walls in the affine D6 quiver gauge theory are

given in figure 10. The left quiver diagram corresponds to the basic domain wall for

D1 = {+ + | − +| + +}β where the first two and the last two signs denote the boundary

conditions for the SU(N)1,2×SU(2N)1 and the SU(N)3,4×SU(2N)3 bifundamental hypers

respectively. The U(1)β global symmetries are permuted by this domain wall as

σ(β1, β2, β3, β4, β5, β6) → (β3, 1/β1, β4, 1/β2, 1/β5, 1/β6) , (3.29)

in terms of the fugacities βi for the U(1)βi . On the other hand, the right quiver diagram

corresponds to the domain wall for D2 = {+ − | − +| + +}β and it permutes the U(1)β
symmetries as

σ(β1, β2, β3, β4, β5, β6) → (1/β1, 1/β5, β4, 1/β2, β3, 1/β6) . (3.30)

Another example is depicted in figure 11. This domain wall is for D = {+,+, · · · ,+}γ
associated to the flux on SO(2k + 6)γ .

We will now relate the domain walls constructed by connecting multiple basic domain

walls with fluxes in the 6d (Dk+3, Dk+3) conformal matter theory. We first need to identify
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Figure 11. Basic domain wall for D = {+,+, · · · ,+}γ in the affine Dk+3 quiver theory.

fluxes for the basic domain walls. We will employ the flux assignement given in (3.14). We

find that the flux Qi on a U(1)i global symmetry is given by

Qi =
1

h∨D2k+6
N

∑
f

qi,f =
1

(2k + 4)N

∑
f

qi,f , (3.31)

where qi,f denotes the U(1)i charge for the f -th flip field. For instance, the basic domain

wall of D = {+k+3}β drawn in figure 9 corresponds to the flux
(
k+4
2k+4 , (

1
2k+4)k, 0, 0

)
β

in SO(2k + 6)β symmetry. Similarly, the two basic domain walls in figure 10 for D =

{+ + | −+|+ +}β and D = {+− |−+|+ +}β correspond to the fluxes 1
10(3,−4, 2, 1, 0, 0)β

and 1
10(2,−4, 3, 1, 2, 0)β , respectively, in SO(12)β . When we join multiple basic domain

walls, the total flux Ftot of the final domain wall configuration is simply the sum of the

fluxes on all basic domain walls.

For the D-type flux domain walls, we will propose Conjectures in section 3.1 with

G = Dk+3. The simplest exercise is to combine k + 1 (or 2k + 2) basic domain walls of

the same type for odd k (or even k). When we put this 5d domain wall configuration on a

finite interval, it corresponds to the 6d theory on a tube with integer fluxes. For example,

we can consider the 5d theory on an interval with k + 1 copies of the basic domain wall of

D = {+,+, · · · ,+}β drawn in figure 9 which gives rise to an integer flux Ftot = (1k+1, 0, 0)β
for odd k. Choosing the maximal boundary condition, this theory reduces to a 4d N = 1

quiver gauge theory at low energy. We claim this 4d theory realizes the 6d (Dk+3, Dk+3)

conformal matter theory on a tube with flux Ftot = (1k+1, 0, 0)β and maximal punctures

at the two ends. When k is even, we can combine 2k + 2 basic domain walls of type

D = {+,+, · · · ,+}β , and this theory on an interval gives rise to the 4d quiver theory

corresponding to the 6d theory on a tube with flux Ftot = (2k+1, 0, 0)β . We have checked

for several k’s that the ’t Hooft anomalies of the 4d quiver theory perfectly agree with

those from the 6d anomaly polynomial and anomaly inflow at the two punctures.

Similarly, when we combine 4 copies of the basic domain walls in figure 10 on a tube, we

will obtain the 4d quiver gauge theories corresponding to the 6d conformal matter theory

on a tube with fluxes F = (1,−1, 1, 1, 0, 0)β for the left type and F = (0,−1, 1, 1, 1, 0)β for
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Figure 12. Flux domain wall configuration with flux Ftot = (1,−1, 1, 1, 0, 0)β + (1, 1, 1, 1, 0, 0)γ in

the affine D6 quiver theory on a circle. The horizontal direction is the circle direction and both

ends are identified. The 4d chiral fields are denoted by dashed lines. There is a flip field on each

horizontal arrow.

the right type. We checked these theories by comparing their ’t Hooft anomalies against

expected anomalies from the 6d theory.

We can also consider domain wall configurations on a circle which realize the 6d con-

formal matter theories on a torus with flux. The simplest example is to glue two ends

of the tube theory from the k + 1 copies of the basic domain wall in figure 9. Indeed,

the resulting 4d theory has the expect ’t Hooft anomalies for the torus theory with flux

F = (1k+1, 0, 0)β .

More general flux domain walls can be constructed by considering more complicated

combinations of basic domain walls. An example is given in figure 12. Here, we combined

four copies of a domain wall with F1 = 1
10(3,−4, 2, 1, 0, 0)β and another four copies of

a domain wall with F2 = 1
10(6, 1, 1, 1, 0, 0)γ . So the total flux of the final domain wall

configuration is Ftot = (1,−1, 1, 1, 0, 0)β + (1, 1, 1, 1, 0, 0)γ . When we compactify this 5d

theory with domain walls on a circle, we will obtain at low energy the 4d quiver theory

given in figure 12. This 4d theory corresponds to the 6d (D6, D6) conformal matter theory

on a torus with flux Ftot. We have checked that this 4d theory has the correct ’t Hooft

anomalies for being the torus theory with flux Ftot.

Let us now discuss the domain walls for the minimal (Dk+3, Dk+3) conformal matter

theories with fluxes. The construction of the flux domain wall in this theory is almost

parallel to that in the non-minimal conformal matter theory with N > 1. The 5d theory is

a linear quiver gauge theory with SU(2)k gauge groups and the first and last gauge nodes

have 4 fundamental hypermultiplets. As explained already, the basic domain walls can be

constructed by 4d interfaces with 4d chiral multiplets qi, q̃i and flip fields coupled to 5d

boundary conditions on both sides through cubic superpotentials. The new feature of the

minimal conformal matter here is that the symmetry is enhanced to D2k+6 (and for k = 1

to E8). This means that we have a larger Weyl symmetry, and thus domain walls can

be engineered which manifest this by permuting γ and β symmetries. This is related to
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the fact that in the end of the quiver the SU(1) symmetries are empty which gives rise to

combining the U(1) symmetries under which bifundamentals at the end of the quivers are

charged into two SU(4) global symmetries. We can write the domain wall as in figure 9 or

as figure 13. Note that these differ by choices of boundary conditions. The latter exists

only for the minimal case and is more natural here so we will use it. However, the procedure

of reading off the fluxes from the flip fields only applies to the former.

The 5d boundary condition is labeled by a sign vector B = {s1, · · · , s4|s5, · · · , sk+3|
sk+4, · · · , sk+7} where the i-th element si denotes the boundary condition of the i-th hyper-

multiplet. In this B, the first four elements are for the fundamental hypermultiplets of the

first gauge node and the last four are for the fundamentals of the last gauge node. This

condition breaks the SO(8)× SO(8) global symmetries rotating the fundamental flavors at

the ends of the quiver to U(1)2 × SU(4) × SU(4) symmetry. At the interface, the chiral

halves of k − 1 bifundamental hypermultiplets, chosen by si, satisfy Neumann boundary

conditions and they couple to the 4d chiral fields qi and q̃i through cubic superpotentials,

which we have seen in the non-minimal cases. Note that, since the gauge groups are now

all pseudo-real, we can freely choose the chiral field q̃i to be in either SU(2)i× SU(2)′i+1 or

SU(2)i+1 × SU(2)′i and these choices yield different domain walls. Also, we will introduce

new cubic superpotentials at the interface for the chiral halves Mi and M ′i of the funda-

mental hypers at the two ends of the quiver as W̃ =
∑4

i=1Miq1M
′
i +
∑k+7

i=k+4MiqkM
′
i . This

identifies the boundary conditions as si = −si for i = 1, · · · , 4, k + 4, · · · , k + 7.

Since the gauge groups are SU(2), cubic gauge anomalies are absent at the interface.

The gauge-global mixed anomalies from the boundary conditions of the 5d theory in the

first chamber are the following. First, the anomaly inflows from the Yang-Mills kinetic

terms are given by

Tr(U(1)βiSU(2)2
i−1) = Tr(U(1)γiSU(2)2

i−1) =
1

2
,

T r(U(1)βiSU(2)2
i ) = Tr(U(1)γiSU(2)2

i ) = −1

2
, (3.32)

with 2 ≤ i ≤ k. Here,
∏k+1
i=1 U(1)βi ×

∏k
i=2 U(1)γi are the abelian global symmetries of the

5d theory. Then the hypermultiplets with B = {+k+7} induce the inflow contributions as

Tr(U(1)β1SU(2)2
1) = Tr(U(1)βk+1

SU(2)2
k) =

1

2
,

T r(U(1)βiSU(2)2
i−1) = Tr(U(1)βiSU(2)2

i ) =
1

4
,

T r(U(1)γiSU(2)2
i−1) = Tr(U(1)γiSU(2)2

i ) = −1

4
, (3.33)

with 2 ≤ i ≤ k. The requirement of these anomaly cancellation uniquely fixes all flavor

charges of the 4d chiral fields. Also, the 4d fields qi and q̃i should have R-charges 0 and +1

to cancel the gauge-R mixed anomaly from the 5d vector multiplets. The same is true for

the other boundary conditions B. So these basic domain walls can be consistently inserted

into the 5d system.

