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1 Introduction

Quantum field theories with four-derivative kinetic terms are notorious for their enigmatic

behavior. On the one hand they generically contain ghost-like states associated to indef-

inite signs in the propagators, suggesting that they are non-unitary theories that should

be discarded from further study. On the other hand they may have exceptionally good

behavior in the ultraviolet regime, which over the years has stimulated attempts to solve

ultraviolet problems in the standard framework of two-derivative theories that currently

describe Nature.

Well-known classes of interesting four-derivative models are (super)gravity theories

built out of Riemann curvature squared invariants, R2, which are examples of renormal-

izable theories of gravity [1]. Conformal (super)gravity [2–6] takes a special place among

these theories, due to its high degree of symmetry which enlarges the local Poincaré sym-

metry of Einstein gravity to local conformal (Weyl) symmetry. Gravities of R2 type also

feature in cosmology, with the Starobinsky model of inflation as the prime example [7].

Other interesting four-derivative models are gauge theories of Lee-Wick type [8, 9], which

are extensions to the Pauli-Villars regularization trick and which have been employed in

attempts to solve the hierarchy problem of the Standard Model [10].

In this paper we study tree-level scattering amplitudes of several four-derivative mod-

els, with a focus on conformal (super)gravity and closely-related four-derivative gauge the-

ories. Previous work [11] has shown that scattering amplitudes in conformal (super)gravity,

of the non-minimal Berkovits-Witten type [12], can be obtained from the Bern-Carrasco-

Johansson (BCJ) double copy of two gauge theories [13, 14]. The two gauge theories are

(super-)Yang-Mills theory and a new gauge theory with a four-derivative kinetic term of the

form (DF )2 [11]. The double-copy construction offers better means for understanding con-

formal gravity at both the classical and quantum level, as it maps a complex gravitational

theory to an easier-to-study gauge theory.

The double copy is currently best understood as a consequence of a duality between

color and kinematics [13, 14], which is a property of a large variety of different gauge

theories [11, 13–19]. Given that two gauge theories obey the duality, the color factors in

the amplitudes of the first theory can be replaced by the kinematic numerator factors of

the second theory [13, 14]. Doing so “doubles up” the spin of the particles, and promotes

the gauge invariance to a diffeomorphism invariance [20], thus giving amplitudes that de-

scribe the scattering of spin ≤ 2 states in a gravitational theory. By now, vast classes of

gravitational theories are understood from the double-copy perspective [11, 14, 15, 17–34].

The duality provides a rich structure to tree-level amplitudes [20, 24, 35–46], most

notably through the color-ordered n-point gluon amplitudes, which are constrained by the

so-called BCJ relations [13, 47, 48] — these can be used to eliminate all but (n − 3)!

independent amplitudes. At the quantum level, the duality interrelates the kinematic

numerators of various loop diagrams, making it possible to obtain most of them in terms

of a small number of master diagrams [14–16, 22, 23, 26, 31, 49–55]. When the double

copy is applied to gauge-theory tree amplitudes with external adjoint particles it becomes

equivalent to the well-known Kawai-Lewellen-Tye (KLT) formula [56–58]. Whereas for
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non-adjoint and loop-level amplitudes the double copy provides a more general framework,

which has lead to rapid advances in gravitational loop-level calculations [14, 15, 18, 19, 21–

23, 26, 31, 49–55, 59–66] and related ultraviolet studies [22, 67–73].

Color-kinematics duality and the double copy have found recent applications to off-

shell structures and quantities, such as form factors [74–77], classical solutions [78–93],

symmetries [20, 27, 94–100] and the kinematic Lie algebra [101–103]. The duality and

double copy also prominently feature in amplitudes of string theory [34, 48, 58, 104–112],

the non-linear-sigma model, Born-Infeld, Volkov-Akulov, the special galileon theory [103,

108, 113–118], and higher-spin theory [119].

In this paper we are ultimately interested in the properties of N = 4 conformal super-

gravity, which has been argued to have the maximal degree of supersymmetry compatible

with four-dimensional local conformal symmetry [120]. Witten’s twistor string theory [121]

— which gives tree amplitudes of N = 4 super-Yang-Mills theory in its single-trace sec-

tor [122] — is well-known to have a multitrace sector that is “contaminated” by N = 4

conformal supergravity. This non-minimal form of conformal supergravity was first stud-

ied in isolation by Berkovits and Witten in ref. [12]; however, no complete Lagrangian was

given there. Recently Tseytlin considered general non-minimal N = 4 conformal super-

gravities, and concluded that they are free of conformal anomalies given that four vector

multiplets are added to the spectrum [123]; thus agreeing with the analysis of the minimal

theory [124–126]. A complete bosonic action for all N = 4 non-minimal conformal super-

gravity theories — parametrized by a free function — has been proposed by Butter, Ciceri,

de Wit and Sahoo [127]. We confirm in this work, by direct calculation of amplitudes from

both the double copy and the action, that the Lagrangian of the Berkovits-Witten theory

is given by a simple choice of the free function.

Somewhat surprisingly, the minimal version of N = 4 conformal supergravity has a

trivial tree-level S-matrix when restricted to physical planewave states in four-dimensional

flat space [128–131]. While this is a highly interesting behavior, perhaps offering some

mitigation to the unitarity problem, it is an obstruction if we wish to better understand

the theory by studying its scattering amplitudes. In particular, to determine whether

minimal N = 4 conformal supergravity is constructible from a double-copy perspective

one needs non-trivial amplitudes for comparisons. This problem can be circumvented by

considering loop amplitudes for physical planewave states, or tree-level amplitudes for non-

planewave states. We consider the latter case, even if such non-planewave states have been

suggested to be problematic due to their growing behavior at infinity [132]. Inspecting

the non-vanishing amplitudes, we confirm that there exists a double-copy construction for

minimal N = 4 conformal supergravity; it involves a minimal version of the (DF )2 gauge

theory where only the kinetic term is retained.

As expected, the minimal (DF )2 theory also has a trivial tree-level S-matrix for

planewave states [11], which we explain in terms of the classical field equations along

the lines of Maldacena’s argument [128]. Inspired by this, we note that “minimal” four-

derivative theories in general can be constructed to have a trivial tree-level S-matrix for

planewave states. We illustrate this property through a four-derivative scalar toy model.

Interestingly, the minimal scalar, gauge and gravity theories all can be mass deformed by
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adding two-derivative theories to their Lagrangians, corresponding to φ3, Yang-Mills and

Einstein theories, respectively. The four-derivative tree-level planewave S-matrices then

become identified with the corresponding two-derivative S-matrices, up to the overall mass

scale that parametrizes the deformation. This is analogous to the mechanism in Anti-de-

Sitter space described by Maldacena [128].

All results obtained here for the N = 4 conformal supergravity theories also apply

to supersymmetry truncations of these theories. In particular, corresponding N = 0, 1, 2

conformal (super)gravity theories are known to exist [3, 5, 6, 133, 134], and we obtain

them as double copies by attributing the supersymmetry to the N = 0, 1, 2 (super-)Yang-

Mills side of the double copy. The other side of the double copy is the bosonic (DF )2

theory [11], which comes in various forms, as summarized in the following table of double

copies considered in this paper:

double copy m → 0 finite m m → ∞
(
(DF )2min. +YM

)
⊗ SYM min.CG min.Weyl-Einstein Einstein

(
(DF )2 +YM

)
⊗ SYM CG Weyl-Einstein Einstein

(
(DF )2 +YM+ φ3

)
⊗ SYM Weyl-YM Weyl-Einstein-YM Einstein-YM

The mass parameter interpolates between two-derivative and four-derivative theories, and

the inclusion of self-interacting scalars in the bosonic gauge theories translates to the in-

clusion of non-abelian Yang-Mills (YM) sectors in the gravity theories [11, 18] (see also

ref. [34] for similar string theory double copies). Weyl-Yang-Mills conformal supergravities

were first described in refs. [4, 135, 136].

This paper is organized as follows: in section 2, we discuss technical details of scalar

four-derivative theories as a warmup to the more interesting gauge and gravitational the-

ories. In section 3, we review the conformal-gravity double-copy construction of ref. [11],

and in section 4 we consider details of N = 4 Einstein supergravity that we need for later

purposes. The double-copy construction of minimal conformal supergravity is given in sec-

tion 5, and in section 6 we compute amplitudes directly from a non-minimal conformal

supergravity Lagrangian and determine the precise details of the Berkovits-Witten theory.

2 Warmup: four-derivative scalar theories

We here discuss a four-derivative scalar toy model that illustrates some of the salient

features that we will encounter when dealing with higher-derivative gauge theories and

supergravities. After discussing linearized on-shell solutions, propagators and formal as-

pects of scattering in generic four-derivative scalar theories, we specialize to a specific toy

model that at low energy behaves as φ3 theory, and which is marginal in D = 6. At high

energies, it has a superficial behavior consistent with a theory marginal in D = 8. This

theory is carefully constructed (tuned) so as to make it a prototype for minimal conformal

supergravity coupled to Einstein supergravity.
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2.1 On-shell states

Consider a massless scalar field with a four-derivative kinetic term L = −1
2φ�

2φ + . . ..

The linearized four-derivative equation of motion, �2φ = 0, has two independent solutions

parametrized by an on-shell momentum p2 = 0:

φpw(x) = eip·x , φ✟✟pw(x) = i (α · x) eip·x , (2.1)

where αµ is a constant vector satisfying α · p 6= 0.1 The first solution, which satisfies

�φpw = 0, is the usual planewave mode that is also present in two-derivative scalar theories.

The second, for which �φ✟✟pw 6= 0, is a non-planewave mode that is specific to four-derivative

theories.2 As this mode grows linearly in x, it is questionable whether it can acceptably

be taken as an external state of the S-matrix, since asymptotic states are taken to live at

infinity. Also, the growing behavior of the φ✟✟pw mode prevents orthogonalization of the two

states (2.1). See refs. [132, 137] for recent work related to non-planewave modes.

Related to the orthogonalization problem, the off-shell propagator in this theory,

φ
p

φ = − i

p4
, (2.2)

consists of only one term, a double pole, that does not obviously distinguish between the

planewave and non-planewave modes. To resolve the double pole, instead consider mass

deforming the Lagrangian to L = −1
2φ�(� + m2)φ + . . ., with the eventual intention of

sending the mass parameterm → 0. The two solutions to the linearized equation of motion,

�(�+m2)φ = 0, are a massless and a massive planewave:

φ0(x) = eip·x , p2 = 0 ,

φm(x) = eipm·x , p2m = m2 ,
(2.3)

which satisfy �φ0 = 0 and (�+m2)φm = 0. The mass-deformed propagator is

φ
p

φ = − i

p2(p2 −m2)
=

1

m2

(
i

p2
− i

p2 −m2

)
, (2.4)

hence the two poles are well-separated after partial fractioning.

The one-to-one match between states and propagator terms makes it straightforward

to identify the states in scattering amplitudes by examining the types of poles that appear.

However, the relative sign implies that the massive mode is ghostlike (assuming that the

massless mode is physical). Indeed, as is well known, the four-derivative kinetic term

suggest that we are dealing with a non-unitary theory.

In the strict m → 0 limit the two linearized solutions (2.3) become identical, so one

needs to consider subleading terms in the m → 0 limit in order to still have two modes.

1It may appear that the freedom in αµ corresponds to a larger family of solutions; however, note that

the converse constraint α̃ · p = 0 defines a (D− 1)-dimensional space of vectors α̃µ
i , i = 1, . . . , D− 1. Hence

α · p 6= 0 effectively defines a one-dimensional space orthogonal to α̃µ
i . As an alternative perspective, note

that φ
✚✚pw

with a different constant vector α′ corresponds to a superposition of the two solutions in eq. (2.1).
2Note that ϕ ≡ �φ

✚✚pw
is a planewave since �ϕ = 0.
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We expand the massive wavefunction φm around m = 0 using pµm = pµ + m2

2p·q q
µ, where pµ

and qµ are null vectors independent of m with p · q 6= 0:

φm(x) = eipm·x = eip·x
(
1 +

im2

2p · q q · x+O(m4)

)
. (2.5)

The non-planewave mode φ✟✟pw emerges in the m → 0 limit as the linear combination

φ✟✟pw(x) =
φm(x)− φ0(x)

m2

∣∣∣∣
m2→0

= i(α · x)eip·x , (2.6)

where we have the identification αµ = qµ

2p·q . From this formula it is also clear that we

can view the non-planewave state as the m2 derivative of the massive planewave state

in the neighborhood of m2 = 0. Alternatively, we can view the non-planewave state as

the momentum derivative of the massless plane wave φ✟✟pw = (α · ∂p)φpw, which is a more

conventional interpretation [12, 130, 137].

