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Abstract: In this paper we study the fragmentation of a parton into a jet containing

a heavy quark. When heavy quarks are involved in a jet, the quark mass can lead to a

numerically significant correction to the jet cross section and its substructure. With this

motivation, we calculated the heavy quark mass effects to next-to-leading order in αs on the

fragmentation functions to a jet (FFJs) and the jet fragmentation functions (JFFs), where

the former describes fragmentation of parton into a jet and the latter describes fragmenting

processes inside a jet. The finite size of the heavy quark mass does not change the ultraviolet

behaviors, but it can give significant corrections to the finite contributions. When we take

the zero mass limit, we find that the FFJs and the JFFs reproduce established results for

massless partons. If we define the heavy quark jet as one that include at least one heavy

(anti-)quark, the tagged heavy quark jet production is sensitive to the heavy quark mass

and produces large logarithms of the mass. Taking advantage of the FFJs and JFFs, we

formulate a factorization theorem for heavy quark jet production in order to resum these

large logarithms systematically. As an application, we study inclusive b-jet production and

show phenomenological implications due to keeping a non-zero quark mass.
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1 Introduction

A jet, loosely defined to be a collimated beam of hadrons produced in a high energy collision,

is well localized in a certain spatial direction and hence rather easy to experimentally

identify. These objects are ubiquitous in high energy collisions. A jet algorithm is used to

map the momenta of the particles measured in the collision into a set of jets in a precise

way. To be theoretically useful, we only use jet algorithms that are infrared (IR) safe. This

allows us to properly compare theoretical results with experiments, drastically reducing

hadronic uncertainty. These are some of the reasons jet physics has become a crucial tool

to test Standard Model and to unveil new physics.

Interactions of particles related to a jet typically are offshell by an amount p2 ∼ Q2R2,

where Q is the typical hard energy scale and R is a jet radius. So the appropriate scale that

describes jet phenomena in hadron collisions is µ ∼ pTR, where pT is the jet transverse

momentum to an initial beam and is comparable to Q for most of the rapidity region.

When R is an order of unity, the jet scale is similar to the hard collision scale of the initial

partons, ŝ1/2 ∼ Q. So, in this case, we have to describe the hard collision and the jet

phenomena simultaneously. However, when R is enough small, we can separate the hard

collision and the jet processes properly and describe the jet phenomena using collinear

interactions. Moreover, jets with a small radius are widely studied since they mitigate

unwanted uncertainties arising from pile-up and underlying events.
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Theoretically, a small jet radius is interesting because we can employ a collinear fac-

torization theorem to write the rate as a convolution [1]

dσ(N1N2 → JX)

dpJT
=
∑
i

∫ 1

xJ

dz

z

dσN1N2→iX
dpiT

(xJ
z
, µ
)
DJ/i(z, µ), (1.1)

where i denotes a parton from the hard collision, and pT is a transverse momentum to an

initial beam. xJ is defined by xJ = pJT /QT , where QT is the maximal transverse momentum

of the parton i. DJ/i(z) is the so-called fragmentation function to a jet (FFJ) [2–4], which

describes the probability for a mother parton i to split into an observed jet J with the

transverse momentum fraction z. The factorization theorem in eq. (1.1) encodes the fact

that all the information on hard interactions at scale µ ∼ pT resides in the cross section

dσ/dpiT , while the jet is properly described at the lower scale µ ∼ pTR described in terms of

collinear interactions, where R is the small jet radius. Thus the physical properties of the

jet with a small R is independent of the hard interactions and can be described completely

by the FFJs.

The FFJ in eq. (1.1) acts like a plug-and-play module. If, instead of the FFJ, we insert

a fragmentation function (FF) to a hadron, eq. (1.1) describes a hadron pT spectrum.

Due to this, the FFJs share many common features with the usual FFs. For example,

the renormalization group (RG) running of the FFJs follows the well-known Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as do the usual FFs. However, the

low energy behavior of the FFJs is very different from a FF. The FFJs are IR safe due

to the finite size of the jet radius R. This fact enables us to estimate the FFJs by doing

perturbative calculations including the resummation of the large logarithms of R [1–5] and

1 − z [6]. Using these results, FFJs have been successfully used to calculate inclusive jet

production [3, 5, 7, 8].

The FFJs provide a firm basis to systematically explore the substructures of an ob-

served jet. For example, when considering the fragmenting processes inside a jet, the

scattering cross sections can be formulated as the multiplication of eq. (1.1) and the jet

fragmentation function (JFF) [4], where the JFF describes the fragmentation within a jet

to a particular hadron or a subjet, and has been widely studied [2, 4, 9–15] on the basis of

the theoretical results for the fragmenting jet functions [16–18]. Also, through the FFJs,

we can consider the mass distribution [19–21] and the transverse momentum distribution

(to a jet axis) [22, 23] for a jet with a given pT .

So far the FFJs and JFFs have been studied in using massless quarks only. It is

therefore interesting to see how the quark mass affects the physical features when a heavy

quark is in a jet. If we consider a heavy quark jet at the LHC or a future collider using the

factorization framework of eq. (1.1), the quark mass can be safely ignored in the partonic

cross section dσ/dpiT , since pT will be much larger than the heavy quark mass mQ in most

cases, and so the mass can be set to zero in this part of the factorized formula. However,

for a jet with typical size pTR, the quark mass may be similar to this jet energy scale and

can have a significant impact on the FFJ. In the limit pTR ∼ mQ, the heavy quark can
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give a correction of order unity, and even in the limit pTR� mQ, the few first corrections

in mQ/(pTR) may be sizable.

The heavy quark mass effects on the jet can be systematically studied in soft-collinear

effective theory (SCET) [24–27], which can be extended to include the quark mass [28–30].

Using SCET, the jet can be described by collinear interactions with fluctuations p2
c ∼ p2

TR
2.

As shown explicitly in ref. [30], the massive version of SCET (SCETM) is renormalizable like

full QCD. There it is shown that nontrivial ultraviolet (UV) effects due to the quark mass,

like what occurs in heavy quark effective theory, do not appear in SCETM. Furthermore,

it implies that the UV behavior of the heavy quark jet will be the same as for the massless

case. We thus expect that the heavy quark mass can only change jet substructures or the

low energy behavior of the jet.

A heavy quark jet is usually defined by the inclusion of at least one heavy (anti-)quark.

However, as pointed out in refs. [31, 32], if we specify the jet with a certain flavor of quark,

we face large logarithms due to a hierarchy between the jet energy and the quark mass

in the perturbative calculation. These logarithms become IR divergences in the massless

limit. If we consider b-jet production at the LHC in the regime pT � pTR� mb, we would

have the large logarithm ln pTR/mb at next-to-leading order (NLO) in αs. This logarithm

arises when a gluon initiating a jet splits into a bb̄-pair with a small opening angle. The

logarithm would cancel if we consider the b-quark loop in the self-energy diagram of the

gluon. However, this gluon self-energy diagram does not lead to b-quarks in the jet, and

thus should not be included in the contribution to the b-jet. Hence the large logarithm

remains.

