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ABSTRACT: A rich pattern of gauge symmetries is found in the moduli space of heterotic
string toroidal compactifications, at fixed points of the T-duality transformations. We an-
alyze this pattern for generic tori, and scrutinize in full detail compactifications on a circle,
where we find all the maximal gauge symmetry groups and the points where they arise.
We present figures of two-dimensional slices of the 17-dimensional moduli space of Wilson
lines and circle radii, showing the rich pattern of points and curves of symmetry enhance-
ment. We then study the target space realization of the duality symmetry. Although the
global continuous duality symmetries of dimensionally reduced heterotic supergravity are
completely broken by the structure constants of the maximally enhanced gauge groups,
the low energy effective action can be written in a manifestly duality covariant form using
heterotic double field theory. As a byproduct, we show that a unique deformation of the
generalized diffeomorphisms accounts for both SO(32) and Eg x Eg heterotic effective field
theories, which can thus be considered two different backgrounds of the same double field
theory even before compactification. Finally we discuss the spontaneous gauge symmetry
breaking and Higgs mechanism that occurs when slightly perturbing the background fields,
both from the string and the field theory perspectives.
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1 Introduction

The distinct backgrounds of heterotic string theory on a k dimensional torus with con-
stant metric, antisymmetric tensor field and Wilson lines are characterized by the points
k;R)Xogﬁfgﬁg&@(k’kﬂ&z) coset manifold, where O(k, k + 16;Z) is the T-duality
group [1, 2]. At self-dual points of this manifold, some massive modes become massless and

of the o1

the U(1)%*16 gauge symmetry becomes non-abelian. In particular, for zero Wilson lines,
the massless fields give rise to SO(32) x U(1)?* or Eg x Eg x U(1)?* at generic values of
the metric and B-field. By introducing Wilson lines, not only is it possible to totally or
partially break the non-abelian gauge symmetry of the uncompactified theory, but it is also
possible to enhance these groups. The construction of [2] further allowed to continuously
interpolate between the SO(32) and Eg x Eg heterotic theories after compactification [3],
and even suggested that these superstrings are two different vacuum states in the same
theory before compactification.

Enhancement of the gauge symmetry occurs at fixed points of the T-duality transfor-
mations [4]. Massless fields become massive at the neighborhood of such points and the
T-duality group mixes massless modes with massive ones [5]. Moreover, by identifying



different string backgrounds that provide identical theories, T-duality gives rise to stringy
features that are rather surprising from the viewpoint of particle field theories. Never-
theless, some of these ingredients have a correspondence in toroidal compactifications of
heterotic supergravity. In particular, although the field theoretical reduction of heterotic
supergravity cannot describe the non-abelian fields that give rise to maximally enhanced
gauge symmetry,’ being a gauged supergravity, the reduced theory is completely deter-
mined by the gauge group, which can be chosen to be one of maximal enhancement. Like-
wise, the global symmetries of heterotic supergravities are linked to T-duality. While the
theory with the full set of SO(32) or Eg x Eg gauge fields has a global continuous O(k, k; R)
symmetry, when introducing Wilson lines, the symmetry enlarges to O(k, k + 16;R) [6-§],
which is related to the discrete T-duality symmetry of the parent string theory.

The global duality symmetries are not manifest in heterotic supergravity. To mani-
festly display these symmetries, as well as to account for the maximally enhanced gauge
groups in a field theoretical setting, one appeals to the double field theory/generalized ge-
ometric reformulation of the string effective actions [9-16] (for reviews and more references
see [17-21]). Specifically, these frameworks not only describe the enhancement of gauge
symmetry [22]-[25], but also give a geometric description of the non-geometric backgrounds
that are obtained from T-duality [26-29] and provide a gauge principle that requires and
fixes the a/-corrections of the string effective actions [30-34]. Dependence of the fields on
double internal coordinates and an extension of the tangent space are some of the elements
that allow to go beyond the standard dimensional reductions of supergravity.

Motivated by deepening our understanding of heterotic string toroidal compactifica-
tions, in section 2 we review the main features of heterotic string propagation on a (10 — k)-
dimensional Minkowski space-time times an internal k-torus with constant background
metric, antisymmetric tensor field and Wilson lines, and recall their O(k, k 4+ 16) covariant
formulation. We focus on the phenomenon of symmetry enhancement arising at special
points in moduli space.

In section 3, we concentrate on the simplest case, namely circle compactifications
(k=1). We first find all the possible maximal enhancement groups, and the point in the
fundamental region of moduli space where they arise, using the generalized Dynkin diagram
of the lattice T'117 [35, 38]. To explore the whole moduli space, we split the discussion into
the situations in which the Wilson line A preserves the Eg x Eg or SO(32) gauge symmetry,
and those where it breaks it. In the former case, the circle direction can give a further
enhancement of symmetry to Eg x Egx SU(2) at radius R = 1, and either to SO(32) x SU(2)
at R =1 or to SO(34) at R = % When the Wilson line breaks the Eg x Eg or SO(32)
gauge symmetry, the pattern of gauge symmetries is very interesting. Not only is it possible
to restore the original Eg x Eg or SO(32) gauge symmetry for specific values of R and A,
but also larger groups of rank 17 can be obtained. We explicitly work out enhancements
of the SO(32) theory to SO(34) at R* = %; SU(18) at R? = 1; E,,1 x SO(32 — 2p) at
R*=1-5;E, 1 xSU(16—p) at R* =1— #8—;77 and in the Es x E5 to SO(34) at R? = ;
SU(18) at R? = §; SO(18) x Eg at R? = §; SU(2) x Eg x Eg at R? = 1. We depict slices of

L“Maximal” stands here for an enhanced semi-simple and simply-laced symmetry group.



the moduli space for different values of R and Wilson lines in several figures, which clarify
the analysis and neatly exhibit the curves and points with special properties.

Examining the action of T-duality, we can see that all points in moduli space where
there is maximal symmetry enhancement, namely enhancement to groups that do not
have U(1) factors, are fixed points of T-duality, or more general O(1,17,7Z) dualities that
involve some exchange of momentum and winding number on the circle. In the simplest
cases, such as those listed above, the enhanced symmetry arises at the self-dual radius given
by R?,=1— %|A\2. We explore the action of T-duality and its fixed points in section 3.4.
One can have other points of symmetry enhancement, which are fixed points of duality
symmetries that involve shifts of Wilson lines on top of the exchange of momentum and
winding. This is studied in detail in section 3.5, where we obtain the most general duality
symmetries that change the sign of the right-moving momenta and rotate the left-moving
momenta, leaving the circle direction invariant. Concentrating on the case where the
Wilson lines have only one non-zero component, we find a rich pattern of fixed points that
correspond to SU(2) x SO(32) or SU(2) x Es x Eg enhanced gauge symmetry, arising at
R;dl = C, with C an integer number with prime divisors congruent to 1 or 3 (mod 8),
and SO(34) or SO(18) x Fs at R ' = v/2C with C a Pythagorean prime number or a
product of them.

We then turn to the target space realization of the theory. In section 4, we construct the
low energy effective actions of (toroidally compactified) heterotic strings from the three and
four point functions of string states. We first consider only the massless states and compare
the effective action obtained from the string amplitudes with the dimensional reduction of
heterotic supergravity performed in [8]. As expected, we get a gauged supergravity which
only differs from the effective action of [8] in the cases of maximal enhancement, in which
all the (left-moving) U(1)¥ Kaluza-Klein (KK) gauge fields of the compactification become
part of the Cartan subgroup of the enhanced gauge symmetry.

The higher dimensional origin of the low energy theory with maximally enhanced gauge
symmetry cannot be found in supergravity, and one has to refer to DFT. Although the
structure constants of the gauge group completely break the global duality symmetry of
dimensionally reduced supergravity, the action can still be written in terms of O(k, N)
multiplets, with N the dimension of the gauge group. We show in section 5 that the low
energy effective action of the toroidally compactified heterotic string at self-dual points of
the moduli space can be reproduced through a generalized Scherk-Schwarz reduction of
heterotic DFT. Furthermore, extending the construction of [23], we find the generalized
vielbein that reproduces the structure constants of the enhanced gauge groups through a
deformation of the generalized diffeomorphisms. An important output of the construction
is that a unique deformation is required for the SO(32) and Eg x Eg groups, and hence the
SO(32) and Eg x Eg theories can be considered two different solutions of the same heterotic
DFT, even before compactification.

When perturbing the background fields away from the enhancement points, some mass-
less string states become massive. The vertex operators of the massive vector bosons de-
velop a cubic pole in their OPE with the energy-momentum tensor, and it is necessary
to combine them with the vertex operators of the massive scalars in order to cancel the



anomaly. This fact had been already noticed in [22], but unlike the case of the bosonic
string, in the heterotic string all the massive scalars are “eaten” by the massive vectors.
We compute the three point functions involving massless and slightly massive states? and
construct the corresponding effective massive gauge theory coupled to gravity. Compar-
ing the string theory results with the spontaneous gauge symmetry breaking and Higgs
mechanism in DFT, we see that the masses acquired by the sligthly massive string states
fully agree with those of the DFT fields, provided there is a specific relation between the
vacuum expectation value of the scalars along the Cartan directions of the gauge group
and the deviation of the metric, B-field and Wilson lines from the point of enhancement.

We have included seven appendices. Appendix A collects some known facts about
lattices that are used in the main body of the paper. Details of the procedures leading to
find the maximal enhancement points from Dynkin diagrams, to construct the curves of
enhancement, more slices of the moduli space and the fixed points of the duality transfor-
mations are contained in appendices B, C, D and E, respectively. The three and four point
amplitudes of the massless and slightly massive string states are reviewed in appendix F.
Finally we count the number of non-vanishing structure constants of SO(32) and Eg x Eg
in appendix G.

2 Toroidal compactification of the heterotic string

In this section we recall the main features of heterotic string compactifications on T%. We
first discuss the generic k case and then we concentrate on the £ = 1 example. For a more

complete review see [5].

2.1 Compactifications on T*

Consider the heterotic string propagating on a background manifold that is a product of a
d = 10—k dimensional flat space-time times an internal torus 7% with constant background

metric G = ele (:> Grn = €%mbape’y ), antisymmetric two-form field B,,, and U(1)'6

A

mo

gauge field A7), where m,n,a,b=1,...,k and A =1,...,16. For simplicity we take the
background dilaton to be zero. The set of vectors e,, define a basis in the compactification
lattice A* such that the internal part of the target space is the k-dimensional torus TF =
RF / wA¥. The vectors é, constitute the canonical basis for the dual lattice A**, i.e. é,™e%, =
6™y, and thus they obey é'é = G (= 6,m0%¢," = G™").

The contribution from the internal sector to the world-sheet action (we consider only
the bosonic sector here) is

1
_ = af _ aB m n
S=o /Mdea (6% Cran = 1€ Bran ) 0Y ™93
1
+— [ drdo (Waaw‘aﬂw‘ - 2ieaﬁAgaaYmaﬁyA) : (2.1)
87T M

2For consistency, we consider only small perturbations because we are not including other massive states
from the string spectrum.



where we take o/ = 1, Y4 are chiral bosons and the currents Y4 form a maximal com-
muting set of the SO(32) or Eg x Eg current algebra. The world-sheet metric has been
gauge fixed to 6*% (o, 8 = 7,0) and €"! = 1. The internal string coordinate fields satisfy

Y™(r,0+2m) ~Y™(1,0) 4+ 210™, (2.2)

where w™ € Z are the winding numbers. It is convenient to define holomorphic Y;"(z) and
antiholomorphic Yz'(2) fields as

Y™(z,2) = @

1/2
) Y7"(z) + YR (2)], z=-exp(T+io), Z=exp(T —io), (2.3)
with Laurent expansion
Y'(2) = yf —ipfinz 4+, Yi(2)=yp —ipting+ -, (2.4)
Yg'(2) = yg —ipgInz+---, (2.5)

the dots standing for the oscillators contribution. Then the periodicity condition is

1\ /2
Y™ (r,0427) —Y"(1,0) =27 <2> (P = pR) =2mw™ . (2.6)

The canonical momentum has components®

I, =1

6 1] n n lyagya
50, Y™ 21 [ZGm"aTY B0 5 AmDeY ] ’
27\ 2

4 . 0S8 1
fe——— = —
0. YA  Arm

1 1 12 n n n n 1 A_A
= 5)  [Gmn(PL +PR) + Brn(pL = pR)] + A

' 1 1\ /2
.~ agon) = Lot = (3) o - o).
The chirality constraint on Y4 and the condition of vanishing Dirac brackets between
momentum components require the redefinitions 114 — II4 = 2II4 and II,, — IL,, =
I, + %A,‘f‘nﬂ A. Integrating over o, we get the center of mass momenta

- 1 ~
T = /daHm =2 <Hm + 2A§‘1HA> =Ny, €7, (2.7a)
= /daﬁA =pt — Aduw™, (2.7b)

where we used univaluedness of the wave function in the first line. Modular invariance
requires 7 € T'jg or I's x T'g, corresponding to the SO(32) or Eg x Eg heterotic theory,
respectively. In appendix A we give all the relevant explanations and details about these
lattices.

3The unusual 4 factors are due to the use of Euclidean world-sheet metric.



From these equations we get

1 1/2 1
PR = <2> ég™ {nm — (Gyan + By w™ — AL — 2A§‘A§Lw"} , (2.8a)
1\ /2 1
PLa = <2> ™ [nm + (Gn — B )w™ — w4 AL — 2A£A;‘1w"} , (2.8b)
pA S + wmAﬁL' (2.8C)

The momentum p = (pr, Pr.), With PR = PRa; PL = (PLa, p?), transforms as a vector
under O(k, k + 16;R). It expands the 2k + 16-dimensional momentum lattice T'(F*+16)
R2k+16 satisfying
_ 2 2 _ m A_A
p-P=pPL°— PR =2w"n,, + 71" € 27, (2.9)

because 7 is on an even lattice, and therefore p forms an even (k, k+16) Lorentzian lattice.

In addition, self-duality I'(®F+16) — T(kE+16) fo]lows from modular invariance [1, 43]. Note
that pr, pr depend on 2k + 16 integer parameters n,,, w™ and 74, and on the background
fields G, B and A.

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k + 16;R)
O(k + 16;R) x O(k;R) x O(k, k + 16, Z) ’

(2.10)

where O(k,k + 16;7Z) is the T-duality group (we give more details about it in the
next section).

The mass of the states and the level matching condition are respectively given by

— 1 R sector
2 2 2
= 2|\ N +N — 2.11
mn PL™ +PR" + ( + {g NS SGCtOI") ( 2)
— 1 R sector
0=pL?—pr2+2(N-N— 2.11b
PL PR+ ( {% NS sector) ( )
2.2 O(k,k + 16) covariant formulation
The O(k, k + 16) invariant metric 7 is
0 Igxk O
nmun = | lkxe 0 0 |, (2.12)
0 0 kKrJ

where £ is the Killing metric for the Cartan subgroup of SO(32) or Eg x Eg, and the
“generalized metric” of the k-dimensional torus, given by the (2k + 16) x (2k + 16) scalar
matrix, is

Grn + Ci;m G Clopy + At At —G™ Cliy Clom G ALy + Apny
Myn = —Gm’“C;m Gmn 7GmkA]gJ € O(k‘, k + 16; R) ,
CinGM Air + Apg ~G" Ay krg+ A GM A
(2.13)



where
1 17
Coin = Bon + §Am[f£ Ang . (2.14)

This is a symmetric element of O(k, k + 16), accounting for the degrees of freedom of the
O(k,k+16)
O(k)xO(k+16)

Combining the momentum and winding numbers in an O(k, k + 16)-vector

coset.

oM _ I Az 1 I

nm |, ol =ndést, with éalés’ = w17, (2.15)

the mass formula (2.11a) and level matching condition (2.11b) read

— 1 R sector
2 t
=2(N+N - ZtMZ, 2.16
mn ( + {;’ NS sector) +ZM ( )
— 1 R sector
0=2(N-N - Z'n7 , 2.17
( {5 NS sector) tam ( )

respectively. Note that these equations are invariant under the T-duality group O(k,k +
16;Z) acting as

Z—=sntonZ, M—=OMO', n—0n0t=n, OcO(kk+16,Z). (2.18)
The group O(k, k + 16;Z) is generated by:

— Integer O-parameter shifts, associated with the addition of an antisymmetric integer
matrix O,,, to the antisymmetric B-field,

10 0
Og=1|01 0 , Omn €7Z, (2.19)
0 0 liexie
— Lattice basis changes
M 0 0
Oy=1|0 M)t o0 , MeGL(k;Z), (2.20)

0 0  liexie

— A-parameter shifts associated to the addition of vectors A, to the Wilson lines*

1 -1AA A
Opr=10 1 0 , Ap€elg or T'g®TIg, (221)
0 —A" ligxie

“Note that this adds a shift to B of the form B — B + £(AA" — AA").



— Factorized dualities, which are generalizations of the R — 1/R circle duality, of

the form
1-D; D, 0
Op, = D, 1-D;, 0 , (2.22)
0 0 liexie

where D; is a k X k matrix with all zeros except for a one at the 74 component.

The first three generators comprise the so-called geometric dualities, transforming the
background fields parameterizing the generalized metric (2.13). The O(k, k + 16) group
contains in addition

— Orthogonal rotations of the Wilson lines

100
On=|010]|, NeO@6;7), (2.23)
00N

— Transformations of the dual Wilson lines

1 00
Op=|—-3IT"1-T"|, T™eTl orlgxTls, (2.24)
r o1
— Shifts by a bivector
100
Os=|B10|, B™ez, p™=-p"" (2.25)
001

The transformation of the charges under the action of OgOp, which will be useful later, is

w w
n|—=|n+(©-3AA)w+Ar | . (2.26)
T 7 — Aw

Notice the particular role played by the element 7 viewed as a sequence of factorized
dualities in all tori directions, i.e.

k 10 0
n'=0p=]]0Opn |01 0 |. (2.27)
i=1 00 k1
Its action on the generalized metric is
G1 -G~C -G71A
M = OpMOY, = | —C'G~! G+ C'GIC + AAL 1+ C'GHA | =M1, (2.28)

—AGTY AN1+GTI0) kT4 ANGTIA



where A = A,,” and, together with the transformation Z — n~'OpnZ which accounts for
the exchange w™ <> n,,, it generalizes the R <> 1/R duality of the circle compactification.
These transformations determine the dual coordinate fields®

~ 1

1
Yi(z,2) = ﬁamn(yg ~YE) + ﬁcmn(yg +YR) + ASYA. (2.29)

A vielbein E for the generalized metric
Mun = E*y6abEPy, (2.30)

with M, N = a,b =1,...,2k + 16, can be constructed from the vielbein for the internal
metric and inverse internal metric as follows
—€0"Chm €™ _éanAglﬁIJ
E?y=FE= % 0 0 , (2.31)
etrAl,, 0 ety

where € is the vielbein for . In the basis of right and left movers, that we denote “RL”,
where the O(k, k + 16; R) metric n takes the diagonal form

—dap 0 0 1 8a? —0ap O
mep=(RnRT)=| 0 s 0 |, R=—F1 |6’ 00 0 |, (2.32)
V2 A
0 0 daB 0 0 \/5(5 B
the vielbein is
Eur 1 —€am — €a" Cnm €™ _éanA;rL’fIJ

Err=RE=|E, | = 75 | em 6a"Crm  €a™ —ea"Alkrs | . (2.33)
E4 V2e4 AT, 0 V2é4

Then the momenta (pag, par,p?) in (2.8b) are

PaR
par | = Err Z . (2.34)

pA

2.3 Massless spectrum

The massless bosonic spectrum of the heterotic string in ten external dimensions is given,
. . . . . )73 N .
in terms of bosonic and fermionic creation operators o’ , 9", /20 respectively, by

L. N=1,N=1% pa=0:

e Gravitational sector:
aﬁﬂ/’ié |07 k>NS

where the symmetric traceless, antisymmetric and trace pieces are respectively
the graviton, antisymmetric tensor and dilaton.

5The transformations also determine a dual coordinate Y = Y4 + %AQ(YL"L +YZ'), but this is not

actually independent of Y™ (z,%) and Y*(z).



e Cartan gauge sector:
0/_1@!—)‘1% 10, k)ng
containing 16 vectors Aﬁ in the Cartan subgroup of SO(32) or Eg x Es.
2. N=0,N =1 ps2=2
e Roots gauge sector:
ﬁﬁ% 10, k, Ta)ns
with 7, denoting one of the 480 roots of SO(32) or Eg x Es.

In compactifications on T%, the spectrum depends on the background fields. In sector
1 there are the same number of massless states at any point in moduli space. In sector 2,
we see from (2.8b) that there are no massless states for generic values of the metric, B-field
and Wilson lines A!

m» While for certain values of these fields the momenta can lie in the

weight lattice of a rank 2k 4 16 group G X Gg. In this case, there is a subgroup with

(PR, PL)|?
we see that massless states have pg = 0, and thus (unlike in the bosonic string theory),

= 2 which can give rise to massless states. Subtracting (2.11a) and (2.11b)

the non-abelian gauge symmetry comes from the left sector only. The group G x U(l)’f_%
in which the massless states transform defines the gauge group of the theory, with G a
simply-laced group of rank 16 + k£ and dimension N, that depends on the point in moduli
space (which is spanned by Giun, Bimn, AL). Specifically, the 10 — k dimensional massless
bosonic spectrum and the corresponding vertex operators (in the —1 and 0 pictures) are
given by (u,v=0,...,9—k;m,n=1,....k I=1,...,16):

1. N=1,N =3 pL=pr=0:
e Common gravitational sector: g, by, D

- \/ﬁem,iaX“(z)e—%;v@)eih)((z,z)
a9 1 |0, k)yg — . v (5 ik X (2,2 (2.35)
2 \/56,“,18)(“(Z)Y”(z)ez (2,2)

with ¢ the scalar from the bosonization of the superconformal ghost system,
_ _ 1 __
TH = V2i0XH + —k - gt 2.36
7 Y (2.36)

and kte,, = €,k" = 0.
e k KK left abelian gauge vectors: gpm, + by = am, and 16 Cartan generators of

SO(32) or Eg x Eg: al,

) A; iYL (z)e=9pr(2)etk X (22)
- 1
aiﬂ/”i% 10, k)ns — g ; (2.37)

A i0Y () TH(2)ei X (=2)

where the index I = (I,m) includes both the chiral “heterotic” directions and
the compact toroidal ones, labeling the Cartan sector of the gauge group G

~10 -



e k KK right abelian gauge vectors: gmu — by = Gmpu

V2A,mid X1 (2)e 0 (2) etk X (2:2)
ailXTl |07 k>NS — — — . = 3 (238)
2 V2A,mid X1 (2) T (2)ethX (%)
with
~ _ 1 _
T =49Y™ + —k-yx™. 2.39
i 5l X (2.39)
e k(k + 16) scalars: gmn, bmn, al,
A S; i0Y 1 (2)e= 0y (z)ett X (22)
aI,pZT% 10, k)ng — o d o () (2.40)
S;,,10Y " (2) Y (2)e ’
2. N=0,N=3p%=2pr=0
e (N —k —16) root vectors: aj
_ AppJ (2)e= Pk (Z)eth X (2:2)
G0k g > T (2.41)
2 A JO(2)TH(Z) etk X (2:2)
with k#A,, = 0 and currents
J(z) = cqe Y )| (2.42)

where « are the roots of G, (or equivalently the left momenta) and the cocycles
cq verify cocg = e(a, f)ca4p, with e(a, ) = £1 the structure constants of G,
in the Cartan-Weyl basis.

e (N —k—16) x k scalars: anp

SamJoz(z)e—qﬁxm(g)eik-)((z,f)

X"1 10k, Ta)ng — _ o (2.43)
% NS S J& (Z)Tm (2)ezk-X(z,z)

It is convenient to define the index Q = (f ,a) = 1,...,N and condense the vertex
operators for left vectors and scalars as

Ay = A d(2)e PP (z)et X (52) (2.44)
S(_1) = Sam I (2)e ¢ ™ (2)eF X (2 (2.45)
where JI = i&Yf.

The massive states are obtained increasing the oscillation numbers A and N or choos-

ing |(pr,pr)|* > 4.

Due to the uniqueness of Lorentzian self-dual lattices [35] both heterotic theories on T*
can be connected continuously [1, 2], i.e., they belong to the same moduli space. The possi-
ble enhanced non-abelian gauge symmetry groups are those with root lattices admitting an
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embedding into I'*16+% Although some theorems on lattice embeddings are known [36], it
is a non-trivial problem to determine which groups admit an embedding.® Here we present
a general discussion.

Using that pr = 0, we get from (2.8b) that the massless states have left-moving
momentum

pL = <\/§ Eamw™, T + wmAg‘l) , (2.46)

while their momentum number on the torus is given by
1
N = (Grn + Bon) w" + 74 AL + iAﬁAf}lw” . (2.47)

Note that quantization of momentum number on the torus is a further condition to be
imposed on top of pr,?2 = 2.

In the absence of Wilson lines A% = 0, the k torus directions decouple from the 16
chiral “heterotic directions” Y4; p4 = 74 is a vector of the weight lattice of SO(32) or
Fg x Eg and then [p4|> € 2N. The only possible massless states then have either momenta
pL = (0,74) with |7|? = 2, or pr, = (V2 eamw"”,0) with w™g,w™ = 1 (and additionally
nmw™ = 1). The former are the root vectors of SO(32) or Eg x Eg, while the latter have
solutions only for certain values of the metric and B-field on the torus and lead to the same
groups as in the (left sector of) bosonic string theory, namely all simply-laced groups H
of rank k. The total gauge group is then SO(32) x H x U(1)%, or Eg x Es x H x U(1)k.
For k = 1, i.e. a circle compactification, H is SU(2) at g11 = R? = 1, and U(1) for any
other value of the radius. For compactifications on T2, the possible groups of maximal
enhancement (see footnote 1) are SO(32) x SU(2)% x U(1)% (for a diagonal metric with
both circles at the self-dual radius and no B-field) or SO(32) x SU(3), x U(1)% (equivalently
SO(32) — Eg x Eg). See [23] for details.