2.2 Scattering amplitudes from classical solutions

A well-known aspect of tree-level scattering amplitudes is that they can be read out from

a perturbative solution to the classical equations of motion [102, 138], a procedure which

was streamlined in gauge theories by the Berends-Giele recursion [139]. In a two-derivative

scalar theory (for example, φ3 theory) the equation of motion is solved order-by-order in

momentum space:

φ(p) =
∞∑

n=0

φ(n)(p) , (2.7)

where φ(n)(p) is of nth order in the coupling constant. The zeroth-order solution φ(0)(p),

which solves the free equation of motion �φ(0) = 0, has support only on p2 = 0 (hence φ(0)

is a planewave). Using functional differentiation of the higher-order solutions one obtains

an off-shell Berends-Giele current

J(p1, p2, . . . , pn) ≡
δn−1φ(n−2)(−p1)

δφ(0)(p2)δφ(0)(p3) . . . δφ(0)(pn)
. (2.8)

An n-point tree-level amplitude is then obtained using the LSZ prescription by multiplying

with an inverse propagator corresponding to the off-shell leg 1,

A(2)
n (1, 2, . . . , n) = −i lim

p21→0
p21 J(p1, p2 . . . , pn) , (2.9)

where the superscript (2) is used to indicate a two-derivative theory.

In a four-derivative mass-deformed scalar theory the details are mostly the same. How-

ever, with the free equation of motion being �(�+m2)φ(0) = 0, the zeroth-order solution

φ(0) can have support on either p2 = 0 or p2 = m2 for each external leg, corresponding to

either massless or massive planewaves being scattered. As we in the current work do not

seek to scatter more than one ghostlike state we can make the simplifying assumption that

massless planewaves are used as boundary conditions.

– 6 –
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For the off-shell leg 1 there are similarly two choices available,

A(4)
n (1, 2, . . . , n) = i lim

p21→0
p21(p

2
1 −m2) J(p1, p2, . . . , pn) , (2.10a)

A(4)
n (1m, 2, . . . , n) = i lim

p21→m2
p21(p

2
1 −m2) J(p1, p2, . . . , pn) , (2.10b)

where the superscript (4) reminds us that we are dealing with a four-derivative theory.

The first possibility, which identifies leg p1 as a massless planewave, is easily seen to be

equivalent to a multiplication with the inverse massless propagator −ip21m
2, matching

the corresponding term in the partial-fractioned propagator (2.4). The second possibility,

which gives a massive planewave, is equivalent to multiplying by i(p21 − m2)m2, which is

the inverse massive propagator.

To convert the above amplitudes into one involving a non-planewave mode, one repeats

the limiting procedure given for the linearized states in eq. (2.6), obtaining

A(4)
n (1̃, 2, . . . , n) = lim

m2→0

A(4)
n (1m, 2, . . . , n)−A(4)

n (1, 2, . . . , n)

m2
. (2.11)

One might be tempted to think of this as an m2 derivative of the massive amplitude;

however, this is not the case because the various limits taken in defining the amplitudes

do not commute.

Consider the amputated current Ĵ(p1, p2, . . . , pn) ≡ ip21(p
2
1 − m2) J(p1, p2, . . . , pn),

which schematically has the form

Ĵ(p1, p2, . . . , pn) = A+B(p21 −m2) + Cp21 + . . . , (2.12)

where the suppressed terms are higher powers of p21 and (p21 −m2); A,B,C are functions

independent of p21 and m2. The massless amplitude is obtained by setting p21 = 0, and the

massive one from p21 = m2; thus, they have the expansions

A(4)
n (1, 2, . . . , n) = A−m2B +O(m4) ,

A(4)
n (1m, 2, . . . , n) = A+m2C +O(m4) . (2.13)

In the m2 → 0 limit the term A is the planewave amplitude, and following eq. (2.11)

the sum B + C is the non-planewave amplitude, which is not the m2 derivative of either

amplitude in eq. (2.13). However, from inspecting eq. (2.12), it is clear that we can obtain

B + C from a p21 derivative directly on the amputated current:

A(4)
n (1̃, 2, . . . , n) = lim

p21→0

∂

∂p21
Ĵ(p1, p2, . . . , pn) = lim

p21→0
αµ ∂

∂pµ1
Ĵ(p1, p2, . . . , pn) , (2.14)

where in the last step we used the chain rule on pµ1 |off-shell = pµ1 |on-shell+p21 α
µ to express the

derivative directly in terms of the momentum, which is more convenient than the squared

momentum. Note, however, that we cannot take the limit p21 → 0 before the derivative

since then overall factors of p21 are undetectable.

– 7 –
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With a few exceptions, in this paper we will be concerned with scattering only massless,

physical external states. The massless planewave modes φ0 do not depend on m; similarly,

it does not matter in which order one takes the m → 0 and p2 → 0 limits in the LSZ

procedure. One may therefore avoid introducing m to the theory entirely and simply use

A(4)
n (1, 2, . . . , n) = i lim

p21→0
p41 J(p1, p2, . . . , pn) . (2.15)

Namely, one can calculate physical amplitudes involving planewave states using the usual

LSZ procedure by isolating 1/p4 poles on external legs. In conformal supergravities the

mass deformation breaks dilatation symmetry and the m → 0 limit is potentially problem-

atic. We will return to this point in section 5.2.

2.3 Factorization of four-derivative trees

To better understand the correspondence between states and propagators in generic four-

derivative scalar theories it is helpful to see how their tree amplitudes factorize. Consider

an n-point amplitude of massless planewave states in the mass-deformed theory, where

P = p1 + p2 + · · · + pk is an internal channel. Using the Feynman rules, the amplitude

factorizes in the P 2 → 0 and P 2 → m2 limits as

A(4)
n (1, 2, . . . , n) = Ĵ(−P, p1, p2, . . . , pk)

−i

P 2(P 2 −m2)
Ĵ(P, pk+1, . . . , pn) + finite , (2.16)

where we use amputated currents Ĵ(P, · · · ) ≡ iP 2(P 2 − m2)J(P, · · · ). This decomposes

into two contributions using partial fractions,

A(4)
n (1, . . . , n) = AL(0)

i

m2P 2
AR(0) +AL(m

2)
−i

m2(P 2 −m2)
AR(m

2) + finite, (2.17)

where we use shorthand notation for the amplitudes AL(P
2) ≡ A(4)

n (−P, p1, . . . , pk) and

AR(P
2) ≡ A(4)

n (P, pk+1, . . . , pn) when P 2 = 0 or P 2 = m2. That the amputated currents

Ĵ can be replaced with amplitudes follows from the definition (2.10) — expanding each

current around P 2 = 0 or P 2 = m2, the leading piece is an amplitude and subleading pieces

contribute only to the finite terms.

We are prevented from taking m → 0 limit by the explicit appearance of m2 in the

denominators. However, it is a simple exercise to show that the expression (2.17) is precisely

equal to

A(4)
n (1, . . . , n) = AL(0)

−i

P 2(P 2 −m2)
AR(0) +AL(0)

−i

(P 2 −m2)

AR(m
2)−AR(0)

m2

+
AL(m

2)−AL(0)

m2

−i

(P 2 −m2)
AR(0) (2.18)

+
AL(m

2)−AL(0)

m2

−im2

(P 2 −m2)

AR(m
2)−AR(0)

m2
+ finite .

The m2 factors in the denominators are now matched with corresponding vanishing ex-

pressions in the numerators, so there are no longer any singularities as m → 0. Only the

– 8 –
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first three terms survive in this limit, and using the definition of amplitudes with a single

non-planewave state given in eq. (2.11) we find that

A(4)
n (1, 2, . . . , n) = AL(0)

−i

P 4
AR(0) +AL(0)

−i

P 2
ÃR(0) + ÃL(0)

−i

P 2
AR(0) + finite , (2.19)

where the amplitudes carrying tildes are those with non-planewave states in the first slot.

Given that the above factorization is also implied by simple dimensional analysis, we expect

it also to hold for more general external non-planewave states.

From this exercise we learn a number of important lessons about amplitudes in four-

derivative massless scalar theories:

1. Leading factorization poles 1/P 4 always imply an exchange of planewave states.

2. Planewave and non-planewave states are mixed together in the subleading factoriza-

tion poles 1/P 2, which agrees with our earlier observation that the states cannot be

orthogonalized.

3. Subleading poles 1/P 2 generally have non-unique residues. This is because the non-

planewave amplitudes depend on αµ through the parametrization of the momenta in

the neighborhood of the pole, Pµ|off-shell = Pµ|on-shell + P 2αµ, which is inherent in

the definition of non-planewave states (2.6).

4. If a leading factorization pole 1/P 4 is absent from an amplitude, the interpretation of

states and poles 1/P 2 in this channel should become the usual one for two-derivative

theories.

This last point requires further explanation. In the factorization (2.19) if either AL(0) or

AR(0) vanishes as m → 0 then the 1/P 4 pole is of course absent; however, subleading

1/P 2 poles might still be present. For example, if one of the amplitudes is proportional

to m2 (and therefore vanishes as m → 0) then the non-planewave state typically gives a

non-vanishing 1/P 2 pole. This phenomenon occurs in minimal conformal supergravities,

and we will now elaborate on it using an explicit toy model.

2.4 A four-derivative toy model

To illustrate some of the features discussed, we now consider a specific four-derivative toy

model with Lagrangian

L(4) = −1

2
(�φ)2 +

g

2
φ2

�φ− g2

8
φ4 +m2

(
1

2
(∂µφ)

2 +
g

3!
φ3

)
, (2.20)

where g is the coupling constant. As is apparent, the four-derivative theory includes a

mass deformation by the ordinary two-derivative φ3 theory: L(2) = 1
2(∂µφ)

2 + g
3!φ

3. The

resulting equation of motion,

(
�+m2 − gφ

) (
�φ− g

2
φ2

)
= 0 , (2.21)
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takes the interesting form of an operator (�+m2 − gφ) acting on the usual two-derivative

equation of motion for massless φ3 theory. As we have seen before, the free equation of

motion is �(�+m2)φ(0) = 0.

First we consider amplitudes involving only massless planewaves. Any perturbative

solution to the equation of motion of the φ3 theory, �φ = g
2φ

2, is clearly also a solution

to the four-derivative equation of motion (2.21). Therefore, provided that the external-

state boundary conditions φ(0) are identified with planewaves, it must follow that the tree

amplitudes in the four-derivative and two-derivative theories are trivially related,

A(4)
n (1, 2, . . . , n) = m2A(2)

n (1, 2, . . . , n) . (2.22)

The overall m2 factor can be deduced from the m → ∞ limit, where the four-derivative

equation of motion simplifies to m2(�φ − g
2φ

2) = 0. For instance, at four points the

planewave amplitude in the four-derivative theory is3

A(4)
4 (1, 2, 3, 4) = −im2g2

(
1

s
+

1

t
+

1

u

)
. (2.23)

where s = (p1+p2)
2, t = (p2+p3)

2 and u = (p1+p3)
2 — this is indeed proportional to the

usual φ3 amplitude. In the m → 0 limit this amplitude vanishes, as do all planewave tree-

level amplitudes of this (finely tuned) four-derivative theory. In the forthcoming sections

we will see examples of gauge and gravity four-derivative theories that have exactly the

same peculiar behavior.

To obtain non-vanishing amplitudes in the massless limit we need to scatter one or

more non-planewave states. Let us focus on a single non-planewave state, and obtain the

amplitude starting from the mass-deformed theory. It turns out that in the mass-deformed

theory all amplitudes involving a single massive planewave vanish:

A(4)
n (1m, 2, . . . , n) = 0 , (2.24)

where 1m indicates that particle 1 is massive. One can see this by considering the factor-

ization channels of the tree amplitudes with only massless planewaves: as we have already

discussed, these are proportional to those of the two-derivative φ3 theory. Hence there are

no massive poles and therefore no residues corresponding to amplitudes with one massive

external state.