In order to describe b-jet production and resum the large logarithms of pTR/mb, the

factorization theorem in eq. (1.1) alone is not enough. It is necessary to employ the JFF

to a heavy quark while considering the substructure related to g → bb̄ further. The proper

description of b-jet production can be realized through a factorization theorem with an

appropriate combination of the FFJs and JFFs. For pT � pTR � mb, the JFFs are

responsible for the resummation of the large logarithms of pTR/mb, while the FFJs play

an important role in resumming the logarithms of R. We further notice that the heavy

quark JFF can be additionally factorized and matched onto the heavy quark fragmentation

function (HQFF) [33]. Then the large logarithm of pTR/mb can be automatically resummed

through RG running of the HQFF from pTR to mb.
1

In this paper we study the heavy quark jet fragmenting processes and analyze the

quark mass effects on the FFJs and JFFs. In section 2 we extend the FFJs to include the

heavy quark and calculate the heavy quark mass effects at NLO in αs. In section 3 we

compute the heavy quark mass effects on the JFFs and confirm the established factorization

formalism with the FFJs and JFFs up to NLO in αs. In section 4 we study inclusive b-jet

production at the LHC as an application. We show some phenomenological results using

a factorization theorem for b-jet production and resumming large logarithms. In section 6

we conclude.

1A similar approach based on the calculation of the heavy quark fragmenting jet function in ref. [34] has

been considered in the context of the multi-jet production with a small N -jettiness.
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2 Next-to-leading order result of the FFJs with heavy quarks

In order to effectively calculate the FFJs with heavy quarks at NLO in αs, it is useful

to consider the one-loop computation of the HQFF at the parton level. The virtual one-

loop correction to the HQFF automatically becomes the ‘in-jet’ contribution and the real

radiation can be separated into the ‘in-jet’ and ‘out-jet’ contributions by the jet algorithm.

Following the definitions introduced in ref. [35] and using SCETM, we express the

heavy quark and gluon fragmentation functions in D dimensions as

Di/Q(z, µ) =
∑
X

1

2Ncz

∫
dD−2p⊥i Tr〈0|δ

(p+
i

z
− P+

)
δ(D−2)(P⊥)

n/

2
ΨQ
n |i(p+

i ,p
⊥
i )X〉

×〈i(p+
i ,p

⊥
i )X|Ψ̄Q

n |0〉, (2.1)

Di/g(z, µ) =
∑
X

1

p+
i (D − 2)(N2

c − 1)

∫
dD−2p⊥i Tr〈0|δ

(p+
i

z
− P+

)
δ(D−2)(P⊥)B⊥µ,an

×|i(p+
i ,p

⊥
i )X〉〈i(p+

i ,p
⊥
i )X|B⊥anµ |0〉, (2.2)

where i = q,Q, g denote flavors of partons, q (Q) is a light (heavy) quark, and Nc is the

number of colors. The fragmentation functions defined here are written in terms of collinear

fields in the n direction. For n-collinear interactions, the momentum is power counted as

pµ = (p+, p⊥, p−) = p+(1, λ, λ2), where p+ ≡ n · p, p− ≡ n · p, and λ is a small parameter

dependent on the kinematic situation. We are using the standard lightcone vectors n and

n with normalization n · n = 2 and gauge invariant collinear quark field and gluon field

strength, Ψn = W †nξn and B⊥µ,an = inρgµν⊥ G
b
n,ρνWba

n = inρgµν⊥ W
†,ba
n Gbn,ρν , respectively.

Finally, Wn (Wn) is a collinear Wilson line in the fundamental (adjoint) representation.

In expressing eqs. (2.1) and (2.2), we have set the transverse momentum of the mother

parton, q⊥ = p⊥i + p⊥X , to zero. It is also sometimes useful to work in the frame where the

transverse momentum of the observed parton p⊥i = 0. In this case, after a slight rotation,

we can express the fragmentation functions as follows:

Di/Q(z, µ) =
∑
X

zD−3

2Nc
Tr〈0|δ

(p+
i

z
− P+

)n/
2

ΨQ
n |i(p+

i )X〉〈i(p+
i )X|Ψ̄Q

n |0〉, (2.3)

Di/g(z, µ) =
∑
X

zD−2

p+
i (D − 2)(N2

c − 1)
Tr〈0|δ

(p+
i

z
− P+

)
B⊥µ,an |i(p+

i )X〉 (2.4)

×〈i(p+
i )X|B⊥anµ |0〉.

In order to calculate at one-loop order, we will use an inclusive kT-type jet algorithm

to include kT [36, 37], C/A [38], and anti-kT [39] jets. When two emitted particles are

combined into a jet, the constraint is given by

θ < R′, (2.5)

where θ is the angle between the two particles. R′ = R for e+e− annihilation and R′ =

R/ cosh y for hadron collision, where R is the jet radius and y is the rapidity. We will

assume that R is small enough to describe a jet using collinear interactions and |y| . O(1)
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to constrain the event to the central region of the detector. Therefore, if we have a jet with

energy EJ , the typical scale for describing the jet can be chosen to be µ ∼ EJR
′, which

is given by EJR for e+e− annihilations and pJTR for hadron collisions, with pJT being the

transverse momentum of the jet relative to the beam direction.

From eq. (2.5), we obtain the phase space constraint for jet merging when we have a

splitting q → p+ k, where q is a momentum of the mother parton and p is the momentum

of the observed parton,

tan
R′2

2
>
q2

+k2
⊥

p2
+k

2
+

, (q⊥ = 0), (2.6)

tan
R′2

2
>

k2
⊥
k2

+

, (p⊥ = 0). (2.7)

These constraints hold for both massless and massive partons, as long as the particles’

masses are much smaller than their energies.

Throughout this paper, we will renormalize using dimensional regularization with D =

4 − 2ε and use the MS scheme. In regularizing, we do not separate ultraviolet (UV)

and infrared (IR) divergences for convenience, because the divergence structures for jet

fragmentation have already been understood from the massless calculation. (For details,

we refer to ref. [4].) Some differences occur in IR poles when comparing the massive and

massless cases. As is seen in the HQFF, some IR poles in the massless case will be replaced

with the logarithms with the quark mass ln(µ2/m2).

2.1 Heavy quark initiated processes

In this subsection, we compute the NLO corrections to the fragmenting processes initiated

by a heavy quark described in eq. (2.1) or (2.3). We first consider the Q→ Q processes. The

Feynman diagrams for the virtual and real contributions at NLO are shown in figure 1-(a-c).

The virtual contributions, arising from calculating figure 1-(a) and its mirror diagram, are

MV
Q→Q(z;m,µ) = δ(1−z)

αsCF
2π

[
1

ε2
+

1

ε

(
2+ln

µ2

m2

)
+2 ln

µ2

m2
+

1

2
ln2 µ

2

m2
+4+

π2

12

]
, (2.8)

where m is the heavy quark mass.