Turning on Wilson lines, the pattern of gauge symmetries is more complicated, and
also richer. In the sector with zero winding numbers, w™ = 0, we have p? = 74 as
before, but now requiring a quantized momentum number imposes 74 A4 € 7 (see (2.47))
which, for a generic Wilson line breaks all the gauge symmetry leaving only 74 = 0,
which corresponds to the U(1)!¢ Cartan subgroup. The opposite situation corresponds to
Aﬁl € FZ.7 For Eg x Eg, since I'y = I's x I'g, Aﬁ can be eliminated through a A-shift of the
form Oy in (2.21) and thus the pattern of gauge symmetries is as for no Wilson line.® In
the SO(32) theory, the same conclusions hold if A € I'jg, but one has the more interesting
possibility A € 'y, or A € T'., where the SO(32) symmetry is not broken, and the 16 chiral
heterotic directions can be combined with the torus ones, giving larger groups which are
not products.

Let us discuss the different groups that can arise in points of moduli space where the
enhancement is maximal. In that case, the matrices that embed the internal sector of the

A preliminary attempt can be found in [37].

"We denote I'; the dual of the root lattice, and one has I'y = I's x I's for Eg x Eg and I'; = I'y, =
I'ie + 'y + I'c for SO(32) (see appendix A for more details).

8The only difference is that the massless states have shifted momenta 7* and a shifted momentum
number along the circle compared to the ones without Wilson lines, see eq.(2.26).

- 12 —



heterotic theory on T* into a 16 + k-dimensional bosonic theory are related to the Cartan
matrix C by [5]

((G +laraly,., ;Am1> L,

sAL, G )2
5 i 3C;;  for I<J (2.48)
mn  94im _ 1 7 7
<—5Aln QBIJ ) = *icl*j for I > J
0 for [ =J

One can then view the possible maximal enhancements from Dynkin diagrams. Let us first
consider Wilson lines that do not break the original gauge group, i.e A € I';. We start
with the SO(32) heterotic theory. The Dynkin diagram of SO(32) is

.—I—Q—.—Q—Q—Q—Q—Q—O—Q—Q—O—H

The Dynkin diagrams of the gauge symmetry groups arising at points of maximal enhance-
ment in the compactification of the SO(32) theory on T* have k extra nodes, with or
without lines in between. Since the resulting groups have to be in the ADE class (they are
all simply laced), one cannot add nodes with lines on the left side. Therefore, the nodes
should be added on the right side, and linked or not linked to the last node or not, and addi-
tionally add lines linking them to ech other, or not. For one dimensional compactifications
(k = 1), the only possibilities are

.—I—Q—Q—Q—Q—Q—Q—H—Q—H—Q—Q. .—I—Q—Q—Q—Q—Q—Q—Q—Q—Q—Q—Q—Q—H

corresponding respectively to SO(32) x SU(2) and SO(34). Since a line in the Dynkin
diagram means that the new simple root is not orthogonal to the former one, then the
Cartan matrix for this situation should have an off-diagonal term in the row corresponding
to the new node and the column of the previous node, which according to (2.48) means that
there is a non-zero Wilson line. Thus, no Wilson line (or a line in I'1g, which is equivalent to
no Wilson line) gives the enhancement group SO(32) x SU(2) and, as explained above, this
enhancement works as in the bosonic theory, at R = 1. The enhancement symmetry group
SO(34) is obtained with a Wilson line in the vector or negative-chirality spinor conjugacy
classes, and will be presented in detail in section 3.2.1. For compactifications on T*, the k
extra nodes give as largest enhancement symmetry group SO(32 + 2k), and this happens
when Wilson lines in all directions are turned on. For less symmetric Wilson lines one gets
smaller groups, and it is easy to see from the Dynkin diagrams what are all the possible
groups. Here we draw all the possibilities for £ = 2 only

corresponding respectively to SO(36), SO(34) xSU(2), SO(32) xSU(2)? and SO(32) xSU(3).
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Wilson line R™2 Gauge group
q 1 1,1
(08—177 (2(p+q))p+q (i)g_q) 8 <5 + 5) Ey_p x Ey_q x SU(p+q)
( 2(6+q (2 6+q)> %)8—q> 2- qTQQ + % SU(9 +q) x Eg—q
( (%)14777) 01531) 4 SU(18)
(08+q7 - ) % SO(16 + 2q> X Eg_q
(O15,1 ) 2 SO(34)

Table 1. Maximal enhancements for the SO(32) theory.

For the Eg x Eg heterotic theory, the situation is less rich in the cases in which the
dimension of the resulting group is larger than that of Eg x Eg. As we explained above,
since F; = I's x I'g, a Wilson line that preserves the Eg x Eg symmetry should be in the
lattice, and thus equivalent to no Wilson line. This can also be seen from the Dynkin
diagram of Fg x Ejg

O—Q—I—O—Q—Q—OH—I—H—O—Q

where we see immediately that the extra nodes cannot be linked to any of the Fg’s, as any
extra line would get us away from ADFE. Then the possible enhancements are groups which
are products of the form FEg x Fg x H, where H is any semi-simple group of rank k, and
each H arises at the same point in moduli space as in the compactifications of the bosonic
theory on T* [23]. However, maximal enhancement can still be obtained by breaking one of
the Eg to SO(16), and then the richness of the SO(32) case is recovered (e.g. enhancement
to SO(18) x Eg).

If A¢ Ty, part or all of the SO(32) or Eg x Eg symmetry is broken, and one can still
see groups that arise from the Dynkin diagrams. For compactifications on T*, a priori any
group of rank 16 + k£ in the ADE class can arise. However, we need to take into account
that there are only k linearly independent Wilson lines that can be turned on, so not any
ADE group is actually achievable.

Points of enhancement are fixed points of some O(k, k+16;Z) symmetry. Enhancement
groups that are not semi-simple, i.e. that contain U(1) factors, arise at lines, planes or
hyper-planes in moduli space. On the contrary, maximal enhancement occurs at isolated
points in moduli space. These are fixed points (up to discrete transformations) of the Op
duality symmetry, or more general duality symmetries involving Op. This is developed in
detail in sections 3.4 and 3.5 for compactifications on a circle, to which we now turn.

3 Compactifications on a circle

All the possible enhancement groups in S’ compactifications can be obtained from the
generalized Dynkin diagrams [3, 35, 38| that we review in appendix B. In tables 1 and 2 we
list all the possible maximal enhancements for the I';g and I's x I's theories, together with
the point in the fundamental region that gives that enhancement (p,q € Z, 1 < p,q < 8).
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Wilson line R? Gauge group
(08_,,, (%)p (—%) ,08_q> +(07,-1,1,07) | L (% + %) Eo_p x Bg_q x SU(p + )
(-4 @)y (—é)q,os_q) +(0r,-1,1,07) | 3 (§+13) SU9 + q)  Ey_q
(=% (§)7: (=5)7>5) + (07, —1,1,07) 3 SU(18)
(05: (=), 0s-q) + (07, ~1,1,07) - SO(16 + 2q) x By,
(08, (=§)7+5) + (07, =1,1,07) 15 50(34)

Table 2. Maximal enhancements for the Eg x Eg theory.

When p and/or g equal 7 one gets Fy = SU(2) x U(1) and the enhancement is
not maximal.

In this section we show directly how these groups arise by inspecting the momenta
at different points in moduli space. We explicitly work out some examples and show the
distribution of the enhancement groups in certain two-dimensional slices of the moduli
space, where one can see the rich patterns of gauge symmetries.

The momentum components (2.8b) are’

1 1
PR = T [n—R2w—7r-A—2]A|2w] )
1 2 Lo
pL = —=— |n+ Rw—m-A—--|Al“w|,
\/ER[ 2

where |A]? = A4A4 = AxA'10 The massless states, which satisfy pg = 0, have left-

moving momenta

pL = (V2Rw, 7 + wA?) = (V2Rw, p?), (3.2)

and momentum number on the circle
1
n= <R2+2A\2)w+7r~A. (3.3)

The condition |pr|? = 2 can be written in the following form, that we shall use
T+ wAl* = 2(1 — w?R?). (3.4)

In the sector pr, = 0 one has n = w = 74 = 0, and the massless spectrum corresponds
to the common gravitational sector and 18 abelian gauge bosons: 16 from the Cartan sector
of Fg x Eg or SO(32) and 2 KK vectors, forming the U(1)'® gauge group.

The condition pr,2 = 2 can be achieved in two possible ways:

9From now on, suppressed indices in p are orthonormal indices, i.e. pr = PRa,PL = PLa-

"We are abusing notation, as |A|*> = AxA is not a scalar under reparameterizations of the circle coordi-
nate, i.e. our definition is |A|*> = A2 A2 where m here is just the circle coordinate. The scalar quantity is
A? = |A|?/R? (see (3.40) below).
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1) pr = (0,p?), with [p?|? = 2,
2) pr = (£s,p?), with 0 < s <2, s>+ |p?|?> = 2.

From (3.2) we see that sector 1 has w = 0 and then (3.1) implies p* = 74. The
condition on the norm says that these are the roots of SO(32) or Eg x Fg. But as explained
in the previous section, one has to impose further that n € Z and thus from (3.3), 7- A € Z.
We divide the discussion into two cases, one in which this condition does not break the
SO(32) or Eg x Eg symmetry, and the second one in which it does. This distinction is
useful to understand the enhancement process but, as we will see, is somewhat artificial: all
enhancement groups, including those with SO(32) or Eg x Eg as subgroups, can be achieved
with Wilson lines that are not in the dual lattice by appropiately choosing the radius.

3.1 Enhancement of SO(32) or Eg X Eg symmetry

If we want the condition 7 - A € Z not to select a subset of the possible 74 in the root
lattice, or in other words not to break the SO(32) or Eg x Fg gauge symmetry, we have
to impose
*
Aery, (3.5)

with

FZ =Tg xI's for Fg x Eg or F; =Ty =T1+T,+T. for SO(32).

We restrict to this case now, and leave the discussion of the possible symmetry breakings
to the next section.
Sector 2 contributes states only at radii R? = s?/(2w?). The momentum number of

these states given in (3.3) becomes

2 2
n=z(S+iame)erazt(1-) ez (3.
2 \w w 2

where in the last equality we have used (3.2) and |p|> = 2.

If A €T, the condition [p?|?> < 2 can only be satisfied for p* = 74 4+ wA* = 0. Then
we have s> = 2 and the quantization condition is: < + |A?w € Z. One has }|A|? € Z,
and thus the only way to satisfy it is with w = 4+1 and # = FA which gives two extra
states at R = 1, with momentum number n = £(1 — 3| A[?).

The condition 0 # |p#|?> < 2 is only possible if A is not in the root lattice. And as it
is required to be in the weight lattice, this possibility arises in the SO(32) heterotic theory
only, for A€ T,y or A€l.. For A€ 'y, m- A € Z for m € Ty and 3|A|?> = % (mod 1), so the
only option is s = 1, giving extra states with w = 1 at R = 1/4/2. These states enhance
SO(32) x U(1) to SO(34). We present an explicit example of this case in section 3.2.1. For
A€T,, m A€ Zform €Dy but now 1|A|* € Z and thus we cannot satisfy the quantization
condition (3.6) this way. However 7+ A = % (mod 1) for 7 € Ty and thus we recover that
for these Wilson lines there is an enhancement to SO(34) at R = 1/4/2 as well, by states

UBy I we mean I';g or I's x I's, according to which heterotic theory one is looking at.
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(a) SO(32) heterotic. (b) Eg x Ejg heterotic.

Figure 1. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A% 16 =0, R = Ry with a generic Ry > 1. See table 3 for details.

with w = £1. Note that A € T'; is equivalent by a A shift with A € 'y to A € I',. As we
can see from (2.26), by this shift the winding number remains invariant, while = € 'y gets
shifted to 7’ € T',.

We conclude that in circle compactifications with Wilson lines that do not break the
original SO(32) or Eg x Eg groups the pattern of gauge symmetry enhancement is (we give
here only the groups on the left-moving side):

° EgXEgXU(l)—}EgXEgXSU(Q) at R=1if Ael'gxTIyg
e SO(32) x U(1) = SO(32) x SU(2) at R=11if A € I'y, or

* SO(32) x U(1) - SO(34) at R= 5 if A€ Ty or A€ T,

In the following figures we show slices of the moduli space. To exhibit the increase in the
number of possible enhancement groups as the radius decreases and more winding numbers
contribute, as well as the symmetries in the Wilson lines, we present figures 1, 2, 3, 4 and 5
corresponding to compactification on a circle of generic radius R?> > 1 and at R?> = 1,
R? = %, R? = % and R? = %, respectively.'? The circles in figures 3, 4 and 5 reflect the
dependence on |A|? and invariance under rotations. Two dimensional slices given by one
parameter in the Wilson line and the radial direction are shown in figures 6 and 7. More

figures of slices of moduli space are given in appendix D.

The first item above corresponds to the red points in figures 2b and 6b, while the
second and third ones correspond, respectively to the red and green points in figures 2a, 4a
and 6a. Note that there are also red points in figure 5, but as we will see, these arise in a
different way as above, by a combination of breaking and enhancement. In the next section
we will show how the enhancement at some of the other special points in the figures arise.

12For the Fg x Es heterotic theory, the Wilson lines chosen do not break the second Fjg factor and therefore
we display the unbroken gauge group corresponding to the circle and first Es directions. Figure 1b can be
found in [39].
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(a) SO(32) heterotic. (b) FEs x Fg heterotic.

Figure 2. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A%+16 =0, R = 1. See table 3 for details.
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(a) SO(32) heterotic. (b) Es x Eg heterotic.

Figure 3. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A%-16 =0, R? = 3/4. See table 3 for details.
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(a) SO(32) heterotic. (b) Es x Eg heterotic.

Figure 4. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A%-16 =0, R? = 1/2. See table 3 for details.
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(a) SO(32) heterotic. (b) Es x Eg heterotic.

Figure 5. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A%-16 =0, R? = 1/4. See table 3 for details.

04 06 08 R
(a) SO(32) heterotic. (b) Es x Eg heterotic.

Figure 6. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A%-16 = 0. See table 3 for details.

0.2 0.4 0.6 0.8 1.0 : 0.2 04 0.6 0.8 1.0

(a) SO(32) heterotic. (b) Egs x Eg heterotic.

Figure 7. Enhancement groups on the left sector of the heterotic theory on the slice of moduli
space defined by A, R, with Wilson line A7 = (A, 07, A+ 1,07). See table 3 for details.
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SO(32) heterotic: Eg x Eg heterotic:

[] U@)® xSO(28) [] U(1)® x SO(12) x Fs
(lato 5a) — ¢ U(1)% x SU(2) x SO(28) (1b to 5b) — [] U@1)?xSU(2) x SU(12) x Es
[] U@1)* xSO(30) [] U@1)* xSO(14) x Es
(6a) — [] U(1)* x SO(30) [ U1 x Er x Eg
(7a) — [] U(1)? x SU(2) x SO(28) (6b) — [] U(1)* x SO(14) x Es
[0 U(1) x SU(2)* x SO(28) (7b) — [] U(1)* x SU(2) x SO(12) x Es
B U@Q) x SU(3) x SO(28) [ U(1) x SU(2) x Er x Es
B UQ) x SU(2) x SO(30) B UQ) x SU(3) x SO(12) x Es
[ U@Q) xSO(32) B UQ) x SU(2) x SO(14) x Es
[] SU(2) x SU(3) x SO(28) B UQ) x SO(16) x Es
B SU(2) xSO(32) [ UQ)x Es x Bs
[ SO(34) [[] SU(3) x Er x Eg
B SU(2) x Es x Es

[ SO(18) x Es

Table 3. Groups corresponding to the colours in figures 1 to 7.

3.2 Enhancement-breaking of gauge symmetry

Whenever the Wilson line is not in the dual root lattice, part or all of the SO(32) or Eg x Eg
symmetry is broken. However, this does not imply that no symmetry enhancement from
the circle direction is possible. The pattern of gauge symmetries can still be rich. We
denote these cases enhancement-breaking of gauge symmetry. This nomenclature can be
confusing however: for specific values of R and A, there is the possibility that the symmetry
enhancement is so large that it restores the original SO(32) or Fg x Eg symmetry, or even
leads to a larger group of rank 17. This means that we can have a maximal enhancement
even if the Wilson line is not in the dual root lattice, either to the groups listed at the end
of the previous section, or to any other simply-laced, semi-simple group of rank 17, such
as for example SO(18) x Eg.

The massless states for an arbitrary Wilson line are the following.

Sector 1 has w = 0 (and thus p# = 74) and consists of the roots of SO(32) or Fg x Fg
satisfying m - A € Z, which form a subgroup H C SO(32) or H C Eg x Eg. We give
examples of Wilson lines preserving U(1) x SU(16) C SO(32), SO(2p) x SO(32 — 2p) C
SO(32), U(1) x SU(p) x SO(32 — 2p) C SO(32), U(1) x SU(9) x SO(16) C Eg x Es,
U(1)% x SU(8) x SU(8) C Eg x FEg, SO(16) x Eg C Eg x Eg, SU(2) x E; x Es C Eg x Eg
in the following sections.

Sector 2 contains states only at radii R? = s?/(2w?). Quantization of momentum gives
the condition (3.6).If there are states in this sector, there is an enhacement of H x U(1) to
H x SU(2) (where the SU(2) can be on the circle direction or along some direction mixing
the circle with the heterotic directions) or to a group that is not a product, like for example
enhancement of SO(16) x U(1) to SO(18), as we will show in detail.

On figures 6 to 27 sector 1 is represented by the horizontal lines and sector 2 by
the curves.
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Now we show explicitly how the groups mentioned in sector 1 get enhanced respectively
to SO(34) at R? = §; SU(18) at R? = 1; E, 11 xSO(32—2p) at R? = 1-5; E,,1 xSU(16—p)
at R? = 1 — = in the SO(32) theory, and SO(34) at R*> = 5; SU(18) at R* = g;
SO(18) x Eg at R? = %; SU(2) x Es x Es at R? = % in the Eg x Ej.

Explicit examples for the I';g theory. Here we present some examples of symmetry
enhancement-breaking. The roots of SO(32) are given by

SO(32) :  (#*1,%1,0'), (3.7)
where underline means all possible permutations of the entries.

3.2.1 U(1) x SO(32) — SO(34)

Consider the SO(32) heterotic theory compactified on a circle of radius R = 1/y/2 with a
Wilson line A = (1,0,...,0) € I';. The states with pr = 0 have left-moving momenta

pL = (w, a4 5i4w) , (3.8)

where the first entry corresponds to the circle direction. In sector 1, with w = 0, all the
momenta satisfy |74[2 = 2 and 7 - A € Z. The last condition holds for any 74 € I',, and
thus in this sector one has all the root vectors of SO(32) given in (3.7). In sector 2 we have
s =1 and w = £1. Here we get massless states coming from three different sectors of the
SO(32) weight lattice, namely

2.a) |7|? =2, with 7! = +1
pL = (£1,0,+£1,0,0,...,0) (3.9)
(where the signs are not correlated). These are 60 states with n = 0.
2.b) |72 =0,
pL = (£1,£1,0,...,0). (3.10)
These are 2 states, which have n = w.
2.c) |r|? = 4, with 7! = £2
pL = (¥1,£1,0,...,0). (3.11)
Another 2 states with n = —w.

We thus get 64 extra states, which together with the Cartan direction of the circle,
enhance the SO(32) to SO(34). This point in moduli space is illustrated in green in fig-
ures 4a, 6a and 7Ta. In figure 4a the other green points differ from this by a A-shift, while the
other green points in figures 6a and 7a, that appear at a different radii, will be explained
in section 3.3.

- 21 —



3.2.2 U(1)? x SU(16) — SU(18)

We now take the Wilson line A = ((%)15 , —%). In sector 1 (w = 0) we have the roots of
SO(32) that obey:

16

1

127#‘—7%6 eZ. (3.12)
A=1

Since the sum cannot be a multiple of 4, it has to vanish. Then we have the roots with two
non-zero entries of opposite signs, that is SU(16). For a generic R this is the gauge group,
but if R? = % we get enhancement to the maximal group SU(18). In this case, the mass
formula (3.4) gives

1 w2 w\? & w2 w?
Z<Wi+4> +(7716—w+4> _Z<7ri+4> :2—7

i=1 =1

where we defined & = (71,72, ..., T15,m16 — w). If w is even then 7 is in (0) or (s), but if
it is odd then 7 is in (v) or (¢). We also have the quantization condition:
HrP -1 AP+ Su?+wie—1 AP -1

= = —l—g—i-ﬁ'mGZ. (3'13)
w w w 2

For w = 1, —Z}ﬁl #; = 2|#|? — 1, and the solutions are # = — (1,015) on (v) and
# == ((3)13,—3) on (o).

For w = 2, Zgl(ﬁl + %)2 = 0, with unique solution 7 = — ((%)16)'

They all obey the quantization condition, and add up to 66 additional states. Together
with the 240 roots of SU(16), they complete the 306 roots of SU(18).

3.2.3 U(1) x SO(2p) x SO(32 — 2p) — Ep 1 X SO(32 — 2p)
Now we take a Wilson line A = ((%)p,()lﬁ,p), 2 < p <8, in the SO(32) theory.'3

The massless states that survive in sector 1 (w = 0) are those with momentum 7

satisfying
1L
52 T EL. (3.14)
A=1
Then the surviving states have momenta

PL = (O, :|:1, :|:1, Op,Q, 016*10) — 80(2])) s
(3.15)
PL = (07 Opa il) :l:la 014*p) — 80(32 - 2p) .

For generic radius there are no states with non-zero winding, and then we get SO(2p) x
SO(32 — 2p). These points are illustrated for p = 2 by the cyan dots in figures 1la, 2a, 4a
and 5a; for p = 7, on the horizontal cyan line in figure 7a and for other values of p, at
half-integer values of the horizontal lines of the figures in appendix D.

13Note that p > 8 is equivalent, by a shift A = — ((%)16), top’ =16 —p < 8.
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At special values of R some states with non-vanishing winding are massless. For
example, when R? =1 — B for p < 8, the U(1) x SO(2p) is enhanced to Ej;1. In this case,
the mass formula (3.4) is

p 2 16
w

i=1 i=p+1

3

and then if p < 8 the L.h.s. must be smaller than 2. If the m; are semi-integer, then the
Lh.s. is always bigger than 2. Consequently, 7; can only take integer values and we need

16
Sicp1 ™ =6=0, 1.
For w = 1 the solution must be of the form ((—1)1:, Op—r» £6, 015,,)) and the equation

is solved for every p if 3 = 0. Then we get ((—1)k, Op—rk, 016,p).

There is an additional constraint because |7|? must be even, and then k must be even.
The number of states is equal to the way of choosing the value of the first p components.
Choosing the first p — 1 components, the last one is fixed by the constraint. There are
2 x 2P~ = 2P states with |w| = 1.

For w =2 we get > b_,(m; + 1)> = p — 6 — 3, which is only possible for p = 6, 7. The
r.h.s. can only take the values 0 or 1. In the first case, all the m; must be equal to —1.
Then we get the solutions ((—1)7, £1,0g) for p = 7 and ((—1)s, 010) for p = 6 . The second
case is only possible for p = 7 and § = 0. One of the m; can take the value 0 (or —2) and
the rest must take the value —1: <—1 +1,(—1)g, 09) for p = 7. In total we have 2 states
with |w| =2 for p=6 and 2 x (18 + 14) =64 for p = 7.

For w > 3 the equation cannot be satisfied. Then for p < 6 we get 2P states (all with
|lw| = 1), while for p = 6 and 7 we get 2 and 64 extra states respectively with |w| = 2.

U(1) x SO(4) — SU(2) x SU(3) = E3 (4 extra states)
U(1) x SO(6) — SU(5) = E4 (8 extra states)
U(1) x SO(8) — SO(10) = E5 (16 extra states) (3.16)
U(1) x SO(10) — Eg (32 extra states)
U(1) x SO(12) — E7 (66 extra states)
U(1) x SO(14) — Eg (192 extra states)

Recalling that Fo = U(1) x SU(2), this is also valid for p = 1, where we get the

enhancement at RZ = g:

U(1)2 = U(1) x SO(2) = U(1) x SU(2) = Ey (2 extra states) . (3.17)

The enhancement group U(1) x SU(2) x SO(30), as any non-maximal enhancement, does
not arise at an isolated point, but at a line, displayed in blue in figure 6a.

Applying the statement to p = 8, appears an enhancement from U(1) x SO(16) to Ey
at R = 0. Since Ey has infinite dimension, we would need infinite massless states with
infinitely many different winding numbers. It is obvious that at R = 0 winding states do
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not cost any energy, and thus one can have all the windings. The mass equation is:

28:<m+‘2”>2=2—ﬁ. (3.18)

i=1
We see that for this value of p the r.h.s. is independent of the winding number. If w =1

then m = ((—1)k,08,k, 08) is a solution (if k£ is even). For any other odd value of w we

have the solution: © = — ((“’T‘H)k , (U’T_l)g_kﬂg). These, together with the states with
even w, give infinite massless states.

We can see all these enhancements at the intersections of the lines at A = 1/2 in
figures 8 to 23 that occur at R =1— &

3.2.4 U(1)? x SO(2p) x SU(16 — p) — SU(2) x Epy1 X SU(16 — p)

Consider the Wilson line A = ( (ﬁ)p , Op), with 0 <p < 7.
The massless states that survive in sector 1 (w = 0) are those with momentum 74
16—p
satisfying 16 Z 74 € Z. Then the surviving states have momenta

prL = (0,016—p, =1, £1,0,12) — SO(2p)
(3.19)
PL = (0, 1,-1,014—p, Op) — SU(lG — p)

For generic radii there cannot be states with non-zero winding, and then the symmetry
group is SO(2p) x SU(16 — p). This is illustrated in the white spaces of the figures in
appendix D.