Next, using the definition of non-planewave amplitudes (2.11), the above collapses to

the following simple relation between four- and two-derivative amplitudes (particle 1, the

non-planewave mode, is denoted as 1̃):

A(4)
n (1̃, 2, . . . , n) = −A(2)

n (1, 2, . . . , n) . (2.25)

Note that both sides of this relation are supported on the usual momentum-conserving delta

function (i.e. not a derivative of the delta function). Since this relation has no overall factor

3We are omitting the overall momentum-conserving factor (2π)4δ(4)
(
∑

i pi
)

, as we will do for all ampli-

tudes in the remaining part of this paper.
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of m2 it implies that in the m → ∞ limit the non-planewave amplitudes remain non-zero,

and thus we have arrived at non-vanishing tree amplitudes in the massless four-derivative

theory.

We will not dwell further on amplitudes in the scalar model, as in this paper the focus is

on gauge and gravity theories. However, we should emphasize that the relationships (2.22)

and (2.25) between two- and four-derivative amplitudes apply more generally to other

theories — one simply requires that the equations of motion in a four-derivative theory be

implied by those of a two-derivative theory. Conformal supergravity amplitudes with this

behavior, at three points, have already been presented in refs. [132, 140].

Although this four-derivative toy model may seem rather contrived, all of the special

features demonstrated here apply also to minimal conformal supergravity — to be discussed

in section 5. Of course, one can also add more interactions to the toy Lagrangian (2.20)

and obtain amplitudes unrelated to those of φ3 theory. As we shall see in section 6,

gravitational analogies to such deformations of the interactions correspond to non-minimal

versions of conformal supergravities. Before we get to conformal gravity, we will review

a four-derivative gauge theory that features in the double copy of certain non-minimal

conformal gravities.

3 Review of conformal gravity double copy

Scattering amplitudes in non-minimal N = 4 Berkovits-Witten (BW) conformal super-

gravity (CSG) can be obtained from the following double copy [11]:

(N = 4 BW CSG) = (DF )2 ⊗ (N = 4 SYM) , (3.1)

where (DF )2 theory is shorthand for a certain four-derivative gauge theory built out of

dimension-six operators, and the second gauge theory is N = 4 super Yang-Mills (SYM).

In this section we review the construction starting with the (DF )2 Lagrangian, then give

details of the double copy and finally consider natural deformations and extensions.

3.1 The (DF )2 theory

The (DF )2 theory is a bosonic D-dimensional gauge theory that is built entirely out of

dimension-six operators (in D = 6 counting); its Lagrangian is [11]

L(DF )2 =
1

2
(DµF

µν,a)2 − g

3
F 3 +

1

2
(Dµϕ

α)2 +
g

2
CαabϕαF a

µνF
µν,b +

g

6
dαβγϕαϕβϕγ , (3.2)

where the field strength and covariant derivatives are defined as4

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

DρF
a
µν = ∂ρF

a
µν + gfabcAb

ρF
c
µν ,

F 3 = fabcFµ
ν,aFν

λ,bFλ
µ,c,

Dµϕ
α = ∂µϕ

α − ig(T a
R
)αβAa

µϕ
β,

(3.3)

4Our Lie algebra generators and structure constants are defined such that [T a, T b] = ifabcT c and

Tr(T aT b) = (1/2)δab for fundamental-representation generators.
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The field content comprises a gauge field Aa
µ transforming in the adjoint representation of a

gauge groupG, and a scalar field ϕα transforming in a real representation R, with symmetric

generators (T a
R
)αβ . It is assumed that the representation R appears in the tensor product

of two adjoint representations, which defines the symmetric Clebsch-Gordan coefficients

Cαab = Cαba. In addition, the tensor product R×R contains R and this defines the totally

symmetric dαβγ tensor. The details of the representation are unimportant for calculating

tree-level amplitudes; however, to ensure gauge invariance the Clebsch-Gordan coefficients

need to transform as covariant tensors of a Lie algebra, which enforces the relations

ifabc(T c
R
)αβ = (T a

R
)αγ(T b

R
)γβ − (T b

R
)αγ(T a

R
)γα,

iCβab(T c
R
)αβ = Cαaef bce + Cαbeface,

0 = (T a
R
)αδdδβγ + (T a

R
)βδdδγα + (T a

R
)γδdδαβ .

(3.4)

The kinetic term (DµF
µν,a)2 has four derivatives, which implies that on the sup-

port of Lorenz gauge ∂µAa
µ = 0 the linearized equation of motion for the gauge field

becomes �
2Aa

µ = 0. This implies the existence of four independent spin-1 modes: two

physical planewave gluons A±
µ (p) = ǫ±µ (p)e

ip·x, and two ghost-like non-planewave gluons

Ã±
µ (p) = ǫ±µ (p)aνx

νeip·x. Additionally, the field equation permits a ghost-like scalar excita-

tion A0
µ(p) = ǫ0µ(p)e

ip·x, which can be obtained as a longitudinal mode of a massive gluon

after deforming the theory with a mass term (as done in section 3.3). As explained for

the toy model in section 2.1, one may calculate amplitudes involving physical gluons by

isolating 1/p4 poles on external legs. We will in this section only consider physical gluons

(see section 5.1 for non-planewave gluons).

Gluon tree amplitudes are easier to work with if we consider a color decomposition

into color-ordered amplitudes for the gauge group G = SU(Nc),

A(DF )2

n = gn−2
∑

σ∈Sn/Zn

Tr(T aσ1T aσ2 · · ·T aσn )A(DF )2

n (σ1, σ2, · · · , σn). (3.5)

To obtain such a decomposition the color tensors Cαab and dαβγ can be massaged via

CαabCαcd = facefedb + fadefecb ,

Cαabdαβγ = (iT a
R
)βα(iT b

R
)αγ + (iT b

R
)βα(iT a

R
)αγ + CβacCγcb + CβbcCγca ,

(3.6)

until every color factor in the tree amplitude can be expressed in terms of only fabc structure

constants, at which point they can be converted to the trace basis through standard SU(Nc)

identities. The two relations (3.6) are also necessary [11] for the color-ordered amplitudes

with physical gluons to satisfy BCJ tree-amplitude relations [13]. Since the (DF )2 theory

satisfies color-kinematics duality, at least through eight points [11], we may employ it to

construct gravitational amplitudes via the double copy.

3.2 Double copy with N = 4 SYM

First we discuss the double copy at the level of the physical on-shell states that we are

interested in scattering. The complete N = 4 SYM on-shell supermultiplet is

V = A+ + ηIλ+
I +

1

2
ηIηJSIJ +

1

3!
ǫIJKLη

IηJηKλL
− + η1η2η3η4A−. (3.7)

– 12 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
0

where I, J, . . . are SU(4) R-symmetry indices and ηI are Grassmann-odd auxiliary parame-

ters used in the on-shell superspace formalism (see e.g. [141]). The on-shell particle content

resulting from a double copy of physical (DF )2 gluon states, A+ and A−, with those of

N = 4 SYM coincides with that of chiral and anti-chiral graviton supermultiplets in N = 4

conformal supergravity:

H+ ≡A+ ⊗ V = h++ + ηIψ+
I +

1

2
ηIηJA+

IJ +
1

3!
ǫIJKLη

IηJηKΛL
+ + η1η2η3η4 C̄,

H− ≡A− ⊗ V = C + ηIΛ−
I +

1

2
ηIηJA−

IJ +
1

3!
ǫIJKLη

IηJηKψL
− + η1η2η3η4 h−−.

(3.8)

These are the same on-shell graviton supermultiplets as are relevant for N = 4 Einstein

supergravity. The additional ghost-like states that are prolific in N = 4 conformal super-

gravity can in principle be considered (since they appear in factorization channels of the

tree-level amplitudes); however, we will not do so here.

For tree-level amplitudes involving only external graviton multiplets, it is convenient

to phrase the BCJ double copy [13, 14] in terms of the KLT formula [56]. Doing this for the

graviton multiplets in eq. (3.8) gives the following formula for Berkovits-Witten conformal

supergravity tree amplitudes:

MBW CSG
n =

∑

σ,ρ∈Sn−3

A(DF )2

n (1, σ, n, n− 1)S[σ|ρ]ASYM
n (1, ρ, n− 1, n) , (3.9)

where we have suppressed the gravitational coupling constant. The KLT kernel S[σ|ρ]
is an (n − 3)! × (n − 3)! matrix of kinematic polynomials that acts on the color-ordered

amplitudes for (n− 3)! permutations of the external legs [57, 58, 142–144]:

S[σ|ρ] =
n−2∏

i=2


2p1 · pσi

+
i∑

j=2

2pσi
· pσj

θ(σj , σi)ρ


 , (3.10)

where θ(σj , σi)ρ = 1 if σj is before σi in the permutation ρ, and zero otherwise.

As is manifest in the double copy, the four-dimensional conformal supergravity am-

plitudes are classified according to (i) how many external states belong to the H+ or

H− multiplets (inherited from the helicity of the (DF )2 side), and (ii) their maximally-

helicity-violating (NkMHV) degree (inherited from the N = 4 SYM side). The MHV-sector

amplitudes were first computed by Berkovits and Witten in ref. [12], and have since been

confirmed up to eight points using the above double copy [11]. They are all given by the

compact formula

MBW CSG
n (H+

1 , · · · ,H+
k ,H−

k+1, · · · ,H−
n ) = (−1)niδ8(Q)

k∏

i=1

n∑

j=1,j 6=i

[ij]〈jq〉2
〈ij〉〈iq〉2 , (3.11)

where q is a reference choice and δ8(Q) = δ8(
∑

i λ
α
i η

I
i ) is the usual supermomentum-

conserving delta function given in terms of on-shell spinors λα
i and the Grassmann-odd

numbers [145]. Historically, these amplitudes arose from the N = 4 twistor string theory

as a conformal gravity “contamination” of N = 4 SYM in the multi-trace sector [12] (see
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also refs. [129, 137, 146]). Although some hints were provided in Berkovits and Witten’s

original work, a Lagrangian formulation of the field theory from which these amplitudes

originate has until now been lacking. This will be discussed in section 6, where a Lagrangian

is presented.

3.3 Deformations and extensions

Several extensions to the (DF )2 theory were considered in ref. [11]. Firstly, the theory was

mass deformed by adding a Yang-Mills term to the Lagrangian (3.2), thus resolving the

states coming from Aa
µ into massless and massive gluon states (five states in total). For

the resulting theory to still obey color-kinematics duality, the scalar ϕα should also acquire

the same mass. The mass-deformed Lagrangian is [11]

L(DF )2+YM = L(DF )2 −
m2

4
(F a

µν)
2 − m2

2
ϕαϕα, (3.12)

and m effectively interpolates between the (DF )2 and YM theories in the m → 0 and

m → ∞ limits respectively. Upon taking the double copy (3.9) between (DF )2 + YM

and SYM, the resulting gravitational amplitudes interpolate between Berkovits-Witten

amplitudes and those of Einstein supergravity.

Another deformation considered in ref. [11] was the inclusion of a bi-adjoint scalar φaA

with cubic self interactions. This scalar transforms in the adjoint of the gauge group G,

and also in the adjoint of a global group G̃. The complete Lagrangian in this case is

L(DF )2+YM+φ3 = L(DF )2 −
m2

4
(F a

µν)
2 − m2

2
ϕαϕα +

1

2

(
Dµφ

aA
)2

+
g

2
CαabϕαφaAφbA +

gλ

3!
fabcf̂ABCφaAφbBφcC , (3.13)

where f̂ABC are the structure constants of G̃ and the coupling λ is a free parameter. The

coupling to ϕα through Cαab is necessary to ensure valid BCJ amplitude relations when the

bi-adjoint scalars φaA are scattered. This theory plays a crucial role in the novel double-

copy constructions of heterotic and bosonic string amplitudes [34]. In the m → 0 limit,

one obtains a (DF )2 + φ3 theory, and the resulting amplitudes from the double copy with

N = 4 SYM give rise to additional vector multiplets in conformal gravity.