Three different basic domain walls in the affine D8 quiver theory are depicted in

figure 13. The fluxes for these domain walls can be determined from the linear anomalies
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Figure 13. Basic domain walls with the boundary conditions B1 = {+4| +4 |+4} and B2 =

{+4|+3,−|+4} and B3 = {+4| +4 |+4}, respectively, in the first chamber. The first and the third

domain walls have the same boundary condition in the first chamber, but they have different 4d

chiral fields qi and superpotentials.

as we have outlined previously. The corresponding fluxes are

F1 =
1

14
(7, 2, 1, 1, 1, 2, 0, 0, 0, 0) ,

F2 =
1

14
(5, 2, 1, 1,−2, 3, 0, 0, 0, 0) ,

F3 =
1

14
(2, 0, 0, 0, 0, 7,−1,−1,−1,−2) , (3.34)

in the U(1)6
β × U(1)4

γ abelian symmetries for the three domain walls respectively. For all

these cases, the fluxes for β7, β8, γ1, and γ6−8 are zero and we have not written them for

brevity. These domain walls permute the flavor symmetries with non-zero fluxes as follows:

σ(β1, β2, β3, β4, β5, β6) → (β2, β3, β4, β5, β6, β1) ,

σ(β1, β2, β3, β4, β5, β6) → (β2, β3, β4, β6,−β1,−β5) ,

σ(β1, β6, γ2, γ3, γ4, γ5) → (β6,−γ5,−β1, γ2, γ3, γ4) . (3.35)

We claim that the Conjectures above hold for the flux domain walls constructed by

joining these basic domain walls in the minimal D-type conformal matter theories. For

example, we can connect 6 copies of the first domain wall in figure 13 and then put this

5d theory on an interval with maximal boundary conditions at the two ends. Then we

conjecture that the resulting 4d quiver gauge theory at low energy corresponds to the

minimal (D8, D8) conformal matter theory with flux Ftot = (16, 04) on a tube with two

maximal punctures. Indeed, the ’t Hooft anomalies of this 4d quiver theory agree with the

expected results obtained from the 6d anomaly polynomial on the tube together with the

inflow contributions at the two punctures. We will see more examples for these conjectures

for tube theories and torus theories in the next section.
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Figure 14. Basic domain walls in the affine E6 quiver theory with D1 = {+6}β and D2 =

{−,−,+4}β , respectively. The integer numbers li in the boxes denote the SU(liN) gauge symmetries

at the interface.

3.3 E-type domain walls

Now we turn to the flux domain walls in the 5d affine E-type quiver gauge theories. We

can construct these domain walls by applying the same idea used for the A- and D-type

domain wall systems presented in the previous subsections.

Let us start by discussing the domain walls in the affine E6 quiver gauge theory for

general N M5-branes. This quiver theory has U(1)6 flavor symmetry of the bifundamental

hypers and U(1)7 instanton symmetry. There are basic domain walls arising from a single

interface interpolating between two 5d theories with 1/2 BPS boundary conditions given

in (3.1) and (3.2). These domain walls are labeled by D = BT where B = {s1, s2, · · · , s6}
denotes the boundary conditions of six hypermultiplets and T denotes the representations

of the 4d chiral fields qi. At the interface, we have
∏6
i=1 SU(liN)×SU(liN)′ gauge symmetry

with {li} = {1, 2, 3, 2, 1, 2, 1} coming from the 5d vector multiplets with Neumann boundary

condition in two sides. The 4d interface includes 4d chiral fields qi and q̃i and the cubic

superpotentials of the form in (3.3) whose explicit expressions are fixed by the domain wall

data B and T .

We present two basic domain walls for fluxes on the U(1)6
β of the first E6 global

symmetry in figure 14. The fugacities ai, bi, ci are related to the fugacities βi, γi for the

Cartans
∏6
i=1 U(1)βi × U(1)γi of E6 × E6. Regarding the mass parameters of the baryon

symmetries given in (3.8), the fugacities ai for the chiral halves of the 5d hypermultiplets

are given by

a1 = (β2γ1/β1γ2)1/2, a2 = (β2
3γ1γ2/β1β2γ

2
3)1/6, a3 = (β1β2β3β

3
5β6γ

3
4/β

3
4γ1γ2γ3γ

3
5γ6)1/12,

a4 = (β1β2β3β4β6γ5/β5γ1γ2γ3γ4γ6)1/4, a5 = (β1β2β3γ
3
4γ

3
5γ6/β

3
4β

3
5β6γ1γ2γ3)1/12,

a6 = (β1β2β3β4β5γ6/β6γ1γ2γ3γ4γ5)1/4 . (3.36)

Here, we have chosen the Cartans U(1)βi and U(1)γi in the orthogonal basis of E6 such
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that the fundamentals of SO(10) ⊂ E6 carry unit charges under these Cartans. Specifically,

using the SO(10)×U(1) subgroup of E6, the β1−5 fugacities parametrize the SO(10) and β6

parametrize the U(1), where the latter is normalized such the 10 of SO(10), appearing in

the decomposition of the 27, has charge 1. The U(1)γi symmetries use the same basis. Also,

the anomaly free condition for the Cartans U(1)βi and U(1)γi and the 4d superpotential

constraints fully determine all fugacities for the 4d chiral fields as

b1 = β4/β1, b2 = (β4/β2)1/2, b3 = (β4/β3)1/3, b4 = (β5/β3)1/2,

b5 = (β1β2β4β5β6/β3)1/2, b6 = (β3β5)−1/2, b7 = (β1β2β4/β3β5β6)1/2 , (3.37)

for the first domain wall and

c1 = β2/β1, c2 = (β3/β1)1/2, c3 = (β4/β1)1/3, c4 = (β5/β1)1/2,

c5 = (β2β3β4β5β6/β1)1/2, c6 = (β1β5)−1/2, c7 = (β2β3β4/β1β5β6)1/2 , (3.38)

for the second domain wall. One can check that these domain walls, when coupled to the 5d

boundary conditions, have no cubic gauge anomalies and in total U(1)6
β×U(1)6

γ ⊂ E6×E6

anomaly-free abelian global symmetries. We can construct all the other basic domain walls

in the same way by choosing different domain wall data B = {si} and T = β or γ.

The global symmetries are permuted by the domain walls. The first domain wall with

D1 = {+6}β in figure 14 permutes the U(1)βi symmetries as

β1 → (β3β4/β1β2)1/2, β2 → (β1β3/β2β4)1/2, β3 → (β2β3/β1β4)1/2,

β4 → (β1β2β3β4)−1/2, β5 → (β6/β5)1/2, β6 → (β3
5β6)−1/2 , (3.39)

in terms of the U(1)βi fugacities, and the second domain wall with D1 = {−,−,+4}β
permutes the symmetries as

β1 → (β1β2/β3β4)1/2, β2 → (β1β3/β2β4)1/2, β3 → (β1β4/β2β3)1/2,

β4 → (β1β2β3β4)−1/2, β5 → (β6/β5)1/2, β6 → (β3
5β6)−1/2 . (3.40)

We propose the Conjectures in section 3.1 hold for the flux domain walls in the affine

E6 quiver theory engineered by connecting these basic domain walls. The flux assignment

for each basic domain wall is given by (3.14) with h∨ = 12. So the first domain wall in

figure 14 corresponds to the 6d flux F = (0, 0, 1
3 ,−

1
3 , 0, 0)β and the second domain wall is

mapped to the 6d flux F = (1
2 ,−

1
6 ,−

1
6 ,−

1
6 , 0, 0)β .

When we connect 6 copies of the first domain wall, the resulting domain wall con-

figuration has flux F = (0, 1, 2,−1, 0, 0)β with
∏6
i=1 σ

ti = 1 after carefully taking into

account the above permutations. This flux is the minimal integral flux breaking E6 →
SU(3)× SU(3)× SU(2)× U(1). The Conjectures predict that 4d reductions of this con-

figuration by putting it on a circle or an interval with maximal boundary conditions give

rise to the 6d (E6, E6) conformal matter theory of N M5-branes carrying the same flux F

compactified on a torus or a tube with two maximal punctures. Indeed, we checked these

4d theories obtained from the 5d flux domain walls have the same ’t Hooft anomalies as
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Figure 15. Basic domain walls in the minimal E6 theory with D1 = {+6}β and D2 = {+,−,+4}β ,

respectively. The shaded boxes stand for SU(2)3 flavor nodes in the bulk 5d theory.

those computed from the compactification of the 6d anomaly polynomial and the anomaly

inflows for the maximal punctures. For example, the 4d theory on a torus has the central

charges as

a =
2N
√

3(9N − 4)3/2√
N(3N − 1)

, c =
N(18N − 7)

√
3(9N − 4)√

N(3N − 1)
, (3.41)

which are precisely the central charges of the 4d quiver theory obtained from the 5d theory

with domain walls of the flux F = (0, 1, 2,−1, 0, 0)β on a circle. We have performed similar

computations using other combinations of basic domain walls and the results agree with

our conjectures. Note that the six dimensional computation is agnostic about some of the

fields becoming free and thus for comparison we do not decouple the free fields. The above

values are not the superconformal anomalies as we do not take into account the accidental

U(1) symmetries coming from free fields. As we claim to identify the symmetries correctly

in six and four dimensions, the above computation is a simple non-trivial check of matching

’t Hooft anomalies between the six dimensional and four dimensional computations.

The flux domain walls for the minimal E6 conformal matter theory when N = 1 can

be constructed as follows. The 5d theory is a quiver gauge theory of SU(2)3×SU(3) gauge

groups with two fundamental hypers for each SU(2) gauge node. Let us define a basic

domain wall labeled by D = BT as a 4d interface connecting two 5d quiver theories with

boundary condition B = {s1, s2, · · · , s6}. Here we assume that two SU(2) fundamental

hypermultiplets for an SU(2) gauge node have the same boundary conditions for T = β

and the opposite boundary conditions for T = γ. The domain wall adds four 4d chiral

multiplets qi and q̃i as explained. The index T = β or γ denotes the representation of the

4d field q4 either in (3̄,3) or (3, 3̄) of the SU(3)× SU(3)′ gauge symmetry.

The quiver diagrams for two examples are depicted in figure 15. The abelian fugacities

for the 5d hypermultiplets in the first (or bottom) chamber are given in (3.36). Other

abelian charges for the 4d fields are fixed by the gauge-global anomaly cancellation and

the cubic superpotential couplings. We find

b1 = (β4/β2)1/2, b2 = (β4/β3)1/3, b3 = (β5/β3)1/2 , b4 = (1/β3β5)1/2 , (3.42)
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for the first quiver diagram and

c1 = (β3/β2)1/2, c2 = (β4/β2)1/3, c3 = (β5/β2)1/2, c4 = (1/β2β5)1/2 , (3.43)

for the second diagram. The first and the second domain walls correspond to the fluxes

F1 = (0, 1
8 ,

1
3 ,−

5
24 , 0, 0)β and F2 = (0, 11

12 ,−
8
24 ,−

1
12 , 0, 0)β respectively. Other basic domain

walls can be similarly constructed and generic flux domain walls can be obtained from

various combinations of these basic domain walls.