There are special values of R where some states with non-vanishing winding are mass-
m, the U(1)% x SO(2p) is enhanced to SU(2) x Epy1.
To see this, consider the mass formula (3.4)

less. For example, when R%2 =1 —

q 2 16
4w
g (m—i—q) + E 72 =2 —2w?(1 —8/q) where q=16—1p .

i=1 i=q+1

For w # 0, the r.h.s. is smaller than or equal to 16/¢q and then the Lh.s. must be smaller
than 2. If the m; are integer, then we need Zl a+1 7T2 = 4 =0, 1 and it follows that

zzq;(wﬁ)z =2 —2w?(1 —8/q) —

Forw =1, Y7 (m+ q) =16/qg—B < 8. If one of the 7; is different from 0 or —1 then the

Lh.s. is larger than 16/q. So the solutlon must be of the form ((— k> 016—p—k, =0, p_1>
and then £k = 8 = 0. There are only two states (considering also w = —1) with momen-
tum (016)-

For w = 2 we get Y%, (m; +8/¢)? = —6+64/q — 3 which is only possible for ¢ =9, 10
(p = 7,6). If p = 6 then we need § = 0, the r.h.s. is % and we only have the solution
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((=1)10,0¢) . If p =7 then, for 5 =0 and 8 = 1 the r.h.s. takes the values % and %. The
equation for f§ = 0 is impossible to satisfy, and then we get ((—1)9, M) In total we
have 2 states with |w| =2 for p =6 and 2 x (14) =28 for p = 7.

For w > 3 we get > (m; +12/¢)? = 144/q — 16 — 8 < 0. Then for ¢ > 10 (p < 6)
there are 2 states (both with |w| = 1), while for p = 6 and 7 there are 2 and 28 extra
|lw| = 2 states respectively.

If the m; are semi-integer, then the last p values have to be :l:%:

q 2
4

3 <7ri + w) = % — 2 2u%(1 - 8/q) (3.20)

i=1 q

For w =1, >0, (m + 3)2 = % < 1 and the m; can only take the values +1. The

solutions are of the form ((%)k , (_%)16—19—]9’ (i%)p), and the equation implies £ = 0.

Then, for |w| = 1, we get the 2 x 2PT1%%.0 solutions ((_%)16—13’ (:t%)p).

For w = 2 we obtain > 7 ,(m + %)2 = W < 0, and then there are no states
with |w| > 1.

In total, for p < 6 we get 2 + 2P0 states (all of them with |w| = 1), while for p = 6
and 7 we get 2 and 28 extra states respectively with |w| = 2.

U(1)? - SO(4) =SU(2) x By (4 extra states)
U(1)3 =U(1)% x SO(2) — SU(2) x SU(2) x U(1) = SU(2) x By (4 extra states)
U(1)* x SO(4) — SU(2) x SU(2) x SU(3) =SU(2) x B3 (6 extra states)

U(1)% x SO(6) — SU(2) x SU(5) = SU(2) x E; (10 extra states)

U(1)% x SO(8) — SU(2) x SO(10) = SU(2) x F5 (18 extra states)

U(1)% x SO(10) — SU(2) x Es (34 extra states)

U(1)% x SO(12) — SU(2) x E; (68 extra states)

U(1)% x SO(14) — SU(2) x Es (158 extra states)

At p = 8 we seem to get an enhancement from U(1)? x SO(16) to SU(2) x Eg at R = 0.
All of these enhancements can be seen on the intersections of the red and purple curves

of figures 16 to 23 that occur at R2 =1 — %.
Explicit examples for the I's X I's theory. The roots of Eg x Eg are

FEg x Eg : (£1,+1,050%), (0%,+1,41,0°%), (3.21)

1 1\*
<< + 2)8,08) , <08, (i 2) ) ,with even number of + signs

3.2.5 U(1)? x SU(9) x SO(16) — SO(34)
Consider the I's x I's theory compactified with Wilson line A = ((%)7 g L 07) In sector
1 (w = 0) we have the roots of Eg x Eg that obey:

5
7Z7r +-om 4+ ez (3.22)
A=1 6
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This breaks into two conditions, one for each FEg:
e 5
g Az:lﬂ'A + 67r8 eZ and 7 €Z. (3.23)

For the first condition we have (0) and (s) roots. The (0) roots are vectors of the form
(:l:l, +1, 06). The condition implies that if 7g = 0 then we need opposite signs for the two
non-zero entries. If 78 = 41 then the other non-zero entry must have the same sign. We
get (1,—1,05,0) and =+ (1,06,1). These are 42 + 14 = 56 roots.

The (s) roots are vectors of the form <(:t%) 8) with an even number of minus signs.

The condition is 22:1 74 + 578 = 0 mod 6. The absolute value of the Lh.s. can only be
0 or 6. In the first case one of the first 5 components must have a different sign than the
rest, and in the second case all the 8 components must have the same sign and we get
+ ((%)6 , —%, —%) and + ((%)8) These are 14 + 2 = 16 roots.

In total we have the 56 + 16 = 72 roots of SU(9).

The second condition leaves only the integer roots, and then we have SO(16).

For an arbitrary value of R there cannot be states with non-zero winding, and then
the gauge group is SU(9) x SO(16).

Now we show that when R? = 1—18 there is enhancement of the gauge symmetry to
SO(34). The mass formula (3.4) is:

2

7 2 2 16
w dSw w
g <7Ti+6> +<7T8+6> +(7T9+w)2+ E 7Ti2:2_?<2' (3.24)

i=1 =10

Then 21‘1210 72 can only take the values 0, 1 or Z. In the last case, we also have that
(mg + w)? > %, which means that there are no spinorial roots in the last 8 components.
The only possibilities are: (—w,07) and (—w,07) £ (1, 07). The first (second) case requires

w to be even (odd). Defining ## = (my, 7o, ..., 77, —7mg — w), we have:
8 2 )
. w w 1—(=1)v
i+=] =2—-— -7 3.25
; <7r * 6) 9 2 (3:25)

but now the condition for the integer vectors is Zle 7; odd (even) when w is odd (even);
and for the half-integer vectors we have the (s) conditions if w is odd and the (¢) conditions
if w is even.

The quantization condition is

|7|?=0mod 2 for |w| =1
€EZ—|r>?=2mod 4 for |w| =2 (3.26)

|7|?=2mod 6 for |w| =3

gl —1

Ifw=1—3"% % = 3|#;|> — 2. The minimum value for |#;|? is 1, and in that case

)s)-

we have T = — (&)

N[

|#i|? = 2 can only be achieved for the (s) conjugacy class, and then 7 = — ((
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|72 = 3 is for the (v) conjugacy class, — 3.5 | #; = 7, but this cannot be achieved.
The same happens for greater values of |7|?.

fw=2 -0 &= 3|#:|> — 1. Then |#|? has to be even. The minimum value is
0, which could be achieved only on (0), and the equation cannot be solved. |#|> = 2 can
only be achieved for (0) and we get ((—1)2, 06). |#|? = 4 has the solution # = — (%, (%)7)
And for |#|? = 6 the equation cannot be satisfied.

If w=3, Z?Zl(fri + 3)? = 0, and the only solution is # = ((—%)8). That is 7 =
((=3)7,—5,-3,07) + (0s,£1,07). This has |r[* = 12, 18 or 24, which do not obey the
quantization condition.

If w =4, Zz L i = 3|72 + 1. But this equation cannot be solved for integer |#|?.

Defining 8 more components for a 16 dimensional 7 such that 79 = m9 — w and
the rest equal to the last 7 components of m, one can write the additional states 7 for
R? = 5 as (41,07, %1,07) and (& (4)y,£1,07) for Juw| = 1 and % ((1)2,06,05) and as

+ ((% (5)7) ,08) for |w| = 2. The former are 256-+32 = 288 states and the latter 56+ 16 =
72 states. In total these 360 additional states added to the 184 roots of SU(9) x SO(16)
give the 544 roots of SO(34).

In figure 25 we show this maximal enhancement on the intersection between one red,
two yellow and one green curves. The integer states with |w| =1 and |w| = 2 give the red
curve, the half-integer states with |w| = 1 give the green curve and the ones with |w| = 2
are represented by the yellow curve. The additional states without winding are those in

the yellow line.

3.2.6 U(1)3 x SU(8) x SU(8) — SU(18)

Consider the Wilson line A = (( )7, 2, (é)7, 6) in the I's x I's theory.
In sector 1 (w = 0) we have the first condition of (3.23) for each of the Eg, then we
get the 144 roots of SU(9) x SU(9). For an arbitrary value of R this is the gauge group.
For R? = % there is enhancement of the gauge symmetry to SU(18). To see this, take

the mass formula (3.4)

’ w2 Sw 2 15 w)? Sw 2 2uw?
i+ = — i+ = — ) =2—— < 2. (3.27
;21(71'—1'6) +<7r8+ 6) —i—':g <7r+6> —|—<7T16+ 6> 5 < (3.27)

=9
Defining & = (71, w2, ..., 77, —T§ — W, T9, T10, - - - , T15, —T16 — W) We have:
16 2 )
2
Z(m+w> —9_ (3.28)
P 6 9

but now 7 has to be on the conjugacy classes (ss), (vv), (sv) or (vs) if w is odd and on
(cc), (00), (Oc), (c0) if w is even.

We also have to obey the quantization condition gt |2 YA

Ifw=1,—% % = 37> — 4 and 7 is on (vv), (ss), (vs) or (sv). The minimum
value for |#;|% is 2, and in that case (#,#") = — (1,07,1,07).
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|#|> = 3 can only be achieved for the (vs) and (sv) conjugacy classes, and 7 =
—(1,07,(3)s), — ((3)s,1,07). |#]|?> = 4 is for the (ss) and (vv) conjugacy classes, and
7 =—((3)16)- |7|> =5 is for the (sv) and (vs) conjugacy classes, — S°18 #; = 11 which
cannot be achieved. The same happens for greater values of |7|2.

Ifw=2 -3 %= 3|#? + 1 implies (00), (cc), (c0) or (Oc). The minimum value
for |#;|? is 0, but then the equation cannot be solved.

|72 = 2 can only be achieved for (00), (Oc) or (0), but there is no solution.

%> = 4 implies — ;% #; = 7 and this cannot be achieved. The same happens for
greater values of |7|2.

If w = 3, Zilil(fri + 3)2 = 0 has only a solution belonging to (ss), namely
i = ()s0)

It can be shown that all of these states obey the quantization condition. Then, the
additional states for R? = %8 are £ (1,07,1,07), £ (1,07,( )s ) and & (( )8, 1,07) for |w| =
Land 7 = ((~3),) for u] = 3 (21,07, £1,07) and (& (1), £1.07) for [u] = 1 and
+ ((1)2,06,08) and £ ((%)16) for |w| = 2. The former are 128 4+ 32 = 160 states and the
latter 2 states. In total these are 162 additional states, which added to the 144 roots of
SU(9) x SU(9) give the 306 roots of SU(18).

In figure 26 we show this maximal enhancement on the intersection between one red,

two yellow and one green curves. The integer states with |w| = 1 are represented by the
red curve, the half-integer states with |w| = 1 give the yellow curve, the states with |w| = 3
are represented by the green curve and the additional states with w = 0 give the yellow
horizontal line.

3.2.7 U(1l) x SO(16) x Es — SO(18) x Eg

Consider the Fg x Eg heterotic string compactified on a circle of radius R = %, with Wilson
line A = (1,07,08)7 which is of the form (v0) according to the notation of appendix A
(see (A.10) in particular). This Wilson line leaves the second Eg unbroken, while from the
first Eg, the surviving states in sector 1 are the ones with integer entries, i.e. those in the
first line of (3.21). The group H from sector 1 is then SO(16) x Eg and the corresponding
points in moduli space are illustrated by the grey dots in figure 1b.

In sector 2 we have states with w = +1 such that s = 1, |p#|?> = 1. The surviving
states have the following momenta

pr = (0,£1,41,06), w =0, 7% = 2, 112 roots
pr = (£1,0, £1, 05), w = +1, 7|2 =2, 28 roots
pr = (£1,£1,07), w = =£1, =0, 2 roots
pL = (£1,F1,07), w= =1, |7|? = 4, 2 roots,

where the first entry corresponds to the circle and the subsequent ones to the 8 directions
along the Cartan of the first Eg factor. The first line contains the states of sector 1. These
are the 144 roots of SO(18). This point in moduli space, together with its equivalent ones,
are illustrated by the green dots in figure 4b, 6b and 7b.
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3.2.8 U(1) x SU(2) x E7 x Eg — SU(2) X Eg x Eg

This is an interesting example of enhancement-breaking in the Eg x Eg heterotic theory,
where first the Eg is broken to SU(2) x E; by the Wilson line A = ((%)8 , 08) and then
enhanced by the circle direction to SU(2) x Es.

The Wilson line leaves the second FEg unbroken, while the surviving roots from the
first Fg have 9-momenta

pPL = :l:(oa 17 _1a 06)

AT v
ne(o(2).-(2)

This, gives 128 roots, which together with the 8 Cartan directions, gives an unbroken gauge

group H = SU(2) x E; C Eg.
Additionally at R = % there are 114 states in sector 2: two with w = +2 and 112 with

w = +1 and momentum
V2 3 1
— | +X= 2) 4z
- (=7 (1), (),

n-(+2:(2).~())

These states give a total of 114 extra states that add up to the previous 136 states, plus the

(3.30)

circle direction, adding up to the 251 states of SU(2) x Eg. So at R = 5 we get enhancement
to SU(2) x Eg x Eg, which works very differently than the enhancement occurring at R = 1,
mentioned in section 3.1.

In figure 24 we present these maximal enhancements for the I's x I's theory, and we
also show a maximal enhancement to SU(3) x E; x Fg. The additional states with w =0
are represented by the cyan line and the states with |w| = 1 together with the ones with
|w| = 2 are represented by the orange curve.

3.3 Exploring a slice of moduli space

In this section we present a detailed analysis of the slice of moduli space for compactifica-
tions of the heterotic theory on a circle at any radius and Wilson line given by

A= (A1,015) . (3.31)

The results of this section are displayed in figure 6. Here we present the main ingredients
of the calculations, and leave further details to appendix C.
For this type of Wilson line, the states with w = 0 (sector 1) that survive, are those
satisfying
mA €ZL. (3.32)
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This preserves all the roots only if A € Z for the I'1g case, or Ay € 2Z for the I's x I'g case.
These correspond to the horizontal orange lines in figure 6, where at any generic radius,
the gauge symmetry is U(1) x SO(32), or U(1) x Eg x Eg. If A; is an odd number, then
the SO(32) symmetry is unbroken, but the Eg x Eg is broken to SO(16) x Eg, which is
depicted with a black line at A7 =1 in figure 6b.

If Ay ¢ Z, then we have just the roots with 73 = 0. That is, the 420 roots of SO(30)
or the 324 roots of SO(14) x Es. This corresponds to the white regions in figure 6.

Now, depending on the value of R, we can have additional states in sector 2, i.e. states
with non-zero winding'* which momenta satisfy |pr|?> = 2 and have a quantized momentum
number on the circle. Then, according to (3.2) and (3.6), they should obey

T +wA|? = 2(1 — w?R?), (3.33)
1 1
— (1 - 2[7?]2> cZ. (3.34)

w

The first equation implies R~' > w, and the simplest solution is

= (j: 2(1 — w2R?) — wA,, 015) .

But 7 is in an even lattice, which implies m; = —2¢q, ¢ € Z. The quantization condition for
n yields
2¢° — 1
€~ ¢y,
w

so we have only the winding numbers that are divisors of the numbers that can be written
as 2¢°> — 1, for some integer ¢. In terms of ¢, the Wilson lines are of the form

2+ V2 —2w?R?

w

2¢° — 1
Ay = ayq(R), {w,q, qw } €. (3.35)

If the radius also satisfies R < —=— < 1. we have additional solutions where some of

V2w w’

the other components of 7 are non-zero, such that

T+ wA = (j:\/l " ow?R2, 41, 014) for T'5,
T+ wA = (i\/l — 2w2R2,i1,06,08) for Tg x T's .

The quantization conditions are the same as before, but now the Wilson lines have the
following behavior as a function of the radius

2+ 1+V1 - 20?R?

w

2¢° — 1
Al bw,fI(R)’ {quv qw } S Z (336)

If additionally R < (2v/2w)~! we have yet other possible solutions, but only for the
Fs x Eg theory, where

1 1
T+ wA= <i2 1 — 8w?R2, <j:2) ,08> for I's x I'g.
7

MFrom now on we take w > 0, keeping in mind that for every massless state with w there is also a
massless state with —w.
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The lines and quantization conditions are:

q—i—l:l:,/l—QwQRQ 1
Al = 2 : = Cw,q(R) ) {’LU, q, Q(q i )} € Z, (337)

w

where we used (m1)? = 7> = L and m = — (¢ + 1).

For a given ¢ and w, whenever the Wilson line is of the form a4 in (3.35), we get 2
massless states (one for w > 0 and another one for w < 0). If there are no more states,
then we have enhancement to U(1) x SU(2) x SO(30) and U(1) x SU(2) x SO(14) x Es.
These correspond to the blue lines in figure 6, where for example in figure 6a, the long
blue line going from (R, A1) = (0,/2) to (1,0) corresponds to aj g = /2(1 — R2), while
its mirror one along the axis Ay =11is a1 =2 —aip.

For Wilson lines of the form b,, 4 in (3.36), we get 60 extra states for the I'is, and 28
for I's x I's. The former promote the enhancement to U(1) x SO(32), while the latter to
U(1) x SO(16) x Eg, and they correspond respectively to the orange lines in figure 6a and
the black lines in figure 6b. The largest curved orange line in the former and black line in
the latter going from (0,0) to (0,2) corresponds to bp1 = 1 £ v/1 — 2R?, where the plus
sign is for the upper half of the curve, and the minus sign for the lower half.

Finally, Wilson lines of the form ¢, 4 in (3.37) give in the Eg x Eg heterotic theory,
2 x 20 = 128 states (the sign of one of the seven (+3) is determined by the sign of the
other 6 and the sign chosen for the Wilson line). Note that ¢y ¢(R) = baw,q(R). It is not
hard to show that a Wilson line that can be written as ¢, 4(R) can always be written as
baw,q(R), but the function b can also have an odd w. Wilson lines b that can also be written
as ¢ bring then a total of 28 4+ 128 = 156 states, which corresponds to the enhancement to
U(1) x Eg x Eg in the orange lines of figure 6b.

There are only two kinds of intersections between lines, and the points of intersection
correspond to points of maximal enhancement (see appendix C for details):

e between a blue curve a(R) with w; and an orange curve b(R) with ws, where the
enhancement group is SU(2) x SO(32) (SU(2) x Eg x Eg) in the SO(32) (Eg x Eg)
theory. These are the red dots of figure 6, and arise at

1 2 1 2k
RA)=|——m,— (@+wR) | =|=,— ],
( 1) (x/w%—l—Qw% wy @ ? )> <C C>
for some integer k, with C' =1,3,9,11,... are all the integers whose prime divisors
are 1 or 3 (mod 8) (see table 3).

e between two blue a(R) with w; and ws and two orange (black) curves b(R) with

ws and wy, where the enhancement group is SO(34) (SO(18) x Ey) for the SO(32)

(Eg x Eg) theory. These are the green dots of figure 6, and arise at'®

)= (ﬁj (qikwﬁ)) ~(Gaee)

15We get additionally R =

1 _ 1
Vwitws  V2ywitwl’
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for some integer k, with C = 1,5,13,17,... are all the integers whose prime divisors
are Pythagorean primes (see table 3)

In appendix C we give the details of the calculations and also prove that these are
the only possible intersections for this type of Wilson lines. In appendix D we present
other slices of moduli space given by the radius and Wilson lines determined by a single
parameter A. In section 3.5 we show how these points arise as fixed points of a duality
symmetry.

3.4 T-duality in circle compactifications

In this section we discuss the action of T-duality in the heterotic string compactified on a
circle. By T-duality we mean the action of certain type of transformations in O(1,17,7)
that relate a given heterotic theory with 16-dimensional lattice I', compactified on a circle
of radius R and Wilson line A, to another heterotic theory with lattice I, compactified
on a circle of radius R’ and Wilson line A’. In this section we discuss the usual T-duality
exchanging momentum and winding numbers, while in the next section we discuss more
general dualities, and their fixed points.

The duality generated by the matrix Op is the usual T-duality transformation ex-
changing momentum and winding numbers

(w',n/,7") = (n,w, ) . (3.38)

Since 7 stays untouched, this duality is possible if IV = I'. Its action on the background

fields can be worked out from the generalized metric (2.13), which for the circle is'6

R*(1+3A%)2 —1A? (1+31A%A
(1+3A%)A0 —L At T+ 5A'A

where we have defined the scalar

2 _ AP
A= (3.40)
The action of Op transforms this into
T
M' =0pMOp =M""=| 1A% RY(1+1A%)2 (1+ia%)A]|, (3.41)
— A 1+ 1A% AN T+ LA
and thus we get
e e )
 R2(1+3A2)7 - R(1+1A2) R R

in agreement with the heterotic Buscher rules for scalars [44]. We get that a background
has R’ = R for )
Ry =1-lAP (= R'=R, A'=-A) (3.42)

SHere we choose the Cartan-Weyl basis where the Killing metric for the Cartan subgroup 7 is diagonal.
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Additionally, if 24 € TV, then A’ = —A ~ A, and therefore the background is fully self-dual,
satisfying M = M™! up to discrete transformations (these are of the form (2.19), (2.20)
or (2.21), but for the circle the only non-trivial one is a A-shift (2.21)).

All the examples of enhancement discussed in section 3.2 except for 3.2.8 satisfy the
self-duality condition (3.42). By perfoming a A-shift to the Wilson line of 3.2.8 we can
bring it to the equivalent one A = ((—3/4)2, (1/4)s, 0s), which satisfies (3.42).

For Wilson lines with only one non-zero component, we have that the fixed “points” of
this symmetry correspond actually to lines of non-maximal enhancement symmetry where
the Wilson lines are functions of the radius (A = A(Ryq)), and are such that A ~ Agq, with
Al? = 2(1 - R2,).

We now discuss the differences between fixed points of duality symmetries further,
exploring more general dualities and their fixed points.

3.5 More general dualities and fixed points

The transformation Op discussed before is a particular type of transformation that changes
the sign of pr while it rotates pr,, preserving its norm (in compactifications of the bosonic
theory on a circle, py, has a single component and Op just leaves it invariant, but in the
heterotic theory Op rotates the 17-dimensional vector pr,). It would be very interesting to
understand what are all the possible transformations that do this, and obtain their fixed
points. Here we do something more modest, namely we work out the set of transformations
that change the sign of pr and rotate pr,, leaving its circle direction component invariant.
We thus require

(pp, " PR) = (pr, U*Pp®, —pr) (3.43)

with U € O(16,Z). These transformations generically link a given heterotic theory with
lattice T', in a background defined by (A, R) to another heterotic theory with lattice T
in a dual background with (A’, R"). The duality transformation depends on the matrix U
and we use a convenient parameterization to relate the radii R and R’, namely we define

a positive number r such that
1

R =—. 3.44
rRR (3.44)
The duality transformation that achieves (3.43) should have the form
_T|f‘;’\2 %+A’UA’5+ TI?IQ |A2’\2 Tlg’IQAjLA/U
Oy = r AP —rA . (3.45)

2
—rA UAt + —’”‘2"2 At U+rAtA

Requiring this to be in O(1,17;Z), we get a set of quantization conditions like for example!”
(the full set of quantization conditions is given in (E.2))

rlAPR A2 1, |A]? A
S AUA+ 2D
R I R T

'"The fact that we get a quantization condition for |A| may sound strange, but it means that if A is not

c7. (3.46)

quantized properly there is no duality that leaves the circle direction of pi, invariant. If one allows the full
PL vector to rotate under the transformation, then we have, as shown, at least the duality Op discussed in
previous section.
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It is instructive to decompose the matrices Oy as the product OprOpOnOpOp with
A=—A M =r, N=U and A’ = A’, which allows to interpret the transformations as the
following series of operations

1. O_4: eliminates the Wilson line A through a A-shift,

2. O,: rescales R — rR,

3. Oy performs a change of basis in the heterotic directions
4. Op: performs a T-duality along the circle (n),

5. Oy adds the Wilson line A’ through a A-shift.

We divide the discussion into the dualities where I' = I, and those where the dual lat-
tice is not the original one. To denote the different sublattices that will play a role, it is use-
ful to use the (0), (v), (s) and (c) conjugacy classes of SO(16), corresponding respectively to
the root, vector, positive and negative-chirality spinor classes. These are defined in (A.4)-
(A.7). The lattices I';¢ and I's x I's contain the following vectors (see (A.10)—(A.11))

I'16 = (00), (vv), (ss), (cc)

(3.47)
I's x I's = (00), (ss), (0s), (s0)

One could have chosen different conventions in which some of the s classes are turned into
c classes, and doing that build four other lattices, that we denote I'j, I'y x I'g, I'y” X F;
and I'y x 'y . We give these in (A.14). Note that a lattice '™ is equivalent to a lattice I'",
the choice (s) versus (c¢) conjugacy class is a convention with no physical relevance. Here
it is important however to make the distinction whether a given duality maps, say, ' to
I't,orI't to ™.

In the following we write the main results, leaving the details to appendix E. The results
for generic Wilson lines, assuming that r is a prime number, are summarized in table 4.
We later concentrate on the situation where the Wilson lines are of the form (3.31), i.e.
with only one non-zero component, as we did in section 3.3, to see what happens when the
assumption that r is prime is relaxed. For Wilson lines of this form, the O(16) symmetry is
broken to O(15), and there are four inequivalent choices of U that we will analyze in detail

U==+I or Uy==+diag(l,—1;5) . (3.48)

351 I'<T

The dualities for which the lattice does not change involve those where 7 is invariant, such
as the one discussed in the previous section. But as explained above, one can have more
general dualities even when IV = I", and thus more general fixed points. Fixed points of a
duality are those for which R’ = R and A’ = A.'®

'80ne could also consider a more general situation where A’ + A’ = A + A with A(A’) € T(T"). Since
here I' = I, then A ~ A’. Since we are considering A-shifts as part of the duality transformations, we can
restrict without loss of generality to dualities where A’ = A.
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To make the analysis tractable for generic Wilson lines, we restrict to the situation
where r is a prime number and U = I, and relax this assumption only in the setup where
the Wilson lines have just one non-zero component. Under the assumption that r is a
prime number, the full set of quantization conditions (E.2) are satisfied if and only if (see
details in appendix E)

AcT , Ael, r=1, (3.49)

and thus the fixed points of these transformations are at R = 1 and A any point in the
lattice I They correspond to enhancements to SU(2) x SO(32) and SU(2) x Eg x Eg
discussed in section 3.1. These points appear in the diagonal entries in table 4.