Finally, in the m → ∞ limit of this deformation the kinetic term of ϕα drops out. This

scalar may therefore be integrated out, giving rise to a φ4 interaction. Keeping only terms

proportional to m2, the resulting Lagrangian becomes [18]

LYM+φ3 = −1

4
(F a

µν)
2 +

1

2

(
Dµφ

aA
)2

+
gλ′

3!
fabcf̂ABCφaAφbBφcC − g2

4
facefebdφaAφbAφcBφdB,

(3.14)

where the overall m2 has been removed by rescaling, and λ′ = mλ is kept finite in the

limit. To realize this explicitly, one should make the field φaA dimension-one by rescaling

φaA → mφaA. Taking the double copy with N = 4 SYM amplitudes now gives N = 4

– 14 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
0

Einstein-Yang-Mills (EYM) supergravity amplitudes. More generally, by varying the degree

of supersymmetry one obtains [18]

(N = 0, 1, 2, 4 EYM SG) = (YM+ φ3)⊗ (N = 0, 1, 2, 4 SYM) . (3.15)

Both Einstein and EYM supergravity theories are discussed in the next section.

4 Einstein supergravity

To build familiarity with the formalism used to describe gravitational theories in this

paper we first discuss some details of four-dimensional N = 4 Einstein supergravity. For

simplicity of presentation, we will focus on the fields that are singlets under the SU(4)

R-symmetry of the theory, as this is often sufficient to reconstruct the tree amplitudes for

all other fields (e.g. through supersymmetric Ward identities [147]).

The SU(4)-singlet sector of the pure N = 4 theory — which is sometimes playfully

referred to as N = 0 supergravity — consists of ordinary Einstein gravity coupled to a

scalar dilaton ϕ and a pseudoscalar axion χ.5 Its Lagrangian is

e−1L = − 2

κ2
R+

1

κ2
(
∂µϕ∂

µϕ+ e2ϕ∂µχ∂
µχ

)
, (4.1)

where e =
√−g, and g is the determinant of the metric (not to be confused with the

gauge coupling constant). The gravitational coupling κ is made explicit here, but in the

remaining part of this section we set κ = 2.6

The SU(4)-singlet part of the N = 4 Lagrangian may be more compactly expressed

using the complex scalar field τ ,

τ = χ+ ie−ϕ, (4.2)

giving

e−1L = −R

2
+

∂µτ̄ ∂
µτ

4(Im τ)2
. (4.3)

Although the origin of this four-dimensional field is different, the way τ appears in the La-

grangian should be familiar from the ten-dimensional effective actions of string theory [150].

4.1 Covariant SU(1,1)/U(1) formulation

It is well-known that the scalar sector ofN = 4 supergravity (4.3) realizes a global nonlinear

SL(2,R)∼=SU(1,1) symmetry:

τ → aτ + b

cτ + d
, det

(
a b

c d

)
= 1, a, b, c, d ∈ R. (4.4)

Any value of τ is also invariant under a U(1) stabilizer subgroup (which also acts on

the additional matter content in the theory), so one typically regards τ as living in an

SU(1,1)/U(1) coset space.

5The four-dimensional axion χ emerges from the D-dimensional antisymmetric Bµν tensor as Hµνρ =
i
2
eκϕeǫµνρσ∂

σχ, where Hµνρ = ∇µBνρ + cyclic is the curvature of Bµν (see e.g. ref. [148]).
6With respect to the complete N = 4 Lagrangian given in ref. [149] we set K = 1

2
.
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As the SU(1,1) symmetry is an important feature of the theories considered in this

paper, it would be advantageous to make it act linearly on the fields. Such a linear re-

alization is achieved by moving to the covariant formulation. We introduce a doublet of

complex scalars φα (α = 1, 2), subject to constraints

φαφα = 1, φ1 = φ̄1, φ2 = −φ̄2. (4.5)

The linear action of U ∈ SU(1,1) on these scalars is simply φ′α = Uα
βφ

β . Meanwhile,

the U(1) stabilizer is promoted to a local symmetry, acting on the scalars with weight 1,

i.e. φα → eiλA(x)φα. To write down U(1)-covariant derivatives ∇̃µ we use a composite

gauge field aµ = iφα∂µφα — so, for instance, ∇̃µφ
α = (∂µ − iaµ)φ

α also transforms with

weight 1. Finally, we define the SU(1,1)/U(1) coset fields

Pµ = φαǫαβ∇̃µφ
β , P̄µ = −φαǫ

αβ∇̃µφβ , (4.6)

with ǫ12 = ǫ12 = 1. These are invariant under SU(1,1) and carry U(1) weights +2 and

−2 respectively. In terms of them, the SU(4)-singlet part of N = 4 Einstein supergravity

Lagrangian is simply

e−1L = −R

2
+ P · P̄ . (4.7)

Of course, these constrained scalars are unsuitable for scattering. So we parametrize

them in terms of unconstrained scalars, and the covariant formulation gives us flexibility in

how we do this. For instance, the U(1) gauge choice Im(φ1 + φ2) = 0 can be parametrized

as [151]

φ1 =
1

2
√
Im τ

(1− iτ), φ2 =
1

2
√
Im τ

(1 + iτ), τ = i
φ1 − φ2

φ1 + φ2
, (4.8)

which solves φαφα = 1. Via the definitions of Pµ and aµ given above this implies

Pµ =
i∂µτ

2Im τ
=

1

2
(∂µϕ+ ieϕ∂µχ), aµ = −∂µ(τ + τ̄)

4Im τ
= −1

2
eϕ∂µχ, (4.9)

thereby confirming that the two versions of the N = 4 supergravity Lagrangian (4.3)

and (4.7) are equivalent.

Since τ should be perturbatively expanded around the point 〈τ〉 = i, it is somewhat

inconvenient to consider amplitudes in terms of this field. Following ref. [6], an alternative

useful gauge fixing is the reality condition φ1 = φ1, parametrized as

φ1 =
1√

1− |C|2
, φ2 = − C√

1− |C|2
, C = −φ2

φ1
. (4.10)

In this case, one can easily show that

Pµ = − ∂µC

1− |C|2 , aµ =
Im(C∂µC̄)

1− |C|2 . (4.11)

Notice that these expressions for Pµ and aµ do not equal the ones given above in terms of

τ (4.9); the former are obtained from the latter via the U(1) transformation [152]

Pµ → e2iθPµ, aµ → aµ + ∂µθ, θ =
1

2i
log

(
1− iτ

1 + iτ̄

)
. (4.12)
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C transforms non-linearly under SU(1,1), and the local U(1) symmetry is broken to a

global, chiral U(1) under which C has a charge of 2.

4.2 Double copy structure

With the parametrization choice (4.11), the SU(4)-singlet part of the N = 4 supergravity

Lagrangian (4.7) becomes

e−1L = −R

2
+

∂µC̄∂µC

(1− |C|2)2 . (4.13)

Using this Lagrangian as a starting point, amplitude calculations involving gravitons and

scalars are, in principle, straightforward. One simply expands gµν = ηµν + κhµν and

reads off interaction vertices and propagators in the usual way (see e.g. ref. [153]). The

denominator involving C expands to give an infinite tower of interactions with itself, its

conjugate C̄, and the graviton hµν field.

As is well known, and as we have confirmed by direct calculations, the resulting

graviton-scalar tree amplitudes coincide with those computed from the double copy [21,

154]:

(N = 0, 1, 2, 4 Einstein SG) = YM⊗ (N = 0, 1, 2, 4 SYM) . (4.14)

Here the N < 4 supergravity theories are non-pure, in the sense that they have additional

complex matter multiplets where the scalars C, C̄ are the top and bottom components,

respectively. As should be familiar from the N = 0 case of the double copy, we can identify

the linearized on-shell dilaton ϕ and axion χ states with symmetric and antisymmetric

combinations of on-shell gluon states, respectively,

ϕ = −A+ ⊗A− −A− ⊗A+, iχ = A+ ⊗A− −A− ⊗A+. (4.15)

Using the non-linear expressions for τ and C in terms of φα (eqs. (4.8) and (4.10)

respectively), one can express C in terms of ϕ and χ:

C = −1 + iτ

1− iτ
= −1− e−ϕ + iχ

1 + e−ϕ − iχ
= −1

2
(ϕ+ iχ) + · · · . (4.16)

Therefore, at the linearized on-shell level one can also identify

C = A− ⊗A+, C̄ = A+ ⊗A−, (4.17)

which justifies our use of the C and C̄ states in theH− andH+ multiplets (3.8) respectively.

We mentioned earlier that C has a U(1) charge of 2. The U(1) charges of other states

in the H+ and H− multiplets are given by the difference of their helicities on the two sides

of the double copy: qU(1) = h(SYM)−h(YM). When computing tree-level amplitudes this

symmetry is useful — for instance, it explains the decoupling of the scalars in pure-graviton

tree amplitudes. Since the work of Marcus [155], it is known that the U(1) symmetry of

N = 4 Einstein supergravity is anomalous at the quantum level (see refs. [154, 156, 157] for

studies of the anomaly from the double-copy perspective). U(1) symmetry breaking is also

an important feature of non-minimal conformal supergravities, where it happens already

at tree level [125].
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4.3 Coupling to vector multiplets

Before proceeding to conformal gravity we review the coupling of additional N = 4 vector

multiplets to Einstein supergravity. With a vector multiplet that transforms in the adjoint

of a gauge group G̃, the Lagrangian (4.7) generalizes to that of N = 4 Einstein-Yang-Mills

(EYM) supergravity. The SU(4)-singlet part is

e−1L = −R

2
+ P · P̄ − 1

4

[
iτ̄(F+,A

µν )2 − iτ(F−,A
µν )2

]
, (4.18)

where we have introduced the (anti-)self-dual part of the Yang-Mills field strength

F±,A
µν =

1

2

(
FA
µν ± F̃A

µν

)
, F̃A

µν =
i

2
eǫµνρσF

ρσ,A. (4.19)

Here FA
µν = ∂µA

A
ν −∂νA

A
µ +λf̂ABCAB

µA
C
ν , and λ is the coupling constant that also appears

in the deformed (DF )2 theory (3.13). Writing the EYM Lagrangian explicitly in terms of

the dilaton ϕ and axion χ, it becomes

e−1L = −R

2
+

1

4

(
∂µϕ∂

µϕ+e2ϕ∂µχ∂
µχ−e−ϕFA

µνF
µν,A−iχFA

µνF̃
µν,A

)
. (4.20)

The MHV single-trace amplitudes — coefficient of λn−k−1Tr(TAk · · ·TAn) — in this

theory admit a simple form.7 If two or more external states belong to theH− multiplet (3.8)

then the amplitudes vanish. Otherwise [41, 158, 159]

Mn(H+
1 · · ·H+

k−2H±
k−1Vk · · · Vn) = i (−1)k−1 δ8(Q)

〈k, k+1〉 · · · 〈nk〉 det
(
Φ+

)
, (4.21)

where Φ+ is the (k−2)- or (k−1)-dimensional Hodges’ matrix [160, 161], implemented on

the H+ states as

(Φ+)ji = − [ij]

〈ij〉 for i 6= j, (Φ+)ii =
n∑

j=1,j 6=i

[ij]〈jx〉〈jy〉
〈ij〉〈ix〉〈iy〉 . (4.22)

By taking only the diagonal elements of Hodges’ matrix and setting q = x = y

one precisely reproduces the factor in the Berkovits-Witten amplitude (3.11) associ-

ated with the H+ states. The MHV-sector double-trace amplitudes — coefficient of

λn−4Tr(TA1 · · ·TAr−1)Tr(TAr · · ·TAn) — are given by [162]

Mn(V1 · · · Vr−1|Vr · · · Vn) = −
ip2r,nδ

8(Q)

〈12〉 · · · 〈r−1, 1〉〈r, r+1〉 · · · 〈nr〉 , (4.23)

and pi,j = pi + pi+1 + · · ·+ pj .