We briefly comment on the other possible choices of the boundary conditions for the

SU(2)i=1,2,3 fundamental hypermultiplets. As mentioned, the above basic domain walls

choose the same (or the opposite) boundary conditions for each pair of two SU(2)i funda-

mental hypers when T = β (or T = γ). However, we can for example consider a domain

wall with opposite boundary conditions for two SU(2)1 fundamental hypers while keeping

other boundary conditions and 4d chiral fields the same as those drawn in the first quiver

in figure 15. In this case, we have a new domain wall with β2/β1 and γ2/γ1 exchanged.

Similarly, other choices of boundary conditions for the SU(2)i=2,3 fundamentals can lead

to other types of domain walls which we can obtain by exchanging some βi and γi’s.

E7 and E8. Lastly, let us discuss the flux domain walls in the affine E7 and E8 quiver

gauge theories. The basic domain walls in these theories can be built by a single interface

supporting two copies of affine E7 or affine E8 quiver gauge symmetries coupled to 5d

boundary conditions, e.g. B = {s1, · · · , s7} for E7 or B = {s1, · · · , s8} for E8, and 4d chiral

fields qi, q̃i through the cubic superpotentials of the form (3.3). We denote these basic

domain walls by D = BT . There exists a unique domain wall system for each D. Under

the Conjecture stated above, we expect that the flux domain wall systems constructed

by gluing the basic domain walls can realize the compactification of the 6d E7 and E8

conformal matter theories with flux on a torus or a tube.

Two basic domain walls in the affine E7 quiver theory are given in figure 16. From (3.8),

the fugacities ai for the 5d hypermultiplets are given by

a1 =

(
β2γ1

β1γ2

)1/2

, a2 =

(
β2

3γ1γ2

β1β2γ2
3

)1/6

, a3 =

(
β3

4γ1γ2γ3

β1β2β3γ3
4

)1/2

, a4 =

(
β1β2β3β4β

2
6γ

2
5

β2
5γ1γ2γ3γ4γ2

6

)1
12

,

a5 =

(
β1β2β3β4β5γ6

β6γ1γ2γ3γ4γ5

)1/6

, a6 =

(
γ7

β7

)1/2

, a7 =

(
γ5γ6

β5β6

)1/4

, (3.44)

with the fugacities βi, γj for E7 × E7 symmetry in the orthogonal basis where the funda-

mentals of SU(2) × SO(12) ⊂ E7 carry unit charges of U(1)βi or U(1)γi symmetries. Here

β7 and γ7 are for the SU(2) and the rest for the SO(12). The interface introduces no other

anomaly-free abelian symmetry. The abelian charges for the 4d fields are uniquely fixed

by the gauge-global mixed anomaly cancellation. We find

b1 =
β5

β1
, b2 =

(
β5

β2

)1/2

, b3 =

(
β5

β3

)1/3

, b4 =

(
β5

β4

)1/4

, b5 =

(
β6

β4

)1/3

,

b6 =

(
β1β2β3β5β6β7

β4

)1/4

, b7 =

(
β1β2β3β5β6

β4β7

)1/2

, b8 =

(
1

β4β6

)1/2

, (3.45)
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Figure 16. Basic domain walls in the affine E7 quiver theory with D1 = {+7}β and D2 =

{+,−,−,+,+,+,−}β , respectively. The integer numbers li in the boxes denote the SU(liN) gauge

symmetries at the interface.

for the first domain wall with D1 = {+7}β and

c1 =
β3

β1
, c2 =

(
β3

β2

)1/2

, c3 =

(
β4

β2

)1/3

, c4 =

(
1

β2β6

)1/4

, c5 =

(
1

β2β5

)1/3

,

c6 =

(
β1β3β4β7

β2β5β6

)1/4

, c7 =

(
β1β3β4

β2β5β6β7

)1/2

, c8 =

(
1

β5β6

)1/2

, (3.46)

for the second domain wall with D2 = {+,−,−,+,+,+,−}β . The cubic gauge anomalies

are also absent and therefore these domain walls can consistently couple to the 5d affine E7

quiver gauge theory. Using (3.14) with h∨ = 18, the fluxes are F1 = (0, 0, 0, 2
9 ,−

5
18 ,−

1
18 , 0)β

for the first domain wall and F2 = (0, 5
18 ,−

1
6 ,−

1
9 ,

1
6 ,

1
6 , 0)β for the second domain wall.

Gluing 12 copies of the first basic domain wall with D1 = {+7}β leads to a flux domain

wall with F = (−1
2 ,

1
2 ,

3
2 ,

5
2 ,−

3
2 ,−

1
2 ,−1)β corresponding to the 6d theory on a circle with

a unit flux breaking E7 → SU(4)× SU(3)× SU(2)× U(1). The circle reduction of this 5d

theory with the flux domain wall yields a 4d quiver gauge theory at low energy and the

resulting 4d theory has the central charges

a =
72N(3N − 1)3/2√

N(4N − 1)
, c =

9N(24N − 7)
√

3N − 1√
N(4N − 1)

, (3.47)

which precisely coincide with the expected central charges of the E7 conformal matter

theory on a torus with flux F . We also checked that other ’t Hooft anomalies of this 4d

theory match the anomalies obtained by integrating the 6d anomaly polynomial in the

presence of the flux F . One can similarly construct other basic domain walls by choosing

different B and T and generic flux domain walls from other combinations of the basic

domain walls.

In figure 17, we have a basic domain wall for D = {+8}β in the affine E8 quiver gauge

theory. One can readily check that all cubic gauge anomalies are absent when it is inserted

– 35 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
0

a3 a4 a5

b3 b4 b5 b6

4

4

2

2

4

4

3

3

5

5 6

6

3

3

a6

a7

b7

b8

a2

b2

2

2

a1

b1

1

1

a8

b9

Figure 17. Basic domain wall in the affine E8 quiver theory with D = {+8}β . The integer numbers

li in the boxes denote the SU(liN) gauge symmetries at the interface.

between two 5d affine E8 quiver theories. The 5d hypermultiplet fugacities ai are

a1 =

(
β1γ8

β8γ1

)1/2

, a2 =

(
β2

2γ1γ8

β1β8γ2
2

)1/6

, a3 =

(
β3

3γ1γ2γ8

β1β2β8γ3
3

)1/12

,

a4 =

(
β4

4γ1γ2γ3γ8

β1β2β3β8γ4
4

)1/20

, a5 =

(
β5

5γ1γ2γ3γ4γ8

β1β2β3β4β8γ5
5

)1/30

, a6 =

(
β1β2β3β4β5β

3
7β8γ

3
6

β3
6γ1γ2γ3γ4γ5γ3

7γ8

)1/24

,

a7 =

(
γ7
∏
i 6=7 βi

β7
∏
i 6=7 γi

)1/8

, a8 =

(
γ6γ7

β6β7

)1/6

, (3.48)

in the orthogonal bases where the fundamentals of SO(16) ⊂ E8 carry charge ±1 under

U(1)βi or U(1)γi . By demanding the gauge-global mixed anomaly cancellation and the

superpotential constraints, we fix the U(1) charges of the 4d chiral fields as

b1 =
β6

β8
, b2 =

(
β6

β1

)1/2

, b3 =

(
β6

β2

)1/3

, b4 =

(
β6

β3

)1/4

, b5 =

(
β6

β4

)1/5

,

b6 =

(
β6

β5

)1/6

, b7 =

(
β7

β5

)1/4

, b8 =

(∏
i 6=5βi

β5

)1/4

, b9 =

(
1

β5β7

)1/3

. (3.49)

From (3.14) with h∨ = 30, one reads the flux F = ( 1
60 ,

1
60 ,

1
60 ,

1
60 ,

7
60 ,−

13
60 ,−

1
60 ,

1
60)β for this

basic domain wall. The other basic domain walls can be similarly constructed.

We suggest that the 5d affine E8 quiver theory with 30 copies of the basic domain wall in

figure 17 realizes the 6d (E8, E8) conformal matter theory with flux F = (−1
2 ,

1
2 ,

3
2 ,

5
2 ,

7
2 ,−

5
2 ,

−1
2 ,−

3
2)β on a circle. The flux F is the minimal flux breaking one E8 global symmetry to

SU(5)× SU(3)×U(1). A circle reduction of this 5d domain wall configuration leaves a 4d

quiver gauge theory corresponding to the 6d theory with flux F on a torus. Indeed, the

central charges of this 4d theory

a =
50
√

3N(9N − 2)3/2√
N(6N − 1)

, c =
25N(36N − 7)

√
N(27N − 6)

2
√
N(6N − 1)

(3.50)
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Figure 18. Basic domain walls in the minimal E7 theory with D1 = {+7}β .

agree with those computed by integrating the 6d anomaly polynomial with F . Also, all

other anomalies in this 4d theory coincide with the anomalies of the 6d theory with F on

a torus.

Now consider the domain walls in the minimal affine E7 and E8 quiver gauge theories.

When N = 1, the U(1) gauge nodes in the quiver diagram are replaced by two fundamental

hypermultiplets charged under the adjacent SU(2) gauge nodes. Domain walls in these

theories have almost the same form of those in the non-minimal cases. The differences are

the boundary conditions of the SU(2) fundamental hypers and 4d chiral multiplets coupled

to these 5d fundamental fields. The other parts are the same.

For E7, the basic domain walls are defined by D = BT with B = {s1, s2, · · · , s7}.
We choose two fundamentals for an SU(2) gauge node to have the same (or the opposite)

boundary conditions for T = β (or T = γ). As the minimal E6 cases above, the interface

connects these boundary conditions of the SU(2) fundamentals in two sides by using the

cubic superpotentials including the 4d bifundamental chirals qi charged under SU(2)i ×
SU(2)′i. These also hold for the E8 cases below with B = {s1, s2, · · · s8}.

