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1 Introduction and summary

1.1 Background

The ten-dimensional type II superstring theories contain a rich variety of extended objects

such as the D-branes and the NS5-brane. The tension of a Dp-brane is proportional to g−1
s

(gs: string coupling constant) and that of the NS5-brane is proportional to g−2
s .

It is conjectured that string theories are related by discrete non-perturbative dualities.

When we compactify M/string-theory to lower dimensions, the U -duality group is enlarged

and can relate objects that were not related in higher dimensions. That is to say, it

can occur that, by a duality transformation, an extended object is mapped to a “non-

geometric” one, being the latter an object that is not a solution of the higher-dimensional
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supergravity theories. This is a consequence of the geometric formulation of supergravity

theories: the transition functions that are needed to “glue” the patches of the manifold on

which the theory is defined do not contain the U -duality group transformations. Moreover,

if we compactify the theory, the tension of the dualized extended object can change and

be proportional to gαs with α ≤ −3. These objects are known as the exotic branes [1–7],

and in this paper we are going to revisit various aspects of them.

Conceptually, exotic branes should not be considered that exotic: because they are

obtained by duality transformations, their role is as important as the standard branes.

Usually, the charges of these solutions are determined by the non-trivial monodromy that

appears when we go around them. For example, let us consider type II supergravity on a

T 2 with an NS5 brane extended along the external directions. The resulting background

obtained after performing two T -dualizations is the so-called 522-brane background. This

background exhibits a non-trivial monodromy when going around the brane, which is

not captured by the symmetries of the supergravity theories. The flux1 induced by this

background, the so-called Q-flux, is the field strength of an antisymmetric object βmn,

which is related by T -duality to the Kalb-RamondB-field. That is to say, the 522 background

is the source of the Q-flux, as it is magnetically coupled to the potential βmn.

Just like the Dp-brane is electrically coupled to the Ramond-Ramond (R-R) (p +

1)-form potential, in general, exotic branes are electrically coupled to mixed-symmetry

potentials. In a series of works [8–17], it has been shown that there exists a one-to-

one correspondence between exotic branes and some mixed-symmetry potentials that are

defined in ten dimensions. A classification of mixed-symmetry potentials (and thus of exotic

branes) has been done by considering different arguments. Firstly, the E11 conjecture [18–

21] (see [22–24] for recent studies) allows one to predict the spectra and degeneracy of all

possible mixed-symmetry potentials of any multiplet at any dimension. This prediction is

based on the analysis of roots and weights of the U -duality group at any dimension [25–

30]. Lately, the so-called wrapping rules were formulated [11, 17, 31–33]. This set of rules

allows one to construct a set of mixed-symmetry potentials, depending on the type of T -

and S-duality transformations that one performs. This approach is in full agreement with

the predictions given by the E11 decomposition method.

Despite the study of the mixed-symmetry potentials allows to elucidate the spectra of

exotic branes for any dimensions, we still lack a method to generate these backgrounds.

Because the geometric isometries of supergravity are not enough to cover generic U -duality

transformations, we would require a theory in which dualities are true symmetries. For

example, we can consider extended field theories, such as Double Field Theory (DFT) [34–

51] and Exceptional Field Theory (EFT) [18, 52–65], which are manifestly T -duality- and

U -duality-symmetric theories, respectively.

In the formulations of DFT and EFT, some additional coordinates have been added

in order to realize a manifest duality symmetry. In this case, the usual spacetime co-

ordinates and the dual coordinates, known as the winding coordinates, are on the same

1We will consider fluxes as some field strengths with indices in the internal directions that have a non-

trivial background value. Global treatments are omitted.
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footing. Because dualities are isometries of these theories, we should be able to realize the

exotic branes that are obtained upon a chain of dualities as solutions within this theory.

To consistently formulate DFT/EFT, we demand a constraint on the dependence of the

fields on the full set of coordinates. The so-called section condition (SC) imposes some

restrictions among the physical and the winding coordinates, in such a way that when

fields depend on all the physical coordinates, the usual supergravity theory is recovered.

Nevertheless, there exist other solutions to the SC which imply that the fields can depend

on the winding coordinates. In particular, it is known that solutions of the SC that allow

the fields to depend on the winding coordinates reproduce the Romans massive type IIA

supergravity [66] (see a derivation from DFT [67] and a modified EFT called XFT [68]) or

the type IIB generalized supergravity equations (GSE) [69, 70] (see a derivation from (a

modified) DFT [71, 72] and EFT [73]).