As mentioned in section 3.3, these amplitudes admit a double copy construction from

the YM + φ3 theory defined by the Lagrangian (3.14). We have checked the MHV-sector

single-trace (4.21) and double-trace (4.23) amplitudes by explicit calculation from the EYM

Lagrangian (4.18) for a variety of external states including scalars, gravitons and gluons.

We have also checked the single-, double-, and triple-trace sectors of the six-point NMHV

amplitude M6(A
+, A+, A+, A−, A−, A−) by comparison with the double copy.

7When writing color-stripped amplitudes we ignore an overall factor of
√
2 for each gluon leg.
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5 Minimal conformal supergravity

In this section we explore scattering amplitudes in minimal conformal supergravity. We

show that the amplitudes admit a double-copy construction from a truncation of the (DF )2

theory reviewed in section 3.1, which we therefore refer to as minimal (DF )2 theory. In gen-

eral, we will consider mass-deformed versions of these theories, and thus the proper theories

are obtained in the m → 0 limit. By analogy to the four-derivative toy model discussed

in section 2.4, the four-derivative equations of motion in these theories are automatically

solved by classical solutions to Yang-Mills and Einstein supergravity, respectively. Hence

their tree amplitudes for planewave states vanish for m = 0, and are equal (up to a factor

of m2) to their two-derivative counterparts for finite m. The vanishing of planewave am-

plitudes in minimal conformal supergravity follows from an argument by Maldacena [128],

which was later elaborated on in refs. [129–131].

5.1 Minimal (DF )2 theory

We define the minimal (DF )2 theory to consist solely of the kinetic term (DµF
µν,a)2 from

the Lagrangian (3.2). However, it is convenient to introduce the Yang-Mills term from the

very beginning, thus the mass-deformed minimal theory has the Lagrangian8

L =
1

2
(DµF

µν,a)2 − m2

4
(F a

µν)
2 . (5.1)

We note that the classical equations of motion,

DλD
λDρF

ρµ,a −DλD
µDρF

ρλ,a + [Dµ, Dλ]DρF a
ρλ +m2DρF

ρµ,a = 0 , (5.2)

are solved by the Yang-Mills equations DµF
µν,a = 0. The situation is therefore completely

analogous to the scalar toy model in section 2.4. Tree amplitudes involving physical gluons

A+ and A− in the mass-deformed theory are proportional to those of ordinary Yang-Mills

theory,

A(4)
n (1, 2, . . . , n) = m2A(2)

n (1, 2, . . . , n) , (5.3)

implying that they vanish identically in the minimal (DF )2 theory (m → 0). We remind the

reader that the superscripts are used to distinguish the four- and two-derivative theories.

Also, tree amplitudes involving a single non-planewave state are given by

A(4)
n (1̃, 2, . . . , n) = −A(2)

n (1, 2, . . . , n) , (5.4)

and thus there exist non-vanishing amplitudes in the m → 0 limit.

A minor difference compared to the scalar toy model is gauge fixing. It is convenient

to use Lorenz gauge ∂µAa
µ = 0 in both the two- and four-derivative theories. In the latter

case, the gauge-fixing term is LGF = −1
2(∂µA

µ,a)(� + m2)(∂νA
ν,a), which gives a simple

propagator,

Aµ,a

p
Aν,b

=
i ηµνδab

p2(p2 −m2)
. (5.5)

This works equally well when m = 0, in which case the propagator is iηµνδab/p4.

8Up to an overall m2 factor, this is the Lee-Wick theory [8, 9] considered in ref. [10].
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5.2 Weyl gravity

The simplest four-dimensional conformal gravity is the pure Weyl theory. Including an

Einstein-Hilbert term from the start gives the mass-deformed Weyl theory,

e−1L = − 1

κ2
(Wµνρσ)

2 − 2

κ2
m2R, (5.6)

where κ is a dimensionless coupling.9 For simplicity, from now on we set κ = 2. The

four-dimensional Weyl tensor, and its square, are expressed as

Wµνρσ = Rµνρσ + gν[ρRσ]µ − gµ[ρRσ]ν +
1

3
gµ[ρgσ]νR,

(Wµνρσ)
2 = (Rµνρσ)

2 − 2(Rµν)
2 +

1

3
R2 = 2(Rµν)

2 − 2

3
R2 +GB,

(5.7)

where GB is the topological Gauss-Bonnet term. Using that the Weyl tensor with one

raised index Wµ
νρσ is invariant under dilatations gµν → e−2λD(x)gµν , it follows that the

massless theory has local scale symmetry.

A graviton field is obtained by considering the metric perturbation gµν = ηµν + κhµν
(instead of κ as we used earlier). The equations of motion are Bµν + m2Rµν = 0, where

the Bach tensor Bµν is

Bµν = −(2∇ρ∇σ +Rρσ)Wρµνσ

= −2∇ρ∇(µRν)ρ +�Rµν +
2

3
∇µ∇νR− 1

6
gµν�R

+ 2RρµR
ρ
ν −

2

3
RµνR− 1

2
gµν

(
(Rρλ)

2 − 1

3
R2

)
.

(5.8)

Any solution to the vacuum Einstein equations Rµν = 0 is also a solution to these equations

of motion. Therefore, as before, the following tree amplitudes of the four-derivative mass-

deformed Weyl theory are related to those of Einstein gravity:

M (4)
n (1, 2, . . . , n) = m2M (2)

n (1, 2, . . . , n) , M (4)
n (1̃, 2, . . . , n) = −M (2)

n (1, 2, . . . , n) . (5.9)

This is strikingly analogous to Maldacena’s argument on the relation between conformal

gravity and Einstein gravity amplitudes [128]; however, he considered curved AdS space

where the scale was provided by ΛAdS instead ofm2. The vanishing of planewave amplitudes

in flat-space conformal gravity follows either way in the limits ΛAdS,m
2 → 0 [129–131].10

A final remark regarding the m2 → 0 limit: while one counts 2 + 5 = 7 on-shell

states in the massive theory (massless + massive gravitons), the massless Weyl theory has

6 = 2 + 2 + 2 states (planewave + non-planewave gravitons + photons) since a scalar

9Note that the ordinary gravitational coupling is given by κ = κ/m, and for κ = O(1) the Planck mass

can be identified with m.
10An alternative argument, following ’t Hooft and Veltman’s classic work [163] (see also [164]), is that

(Rµν)
2 and R2 terms can be removed by a field redefinition gµν → gµν+aRµν+bgµνR, thus (Wµνρσ)

2 ∼ GB

vanishes in four dimensions. Note, however, this argument assumes that the Einstein-Hilbert term m2R is

nonzero which makes it somewhat suspicious in the m2 → 0 limit.

– 20 –



J
H
E
P
0
9
(
2
0
1
8
)
0
8
0

should decouple due to the enhanced local scale symmetry [1]. One might question the

smoothness of the m → 0 limit since the propagator typically has 1/m2 poles; however, we

have confirmed by explicit calculation that the amplitudes obtained using either the m = 0

or m → 0 prescriptions are identical. This point is further discussed in appendix A.

5.3 Minimal conformal supergravity

In extending the discussion to conformal supergravity amplitudes, we seek a bosonic exten-

sion to the Weyl Lagrangian (5.6) which originates from the SU(4)-singlet part of minimal

N = 4 conformal supergravity. Following Fradkin and Tseytlin’s classification [125], min-

imal conformal supergravity is defined as possessing both the global SU(1,1) symmetry

acting on the scalars φα and the local U(1) symmetry acting also on other fields. Non-

minimal theories, which we will discuss in section 6, break both symmetries. All dependence

on φα in the minimal theory should therefore be through the coset field Pµ and the U(1)-

covariant derivative ∇̃µ. Given also that the Lagrangian should be of the four-derivative

type and have local scale invariance, the only allowed SU(4)-singlet combinations are

(Wµνρσ)
2, P̄µ∇̃µ∇̃νP

ν + 2

(
Rµν−

1

3
gµνR

)
P̄µP ν , P 2P̄ 2, (P ·P̄ )2, (5.10)

where total derivatives and the Gauss-Bonnet term are excluded.

As the U(1) symmetry decouples the scalars from tree-level graviton amplitudes, our

discussion of the Weyl theory tells us that the pure-graviton superconformal amplitudes are

given bym2 times their Einstein supergravity counterparts. For this to generalize to the full

physical planewave spectrum of N = 4 conformal supergravity — the same H± multiplets

as appeared in N = 4 Einstein supergravity (3.8) — we require the equations of motion for

Einstein supergravity to imply those of the conformal theory. In the SU(4)-singlet sector,

the former are

Rµν −
1

2
gµνR = T (2)

µν , ∇̃µP
µ = 0 , (5.11)

and the stress-energy tensor is

T (2)
µν =

2

e

δ(eP ·P̄ )

δgµν
= 2P(µP̄ν) − gµνP ·P̄ . (5.12)

This allows us to make an ansatz for the superconformal Lagrangian using the terms

in (5.10), and fix coefficients by examining the resulting equations of motion.

Doing so, we find that the N = 4 minimal conformal supergravity theory has the

following SU(4)-singlet sector Lagrangian:

e−1L = −1

4
(Wµνρσ)

2 + P̄µ∇̃µ∇̃νP
ν + 2(Rµν−

1

3
gµνR)P̄µP ν − P 2P̄ 2 − 1

3
(P ·P̄ )2

+m2

(
−R

2
+ P · P̄

)
, (5.13)
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where we have introduced a mass deformation by the Einstein supergravity terms (4.7)

from the very beginning. The resulting equations of motion are

Bµν +m2

(
Rµν −

1

2
gµνR

)
= T (4)

µν , (5.14a)

(∇̃2 +m2 − 4P ·P̄ )∇̃µP
µ = 0 . (5.14b)

The scalar equation is clearly implied by ∇̃µP
µ = 0. Showing that the graviton equation

is also solved automatically is more involved. The stress tensor is

T (4)
µν = m2T (2)

µν − 2(∇̃(µPν)∇̃ρP̄
ρ + h.c.) + gµν(∇̃ρP

ρ)(∇̃λP̄
λ)

− 2
(
∇ρ∇µP(ρP̄ν) +∇ρ∇νP(ρP̄µ)

)
+ 2�P(µP̄ν) +

4

3
∇µ∇ν(P ·P̄ )

− 1

3
gµν�(P ·P̄ ) + gµν

[
2∇ρ∇λP(ρP̄λ) −�(P ·P̄ )

]

+ 4gρλ
[
(Rµρ − 2P(µP̄ρ))P(λP̄ν) + P(µP̄ρ)Rλν

]

− 4

3

[
(R− 2P ·P̄ )P(µP̄ν) +Rµν(P ·P̄ )

]

− 2gµν

[
(Rρλ − P(ρP̄λ))P

(ρP̄ λ) − P ·P̄
3

(R− P · P̄ )

]
.

(5.15)

A helpful first step is to re-express the gravitational equation given in eq. (5.11) as Rµν =

2P(µP̄ν) and R = 2P ·P̄ . On support of these relations, T
(4)
µν then reduces to

T (4)
µν = m2T (2)

µν +Bµν . (5.16)

So the four-derivative gravitational equation of motions (5.14a) are indeed solved by the

two-derivative counterparts.

As a final confirmation of this Lagrangian we compare it with the bosonic part of the

action constructed by Ciceri and Sahoo for the same theory [165]. This version of the

action contains additional gauge fields associated with the symmetries of the conformal

group, which allow the full conformal symmetry (including conformal boosts) to be real-

ized covariantly. As they do not correspond to physical states we remove them either by

integration or gauge fixing — for full details, see appendix B.

The double copy structure of the amplitudes of minimal conformal gravity is inherited

from the two-derivative theories, and follows the usual pattern for different degrees of

supersymmetry,11

(N = 0, 1, 2, 4 min.CSG) =
(
min.(DF )2

)
⊗ (N = 0, 1, 2, 4 SYM) . (5.17)

Given that amplitudes involving planewave states vanish in both minimal (DF )2 and min-

imal conformal (super)gravity the relation is trivially satisfied in this case. A less trivial

confirmation is that this double copy also works when one external state is taken as a non-

planewave mode. This works because the minimal (DF )2 and minimal conformal super-

gravity amplitudes are proportional to the ordinary Yang-Mills and Einstein supergravity

11Note that this double-copy identification is for the four-dimensional theories. For D > 4 the Gauss-

Bonnet term needs to be accounted for, which may alter the details.
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amplitudes, which obey the color-kinematics duality and the double copy, respectively. We

leave further confirmation of the minimal-theory double copy to future work.