The real contributions from the diagrams figure 1-(b) (and its mirror) and figure 1-(c)

are divided into in-jet and out-jet contributions through the jet algorithm in eq. (2.5). The

in-jet real contributions are

MR,In
Q→Q(z; q+t,m, µ)

=
αsCF

2π

{
δ(1− z)

[
−
(

1

ε
+ ln

µ2

q2
+t

2
+

1

2

)
ln
q2

+t
2 +m2

m2
− π2

6
− 1

2
ln2 m2

q2
+t

2

+
q2

+t
2

q2
+t

2 +m2

(
1

ε
+ ln

µ2

q2
+t

2
+ 2

)
− Li2

(
− m2

q2
+t

2

)
+ f

(
m2

q2
+t

2

)
+ g

(
m2

q2
+t

2

)]

+

[
1 + z2

1− z2
ln
z2q2

+t
2 +m2

m2
− 2z

1− z
z2q2

+t
2

z2q2
+t

2 +m2

]
+

}
, (2.9)
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Wn
p pq

k

�k

p

W †
n

(a) (b) (c)

(d) (e) (f)

Figure 1. Fragmenting processes related to a heavy quark (Q). The dashed lines denote final

state cuts. Diagrams (a), (b), and (c) describes the Q→ Q process, while diagrams (d) and (e) are

Q→ g. Diagram (f) represents the g → Q process. Diagrams (a), (b), and (d) each have a mirror

diagram not shown.

where t ≡ tan(R′/2), z = p+/q+, and q (p) is the momentum of the mother (observed)

parton. The subscript ‘+’ in the brackets denotes the standard plus function. In the part

proportional to δ(1− z) of eq. (2.9), the functions f and g are the following integrals

f(b) =

∫ 1

0
dx

1 + x2

1− x ln
x2 + b

1 + b
, (2.10)

g(b) = −2

∫ 1

0
dx

x

1− x

(
x2

x2 + b
− 1

1 + b

)
. (2.11)

In the limit of b → 0, these functions becomes f(0) = 5/2− 2π2/3 and g(0) = 0. We also

computed the out-jet real contribution, with the result

MR,Out
Q→Q (z; q+t,m, µ)

=
αsCF

2π

{
δ(1− z)

[
− 1

ε2
− 1

ε

(
ln

µ2

q2
+t

2 +m2
+

3

2

)
− 3

2
ln

µ2

q2
+t

2 +m2

− 1

2
ln2 µ2

q2
+t

2 +m2
− 4 +

π2

12
+

1

2
ln2 q

2
+t

2 +m2

q2
+t

2
− ln

q2
+t

2 +m2

q2
+t

2

+
m2

q2
+t

2 +m2

(
1

ε
+ ln

µ2

q2
+t

2
+ 2

)
+ Li2

(
− m2

q2
+t

2

)
− f

(
m2

q2
+t

2

)
− g
(
m2

q2
+t

2

)]

+

[
1 + z2

1− z2

(
1

ε
+ ln

µ2

z2q2
+t

2 +m2
− 2 ln(1− z)

)
− (1− z)

− 2z

1− z
m2

z2q2
+t

2 +m2

]
+

}
. (2.12)

Combining the in-jet and out-jet contributions, the net result recovers the usual full

splitting process for Q→ Q. We can thus reproduce the one-loop corrections to the HQFF

– 6 –
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as follows:

D
(1)
Q/Q(z;m,µ) = MV

Q→Q +
(
MR,In

Q→Q +MR,Out
Q→Q

)
+
(
Z

(1)
Q +R

(1)
Q

)
δ(1− z)

=
αsCF

2π

[
1 + z2

1− z

(
1

ε
+ ln

µ2

m2(1− z)2
− 1

)]
+

, (2.13)

where ZQ and RQ are the heavy quark renormalization and residue, respectively, with the

one-loop expressions

Z
(1)
Q = −αsCF

4π

1

ε
, (2.14)

R
(1)
Q = −αsCF

4π

(
2

ε
+ 3 ln

µ2

m2
+ 4

)
. (2.15)

Diagrams, figure 1-(d) (and its mirror) and figure 1-(e), contribute to the Q → g

process. In-jet and out-jet contributions are, respectively,

MR,In
Q→g(z; q+t,m, µ) =

αsCF
2π

[
1 + (1− z)2

z
ln

(1− z)2q2
+t

2 +m2

m2

−2
1− z
z

(1− z)2q2
+t

2

(1− z)2q2
+t

2 +m2

]
, (2.16)

MR,Out
Q→g (z; q+t,m, µ) =

αsCF
2π

[
1 + (1− z)2

z

(
1

ε
+ ln

µ2

(1− z)2q2
+t

2 +m2
− 2 ln z

)
− z

−2
1− z
z

m2

(1− z)2q2
+t

2 +m2

]
. (2.17)

Combining eqs. (2.16) and (2.17), we also reproduce the one-loop result of Q → g for

the HQFF,

D
(1)
g/Q(z;m,µ) =

αsCF
2π

1 + (1− z)2

z

(
1

ε
+ ln

µ2

m2(1− z)2
− 1

)
. (2.18)

In order to describe inclusive radiations inside the jet initiated by a heavy quark, we

introduce the heavy quark integrated jet function,2

JQ(EJR
′,m, µ) =

∑
Xn∈J

1

2Ncp
+
J

Tr〈0|n/
2

ΨQ
n |QXn ∈ J(EJ , R

′)〉〈QXn ∈ J |Ψ̄Q
n |0〉. (2.19)

This is normalized to one at LO in αs. The heavy quark jet function describes events where

the radiation off the initial heavy quark stays within the jet. It therefore can directly

enter when we consider exclusive heavy quark jet cross sections. It also can be used

as a normalization factor when we consider substructure distributions, including the JFF

2The integrated jet function is also called ‘the unmeasured jet function’, as introduced in ref. [40].
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introduced in eq. (3.1). Applying the momentum sum rule to the results of eqs. (2.8), (2.9),

and (2.16), we can obtain the one-loop result of the heavy quark integrated jet function:

J (1)
Q =

∫ 1

0
dzz
[
MV

Q→Q(z) +MR,In
Q→Q(z) +MR,In

Q→g(z)
]

+ Z
(1)
Q +R

(1)
Q . (2.20)

As a result the renormalized heavy quark integrated jet function at NLO is

JQ(EJR
′,m, µ)

= 1 +
αsCF

2π

[
1

2
ln

µ2

p+2
J t2 +m2

+
p+2
J t2

p+2
J t2 +m2

(
ln

µ2

p+2
J t2

+ 2

)
+

1

2
ln2 µ2

p+2
J t2 +m2

−1

2
ln2 p

+2
J t2 +m2

p+2
J t2

+ 2− π2

12
− Li2

(
− m2

p+2
J t2

)
+ f

(
m2

p+2
J t2

)
+ g

(
m2

p+2
J t2

)]
, (2.21)

where p+
J t can be approximated as EJR

′. The result is IR finite. Moreover it does not

involve the term ln(µ2/m2), which represents the low energy dynamics with fluctuations

of order p2 ∼ m2 if we consider the limit EJR
′ � m. We also checked that, as m goes to

zero, JQ(µ;EJR
′,m) becomes the same as the integrated jet function initiated by a light

quark, of which the NLO results are [40–42]

Jq(EJR′, µ) = 1 +
αsCF

2π

[
3

2
ln

µ2

p+2
J t2

+
1

2
ln2 µ2

p+2
J t2

+
13

2
− 3π2

4

]
. (2.22)

We now have all ingredients needed to compute the FFJ initiated by a heavy quark.

At the operator level, it is defined as

DJi/Q(z;ER′,m, µ) =
∑

X/∈J,XJ−1

1

2Ncz

∫
dD−2p⊥J Tr〈0|δ

(
p+
J

z
− P+

)
δ(D−2)(P⊥)

n/

2
ΨQ
n

× |Ji(p+
J ,p

⊥
J )X/∈J〉〈Ji(p+

J ,p
⊥
J )X/∈J |Ψ̄Q

n |0〉, (2.23)

where Ji is the jet initiated by the parton i = Q, g. XJ−1 are the final states in Ji,

not including the primary parton i. ER′ in the argument of the heavy quark FFJ is an

approximation of q+t, where q+ = p+
J /z is the large momentum component of the mother

parton. Up to NLO in αs, we find

DJQ/Q(z) = δ(1− z) · JQ +MR,Out
Q→Q (z), (2.24)

DJg/Q(z) = MR,Out
Q→q (z), (2.25)

where the one-loop results for MR,Out
Q→Q and MR,Out

Q→g are shown in eqs. (2.12) and (2.17),

respectively.