Let us now analyze in more detail the fixed points of the dualities for the subset of
Wilson lines of the form (3.31), i.e. with only one non-zero component. The quantiza-
tion conditions evaluated at the fixed points turn into (see appendix E for details of the
calculation)

2n? +1

1
n,m,——— €7 for U==xI wheren= §A1R*1,m =R, (3.50)
m

and

n?+1 1 1

n,m,———eZ for U=Us wherenown=-—AR '\ m=—RL (3.51)

2m V2 V2

We write in table 4 all the fixed points for U = I and U = Uy where 0 < A; < 1. The
lines +£A4; mod 2 are also fixed points.'?

These points in moduli space are points of maximal enhancement symmetry. Those in
the first column give rise to SU(2) x SO(32) for I'15 or SU(2) x Eg x Eg for I's x I's, and
are depicted by red dots in figure 6. The second column contains all the points of maximal
enhancement groups SO(34) or SO(18) x Eg, and correspond to the green dots in figure 6.

352 T+ I

Note that unless I' = Ffﬁ and IV = th X Fét (or the other way around, and using any
combination of signs) — situations that we analyze separately in the next section — there
exists some Uy € O(16,Z) such that TV = U1T". In that case, the duality with IV # T, Uy and
A’ is equivalent to one between I' and I’ = T", U” = U Uy and has A” = A’U;. Restricting
to diagonal matrices U, we see that the dualities with U and IV = T" are equivalent to the
dualities with U = I but where I' is

I" =T for T =T and det(U) = +1 (3.52)
[' = T3 x T52 for T = T'g x Tg, dety(U) = #11 and deto(U) = 421 (3.53)

9The other two options U = —I and U = U_ do not leave the Wilson line invariant. The fixed points
of these dualities are the points where the positive and negative branches of the curves a(R) and b(R),
defined in (3.35) and (3.36), intersect. These are the points where the arguments in the square roots are
zero. Most of these points do not correspond to points of maximal enhancement. Those that do correspond
to —-TA=U_A=—A ~ A, which are also fixed points for U =1 or U = U_.
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U = diag(llﬁ) U = diag(l, —115)
-1 Ril Al
3 2 5v2 %
3 5
ol 4| oal B
1| £ 2532 i
17| 2 29v2 B
0l 37v2 i
27 | 2 41v3 ¥
33 %7 % 53v/2 %
o 61v/2 i
43 % 65ﬂ ﬂmﬂ
51 %’ % 73\/§ 65&65
57 |5 51 853 | 13 47
59 % 89\/5 85%85
67| 97v2 i
i 1012 i
S 109v2 @
83 1132 1
| 12512 o
o7 1372 i
99 %’ % 145\/5 1771371§
145 145
SU(2) x SO(32)
or or
SU(Q) X Eg X Eg

Table 4. Fixed points of the dualities Oy .

where det; (detz) is the product of the 8 first (last) diagonal elements and the lattices I'*
are defined in appendix A. If additionally the Wilson line A is invariant under the action
of U (up to a A-shift) we get exactly the same fixed points that one gets for a duality with
' =T". Since Wilson lines of the type (3.31) are invariant under the action of a diagonal
U such that the first component is +1, we get the same fixed points of section 3.5.1 that
correspond to enhancement to SO(34) or SO(18) x Ej.

Under the assumption that r is a prime number, the quantization conditions are sat-
isfied if and only if

Ae (Tn)"\I', A/ e (CNT)\IV, r=2 (3.54)
and thus the fixed points of these transformations are at R = %, and correspond to the

enhancements SO(34) and SO(18) x Eg. The possible Wilson lines for the different choices
of I' and IV are given in table 4.
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3.5.3 SO(32) < Eg X Eg

There is no U € O(16,7Z) that transforms the lattices I'1g and I's x I's into each other, and
thus the case I' = I'ig and IV = I'g x I'g is different from the ones considered previously.
Here, for simplicity, we restrict to U = 1, namely we analyze dualities such that
(pr”,Pz) = (Pr,—pr). The quantization conditions under the assumption that r is a
prime number, are given in (3.54). For I' = I';g and IV = I's x I's, the possible Wilson lines
are the following
A€ (I NT)"\TI' = (0s), (s0), (ve), (cv)

/ , ’ (3.55)
A" e (T NI)"\I'" = (vv), (cc), (ve), (cv)

However, there is something very curious here: the fixed points of these dualities, corre-
sponding to R = %, are not points of maximal enhancement but points of enhancement
U(1) x SO(16) x SO(16). Furthermore, this enhancement group arises at any radius, so
Wilson lines of the form (3.55) give rise to lines in moduli space, and as such are also “fixed
points” of dualities that do not involve Op.

Let us illustrate this better with an example: take A = ((3)s,0s) € (s0) and A’ =
(1,07,1,07) € (vv). For the time being, we take r = 2, i.e. R’ = 1/(2R), but we do not
necessarily stand at the self-dual radius.

The Wilson line A breaks the SO(32) gauge symmetry to SO(16) x SO(16), as shown
in section 3.2.3. For this Wilson line, one has additionally states which are neutral under
SO(16) x SO(16), i.e. with pA = 0. Since these should have 7 = —wA, then only states
with w = 2m, m € Z are allowed. These states have left and right-moving momenta on
the circle

1 1
= —— (A +2R*m) , = —— (7 —2R*m) , 3.56
DL V2R (n + m) DR JoR (n m) (3.56)

where n = n + w. Let us pause for a second to show that there is no enhacement to
SU(2) x SO(16) x SO(16) with this Wilson line. We have shown in section 3.2.3 that
there are no additional massless states charged under SO(16) x SO(16), i.e. with non-zero
winding number and p? # 0. Regarding extra neutral massless states, it is very easy to see
from (3.56) that there are none of this form: states with momenta (pz,p?,pr) = (v/2,0,0),
satisfy 2R?m = 71, while requiring at the same time p;, = v/2 would lead to fim = %, which
has no solution. Thus, the compactification of the SO(32) heterotic string with Wilson line
A = ((3)s,0s) leads to U(1) x SO(16) x SO(16) at any radius.

The Wilson line A’ = (1, 07, 1, 07) breaks the Egx Eg symmetry also to SO(16)xSO(16).
There are also states which are neutral under SO(16) x SO(16), of the same form as before,
i.e. with momenta

1
~ ) .
(W +2R?m') | pa= T

1
h = i —2R*m/) , 3.57
pr \/iR/ ( ) ( )
where v’ = 2m’ and 7/ =n' + w'.
Comparing (3.57) and (3.56), we see that (p},pr) = (pr, —pr) if (7/,m') = (m,n) and
RR' = §. This is true for any value of R.
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In table 5 we write the fixed points of the dualities between a theory with lattice I’
(row) and another one with IV (column) for the smallest value of the parameter r defined
in (3.44), which are r = 1 or r = 2. We indicate the conjugation classes of the possible
Wilson lines (for a given row and column, any A given can be dualized to any A’), and the
enhancement group arising at the fixed point of the duality.

4 Effective action and Higgs mechanism

Now that we saw the rich structure of duality symmetry, we turn to its explicit target
space realization. The global duality symmetry of the dimensionally reduced heterotic
supergravity action has been deeply investigated in the seminal papers by J. Maharana
and J. Schwarz [6] and N. Kaloper and R. Myers [7], and more recently in [8]. If the gauge
fields are truncated to the Cartan subsector of the Eg x Eg or SO(32) gauge group, the
dimensional reduction of heterotic supergravity from 10 to 10 — k dimensions produces a
theory with U(1)%%%16 abelian gauge symmetry and a continuous global O(k, k + 16;R)
symmetry. If the reduction includes the full set of Eg x Eg or SO(32) gauge fields and
no Wilson lines, the global symmetry reduces to O(k, k;R), while a compactification with
Wilson lines for the Cartan gauge fields of a rank 16 — r subgroup of the rank 16 gauge
group G, gives an effective field theory with global O(k, k+16—r;R) duality symmetry [8].
The analysis of [8] is based on string-theoretic arguments and holds to any order in the
o expansion of the heterotic string effective field theory action involving all the massless
string states, except those that become massless at self-dual points of the moduli space.

Including the massless states with nonzero winding or momentum number on 7% in
the effective field theory of the toroidally compactified heterotic string is not difficult, as it
is a gauged supergravity. The action with at most two derivatives of the massless fields is
then completely determined by the gauge group. Therefore, although the field theoretical
Kaluza-Klein reduction of heterotic supergravity cannot describe the string modes that
give rise to maximally enhanced gauge symmetry, the action is entirely fixed.

Nevertheless, we will see in the forthcoming sections that the explicit construction of
the (toroidally compactified) heterotic string effective action from the scattering amplitudes
of massless string modes at self dual points of the moduli space, and its manifestly duality-
covariant reformulation, give important information. In particular, we will obtain novel
relations between the SO(32) and Eg x Eg theories. We will also consider the light states
that acquire mass when slightly perturbing the background fields and revisit the gauge
symmetry breaking and Higgs mechanism, both from the field theory and the string theory
viewpoints.

4.1 Effective action of massless states

The three-point functions of all the (toroidally compactified) heterotic string massless ver-
tex operators are reviewed in appendix F, where we also compute the four point function of
the massless scalars. These amplitudes are reproduced from the S-matrix of the following
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effective action

1

S =—
2&3

1 1. -
~FL FRY — —FmER

1
d -2
d®z/—Ge ¥ (R + 40,00 p — EHuvaWp Tyt 4w

1 1 _ 1 "
— 5 DuS™" DS — 5SFmE{VFWV = 7 StmSr " SanSa " fIAIL A H>, (4.1)

which also contains terms from higher point functions that we have not computed but need
to be included on the basis of gauge symmetry. Here k4 is the effective Planck coupling
constant (related to the gauge coupling gg as gg = v/2k4) and?®

1 - -

r ' AA A0 m

H;wp =3 (8[MBVP} + A[H&,Ap]p + ngAQAuAV Ap — A[uayAp]m> , (4.2)
F,E/ = 0,4, — &,AE + fFAQA,/}A,S} . FL=0,A7 - 8,A),

D#SFm _ 8,LLSFm + fFAQAi)SQm, (43)

with Sry, = (G, Biny, A, Aam) denoting the scalar fields. The indices m,n =1,...,k
correspond to the dimensions on 7% and I', A = 1, ..., N are the adjoint indices of the Lie
algebra associated to the gauge group G, of dimension N and structure constants f! pq.

For ten external dimensions (i.e. when there are no compact internal dimensions other
than the 16 chiral “heterotic” omes), d = 10, the gauge group is Eg x Eg or SO(32)
and N = 496. There are neither scalar Sr,, nor vector A}T,AIT fields. Then the action
reduces to the first four terms in (4.1), with I' = (I, ) = 1,...,496, and the last term in
H,,, vanishes.

For compactifications on T%, d = 10 — k, at generic values of the background fields,
the gauge group is U(l)lLG+k X U(l)%, N=16+k, and theindex ' =1 =1,...,16 + k.
The vectors and scalars are only those in sector 1 of section 2.3. We denote the gauge
fields as the polarization vectors in the vertex operators (A}, Af“ AZ‘) and the scalar fields
are Gpn = Gmn + Simn) (T), Bmn = Bmn + S(mn] (), Arm = Arm + Sin(z), where the
fluctuations are denoted like the polarizations of the vertex operators creating the string
scalar states. In this case, (4.1) agrees with the effective action obtained in [6] from
dimensional reduction of heterotic supergravity with gauge group truncated to the Cartan
subgroup. The theory has a global O(k, k + 16;R) symmetry.

At the specific points in moduli space where the gauge symmetry is enhanced, it
is convenient to split the index I" = (f,a =@, a), where I =1,...,16 + k denotes the
Cartan generators and a (@) are the positive (negative) roots of Gr. The vectors A£ and
Aj" correspond to the left and right Cartan generators in sector 1, respectively, while Aj

correspond to the vectors of sector 2, as defined in section 2.3. The scalars glm correspond
to the (16 + k) x k scalars in sector 1, while the S*™ correspond to the scalars in sector 2.
In this case, G, = Gsncfn +S(mn) (l‘), B = Bfrtzi —f—S[mn} (SU), A, = A;gn —I-S[m(x), Agm =

n

2Kkg
. . . . . —“fd_p
20We have rescaled the polarizations introduced in section 2 as G, = 1w + 2K4€(uyy — € V=2 Guv,
r Am
B T A Am A S S S,
1224 142 143 mn Im am 3
s Ay — AR — e S — 22, Spm — 2k Sop — 222 We also redefined

the dilaton D = ﬁ(@ — ©0), S0 that kg — e #kq and gg — e 0 gq.

€lpv] —
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Sam (), and the superindex sd refers to the self-dual values of the background fields. The
algebra in the Cartan-Weyl basis is

(o, B)JOTB if o+ B is a root
{Jf,JO‘} — e [JQ,JB} —{ ;g if o= -3 :
0 otherwise

where e(a, ) = £1 for simply-laced algebras. Note that it is completely determined by
the vertex operators of the vector states: the roots ol are the momenta of the string
states and e(a, ) is given by the cocycle factors in the currents (2.42) cocg = (o, f)ca+g-
When the gauge group Gy, is a product, the structure constants (and the indices T, I, a)
split into those of each factor, e.g. for SO(32) x H, I' = (T'so32), [n) with Tgoz) =
(I=1,...,16;a=1,...,480) and T’y = (m=1,...,k;a=1,..., N — 496 — k), while for
SO(32) x U(1)% or SO(34) they are only those of the non-Abelian piece. The Cartan-Killing
metric is defined to be a block diagonal matrix containing the Cartan-Killing metrics of
the groups k = diag(kgo(s2), k) or k = diag(kgo(32), Lkxk)-

For gauge groups of the form G, x U(1)% x U(1)%, the action (4.1) agrees with the
dimensionally reduced heterotic supergravity action obtained in [8], including the scalar
potential (although the reduction of [8] contains an additional term with six scalars that
we have not computed).?! It possesses O(k, k;R) global symmetry.

In the case of enhanced gauge groups of the form G x U(l)’j%, in which the & left-
moving Cartan generators are absorbed by the Cartan subgroups of the non-abelian group
G, the structure constants completely break the global symmetry. However, (4.1) can
be rewritten in O(k,n) covariant form, where n equals the dimension of the full gauge
group. We review this rewriting in the next section, where we also present an alternative
reformulation of (4.1) from a generalized Scherk-Schwarz compactification of double field
theory. This will allow us to obtain novel relations between the Eg x Eg and SO(32)
heterotic theories.

From (4.1) one can see some of the features of the spontaneous breaking of gauge
symmetry that occurs away from the enhancement points. An effective stringy Higgs
mechanism is already encoded in the string theory computation, which can be interpreted
as triggered by the vacuum expectation values of the scalar fields in the Cartan sector S;,_,
which give mass to the vectors in the non-Cartan sector from the covariant derivatives in
the kinetic terms, while the scalars without legs in the Cartan sector acquire mass from
the scalar potential. We present the relevant details in the forthcoming sections.

4.2 Higgs mechanism in string theory

When moving away from the points in moduli space where the gauge symmetry is enhanced,
pr # 0 and the extra massless vectors and scalars in sector 2 acquire mass. The dependence

21The redefinitions Al(tl)m = %(AIT + AL’I)’A%L = %Gmn(ALn - AZL) and BMU = _buumen = —bmn
are necessary to compare with [8]. Note that the KK reductions of the metric and B field, A"™ and A$),,
having the internal indices up and down repectively, cannot couple through one scalar field, unlike the left

and right vector fields 4], and A} in (4.1). See the next section and the equivalent discussion in [22].

— 41 —



of the vertex operators on the background fields is contained in the exponential factors of
the internal coordinates, which become

; i R . =
JY = Caem("‘)IYL (2) — JPLPR (z’ g) — C;eszIYL (z)+szmy§“(Z) , (4.4)

where ¢, = ¢, as we will see later. In particular, the [U(1)7]**'6 x [U(1)g]*¥ charges of
these states, (qf, qm) = (pf;,p”R””), are generated by T Jm.

The OPE of the energy-momentum tensor with the massive vector boson vertex oper-
ators develop a cubic pole, and it is necessary to combine these operators with those of the
massive scalars in order to cancel the anomaly. As discussed in [22], the vertex operators
of the massless vectors “eat” the scalars S*"™ and the conformal anomalies can be canceled
when redefining

Afgy ~ JPPR(2,2) (A (R)TH(2) = £S°M (k) Y7, (2)) e X 52 (4.5)
with
T4 = VBOX + ok G = pra X T =Y b "~ XX
V2 ’ V2 ’
if
k-Aq — DR Sam =0, (4.6)
where £ is some coefficient. In terms of fields, this is
O AL +iEpR Sam =0, (4.7)

corresponding to the R t’Hooft gauge condition where pr can be identified with a non
vanishing vev. Then the physical massive vector boson vertices are actually A’, and the
scalars Sy, disappear from the spectrum.

Note that the fields associated to A’ have well defined charges (pr,pr), and since

m? = —k?, the gauge condition can be written as

1
k - <Aa +kE DR am) =0, (4.8)
2p%
implying an effective polarization
Al B) = Ay, — 2 pm (4.9)
ap\PL,PR; R) = Aap 2]92 PrPam - .

R

This leads to a massive vector of the form
1
A/oz,u = AO&M - g@pgausam ) (410)

where p2R = 0 is related to the vevs. This is the usual massive vector field incorporating
the would-be Goldstone bosons p; Sam that provide the longitudinal polarization.
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Unlike the case of the toroidally compactified bosonic string, in the heterotic string all
the massive scalars are Goldstone bosons. Since the gauge group in the supersymmetric
right sector is abelian, there are no other massive scalars from the compactification of the
massless states.

The non-vanishing three point functions involving massless and light states, i.e. states
that are massless at the self-dual points and become massive when perturbing the back-

ground fields, are listed in appendix C, and they lead to the following effective action
1

S = 22 d?zV/Ge 2‘P<R+4(3Mg0) 12H;WPH’WP 4FJZ,F;“’—ZF$F;#’

1 / 1
— FIp E T — Cpp AR APGR Zaﬂs ("SI 2pl AT AL S

PSSR SR ATAL ) (1)
with
Fl = 204, AT+ e(py, pa) AT 2 AT — 2ipy 1 AL AR — 20y, AT AT
Fl, =204 Fm=20,A0

1
f+A/pa Ap]p+ 6(pl’]92)14/17114/10214/ P1—p2

I
H/,wp <8[MBVP] + A[M(?Z,A (v

ol

—i poA'[iA;‘pAI} szmAEpA’ P A™

The S-matrix of this massive gauge field theory coupled to gravity reproduces the

o= Af;a,,Ap]m> : (4.12)
string theory three-point amplitudes. The non-Abelian pieces in the field strength of the
massive gauge fields and in the Chern- S1m0ns terms in H/ uwp correctly appear in terms of
the charges of the corresponding fields (q qn) = (pL,pR). These charges determine the
coefficients of the vector boson three-point functions, which can be identified with structure
constants

fmg P = Zp;g ) flg P — Zpi y fpl+p2plp2 = €(p17p2) ) (4-13)

reflecting the fact that the gauge interactions in string theory are a manifestation of an
underlying affine Lie algebra. This algebra is isomorphic to that of the enhanced Gp,
group [25], which justifies the identification ¢, = ¢, used in (4.4) (we will comment further
on this result in the next section).

Not all the terms in the action can be obtained from the three-point functions, but we
have completed the expressions so that they correctly reproduce the massless case when
pr=0and py €T.

All the terms of the scalar potential of the massless theory (4.1) are absorbed by the
field strengths of the massive vectors or by interaction terms containing massive vectors.

5 Heterotic double field theory

Although the action (4.1) can be generically obtained by dimensional reduction of heterotic
supergravity from 10 to 10 — k£ dimensions, not all the effective actions of massless fields
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obtained from toroidally compactified heterotic string theory can be uplifted to higher
dimensional supergravities. In particular, the states with nonzero winding or momentum
number on T* cannot be captured by field theoretical Kaluza Klein compactifications. To
find the higher dimensional description of these string modes, one has to refer to gauged
double field theory (DFT) [40-42, 45], an O(D, D + N;R) covariant rewriting of heterotic
supergravity, with D the dimension of space-time and N the dimension of the gauge group.

In this section we review this construction and show that the effective action (4.1)
can be rewritten in terms of O(k, N) multiplets. The reformulation is achieved essentially
assembling the N + k gauge fields as a vector, the Nk moduli scalars as part of a symmetric
tensor and the structure constants of the non-abelian gauge groups as an antisymmetric
three-index tensor under O(k, N) transformations. The procedure generalizes the analysis
of [8] by including all the massless string modes at self-dual points of the moduli space,
in which the k left Kaluza-Klein vector fields become part of the Cartan subgroup of the
maximally enhanced gauge group.

Furthermore, using the equivalence between gauged DFT and generalized Scherk-
Schwarz (gSS) compactifications [42], we present an explicit realization of the internal
generalized vielbein which reproduces the structure constants of all the enhanced gauge
groups under generalized diffeomorphisms. In particular, we show that the structure con-
stants of the Fg x Eg and SO(32) groups can be obtained from the same deformation of the
generalized diffeomorphisms and then the Eg x Eg and SO(32) theories can be described
as different solutions of the same heterotic DFT.

5.1 Gauged double field theory

The frame-like DFT action reproducing heterotic supergravity was originally introduced
in [9-14] and further developed in [40, 41]. The theory has a global G = O(D, D + N;R)
symmetry, a local double-Lorentz H = O(D —1,1;R) x O(1, D — 1+ N;R) symmetry, and
a gauge symmetry generated by a generalized Lie derivative

LV = 0V + (0mE” — 07Em) V. (5.1)

The infinitesimal generalized parameter ¢, with M =1,...,2D + N, transforms in the
fundamental representation of GG, and H-transformations are generated by an infinitesimal
parameter A 4B, with A,B=1,...,2D + N.

The constant symmetric and invertible metrics nyn and ngp raise and lower the
indices that are rotated by G and H, respectively. In addition there is a constant symmetric
and invertible H-invariant metric H 45 constrained to satisfy

HAHE =05 . (5.2)

The three metrics nan, nas and H 4z are invariant under the action of £, G and H.

The fields of the theory are a generalized vielbein E*4 and a generalized dilaton
d. The former is constrained to relate the metrics nap and nan, and allows to define a
generalized metric Haqn from Hoyp

nmn = EAvmasEB Hpanw = EAMHABEP v (5.3)
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The theory is defined on a 2D + N dimensional space but the coordinate dependence of
fields and gauge parameters is restricted by a strong constraint

omoM - =0,  Opm... M- =0, (5.4)

the derivatives dpq transforming in the fundamental representation of G and the dots
representing arbitrary products of fields.

DFT can be deformed in terms of so-called fluxes or gaugings fanp [40, 41], a set of
constants that satisfy linear and quadratic constraints

fovre = fpanry s foun S fpr€ =0, (5.5)

and the following additional constraint is required to further restrict the coordinate depen-
dence of fields and gauge parameters

fan Op - =0 (5.6)

The generalized dilaton and frame transform under generalized diffeomorphisms and
H-transformations as follows

5d = POpd — %apé’ P (57’e—2d) , (5.7)
SE A\ = Le By + OB 0 (5.8)
where
LeEAN = LB v+ fup 2P EAg, (5.9)
SZEA v = EB pA™ . (5.10)

The DFT action can be expressed in terms of the generalized fluxes

Fase = 30BN EP epnp + franp EM 4BV Ec” (5.11)
Fu = 204d — OgE a4 EBM, (5.12)

as [45]
1 1 1
_ X2 Loap e cr Lo apyBeq,cF L1 AD BE CF
S /d e []:ABC]:DE}' <4H U ot T g
+ (204Fp — FaFp) (HAE —n1B) |, (5.13)
and it is fixed by demanding H-invariance, since the generalized fluxes are not H-covariant.

5.2 Parameterization and choice of section

Choosing specific global and local groups and parameterizing the fields in terms of metric,
two-form, vector and scalar fields one can make contact with the (toroidally compactified)
heterotic string modes and effective actions of the previous sections. To this aim, we first
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consider the theory at points of the moduli space in which the gauge group is G, x U(1) E X
U(l)%, and in the next subsection extend the construction to account for the maximally
enhanced gauge groups G, X U(l)']‘%.

Taking the space-time dimension D = d+ k and the gauge group G, x U(1)§ x U(1)’f{,
the G indices split as VM = (V#, V,, VM) and the H indices split as V4 = (Vi, Va, Va),
where p,A,A = 1,...,d (external)?> and M,a = 1,...,2k + N (internal), N being the
dimension of Gr. The splitting breaks G and H into external and internal pieces

G — Ge x Gy, H — H, x H; (5.14)
where

G. = O(d,d;R), G; = O(k,k+ N;R),
H,=0d-1,1;R)xO(l,d—1;R), H;=0(k;R) x Ok + N;R).

Then the G-vector VM contains a G-vector (V#,V,,) and a G;-vector VM = (V™ V,,, V1)

and the H-vector V4 contains a H.-vector (V,Vy) and a H;-vector Vo = (Vg, Va, V).

Under this decomposition, the degrees of freedom can be decomposed as

d(d+1) N d(d—1)
2 2
G By AM En®

dim (G/H) = D(D + N) = + d(2k+N) + kx (k+N)

where £)/® parameterizes the coset G;/H;. The G and H invariant metrics are

046, 0 0 0

St 0 0 0 0 NAB = dlag(—gm, JAB, _55575(11)7 6FG) )

V=10 0 0 & 0 |, (5.15)
0 0 6m, 0 O
" — diag(g 8= Oy OFC) -
0 0 0 0 sy Hag iag(95m, 9AB; 055 Oab, OFG)

We can parameterize the generalized frame in terms of the d-dimensional fields as

N T e e
Blu= oo | st et A | (519
veesy Al 0 V2Ery

where the vielbeins e,” and e;ﬁ for the right and left sectors define the same space-time

A
metric G, = qc,>NAgm(3,,E = euﬁg@eyB and C,, = By + %Aﬂ/[.A,,M.
The internal part of the generalized vielbein £2j; can be written in terms of the

background fields and perturbations as 2y = E§ar + 02y, with

Eoa 1 —eam — €a"'Com € —éanAqll
gOg - E €am — ég”Cnm égm —égn.A{l ) (5-17)
Eoa V2eaT A, 0 V2é4!