6 Non-minimal conformal supergravity

We now proceed to the Lagrangian description of non-minimal conformal supergravities,

and their associated scattering amplitudes. The bosonic parts of the complete class of

N = 4 supersymmetric Lagrangians were recently constructed by Butter, Ciceri, de Wit

and Sahoo [127]. The SU(4)-singlet part of their Lagrangian is

e−1L = −F
2

[
1

2
(W+

µνρσ)
2−P̄µ∇̃µ∇̃νP

ν−2(Rµν−
1

3
gµνR)P̄µP ν+P 2P̄ 2+

1

3
(P ·P̄ )2

]

+ h.c.. (6.1)

The different conformal supergravities are encoded in terms of the zeroth-degree homoge-

neous free function F(φα). The SU(1,1)/U(1) coset field Pµ and U(1)-covariant derivative

∇̃µ were introduced in section 4.1. The (anti-)self-dual part of the Weyl tensor is defined as

W±
µνρσ =

1

2

(
Wµνρσ ± W̃µνρσ

)
, W̃µνρσ =

i

2
eǫµνκλW

κλ
ρσ, (6.2)

where Wµνρσ was given in eq. (5.7). In this case, rather than construct an ansatz, we

obtained the above Lagrangian directly from ref. [127] by eliminating additional gauge

fields associated with conformal symmetries — for details, see appendix B.2.

The scalar function F is of primary interest to us, F = 1 corresponding to the

already-discussed minimal theory for which all planewave tree-level amplitudes vanish (for

m = 0). For non-minimal N = 4 conformal supergravities the presence of F breaks the

SU(1,1)×U(1) symmetry and allows for non-vanishing planewave amplitudes. Using the

parametrization of φα in terms of C (4.10), we notice that any choice of F that is solely de-

pendent on C̄ = φ2/φ1 (or, alternatively, dependent on τ̄) is a zeroth-degree homogeneous

function as required. Our main focus is

F = iτ̄ , (6.3)

for which we observe that the tree-level amplitudes match those of the Berkovits-Witten

theory (3.11).12 However, before discussing this case in more detail we make some remarks

about amplitudes for arbitrary F .

6.1 Generic non-minimal amplitudes

Given that F may be considered a function of only C̄, and that for sensible perturbations

around C = 0 it should also be analytic at the origin, we define it as a series expansion:

F(C̄) = 1− 2
∞∑

j=1

fj
j!
C̄j . (6.4)

12See also ref. [123] where the conformal anomaly of the Berkovits-Witten theory was analyzed using the

Lagrangian of ref. [127].
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Different theories are classified by the constants fj . As all terms inside the square brackets

of the non-minimal Lagrangian (6.1) are at least quadratic in the fields, both the scalar

and graviton propagators are unaffected by the fj . Therefore, the propagators and on-

shell states of the different non-minimal conformal supergravities matches that of minimal

theory, which, as we explained in section 5.1, for physical planewave states matches that of

N = 4 Einstein supergravity (3.8). Our gauge fixing procedure and resulting propagators

are described in full generality in appendix A.

The dependence on F in the conformal supergravities is through the interactions.

When F 6= 1 the equations of motion for Einstein supergravity (5.11) no longer imply

those of the conformal theory. Therefore, tree-level conformal supergravity amplitudes

with physical planewave states are generally not proportional to those of Einstein super-

gravity, hence they do not vanish. Henceforth we focus only on the planewave states.

The nontrivial amplitudes from the non-minimal Lagrangian (6.1) can be calculated from

Feynman diagrams. However, obtaining tree-level amplitudes from solutions to the classical

equations of motion is better. Berends-Giele recursion [139] is our main tool for checking

the amplitudes discussed in this and other sections.

At three points only the three-scalar and two-graviton-one-scalar vertices are modified

with respect to the minimal theory. The three-scalar amplitudes are, however, still required

to be zero due to the three-point kinematics pi · pj = 0. The only non-zero three-point

amplitudes are therefore

M3(h
−−, h−−, C) = if1〈12〉4, M3(h

++, h++, C̄) = if1[12]
4 . (6.5)

For generic f1 6= 0 these amplitudes clearly violate the U(1) symmetry, as the scalar carries

U(1) charge. The amplitudes can be supersymmetrized to capture the full N = 4 content;

the MHV amplitude takes the form M3(H−
1 H−

2 H−
3 ) = if1δ

8(Q).

Proceeding to n-point amplitudes, the Feynman vertices that are needed can only re-

ceive contributions from coefficients up to fn−2, which itself first appears in the 2-graviton-

(n − 2)-scalar and n-scalar vertices. Although the resulting amplitudes are more compli-

cated, we can identify certain patterns by restricting the external states. For instance, in

the MHV sector if all external states are restricted to the H− multiplet (3.8) then one can

show that the amplitudes have no poles. They may be expressed simply as

Mn(H−
1 H−

2 · · ·H−
n ) = iSn−2δ

8(Q), (6.6)

where Sn(fj) is a constant function of fj for us to determine.

We have checked by explicit calculation that

M3(h
−−, h−−, C) = if1〈12〉4, (6.7a)

M4(h
−−, h−−, C, C) = i(f2 + 3f2

1 )〈12〉4, (6.7b)

M5(h
−−, h−−, C, C,C) = i(f3 + 10f1f2 + 15f3

1 )〈12〉4, (6.7c)

M6(h
−−, h−−, C, C,C,C) = i(f4 + 10f2

2 + 15f1f3 + 105f2
1 f2 + 105f4

1 )〈12〉4. (6.7d)

The numerical coefficients are clearly combinatoric factors — for instance, the coefficient

of f1f2 in the five-point amplitude is 10 = 5!/(2! × 3!), which counts the number of five-

point diagrams involving a three- and a four-point vertex (f1 is associated with the former
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and f2 with the latter). A recursive formula for Sn generalizes this pattern to arbitrary

multiplicity,

Sn

(n+ 1)!
=

n∑

j=1

fj
∑

i1,...,in−1

n=j+
∑n−1

k=1 ikk

1

(j+1−∑n−1
k=1 ik)!i1! · · · in−1!

(
S1

2!

)i1

· · ·
(
Sn−1

n!

)in−1

, (6.8)

where the recursion starts from S0 = 1.

The same pattern also applies when one external state belongs to H+ in the MHV

sector. By checking (n− 1)-scalar one-graviton amplitudes up to seven points and (n− 3)-

scalar three-graviton amplitudes up to five points we have confirmed that

Mn(H+
1 H−

2 · · ·H−
n ) = −iSn−3δ

8(Q)
n∑

i=2

[1i]〈iq〉2
〈1i〉〈1q〉2 , n ≥ 4. (6.9)

The amplitudes reduce to those of the all-minus sector (6.7) in the soft limit p1 → 0,

in which case the extra kinematic function has the interpretation of a soft factor. This

agrees with the BCFW-inspired soft factor of ref. [166]; similar arguments using these

soft factors have been used to calculate anomalous one-loop N = 4 Einstein supergravity

amplitudes [154, 157].

6.2 The Berkovits-Witten theory

We remarked earlier that F = iτ̄ gives rise to a theory whose MHV amplitudes match

those of the Berkovits-Witten twistor string (3.11). Using the generic all-minus amplitudes

found in the previous subsection, this is easily confirmed. Comparing the expansion of

F (6.4) with

iτ̄ =
1 + C̄

1− C̄
= 1 + 2

∞∑

j=1

C̄j , (6.10)

we find that fj = −j!. In this case Sn = (−1)n, so as expected the all-minus amplitudes are

Mn = i(−1)nδ8(Q). The one-plus amplitudes also agree: in the n-point expression (6.9)

we recognize the helicity-dependent soft function as coming from the Berkovits-Witten

formula (3.11). Given that at n points we uniquely fix fn−2 using the all-minus sector, the

identification F = iτ̄ is complete.

Using numerical Berends-Giele recursion we have explicitly checked this for a wide

variety of scalar-graviton amplitudes up to n = 7, including M6(C,C,C, C̄, C̄, C̄). While

this NMHV amplitude is not predicted by the Berkovits-Witten formula, we have compared

it with NMHV amplitudes coming from the double copy (DF )2 ⊗ YM. This provides

nontrivial evidence for the validity of this double-copy construction for a wider class of

amplitudes than those considered by Berkovits and Witten.13

13This numeric check was made against both the (DF )2 Lagrangian of ref. [11] and the (DF )2 CHY

integrand of ref. [33]. Ref. [167] provides a toolkit for the evaluation of such amplitudes in the CHY

framework.
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6.3 The mass-deformed theory

When studying minimal conformal supergravity we found it helpful to deform the theory

by a massive component proportional to the Einstein supergravity action, thus realizing the

ghost-like particles as massive states by breaking scale symmetry. In non-minimal theories

we can do the same,

e−1L = −F
2

[
1

2
(W+

µνρσ)
2−P̄µ∇̃µ∇̃νP

ν−2

(
Rµν−

1

3
gµνR

)
P̄µP ν+P 2P̄ 2+

1

3
(P ·P̄ )2

]

+ h.c. +m2

(
−R

2
+ P · P̄

)
. (6.11)

With F = iτ̄ the amplitudes of this theory are expected to arise from the double copy

between mass-deformed (DF )2 theory (3.12) and N = 4 SYM. They smoothly interpo-

late between Berkovits-Witten conformal supergravity as m → 0 and N = 4 Einstein

supergravity as m → ∞ [11]. For instance, the following four-point amplitudes depend

non-trivially on the mass:

M4(H−
1 H−

2 H−
3 H−

4 ) = iδ8(Q)
stu+ 2m6

(s−m2)(t−m2)(u−m2)
, (6.12a)

M4(H+
1 H+

2 H−
3 H−

4 ) = iδ8(Q)
[12]4

st

(
t

s−m2
+

m2

u

)
, (6.12b)

while the remaining four-point amplitude M4(H+
1 H−

2 H−
3 H−

4 ) is independent of mass. All

three reproduce the Berkovits-Witten amplitudes (3.11) when m = 0; the ghostlike internal

states are exposed as poles of the form (p2−m2)−1, including in the all-minus sector where

previously the poles could not be resolved. The N = 4 Einstein supergravity amplitudes

are obtained after dividing by m2 (in order to get amplitudes of correct dimension) and

sending m → ∞ — only the M4(H+
1 H+

2 H−
3 H−

4 ) amplitude contributes in this limit.

We have checked these three amplitudes by explicit calculation, using both the double

copy and the conformal supergravity Lagrangian (6.11). We have also numerically cross-

checked the corresponding five-point amplitudes with those arising from the double copy.

Again, the details of the gauge-fixing procedure for performing these checks starting from

the Lagrangian (6.11) may be found in appendix A.

6.4 Coupling to vector multiplets

Another important deformation to the (DF )2 theory considered in ref. [11] was with terms

containing bi-adjoint scalars φaA (3.13), for which a coupling of the gravitational theory

to non-abelian vector multiplets V (3.7) was anticipated after the double copy. Knowing

already how these non-abelian vectors couple to Einstein supergravity, we anticipate their

coupling to the conformal supergravity with F = iτ̄ as

e−1L = − iτ̄

2

[
1

2
(W+

µνρσ)
2 +

1

2
(F+,A

µν )2 − P̄µ∇̃µ∇̃νP
ν + P 2P̄ 2 +

1

3
(P ·P̄ )2

− 2(Rµν−
1

3
gµνR)P̄µP ν

]
+ h.c. +m2

(
−R

2
+ P · P̄

)
,

(6.13)
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where as usual only the SU(4)-singlet part is given, and the self-dual part of the YM field

strength F+,A
µν was introduced in eq. (4.19). For completeness we have also included the

mass deformation.