One example of E7 is drawn in figure 18 with fugacities ai in (3.44) and

b1 = (β5/β2)1/2, b2 = (β5/β3)1/3, b3 = (β5/β4)1/4,

b4 = (β6/β4)1/3, b5 = (β1β2β3β5β6β7/β4)1/4, b6 = (1/β4β6)1/2 , (3.51)

which are again determined by the gauge-global anomaly cancellation and the superpoten-

tial constraints. This quiver diagram describes a basic domain wall with D1 = {+7}β and

it has the flux F = 1
72(−3, 3, 1, 15,−17,−3,−3)β in the orthogonal basis of E7.

The E8 basic domain wall for D1 = {+8}β is drawn in figure 19. Here, the 5d fugacities

ai are written in (3.48) and 4d fugacities bi are given by

b1 = (β6/β1)1/2, b2 = (β6/β2)1/3, b3 = (β6/β3)1/4, b4 = (β6/β4)1/5

b5 = (β6/β5)1/6, b6 = (β7/β5)1/4, b7 =

(∏
i 6=5

βi/β5

)1/4

, b8 = (1/β5β7)1/3 . (3.52)
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Figure 19. Basic domain walls in the minimal E8 theory with D1 = {+8}β .

This domain wall corresponds to the flux F = 1
60(2, 1, 1, 1, 7,−12,−1,−1)β . We will see

more examples and tests for our flux domain wall conjectures by reducing them to 4d in

the next section.

4 Four dimensions

We have obtained a conjecture for the theories corresponding to compactifications of ADE

conformal matter on a torus with flux for the flavor symmetry. The way we construct the

models is by gluing together building blocks which formally correspond to spheres with two

maximal punctures and have some flux. In this section we will subject these conjectures to

various tests directly in four dimensions. There are two types of checks we can perform, we

can compare anomalies and check for enhancements of symmetry. The checks of anomalies

we have already discussed so here we will give examples of enhancement of symmetry as

well as some dynamical interesting features such as dualities. We will also connect the

results to other constructions appearing in the literature.

Note that the two punctured spheres in general have the non abelian flavor symmetry

of the models in six dimensions broken down to abelian factors both due to presence

of punctures and the flux. The tube theories we have defined also in general, with the

exception of minimal D and E conformal matter, have only abelian flavor symmetries

which are not associated to the punctures. However, when combining the theories to

form a torus and selecting the combination of the two punctured spheres so that the flux

is non generic, the symmetry can be enhanced at some loci on the conformal manifold.

Such an enhancement is highly non obvious from the four dimensional perspective. One

can check such enhancements of symmetry by studying different supersymmetric partition

functions, and in particular the supersymmetric index [26–29]. As the models involved have

many gauge group factors, the computations, though straightforward, are computationally

intense. We will thus restrict in what follows to verifying the claims in some simple examples

in which the computations can be performed more easily.

S gluing Φ gluing and color for punctures. We have derived theories we naturally

associate with tubes from our five dimensional discussion. It is natural from the four di-

– 38 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
0

mensional point of view to define slightly modified tubes. Note that associated to the

punctures we have a collection of chiral fields which are not charged under gauge inter-

actions. In particular we had a bifundamental field between every adjacent factors of the

flavor symmetry. It is natural to define the punctures with some of these fields removed.

We have a rather arbitrary choice of whether to associate the fields with the puncture or

with the gluing procedure. What we gain is that the gluing procedure will become very

uniform and also connect directly to previous prescriptions in the literature. The change

will be made such that the tori models will be exactly as before and the only difference is

with the chiral fields associated to the punctures.

Let us start from a rather abstract discussion of the gluing procedure. Each puncture

comes with a set of natural operators which are charged under the symmetry associated to

it. We denote these operators by Mi. These operators generalize the moment maps of class

S, which is the (A1, A1) conformal matter. The choice of the free chiral fields associated

to the puncture affects the operators Mi. There are different types of punctures with the

different choices denoted by color, sign, and orientation [7, 8]. As punctures break some of

the G ×G symmetry these choices specify what is exactly the preserved symmetry group

and what are the anomalies associated to the puncture. Different punctures give rise to

different charges under the Cartan of G×G for Mi. We glue punctures of same color and

sign and opposite orientation by gauging the puncture symmetry and adding a field Φi in

conjugate representations to Mi, and coupling them through a superpotential,

WΦ
gluing = MiΦi − M̃iΦi . (4.1)

Here Mi are the operators of one of the punctures and M̃i of the other. We denote this

gluing as Φ gluing [7, 8]. We will choose the bifundamental fields associated to the puncture

in such a way that the fields Φi we need to add when gluing two punctures of the same

type are most regular. For example, in the A case these will be fields in the fundamental

representation of the ith flavor group and antifundamental of i + 1. See figure 20. This

is the choice that was made in [7, 8] and we will stick to it here.6 All the results in this

section are reported using this choice. We also can glue punctures of same color, same

orientation, and opposite sign. Punctures of opposite sign have operators Mi and M̃i in

conjugate representations. Thus we turn on the superpotential,

WS
gluing = M̃iMi . (4.2)

This gluing will be denoted as S gluing [7, 8, 30].

For the theories we have defined, to follow the same pattern of gluing as above, we

need to add bifundamental fields between symmetry factors on the same side of the duality

wall for the tubes only for + boundary conditions and not for minus and call these positive

punctures. We can also add the lines for − boundary conditions and not for + and call

6If we make the choice we have discussed in previous sections then some of the Φi fields will be not

needed, some will be fundamental-anti-fundamental, and some antifundamental-fundamental. This would

make the definition of fields Φi rather involved and that is the reason for the choice here.
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Figure 20. This is Φ gluing for A theories. The two punctures are of the same sign, opposite

orientation, and different colors. The puncture symmetry is SU(N)k. The operators Mi are charged

under two factors of SU(N) symmetry. For + boundary conditions they are bifundamental fields

and for − they are bi-linear operators. For simplicity we have written arrows on some of the lines

and the orientation of the rest is determined by the superpotentials we turn for each face of the

quiver. In the middle we have the fields we add when gluing, Φ, in the bifundamental representation

of two of the SU(N)k symmetries.

Figure 21. This is S gluing for A theories. The two punctures have opposite sign, same orien-

tation, and different color. We glue the left and right punctures with S gluing turning on WS
gluing

superpotential.

those negative punctures. With this definition of tubes we glue them with Φ and S gluing.

See figures 20 for Φ gluing and 21 for S gluing. For simplicity we will add fields such that

the left puncture is of one sign and the right of opposite sign and build surfaces using S

gluing. In this way some of the properties will become simpler.
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4.1 Examples of A

We start with the case of A-type conformal matter. The case of a single M5 brane, the

minimal matter, leads to free models so we will not consider it. The cases of N > 1 were

discussed recently in a variety of papers [7, 8, 30, 31]. The compactifications on the torus

were considered in [9]. There, the torus with no punctures was constructed by first gluing

together theories corresponding to spheres with two maximal and one minimal puncture.

Such theories are given by the Wess-Zumino type of models. Then the minimal punctures

were closed by turning on vacuum expectation values to certain operators. In particular, it

was claimed that in such a manner one can produce models corresponding to flux which is

multiple of a 1/k. Nevertheless, our discussion has something to add even for this case. The

theories we get from this construction generally have flux that is a multiple of 1/r for r an

integer obeying 0 < r < k, and thus give theories that are not accessible from the existing

construction.7 The two construction overlap for theories with integer fluxes for which this

provides a different systematic construction of the theories. Let us then discuss some of the

general properties of the compactifications and analyze several concrete instances in detail.

The two puncture spheres. The color of a puncture is defined as follows. The symme-

try group in the A case is SU(k)×SU(k)×U(1). The puncture symmetry is
∏k
i=1 SU(N)i.

We have a cyclic order of the SU(N) groups coming from the affine Dynkin diagram of

type A. We have operators Mi associated to the puncture for i = 1 . . . k. The operators

Mi are in the bifundamental representation of the i-th and i+ 1-th SU(N) group for pos-

itive sign punctures and in the bifundamental of the i + 1-th and i-th SU(N) group for

negative sign punctures. The color is defined by assigning charges to Mi under the Cartan

of SU(k)× SU(k). We parametrize the Cartan by U(1)βl for one SU(k) and U(1)γi for the

other. For positive punctures the Mi are charged plus one under one of the U(1)β and

minus one under one of the U(1)γ , and each Mi is charged under different symmetries.

The choice of the U(1)β and U(1)γ symmetries under which each of the Mi operators are

charged constitute the color of the puncture. We thus can think of the color, as discussed

in previous sections here, as defined by two permutations modulo cyclic transformations,

that is the color index takes value in (σβ , σγ) ∈ Sk×Sk/Zk, where here Sk is the symmetric

group. For negative punctures the U(1)β charges are negative and U(1)γ are positive. For

puncture of color (1 , 1) the charges of Mi are plus one under U(1)βi and minus one under

U(1)γi . Punctures of opposite orientation are mirror images under the reflection of the

affine Dynkin diagram of A. The tubes we have defined have two maximal punctures of

different color. We illustrate this in figure 22.