22This notation for the right and left indices should be distinguished from the notation & and « used for
the positive and negative roots of the gauge algebra in the previous section.
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where €%, and €%, are two different frames for the same background metric Gy, €z, €,

are the inverse frames and C,,, = B + %Afn./ln I
Then the generalized metric is

g,uu + Cpuco'z/gpg + AMPMPQ»AVQ _gupcp'u Cp,ugpaAoN + -AMPMPN
Hmn = _g'upcpy grv _g“pApN )
Cov G Agrr + AT Mayp —G"P A, Mun 4+ AymGPC Aoy

and the symmetric and G;-valued matrix My;n = E2110bEP N € O(k,k+ N;R) is

gmn + Clmglkckn + A}jnAFn _gnkckm Ckmgkl-AlA + AmA
MMN = _gmkckn gmn _gmkAkA ) (518)
CrnGM A + Apg —G" Ay krg + AerGM AN

where the fields depend on the external coordinates.

With this parameterization in (5.11), taking e=2¢ = v/—Ge~%% in (5.12) and resolving
the strong constraint (5.4) in the supergravity frame, after integrating (5.13) along the
internal coordinates one gets an action of the form of (the electric bosonic sector of) half-
maximal gauged supergravity [15, 16]

1 1
S = /dd)(\/_ige—%7 |:R + 4DMOD“Q0 _ EHNVPHHVP _ Z]_-MVM]_-;LVN/\/lMN
1
+§DMMMND”MMN - V} , (5.19)
where

1
Hu,=3 (O[MBW] - A%@VAp]M - 3fMNpAf‘j.A]VV.A§]> ,

Foy = 20, Al + M np AV AL
_ Q gP Q AP
DyMuyn = 0uMun + fup* A, Mon + fnpe A, Mug (5.20)
and the scalar potential is
1 1 1
V = EfMPRfNQSMMNMPQMRS + ZfMPQfNQPMMN + éfMNPfMNP ) (521)

This action reproduces heterotic supergravity in ten external dimensions for £ = 0
and G, = SO(32) or Eg x Eg, with the following identifications. The scalar frame is only
non-vanishing for £4M = é4M, and then Myn = kywy is the constant Killing metric of
Gp with M,N =T,A =1,...,496, and the second line in (5.19) vanishes. The gaugings

are non-vanishing only in the internal directions associated to the gauge group

fMNP:{fAm if (MN,P) = (AT.0) (522)

0 otherwise
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and are taken to be the structure constants of G, satisfying the linear and quadratic
constraints (5.5)

fare = fiara),  fiar fom® = 0. (5.23)

Identifying .AE = AE, B, = =By, G = G one gets the ten dimensional heterotic string
low energy effective action (4.1).

For k # 0 and generic values of the background fields, the gauge group is U(1)2*+16
and then there are no gaugings. In this case, (5.19) reproduces (4.1) when identifying the

generalized gauge fields with the string theory fields as
AM = E0aM AR = Eaa™ A+ E0a™M AL+ Ea™M AN
A AT
1 n AN n AN I
=5 Gon (A — A + Con (AT + A7) + V2AL Ap, | (5.24)
— Al (An 4+ A7) + V2A]

with M,N = 1,...,2k + 16. The components of the generalized scalar matrix M sy
are related with the background fields and massless modes of the string theory as G, =
Gmn + S(mn), Bioin = —Bmn — S[mn},A]m = A + Sim.

To make contact with (4.1) at the points of the moduli space giving G x U(1)%*
enhanced gauge symmetry, one simply extends the frame &4 in (5.17) to ég', the gauge
fields Aﬁ in (5.24) to include the non-abelian sector 2 of section 2.3, i.e. AL — AE, and the
scalars in (5.18) to AL, = (Al +SI §%) where the indices ', A, F,G = 1,..., N. Plugging
all this in (5.19) and taking for fys/np the structure constants of G, one recovers (4.1).

In the cases of maximal enhancement, we can take G; = O(k, N), with N being the
dimension of a simply-laced group of rank 16 + k. The £ left internal dimensions become
part of the dimensions associated to the Cartan subgroup of the enhanced gauge group,
the left KK gauge fields AJ}' become Cartan components of the non-abelian gauge fields
AE and the gaugings are the structure constants of the gauge group. In the next section
we deal with these cases in full detail and we also show that the action (5.19) reproduces
the right patterns of symmetry breaking when moving away from a point of enhancement.

5.3 Generalized Scherk-Schwarz reductions

We have seen that appropriately choosing the global and local symmetry groups and the
gaugings deforming the generalized Lie derivative (5.9), one can account for both the un-
compactified and the toroidally compactified versions of the heterotic string effective low
energy theory with gauge group G, x U(1)% x U(1)%. To describe the effective theory with
maximally enhanced gauge group G, x U(1)%, we perform a generalized Scherk-Schwarz
(gSS) compactification of DFT. Recall that the result of gauging the theory and parame-
terizing the generalized fields in terms of the degrees of freedom of the lower dimensional
theory is effectively equivalent to a gSS reduction of DFT [42], which has the advantage
of providing an explicit realization of the generalized vielbein E4™ giving rise to the en-
hanced gauge algebra under the generalized diffeomorphisms (5.11) [22, 23]. In this section
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we extend the construction to the heterotic case, and in particular, we will show that the
formulation of [23] allows to describe the Eg x Eg and SO(32) theories as two solutions of
the same heterotic DFT, even before compactification.

The generalized vielbein in gSS reductions is a product of two pieces, one depending
on the d external coordinates x* and the other one depending on the internal ones, yr,, yr:

Ea(z,yr,yr) = @4 (2)Ex (yr, yR) - (5.25)

The matrix ® parameterizes the scalar, vector and tensor fields of the reduced d-dimensional
action and the twist E characterizes the background.
Let us concentrate on the internal part of the vielbein

Ea™ (z,yr) = 2a”(2)EpM (y1) | (5.26)

where M =a=1,...,N + k, and N is now the dimension of G, (i.e. the k left internal
dimensions are absorbed by the Cartan directions of G). The matrix ®,P describes the
fluctuations over the background and the twist Ep* is an element of the coset %,
generating the constant fluxes fap® which gauge (a subgroup of) the global O(k, N) sym-
metry. We take Ep™ to depend on g, only, as this is the only sector with a non-Abelian
gauge group.

The scalar matrix can be written as

MMN — gabg Mg N — MaP () EaM (yp)EnY (y1), (5.27)

with
Mab(:v) = 5°d<I>ca(ac)<I>db(x) . (5.28)

We now expand on the explicit parameterization of ®(x) in terms of fluctuations that
can be identified with the string theory fields and on the twist EaM (yz) realizing the
enhanced gauge algebra.

5.3.1 Fluctuations around generic points in moduli space

In order to identify the massless vector and scalar fields of the reduced theory with the
corresponding string states at a generic point in moduli space, we first consider a reduction
on an ordinary 2k + 16 torus (i.e. no twist). There are no gaugings and therefore we get an
ungauged action with 2k +16 abelian U(1)516 x U(1)%, vectors AT, Aﬁ, A and (k+16) x k
scalars encoded in M,p,. The vectors and scalars contain the 16 Cartan generators, the
2k KK fields and the fluctuations of the metric, B-field and Wilson lines on the torus,

m
"

relation, consider an expansion around a given point in moduli space corresponding to
constant background metric G, B-field B and Wilson line A.
The internal part of the generalized vielbein in the left-right basis reads, at first order,

corresponding to the string states a ,aﬁ, ay's Ymns bmn, a{n in sector 1. To get the precise

ER —€p — éoco éo _é(]A(] 1 —e—¢eéC ¢é —¢éA
EL — ﬁ €y — éoC() éo —é()AO + 725 e—eC e —eA 5 (5.29)
Ey4 V2eAL 0 V2é V2eAt 00
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where now we denote ey and €y the frames and inverse frames for G to lighten the notation.
Note we are not varying the frame for the Killing metric €. Performing this expansion and
accommodating the terms so that it has the form of a gSS reduction & = ®(z)E, where
now the twist [E is constant, one gets

prt+d po—¢  —V2(é0+ 5€)5A¢
) =ld+5 | o +0¢ o —¢  —V2(éo+ 0e)5Aét
—V2e5Atel /285 AtE 0
with
or = deel £ decl, = (ég+ 06)(6C — SAAL)EL

The matrix of ® is an element of SO (k, k + 16;R), the component of O(k, k + 16;R)
connected to the identity. Inserting this into (5.28) we get, up to second order,??

IEE + %(MtM)aE Méb MéA
M?P = 599, 294> = M Lp + 5(MM?Y) g 0 . (5.30)
M 5 0 Iaa+ 5(MM") an
The k x k matrix M ; is
SJAAL — Apd A
MaE = _éOQméogn (5Gmn - 5B;nn) ) 0B’ = 6B + o0 T 0T (5.31)

2 Y
where 6G = deleg + elde + delde and §B’ is the variation of 6B under an Og shift (2.19)
with © = §B and an O shift (2.21) with A = JA (see footnote 4). The 16 x k matrix
MAE is

Mg = V26410 A1,60% (5.32)

The fluxes fap,¢ computed from (5.11) vanish as the twist E is constant and the theory

is not deformed. Then, taking the abelian field strengths F,, = (ng,Fﬁy,F ;3,) for the

U(1)% and U(1)5+16 vector fields, we get (up to first order in fluctuations)
1 1 - - 1 1
—Zf%MMN]:NW = —Zng%ng - inga@ng — ZF;j‘VéABFﬁ
L a b _Lloa b
—§F5VM@F@ - §FWMAEFW

and
1 o MN 1 “w mn 1 “w mn 1 " Im
gD,uMMND M = 18”5Gm"8 G — Zﬁu(?an@ dB™" — §6M5A1m8 0A

Plugging these terms in (5.19), the effective action (4.1) derived from toroidally com-
pactified string theory is reproduced if we identify, as in the previous section, FEZ, =

emF . Fi = egmFon, Fi, = 4 1FL,. 6Gmn = Stmn)> 6Bmn = Sjmn)s 0A1m = Sim, where
I

the vector and scalar fields correspond to the string theory states a’”’ T

W ay,a,, Si, in sector 1

of section 2.3.

ZWe actually get a second order piece in the off-diagonal terms, namely instead of M, one gets M + Q,
where Q contains terms of the form de’dé, §B’6B’, etc., but this second order piece is not needed for our
purpose of computing the action up to quartic order.
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5.3.2 Symmetry enhancement

In order to incorporate the massless degrees of freedom that enhance the U(1)'6+% gauge
symmetry to a N-dimensional group G, of rank 16 + k, we identify the 16 4+ k torus with
the maximal torus of the enhanced symmetry group, so that the O(k, k4 16;R) covariance
of the abelian theory is promoted to O(k, N;R). The k + 16 left-moving vectors of the
previous section combine with the extra massless vector states in sector 2 of section 2.3,
giving a total of N left-moving massless vectors aE, which together with the k right-moving
vectors ay, transform in the fundamental representation of O(k, V).

The (N +k) x (N +k) matrix M2P is expanded as in (5.30), where the scalar fluctuations
S: S, are now combined in the N x k block Mgz = éat Srmé™g as

In’
Lo+ 2(M'M)— Mt
Mab — ( ab 2( )ab ) aG . ) (533)
M Irg + 5(MM")pa

The effective action is formally as (5.19), where now the non-abelian left vector fields
A/Cj and scalars Sgy, absorb the KK left vector and scalar fields, yielding
1

1 — 7 1 G ]. G —
—ZF%M MNFN = 4F5V5%Fﬁ,, — ZF;f;éF(,uf?W — 5.ijwgazﬂ‘j,,,

with F§, = 60 FE, = é6(20, A0 + fT AR AD) and

1 1 _
g DuM mnDFMMN = EDHMGED“MG‘I ,

with D, Maa = 8,Maa + [ ra AL M.

The structure constants in the field strengths, covariant derivatives and scalar potential
can be explicitly computed from the twist Ea™, generalizing the procedure introduced for
the bosonic string in [22, 23] (see also [46]). Namely, the extra massless vectors with non-
trivial momentum and winding can be thought of as coming from a metric, a B-field and a
Wilson line defined in an extended tangent space, with extra dimensions. The fields in this
fictitious manifold depend on a set of coordinates dual to the components of momentum
and winding along the compact directions. Promoting the internal piece of the vielbein
Ea™ to an element in O(k, N;R), the fluxes computed from the deformed generalized Lie
derivative by

fabe = 3B OMELVEe " nnp + Qabe » (5.34)

reproduce the structure constants of the enhanced gauge algebra, with the deformation
Qapbe defined below. A dependence on the left internal coordinates is therefore mandatory,
but we restrict it to dependence only on the Cartan subsector, namely on the k + 16
coordinates yi, E M = IEaM(yi).24

% Note that the space itself is not extended further than the 16-dimensional torus and the double torus
of dimension 2k. The derivative in (5.34) along “internal directions” has only non-zero components along
the k 4+ 16 Cartan directions of the p + k-dimensional tangent space.
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To be specific, start with the generalized vielbein

—eC & —eA\ [dym
Ea=| e 0 0 aym | (5.35)
EAL 0 & dyr

where e,é,é, A and C are the fields on the torus at the point of enhancement. Then,
identify Oym <+ d@,, rotate to the left-right basis on the spacetime indices and bring the
generalized vielbein to a block-diagonal form rotating the flat indices, which leads to

—e 00 dyr
Err =VvV2| 0 e0 | | dys | . (5.36)
00é dy’

where

1
-G™(G+ C)nldyl — diy, + A,ILdyI]

m 1 mn U m
dyf = SG"((G = Chudy' + din — Apdy) , dyff = 3

1
dit = kVdyy + \ﬁAfndym .

Finally, we extend this (2k + 16) x (2k + 16) matrix so that it becomes an element of
O(k, N) of the form

—e0 O 0
0e O 0
M _
ERL(yL) - \/5 00 116><16 0 ’ (537)
1
00 O ﬁj

where the index M =1,--- ,k+ N and the (N —(k+16)) x (N — (k+16)) diagonal block J
contains the left-moving ladder currents associated to the «; roots of the enhanced gauge
group, Jo'(yh, ..., yit0) = S4ie?V20i UL Note that the (N + k) x (N + k) matrix (5.37)
depends only on the coordinates associated to the Cartan directions of the algebra. In case
the gauge symmetry is enhanced to a product of groups, J contains the currents of all the
factors, each set of currents depending on the corresponding Cartan directions.

Taking for the deformation

e(a, f) 6ayp4+  if two roots are positive,
Qape =

—e(a, ) batpty if two roots are negative,

if a, b, c are associated with roots, and zero if one or more indices correspond to Cartan
generators, all the structure constants can be obtained replacing (5.37) in (5.34). The
deformation accounts for the cocycle factors that were excluded from the CFT current
operators in (5.37) but are necessary in order to compensate for the minus sign in the
OPE J%(z)J?(w) when exchanging the two currents and their insertion points z <> w
(cacg = e(a, B)catp). It was conjectured in [47] that such factors would also appear in
the gauge and duality transformations of double field theory, and actually, they can be
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included without spoiling the local covariance of the theory. Indeed, the cocycle tensor
Qabe satisfies the consistency constraints of gauged DFT, (5.5) and (5.6), and it breaks
the O(k, N) covariance of (5.19) to O(k,k + 16). In this way, all the structure constants
can be obtained from (5.34) using the expression (5.37) for the generalized vielbein with
the appropriate currents corresponding to the enhanced gauge groups. All the gaugings
obtained in this way satisfy the quadratic constraints (5.23), and therefore the construction
is consistent.

It is interesting to note that the deformation ., can be chosen to be the same one
for the Eg x FEg and SO(32) groups. Indeed, we show in appendix G that both groups have
26880 non-vanishing structure constants of the form fa[f“rﬁ , half of which can be chosen
to be +1 and the other half —1, so that one unique deformation accounts for both heterotic
theories. The generalized vielbeins giving the remaining structure constants which involve
one Cartan index can be obtained from (5.37) with J containing the Eg x Eg or the SO(32)
currents. Choosing the former or the latter amounts to choosing a background, and in this
sense the two heterotic theories can be considered as two solutions of the same gauged
DFT, even before compactification.

Plugging all this in (5.19), we get precisely the effective action (4.1) derived from the
string amplitudes, where the potential is, to lowest order in M,

1 = 7 7 !
L/::IéﬂﬁwﬂipaﬂﬁiﬂmybechF(;H. (5.38)

Note that unlike in the bosonic theory, there is neither a cosmological constant nor a
cubic piece in the potential, which is now bounded from below. Additionally, the quadratic
piece cancels. There is also a sixth-order potential, but in order to get its explicit form we
would need to expand M in (5.30) to quartic order in the fields.?

5.4 Away from the self-dual points

In this section we show that moving away from a point of enhancement corresponds to
giving a vacuum expectation value to M A‘i, the piece in the matrix of scalar fields that
belongs to the Cartan subsector, corresponding to the KK scalars for the metric, B-field
and Wilson lines. In the next section we show that the mass acquired by the vectors and
scalars that are not in the Cartan directions agree with the string theory masses.

In the neighborhood of a given point of enhancement, the scalars in the Cartan sub-
sector acquire a vacuum expectation value vA%. Then we redefine

MAa e e (5.39)

so that <M G‘_z> = 0 for all indices G,a. These vevs spontaneously break the enhanced
symmetry: some or all of the left-moving vectors in non-Cartan directions Aj; get a mass
from the covariant derivative of the scalars, given by

Mmia = —faaAfaanAavBa = a 0% 0P = a2 (5.40)

25This is not necessary for the quartic order as the n-th order contributions to Map cancel in the n-th
order contribution to the potential.
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Note that, as expected, this is always positive, unlike in the bosonic theory.
We discuss now in more detail the process of spontaneous symmetry breaking. It is
simpler for this to use the Chevalley basis for the Cartan generators, where the Killing

form is equal to the Cartan matrix x;; = C;;, and the components of a simple root al

J
o4 T Iy, _ si
(where the subscript I labels the rooP) are (a'); =46" ;.

We thus have for simple roots o/ and non-simple roots 8 = (n'B ) fai ,

m? =P, mis =180 =0l (5.41)

We see that by giving arbitrary vevs to all scalars in the Cartan subsector, all the
gauge vectors corresponding to ladder generators acquire mass and the gauge symmetry is
spontaneously broken to U(l)lz+16 x U(1)%. Similarly, if v has a row with all zeros, let’s say

the row fo, then the corresponding (complex) vector A% remains massless, and there is at
least an SU(2) subgroup of G, that remains unbroken. The converse is also true, namely

i va e m?, =0 (5.42)

AaIO

For the vectors associated to non-simple roots g the situation is more tricky as it depends

on which integers nf are non-zero. AP remains massless if v/@ = 0 for all I such that

nf # 0 and for all a.

Note that one cannot give masses only to the vectors corresponding to non-simple
roots: if all the vectors corresponding to simple roots are massless, then necessarily v = 0
and there is no symmetry breaking at all. This implies that the spontaneous breaking
of symmetry always involves at least one U(1) factor, corresponding to the Cartan of the
SU(2) associated to the simple root whose vector becomes massive. Thus we cannot go
from one point of maximal enhancement in moduli space (given by a semi-simple group)
to another point of maximal enhancement by a spontaneous breaking of symmetry.

Regarding the scalars, introducing the vevs for those in the Cartan subsector in the
potential (5.38), we get at quadratic order in the scalar fields

1 all 1 A Al A1 7 =
EfFGHfF (M M)pp (M'M)cer — 3 > <anHfA g v 350" 4 MacMo©

a,b,c
2040 By i My Mag) - (5.43)

The first term gives

1 B R
~1 Z m2|M°°* | where mi:Z(aA’UAE)Q, (5.44)

all roots o, ¢ b

and then replacing it in the action (5.19), we see that the mass of the scalar fields agrees
with the mass of the vectors (5.40). The second term can be written as

2

i Z ZmEMO‘B ,  where mj = Z aAvAl—) (5.45)
b A

all roots
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and M =) ; msM @b js the Goldstone boson contribution which is eaten by the vectors to
become massive. This agrees with the results in [25] on which we expand in the next section.

We thus get that for arbitrary vevs, all vectors and scalars except those along Cartan
directions acquire masses, and the symmetry is broken to U(1)¥™¢ x U(1)k. If vla =
for a given I and for all a, while all other vevs are non-zero, then the remaining symmetry
is at least (SU(2) x U(1)1%), x U(1)k where the SU(2),, factor corresponds to the root
a0, and the massless scalars are, besides those purely along Cartan directions, at least all
those of the form M@,

5.4.1 Comparison with string theory

Let us compare the vector and scalar masses that we got in the previous section from the
double field theory effective action, to those of string theory given by (2.16).

We decompose the generalized metric M as in (5.27), where E is the twist containing
the information on the background at the point of enhancement and M® represents the
fluctuations from the point, parameterized as in (5.30) in terms of the matrix M in (5.31).25
Inserting this in the mass formula (2.16) we get

_ 1 I+ SMtm Mt
m? =2 (NN L Bsector ) e (It L |EZ, (5.46)
5 NS sector M Tpi16 + 5 MM

On the other hand, from eq. (2.34)

PaR

EZ = | parL ;<pR> . (5.47)
A pL
pr

We thus get

= 1 R sector 1 1
2 t t t t
m- =2 N+ N — + R I+ -M"M + 5 I+ + MM
( {g NS SeCt()I'> p < b 2 >pR p ( k16 2 >pL

+p Mtpr + ph Mpg . (5.48)

The bosonic states that are massless at the point of enhancement (when M = 0) have
pr=0and N = % in the NS sector.

The left-moving vectors have either N =1 and py, =0, or N =0 and p; = a with a a
root of the enhanced gauge algebra (and thus |a|? = 2). The former vectors (Cartan) are
massless for any M, while, according to (5.48), the latter have mass

1
mie = §atMtMa . (5.49)

On the right sector the only massless vectors are the Cartan, which are massless for any
M. This agrees with the masses (5.40) if we identify

v=—&((6G — §B")éf, V25 AE') . (5.50)

26Note that M here is a (k+16) x k matrix spanning along the Cartan directions only, as in section 5.3.1.

— 55 —



The scalars in sector 1 (both legs along Cartan directions) have pr, = 0, N = 1 and
N = %, and are massless for any M. The scalars in sector 2 have N = 0, N = % in the
NS sector, and p;, = a. Their masses are thus exactly those of the vectors corresponding

to the same root, namely

M2 jaa = MYa (5.51)

in agreement with what we have found from DFT, eq. (5.44), confirming that these are the
Goldstone bosons of the spontaneous breaking of symmetry.

It is interesting to recall that the combinations fz2% = f Aoz, iz appearing in the vector
and scalar masses (5.40) and (5.43) agree with the coefficients of the string theory three-
point functions involving one massless right or left vector and two massive left vectors.
Then following [25], one could identify the DFT fluxes with the string theory three-point
amplitudes and conclude that the fluxes depend on the moduli. Actually, from a gSS DFT
point of view, the vevs can be thought of as being encoded either in the twists Ea™ (y7)
or in the fluctuations ®,P(z). In this section we have developed the latter identification,
i.e. the fluxes nga are computed from (5.34) with the twist (5.37) containing the currents
corresponding to the enhanced gauge group, and the symmetry is broken by the vevs
shifting the fluctuations in (5.39). In the former case, i.e. to get moduli dependent fluxes,
one can replace the currents in (5.37) by those of the massive vectors in (4.4), and then the
twists depend on both the left- and the right-moving internal coordinates, Ea™ (yr,yr).
In this way, the fluxes computed from the deformed generalized Lie derivative (5.34) get
mixed indices from the left and right moving sectors, reproducing the coefficients of the
string theory three-point functions which involve massive vectors (4.13). One could then
ax

interpret that the fluxes fa encode the information about the background through the

vertex operators creating the string theory vector and scalar states.

6 Summary and outlook

In this paper we have analysed compactifications of the heterotic string on T%, focusing on
the phenomenon of symmetry enhancement arising at special points and curves in moduli
space. The O(k, k + 16) covariant formulation and the rich structure of the moduli space
of these compactifications were reviewed in section 2. At special points in moduli space,
the abelian U(1)% x U(l)lz+16 symmetry that arises at generic points is enhanced on the
left-moving sector to finite groups or product of groups of rank k + 16 in ADE. While the
symmetry group is maximal (i.e. has no U(1) factors) at isolated points, non semi-simple
groups arise at higher-dimensional subspaces of the moduli space.

The 17-dimensional moduli space of S' compactifications, involving the radius of the
circle and the 16 components of the Wilson line along the Cartan directions of the SO(32) or
E3 x Eg gauge group, was studied in detail in section 3. We found all the possible maximal
enhancements from the generalized Dynkin diagram of the Narain lattice T'!7. These are
displayed in tables 1 and 2. In particular, we showed that the same enhancements can be
achieved in both heterotic theories (e.g. SO(34) enhancement from the Eg x Eg string) and
briefly explained how to obtain them in appendix B.
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The discussion of the explicit enhancement process is split into compactifications with
m-A¢€Zand m-A ¢ Z. Although all the enhancements can be obtained with Wilson
lines that are not on any lattice by appropriately choosing R (including those with SO(32)
or Eg x Fg subgroups), the distinction is useful to understand the enhancement process.
When the Wilson line has zero vacuum expectation value, or equivalently when the vev is
on the root lattice I'y, the gauge group of the uncompactified theory is unbroken at generic
radius, and the total gauge group on the external space is U(1)g x (U(1) x SO(32));, or
U(1)r x (U(1) x Eg x Eg);. At R = 1, there are additional states with momentum and
winding that become massless and enhance the U(1); to SU(2)r. For other values of
Wilson lines and generic R, the gauge symmetry is determined by the subset of heterotic
momenta 7 that have integer inner product with the Wilson line. In the SO(32) theory,
one has the interesting possibility of a Wilson line that has integer inner product with all
m, i.e. a Wilson line in the dual root lattice, but which is not in the lattice, namely A € I',,
or A € T'.. These two possibilities lead to an unbroken SO(32) gauge symmetry at any
radius, while at R? = % there are extra massless states with non-zero momentum and/or
winding number on the circle, giving a total 17-component left moving momentum with
mixed circle and chiral heterotic directions which enhance the gauge symmetry to SO(34).