– 8 –



J
H
E
P
0
9
(
2
0
1
8
)
1
0
9

From eqs. (2.24) and (2.25), the renormalized results are given by

DJQ/Q(z;ER′,m, µ) = δ(1− z) +
αsCF

2π

{
δ(1− z)

[
f

(
m2

p+2
J t2

)
+ g

(
m2

p+2
J t2

)]

+

(
1 + z2

1− z

)
+

ln
µ2

z2q2
+t

2 +m2
−
(

2
1 + z2

1− z ln(1− z) + 1− z
)

+

−
(

2z

1− z

)
+

m2

z2q2
+t

2 +m2

}
, (2.26)

DJg/Q(z;ER′,m, µ) =
αsCF

2π

{
1 + (1− z)2

z

(
ln

µ2

(1− z)2q2
+t

2 +m2
− 2 ln z

)
− z

−2(1− z)

z

m2

(1− z)2q2
+t

2 +m2

}
. (2.27)

Here we expressed the FFJs in terms of q+t rather than p+
J t to manifestly show the mo-

mentum sum rule ∑
i

∫ 1

0
dzzDJi/Q(z) = 1. (2.28)

If we rewrite the FFJs with p+
J t using p+

J = zq+, the sum rule does not hold. In obtaining

eq. (2.26) from eq. (2.24), we found that the piece proportional to δ(1 − z) in MR,Out
Q→Q in

eq. (2.12) is cancelled by the one-loop result of JQ in eq. (2.21). This results from the fact

that the sum of the integrated jet function inside and outside the jet is given by 1 to all

orders in αs.

If we take the limit m → 0 in eqs. (2.26) and (2.27), the results become the same

as the light quark FFJs, DJq/q and DJg/q, which are given in ref. [4]. Furthermore, the

renormalization group (RG) evolutions of the heavy quark FFJs follow DGLAP evolutions

similar to the light quark FFJs, since the heavy quark mass does not affect the UV behavior.

When we compute eqs. (2.26) and (2.27), we have assumed no scale hierarchy between EJR
′

and m. Thus, the results are valid in the limit EJR
′ ∼ m. Note that these results are also

useful in the limit EJR
′ � m. In this case, eqs. (2.26) and (2.27) can be understood as

the resummed results to all orders in the mass correction such as m2/(EJR
′)2.

2.2 Gluon initiated processes

Similar to the quark FFJ presented in eq. (2.23), the gluon FFJs at the operator level is

defined as

DJi/g(z;ER′,mi, µ) =
∑

X/∈J ,XJ−1

1

p+
J (D − 2)(N2

c − 1)

∫
dD−2p⊥J (2.29)

×Tr〈0|δ
(
p+
J

z
− P+

)
δ(D−2)(P⊥)B⊥µ,an |Ji(p+

J ,p
⊥
J , R)X/∈J〉〈Ji(p+

J ,p
⊥
J , R)X/∈J |B⊥anµ |0〉.

For these gluon initiated processes, the heavy-quark mass effect appears only from the

heavy-quark loop diagram shown in figure 1-(f). Starting from eq. (2.2) or eq. (2.4) with

– 9 –
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i = Q, the heavy quark loop contributions to the in-jet and out-jet are

MR,In
g→Q(z) =

αs
4π

{[
z2 + (1− z)2

]
ln
z2(1− z)2q2

+t
2 +m2

m2
(2.30)

+2z(1− z)
z2(1− z)2q2

+t
2

z2(1− z)2q2
+t

2 +m2

}
,

MR,Out
g→Q (z) =

αs
4π

{[
z2 + (1− z)2

](1

ε
+ ln

µ2

z2(1− z)2q2
+t

2 +m2

)
(2.31)

−2z(1− z)
z2(1− z)2q2

+t
2

z2(1− z)2q2
+t

2 +m2

}
,

where q+ is the momentum of the mother parton (gluon), and the g → Q̄ contributions are

given by the same expressions.

Including the in-jet contributions from g → g and g → q(q̄) processes and adding all

the contributions as we did in eq. (2.20), we can obtain the integrated jet function (inside

a jet) initiated by gluon. The renormalized result at NLO is given by

Jg(EJR′,mi, µ) = 1 +
αsCA

2π

{
β0

2CA
ln

µ2

p+2
J t2

+
1

2
ln2 µ2

p+2
J t2

+
67

9
− 3π2

4
− 23

18

nq
CA

+
1

CA

nQ∑
i=1

[
h

(
m2
i

p+2
J t2

)
+ j

(
m2
i

p+2
J t2

)]}
, (2.32)

where CA = Nc, β0 = 11Nc/3−2nf/3, and Nc is the number of colors. nQ (nq) is a number

of heavy- (light-) quark flavors, hence the total number of active quark flavors is given by

nf = nq + nQ. The functions h and g are

h(b) =

∫ 1

0
dzz(z2 + (1− z)2) ln[z2(1− z)2 + b], (2.33)

j(b) = 2

∫ 1

0
dz

z4(1− z)3

z2(1− z)2 + b
. (2.34)

For b = 0 the functions are easily integrated, giving h(0) = −13/9 and j(0) = 1/6. So, as

mi → 0, we easily see that eq. (2.32) reproduces the massless result given in ref. [4].

If we combine Jg with the out-jet contribution from g → g, similar to eq. (2.24), we

can obtain the gluon FFJ for g → Jg.
3 The renormalized result is given as

DJg/g(z;ER′,mi, µ) = δ(1− z) +
αsCA

2π

{
δ(1− z)

[
β0

2CA
ln

µ2

p+2
J t2

+
67

9
− 2π2

3
− 23

18

nq
CA

+
1

CA

nQ∑
i=1

(
h

(
m2
i

p+2
J t2

)
+ j

(
m2
i

p+2
J t2

))]
+ 2 ln

µ2

q2
+t

2

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
−4

[
z ln z

(1− z)+
+ z

(
ln(1− z)

1− z

)
+

+ ln[z(1− z)]

(
1− z
z

+ z(1− z)

)]}
, (2.35)

3Note that DJg/g includes the processes g → qq̄ and g → QQ̄ in the jet, where Jg is the jet initiated by

gluon. When the quark pair from the gluon are exactly collinear with each other, we have an IR divergent

term or a term sensitive to the quark mass ln(µ2/m2). These terms are cancelled by the self-energy

interactions of the gluon. So DJg/g is not sensitive to the IR nor the quark mass like other FFJs.
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where q+ is the mother parton’s momentum, which can be given by p+
J /z. Also from

eq. (2.31) we obtain the gluon FFJ for g → JQ process

DJQ/g(z;ER′,m, µ) =
αs
2π

{
z2 + (1− z)2

2
ln

µ2

z2(1− z)2q2
+t

2 +m2
(2.36)

−z(1− z)
z2(1− z)2q2

+t
2

z2(1− z)2q2
+t

2 +m2

}
.