Because of the superpotential terms, it is clear that the only fields contributing to

linear anomalies are the flip fields. Thus defining the flux as in the previous section, we

have here ni = 1/2. The flux Qi under U(1)βi is given by the sum of charges of the flip

fields under the symmetry divided by N k. Because flip fields are not charged under U(1)

7To be more precise, the theories in question have fractional fluxes and require a central flux element

for their consistency, see section 5 in [9] and appendix C in [10]. The theories so far constructed in the

literature embed the central flux element for one SU(k) group in the other SU(k) group, while the theories

considered here embed it in the unbroken part of the same SU(k) group.
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Figure 22. Example of a tube in the four dimensional language. Note this differs from what we

have defined before by horizontal fields which are chiral fields associated to punctures. The signs

Bi correspond to boundary conditions. We denote the charge of operators Mi and M̃j for the two

punctures as manifest in their fugacities. The charges of bifundamental fields are denoted in their

fugacities. The missing fugacities can be derived by demanding superpotential terms for every face

of the quiver. The R charges of flipped fields are zero, flip fields are two, and fields which are not

flipped are one. The permutation is (. . . 1 2 3 7 8 . . . ) ( . . . 6 5 4 s . . . ).

symmetries we deduce that the linear anomaly in it is zero. Moreover, because of the

supepotentials only the flip fields contribute to U(1)3
tβj

anomalies. In particular we deduce

that the linear anomaly in any U(1) is the same as cubic up to a factor of N2. This agrees

with the six dimensional prediction. In general we state as argued in Conjectures that

the anomalies agree with the six dimensional prescription if we glue together l tubes if,∏l
i=1 σ

ti ≡ σ = 1 . That is if the two colors of maximal punctures are identical. If σ 6= 1 the

anomalies agree for symmetries fixed by σ. We have verified this statement in numerous

cases but did not obtain a rigorous proof.

We will discuss several examples in some detail next.

k = 2. Let us consider the case of k = 2. Here the only choice of σt is the identity as 2

splitting to two non vanishing numbers is 1 + 1. This case is identical to the one we obtain

by the closing of minimal punctures procedure. The basic tube appears in figure 23.
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t�1

�2

�2

�1

�2

�1

t�1

�1

Figure 23. The tube for k = 2 with flux (1,−1) for the β symmetry. This can be obtained through

closing punctures of free trinions and through the five dimensional computation. The two punctures

are of the same color and sign.

Figure 24. Tube with flux (0, 0, . . . ,−1, 0, . . . , 0, 1, . . . ) obtained from closing minimal punctures.

The two maximal punctures are of the same color and sign.

Let us compute the flux of the model. The β1 charges of the flip fields are 2N and those

of the β2 fields are −2N dividing by kN we obtain that the flux is 1 in β1 and −1 in β2.

This is exactly the flux associated to this tube in [9], and it was checked that all anomalies

agree with the six dimensional prescription. Moreover, it was verified in examples that the

symmetry observed in the supersymmetric partition functions agrees with the expected

symmetry implied by the value of the flux.

Let us here quote a generalization of this tube following the procedure of closing

punctures. The tube with two maximal punctures of the same color and same sign and

with flux 1 for one of the βi and −1 for another while zero for the rest is depicted in

figure 24. With this tube any integer flux model can be constructed. Our construction will

go beyond this by constructing models with fractional fluxes.

The tube with σt =(2 3 . . . k). Let us discuss the example of tube with σt=(2 3 . . . k)

for general k. This model fixes one of the β symmetries and without generality we can

choose it to be β1. The flux of this model computed from flip fields is (1,− 1
k ,−

1
k , . . . ,

− 1
k ,−

2
k ). As the permutation fixes β1 and all of γi, the anomalies involving these symme-

tries, the R symmetry and the U(1) agree with six dimensional computation. We can glue

several such tubes together to form a torus in such a way that β1 is always fixed. The flux

is fractional for general number of tubes, however for l a multiple of k − 1 it is a multiple

of (k − 1,−1,−1, . . . ,−1), and in this case all the symmetries are preserved for the torus

and anomalies agree with the computation in six dimensions. It is also easy to see that the

quiver in this case is equivalent to a triangulation of the torus with l triangles wrapping
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Figure 25. On the left we have a combination of four tubes as in (4.4). Note that one of the nodes,

denoted in black, has Nf = N and therefore its dynamics leads to it being Higgsed and the groups

connected to it identified. Following this, the node denoted with dashed lines becomes 2N = Nf .

After performing Seiberg duality on this node, as well as a sequence of similar manipulations, we

obtain the quiver on the right hand side. This is the same as the one obtained by closing punctures

in [9] as in figure 24, if one flips the sign of one of the punctures as our tubes have punctures of

different signs.

one cycle and k another, with one side of each triangle flipped. The flipped sides form k

lines wrapping the cycle with l triangles. This is also the quiver that one would obtain if

one glues together tubes that one naively associates to all same sign boundary conditions.

k = 3 and k = 4. Let us here also discuss the two less obvious cases in some detail.

Let us first take k = 3. We have one type of tube as we can split 3 = 2 + 1, which is

the tube discussed in the previous subsection. We can define a similar tube, but with

the permutation and flux in the γ symmetries. We then have the freedom of gluing them

together in a variety of ways. For example, we can take the following tubes,

σta = (23) , σtb = (13) , σtc = (23) , σte = (12) . (4.3)

We have that σtaσtbσtcσte = 1 and thus all anomalies are expected to agree with six

dimensions. Moreover, the flux is,(
1,−1

3
,−2

3

)
+

(
−1

3
, 1,−2

3

)
+

(
1,−1

3
,−2

3

)
+

(
−2

3
,−1

3
, 1

)
= (1, 0,−1) . (4.4)

This is a flux one can obtain from closing punctures as in [9], and as the two have same

anomalies and expected symmetry they should be dual to each other. This should be

possible to show using Seiberg duality [32], see figure 25.

For k = 4 we already have a richer variety of constructions. In addition to the (123)

tube we also have tubes associated with the (12)(34) and (13)(24) permutations. The

former has flux ( 3
4 ,

1
4 ,−

1
4 ,−

3
4) and the latter tube flux ( 1

2 ,−
1
2 ,

1
2 ,−

1
2). We can read off

these fluxes easily from the flip fields. If we glue the first tube to itself we obtain the flux

(1, 1,−1,−1), while doing the same for the second gives the flux (1,−1, 1,−1). We thus

can construct these tubes from the ones we obtained by closing punctures and verify that

the two constructions agree upon making use of dualities.
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Figure 26. The tube with all plus boundary conditions. We only show the charges for horizontal

lines, which are the Mi, and for the flipped fields. The other charges are determined by the triangular

superpotentials. Here flavor groups denoted by 2 are SU(2N) and by 1 are SU(N). Note that for

N = 1 the flip and flipped fields on the edges form mass terms and decouple. The two punctures

are of opposite sign and we glue them with S gluing. We can see that the linear anomaly of this

theory comes only from flip fields.

4.2 Examples of D

The discussion here will follow the general ideas of the previous section. In particular

we start by defining the color of the punctures. The punctures have SU(2N)k × SU(N)4

symmetry for Dk+3 case. We have k + 3 operators associated to the puncture and we will

denote them as Ma
1,2, M b

1,2 and Mi with i ∈ {1, . . . , k−1}. The punctures have a color which

is defined by a label expected to take value in WDk+3
×WDk+3

, which is the product of the

two Weyl groups of Dk+3, possibly moded by some discrete symmetry. The tubes then can

be viewed as associated to an element of the Weyl group of one of the two Dk+3 groups.

We parametrize one of the Dk+3 by βi and another by γi. We choose the fugacities so

that the vector representation character is,

2k + 6γ =

k+3∑
i=1

γ∓2N
i , 2k + 6β =

k+3∑
j=1

β∓2N
j . (4.5)

The basic tube of figure 26 acts on color by permuting clockwise β1 . . . βk+1 and by

taking βk+2 to 1/βk+2 and βk+3 to 1/βk+3. We can compute the charges of the flip fields

to be,

β1 : 2N(k + 4) , βk+3, βk+2 : 0 , βl 6=1,k+3,k+2 : 2N . (4.6)

All other symmetries have zero charge. In particular let us now glue k + 1 such tubes

together to torus. If k is odd then all symmetries are preserved, and if k is even βk+3 and

βk+2 are broken because of the Weyl Z2 action of the tube. The charges then are,

βl 6=k+3,k+2 : 2N(2k + 4) , βk+3, βk+2 : 0 , (4.7)

– 45 –



J
H
E
P
0
9
(
2
0
1
8
)
1
1
0

We note that h∨ for Dk+3 is 2k + 4 and thus following our usual logic we identify the flux

as being proportional to 2N . Checking other anomalies we find that the flux associated to

the torus is one in 1
k+1

∑k+1
j=1 U(1)βj . In particular this means that to compute the flux of

a theory we compute the charge of the flip fields and divide by 2N(2k + 4).

We can choose different boundary conditions for the various fields. The tube will

implement then the action of various elements of the Weyl symmetry group. This will

involve rotation of βi and flips. We will discuss this in detail in some cases.

Affine quiver. We can take the tube above and glue the two punctures together. The

theory one obtains is the N = 2 D shaped affine quiver with the adjoint (or more correctly

bifundamentals of same group) fields flipped. All β symmetries are broken save the diagonal

combination of βi 6= k+ 3, k+ 2. This U(1) corresponds to the symmetry under which the

adjoints in N = 2 are charged. All γ symmetries survive and we expect the symmetry to

enhance to Dk+3. Note that for k = 1 and N = 2 this is the symmetry of the Lagrangian.

For other k and N the Lagrangian exhibits only the U(1) symmetries. However, because

of N = 2 dualities the index will be organized in representations of Dk+3. Moreover, the

models have N = 1 conformal manifold on which the symmetry can enhance to Dk+3. Note

that the dimension of the conformal manifold is 2k + 6 with all the symmetry preserved.

This means that the index at order qp, which does not depend on any flavor, is k + 2. If

the symmetry enhances to Dk+3 that means we will have the contribution of the currents

for Dk+3 × U(1). It is then conceivable that we have k + 3 marginal operators which are

singlets of the symmetry and another marginals in the adjoint of the non abelian group.

D4. Let us discuss the case of D4. In figure 27 we depict three different tubes for this

case. The tube on the left corresponds to flux ( 5
6 ,

1
6 , 0, 0) in β, the tube on the right to flux

(1
2 ,−

1
2 , 0, 0), and the tube on the bottom to flux ( 2

3 ,−
1
3 , 0,−

1
3). The tubes correspond to

the following Weyl symmetry,

5

6
,

1

6
, 0, 0 : β1 ↔ β2, β3 → 1/β3 , , β4 → 1/β4 , (4.8)

1

2
,−1

2
, 0, 0 : β1 ↔ 1/β2, β3 → 1/β3 , , β4 → 1/β4 ,

2

3
,−1

3
, 0,−1

3
: β1 ↔ 1/β4, β3 → 1/β3 , , β2 → 1/β2 .