Because DFT/EFT are duality-symmetric theories, they should be the appropriate sce-

narios to describe the set of exotic branes that can be obtained by duality transformations

(see [74] for a recent study on exotic branes in EFT).

The choice of a solution of the SC in which fields can depend on winding coordinates

implies the existence of isometry directions along some physical coordinates. Then, we can

think of these theories as effective lower-dimensional theories such that, when uplifted to

ten/eleven-dimensional supergravities, they exhibit the isometry directions. Such isometry

directions are determined by a set of Killing vectors, which become crucial in the description

of these massive or deformed supergravities [75, 76]. The first formulations of these theories

were prior to the DFT/EFT formulations. The case of the GSE [69, 70] and its derivation

from DFT [71, 72] or EFT [73] is one of the most recent examples that have been worked

out in the literature.

As mentioned above, because of their isometry directions, these deformed supergravi-

ties can be understood as effective lower-dimensional theories with massive deformations.

Such deformations can be studied systematically: using the embedding tensor formal-

ism [77, 78] and constructing the tensor hierarchy of a theory, one can scan all the possible

deformations of a particular lower-dimensional supergravity. Then, a dictionary between

the fluxes associated to these deformed supergravities and the embedding tensor is esti-

mated.

It is the purpose of this paper to establish a systematic way of studying the exotic

branes and their expected-to-be one-to-one related objects. Based on the above arguments,

we guess that the distinct formulations of exotic branes, mixed-symmetry potentials and

the massive supergravities are closely related. We would like to fill the gaps among these

three approaches and establish precise mechanisms to show their equivalence.

In this paper, we firstly generate the full web of exotic branes by applying U -duality

transformations to standard branes. We only consider a subgroup of the U -duality group,

which consists of the T - and S-duality transformations. As we could expect from the

finiteness of the U -duality group for d ≥ 3, we have obtained a finite set of exotic states,

which have been classified into different orbits.

After fully determining the web of branes, we find a systematic way to generate the

exotic-brane backgrounds as solutions of duality-symmetric theories, namely DFT or EFT.
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Being a U -duality-symmetric theory, EFT is the appropriate framework where to describe

these backgrounds. Starting from a fully geometric brane background, we should be able

to perform T - and S-duality transformations to generate the dualized backgrounds. To do

so, we need to understand how duality transformations act on both the fields that enter

the EFT and on the winding coordinates. That is to say, firstly, we rewrite the usual T -

and S-duality rules in terms of the supergravity fields that appear in the M-theory and

type IIB parameterizations of EFT. Secondly, we apply the duality transformations on the

generalized coordinates. Because we start from geometric solutions that correspond to the

standard branes, the sections (i.e. solutions of the SC) for the obtained solution are T - and

S-duality-related to the geometric section.

The dictionary between the supergravity fields and the dual (or the non-geometric)

fields in DFT/EFT allows us to calculate the non-geometric fluxes. We find a relation

between the non-geometric fluxes and the mixed-symmetry potentials obtained from the

E11 decomposition and the wrapping rules.

Finally, we find a mechanism to systematically obtain ten/eleven-dimensional deformed

supergravities that exhibit some isometry directions. The number of isometry directions

depends on the specific solution of the SC, which will pick the non-physical coordinates

that the fields can depend on. In general, we would like to engineer a systematic way

to generate deformed supergravities that contain each of the exotic domain-wall branes

as a solution. For instance, a relation between the domain-wall solutions and deformed

supergravities has been suggested in [14].

1.2 Main results

In this subsection we summarize the results that we have obtained.

In section 3, by brute force application of the S- and T -duality transformations, we

have generated the full web of supersymmetric branes for each p-brane multiplet at any

dimension d ≥ 3. In this classification, we have distinguished the defect, domain-wall

and space-filling brane types (which have codimension 2, 1, and 0, respectively) from the

standard branes. In (3.13), (3.14), and (3.15), we have shown the spectrum of all the M-

theory branes, type IIA branes, and type IIB branes. In figures 1–20, we have generated

the web of type II branes and shown the T -duality and S-duality chains of transformations

that relate them. At any dimension d ≥ 3, we have obtained the spectra of exotic branes

for any p-brane multiplet together with their degeneracies, which are given in appendix C.