We developed a method for computing and drawing two dimensional slices of the 17-
dimensional moduli space which neatly exhibit the distribution of the enhanced groups.
The family of functions corresponding to each of the curves and the heterotic momentum of
the additional massless states can be obtained from this analysis. While non maximal en-
hacement occurs at lines, maximal enhacement occurs at isolated points. More interesting
figures arise at smaller radii, and the smaller the radius, the richer the pattern of enhanced
gauge symmetries, as there are more winding numbers that lead to massless states. More-
over, we were able to univocally relate the intersections of the curves in the figures with the
enhanced groups obtained from the generalized Dynkin diagram. An interesting output of
the construction is that, in order to obtain groups that contain SO(32) from the I's x I'g
theory or groups that contain Fg x Eg from the I'jg theory it is necessary to choose a slice
where, for a generic point, the group is SO(16) x SO(16) or a subgroup of it.

The points of enhacement are fixed points of T-duality symmetries. In section 3.4,
we presented the action of the standard T-duality exchanging momentun and winding
number, and studied its fixed points, which are at R?> = 1 — %|A|2. At these points, the
dual background has the same radius and opposite Wilson line, A’ = —A. If 24 is in the
root lattice, then A = —A ~ A and the full background is self-dual. For Wilson lines
with only one non-zero component, as those explored in section 3.3, the fixed “points”
of the T-duality symmetry are not really points, but in this two-dimensional subspace of
moduli space they correspond to lines of non-maximal enhancement symmetry, where the
Wilson line is a function of the radius (A = A(Rsq)), and is such that A ~ Agq, with
Al = 2(1 - BY).

More general dualities were studied in section 3.5, in which the dual spectrum, defined
by the 17+1-dimensional vector of left and right-moving momentum of the states, has a
minus sign on the right-moving component, while on the left-moving part of the vector,
it leaves the circle direction invariant, while it inverts 0, 1, 15 or 16 of its components
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along the heterotic directions. For generic Wilson lines, we studied the fixed points of
these symmetries that have the largest radius. The results are given in table 4. The
columns and rows in this table correspond respectively to the “theories” before and after
the duality (the dualities that invert an odd number of components of the left-moving vector
are dualities between a theory with a given lattice and a theory with another lattice, for
example between the SO(32) theory (denoted by I'is) and what we called SO(32)~ (I'j),
differing by the choice of chirality of the spinor representation). We indicate the radius of
the fixed point and the possible Wilson lines before and after the duality transformation.

We then concentrated on the situation in which the Wilson line has only one non-
zero component, in order to study in full generality the pattern of fixed points. We found
that the fixed points of the symmetries that do not invert the momentum along the cir-
cle or the direction where the Wilson line has a vev, the enhancement of symmetry is
maximal, given by SU(2) x SO(32) (SU(2) x Eg x Eg) for dualities that leave the full
vector pr, invariant, and SO(34) (SO(18) x Eg) for dualities that leave invariant only the
momentum along the circle and the direction where the Wilson line is, while invert the
other directions. In the former case, the fixed points are those that satisfy the quantiza-
tion conditions {R™!, %R;lA, (%%ﬁ + R)} € Z, while for the latter the requirements are
{%Ril, %RAA, %(%% +R)} € Z. We collect all the points satisfying these constraints,
together with the corresponding Wilson lines, in table 3.

The effective field theory reproducing the three and (some) four point functions of
massless states at the enhancement points was constructed in section 4 and reformulated in
terms of O(k, N) multiplets, with N the dimension of the gauge group. We verified that the
string theory results are encoded in a generalized Scherk Schwarz (gSS) compactification of
heterotic DFT, not only at the special points in moduli space giving maximally enhanced
gauge symmetries, but also when moving slightly away from the selfdual points, where
many of the fields acquire mass. In the process of symmetry breaking, there is always a
U(1) factor in the unbroken symmetry group at any point in the neighborhood, reflecting
that non maximal enhancement appears at lines rather than isolated points in the slices of
moduli space represented in the figures of the preceeding sections.

The equivalence between gSS compactifications and gauged DFT was used to show
that a deformation of the generalized Lie derivative, defined by the cocycles of the gauge
algebra, provides a gauge principle that determines the low energy effective field theory
of the toroidally compactified string at the enhancement points. The construction of [23]
was extended to obtain the toroidally compactified heterotic string effective field theory in
arbitrary dimensions. In particular, we have shown that the SO(32) and Eg x Eg algebras
have the same cocycles, and hence a unique gauged DFT describes the two heterotic the-
ories with these gauge groups in any dimension, and even before compactification. This is
an interesting result, which extends the known equivalence of both heterotic string theo-
ries on T* to the (gauged) supergravity limits, even of the uncompactified theory. As a
consequence, the low energy effective field theories with SO(32) or Eg x Eg non-abelian
symmetry in any dimension can be considered as two solutions of the same gauged DFT.
In this theory, the generalized vielbeins producing the structure constants from the gener-
alized Lie derivative are parameterized in terms of the currents in the vertex operators of
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the vector fields. The problem of finding a generalized vielbein or a bracket that gives rise
to the full algebra without adding cocycles is left for future investigation.

An obvious natural extension of our work is to consider in more detail toroidal com-
pactifications to lower dimensions. Not only should it be possible to find more appealing
models from a phenomenological point of view, but a richer structure of gauge symmetries
will certainly appear. Already in the next simplest step, that of examining the structure
of the moduli space in compactifications on T2, a non-vanishing B field background turns
the analysis more challenging but also more interesting, and important applications to
F-theory are expected.

The possibility to construct a low energy effective action invariant under the discrete
O(k, k+16;Z) duality group, raised in [50], is another interesting question to address. Since
string backgrounds related by duality yield the same physics, one expects that an O(k, k +
16; Z)-invariant low energy effective theory exists. Generic O(k, k + 16;Z) transformations
map states that are outside the Cartan subalgebra of the enhanced gauge group into massive
modes, and the typical orbit of a string state has an infinite number of points. This theory
should contain all the fields which correspond to string states that become massless at some
point of the moduli space. The number of such fields is infinite, and on a given background
all except a finite number of them are massive. Previous work in this direction includes
the duality invariant low energy effective action for the A/ = 4 heterotic string constructed
in [50, 51], the description of the entire moduli space from compactifications on higher
dimensions performed in [23] and the introduction of a non-commutative product on the
compact target space as well as new vector and scalar fields depending on double periodic
coordinates that was suggested in [52].

The emphasis in our work has been to study gauge symmetry enhancement in toroidal
compactifications of perturbative heterotic string theory, both for the characterization of
the string theory moduli space and as a symmetry of the low energy effective theory.
Clearly, it would also be desirable to explore extensions and generalizations to other inter-
nal spaces, as well as to include non-perturbative effects, where the physics of symmetry
enhancement plays an important part. In particular, winding heterotic Fg x Eg states are
related to the dynamics of D-particles in the presence of D8-branes and orientifold planes
in type I’ superstring theory, and have been crucial in the understanding of subtle aspects
of the Type I/heterotic duality [38, 39, 53, 54]. We hope that the methods developed here
are useful to analyze these questions further.
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A Lie algebras and lattices

Modular invariance of the one-loop partition function of the heterotic string implies that the
16-dimensional internal momenta must take values in an even self-dual Euclidean lattice,
I' = I'*, of dimension 16. There are only two of these: I's x I's, where I'g is the root
lattice of Eg, and I'1g, which is the root lattice of SO(32) in addition to the (s) or (c)
conjugacy class

Fg X Fg = Fg for Eg X ES (Al)
T = Fg +I'y for 80(32)
In this appendix we summarize some basic notions on these lattices, which are named
Narain lattices.
Given a Lie algebra g of rank n, taking arbitrary integer linear combinations of root

vectors, one generates an n-dimensional Euclidean lattice I'y, called the root lattice. E.g.,
for the rank n orthogonal groups SO(2n), the n component simple root vectors are

(£1,+£1,0,...) all other entries zero, (A.2)

and all permutations of these. For Ejg, the eight component vectors

(+1,+1,0,0,0,0,0,0) + permutations
141 41 41 41 41 41 41 SR (A-3)
(:I:i, +5,+35,+35,+5, 5, %5, :|:§) even number of ” — 7 signs
contain the 240 roots, i.e. the 112 root vectors of SO(16) and 128 additional vectors.

Any Lie group G has infinitely many irreducible representations which are characterized
by their weight vectors. Irreducible representations fall into different conjugacy classes, and
I'y can be thought of as the (0) conjugacy class. Two different representations are said to
be in the same conjugacy class if the difference between their weight vectors is a vector of
the root lattice.

While Eg has only one conjugacy class, namely (0), the SO(2n) algebras have four
inequivalent conjugacy classes:

e The (0) conjugacy class, i.e. the root lattice, contains vectors of the form

n
(n1,...,np), ni€Z, Zni:Omon. (A.4)
i=1

e The vector conjugacy class, denoted by (v), contains vectors of the form

(n1,...,nn), n; €%, Znizlmon. (A.5)
i=1

e The spinor conjugacy class, denoted by (s), contains vectors of the form

1 1 -
<n1+277nn+2>7 nleZ? ;nl_omOdz <A6)
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e The (c) conjugacy class contains vectors of the form
+1 +1 € 7 z”: ; = 1 mod 2 (A.7)
Mttt ), , -lnz— mod 2. .
i

The weight lattice I'y, is formed by all weights of all conjugacy classes including the
root lattice itself. Clearly I'; C Iy, and for a simply-laced Lie algebra, which roots have
squared modulus 2, it can be shown that I'y = I';,. Therefore, the weight lattice of Eg
contains the weights of the form

I‘S : { (nl,...,ng) (AS)

(ni+35,....,n8+35) , > iy Mi = even integer

with n; € Z, is identical to its root lattice, which implies that it is even self-dual. It is also
identical to the SO(16) lattice with the (0) and (s) conjugacy classes

A necessary condition for a self-dual lattice is that it be unimodular. The SO(2n) Lie
algebra lattices are unimodular if they contain two conjugacy classes. The weight lattice
of Spin(32)/Zs is identical to the SO(32) lattice with the (0) and (s) conjugacy classes. It
is even self-dual and it’s vectors are:

(n1,...,n16)
Tl . ) . " ' (A.9)
(nl +3,..-5n16 + 5) Zi:l n; = even integer

Both the root lattice of Eg x Eg and the weight lattice of Spin(32)/Zs contain 480
vectors of (length)? = 2 which are the roots of Fg x Eg and SO(32), respectively.

It is convenient to write the conjugacy classes of SO(32) in terms of conjugacy classes
of representations of SO(16) x SO(16). We denote by (zy) a vector with the first eight
components in the conjugacy class (x) of SO(16) and the last eight in the class (y). = and
y can be 0, s, v or c. We then have 16 conjugacy classes (xy). The SO(32) conjugacy
classes correspond to the following SO(16) x SO(16) pairs

(0) = (00), (vv)
(s) = (ss), (cc) (A.10)
(¢) = (s¢), (cs)
(U) = (Ov)v (UO)

We have then

T'g = F(l)ﬁ + I‘;G = (00), (vv), (ss), (cc)

(A.11)
Is x I's =I5 = (I + %) x (I§ +I'5) = (00), (s5), (0s), (50)
The dual to the root lattice of SO(32) is
(I’(l]ﬁ)* =TIy = (00), (vv), (ss), (cc), (0v), (v0), (sc), (cs). (A.12)
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We also use the following properties of the lattices

(0s), (s0)
(vv), (cc)
Fig M s = (00), (s5) (A.13)
(00), (ss), (vv), (cc), (ve), (cv), (0s), (s0)
(ve), (cv)
Note that both for SO(32) (or rather Spin(32)/Zs) and for Eg, one could have chosen

the opposite chirality, namely the (c) class instead of (s). We will denote this choice
SO(32)~ and Eg. We can then build the following pairs

I =30 + T = (00), (vv), (sc), (cs)
. . 8 8 8y — cc c), (c
Iy x Ty = (I5+T%) x (T5 +T§) = (00), (cc), (0c), (c0) (A14)
I‘; xTg = ( + FS) (FS + T8) = (00), (sc), (0c), (s0)
Ty x Ty = (T§ +T%) x (T§ +T%) = (00), (cs), (0s), (c0)

B Generalized Dynkin diagram of I''»7

The equivalence of the two heterotic strings on S! is determined by the uniqueness of
the Lorentzian I'M'7 root lattice. The generalized Dynkin diagram of I'17 is obtained
by adding roots associated with the crosses in the following extension of the SO(32) and
FEs x Eg Dynkin diagrams respectively

X

W (B.1)

O—E—O—O—O—CXXXO—O—O—O—E—C (B.2)

The 17-dimensional moduli space of inequivalent compactifications can be chosen to be
delimited by 19 boundaries, each of them associated with one of the nodes of the generalized
Dynkin diagram

19 18
17 16
1 2 3 45 6 7 8 9 1011121314 15 (B.3)
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A possible fundamental region for the moduli space is determined by the points satis-
fying all of the following inequalities

Node Fund region for I'4 Fund region I's x I'g
1<:<6 A <A A <A
7 A7 < Ag A < Ag+1
8 Ag < Ag S0 A2 > 92— 2R?
9 Ay < Ay Ag < App+1
10<i<15 A <A A <A
16 A <1 - Aygs Ag < —Ass
17 —Ay < Ay —Ay < Ay
18 Yl A > 2 2R >ile Ai >0
19 Yi(Ai—3)?>2-2R" | ¥ Ai<0

This defines a 17-dimensional surface resembling a chimney [38]. In I'yg, the first 17
nodes define walls parallel to the R direction and the last two nodes define hyperspheres
which delimit the bottom of the chimney. In I's x I'g, there are 18 walls and only one
hypersphere at the bottom defined by the 8th node . At the borders of the fundamental re-
gion, where some equalities are saturated, the gauge symmetry is enhanced. The enhanced
gauge group is obtained by removing all the nodes of the extended Dynkin diagram except
those with saturated inequality. Hence, the maximally enhanced symmetries saturate all
but 2 of the inequalities.?” It can be shown that all the possible combinations of saturated
inequalities produce Dynkin diagrams of the ADE classification.

Some sections of the bottom of the chimney are represented below in figures 8 to 23
by the red curves that intersect the horizontal axis and the purple curves that intersect the
A= % line. These are the sections of the hypersphere associated respectively to the nodes
18 and 19 in the I'1g case. The absence of purple curves in the first eight figures is related
to the fact that for Wilson lines with more than 7 zeros there are no spinorial roots which
makes the inequality of the 19th node impossible to saturate.

All the maximally enhanced groups of the heterotic string on S* are listed in the tables
of section 3, where we give the point in moduli space lying in the fundamental region where

these arise.

C Maximal enhancement points for A = (A;,015)

In this appendix we show how to obtain the maximal enhancement points for the particular
case of Wilson lines with only one non-zero component, treated in section 3.3. We also
prove that the only possible maximal enhancements for Wilson lines with only one non-zero
entry are to SU(2) x SO(32), SO(34), SU(2) x Eg x Eg and SO(18) x Ex.

2T Actually, if the group has one or two Es, 3 or 4 nodes have to be removed instead of 2.
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The maximal enhancement points are those where two or more curves intersect.
There are three types of intersections: ay, g, (R) = Guws,go(R), buwy,gi (R) = buy,g (R) and
Ay g1 (R) = byy g0 (R), that we treat separately. In the case of I's x I's, the curves b can in
principle have a curve ¢ on top of them.

C.l aw, g (R) = Guy,g,(R)

_ 2 E1 V2 - 2wiR? 2¢f - 1 e

a?,U1,q1 (R) wl ) wl
(C.1)
_ 2qaE2 /2 - 203R?  2¢} -1 7
Ay, (R) = ws ) ws €

imply

Frwz/2 — 2wiR? 9 w11/2 — 2W3R2 = 21wy — 2qowy = C' = 2C € 2Z. (C.2)

The case C' = 0 is trivial, so we must assume C' # 0, which leads to

9 9 2 2 2 12)\2
pr= 2 (Zwit2uy — 7). (C.3)
o 8wl wlC"

—9g2 o2
Defining N = a wQIql)w2 + a 2q2)w1 +4q1q2 € Z, we can rewrite (C.3) as

w2
N%?=4-20"R?. (C.4)

Since (1—2¢?) and w; are odd, N is even. Also, since C" and R are non-zero we get N? < 4,
which implies N = 0, then R? = % Then the radius where a curve a with winding w;

intersects another curve a with winding ws is
R =wi+wj. (C.5)

The constraint

2 2 2 2
wi +w wy +w
|qrwz — qowr | = 4/ % - % must be a perfect square .

If w; = wy = w, then q; = g2 & 1. The winding must be a divisor of both 2¢? — 1 and
2g3 — 1, but these numbers are coprime Vq;. Then the only possible value of w is 1. In
conclusion, the only curves a with the same winding number that intersect are aj 4(R) and

a1 q+1(R). And the intersection is on R = L

V2
C.2 bwl,ql (R) = b’wz,qz (R)

214+ 141 /1 -2wiR?  2qi(q1 4+ 1) <7

bw: o (R ;
17QI( ) wl wl (C 6)
_ 2q2 4+ 142 4/1 —203R?  2q3(q2 + 1)
wa,QQ (R) - Wy 5 W =/

In this case,

Fiwoy/1 — Zw%RQ +5 w14/ 1-— QU)SRQ = (2(]1 + 1)w2 — (2(]2 + 1)11)1 =Cel. (07)
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IfC =0, then w;y =wy and ¢ = qo. If C' #0

1 (w} + w3 — C?)?
R? = — L 2 . C.8
2C? SwiwiC? (&)

Defining N = 2ot 4 20200t (2¢1 +1)(2¢2 + 1) € Z, we get

w1 w2
N?=1-2R*C*<1 = N=0, (C.9)

and then R? = ﬁ Replacing in (C.8), C2? = w% + w%, and then the radius where curve b

with winding w; intersects curve b with winding wy is R~2 = 2(w? + w3).
The constraint

1(2q1 + Dws — (2g2 + Dwy| = \/w? + w3 = wi + w3 is a perfect square.  (C.10)

If w; = wy = w then |2(q1 + ¢2)| = vV2w. The Lh.s. is integer and the r.h.s. is irrational,
then there is no winding such that by, g, (R) = by,g,(R).

C-3 awl’ql (R) - be,qZ (R)

2q1 £1 /2 — 2w?R?2 2> —1
auy y(R) = S VP, F e 7 (C.11)
1 1
2 149 +/1—2w2R2 2 1
b g (R) = 21222 Wi 2p@etl) g, (C.12)

w2

w2
Frway/2 — 2wIR2 £5 w1/ 1 — 2wWIR? = 2quws — (22 + V)wy = C € Z. (C.13)

Since w; is always odd, then C' is also odd (in particular it is non-zero). Then

1 (w? + 2w3 — C?)?
2 1 2 2 2 p2

where N = (1_2'1%)102 — 2‘12(‘12+1)w1 + q1(292 + 1) € Z, and then N = 0 or 1, which give

w1 w2

R? = % or R7% = ﬁ From (C.14) we obtain C? = w? + 2w? or C? = (w; — w)? + wi.

Then the radii where a curve a with w; intersects another curve b with wsy intersect are:
R2Z=wl+2w2 or R2=2((w; —wy)?+w?) (C.15)
For each case we have one of these constraints:
12q1w2 — (2g2 + Dwy| = y/w? +2w2  or [2qrws — (2g2 + 1wy | = \/(w1 — wy)? + w3

and then w? + 2w3 or (w; — w2)? + w3 must be a perfect square. If w1 = wy = w we get

the constraints:
201 — (22 + 1) =V3 or |21 — 22+ 1)| =1 (C.16)

leaving only the second case, with qgo = g1 or ¢ — 1. The quantization conditions imply
that w must be a divisor of both 2¢7 — 1 and 2¢1(q; £ 1). But it can be shown that these
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numbers are coprime, and then w = 1. The only curves with the same windings that
intersect are aj 4(R) and by 4(R) or by 4—1(R). The intersections are at R = -
Summarising, we have:

73

_ -2 _ 2 2 2
Quy,qr = OQuyygy < R =wi+w; =C

buy.gy = by = R 2 =2(w? +w3) = 2C?
(C.17)
_ w? + 2w3 = C?
Qwi,qr = bugge = R ’= ' ’ 2 2 2
2((11)1 — wg) + U}2) =2C

The winding numbers on b can in principle be any positive integer and those on a can
only be the divisors of some number of the form 2¢%> — 1, ¢ € Z.

C.4 Enhancements to SO(34) or SO(18) x Eg

Here we prove that ay, ¢ (R) = Qus g, (R) implies that there exist integers ws, g3, w4 and
g such that aw, g, (R) = bug,gs(R) = buy,g, (R).

We start with R—2 = w% + w%. If wy > wq, there are integers ws and wy such that
w1 = wg + wyg and wo = w3 — w4, because w; and ws are odd numbers. Then

R™2 = w? + (2ws — wy)? = 2(w? — 2wzw; + wi + w3) = 2((wy — w3)? +w3)  (C.18)

Since R2 = 2((w1 — wy4)? + w?) as well, there exist integers w3, wy, g3 and ¢4 such that
Ay g1 (R) = bug,g5(R) = buyq.(R). Note that we can always find g3 and g4 because the
functions b admit any value of w.

Replacing w3 = %(un + wg) and wy = %(wl — wy) we get

g, g1 (R) = Gy 00 (R) == a1 g1 (R) = Qg 05 (R) = D(wy 2 /2,63 (B) = Bun ~w2) /2,04 (R)
Note that we can also write the radius as 2(w? + w?). We want to satisfy

(V2R) ™' =[2q1w3 —(2¢3 + Dw1|=[2q1ws — (2q4 + D)wi|=](2g3 + ws — (244 + Lwy,
and we have that

(V2R)™! = |qrws — gown| = 2q1ws — (@1 + g2)w1| = [2q1ws — (g1 — g2) w1 |
= |(q1 + @2)ws — (q1 — @2)ws| .

Then we need to identify ¢ + g2 =2g3+ 1,91 — g2 = 2q4 + 1.
We still have to prove that 2¢3(gs + 1) and 2qg4(gs + 1) are divisible by ws and wy,
respectively, which amounts to proving that

2 2
. .. 9 [ws + w
w; is a divisor of 2¢; — 1 and |qiwa — gaw1| = L 2 5 2 (C.19)

— wy + ws is a divisor of (¢ + ¢2)? — 1

We checked that this is satisfied for the first 300 values of g;.
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Then we have that

Awr,q (B) = Gug,g,(R) == Dy 1wz)/2,(g1+a2—1)/2(F) = by —wa)/2,(1—ga—1)/2(1) -

To prove that by, g5(R) = b, q,(R) implies that there exists integers wi, ¢1, we and
g2 such that by, g, (R) = au, g (R) = Qusy.q,(R), we start with R™2 = 2(w3 + w?). Define
integers w1 and w9 such that wg = (w1 +ws) and wy = ;(wl —wy) (we assume ws > wy),

R2=2((w; —w3)* +w3) and R™?=2((wy —w3)* +wi).

But we still need to satisfy the constraint that w; and wy are divisors of 2¢? — 1 and 2¢3 —
for two integers q1 and go. With the identifications q1 +¢2 = 2g3+ 1,91 — g2 = 2q4 + 1, we
get the correct radius

= V2|(2g3 + Dwa — (2q4 + 1)ws| = V2|2q1ws — (2g3 + 1)w1 ],
bwsﬂs (R) = bw4,q4 (R) = bU)3,fI3 (R) = bw4,q4 (R) = aw3+w47QS+lI4+1(R) = Quwz—w4,q3—qa (R) .

We still have to prove that 2q% — 1 and 2q% — 1 are divisible by w; and ws, respectively.
This is the same as proving that

g; is a divisor of 2¢;(¢; + 1) and |(2¢3 + 1)ws — (2g4 + )ws| = y/w3 + w3

(C.20)
—> w3 + wy is a divisor of 2 [(g3 4+ 1/2) & (g4 + 1/2))* —

which we checked is satisfied.
In conclusion, we have that, for R™2 = w? 4+ w3, auw, ¢ (R) = Guy,q (R) <

Qwy,q1 (R) = Quo,qo (R) = b(w1+w2)/2,(iI1+Q2*1)/2(R) = b(w1*wz)/2,(iI1*Q2*1)/2(R)
= w2 ta-1)/2(B) = Dy —w) 2, (g1 g2 1)/2(R) -

The Wilson lines that give this enhancement can be written in four different ways

2 2 2541 24 + 1
ﬂilfR ﬂing _ A RWA T aRYs
w3 w3 W4y Wy

Using that wg = ¥1342 wy = #1542 g3 = % and ¢4 = %21 after a few steps, we

get F4 = +3 = +9 = F; and then the Wilson lines are

2 2
Ay =T SEVOR, Ay =2z ZLoR, (C.21)
w1 w1 W9 ()
2 1 2 1
4 =BT M g, A= BT L s (C.22)
w3 w3 W4 Wy
From here,
(V2R)™ = F(quwz — qoun) € Z (C.23)
and then, after a few steps, we can prove that
1 R (1
— ., A, —[=A%4+ 1) €z, C.24
VIR V2 (2 (©.24)
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Defining integers m = (v/2R)™! and n = A//2, all this type of enhancement points are
given by

1 241
(R,Ay) = <,n) such that _ + eEZ (C.25)
m\/§ m
and then
R2= 2,50, 338,578,1250, 1682, 2738, 3362, 5618, 7442, 8450, 10658, . . . (C.26)

These are all of the form 2C? with C an integer with prime divisors congruent to 1 mod
4. That is: 1,5,13,17,25,29,37,41,53,61,65,73,85,89,97,101,109,.... Except for the 1,
these numbers are all Pythagorean primes or multiples of them.

We want to see if the b lines considered here can be interposed with a c¢ line. g3 and
q4 are suitable for curves b with ws and wy. For curves ¢ to coincide with them, we need
w; even and qi(q#;rl) € Z. If one of the two curves b has also a curve ¢ then we have an
intersection between an a and a ¢ curve. Analyzing all the possibilities, it can be shown

that there are no ¢ curves that intersect with more than one other curve.

C.5 Enhancements to SU(2) x SO(32) or SU(2) X Eg X Eg

The equality ay, 4, (R) = by,,q, (R) arises for two type of radius

R Z=w?+2w3 or R?=2((w; —wz)*+wi). (C.27)

%, which implies that there is an

The second type gives R™? = w? + w§ if wy =
intersection with another curve a of winding ws. Then, we restrict to the first type, where
R72 is odd for odd w?. Thus the even R~2 found in the previous section cannot have
additional curves a or b on the intersection.