For general values of N we can easily compute the indices of some models corresponding

to closed surfaces. For example let us glue two copies of the same tube together. All tubes

of figure 27 will give equivalent theories. We can discuss the left tube which will give

flux (1, 1, 0, 0) for β and zero for γ. For general N the gauge invariant operators are

the baryons, flip fields, and operators corresponding to closed loops on the quiver. The

baryons have large dimensions and flip fields are free fields for general N . The operators

of smallest charge are then built from flipped fields winding the quiver and from operators

corresponding to faces. Additional operators contributing to the index are given by gaugino

bilinears for each gauge group and by ψQQ operators for each field. We have 26 of the

latter operators and have ten gaugino bilinears. We also have sixteen faces. The index is
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Figure 27. Three different tubes for the D4 case. The two punctures are of opposite sign and

different colors. The dotted line represents the Mi which in the cases the line appears are composites.

The groups labeled by 1 are SU(N) and groups labeled by 2 are SU(2N).

then, ignoring flip fields which are free,

1 +
5

β2
1β

2
2

q
2
3 p

2
3 + · · · . (4.9)

The superconformal R charge is the free one. The index at order qp is vanishing. The

order qp in index computations using the superconformal R-symmetry counts the marginal

operators minus the conserved currents for global symmetries [28]. The symmetry β1β2 is

the symmetry which has the flux. The D4×D4 symmetry is broken to SU(2)3×U(1)×SO(8).

At this order of the index we see the U(1) symmetry. At zero coupling we can count the

dimension of the manifold of conformal couplings. The number of symmetries is 26. The

number of marginal operators is 26. On a general point of the conformal manifold only

eight symmetries are not broken. This indicates that the dimension of the conformal

manifold is eight. We expect then to have marginal operators in the adjoint of SO(8) and

SU(2)3 × U(1). These operators would give eight exactly marginal directions. Thus we

conclude that it can be that on some point of the manifold the symmetry enhances.

We can also try to understand what are the states charged under the γ symmetry.

The generic states charged under these symmetries are baryonic operators built from bi-

fundamental operators of two SU(N) groups which are composites of two bifundamentals
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of SU(2N)SU(N). The contribution to the index of these is,

q
2N
3 p

2N
3 βN1 β

N
2

[(
βN3 β

N
4 +

1

βN3

1

βN4

)
8s +

(
βN3
βN4

+
βN4
βN3

)
8c

]
. (4.10)

Here,

8s = (γN1 γ
N
3 )±1(γN2 γ

N
4 )±1 + (γN1 /γ

N
3 )±1(γN2 /γ

N
4 )±1 , (4.11)

8c = (γN1 /γ
N
3 )±1(γN2 γ

N
4 )±1 + (γN1 γ

N
3 )±1(γN2 /γ

N
4 )±1 . (4.12)

We see that the operators form representations of SO(8) × SU(2)3 × U(1). Note that

βN3 β
N
4 + 1

βN3 β
N
4

and βN3 /β
N
4 + βN4 /β

N
3 are characters of the two spinor representations of

SU(2)×SU(2) ∼ SO(4). Note that for N = 1 there are additional operators at low charges

and this is the special case of the E-string which is discussed in detail in [10].

We can also combine different tubes together. Note that because of the non trivial

Weyl action on the color, the order of gluing tubes actually can matter. For example

combining the two tubes on the left and then two tubes on the right the theory has flux

(2, 0, 0, 0). However combining the left tube to the right one and then taking two copies of

this gives different flux, (0, 0, 0, 0). This theory is singular. In the first case the symmetry

is actually enhancing to U(1) × SO(6) × SO(8), which further enhances to U(1) × SO(14)

in the case of N = 1.

D5 minimal. In this subsection we consider some examples for the case of minimal D5.

In figure 28 we have drawn three tubes for this case, where we concentrate only on tubes

with no flux in the SU(4) × SU(4) groups rotating the flavors at the ends of the quiver.

Using our prescription, we associate with tube I the flux ( 1
2 ,

1
4 ,

1
4 , 0), with tube II the

flux (1
4 ,−

1
4 ,

1
2 , 0) and with tube III the flux ( 1

4 , 0,
1
2 ,−

1
4). Here the fluxes are oriented as

(Fβ1 , Fβ2 , Fβ3 , Fγ2), and for brevity we ignore the fluxes in β4−5, γ1 and γ3−5 as these are

zero for these tubes and for theories made of them. We note that to all of these tubes

corresponds the same flux up to a Weyl transformation.

We next try to test these conjectures in various ways. As noted previously the anoma-

lies for tubes generally do not match the 6d expectations, and these tubes are no different.

However, it is possible that those for closed surfaces will work. To test these we next

consider various closed surfaces that can be built from these tubes.

First we note that closing the tubes on to themselves leads to the same quiver for

each tube. The quiver in question is an N = 2 SU(2)× SU(2) quiver gauge theory with a

bifundamental hypermultiplet and two fundamental hypermultiplet for each of the SU(2)

gauge groups. Additionally there are chiral fields coming from the flipped bifundamental

as well as the flipping fields. These theories correspond to the flux ( 1
3 ,

1
3 ,

1
3 , 0), up to a Weyl

transformation. This comes about as when closing the tubes we are forced to identify the

3 U(1) groups with the flux, which forces it to distribute evenly between them leading to

this structure.

The gluing breaks part of the global symmetry leaving us with a symmetry of rank 6.

This agrees with what the 6d expectation as for this value of flux to be consistent we must

include center fluxes breaking the global symmetry to U(1) × SO(11). We can preform
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Figure 28. A collection of tubes in the minimal D5 case with no flux in the SU(4)× SU(4) groups

rotating the flavors at the ends of the quiver.

various consistency checks, particularly we can match anomalies which agree with the 6d

expectations. We can also argue that the index should form characters of U(1) × SO(11)

in the same manner as for the previous affine quivers.

We can also consider connecting each tube to itself to build theories associated with

larger values of fluxes. However, in order to connect the tubes we need to cycle symmetries

with flux in them, meaning that the fluxes of the resulting tube are not just twice that of

the individual tubes. Particularly, when connecting three tubes we get to flux (1, 1, 1, 0),

and those related by Weyl transformations for the other tubes. These can be closed to

a torus without breaking symmetries with flux, and we can preform similar consistency

checks on these theories as well, such as matching anomalies. More intricate checks are

given by connecting two different tubes, and we next consider each in turn.

First we consider gluing tubes I and II. Due to the cycling of the global symmetry

necessary when connecting the two tubes, we need to shift the fluxes for tube II. Summing

the two fluxes, we associate with the resulting tube the flux ( 1
2 ,

1
4 ,

1
4 , 0) + (1

2 ,−
1
4 ,

1
4 , 0) =

(1, 0, 1
2 , 0).

We can next close the tube to a torus. When doing this we need to turn off the

symmetries associated with β2 and β3. The resulting theory is shown in figure 29. As we
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Figure 29. The theory resulting from gluing the tubes I and II together.

were required to turn β3 off, we associate with this theory the flux (1, 0, 0, 0). We can test

this in various ways. First we can compare anomalies where we find that they indeed match.

As a more intricate test we can consider the superconformal index. The general form

of the flux is expected to preserve U(1) × SO(18) global symmetry, yet this specific value

requires, for consistency, also a central flux element that breaks some of the global sym-

metry leading to the breakdown of β2 and β3. The resulting symmetry, while dependent

on the choice of central element, is known to be at most U(1) × SO(15). We can try to

test this by evaluating the superconformal index and see if the appearing operators can be

merged so as to form characters of this symmetry.

First we should consider the superconformal R-symmetry. Using a-maximazation we

find it to be: U(1)scR = U(1)6d
R −

√
11
45U(1)β1 . With this R-symmetry, we find no operators

violating the unitarity bound and so no contradiction with this theory flowing to an inter-

acting SCFT. We can then evaluate the index, where, for the purpose of the evaluation,

we shall use the R-symmetry U(1)6d
R −

1
2U(1)β1 , which is quite close to the superconformal

one, as 1
2 −

√
11
45 ≈ 0.0056. We find:

I = 1 + (pq)
1
2

(
2

β2
1

+ β2
1(4 + χ[15]SO(15))

)
+ (pq)

1
2 (p+ q)β2

1(3 + χ[15]SO(15)) (4.13)

+ pq

(
3

β4
1

+ 5 + χ[15]SO(15) + β4
1(χ[119]SO(15) + 4χ[15]SO(15) + 9)

)
+ . . .

Here we have already written the index in characters of the expected U(1) × SO(15)

global symmetry, where: χ[15]SO(15) = 1 + γ2
2 + 1

γ22
+ χ[6,1] + χ[1,6]. This shows that the

index can indeed be written in characters of U(1)×SO(15), at least to the evaluated order.

We next consider gluing tubes II and III. Due to the cycling of the global symmetry

necessary when connecting the two tubes, we now need to shift the fluxes for tube III.

Again summing the two fluxes, we associate with the resulting tube the flux ( 1
4 ,−

1
4 ,

1
2 , 0)+

(1
2 , 0,

1
4 ,−

1
4) = (3

4 ,−
1
4 ,

3
4 ,−

1
4).

We can next close the tube to a torus. When doing this we are forced to identify

β3 = 1
γ2

and β1 = 1
β2

. The resulting theory is shown in figure 30. Due to the required

identification, we associate with this theory the flux ( 1
2 ,−

1
2 ,

1
2 ,−

1
2). We next test this in
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Figure 30. The theory resulting from gluing the tubes II and III together.

various ways. The basic test is to compare anomalies against those expected from 6d,

where we indeed find that they match.

We can again consider evaluating the superconfomal index looking for character struc-

ture of the expected global symmetry. Here the structure of the flux is that of U(1) ×
SU(4)× SO(12) preserving flux. However due to the fractional flux, part of the symmetry

is broken so that at most U(1)×SU(2)×SO(12) can be preserved. This is manifested in the

construction by the identification that we were forced to perform upon closing the tube.