In section 4, by utilizing the manifest O(d, d) T -duality symmetry of DFT, we have

obtained some known domain-wall solutions, the D8 solution and the 532 solution (also

known as the R-brane solution). In order to obtain the backgrounds of the full web of

branes, T -duality is not enough. That is to say, to generate the whole T -duality orbits of

figures 1–20 which only contain domain-wall and space-filling branes, we additionally need

S-duality transformations. By S-dualizing some elements of the orbits containing standard

and defect branes, we generate the orbits spanned by domain-wall and space-filling branes.

Then, in section 5, by making use of S- and T -duality transformations, we have ob-

tained the full web of branes as solutions of EFT. We have shown that to obtain the
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exotic branes as EFT solutions, we have to systematically apply S- and T -duality trans-

formations on both the EFT generalized metric and the set of coordinates defined in EFT.

Unlike the well-known defect-brane solutions, the obtained solutions include the explicit

linear winding-coordinate dependence, while satisfying the SC.

In terms of the dual fields in EFT, we have calculated all the non-geometric fluxes for

each exotic brane in the web. Similar to the fact that the defect branes can be regarded

as the magnetic sources of the globally non-geometric fluxes, the domain-wall branes are

identified as the magnetic sources of the locally non-geometric R-fluxes. We have proposed

suitable definitions of the R-fluxes in the E8(8) EFT that transform covariantly under U -

duality transformations. Then, we have shown that the domain-wall-brane solutions in

EFT contain constant R-fluxes.

We have clarified the relation between the non-geometric fluxes associated to each

brane and the mixed-symmetry potentials predicted in the literature. In particular, we have

shown that the non-geometric fluxes in EFT are dual to the field strengths of the mixed-

symmetry potentials. To do so, we have to extend the electric-magnetic duality transfor-

mation of the mixed-symmetry potentials that was conjectured in DFT [79] to the EFT

formulation, for both the M-theory/IIB parameterizations. The electric-magnetic duality

transformation in EFT involves the dual spacetime metric, as it occurs in the DFT case.

Finally, in section 6, we have discussed various deformed supergravity theories, which

generalize the Romans massive IIA supergravity. As mentioned earlier, these theories can

enjoy one or more isometry directions, each of them characterized by a Killing vector. For

a given exotic brane, we have provided a prescription to identify the lower-dimensional

deformed supergravity theory that realizes that background. While standard and defect

branes do not exhibit any dependence on winding coordinates, this is not the case for

the domain-walls and the space-filling branes. The winding-coordinate dependence of the

domain-wall solutions are transmuted into the R-fluxes (or the gaugings), which character-

ize the deformations of the supergravities, and the domain-wall solutions in the deformed

supergravities are independent of the winding coordinates. That is to say, the dependence

on the winding coordinate is encoded in the deformation parameter of the correspond-

ing supergravities. We have reproduced several known domain-wall solutions in certain

deformed supergravities, which include known solutions in [76].

In summary, in this paper, we have explicitly established one-to-one mappings among

several topics,

☛

✡

✟

✠
exotic

domain-wall branes
↔

✎

✍

☞

✌
mixed-symmetry

potentials
↔

✞
✝

☎
✆R-fluxes ↔

✎

✍

☞

✌
deformed

supergravities
.

Nevertheless, several question remain unclear. Let us elaborate on them.

1.3 Future directions

Let us comment on several open questions that have not been addressed in this paper.

In this work, we have concentrated on the branes which are connected through Weyl

reflections (which is a part of U -duality transformations). For the disconnected “missing
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states,” we have only translated their Dynkin labels to the mass formula and classified them

into several families of missing sates connected under Weyl reflections. At the present stage,

the physical properties of the missing states are totally unclear. In the literature [30, 80–

82], the missing states are discussed as certain bound states of the “elementary” branes

(i.e. branes connected to the standard branes via Weyl reflections). Indeed, among the

familiar triplet of seven branes in type IIB theory [76, 83–85], only two of them correspond

to “elementary” branes, D7 and 73 . The remaining one is disconnected to these two and

will be a member of the missing states, 72 . The supergravity solution for the missing seven

brane is discussed in [85]. A more detailed study of the supergravity solution and its U -

duality rotations will be an interesting future direction. It will also be important to study

the supersymmetry of the exotic backgrounds. In section 5.9 we have only obtained the

projection rule via U -duality rotations. More detailed studies, such as the explicit finding

of the Killing spinor equations, will be important. Other than single-brane solutions, by

applying our U -duality rules in EFT, we can also rotate an arbitrary solution, such as a

Dp-Dq solution, and obtain various multiple-brane solutions that may include exotic branes.