For R~2 = w? 4 2w2, the constraints are

2¢7 — 1 2 1
12q1w2 — (2g2 + Dwy| = y/w? + 2w3, il €7, 202(a2+1) €7 (C.28)

w1 w2

The Wilson line can be written as

2q1 +1 2R 2 1+ R
A, = 2 Fiziee oy 2a2t 1Es Hun (C.29)
w1 w2
and equating them leads to +9 = F; and
R™' = F2qws — (2¢2 + Dwy) , (C.30)

implying that R~! is an odd number. After some algebra, we get

1 1

—, A, R(zA*+1 y/ C.31
R 9y ) ( 2 + > E ) ( )
and then all this type of enhancement points satisfy

(R, A1) = <;2”> (C.32)

m
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] SO(30) x U(1)?
W SU(2) x SO(30) x U(1)
B SO(32) x U(1)
E+E SUQ xS0(32)
H-E+E+E SO(34)
0.2 0.4 0.6 0.8 1.0 R
Figure 8. SO(32) heterotic with Wilson line AT = (A, 0y5).
for integer m = R~ and n = R_;Al, such that
2
2 tlez (C:33)
m
We obtain
R™1=3,9,11,17,19,27,33,41,43,51,57,59, . .. (C.34)

all integer numbers with prime divisors congruent to 1 or 3 (mod 8).
It is not hard to prove that all the curves b that intersect just one curve a are super-
imposed by a curve ¢ (in the I's x I's case).

D Other slices of moduli space

Here we analyse two-dimensional slices of moduli space given by the radius and one pa-
rameter in the Wilson lines. First we consider the SO(32) theory compactified with Wilson
lines of the form A? = ((A),,016-p). We then show how the generalized Dynkin diagrams
give us the points of enhanement located in the fundamental region (in the conventions
of appendix B). Finally we invert the logic, and use the generalized Dynkin diagram for
I's x I's to find certain points of enhancement, and determine interesting slies of moduli
space to explore.

D.1 Slices for the SO(32) theory

The results are summarized in the following figures, after which we present the calculations
leading to them.

For Wilson lines of type AT = ((A) p 016_p> there are families of curves of enhancement
parameterized by three integer numbers «, § and . Inside each family there are different
curves corresponding to different winding numbers and different integer values for ¢. If R
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SU(2) x SO(28) x U(1)?

(2) x SU(2) x SO(28) x U(1)
(32) x U(1)
(2) x SO(32)

(2) x SU(3) x SO(28)

HE [

SU
SO
H+E SU
H-E+H SU

R

0.2 0.4 0.6 0.8 1.0

Figure 9. SO(32) heterotic with Wilson line A7 = ((A4),,014).

SU(3) x SO(26) x U(1)?

SU(2) x SU(3) x SO(26) x U(1)

SO(6) x SO(26) x U(1

SU(3) x SO(28) x U(1
SO(32) x U(1)
SU(5) x SO(26)

O+O+m-+mE SO(34)
SU(
SU(

NN,

U(2) x SU(3) x SO(28)
U(2) x SO(32)

Figure 10. SO(32) heterotic with Wilson line A7 = ((A)3,013).

[ SUM4) x SO(24) x U(1)?
W SU(2) x SU(4) x SO(24) x U(1)
I SO(8) x SO(24) x U(1)
W SO(32) x U(1)
O+O+m-+m SO(10) x SO(24)
H-H SU@) xS0(32)

R

0.2 0.4 0.6 0.8 1.0

Figure 11. SO(32) heterotic with Wilson line A7 = ((A)4,012).

— 70 —



SU(2) x SU(5) x SO(22) x U(1)
SU(6) x SO(22) x U(1)
SO(10) x SO(22) x U(1)
SU(5) x SO(24) x U(1)
SO(32) x U(1)
O+O+O+m Es xS0(22)
O+O+E+E SO(34)
E-E+E+E SUG) xSO(26)
O+m SO(10) x SO(24)
E+E SUQ) xS0(32)

EODODOMNE

[ SU(5) x SO(22) x U(1)?

Figure 12. SO(32) heterotic with Wilson line A’ = ((A)s,011).

SU(6) x SO(20) x U(1)?

SU(2) x SU(6) x SO(20) x U(1)
SO(12) x SO(20) x U(1)
SO(32) x U(1)

E+-E SUQ2) xS0(32)
O+O+O+m-+-m+m ErxS0(20)

EOE[]

o o °
o N B

R

0.2 0.4 0.6 0.8 1.0

Figure 13. SO(32) heterotic with Wilson line A’ = ((A)g, 019).

SU(2) x SU(7) x SO(18) x U(1)
SO(32) x U(1)
SU(7) x SO(20) x U(1)
SO(14) x SO(18) x U(1)
SU(8) x SO(18) x U(1)
E7 x SO(18) x U(1)
O+E+E+E SO(34)
H+-H SU@2) xS0(32)
O+O+O+O+E+00 Es x SO(18)
02 0.4 056 0.8 0 R O+m  Er x SO(20)

OOOEomm

/

[ SU(7) x SO(18) x U(1)?

Figure 14. SO(32) heterotic with Wilson line A’ = ((A)7,09).
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SU(8) x SO(16) x U(1)?

SU(2) x SU(8) x SO(16) x U(1)
SO(16) x SO(16) x U(1)
SO(32) x U(1)

SU(2) x SO(32)

HEONE[]

|
+

R

0.4 0.6 0.8 1.0

Figure 15. SO(32) heterotic with Wilson line A = ((A)s, Os).

SU(10) x SO(14) x U(1)
SO(18) x SO(14) x U(1)
SU(9) x SO(16) x U(1)
SO(32) x U(1)
SU(9) x Es x U(1)
E+-E-E+E SO(34)

B+ SO(18) x Ey

W+ SU(I0) x By

B+l SU(2) xSU(9) x Eg
0.2 0.4 0.6 08 1.0 H+E SU2) xS0(32)

EEDODOO

[0 SU(9) x SO(14) x U(1)?
B SU(2) x SU(9) x U(1) x SO(14)

Figure 16. SO(32) heterotic with Wilson line AT = ((A)g, 07).

SU(10) x SO(12) x U(1)?
SU(2) x SU(10) x SO(12) x U(1)
SO(20) x SO(12) x U(1)
SO(32) x U(1)
B SU(10) x E7 x U(1)
W+ SO(20) x E7
H+H SU(2) x SU(10) x E;
H+H SU(2) xS0(32)

06§
04

0.2

0.2 0.4 0.6 0.8 1.0

Figure 17. SO(32) heterotic with Wilson line A = ((A4)19, 0s)-
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I SU(11) x SO(12) x U(1)
B SO0(32) x U(1)
B SU(11) x Es x U(1)
B+ SU(2) x SU(12) x SO(10) x U(1)
E+E+O+m SO(34)
E+-E+@-+-E SU(l) x E;
O++0 SO(24) x SO(10)

SU(11)
SO(24)
B+ SU(3) x SO(10)
)
)

. W+ SO(22) x Es

Em-+1 SU(12) x Eg
SU(11) x SO(10) x U(1)? H+E SU@2) xSU(11) x Eg
SU(2) x SU(11) x SO(10) x U(1) H+E SUQ2) xS0(32)
SU(12) x SO(10) x U(1)
SO(22) x SO(10) x U(1)

0.2 0.4 0.6 0.8 1.0

Figure 18. SO(32) heterotic with Wilson line A7 = ((A)1,05).

[ SU(12) x SO(8) x U(1)?

W SU(2) x SU(12) x SO(8) x U(1)
I SO(24) x SO(8) x U(1)

W SO(32) x U(1)

W SU(12) x SO(10) x U(1)
H+H SU@2) xS0(32)

H-+E SUQ2) xSU(12) x SO(10)
W+ SO(24) x SO(10)

0.2 0.4 0.6 0.8 1.0

Figure 19. SO(32) heterotic with Wilson line A = ((A);2,04).

is sufficiently small then w can be arbitrarily large.

2
pq—i—a—p;:l:\/(a—p;) —p(la| —da+ B+ 46 — 2+ 2w?R?)

Ap,a R) =
ap,3(R) p”
+ 2 —p(\+2w2R?
_pgtpEtVp—p(At+2uw ). (D.1)
pw
where we defined:
1)
,u:oz—% and A= |lof—da+5+46—2.

The massless states associated with each family of curves are
1 1 1
a={(qxa-36) (qxis) pxlis(xls . (D.2)
27). 2 )pa 2 2 ) 15-p
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0.2 0.4 0.6 0.8 1.0

SU(13) x SO(6) x U
SU(2) x SU(13 (6) x U(1)
U

0 ) X U(1)?
m ) x SO
[ SU(14) x SO(6) x U(1)
= )% U1
| )

SO(26) x SO(6 (1)
SU(13) x SO(8) x U(1)

|

|
B-E+O0+0
N+
H-E-E+0
[y |
H-E+-E+E
[y |

|

W+
N0+l
B+

(32)
(13)
(17)
SO(34)

SU(13) x SO(10)
SO(28) x SO(6)

SU(2) x SU(13) x SU(5)
SU(13) x SO(10)

SU(2) x SO(32)

SU(2) x SU(2) x SU(17)
SO(26) x SU(5)

SU(18)

SU(14) x SU(5)

U(1)
SU(5) x U(1)

SO X
SU X
SU x U(1)

Figure 20. SO(32) heterotic with Wilson line A’ = ((A);3,03).

[ SU(14) x SO(4) x U(1)?
B SU(2) x SU(14) x SO(4) x U(1)

SO
SO
SU
SU
SU
E-E+E SU
SO
SU
SU
SU

28) x SO(4) x U(1)

32) x U(1)

4) x SU(3) x SU(2) x U(1)
6) x SU(2) x U(1)

) x SO(32)

) x SU(14) x SO(4)

8) x SU(3) x SU(2)

) x SU(14) x SU(3) x SO(4)
) x SO(32)

)

(
(
(
(
(
(
(
(
(
(2) x SU(16) x SO(4)

1
1
2
3
2
2
2
2

Figure 21. SO(32) heterotic with Wilson line A’ = ((A)14,02).



=
| 1l
Oo+O+E+m

SU(15) x SO(4) x U(1)
SO(32) x U(1)
SO(34)

VSIS Y
SO

] SU(5) x U(1)®
I SU(2) x SU(15) x U(1)?
I SU(16) x U(1)?
I SO(30) x U(1)?

m+-m+m
B+

o+

[ RN §

[ RY |

BN BY |

! =EY Bd |
H+-E-D

m+-E-0

SO(32) x U(1)
SU(2) x SO(30) x U(1)
SU(2) x SU(16) x U(1)
SU(2) x SO(32)

SO(4) x SU(15) x U(1)
SU(17) x U(1)

SU(2) x SU(17)

SO(4) x SU(16)

SU(15) x SU(3) x SU(2)

Figure 22. SO(32) heterotic with Wilson line A = ((A);5,0).

B 8 [

W+
NN

SU(16) x U(1)2

SU(2) x SU(16) x U(1)
SO(32) x U(1)

SU(2) x SO(32)

SO(4) x SU(16)

‘ : : : R
0.2 0.4 0.6 0.8 1.0

Figure 23. SO(32) heterotic with Wilson line AT = ((A)16).

The possible values of the parameters are listed in the following table, with the colour
we use to identify them on the figures and the corresponding gauge group.

Colour | § | 8| |« Gauge group
[] Ap—1 X Dig—p
[ | 0[]0 O Ay X Ap_1 X Dig—p
0O |ojo1 A, x Dig_,
0O |o[o] 2 D, x Dig_p
0o |o0]o] 3 E, x Dig_,
m |o[1]o0 Ayt % D17y
[} 0|11 Dig
m |Lo]o Ay 1 x Brry
] 10| 1 | Digforp=12, Ay forp=13, A5 x Ay forp=14, A5 x Dy for p=15
m |10 2 Dis
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The number of states for each of these curves is given by
2 <‘p |> (32 — 2p)P2(15P+3p16)d (D.3)
a

The allowed values for ¢ and w are the ones that satisfy the quantization condition

pq2+2,uq+)\ c

o 7. (D.4)

For arbitrary A, we get the 3p? — 63p + 480 roots of U(1)? x SU(p) x SO(32 —2p). If A
is half-integer we get the 4p? — 64p + 480 roots of U(1) x SO(2p) x SO(32 — 2p), so we can
think of them as part of the family with (4, 3,a) = (0,0,2) and w = 0 which give p> — p
additional states. For p =2 (0,0, 2) is equivalent to (0,0,0).

If Ay is integer we get the 480 roots of SO(32) x U(1), so we can think of them as part of
the family with (4, 5,a) = (0,1,1) and w = 0 superimposed with another one of the family
with (8, 8,a) = (0,0,2) and w = 0, which give 63p — 3p? = (64p —4p?) + (p? — p) additional
states. For p = 16 we only have the (0,0,2). We can classify some of the enhancements by
the colours of the curves that intersect, we list them on the table below:

Colours Gauge group

B-E Ay X D

| BE | Ay x Ap—1 X Er7—p

O+H Ept1 X Dig—p

B+ Ap X Er7—p
B+ A2 < Ap—1 X Dis—p

D.2 Relation to generalized Dynkin diagrams

Here we show how some of the previous enhancement curves and points can be obtained
from the generalized Dynkin diagram in (B.3).

For Wilson lines of the form (016—p, (A),) and at any radius, then the inequality — Ay <
Aq, as well as all the A; < A; 17 inequalities are saturated except for Aj6_, = A17—,. This
means that the gauge group is given by the generalized diagram with all the nodes except
for 16, 18, 19 and 16 — p. Then the diagram that gives the enhancement symmetry is:

17

.—I—W —@ o— —O0 000

1 2 3 4 15-p 17-p 12 13 14 15 (D.5)
which corresponds to the A,_1 X Dig_p(xU(1)?) = SU(p) x SO(32 — 2p)(xU(1)?) at a
generic value of A and R. Choosing particular values for them, we can saturate one or

more inequalities associated to the missing nodes. To obtain the horizontal lines we have
to pick an arbitrary R, which discards the nodes 18 and 19. To get the nodes 16 — p or
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16 we have only one possibility: A = 0 for the former, and A = % for the latter. We get,

17:
—— —0—000

respectively:

1 2 3 4 16-p 12 13 14 15 (D.6)
17 I I 16

4. F
1 2 3 4 15-p 17-p 12 13 14 15 (D.7)

and hence the gauge groups are D1g = SO(32) (xU(1)) and Dy, x D1s—p = SO(2p) x SO(32—
2p) (xU(1)) (blue and cyan lines). Finally, choosing a specific value of R, the inequality
associated to the 18th or 19th node (not both at the same time) can be saturated. This
gives maximal enhancements. In the D14 case, the only possibility is to add the 18th node,
which gives Ay x D¢ (intersection between a blue and a red curve):

® 18
17
.—I—Q—Qf —— —0—000
1 2 3 4 16-p 12 13 14 15 (D.8)

In the D, x Di6_, case, one can add the 18th or the 19th node, depending on which part
of the diagram has less than 8 nodes

19
17 I 16
4. F

1 2 3 4 15-p 17-p 12 13 14 15 (D.9)
18
17 I 16
4. F
1 2 3 4 15-p 17-p 12 13 14 15 (D.10)

This accounts for D), x E17_, (intersection between a cyan and other curves) and Ej, 1 x
D16—p (intersection between a cyan and a purple curve).

For R(A) (with arbitrary A) saturating the inequality associated to the 18th node, we
obtain Ay X A,_1 x D1, (red curves):

® 18
17
.—I—Q—F —@ *— —0 000
1 2 3 4 15-p 17-p 12 13 14 15 (D.ll)

And in particular for A = 2, we have:

p
19 ® 18
17E
—@ o— —0 000

1 2 3 4 15-p 17-p 12 13 14 15 (D 12)
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which gives the gauge group A; x Fi7_, x A,_1, considered in section 3.2.4 and seen in
the figures at the intersections between the red and purple curves.

On the other hand, choosing R(A) so that it saturates the inequality associated to the
19th node, we obtain Ei7_, x A,_1 (purple curves):

19
17 E
—o o— —9o00e
12 3 4 15-p 17-p 12 13 14 15 (D.13)

Then we can colour the dots on the generalized Dynkin diagram depending on which
curves saturate their inequality:

19 18
17 ? 16
—0— —.—.—‘—.
1 2 3 4 16-p 12 13 14 15 (D 14)

The enhancements corresponding to each curve are obtained by removing all the coloured

nodes except the node with that colour. The intersection of curves give the group associated

to the diagram obtained by keeping the nodes with the colours of the involved curves.
Something odd happens for p =1

19 18
17 ?16
123456 78 9101112131415 (D.15)

For generic A and R, this is Dy5. For A = 1 (cyan dot) we get D1 and if we also take
R? = 1 (red dot) we get D17. If, on the other hand, we take A = 0 (blue dot) then we get
D16 and if we also select R? = 1 (red dot) we get A; x D1g. If we only take the appropriate
R to have the red dot, then we get A1 X Di5. To compare with figure 8 we have to take
into account that the cyan solutions are not well defined for p < 2, and then we see them
as blue curves.

For p = 15, the equation for the seventh node no longer holds, and then we have:

19 E 18

17 ? 16

12345678 9101112131415 (D.16)
For generic A and R this is Aj4. Selecting a specific R, we can turn on the red and/or the
purple nodes to get Ay x A4 or Dy X Ayy. Selecting A = % (cyan dot) we obtain Dj5 and

for A = 0 both blue dots are turned on and we get Dig. Only choosing R = 1 (red dot)
we get A1 X Dig.
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Er x Eg x U(1)2
SU(2) x E7 x Eg x U(1)
Eg x Eg x U(1)

B+ SU(Q2) x Eg x Eg
E+m+m SUB) x By x Eg

H = [

R

0.6 0.8 1.0

Figure 24. T'g x I'g heterotic with Wilson line A7 = ((A)g, Og).

For p = 16 we have a very different situation:

19 18
17 ’ ? 16

Q—‘—Q—.—.—.—H—.—.—Q—H—‘—.

123456 78 9101112131415 (D.17)

For generic A and R this is Aj5. Selecting a specific R, the red and/or the purple nodes
are turned on and we get Ay X Ajs or Dy X Aj5. Selecting A = % (cyan dot) we obtain
D1 and for A = 0 (orange dot) we get Dyg. Only choosing R = 1 (red or purple dot) we
get A1 X Dyg.

The enhancements of the curves that correspond to the other colours cannot be ob-
tained with this construction. On one hand we see from the figures that the Wilson lines
that give these curves are not in the fundamental region in the conventions of appendix B.
On the other hand, if this region is the fundamental region, it should contain all the possi-
ble enhancement groups, and as such all the curves with the different colours. However, it
is easy to see that using this method, the Wilson lines in the fundamental region that give
the missing enhancement groups are not of the form chosen, with p equal components and
the other zero. For example, to obtain the enhancement A, x Dig_, corresponding to the
yellow curves, we would need to replace the 15th node with the 16th one (and then add
the 18th one), which requires Ajg = 1 — Aj5 which is not within the ansatz chosen for the
Wilson lines.

D.3 Slices for the Eg X Eg theory

We applied the method based on generalized Dynkin diagrams used to obtain the slices of
moduli space containing desired enhanement groups, to the case of I's x I's. This forces
us to consider now also Wilson lines where some of the components are of the form 1 — A.
The slices shown in the figures contain most of the enhacement groups discussed in the
main text.
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1(]A
))

SU(8) x SO(16) x U(1)?
SO(32) x U(1)

SO(16) x SO(16) x U(1)
SU(9) x SO(16) x U(1)
Eg x SO(16) x U(1)
SU(8) x SO(18) x U(1)
i) E-O+E+m SO(34)

£ N B E FsxSO(18)

OEO0OO0m[]

Figure 25. I's x I's heterotic with Wilson line A7 = ((A4)7,1 — A,1,07).

[] SU(8) x SU(8) x U(1)*
W SU(16) x U(1)?
0 SO(16) x SO(16) x U(1)
O SU(9) x SU(9) x U(1)
B Es x EgxU(1)

I SU(8) x SU(8) x SU(2) x U(1)
E+O+O+m Su@s)

B FsxEsxSU@2)

Figure 26. I's x I's heterotic with Wilson line A7 = ((A)7,1 — A, (A)7,1 — A).

0 SO(16) x SO(10) x SO(6) x U(1)
I SO(26) x SO(6) x U(1)
] 0(16) x SO(16) x U(1)
[ SO(16) x SU(5) x SU(5)
I SO(16) x SU(9)
W SO(16) x Eg
W SO(24) x SU(5)
| Bl | ( 8) x Eg
D+m SO(24) x SO(10)
" o+ SO(26) x SU(5)
0.4 0.6 0.8 1.0 !+D+D+. ( 6) % SU(5)
[T SO(16) x SU(5) x SO(6) x U(1)? O+E+E+E SO034)

B SO(18) x SU(5) x SO(6) x U(1)

Figure 27. I's x I'g heterotic with Wilson line A7 = (A — 1, (A)4, 019, 1).
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E More on fixed points and dualities

Here we collect the details of the calculations involved in section 3.5. The transformations
Oy in (3.45) acting on a vector Z of momentum, winding and “heterotic” momenta, result
in the transformed momenta

1
w' =r <n—2|Al2w—A'7r> ,

/ 1 / / ‘A/|2 1 2
n=|-+AUA)w+AUr—r 5 n—ilA\w—A.w , (E.1)
T

1
' =Un+UAw —rA’ (n— §|A]2w — A-7r> .

Requiring these to be quantized leads to the conditions

r|A2 r| A
Z; E.2
T? 2 ) 2 6 ) ( )
1 / |A’2|Al‘2 / / / / /
;—l—AUA—i—rT 5 eZ Vrel, nel’: f'Ur+r(r - A)x - A" eZ;
A/Q AQ
rA, rA' eI’ NI’; A'U+T| |A€F; UA—l—@A'EI”

and U € O(16,Z).
We analyze these in more detail, depending whether the duality acts on the same
theory or links two theories with different lattices I' and I".

El T'&T

For Wilson lines of the form (3.31), and U given by (3.48), the quantization conditions (E.2)
become

2% for U= +I
@1’ (gi1) /2 9 ez, wal®F 7 (E.3)
r 2r 2 Q+1€2Z for U=Us

where Uy are defined in (3.48),

L2

(E.4)
fp

and A is defined in (3.40). Here we have used that for the fixed points R = Ry,, one has
r= Rf;Q since R = == = R.
For U = +1I we define p = Mand q = Q/2, then:

p, 4 T PG, ar € Z; \Jpr=2q=+1. (E.5)

Quotienting these equations, we see that p,q r can be written as

Vp=tVk, Vi=nVk, +r=mVk, (E.6)
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with ¢,n,m,k € Z. Then
k™l = £(tm —2n?) € Z, (E.7)

which implies k¥ = 1 and ¢t = %mﬂ Taking into account that n = \/g = R_;Al and
m = /r = R~! must be integers, the only condition is
2n? +1
m

For U = Uy, defining p = (Qécrl)Q and s = 3,

€Z. (E.8)

+1

b Q s Vi@ V@seZ and yps= 2T (E9)

where we have used the fact that as @, 2p and +/p@Q are integers with @ odd, implies
that p is also integer. % is integer, then we have the same situation as in the first case.

Analogously
Vp=tVk, /Q=nVk, s=mVk (E.10)

with ¢,n,m,k € Z. Then

tmk = ”2]“'; 1 = +2tm—n?) e Z, (E.11)
but this implies that k=1landt= ” =1 =.Q = R_T;Al
and m = f f , the only condltlon is:

”221 €z (E.12)

The possible values of m and n that verify these conditions with the plus signs give the
fixed points (R, A1) presented in table 1.

If we take U = 1 then the quantization conditions (E.2) require 7 7T’+r(7r A)(ﬂ'/ A e
Z (¥ m,7" €T). As 7w and 7’ belong to the same lattice, -7’ € Z, and then 22 ¢ Z, where
h=m-rAand b/ =7’ -rA’. Restricting to r prime, this implies that elther w-A€Zor
A eZ.

If A does not satisfy this for any = € I", then A’ € T', and viceversa, i.e. either A € T’
or A’ eT. But M ez, A+ MA € I' and the reciprocal conditions imply A, A’ € T.

We just need to verify 1 4+ A’ A+ r'A‘ % € Z. But A’ - A is integer and |A?,
|A’|? are even, then we get: + € Z, which is only possible for 7 = 1. Then 1 is the only
non-composite possible value for r when the duality does not change the lattice and U = 1.

E2 T IM#AT

The quantization conditions (E.2) for the case where the dual lattice is not the original
one become

rlAP? r]Ay]?
€ Z; E.13

T? 2 ) 2 b ( )
1 Al |Ap)?
+AU-A+7“|2| g| eZ NVrel,nygely: ny-n+r(r-A)(ry-Ay) € Z;
T

Apl? A?
rA, rAy € TNTy AU+7,‘2UA€F; T|2’ Ay el
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where 'y is the lattice obtained by applying the transformation U to all the elements of
IV and Ay = A'U. This proves the statements at the beginning of 3.5.2.
Restricting to the case U = 1 we get the conditions

r|A2 r| A
—_— ——— € Z; E.14
) 9 2 € 4; ( )
]‘ !/ |14|2|14/|2 / / / / /
-+ A -A—i—rT 5 eZVrel,nel': m-n+r(n- A -A)el;
r
AIQ AQ
rA, rA' eI’ NI’; A'—I—T’2‘A6F; A+T’2‘A’6F’.

Given that A" € T'NT’, then k = 7' - rA’ € Z. We first analyze the condition
7.7 +r(r-A)(x - A') € Z. Being both h = r(w- A) and b/ = r(7’ - A) integer, we get
T+ hTh, € 7. For particular values of © and 7/, one has:

If e T NI then 7 -7’ € Z and hThl € Z. If we restrict again to non-composite values
for r then at least one of h or A’ has to be divisible by r, and then 7- A € Z or ' - A’ € Z.
If A" is such that this does not hold for any 7’ € TV, then A must satisfy 7 - A € Z for all
mel NI ie. Ae (I'NT’)* In conclusion, if A" ¢ I, then A € (I NTY)*, i.e. either one
of A or A’ has to be in one of those lattices.