We start by studying the superconformal R-symmetry using a-maximazation. We find

it to be: U(1)scR = U(1)6d
R −

√
11
126U(1)β1 −

√
11
126U(1)β3 . With this R-symmetry, we find

no operators violating the unitarity bound and so no contraction with this theory flowing

to an interacting SCFT. we can then evaluate the index, where, for the purpose of the

evaluation, we shall use the R-symmetry U(1)6d
R −

1
3U(1)β1 − 1

3U(1)β3 , which is quite close

to the superconformal one, as 1
3 −

√
11
126 ≈ 0.04. We find:

I = 1 + (pq)
1
3β2

1β
2
3(3 + χ[3]SU(2)) (4.14)

+ (pq)
2
3

(
2

β2
1β

2
3

+ β4
1β

4
3(χ[5]SU(2) + 3χ[3]SU(2) + 7) + β1β3χ[2]SU(2)χ[12]SO(12)

)
+ . . .

Here we have already written the index in characters of the expected U(1) × SU(2)×
SO(12) global symmetry, where: χ[2]SU(2) = β1

β3
+ β3

β1
and χ[12]SO(12) = χ[6,1] + χ[1,6].

This shows that the index can indeed be written in characters of U(1) × SU(2)× SO(12),

at least to the evaluated order.

Finally we consider gluing tubes I and III. Due to the cycling of the global symme-

try necessary when connecting the two tubes, we again need to shift the fluxes for tube

III. Summing the two fluxes, we associate with the resulting tube the flux ( 1
2 ,

1
4 ,

1
4 , 0) +

(1
2 , 0,

1
4 ,−

1
4) = (1, 1

4 ,
1
2 ,−

1
4).

We can next close the tube to a torus. When doing this we are forced to identify

β2 = β3 = 1
γ2

. The resulting theory is shown in figure 31. Due to the required identification,

we associate with this theory the flux (1, 1
3 ,

1
3 ,

1
3). We can test this by comparing anomalies

where we indeed find they match the 6d expectations.
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Figure 31. The theory resulting from gluing the tubes I and III together.

Duality with USp(2k)/SU(k + 1) quivers. The construction of minimal type D

conformal matter can also be approached from a different perspective, and comparing

the two then leads to interesting physical phenomena. Particularly, the minimal type

D conformal matter has, besides the SU(2) quiver description, two additional 5d gauge

theory descriptions, as a USp(2k) and an SU(k + 1) gauge theories with fundamental

hypermultiplets. These can also be used to construct 4d theories in a similar manner to

that which is done here, but by using a 5d domain wall extrapolating between the USp(2k)

and the SU(k + 1) descriptions. This construction was covered extensively in [11].

A rather interesting aspect in this comparison is that we can construct the same com-

pactification using different tubes. This should then give two dual descriptions of the same

theory, that has at its heart the duality between the different 5d gauge theory descriptions

of the minimal type D conformal matter. The simplest case here is to use the tube with all

plus boundary condition by gluing a multiple of k + 1 of them to form a torus. When k is

odd then this compactification can be easily built from the tubes introduced in [11]. This

leads to a duality between a plane quiver theory of SU(2) gauge groups and a circular quiver

of alternating USp(2k) and SU(k+ 1) groups. This case was discussed in appendix of [11].

From the constructions presented both here and in [11] we can build a large number

of different examples as in both cases we have ample tools to engineer torus compact-

ifications with different values of flux. For instance we considered an example for D5

involving the two tubes called II and III. From these we can engineer a theory with flux

(1,−1, 1,−1, 0, 0, 0, 0, 0, 0), similarly to how we constructed the theory in figure 30.

We can also, using the tubes associated with the USp/SU construction, build a torus

compactification with the same flux. In fact, we can construct the torus compactification

associated with flux ( 1
2 ,

1
2 ,

1
2 ,

1
2 , 0, 0, 0, 0, 0, 0), which naively should be dual to the theory in

figure 30, as the fluxes are the same up to a Weyl transformation. However, as previously

stated, this flux requires also a central element in the global symmetry to be consistently

quantized, and the resulting theories differ in these central elements. Particularly, for

correct quantization a Z2 central flux is required. For the theory in figure 30, this central

flux is embedded in the center of the SU(4) global symmetry. However, for the analogous

theory in the USp/SU construction, this central flux is embedded in the center of the

SO(12) global symmetry.
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Figure 32. Two theories expected to be dual since they both describe the same compactification

of the minimal (D5, D5) conformal matter. (a) The theory constructed from the tubes II and III

that we introduced previously. We have written some of the charges of the fields via fugacities,

the rest can be inferred from anomalies and the superpotentials. (b) The theory constructed from

USp(2k)/SU(k + 1) domain wall discussed in [11]. Here we used the simpler version given after

Intriligator-Pouliot duality. We refer the reader to [11] for the details. The gauge groups are

SU(3) and SU(2) as it is the same as USp(2). The circular double arrows connected to the central

SU(4) global symmetry group stand for chiral fields in the antisymmetric representation of said

SU(4) flavor symmetry group. These flip the gauge invariant states made from the SU(2) × SU(4)

bifundamentals.

As a result to get a duality we need to form a torus compactification with integer flux,

the simplest case being (1,−1, 1,−1, 0, 0, 0, 0, 0, 0). In figure 32 we have drawn the two

dual theories associated with this flux. Both are expected to have a U(1)×SU(4)×SO(12)

global symmetry, which is the symmetry preserved by the flux. For the theory in figure 32

(b), U(1)m × SU(4) should map to the first part, while U(1)y × SU(6) should enhance to

SO(12) as 12SO(12) = y36SU(6) + 1
y3

6̄SU(6). For the theory in figure 32 (a), the combination

U(1)β1 +U(1)β3−U(1)β2−U(1)γ2 should map to the U(1), the other 3 combinations should

build the SU(4) as 4SU(4) =
√

β1γ2
β2β3

(β1β2 + 1
β1β2

) +
√

β2β3
β1γ2

(β3γ2 + 1
β3γ2

), and the two SU(4)

groups should build SO(12) as 12SO(12) = 6SU(4)1 +6SU(4)2 . The exact relation between the

U(1) groups on both sides is expected to be: U(1)m = 3
2(U(1)β1 +U(1)β3−U(1)β2−U(1)γ2),

or in fugacities: m6 = β1β3
β2γ2

.

Note that the theory one constructs using the USp/SU domain wall has SU(3) nodes

with ten flavors. This is IR free theory and the way to understand the model is by first not

gauging the SU(3) groups but only the USp(2) groups, see [11] for a discussion in closely

related case. Let us first discuss the theory with only the SU(2) groups gauged and without

the fields charged under SU(6) and SU(3). This theory has the symmetries U(1)m and U(1)y
with only the former mixing with the R-symmetry. The model is asymptotically free and

after a maximization we obtain that the superconformal R-symmetry is R0 − 0.00345qm,
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where R0 assigns R-charge 3/5 to fields charged under the SU(2) with the rest fixed by the

superpotential, with no unitarity bound violating operators. It is then plausible that the

theory flows to an interacting conformal fixed point. We now add the six fundamental fields

for both SU(3) flavor groups. Then we obtain that Tr(RSU(3)2) = 6(2
3−1)1

2 +(−3+2
√

19
51)

with the second term coming from the fixed point. We note that this term +3, which is the

contribution to Tr(RSU(3)2) from the SU(3) gauge field, is positive meaning that the SU(3)

group is asymptotically free at the fixed point with the addition of the six fundamental

fields. We remind the reader that the beta function is proportional to −Tr(U(1)RSU(N)2)

with R being the superconformal symmetry of the fixed point. We then flow to a fixed

point with all operators above the unitarity bound, and the superpotential involving fields

charged under SU(6) and SU(3) is marginal. This implies that the theory makes sense as

a sequence of flows starting from weakly couple UV theory.

We can test the duality in various ways. First we can compare anomalies, where we

find the anomalies indeed match between the two theories, with the expected identification,

and also match the 6d prediction. We can also compute and compare the superconformal

index. We indeed find that it matches between the two theories, at least to the order we

evaluated it. We also observe that it forms characters of the expected U(1)×SU(4)×SO(12)

global symmetry. Specifically, we find for the index:

I = 1 + 2
β1β3

β2γ2
χ[6]SU(4)(pq)

1
3 (4.15)

+ (pq)
2
3

(√
β1β3

β2γ2
χ[4]SU(4)χ[12]SO(12) +

β2
1β

2
3

β2
2γ

2
2

(3χ[20′]SU(4) + χ[15]SU(4) + 3)

)
+ . . .

Here we have used the notation of figure 32 (a), the transformation to the notation

of the other theory can be done using the relations given above. We have also used the

R-symmetry U(1)6d
R −

1
3(U(1)β1 +U(1)β3−U(1)β2−U(1)γ2), which is close to the supercon-

formal R-symmetry which is U(1)6d
R −

√
11
126(U(1)β1 + U(1)β3 −U(1)β2 −U(1)γ2). There are

no operators violating the unitary bound with respect to the superconformal R-symmetry.

Finally we note that the first two terms in the index are exactly as expected from the

compactification of 6d theories based on the reasoning of [33] (see also appendix E in [10]).

The third term is just the self-product of the first term.

4.3 Examples of E

Let us now give some illustrative computations for the compactifications of E conformal

matter. As the gauge groups in the relevant quiver diagrams become of large dimensions

even in the minimal case, there are very few computations one can perform explicitly.

We will thus restrict to checking anomalies and verifying indices in limiting cases of the

minimal conformal matter.

E6. A typical tube is depicted in figure 14. As discussed in previous sections, the flux

associated to the tubes is such that gluing the tube to itself six times one obtains integer

flux preserving the full symmetry of the theory unbroken by the flux, which in this case is
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Figure 33. The Dynkin diagram of E6×E6 with the shaded node corresponding to the node with

the flux.

3

1

2

2

1

2

1

Figure 34. Torus with 1/6 units of flux in the U(1) corresponding to the central node. The lines

from vertex to itself are adjoint plus a singlet.