Like the heavy quark case, the gluon initiated processes satisfy the momentum sum rule,

∑
i

∫ 1

0
dzzDJi/g(z) =

∫ 1

0
dzz
(
DJg/g(z) + 2nqDJq/g(z) + 2nQDJQ/g(z)

)
= 1. (2.37)

Also, as can be seen in eqs. (2.35) and (2.36), the heavy-quark mass does not affect the

renormalization behavior, which still follows DGLAP evolution.

3 Heavy quark mass effects on jet fragmentation

In this section we consider the pT spectrum of a subjet or hadron inside an observed jet

with a small radius, where pT is the momentum transverse to the beam axis. The relevant

formalism using the FFJs was introduced in ref. [4]. This formalism can be extended to

the situation when heavy quarks are involved in the jet,

dσ

dydpJTdz
=

∑
i,k=q(q̄),Q(Q̄),g

∫ 1

xJ

dx

x

dσi(y, xJ/x;µ)

dydpiT
DJk/i(x, µ)DA/Jk(z), (3.1)

where σi is the scattering cross section to the parton i, and k is an initial (and primary)

parton for the jet Jk. This factorization above between the FFJ and the JFF holds to

order αs. A = j,H represents a subjet (j) or a hadron (H) that is observable inside the

jet. Because we are interested in the high-pT region, the rapidity y . O(1) is small. The

momentum fraction variables are xJ = pJT /QT , x = pJT /p
i
T , and z = pAT /p

J
T , where pxT is

the transverse momentum of object x and QT is the maximal jet transverse momentum for

the given rapidity y.

In eq. (3.1) the JFF, DA/Jk(z), describes the fragmenting processes from a jet to a jet

containing A and represents the probability that a final subjet or hadron has momentum

fraction z of the total jet momentum. The JFFs are normalized to satisfy the momentum

sum rules ∑
H

∫ 1

0
dzzDH/Jk(z) = 1,

∑
l

∫ 1

0
dzzDjl/Jk(z) = 1, (3.2)

where l denotes the initial parton for the subjet.

As was implicitly shown in eq. (3.1), the JFFs are independent of the renormalization

scale (except for the dependence in the coupling αs). Since the FFJs DJk/i follow DGLAP

evolution, the convolution of the FFJs and dσi/(dydpT ) is scale invariant. However, the

JFFs can be governed by two distinct scales, µJ and µA, where µJ ∼ EJR
′ is a typical
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scale for the jet and µA is the typical scale for the subjet or the hadron. Therefore the

JFFs can be further factorized

DA/Jk(z) =

∫ 1

z

dw

w
Kl/k(z/w, µ)DA/l(w, µ), (3.3)

where Kl/k are the splitting kernels inside the jet Jk that can be perturbatively calculated

at the scale ∼ EJR′ and DA/l are the fragmentation functions to A = j,H to be evaluated

at the lower scale. Since Kl/k is independent of the final state A, we can easily reconstruct

the perturbative amplitudes for the various JFFs once we obtain the perturbative results

of DA/l.

If we consider the partonic level JFFs in eq. (3.3), we need to employ parton fragmen-

tation functions on the right-hand side of the equation. With a heavy quark as one of the

partons, the HQFFs at NLO are

DQ/Q(z, µ) = δ(1− z) +
αsCF

2π

[
1 + z2

1− z

(
ln

µ2

m2(1− z)2
− 1

)]
+

, (3.4)

Dg/Q(z;m,µ) =
αsCF

2π

1 + (1− z)2

z

(
ln

µ2

m2(1− z)2
− 1

)
, (3.5)

DQ/g(z;m,µ) =
αsCF

2π

z2 + (1− z)2

2
ln
µ2

m2
. (3.6)

The fragmentation for g → g at NLO also depends on the heavy quark masses due to the

gluon self-energy interactions. The bare fragmentation function can be written as

Dg/g(z;mi, µ) = δ(1− z) +
αs
4π

{
4CA

(
1

εUV
− 1

εIR

)[
z

(1− z)+
+

1− z
z

+ z(1− z)

]

+δ(1− z)

[
β0

1

εUV
−
(

11

3
Nc −

2

3
nq

)
1

εIR
− 2

3

nQ∑
i

ln
µ2

m2
i

]}
. (3.7)

On the right-hand side of eq. (3.3) we can also consider the fragmentation functions

to a subjet (FFsJs), Djl/k. If we define the subjet with a subjet merging condition θ < r′

similar to eq. (2.5), the FFsJs share the same definitions as the FFJs shown in eqs. (2.23)

and (2.29). In this case the only difference is that ER′ in the argument of the FFJs should

be changed to EJr
′ for the FFsJs.

Therefore, if we consider the JFFs for the heavy hadron (subjet) in the limit EJR
′ � m

(R � r), the perturbative results at the fixed order in αs involve large logarithms due to

the large scale difference. In this case, using the factorization theorem shown in eq. (3.3),

we can systematically resum the large logarithms through RG evolutions of Kl/k and DA/l.

We can read off the renormalization behavior for the perturbative kernels from eq. (3.3),

since the fragmentation functions on the right-hand side follow DGLAP evolutions and the

JFFs on the left-hand side are scale invariant. Hence the RG equations for Kl/k are simply

d

d lnµ
Kl/k(x, µ) = −αs(µ)

π

∫ 1

x

dz

z
Pl′k(z)Kl/l′(x/z, µ), (3.8)
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where Pl′k are the DGLAP kernels

Pqq(z) = CF

[
3

2
δ(1− z) +

1 + z2

(1− z)+

]
, (3.9)

Pgq(z) = CF

[
1 + (1− z)2

z

]
, (3.10)

Pqg(z) =
1

2

[
z2 + (1− z)2

]
, (3.11)

Pgg(z) =
β0

2
δ(1− z) + 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]
. (3.12)

For massless quarks, NLO results for the perturbative kernels were computed in ref. [4].

Include a heavy quark mass, the perturbative kernels at NLO in αs are

KQ/Q(z;EJR
′,m, µ) = δ(1− z)− αsCF

2π

{
δ(1− z)

[
f

(
m2

p+2
J t2

)
+ g

(
m2

p+2
J t2

)]
+

(
1 + z2

1− z

)
+

ln
µ2

z2p+2
J t2 +m2

−
(

2
1 + z2

1− z ln(1− z) + 1− z
)

+

−
(

2z

1− z

)
+

m2

z2p+2
J t2 +m2

}
, (3.13)

Kg/Q(z;EJR
′,m, µ) = −αsCF

2π

{
1 + (1− z)2

z

(
ln

µ2

(1− z)2p+2
J t2 +m2

− 2 ln z

)
− z

−2(1− z)

z

m2

(1− z)2p+2
J t2 +m2

}
, (3.14)

Kg/g(z;EJR
′,mi, µ) = δ(1− z)− αsCA

2π

{
δ(1− z)

[
β0

2CA
ln

µ2

p+2
J t2

+
67

9
− 2π2

3
− 23

18

nq
CA

+
1

CA

nQ∑
i=1

(
h

(
m2
i

p+2
J t2

)
+ j

(
m2
i

p+2
J t2

))]
+ 2 ln

µ2

p+2
J t2

[
z

(1− z)+
+

1− z
z

+ z(1− z)

]

−4

[
z ln z

(1− z)+
+ z

(
ln(1− z)

1− z

)
+

+ ln[z(1− z)]

(
1− z
z

+ z(1− z)

)]}
, (3.15)