First we consider vectors in the undeformed theory, m = 0, which is the full-fledged

Weyl-YM theory coming from Witten’s twistor string. The Berkovits-Witten MHV for-

mula (3.11) generalizes to the single-trace sector as

Mn(H+
1 · · ·H+

k H−
k+1 · · ·H−

r−1Vr · · · Vn) = i
(−1)r−1δ8(Q)

〈r, r+1〉 · · · 〈nr〉
k∏

i=1

n∑

j=1
j 6=i

[ij]〈jq〉2
〈ij〉〈iq〉2 . (6.14)

By explicit calculation, again using both the double copy and starting from the La-

grangian (6.13), we have confirmed this for a wide variety of MHV amplitudes involv-

ing gravitons, scalars and gluons up to seven points. There is a clear similarity between

these amplitudes and the supersymmetric Einstein-Yang-Mills (EYM) amplitudes given in

eq. (4.21); interestingly though, here the formula holds regardless of how many H− mul-

tiplets are scattered. Also by analogy to the EYM version (4.23), the double-trace MHV

amplitudes are

Mn(V1 · · · Vr−1|Vr · · · Vn) = i
δ8(Q)

〈12〉 · · · 〈r−1, 1〉〈r, r+1〉 · · · 〈nr〉 . (6.15)

The only difference with EYM is the lack of an overall −p2r,n factor, i.e. the momentum

exchanged between the two color traces. This is easily understood by realizing that the

graviton propagator is now −1/p2 times the two-derivative propagator (see appendix A).

Finally we consider vector multiplets in the m 6= 0 theory. By explicit calculation,

we confirm a smooth interpolation between the undeformed superconformal amplitudes as

m → 0 and N = 4 EYM supergravity amplitudes as m → ∞ (after multiplication by

appropriate power of m2). At four points, in addition to the two given in section 6.3, the

amplitudes that depend on m are

M4(H−
1 H−

2 V3V4) = −i
s

s−m2

δ8(Q)

〈34〉2 , (6.16a)

M4(V1V2|V3V4) = i
s

s−m2

δ8(Q)

〈12〉2〈34〉2 . (6.16b)

The massive pole is in both cases apparent, and can be thought as arising from swapping

an s−1 pole with (s−m2)−1. The latter generalizes at n points MHV to

Mn(V1 · · · Vr−1|Vr · · · Vn) = i
p2r,n

p2r,n −m2

δ8(Q)

〈12〉 · · · 〈r−1, 1〉〈r, r+1〉 · · · 〈nr〉 , (6.17)

which we have checked by explicit calculation up to n = 7.

7 Conclusions

In this paper we have confirmed that a wide variety of conformal supergravity tree ampli-

tudes have compatible Lagrangian and double-copy origins. In particular, we have identi-

fied a non-minimal N = 4 conformal supergravity Lagrangian whose physical planewave
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amplitudes are those of the Berkovits-Witten theory [12]. This theory turns out to be a

simple case of the infinite class of non-minimal Lagrangians derived by Butter, de Wit, Ci-

ceri and Sahoo [127]. The tree amplitudes are predicted by a double copy between N = 4

super-Yang-Mills and a (DF )2 theory, where the latter gauge theory was introduced by

Nohle and one of the present authors in ref. [11]. We have checked this double-copy con-

struction by comparing to explicit calculations of conformal supergravity amplitudes from

the Lagrangian, including six-point NMHV amplitudes which were not given in the original

work [12].

Conformal supergravity theories have four-derivative kinetic terms, and as such they

exhibit ghost-like states that are connected to non-unitary behavior. More specifically,

four-derivative theories generally include both regular planewave modes and unusual non-

planewave modes that exhibit linear growth — the two are sometimes described as forming

a dipole. Whether the non-planewave modes are acceptable asymptotic states for the S-

matrix is an interesting question [132, 137]; our partial analysis seems to suggest that

these states can be considered even if amplitudes for such states may pick up a dependence

on a constant auxiliary vector αµ. As the four-derivative off-shell propagators are of the

form 1/p4, the factorization properties of amplitudes when internal lines go on-shell are

somewhat delicate. We have showed that the leading 1/p4 poles are uniquely associated

with intermediate planewave exchange, whereas subleading poles 1/p2 generically arise from

internal non-planewave states propagating into planewave states. Thus the planewave and

non-planewave states are not orthogonal.

The details of the states and propagator poles becomes clearer by introducing a mass

deformation, which we did for the various four-derivative theories considered in this paper.

This allows for a unique separation of the degrees of freedom into massless and massive

states, and amplitudes can be obtained using the standard LSZ procedure. In the m → 0

limit details of the massless theories can be more easily inferred. Non-planewave modes

emerge as an infinitesimal difference between the massless and massive modes, which is a

prescription that generalizes to the amplitudes of such states. We use the prescription to

compute tree amplitudes that have one external non-planewave mode, giving us a handle on

certain minimal theories where the planewave modes give a vanishing tree-level S-matrix.

We found it useful to analyze the tree-level amplitudes of different four-derivative

theories by using perturbative solutions to the classical equations of motion, where external

states are specified as boundary conditions. An analogous setup was used by Maldacena for

pure Weyl conformal gravity in AdS space [128]. The equations of motion are automatically

solved by the vacuum Einstein equations Rµν = 0, which implies vanishing of the conformal

gravity planewave tree amplitudes in the flat-space limit [129–131]. By considering mass-

deformed theories in flat space, we extended this argument to any four-derivative theory

whose equations of motion are implied by those of a two-derivative theory. Such theories

we refer to as being minimal, since the minimal conformal supergravities (N = 4 and

truncations thereof) fall into this class. Knowing that the equations of motion for N = 4

Einstein supergravity should imply those of minimal N = 4 conformal supergravity, we

derived the Lagrangian of the latter theory from first principles. Other minimal four-

derivative theories that we considered include a scalar toy model studied in section 2 and

the minimal (DF )2, both of which have vanishing tree-level S-matrices for planewave states.
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For the minimal theories we showed that amplitudes with a single non-planewave state

are non-vanishing, and moreover equal (up to a sign) to amplitudes in the corresponding

two-derivative theories. Using the properties of amplitudes of the minimal theories, we

have obtained sufficiently non-trivial evidence to support identifying minimal N = 4 con-

formal supergravity with a new double-copy construction involving minimal (DF )2 and

N = 4 super-Yang-Mills theory. Further work is required to confirm that the double-copy

construction continues to hold for tree amplitudes with more non-planewave modes, as

well as the other states present in N = 4 conformal supergravity in the form of gravitino

multiplets [12, 165]. These questions we leave for future work.

Non-minimal four-derivative theories differ from minimal theories only by their inter-

actions. In N = 4 conformal supergravity, these new interactions arise from a function F of

the complex scalars that multiplies the self-dual (Weyl)2 term. For F 6= 1 the SU(1,1)/U(1)

symmetry enjoyed by the minimal theory is broken, and this allows for non-zero planewave

amplitudes. The choice F = iτ̄ , where τ = χ+ ie−ϕ is the usual complexified axion-dilaton

field, gives the Berkovits-Witten version of the theory. The appearance of iτ̄ in front of the

self-dual (Weyl)2 term is analogous to the vector field strength’s coupling Einstein super-

gravity, where SU(1,1)/U(1) symmetry is also broken. After including such terms for vector

multiplets in the Berkovits-Witten conformal supergravity Lagrangian, we calculated the

corresponding amplitudes and showed that they match the double-copy construction for

Weyl-YM theories given in ref. [11].

We have also calculated certain amplitudes for generic choices of F , and showed that

they take on a very simple form in the sector where all graviton multiplets are chiral.

It would be interesting to explore whether a double-copy construction exists for generic

choices of F . The question can be rephrased as whether it is possible to find further

variants of the (DF )2 theory, by modifying interactions and field content, while at the

same time preserving the color-kinematics duality of the theory. Lifting the (DF )2 theory

to D = 10 dimensions suggest that there are no obvious deformations in D = 10, since the

corresponding N = 1 conformal supergravity theory has been argued to be unique [168]

(and should presumably be identified with the dimensionally-oxidized Berkovits-Witten

theory). Similar uniqueness results can be inferred from the string theory double copies of

ref. [34] that also involve the (DF )2 theory in ten dimensions. However, in lower dimensions

— such as D = 4 or D = 6 — there might be room for further deformations of the

(DF )2 theory. Alternatively, it is possible that the generic non-minimal N = 4 conformal

supergravity theories come from constructions of the type (N = 2) ⊗ (N = 2), where the

unknown gauge theories are not constrained by maximal supersymmetry.

A natural extension to this work is to compute loop amplitudes in conformal super-

gravity, in order to better study ultraviolet properties, as well as issues with unitarity.

The issue of unitarity will be more pressing, as ghosts and other states now necessarily

appear in the loops. This includes Faddeev-Popov ghosts that should be added to the

(DF )2 theory if we wish to use the double copy construction for off-shell loop momenta,

without resorting to unitarity techniques. Fradkin and Tseytlin [123–126] have shown that

N = 4 conformal supergravity, of either minimal or non-minimal type, have no conformal

anomalies given that four vector multiplets are added to the spectrum. This suggest that
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the loop-level amplitudes of these gravity theories are ultraviolet finite to all orders, which

would be interesting to confirm by explicit calculation.
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A Gauge fixing and the graviton propagator

The quadratic graviton terms in the Lagrangians of all conformal (super)gravities are

the same, so this analysis is applicable to both minimal and non-minimal theories. The

quadratic terms are

L = −1

2
hµν�(�+m2)hµν +

1

6
h�(�+ 3m2)h− 1

3
h∂µ∂ν(�+ 3m2)hµν

+ hµν∂ν∂ρ(�+m2)hρµ − 1

3
hµν∂µ∂ν∂ρ∂λh

ρλ +O(h3) ,

(A.1)

where h = hµµ (indices are raised and lowered with the Minkowski metric ηµν). Diffeomor-

phism symmetry hµν → hµν +2∂(µξν) is respected for all m; however, dilatation symmetry

hµν → hµν − 2λDηµν of the quadratic terms is respected only when m = 0. We therefore

perform gauge fixing in these two cases separately — for m = 0 we use gauge-fixing terms

LGF =

(
∂νh

µν − 1

2
∂µh

)
�

(
∂ρhµρ −

1

2
∂µh

)
+

1

3
(�h− ∂µ∂νhµν)

2 , (A.2)

where the first fixes diffeomorphism symmetry and the second dilatation symmetry. The

m = 0 graviton propagator is then

hµν
p

hρσ = − i

2

ηµρηνσ + ηµσηνρ − ηµνηρσ
p4

. (A.3)

When m 6= 0 we instead use

LGF = (∂νh
µν)(�+m2)(∂ρhµρ) (A.4)

to fix diffeomorphism symmetry. Although the resulting propagator is rather non-trivial,

it can be reduced using the observation that any numerator terms containing projectors

with explicit pµ are irrelevant. They cancel out in connected correlators as pµJ
µν = 0,

where Jµν is the Berends-Giele current. It is therefore sensible to use

hµν
p

hρσ =
i

2m2

(
ηµρηνλ+ηµληνρ−ηµνηρλ

p2
− ηµρηνλ+ηµληνρ− 2

3ηµνηρλ

p2 −m2

)
.

(A.5)
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While this resembles the partial-fractioned propagators we have seen earlier, it cannot be

brought together into a factorized form. This reflects the fact that when m 6= 0 there is an

extra on-shell massive graviton state, which decouples when m = 0 due to the introduction

of dilatation symmetry.

When computing conformal supergravity amplitudes involving only physical planewave

modes, a useful check on our results has been to compare the m = 0 gauge fixing with

m 6= 0 in the m → 0 limit, and in all cases we have found agreement. One can see this from

the propagators above: when m = 0 the trace part of the Berends-Giele current Jµ
µ = 0,

so trace parts of the propagators are irrelevant. In this case the massive propagator can

be brought into a form equivalent to the massless propagator (A.3).