Repeating this with 7" € T NI, we get that if A ¢ T, then A’ € (' NT”)*. But the
additional restriction, A" + #A € T, necessarily gives A’ € T', since % € Z when
A €T. Analogously, when A’ € TV we get A € I". Then the possible Wilson lines are

AA e, AA eI', Ac(nI)N\I, A e@nI)\I, (E.15)

which implies m- A", m- A€ ZV el NI
712 112

The equation A’ + %A € I is equivalent to m - A’ + wO}' -A)eZV rmeTl, but

when m € I'NTY it holds trivially. Then we only have to verify the following equations
Al 2

T A/ + ’l"| ’
L rlap

2

Depending on I' and I", it is possible that when 7 € T\I” and 7’ € T'\T (i.e. 7,7’ ¢ T'N
I'), then 77’ = 3 mod(1). Assuming one of these cases holds, the condition 77+ hTh/ €Z
turns into hThl = 1 mod(1). That is, neither h nor b’ must be divisible by r: 7+ A ¢ Z and
n/ - A" ¢ Z. These equations imply A ¢ T and A’ ¢ I", and then the Wilson lines are

(r-A)€eZV r e\l (E.16)

A (- AezZvVr el'\I. (E.17)

Ae(TNI)A\L, A e@nT)\I. (E.18)

They can be split into two sets: A, A" € (T NIY)*\(TUT’) and A € I'\I', A’ € T'\I"/, where
we used QN (2N X)* =Q.
712
Now we analyze the condition 7 - A’ + %(ﬂ' -A) e ZV 7 e T\I". All the cases that
we will study verify 7 A = 1 mod(1) V 7 € T'\I". Then the condition becomes
12
7T-A,+T’/41|EZV7T€F\F/ . (E.19)
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If A’ € T, then M € 27Z. Instead if A" ¢ T, then r"glP is odd. Using the analogous
equation for A € F’ T‘Al has to even and for A ¢ T”, r@l? odd.

Summarizing, the condltlon requires % even if A € IT'\I" and odd if A € (I'N
I'")*\(T'UT”) (and analogously for A’). If additionally (I'NI)*\(T'UT”) is an integer lattice

2
(which always is in the cases of our interest) then % is odd if » = 2. Given that » = 2

for T A1, then r =1 <= T =T (when restricting to non-composite values of r).

Another condition that must hold is 24 € 'NI”. But this occurs trivially for the lattices
that we consider. 2A will always be in the adjoint conjugacy class of SO(16) x SO(16),
which is contained in all T NT” we will study (this could vary with other groups where, for
instance, (s) + (s) = (v)...).

We now analyze the condition % FHA AL r‘A| IA ®

€ 7Z, which can be rewritten as

(14 |AP|AP)+ A - A+ e Z. (E.20)

NN

If A- A" € Z, then 3(1 + |A|?|A’|?) € Z. This holds if both |A|* and |A/[? are odd, i.e.
A A e (INTY)*\(I'UTY). The product of these Wilson lines verifies this as it is an integer
lattice by hypothesis.

If A- A" = § mod(1) then (1+ |A|?|A'|?) = £ mod(1). This holds if at least one of the
Wilson lines has even modulus squared, i.e. A € I"\I" and/or A’ € F\F’ The product of
these Wilson lines verifies this assuming the hypothesis holds: 7+ A = 3 mod(1) V 7 € T\I"
and its dual.

Summarizing, if the following hypothesis hold

/
T™TeT =

1
mod (1) V 7 € T\I', e '\, 7T'A:§ mod (1) V 7 € T\I”,

A=

N =N

mod (1) V «’ € I'\T (CNT)*\(T'UT’) is an integer lattice,
then the duality must have
r=2, Ae(NI)\I',4A e @ nT)*\I'

and the following conditions must be satisfied:

— If AeT\I", then |A|? € 2Z.

— If A’ € T'\T, then |A|? € 2Z.

— If Ae (CNIY)*\([UTY), then |A> € 2Z + 1.

— A e (T NIY)*\(TUT’) then |A'|? € 2Z + 1.
These can be replaced by the more restrictive conditions

C\I',T'\I' are even lattices, (I NIT')*\(CUT’) is an odd lattice.
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The hypothesis 7+ A = $mod(1) V « € T\I" and 7" - A’ = £ mod(1) V n’ € I"\I can
also be replaced by the more restrictive ones

mod (1) V7 e\I', 7' e(@nI’)"\I'=["\I'|U[TNT)*\(Tul’)]

3
3
Il

N =N =

mod (1) V' e I'\I, 7e([nI')\I'=["\I'|U [T NnT)*\(Tul)]
Then sufficient conditions for duality to exist (and only for r = 2) are
C\I", T'\T' even lattices , (I'NTY)*\(TUT') odd lattice,
1
T = 5 mod (1)if 7 and 7’ belong to different lattices (from these three) (E.21)

SO(32) +» Eg X Eg. The quantization conditions on the second line of (E.2) can be
written as

r(m-A)(n' - A') € Zif mor ' € Tgp)(ss) » (E.22)

1
T’(7T . A)(Tr, . A/) =+ 5 ceZifre F(vv),(cc) and 7T/ c F(Os),(sO) . (E23)

In the second situation, we get

1 1 il 1
;(W'TA)(W,'TA/)—i-iEZ, ‘7?—1—562, ke, (E.24)

which imply that r is even. We restrict to the simplest possibility, » = 2, for which we get
A%, |A' € Z;
(1+24"- A+ \A|2]A/|2) €Z Vrmely, n €elgxTg: ' -w+2(r-A)(r'-A) e Z;
24, 24" € T(0) (s5) ; A+ |APPAeTlg;  A+|APA eTyxTy (E.25)

N

The Wilson lines that satisfy (E.25) are

A e (L NT)"\I' = (0s), (s0), (ve), (cv)
(E.26)
A e (TNTY\I' = (vv), (cc), (ve), (cv)

F Three and four-point functions

For completeness, in this appendix we list the scattering amplitudes of massless states of
the (toroidally compactified) heterotic string that give the effective action (4.1). The results
hold for arbitrary points of the moduli space, including enhanced and broken symmetry
points, and differ only on the possible values taken by the indices and structure constants.
Details of the calculations can be found in [43, 48, 49].

— 85 —



We use the following expectation values

(XP(2) X" () = — g In= — w) (XH(2) X" (@) = — g In(z — ),
() = (6(2)6(0) = ~In(z — ),
AR @) = T
(Y)Y () = =67 n(z — w), (YF(2)VE @) = — 6" In(z - w),
r A 5FA r A Q Z'fFAQ
()T =) = 5 (T ()TN (22) ) =
29 212213723

F.1 Three-point functions of massless states
o Three left vectors:
)
Anaa = _ECSQQEJ(.FAQAFM(kl)AAu(kQ)AQP(k?)) (k1"n"? + ko + K5n"?)

= 12mg. V2129, Ar, A} AY,
where we used Cg2 = 3—? from unitarity, and identified k' AQﬁY\Alg — —i&“AlgAQQ.
o Three tensors:

Avyy (ke ko, €@ ke, e®)

1 v vo v, o
= Ciagl ) (ka) e (ka)e5y) (hs) (K k" + k™)

1
x <2k1k§k§ R R ké‘n”)

o Two left vectors — one tensor:

AVAA(kla €1, k27 A27 k37 A3)
= 47Tgc< — kgeluukg'ngpAgp + kb1, A2 K Asro + kgfl,uuASVkaAQpF)

Replacing V = ¢g,b or D, we get respectively

A4 (o by, K, As, ks, Ag) = dmgegu (0" ALOY AL — 20" ALOP ALY |
AP (ky, By, kg, Ag, ks, As) = —87g. AL 0" AL by,

or
Amge

D’ Ao+ Ay, .
Jd—2 pe AT

APAA(Ey D, ko, Ag, k3, Az) = dmge(k3AL) (ko Asr) = —

o Two right vectors — one tensor:
AV ey, €1, kg, A, ks, As)

N 1
= 4dmgeer Azy Azme <2ki’ kg kh +n"PkS + 0t k] + 07 kY ) kg
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which gives
S - - A A 1 A A
A9AA 47.‘_gcgle <8MAP SOVAP — 20P AH . 8VAP + 5606“Ap . 6P8VAU>
APAA _ —81gd’ By, A, - 8 AF = 4mg.0” B, A, - F

or

APAA - 2;79621)17“” Fu

e Two scalars — one left vector:

AN (1, A, ko, Sa, k3, S3) = 4mgeV/2i frankl AL S5 S5 ™ 6rgm,
= 4 gV 2fra AP (9,5M™) Som

o Two scalars — one tensor:

AVSS(k,l’ €1, k27 527 k37 53) = _47Tgcelpy5’gm2 Sé\mg K/FA(SWLng kgkg

= —47mgeSy " Ssrm (ks - €1 - ks3)
This is only non-vanishing for V =g

AgSS(kh €1, kg, SQ, kg, Sg) = 47rgch8”SFm8”Srm .

e One scalar — one right vector — one left vector:

ASAA (L1 S ko, A, ks, A) = —A7geSrmkP ALKY A™ = — 479, Spum 0, AL FH
1M1y n4iy

F.2 Four-point function of massless scalars

We present some details of this computation which, to our knowledge, has not been previ-
ously published

{50)S(0)S(-1)5(-1))
‘Z34‘k3'k4 ‘Z24‘k2'k4 ‘Z14‘k1'k4 ‘223"@-143 ‘Zlg‘kl'kS ‘212‘161-162

= SFmSAnSQpSAq —
234
ki-ko [8™MTPT  gmPHNA HMAsTP oM HPe
_ — J J J J,
8 [ 2Z12 <512534 2137224 * 214223 ) * 2%2234] V(1) Ja(z2) Jalzs) Ta (7))
(F.1)
Using that

(TALQA T AN TALAQ

(J"(21) TN (22) TP (23) T2 (24)) = —5 " "3
2347219 213724 214723

B fFAHfQAH fFQHfAAH B fFAHfAQH

)
212223224234 213223224734 214223224234
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we get

A5 (1, 81, ko, S, k3, S3, k4, S1)

ki-k
2 1 2
= _87rgc 9 SrlmSF2n5F3pSF4q
ks -k ko k ki -k ko k ki -k K-k
o |23a]™ 204 ]"2 214 | M1 203 | P23 213] M 200 T2
X d Z1 —
Z12
» (5mn5pq223224 <1 B 2 ) B 0P Zog " 5mq5np224)
212734 ki - ko Z13 Z14
[Ty, TaTy TiToTl ¢T3l
K2R3 29320 i
><< 5 S / —(2<—>3)—(2<—>4)>
234219 212

Taking z1 = 2,29 =0, 23 = 1, z4 — 00, the integral is

%’1 4’1_2,’1 3‘2‘1 2

1—
lim d’z |

T—00 z
X 5’""51"1_—1 1-— 2 — 5mp5"q71 — oM —— !
z k1 - ko 1-z2 Z-1
—I{FAKQA HFQI{AA IQFAI{AQ fFAHfQAH fFQHfAAH fFAHfAQH
X( 22 _(172)2_(175)2_ z 11—z z—x >

§mn §pa (1 - ﬁ)

9 ( )7k1(k22+k3)
= —zZT\—
r2- %)F(——kg’%)r(%)

P §ma §np )
)

- -
. k1 (ka+Ek . k1 (ko+k
F(l o k12k2)r(1 _ k:12k3)1—1( 1( 22+ 3)) F(l _ k12k2 )F(—k12k3)F(l + 1( 22+ 3)

X(_I)M |: _ HFAKJQAF <_1 4 ]{71k'2> T (1 + k1k3> T (1 — W)

2 2
—kTRAAT (1 + k1k2> r <—1 + k1k3> T (1 _ M)
2 2 2
— A RAD (1 + k1k2> r (1 4 klk:g) T <_1 _ M)
2 2 2
pyranpea g (Kb o (g Ruks ) o Rk + Ks)
2 2 2
JfrOm pAS T <1 n ’g’f?) r (k;) " <_k<k2+k>> ]

where we used

I(m,n,a,B) = /sz(l — 2)™2" 2|21 — 2% = 2n(—1)™ "

XF(1+n+a)F(1—|—m+ﬁ)F(—1—n—m—a—ﬁ) (F.2)
L(=a)l'(=B)'(2+ a+ 8)
In terms of Mandelstam variables s = —2ky - ko, t = —2k1 - k3, u = —2k1 - k4 and

summing over all cyclic orderings of the vertex operators to compensate for the fixing of
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22, z3 and z4, we get

2 [(—s/4)0(—t/4)T(~u/4)
AS8ss _ T 2
12965 vm STama Styms Stama DY /)T (1 + w/d)

X (G GG sy GG 5 )

< kl1l2  Palagy, L1l Tal'a g, k1l Pal's o4
x| —3 — —
(s+4) (t+4) (u+4)

+th1F2HfF3F4H + SfF1F3HfF2F4H + ufF1F3HfF4F2H
+th1F4HfF3F2H + sfF1F4HfF2F3H + ufrll—‘gnfr4r3n)

Expanding on s =t = u = 0 and using

D(—s/OD(4/OT(u/t) 64 y
(L4 s/ATA § T+ ujd) st 2o+ Ot (F.3)

we finally get

ssss _ 167%
A - _TQCSF1m1SF2mQSF3m33F4m4

> <Z(5m1m2 Smama (fF1F2HfF3F4H+fF1F4HfF3F2H)+5m1m35m2m4 fF1F2HfF3F4H

+6m1m2 6m3m4 fF1F3HfF2F4H

+§6m1m4 gmams ( fTAoll pLsCa 4 (Talall (Tl

S

(
+¥5m1m3 5m2m4(fF1F3HfF2F4H+fF1F4HfF2F3 +5m1m45m2m3 fFlFQHfl_‘4F3H

+E5m1m3 smama fFlrgan4F2H+fF1F2HfF4F3

( Il +5m1m45m3m2 fF1F3HfF4F2H
(

)
)
)
)

+E5m1m2 §mama fFlfgﬂfF4F2H+fF1F2HfF4F3 +6m1m36m4m2 fF1F4HfF3F2H

II

+§6m1m4 6m2m3 (fF1F4HfF2F3H+fF1F3HfF2F4H> +5m1m2 6m4m3 fF1F4HfF2F3H>

which adds up to
ASS5S — (4272 g2 Sy St S Sas ™ FIAL A (F.4)
when using £+ + § + £+ 3 + ¥ = =3 and Srn Sy ™SSy SN i = 0,

F.3 Three-point functions involving slightly massive states

It is easy to see that the amplitudes of three massless right vectors or three massless
scalars vanish at the enhancement points. However, in the neighborhood of these points,
the currents acquire dependence on pr and then the amplitude of three scalars or that
of two left and one right vectors get a non-vanishing value and give extra terms in the
effective action. Here we compute the three point functions involving states that become
massive when slightly moving away from the enhancement points, so that their masses are
smaller than other massive string states which we are not considering.
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One right vector — two massive left vectors:
AAAAT spatps
Corg2 V2

where we used k1 + ko + ks =0, l{?% =0, k‘% = k?% =-—m? = *QP%R, ki-ko=ki-k3=0
and ko - k3 = Qp% r- This gives the term

KoAID2 4IP3V m
AukaAuA P2Rr

-0 .
PR A AP A
in the effective action.
One massless — two massive left vectors:
AAA’A’
Cog?
_ @ . I w2 4IP3 NV w2y Al p1p3
=5 P [(A k) (ATF - AT )4 (k- AT (AT ATE) = (R - AT (AT - A7)

giving in the effective action
—%p i |4 AL AT oA A P A
One massless tensor — two massive left vectors:
AVA’ A’ 1 2 1
L 2 3 b
05293 — iﬁwgpz-i-paA MzA o ( _ kgkgnuzus 4 ki‘:”nm ké‘ 4 kitznuus ké‘)
(&
giving in the effective action
1 1P 1—pp PV 1—P
5 (Cw O AT AT — 207,00 AT AT,
One massless scalar — two massive left vectors:

ASA’ Al

o + 2 A3 m I I m oAID AI—DW
Cangs = 0 S A A PSR = P17 PRATA
C

Three massive left vectors:

ANAA —ie(p1,02) o1 gp2 g1—p1—p
Cg2g3 B V2 A HllA u22A w3 e (kgl”“wg + k’lﬁgnu”n + k52”#1u3)
where we used k;- A’P* = 0 and conservation of momentum implies ki-kj = —2pRi-DpR;

and p?; — plp =2 — pip - pjL — Pir - Pjr = —1 if i # j.

This gives in the effective action the term

(p1,p2)A/,€1 GVA,ZQA/_M_W#.

3.
V2
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G Counting structure constants of SO(32) and Eg X Eg

In this appendix we count and compare the number of non-vanishinig structure constants
of the SO(32) and Eg x Eg algebras, which in the Weyl-Cartan basis are

foP, =89 fob g+ 6052 foy (G.1)

with @ = —a.
To calculate the number of combinations of «, 5 indices giving non-vanishing structure
constants of SO(32) , it is convenient to denote the 480 roots as

(i%,7%) = (0i—1,%1,0j—;—1, %1, 016—5) (G.2)

with 1 < ¢ < j < 16, and split them in subsets (+,+), (—,—), (+,—), (=, +) of 120
elements each. Then we have

(+,+)+ (+,+)*>4 or |(—, =)+ (—,—)|* > 4 — there are no roots
0Oifi=Fk, j=1
(J+,l1-)ifi=k, 5 <l
(l—j+)ifi=k, j>1
(i) + (ke 1) = (i+,k—)ifj=1i<k (G.3)
(k—i+)ifj=1,i>k
(i+,1-) if j =k
(k—,j+)ifi=1

no roots if ¢ # k and j # 1

The number of pairs of roots (i+, j+), (k—,1—) is:

(120 ifi=k,j=1

L5 560 with j > I
16—)(16—i—1)=1120 ifi=/h,i<ji<l#] L

2 (16=9(16—i—1) Hr=mrs g #‘7{560w1th3<l

15 560 with i > k
16— j)(16—j—1)=1120 if j=1,i#k (G4)

2 16=9)16 =7 =1) fj=ti# {560withz’<k

SO —1)(16 — §) = 560 if j=k,i<jandj<lI

j=2

560 ifi=1

\

Then there are

0— 120
(+,+H)+ (= =) =4 (+,—) — 3 x 560 = 1680 (G.5)
(—,+) — 3 x 560 = 1680
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That is, 1680 non-vanishing structure constants of type f(+1(==) . | and 1680 of type
(+-)

f (+’+)(_’_)(,7+). And analogously, there are 1680 non-vanishing structure constants of type

f(_’_)(+’+)(+7,) and 1680 of type f(_’_)(+’+)(,’+).

(i+,k+)if j=1i<k
(k+,i+)ifj=1,i >k

(k4 j+) if i =1

norootsifi #£l#jori=korj=k

(i+,7+) + (k+,1-) = (G.6)

The number of pairs (i+, j+), (k+,l—) with j = [, i # k is 1120, of which 560 correspond
to i > k and 560 to ¢ < k. And for ¢ = [ there are 560 pairs. That is

(+,4) + (+,—) = (+,+) — 3 x 560 = 1680 non — vanishing f-HE) L (G.7)

And analogously, there are 1680 non-vanishing structure constants of each of the

types f(+>7)(+7+)(+7+)7 f(+7+)(77+)(+7+)7 f(77+)(+7+)(+7+)’ f(,7,)(+7,)(777)7 f(+77)(7’7)(777)’

f(_7_)(_7+)(777)7 an f(_’+)(_’_)(,7,)-
(i+,1-) if j = k
(i, j—=) + (b, 1=) = { (kt,j—) if i =1 (G.8)
norootsifi=korj=lori#l, j#k

The number of pairs (i+, j—), (k+,1—) with j = k is 560 and with ¢ = [ is also 560. Then
we have

(+,—) + (+,—) = (+,—) — 2 x 560 = 1120 non — vanishing f(J“*)(J“*)H’,) (G.9)

And analogously, 1120 of the type f(_’+)(_’+)(,’+).

Oifi=k,j=1
(J—l+)ifi=k, j <l

(14, )

(i+k=)ifj=1,i<k

(k—i+)ifj=1,i>k

there are no roots if i =lor j=kori#k, j#I

ifi=k, j>I1

(i+,7—) + (k—,1+) = (G.10)

\

The number of pairs of roots (i+,j—), (k—,l+) verifying i = k, j = [ is 120; with ¢ = k,
j # [ there are 1120 of which 560 correspond to j7 > [ and 560 to j < I; and for j =1, # k
there are 1120 of which 560 correspond to ¢ > k and 560 to ¢ < k. Then there are

0— 120
(=) + (= +) = § (+,—) — 2 x 560 = 1120 (G.11)
(—,+) — 2 x 560 = 1120
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That is, 1120 structure constants of type f(+ ) ’+)(+ —y and 1120 of type fI= ”L)( +)
And analogously 1120 f(—H)(+— )(+ —y and 1120 il )( +)

Summarizing there are 12 x 560 = 6720 combinations giving (4, +), 6720 giving (—, —),
6720 giving (+, —) and 6720 giving (—, +). That is 26880 non-vanishing structure constants
f"‘ﬁa+5, and 4 x 120 x 16 = 7680 non-vanishing structure constants f** 4.

In the case Fg x Eg, we denote the roots

(1,Z:|:,]:|:) = (Oi_b:i:l,Oj_i_l,:izl,Ol()‘_j) (G12)
(2;i%,j+) = (041, £1,0j;-1,41,08_;) (G.13)

(135) = ((i;>8(even> ’08)
(2i5) = (08’ (i;>8<even>>

where s can take 27 values. It can be thought of as a binary number of 7 digits (one

with 1 <17 < j < 8; and:

(G.14)

depending on the others because there must be an even number of — signs).

Split the 480 roots of Fg x Eg into 8 subsets of 28 elements: (1;+,4+), (1;—,—),
(Li+,-), (L, —,4), (2;+,4), (2;—,—), (2;+,—), (2;—,+) and 2 subsets (1;s), (2;s) of
128 elements.

IF (1) + (2 = 41+ +H) + (L0 >4, or [(;— )+ (L— )P >
4, there are no roots.

Oifi=k, j=1
(1]+z Vifi=k,j <l
(L;l—,j+)ifi=k, j>1
L+, k—)if j=11<k
(Liit, j+) + (L k=, 1-) = ( )i ] (G.15)
(Lik—i+)ifj=1i>k
(Lyi+,l—)if j =k
(Lik—j+)ifi=1
there are no roots if ¢ # k and j # [
The number of pairs of roots (1;i+,j+), (1;k—,1—) is
28 with i = k,j7 =1
v 56 with j > I
8—1)(8—1—1) =112 ithi=k,j#1
ZE-iE=i=) with & =k, j # {56Withj<l
56 with i > k (G.16)
112 ith j=10,i #k
with j =1i# {56withz’<k
7
(G -1)(8—j) =56 with j =k,
=2
56 with 7 = [
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The second line counts the number of pairs j,I such that ¢ < j and ¢ < [ # j, and the
fourth one, the number of pairs 4,1l such that ¢ < j and j < [. Then we have

0— 28
(L+,+)+ (15—, =) =13 (+,—) — 3 x 56 = 168 (G.17)
(—,+) — 3 x 56 =168

i.e. 168 structure constants of type f(1;+7+)(1?_’_)(1;+7_) and 168 of type f(1;+’+)(1?_’_)(1;_7+).
And analogously, there are 168 of type f(l?*’*)(l;**)(lﬁ,_) and 168 of type
f(1;777)(1;+,+)(1;_7+).

For the other roots of the kind (1; +, £), the analysis is as in the SO(32) case, but now
the number of non-vanishing structure constants is one tenth as before: 12 x 56 = 672 com-
binations giving (1;+, +), 672 giving (1; —, —), 672 giving (1; 4+, —) and 672 giving (1; —, +).

We also have

(0 — 27 = 128
— 28 x 25 =896

(L;s) + (1;8) = — 896 (G.18)

For the sum of two roots of the kind (1;s) to give (1,1,014) it is necessary that they are
of the form (+1/2,4+1/2,r,s,t,u,v,w) and (+1/2,+1/2,—r, —s, —t, —u, —v, —w). Then
there are 25 = 32 possible choices of parameters r,s,t,u,v (w is not independent). Since
there are 28 roots of the kind (1;+,+), the number of non-vanishing structure constants
f(l;s)(l?s)(l;Jr,Jr) is 32 x 28 = 896. And analogously there are 896 f(15s)(1;s)(1;+7+), 896
f(l;s)(l;s)(l;—,—)y 896 f(l;S)(lss)(l;Jrﬁ) and 896 f(l;S)(l;s)(1;77+)7 and

(1;8) + (1;4+4) = (1;5) — 28 x 25 = 896 (G.19)

To have (1;s) + (1,1,014) = (1; ), it is necessary that (1;s) = (=1/2,—-1/2,r,s,t,u,v,w).
Then there are 2° = 32 possible choices of parameters r, s,t,u,v (w is not independent).
Since there are 28 roots of the kind (1;+,+), the number of non-vanishing structure
constants of the type f(hs)(l;*’*)(l;s) is 32 x 28 = 896. And analogously there are 896
structure constants of type f(15s)(1?_’_)(1;3), 896 f(l?s)(lﬁ’_)(l;s), 896 f(l;s)(l;_"")(l;s), 896
f(1;+’+)(155)(1;8),896 f(l;—,—)(l;S)(l;S)7 896 f(1;+,—)(1;s)(1;s) and 896 f(l;—7+)(1;s)(1;s)‘28

The same holds for the sum of two roots of type (2,---), and then there are a total
of 2 x (12 x 56 4 896) = 3136 combinations giving (+,+), 3136 giving (—, —), 3136 giving
(4, —), 3136 giving (—, +) and 2x8x896 = 14336 giving (1, s). That is 26880 non-vanishing
structure constants of type faﬂa_’_ﬁ.

Z8Note that there are an even number of — signs since the sign of two components is always modified.
This agrees with the fact that the spinorial conjugation class only changes to the conjugate one when adding
a vector of the vectorial class.
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In addition, there are 2 X (4 x 28 +128) x 16 = 7680 structure constants of type f** 4.
In conclusion, the number of structure constants of type faﬁaJrg is 26880 and of type
2% 4 is 7680, for both the SO(32) and the Eg x Eg groups.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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