KQ/g(z;EJR
′,m, µ) = −αs

2π

{
z2 + (1− z)2

2
ln

µ2

z2(1− z)2p+2
J t2 +m2

(3.16)

−z(1− z)
z2(1− z)2p+2

J t2

z2(1− z)2p+2
J t2 +m2

}
,

where p+
J t ∼ EJR

′. Note that the heavy quark mass does not affect the renormalization

behaviors of Kl/k similar to the case for FFJs. In the limit EJR
′ � m we can safely ignore

the quark mass and these kernels reduce to the massless results obtained in ref. [4]. How-

ever, when EJR
′ is comparable with m or when the corrections m/(EJR

′) give significant

enough corrections to be interesting, the above complete results will be useful.
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From the NLO results, we can easily check the momentum sum rule∑
l

∫ 1

0
dzzKl/k(z) = 1. (3.17)

Further, as in ref. [4], we have the relations between the perturbative kernels and FFJs

D
(1)
Jk/i

(z;ER′, µ) = −K(1)
k/i(z;ER′, µ). (3.18)

Here the superscript represents the relation is true at one loop order and EJR
′ in the

perturbative kernels has been replaced with ER′, where E is the energy of the mother

parton. Note that the relations in eq. (3.18) are still valid when we include the heavy

quark mass. Comparing eqs. (3.13)–(3.16) with the NLO results of the FFJs with heavy

quarks in section 2, we clearly see these relations hold.

4 Inclusive b-jet production

Inclusive b-jet production is a good arena for studying perturbative QCD and probing

Standard Model predictions, since hadronic uncertainty should be negligible compared

to b-hadron production [43]. Recently the b-jet production rate in pp collision has been

measured with a jet radius R = 0.5 [44].4 Based on this result, the production in heavy

ion collision has been analyzed to examine heavy quark jet quenching [46].

In this section, we consider inclusive b-jet production in the regime EJ � EJR
′ � mb.

Here the b-jet is defined to contain one or more b(b̄)-quarks inside the jet. As is well

known, usual jet production is insensitive to long-distance interactions if we employ an IR

safe jet algorithm and the jet scale EJR
′ is much larger than the long-distance scale. Thus

we might naively speculate that the b-jet production in the limit EJR
′ � mb would be

insensitive to the b-quark mass, and hence we might be able to take the limit mb → 0.

However, as pointed out in refs. [31, 32], the b-jet is actually quite sensitive to the heavy

quark mass. As a gluon splits into a bb̄ pair with zero angle inside the jet, the amplitude

becomes singular as mb goes to zero.

For inclusive b-jet production in the limit EJ � EJR
′ � mb, this sensitivity appears

as a term with lnEJR
′/mb in the jet initiated by a gluon at order αs. So, for reliable

perturbative predictions, these large logarithms need to be resummed to all orders in αs.

In order to do this, we can employ the gluon to b-quark JFF, Db/Jg , which describes the

splitting process of g → bb̄ inside a jet. As EJR
′ � mb, this JFF can be further factorized

into the splitting kernels Kl/g and the b-quark fragmentation functions Db/l as illustrated

in eq. (3.3). Then, through RG evolution of each factorized part, we can consistently

resum the large logarithms of EJR
′/mb. In this section we will describe the inclusive b-jet

production using the FFJs and present the procedure of resumming the large logarithms

in g → bb̄ process using the factorization theorem for the JFF Db/Jg .

4It has been observed that the small R approximation for an inclusive jet process works well even up to

R . 0.7 [45]. We thus believe that the CMS experiment with R = 0.5 [44] can be legitimately compared

with our analysis using the small R approximation, which will be performed in section 5. Dominant finite

size effects of O(R2) need to be considered for more a precise estimation. This is beyond the scope of this

paper.
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4.1 Analysis using the fragmentation functions to a b-jet

Using the FFJs, the inclusive b-jet production at NLO can be written as

dσ

dypJT
=

∫ 1

xJ

dx

x

{
dσb(y, xJ/x;µ)

dydpT
DJb/b(x;EJR

′,mb, µ)+
dσb̄(y, xJ/x;µ)

dydpT
DJb̄/b̄(x;EJR

′,mb, µ)

+
dσg(y, xJ/x;µ)

dydpT

[
2DJb/g(x;EJR

′,mb, µ) + δ(1− x) · MIn
g→bb̄(EJR

′,mb)
]}
, (4.1)

where EJR
′ = pJTR at a hadron collider, and we identified separately the fragmenting

processes g → b and g → b̄. Here MIn
g→bb̄ is the amplitude squared for g → bb̄ inside the

jet. So the term δ(1− x)MIn
g→bb̄ is the contribution of g → bb̄ to the gluon FFJ.

In order to describe the b-jet production in a straightforward way, we introduce the

fragmentation functions to the b-jet (FFbJs), DJb/i(z), where Jb represents the b-jet that

includes at least one b(b̄)-quark.5 Then the scattering cross section in eq. (4.1) can be

rewritten as

dσ

dypJT
=

∫ 1

xJ

dx

x

{
dσb(y, xJ/x;µ)

dydpT
DJb/s(x;EJR

′,mb, µ)

+
dσg(y, xJ/x;µ)

dydpT
DJb/g(x;EJR

′,mb, µ)

}
, (4.2)

where DJb/s is the singlet FFbJ defined as DJb/s = DJb/b + DJb/b̄
. We are using

dσb/(dydpT ) = dσb̄/(dydpT ), ignoring the charge asymmetry. We also have suppressed

the light quark contributions to the b-jet, i.e., DJb/q(q̄), which first appear at two loops.

From eq. (4.1), DJb/g at the first order in αs is

DJb/g(x;EJR
′,mb, µ) = 2DJb/g(x,EJR

′,mb, µ) + δ(1− x) · MIn
g→bb̄(EJR

′,mb). (4.3)

In eq. (2.30), we calculated g → QQ̄ inside a jet with the heavy quark momentum

fraction z specified. The result MR,In
g→Q(z) in eq. (2.30) can also be considered as the

leading result of the JFF DQ/Jg(z). Therefore using the result in eq. (2.30), we obtain

MIn
g→bb̄:

MIn
g→bb̄(EJR

′,mb) = 2

∫ 1

0
dzzDb/Jg(z;EJR

′,mb) = 2

∫ 1

0
dzzMR,In

g→Q(z)

=
αs
2π

[
1

3
ln
p+2
J t2

m2
b

+ h

(
m2
b

p+2
J t2

)
+ j

(
m2
b

p+2
J t2

)]
, (4.4)

where the functions h and j are defined in eqs. (2.33) and (2.34). The presence of the term

with ln(p+2
J t2)/m2

b gives a large uncertainty for the fixed order result in αs, and we have to

resum these large logarithms to all orders in αs for a reliable prediction. For EJR
′ � mb,

5In our convention, Jb represents a jet initiated by a b-quark, while Jb represents the (physical) b-jet that

contains at least one b(b̄). Jb and Jb become different at NLO in αs. For example, when a gluon initiates a

jet and splits into a bb̄ pair inside the jet, it contributes to Jb as seen in eqs. (4.1) and (4.2).
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the logarithmic term at order αs in eq. (4.4) and its resummed result can be estimated to be

O(1), which implies that the gluon fragmentation DJb/g is not suppressed when compared

with DJb/s.