B Covariant description of conformal supergravities

In this appendix we demonstrate the equivalence between the four-dimensional conformal

supergravity Lagrangians used in this paper and those already given in the supergravity

literature [127, 165]. The key distinction is that, in addition to the vierbein eµ
a and the

spin connection ωµ
ab — where a, b, . . . are tangent-space indices — these alternative super-

conformal constructions also contain the gauge fields bµ and fµ
a associated with dilatations

and conformal boosts respectively. To make contact with our results we therefore elimi-

nate these fields: the former by gauge fixing special conformal symmetry, and the latter

by explicitly solving for it.14

B.1 The minimal theory

The bosonic terms in the minimal four-dimensional N = 4 conformal supergravity La-

grangian are given by Ciceri and Sahoo [127]. The SU(4)-singlet part is

e−1L = −1

2

[
1

2
R(M)abcdR(M)+abcd + P 2P̄ 2 +

1

3
(P ·P̄ )2

− 2P̄ a[DaDbPb +D2Pa]− 2DaP bDaP̄b −DaPaDbP̄b

]
+ h.c., (B.1)

where R(M)+abcd is the self-dual supercovariant curvature. Derivatives Da (containing the

new field content) are covariant under both conformal and local U(1) transformations. The

local SU(1,1)/U(1) coset fields Pa and P̄a are defined using these derivatives:

Pa = φαǫαβDaφ
β , P̄a = −φαǫ

αβDaφβ , (B.2)

The U(1) gauge field aµ solves φαDaφα = 0 (ignoring the fermionic contribution).

In addition to showing equivalence with the minimal Lagrangian (6.1) given in the

main body of this paper, it is also instructive to demonstrate this Lagrangian’s invariance

under conformal and U(1) transformations. As discussed in section 4.1, the scalars φα

14Except for our use of the mostly-minus metric ηab = diag(+,−,−,−), our conventions match those

of Freedman and Van Proeyen [169]. Chapter 15 of this book provides an excellent introduction to the

superconformal construction of gravitational theories.
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transform under only U(1) with weight 1. The gauge fields transform under both kinds of

transformations as [169]

δeµ
a = −λDeµ

a, (B.3a)

δωµ
ab = −4λK

[aeµ
b], (B.3b)

δbµ = ∂µλD + 2λK
aeµa, (B.3c)

δfµ
a = ∂µλK

a − bµλK
a + ωµ

abλK,b + λDfµ
a, (B.3d)

δaµ = ∂µλA, (B.3e)

where λD(x) and λK
a(x) are the local gauge parameters associated with dilatations and

conformal boosts respectively.

Conformal-covariant derivatives Da = ea
µDµ are assembled using the general principle

that, for any argument X,

DµX = DµX − δX|λD→bµ, λK
a→fµ

a, λA→aµ , (B.4)

where Dµ is the ordinary (non-conformal) covariant derivative containing the spin con-

nection ωµ
ab (not to be confused with the gauge-covariant derivative (3.3)). For instance,

Dµφ
α = (∂µ − iaµ)φ

α matches ∇̃µφ
α as given in section 4.1; similarly,

DaP
b = DaP

b − ea
µ(bµ + 2iaµ)P

b, (B.5a)

DaP̄
b = DaP̄

b − ea
µ(bµ − 2iaµ)P̄

b, (B.5b)

DaDbP
c = DaDbP

c − ea
µ(2(bµ + iaµ)DbP

c + 2δcbfµdP
d − 4ηbdfµ

(cP d)) (B.5c)

give us all required terms in the action (B.1).

Dilatation symmetry of the Lagrangian (B.1) follows trivially from the covariance of

all terms — δDe
−1 = 4λDe

−1 cancels the overall scaling. Verifying special conformal

symmetry is a little harder — some helpful intermediate results are

δK(DaP
b) = 2δbaλK

cPc − 4ηacλK
(bP c), (B.6a)

δK(DaP̄
b) = 2δbaλK

cP̄c − 4ηacλK
(bP̄ c), (B.6b)

δK(DaDbP
c) = 2ηabλK

dDdP
c − 8λK,(aDb)P

c − 4λK
cD(aPb) + 4λK,dδ

c
(aDb)P

d. (B.6c)

The first of these has already been used to write down the covariant derivative (B.5c). One

ultimately finds that

δK(e−1L) = −8λK,aP̄bD[aP b] + h.c., (B.7)

which vanishes on support of the Maurer-Cartan equations associated with the

SU(1,1)/U(1) coset space [127, 165].

To reproduce the minimal Lagrangian given in the main body of this paper (5.13) (not

including its mass deformation) we eliminate the additional field content. First, φαDaφα =

0 is solved to give aµ = iφα∂µφα. Special conformal transformations are gauge fixed by

setting bµ = 0, giving λK,a = −1
2ea

µ∂µλD. Then we use the following constraints on
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superconformal curvatures [165]:

R(P )µν
a = 0, (B.8a)

R(M)µν
abeνb = 0. (B.8b)

The first of these identifies ω = ω̊[e], which is the torsion-free spin connection. The second

is solved for fµ
a: substituting

R(M)µν
ab = Rµν

ab + 8f[µ
[aeν]

b], (B.9)

it is straightforward to show that

fµ
a = −1

4

(
Rµ

a − 1

6
eµ

aR

)
. (B.10)

It follows that Wµνρσ = R(M)µν
abeρ,aeσ,b and therefore R(M)abcdR(M)+abcd = (W+

µνρσ)
2.

When this expression for fµ
a is substituted into the Lagrangian (B.1), together with the

covariant derivatives (B.5) and the gauge fixing bµ = 0, the Lagrangian (6.1) is reproduced

up to topological terms.

B.2 The non-minimal theory

The bosonic part of the complete Lagrangian for all N = 4 conformal supergravities has

been constructed by Butter, Ciceri, de Wit and Sahoo [127]. Its SU(4)-singlet part is

e−1L = −F
2

[
1

2
R(M)abcdR(M)+abcd − P̄ aDaDbP

b + P 2P̄ 2 +
1

3
(P ·P̄ )2

+ 4ea
µfµ

cηcb[P
aP̄ b − P dP̄dη

ab]

]
+ h.c.,

(B.11)

where F(φα) is the zeroth-degree homogeneous function introduced in the main text. When

F = 1, by dropping total-derivative terms one may re-express this result as Ciceri and

Sahoo’s minimal Lagrangian (B.1). By a completely analogous procedure to that used for

the minimal Lagrangian, we have eliminated bµ and fµ
a to obtain the version (6.1) given

in the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] K.S. Stelle, Renormalization of higher derivative quantum gravity,

Phys. Rev. D 16 (1977) 953 [INSPIRE].

[2] H. Weyl, Raum, Zeit, Materie (in German), 5 ed., Springer, Berlin, Heidelberg, Germany,

(1923).

[3] M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge theory of the conformal and

superconformal group, Phys. Lett. B 69 (1977) 304 [INSPIRE].

– 33 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.16.953
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D16,953%22
https://doi.org/10.1007/978-3-642-98950-6
https://doi.org/10.1016/0370-2693(77)90552-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B69,304%22


J
H
E
P
0
9
(
2
0
1
8
)
0
8
0

[4] S. Ferrara, M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauging the graded

conformal group with unitary internal symmetries, Nucl. Phys. B 129 (1977) 125 [INSPIRE].

[5] M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity,

Phys. Rev. D 17 (1978) 3179 [INSPIRE].

[6] E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity,

Nucl. Phys. B 182 (1981) 173 [INSPIRE].

[7] A.A. Starobinsky, A new type of isotropic cosmological models without singularity,

Phys. Lett. B 91 (1980) 99 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 130] [INSPIRE].

[8] T.D. Lee and G.C. Wick, Negative metric and the unitarity of the S matrix,

Nucl. Phys. B 9 (1969) 209 [INSPIRE].

[9] T.D. Lee and G.C. Wick, Finite theory of quantum electrodynamics,

Phys. Rev. D 2 (1970) 1033 [INSPIRE].

[10] B. Grinstein, D. O’Connell and M.B. Wise, The Lee-Wick standard model,

Phys. Rev. D 77 (2008) 025012 [arXiv:0704.1845] [INSPIRE].

[11] H. Johansson and J. Nohle, Conformal gravity from gauge theory, arXiv:1707.02965

[INSPIRE].

[12] N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory,

JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].

[13] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[14] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy

of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[15] H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental

matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].

[16] H. Johansson and A. Ochirov, Color-kinematics duality for QCD amplitudes,

JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].

[17] T. Bargheer, S. He and T. McLoughlin, New relations for three-dimensional supersymmetric

scattering amplitudes, Phys. Rev. Lett. 108 (2012) 231601 [arXiv:1203.0562] [INSPIRE].

[18] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2

Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081

[arXiv:1408.0764] [INSPIRE].

[19] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously broken

Yang-Mills-Einstein supergravities as double copies, JHEP 06 (2017) 064

[arXiv:1511.01740] [INSPIRE].

[20] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Explicit formulae for

Yang-Mills-Einstein amplitudes from the double copy, JHEP 07 (2017) 002

[arXiv:1703.00421] [INSPIRE].

[21] Z. Bern, C. Boucher-Veronneau and H. Johansson, N ≥ 4 supergravity amplitudes from

gauge theory at one loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].

[22] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop

integrands and ultraviolet divergences of gauge theory and gravity amplitudes,

Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

– 34 –

https://doi.org/10.1016/0550-3213(77)90023-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B129,125%22
https://doi.org/10.1103/PhysRevD.17.3179
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D17,3179%22
https://doi.org/10.1016/0550-3213(81)90465-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B182,173%22
https://doi.org/10.1016/0370-2693(80)90670-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B91,99%22
https://doi.org/10.1016/0550-3213(69)90098-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B9,209%22
https://doi.org/10.1103/PhysRevD.2.1033
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D2,1033%22
https://doi.org/10.1103/PhysRevD.77.025012
https://arxiv.org/abs/0704.1845
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.1845
https://arxiv.org/abs/1707.02965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.02965
https://doi.org/10.1088/1126-6708/2004/08/009
https://arxiv.org/abs/hep-th/0406051
https://inspirehep.net/search?p=find+EPRINT+hep-th/0406051
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476
https://doi.org/10.1007/JHEP11(2015)046
https://arxiv.org/abs/1407.4772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4772
https://doi.org/10.1007/JHEP01(2016)170
https://arxiv.org/abs/1507.00332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00332
https://doi.org/10.1103/PhysRevLett.108.231601
https://arxiv.org/abs/1203.0562
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0562
https://doi.org/10.1007/JHEP01(2015)081
https://arxiv.org/abs/1408.0764
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.0764
https://doi.org/10.1007/JHEP06(2017)064
https://arxiv.org/abs/1511.01740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01740
https://doi.org/10.1007/JHEP07(2017)002
https://arxiv.org/abs/1703.00421
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00421
https://doi.org/10.1103/PhysRevD.84.105035
https://arxiv.org/abs/1107.1935
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1935
https://doi.org/10.1103/PhysRevD.85.105014
https://arxiv.org/abs/1201.5366
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5366


J
H
E
P
0
9
(
2
0
1
8
)
0
8
0

[23] J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point

amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056

[arXiv:1212.1146] [INSPIRE].

[24] J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for

amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876]

[INSPIRE].

[25] Y.-T. Huang and H. Johansson, Equivalent D = 3 supergravity amplitudes from double

copies of three-algebra and two-algebra gauge theories, Phys. Rev. Lett. 110 (2013) 171601

[arXiv:1210.2255] [INSPIRE].

[26] M. Chiodaroli, Q. Jin and R. Roiban, Color/kinematics duality for general Abelian orbifolds

of N = 4 super Yang-Mills theory, JHEP 01 (2014) 152 [arXiv:1311.3600] [INSPIRE].

[27] A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, A magic pyramid of

supergravities, JHEP 04 (2014) 178 [arXiv:1312.6523] [INSPIRE].

[28] M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Complete construction of

magical, symmetric and homogeneous N = 2 supergravities as double copies of gauge

theories, Phys. Rev. Lett. 117 (2016) 011603 [arXiv:1512.09130] [INSPIRE].

[29] A. Anastasiou et al., Twin supergravities from Yang-Mills theory squared,

Phys. Rev. D 96 (2017) 026013 [arXiv:1610.07192] [INSPIRE].

[30] A. Anastasiou, L. Borsten, M.J. Duff, A. Marrani, S. Nagy and M. Zoccali, Are all

supergravity theories Yang-Mills squared?, Nucl. Phys. B 934 (2018) 606

[arXiv:1707.03234] [INSPIRE].
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