It is also interesting to investigate the physical meaning of the huge number of the

exotic space-filling branes. In the case of the D9-brane and the 94-brane in type IIB

theory, their existence was closely related to type I or heterotic theory. It is interesting to

study the (possibly non-covariant or lower-dimensional) theories that are associated with

other exotic space-filling branes.

According to the E11 program, the existence of many mixed-symmetry potentials has

been conjectured, which transform under certain representations of the U -duality group.

However, it has not been discussed much about how to describe the mixed-symmetry

potentials in the context of EFT. Only the mixed-symmetry potential Ci1···i8, j in M-theory

or Dm1···m7, n in type II theory can appear in E8(8) EFT, but other potentials do not enter

the generalized metric.

From this paper’s perspective, the generalized metric of EFT contains the dual fields,

such as β, γ, and Ω, whereas the Hodge duals (which are taken with respect to a com-

bination of the “dual” metrics that parameterize the generalized metric) of their winding

derivatives give the dual field strengths. Then, the mixed-symmetry potentials are defined

as the potentials for the dual field strengths. In fact, the mixed-symmetry potentials can

appear in a more direct manner. In EFT, there exists an external 1-form A
I1
µ that trans-

forms in the particle multiplet, and a 2-form B
I2
µµ that transforms in the string multiplet,

and a 3-form C
I3
µµρ that transforms in the membrane multiplet, and so on. As we have

explicitly shown in this paper, these p-brane multiplets include all of the exotic branes

and these (p+ 1)-form fields should be composed of the mixed-symmetry potentials. The

explicit parameterizations of these (p+1)-form fields will be important. More importantly,

there must be constraints for the derivative of the (p + 1)-form fields and the derivative

of the generalized metric, corresponding to the electric-magnetic duality between the field

strength of the mixed-symmetry potentials and the R-fluxes. Such duality will correspond

to the exotic duality [86] recently discussed in DFT, and it is important to identify the

duality relation in EFT.
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As a different direction, it would be interesting to determine the worldvolume ac-

tions for exotic branes and show that the Wess-Zumino term indeed contains the mixed-

symmetry potential (see [8] for a related work).

Let us comment on the R-fluxes. Despite in this work we have given some heuristic

definitions of the locally non-geometric R-fluxes, we should provide more systematic def-

initions similar to [87–89]. Here, we have concentrated on the R-fluxes associated with

the “elementary” domain-walls, but since the mixed-symmetry potentials for the missing

states are also proposed, by performing the electric-magnetic duality, we may also obtain

the R-fluxes associated with the missing states. Only after introducing such R-fluxes, we

can obtain a U -duality multiplet of fluxes.

It is also interesting to study the fluxes associated with the space-filling branes. In

terms of the mixed-symmetry potentials in type II theory, mixed-symmetry potentials

with a set of ten antisymmetric indices, such as E10,7−p,2 have been proposed. Naively,

by introducing their field strengths and performing the electric-magnetic duality, one may

obtain the corresponding fluxes. However, proper definitions of the field strengths are not

clear at present. Some hints may be found by studying the EFT solutions of the space-filling

branes in more detail.

In this paper, we have made clear how to obtain the action or the equations of motion

of various deformed supergravities from EFT. According to the SC in EFT, the deformed

supergravities are effectively defined in lower-dimensional spacetime, as some of the wind-

ing coordinates are used to provide the constant fluxes or deformation parameters. It would

be interesting to establish a systematic relation between the exotic branes or, equivalently,

their associated lower-dimensional deformed supergravities and the gaugings in the lan-

guage of the embedding tensor. Some work in this direction has been recently done for

spacetime-filling branes in [90]. In this paper, among all of the domain-wall branes con-

tained in the U -duality multiplets, we have only considered the “elementary” domain-walls.

In that case, the SC is not violated. On the other hand, in [91], gaugings that break the

SC have been found. In particular, non-geometric fluxes that are in different orbits from

the standard fluxes are introduced. It would be relevant to find a connection between these

fluxes and the missing states in the U -duality multiplets.