In eq. (4.2), if we choose the factorization scale µF ∼ pJT , the resummation of large

logarithms with small R is crucial. The resummation can be performed by RG evolutions

of the FFbJs from µ ∼ EJR′ to µF ∼ pJT , which should be equivalent to DGLAP evolution.

The RG equations are

d

d lnµ

(
DJb/s(x;µ)

DJb/g(x;µ)

)
=
αs
π

∫ 1

x

dz

z

(
Pqq(z) 2Pgq(z)

Pqg(z) Pgg(z)

)(
DJb/s

(x
z ;µ

)
DJb/g

(x
z ;µ

)). (4.5)

Note that, we have included a factor of 2 in front of Pgq for the RG equation of the

singlet FFbJ in eq. (4.5). This is necessary since the singlet FFbJ is defined as DJb/s =

DJb/b +DJb/b̄
, and each of DJb/b(b̄)

satisfy the following RG equation

d

d lnµ
DJb/k(x) =

αs
π

∫ 1

x

dz

z

(
Pqq(z)DJb/k

(x
z

)
+ Pgq(z)DJb/g

(x
z

))
, k = b, b̄. (4.6)

After taking the N -th moments,

f(N) =

∫ 1

0
dxx−1+Nf(x), (4.7)

and solving the RG equations, we obtain the evolved results in moment space(
DJb/s(N ;µF )

DJb/g(N ;µF )

)
=

[(
αs(µF )

αs(µJ)

)− 2λ+
β0

M+ +

(
αs(µF )

αs(µJ)

)− 2λ−
β0

M−

](
DJb/s(N ;µJ)

DJb/g(N ;µJ)

)
, (4.8)

where the scales are roughly µF ∼ pJT and µJ ∼ EJR′. λ± is

λ± =
1

2

[
Pqq(N) + Pgg(N)±

√
(Pqq(N)− Pgg(N))2 + 8Pgq(N)Pqg(N)

]
, (4.9)

and the matrices M± are

M± =
1

λ± − λ∓

(
Pqq(N)− λ∓ 2Pgq(N)

Pqg(N) Pgg(N)− λ∓

)
. (4.10)

Although DJb/g(N ;µJ) in eq. (4.8) starts at the order αs, it can be power-counted as O(1),

similar to DJb/b, due to the large logarithmic term ln(EJR
′/mb). Therefore, even at leading

logarithm (LL) accuracy, we must keep a nonzero DJb/g(N ;µJ).

4.2 Resummation of large logarithms in the g → bb̄ process

As seen in eq. (4.4), sinceMIn
g→bb̄ can be expressed as the integral of Db/Jg , the resummation

of the large logarithms can be accomplished using the factorization formula for the JFF.

Using eq. (3.3), we write MIn
g→bb̄

MIn
g→bb̄(EJR

′,mb) = 2

∫ 1

0
dzzDb/Jg(z;EJR

′,mb) (4.11)

= 2
∑
l=g,b

K̄l/g(EJR
′,mb, µF ) · D̄b/l(mb, µF ),

– 16 –
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where the functions f̄ represent

f̄ =

∫ 1

0
dzzf(z). (4.12)

The factorization scale µF can be chosen arbitrarily. The scale to minimize the large

logarithms in K̄l/g (D̄b/l) is µ ∼ EJR
′ (mb). Therefore, if we choose µF ∼ EJR

′, we have

to perform RG evolution from µF to mb for D̄b/l. For µF ∼ mb, RG evolution between µF
and EJR

′ is required for a reliable result of K̄l/g. Through these RG evolutions we can

resum the large logarithmic terms lnEJR
′/mb.

We set µF ∼ EJR
′ and evolve D̄b/l from µF to mb at LL. Since the HQFFs, Db/l,

follow DGLAP evolution, the RG equations for D̄b/l are

d

d lnµ

(
D̄b/b(µ)

D̄b/g(µ)

)
=
αs
π

(
P̄qq P̄gq
P̄qg P̄gg

)(
D̄b/b(µ)

D̄b/g(µ)

)
. (4.13)

Solving, we obtain(
D̄b/b(µF )

D̄b/g(µF )

)
=

[(
αs(µF )

αs(µb)

)− 2λ̄+
β0

M̄+ +

(
αs(µF )

αs(µb)

)− 2λ̄−
β0

M̄−

](
D̄b/b(µb)

D̄b/g(µb)

)
, (4.14)

where µb ∼ mb. λ̄± and M̄± are, respectively,

λ̄± =
1

2

[
P̄qq + P̄gg ±

√
(P̄qq − P̄gg)2 + 4P̄gqP̄qg

]
, (4.15)

and

M̄± =
1

λ̄± − λ̄∓

(
P̄qq − λ̄∓ P̄gq
P̄qg P̄gg − λ̄∓

)
. (4.16)

Therefore putting eq. (4.14) into eq. (4.11), we obtain the resummed results explicitly.

If we consider the results at LL running and keeping only the LO fixed order terms in

αs (LL+LO), we can remove the term 2K̄b/g(µF )D̄b/b(µF ) in eq. (4.11), since K̄b/g(µF ) is

already O(αs). Furthermore, we put K̄g/g(µF ) = D̄b/b(µb) = 1 and D̄b/g(µb) = 0. As a

result we obtain

MIn,LL+LO

g→bb̄ (EJR
′,mb) ∼ 2D̄b/Jg(µF ) =

2P̄qg

λ̄± − λ̄∓

[(
αs(µF ))

αs(µb)

)− 2λ̄+
β0 −

(
αs(µF )

αs(µb)

)− 2λ̄−
β0

]
.

(4.17)

Expanding the above result in terms of αs(µF ) using

αs(µF )

αs(µb)
∼ 1− β0

αs(µF )

2π
ln
µF
µb
, (4.18)

we obtain

MIn,LL+LO

g→bb̄ (EJR
′,mb) =

αs
3π

ln
µF
µb

+ · · · = 1

3

αs
2π

ln
(EJR

′)2

m2
b

+ · · · (4.19)

We see that the result in eq. (4.17) correctly resums the series of large logarithms of

EJR
′/mb, which starts with the logarithmic term in eq. (4.4).
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Figure 2. Comparison of the heavy quark and massless FFJs at the jet scale µJ ≡
√

(pJTR)2 +m2.

The heavy quark mass is taken to be the b-quark mass for the heavy FFJs.

5 Numerical implications of the heavy quark mass

In this section we first discuss the heavy quark mass effects on the FFJs/FFbJs and then

apply the formalism to b-jet production, comparing the results with CMS data [44]. In

figure 2 we have compared heavy quark FFJs (DJQ/Q and DJQ/g) with the massless case.

For the heavy quark FFJs, we treat the b-quark as the heavy quark (Q = b) and ignored

the masses of the charm and other light quarks. The heavy quark FFJs are evaluated at

the jet scale µJ =
√

(pJTR)2 +m2
b , where mb is set to 4.8 GeV. For the massless FFJs, we

take the limit mb → 0 or alternatively use the result of ref. [4]. It is evident from figure 2

that the mass effect is significant when the jet scale approaches the heavy quark mass scale.

The gluon FFJ has a stronger quark mass dependence than the quark FFJ. Even though

DJQ/Q is larger than DJQ/g in magnitude (as is shown figure 2), the contribution from

DJQ/g can be comparable to DJQ/Q at the LHC due to the large cross section to gluons.

As a result it is important to consider the mass corrections to DJQ/g when we consider jet

production.