E6× SU(3)× SU(3)× SU(2)×U(1). That is the flux of the combined model is in the U(1)

corresponding to the central node of one of the E6 groups. See figure 33.

Gluing the tube to itself we obtain the affine quiver of figure 34. The figure is for the

minimal case. For non minimal the groups become SU(lN) with the l label appearing in

the figure and all are gauge nodes. We will discuss only the minimal case in what follows.

Note that the flipping of the baryonic operator is irrelevant for the SU(3) gauge group.

We can perform naive a maximization ignoring this and find that this agrees with the six

dimensional computation. Computing the index we can see that protected states organize

in U(1) × E6 representations. The rest of the symmetry is broken by the fractional flux,

where out of one of the two E6 symmetries only the U(1) with the flux is not broken.

Parametrizing the U(1) in the end of the legs of the quiver as bi and the U(1) under which

the bifundamentals in the middle are charged by ai, we also have an additional U(1) we

denote by t under which the bifundamental fields are charged half and the adjoint fields

charged one. The simplest operators charged under a and b symmetries appear at (qp)
4
3

in the index computation and are in the following representations,

(3 , 3 , 1) + (3 , 1 , 3) + (3 , 3 , 1) + (3 , 1 , 3) + (1 , 3 , 3) + (1 , 3 , 3) , (4.16)

where 3l = a2
l + 1

al
(b−1
l + bl). The above representations naturally form 27⊕27 of E6, they

have U(1)t charge two. We can compute the index in a limit. Note that without the singlet

fields this is an N = 2 model and it has an [34] HL limit. In terms of six dimensional R

charge this corresponds to keeping q p t fixed while sending q, p , 1/t to zero. Keeping the
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Figure 35. The leg of torus with one unit of flux. The links of the quiver without the flip fields are

charges with charge half under U(1)t, the fields with the flip are charged minus one. We denoted the

other charges on the quiver with the charges of links with no labels derivable from superpotentials.

The SU(2) explicitly visible in the quiver is SU(2)f .

singlet fields in the bifundamentals does not spoil the limit but the flip fields give singular

contributions. As the flip fields are free we can compute the index without these. We obtain,

1 + 2t+ (3 + 27 + 27)t2 + (−1 + 2 27 + 2 27 + 78)t3+ (4.17)

(−7 + (Sym2(3 + 27 + 27))− 3 78− 4 27− 4 27)t4 + . . . .

Note that all the operators form E6×U(1) representations. We also mention that this model

does not actually possess an E6 symmetric point on its conformal manifold. This can be

shown as the theory is conformal and all the exactly marginal deformations are N = 2.

This is analogous to a similar statement in [10]. We do not have any contradictions for

theories with higher amounts of flux having this symmetry.

We can combine the tubes to form integer value of flux. Gluing six two punctured

spheres we obtain torus with flux one. We expect the full symmetry to be visible there.

The theory can be composed of three copies of the one in figure 35 by gluing them along

the perimeter. The anomaly conditions will identify

3∏
i=1

ai =
3∏
j=1

cj =
3∏
l=1

bl = 1 , (4.18)

with (an, bn, cn) being the symmetries of the three copies, and ancnbn = 1. The symmetry

is then given by the three SU(2)s of the three copies, three U(1)en , one U(1)r, one U(1)t,

three copies of U(1)aU(1)bU(1)c subject to five constraints. The rank of the symmetry is
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twelve as expected. The index in the limit above is given as follows,

1 + (2,3,3; 1)t+ (−(1 + 3,3,3; 1)− 12 + (1 + 3,6,3; 1) + (1 + 3,3,6; 1))t2+ (4.19)

+ 2(1,3,1; 27)t2 + 2(1,1,3; 27)t2 + . . . .

Here we have the representations of (SU(2)r, SU(3)α, SU(3)γ ;E6). The characters are,

2SU(2)r =
1

r2
+r2 , 27E6 = (31,32,13)+(11,32 ,33)+(31 , 12, 33) , (4.20)

3i = e′i
−2

+e′i

(
1

fi
+fi

)
, ei = e′i(a

2
i bi)

1
3 , 3α =α1+α2+

1

α2α1
, 3γ = γ2+γ1+

1

γ2γ1
,

a1 = (γ2γ1α1α2)−
1
2 , b1 = (α2γ2)

1
2 , b2 = (γ1/α1α2)

1
2 , a2 = (α1γ2)

1
2 .

One can actually understand some of the terms in the index from six dimensions. Note

that under U(1)t which has the flux we have,

78 = 3α3γ(t−2 + t2r) + 3α3γ(t2 + t−12r) + 2r(t
−3 + t3) + 3r + 8γ + 8α + 1 . (4.21)

We expect this term to contribute at order qp with the six dimensional R-symmetry with

the multiplicities determined by flux and charges under t (see [10] appendix E for this

statement which summarizes the results of [33]). In our limit we see that the term 3α3γ 2r
should survive and contribute to the index at order t, which we observe. The states with

3γ3αt
2 should contribute with multiplicity 2. Note that these are divergent in the limit

we take and they are captured exactly by the flip fields in the smaller circles of the three

legs of the quiver. The states with t32r contribute with multiplicity three and also are

divergent and they are captured by flip fields coming from the large circle in the center of

the quiver. The remaining states in the adjoint of E6 vanish in the limit. The states we see

in representations of the E6 which is invariant under the flux is also easy to understand.

The six dimensional theory has operators in 27a ⊗ 27b ⊕ 27a ⊗ 27b at R-charge four.

The operators which survive the limit have charge two under U(1)t and thus appear with

factor of two precisely as the representations appearing in the index.

Let us compute for completeness the flux of a tube following from our assignment of

symmetries. Note that we have two factors of E6 which we will denote as β and γ. The flux

is only in one of them. Reading off the charges of the flip fields appearing in the quiver of

figure 35 we obtain that the only non vanishing charge is in t and is equal to 144. We need

to add also the contribution of the flip fields flipping the bifundamenta baryons between

pairs of SU(1) groups. Although in this case the baryons are just the fields and the flipping

removes them, the prescription of counting the charges is to take all the flip fields. We also

note that the symmetries satisfy (4.18). This theory is built from six tubes so we have to

divide by six to obtain flux of a single tube and then further divide by 24 which sets the

coefficient nt = 3
2 in (3.11). To obtain the flux for a single tube we need to read off the

charges of a wedge in the figure.

One can consider other choices of the flux. For example taking the flux to be such

that one of the E6 factors is broken to U(1) × SU(6) we claim the torus with unit flux is

in figure 36. The node of the Dynkin diagram with the flux is depicted in figure 37.
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Figure 36. Leg of torus theory with one unit of flux breaking symmetry to SU(6)U(1)E6. Three

copies of this model are glued to by gauging the diagonal SU(3) symmetries. The charges under

different symmetries are deduced from the superpotentials associated to the faces. The flux is for

the U(1)a symmetry. The SU(2) flavor symmetry with U(1)l symmetry enhances to SU(3) for each

leg and the three SU(3)s from the three legs enhance to E6.

 

Figure 37. The Dynkin diagram of E6×E6 with the shaded node corresponding to node with flux.

We can decompose the torus to two equal tubes such that each has fractional flux. We

can also further decompose the tubes to two different ones having different flux. One can

check that the anomalies of the model agree with six dimensions and that the index forms

the representations of the symmetry, at least in similar limits as the one we discussed here.

E7 and E8. The basic tube here has the form of the affine Dynkin diagram of the E7 and

E8 group. The gauge structure here is more involved than in other cases so explicit checks

of the claims are harder to perform. Thus in this section we will restrict to discussing the

affine quivers which are obtained by combining a single tube to form a torus. The flux in

both cases is to the U(1) corresponding to the central node of one of the groups. The value

of the flux is 1
12 for the E7 case and 1

30 for the E8 case. See figures 38 and 39.

A theory, preserving all the symmetry, can be constructed when we combine multiples

of the basic theory to get non fractional flux. The symmetry in the E7 case is SU(4) ×
SU(3)× SU(2)× U(1)× E7 and is SU(5)× SU(2)× SU(3)× E8 × U(1) for the case of E8

(minimal) conformal matter.
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Figure 38. The quiver for the compactification of minimal E7 conformal matter on torus with flux

1/12 to the U(1) corresponding to the central node of one of the two E7 symmetry factors. The

fugacities denote the U(1) symmetries under which the bifundamental fields are charged. As usual

all adjoints are charged under an additional U(1) with charge minus one and the bifundamentals

are charged 1/2.

We can compute the index in the limit we have studied. Let us quote the result for E7.

Without the flip fields, but with the additional singlets with same charges as the adjoints,

this is given by,

1 + t+ t2 + (56 + 1)t3 + (133 + 56− 5)t4 + . . . . (4.22)

We see that the index forms representations of E7. We also see that the first E7 repre-

sentation is the 56 which enters at order t3. This is in accordance with our discussion in

section 2, where we noted that these classes of theories have operators in the bifundamental

representation, which for the case of E7 means one in the (56,56). Furthermore, in the

minimal case considered here it is expected to contribute with R-charge 6 under the U(1)

R-symmetry inherited from 6d. When converted to the index limit used here, this indeed

gives an operator contributing at order t3.

The way the E7 representations arise is as follows. We decompose E7 to SO(12) ×
SU(2). The SU(2) Cartan is the U(1)a symmerty appearing in figure 38. The other U(1)

symmetries map to the Cartan of SO(12). We denote vi to be Cartan of SO(12) so that

the vector is
6∑
c=1

v±1
c .

Then the map of charges is,

b2 =
(
v4v

2
1v6

) 1
6 , b5 =

(
v2

v5v2
3

) 1
6

, b4 =

(
v2v

2
3

v5

) 1
6

, (4.23)

b3 =

(
v4v6

v2
1

) 1
6

, b6 =
√
v2v5 , b1 =

√
v4

v6
.

In general we would then make this assignment to the γ copy of E7 to the Mi operators of

the tube and then derive the charges with respect to β copies according to the boundary

conditions.
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Figure 39. The affine quiver diagram corresponding to compactification on torus of E8 minimal

conformal matter with flux 1/30 for the U(1) corresponding to central node of one of the two

E8 factors.
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