1.4 Plan of the paper

The paper is organized as follows. In section 2 we briefly review the notation for exotic

branes. In section 3, we review the relation between exotic branes and the weights of the

U -duality group. We then construct the full web of “elementary” exotic branes and give

the duality transformations that relate them. In section 4, we review how to obtain some

of the known domain-wall backgrounds as solutions of DFT. In section 5, we explain how

to obtain all the “elementary” exotic branes as solutions of EFT. The definitions of the

non-geometric R-fluxes are also provided. In section 6, we review some deformed/massive

supergravity theories and show that they can be obtained upon solving the SC of DFT/EFT

in such a way that winding coordinates are allowed.

We also provide several appendices. Appendix A provides the notation used along

this work. In appendix B, we review parameterizations of the generalized metric in En(n)

– 7 –
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EFT (n ≤ 7). Appendix C shows the various spectra of p-brane multiplets for diverse

dimensions. Finally, appendix D shows the relation between the exotic branes that we

have obtained and the mixed-symmetries potentials that are coupled to.

Addendum. Upon publication of version 1 of this work, we learned that some aspects

of section 3 were also constructed by another group [92].

2 A brief review of duality rules and exotic branes

In this section, we provide a brief review of exotic branes in type II string theories and

M-theory toroidally compactified to d-dimensions.

2.1 Type II branes

In type II string theory, by denoting the radius of the torus along the xi-direction as Ri, the

mass of a fundamental string (denoted as F1) wrapped along the xi-direction is given by

MF1(i) =
1

2πl2s
× (2πRi) =

Ri

l2s

(
ls ≡

√
α′
)
. (2.1)

By using the familiar T - and S-duality transformation rules,

T -duality : Ri → l2s/Ri , gs → gs ls/Ri , ls → ls ,

S-duality : gs → 1/gs , ls → g1/2s ls ,
(2.2)

we can see how the mass (2.1) is transformed under duality transformations. For example,

if we perform a T -duality along the xi-direction, the mass (2.1) becomes

MP(i) =
1

Ri
, (2.3)

which is interpreted as a mass of the pp-wave or the Kaluza-Klein (KK) momentum (de-

noted as P). If we instead perform an S-duality, the mass (2.1) becomes

MD1(i) =
Ri

gsl2s
= g−1

s

1

2πl2s
× (2πRi) , (2.4)

which is interpreted as a mass of the D1-brane wrapped along the xi-direction. By re-

peating duality transformations, we obtain masses of various branes. It is then useful to

employ the notation of [5] (see also [93, 94]), which allows us to characterize various branes

by their masses. If an object wrapped along xn1 , . . . , xnb-directions has a mass,

M =
1

gns ls

(
Rn1 · · ·Rnb

lbs

)(
Rm1 · · ·Rmc2

lc2s

)2

· · ·
(
Rp1 · · ·Rpcs

lcss

)s

, (2.5)

we denote the brane as

b(cs,...,c2)n (n1 · · ·nb, m1 · · ·mc2 , · · · , p1 · · · pcs) , (2.6)

or simply call it a b
(cs,...,c2)
n -brane.2 With this notation, for example, the usual Dp-brane

and the NS5-brane are denoted as the p1-brane and the 52-brane.

2We denote b
(0,cs−1,...,c2)
n by b

(cs−1,...,c2)
n , whereas b

(c)
n and b

(0)
n are respectively denoted as bcn and bn .

– 8 –
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2.2 M-theory branes

We can uplift the mass of type IIA branes to the mass of M-theory branes by using the

usual relation connecting 11D and 10D,

RM = gsls , lp = g1/3s ls , (2.7)

where RM represents the radius of the M-theory circle. After the uplift, M-theory branes

generally have masses of the form

M =
1

lp

(
Ri1 · · ·Rib

lbp

)(
Rj1 · · ·Rjc2

lc2p

)2

· · ·
(
Rk1 · · ·Rkcs

lcsp

)s

. (2.8)

We then denote the brane as

b(cs,...,c2)n (i1 · · · ib, j1 · · · jc2 , · · · , k1 · · · kcs) , (2.9)

where n ≡ 1 + b+ 2 c2 + 3 c3 + · · ·+ s cs represents the power of the Planck length in the

denominator. In the literature, n is omitted, but here we keep it since it is a good measure

of the exoticism, similar to the power of gs in type II theory.