Next we consider the resummation effects of the logarithms ln(pJTR)/mb in the FFbJ,

DJb/g(z), where the logarithmic quark mass dependence appears in MIn
g→bb̄, as can be

seen in eq. (4.4). As discussed in section 4.2, the large logarithms of (pJTR)/mb can be

systematically resummed through the factorization formula in eq. (4.11). In figure 3-(a),

we compared one loop result of MIn
g→bb̄ (“Fixed NLO”) with the resummed results at LL

accuarcy (“LL+LO” and “LL+NLO”). Here the result at LL+LO corresponds to eq. (4.17),

and the result at LL+NLO keeps the NLO results of K̄l/g(µF ∼ pJTR) and D̄b/l(µb) in the

factorization formula (eq. (4.11)) and the resummed formula (eq. (4.14)) respectively. The

fixed NLO result forMIn
g→bb̄ has been presented in eq. (4.4). Both of the resummed results

– 18 –
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Figure 3. Resummation of log(mb). Horizontal axis are in units of the b quark mass mb. (a) Solid

curves are resummed MIn
g→bb̄

(with the red curve at LO and the green at NLO) and dashed curves

are fixed order MIn
g→bb̄

at NLO. (b) Comparison of the contributions to gluon initiated b-jets from

DJb/g (blue) and MIn
g→bb̄

(green).

significantly change the fixed NLO result and enhance g → bb̄ contribution to b-jets roughly

by 100%–200%.

As shown in eq. (4.3), there are two type of contributions for the gluon initiated b-jet

production: 2DJb/g and MIn
g→bb̄. To compare the relative size of 2DJb/g with MIn

g→bb̄, we

have considered the first moments of 2DJb/g,

2D̄Jb/g(µJ) ≡ 2

∫ 1

0
dxxDJb/g(x, µJ). (5.1)

In figure 3-(b), we show the sensitivity of 2D̄Jb/g and MIn
g→bb̄ to mb by varying pJTR in

units of mb. For MIn
g→bb̄, we used the result at the accuracy of LL+NLO. As pJTR in-

creases, 2D̄Jb/g becomes insensitive to the difference between pJTR and mb, whileMIn
g→bb̄ is

still sensitive since MIn
g→bb̄ involves the logarithm of (pJTR)/mb. Also we see that MIn

g→bb̄
becomes dominant over 2D̄Jb/g as pJTR� mb.

As an application of FFJs, we consider the inclusive b-jet production at the LHC. To

study inclusive b-jet production, we need to employ the FFbJs (defined in section 4.1),

which describe the production of a jet containing at least one b quark. In figure 4, we

show b-quark and gluon initiated FFbJs at the factorization scale µF equal to initial par-

ton pT,parton, i.e., we solve DGLAP equations eq. (4.5) to evolve FFbJs from jet scale√
(pJTR)2 +m2

b to initial parton pT,parton. The error bands in the figure are obtained by

varying the jet scale from 1
2(mb+

√
(pJTR)2 +m2

b) to 2
√

(pJTR)2 +m2
b . Note that we choose

1
2(mb +

√
(pJTR)2 +m2

b) instead of 1
2

√
(pJTR)2 +m2

b to make sure that the jet scale chosen

is large than mb.

In figure 5 we show LO and NLO calculations of inclusive b-jet production at the

LHC based on eq. (4.1) and their comparison with CMS data from ref. [44]. LO and

NLO in figure 5 only refer to the calculations of FFbJs, since we use LO partonic cross

sections (with PDF sets from CTEQ6L1) to calculate b and gluon production rates. All the
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Figure 4. FFbJs (defined in section 4.1) with factorization scale µF equal to initial parton pT,parton.

The first three rows are the quark initiated FFbJs DJb/s = DJb/b + DJb/b̄ and the last three rows

correspond to the gluon initiated FFbJs. The error bands are obtained by varying the jet scale

from 1
2 (mb +

√
(pJTR)2 +m2

b) to 2
√

(pJTR)2 +m2
b .

FFbJs are evolved from jet scale µJ =
√

(pJTR)2 +m2
b to pT,parton of the initiating partons

(gluons and b’s), and we choose pT,parton to be the factorization scale. In figure 5, the NLO

calculations look to be more consistent with the data than the LO results. The method of

obtaining the error bands is the same as that of figure 4. Note that the error estimation

only comes from scale variation of FFbJs. Again, the “NLO calculation” shown in figure 5

is only a partial calculation of the full NLO computation, since we are using LO partonic

cross sections and the NLO partonic cross sections will also modify the normalization of
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Figure 5. b-jet production at the LHC [44]. The bands correspond to the LO partonic cross

section combined with NLO FFbJs and the dashed curves correspond to LO partonic cross section

combined with LO FFbJs.

the cross sections. To get a better estimation, we need the full NLO calculation as well

as the resummed results of ln(1 − z) as z → 1 in the FFJs [6–8]. We leave a more precise

analysis and the studies of many other interesting phenomenology (such as top jets and

Higgs decays to heavy quark jets) to future work.

6 Conclusion

We studied the process of a parton fragmenting into a heavy-quark jet, keeping the heavy-

quark mass nonzero in the FFJ originally introduced in ref. [4]. When the typical jet scale

is not too large compared to the quark mass, numerically relevant contributions to the jet

cross section can occur. To show this, we first calculated the FFJs to NLO with a nonzero

quark mass. These results smoothly reduce to the massless FFJs when taking m → 0.

We show, not surprisingly, that the FFJs still evolve following the usual DGLAP evolution

and that this can be used to write resummed results. Using this, we are able to show that

there are indeed non-negligible numerical corrections, especially when the jet scale is not

too large compared to the quark mass.

We then investigated inclusive heavy quark jet fragmentation, using the formula,

eq. (3.1), also originally introduced in ref. [4]. This formula describes the inclusive jet
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rate as the convolutions of a hard cross section producing an outgoing parton with the FFJ

and the JFF. This JFF can be further factored into a perturbative kernel and a fragmen-

tation function. Including a nonzero mass, we calculate these kernels, again showing that

they reduce to the massless case when m→ 0.

Of particular importance for the fragmentation to a b-jet is the contribution from

g → bb̄, where both b and b̄ end up inside the jet. This contribution is encoded in what we

called MIn
g→bb̄(EJR

′,mb). The logarithmic dependence on the heavy quark mass appears

in MIn
g→bb̄. We show that MIn

g→bb̄ can be written as the integral over Db/Jg . Using the fac-

torized result of Db/Jg shown in eq. (4.11), we can resum the large logarithms ln(EJR
′)/mb

by running the JFF from EJR
′ to mb. The resummation of these large logarithms changes

MIn
g→bb̄ by order one and must be included to obtain reliable results. We further show that

the contribution from MIn
g→bb̄ is numerically as important as the direct fragmentation of a

gluon to a b-quark, where the b̄ is outside the jet, described by DJb/g.

As an application, we combine the above to study inclusive b-jet production at the LHC,

which has been measured by the CMS collaboration [44]. At lowest order, the theoretical

prediction is consistently above the measured rate. Including the NLO contributions to the

FFJ (keeping the partonic cross sections LO) reduces the calculated result to agree with

the measured rate. This result shows the utility of the FFJs in calculating inclusive jet

rates at high-energy colliders. There are a number of future directions where FFJs could

be useful, including for instance top jets or Higgs decays to heavy quarks, which we leave

to future work.
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