In terms of M-theory, the transformation rule (2.2) can be nicely summarized as [1, 95]

Ui,j,k : Ri →
l3p

RjRk
, Rj →

l3p
RkRi

, Rk →
l3p

RiRj
, lp →

l2p

(RiRjRk)1/3
. (2.10)

It is noted that the inverse of the Newton constant in d-dimensions,

ld ≡ R1 · · ·Rn

l9p
(n ≡ 11− d) , (2.11)

is invariant under the Ui,j,k for arbitrary choices of three directions {i, j, k} in the torus

Tn .

2.3 Brane tension

The b
(cs,...,c2)
n -brane in type II/M-theory can extend along the external spacetime up to b

number of spatial dimensions, although the indices in the second slots (i.e. j1, . . . , jc2) or

later should be internal ones. Namely, we can consider an external p-brane,

Type II : b(cs,...,c2)n (µ1 · · ·µp n1 · · ·nb−p, m1 · · ·mc2 , · · · , ℓ1 · · · ℓcs) ,
M-theory : b(cs,...,c2)n (µ1 · · ·µp i1 · · · ib−p, j1 · · · jc2 , · · · , k1 · · · kcs) ,

(2.12)

where µi represents the external directions. Corresponding to the masses (2.5) and (2.8),

the tensions of the p-brane in type II/M-theory are given by

Type II : Tp =
1

gns ls (2πls)p

(
Rn1 · · ·Rnb−p

lb−p
s

)(
Rm1 · · ·Rmc2

lc2s

)2

· · ·
(
Rℓ1 · · ·Rℓcs

lcss

)s

,

M-theory : Tp =
1

lp (2πlp)p

(
Ri1 · · ·Rib−p

lb−p
p

)(
Rj1 · · ·Rjc2

lc2p

)2

· · ·
(
Rk1 · · ·Rkcs

lcsp

)s

. (2.13)
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This formula becomes necessary in the next section, when we associate various tensions

appearing in the p-brane multiplets to branes in type II/M-theory.

As we review in section 3.1, T - and S-duality in type II theory, or the duality transfor-

mation Ui,j,k in M-theory can be regarded as the Weyl reflection associated with the simple

roots of the En(n) group, which is the U -duality group of the string/M-theory. In the next

section, we provide a full list of branes obtained by the U -duality transformations.

3 Full duality web for d ≥ 3

In this section, we provide the full duality web for string/M-theory compactified to d-

dimensions with d ≥ 3.

3.1 Duality rotations as Weyl reflections

Before showing the duality web, here we explain that the chain of T - and S-duality can be

regarded as Weyl reflections by closely following the discussion of [1, 5].

3.1.1 Setup

Let us rewrite the brane tension (2.13) as

Tp ≡ (2π)p Tp ≡ l3v
0

p (Ri1 · · ·Rib−p
)(Rj1 · · ·Rjc2

)2 · · · (Rk1 · · ·Rkcs )
s

≡ ev
0 x0+vi xi

(
ex0 ≡ l3p , exi ≡ Ri

)
, (3.1)

which has the mass dimension

−
(
3 v0 + v1 + · · ·+ vn

)
≡ 1 + p , (3.2)

and reduces to the mass (2.8) when p = 0. We also define a vector v ≡ vµ eµ (µ = 0, 1, . . . , n)

by using a basis eµ of (n+ 1)-dimensional vector space endowed with an inner product,

eµ · eν = ηµν , (ηµν) ≡ diag(−1, 1, . . . , 1) . (3.3)

Then, a particular U -duality transformation U1,2,3 of (2.10) can be realized as a reflection,

v → v − 2
v · αn

αn · αn
αn , αn ≡ e0 − (e1 + e2 + e3) . (3.4)

A general U -duality transformation (2.10) can be realized by combining U1,2,3 and par-

ticular U -duality transformations Pi: Ri ↔ Ri+1 (i = 1, . . . , n − 1),3 and Pi can be also

realized as a reflection,

v → v − 2
v · αi

αi · αi
αi , αi ≡ ei − ei+1 (i = 1, . . . , n− 1) . (3.5)

3In type II theory, by denoting a chain of T -dualities along the xm1 , . . . , xmn -direction by Tm1···mn ,

a chain of dualities Tm S Tmn S Tnm S Tm , corresponds to a permutation Rm ↔ Rn keeping gs and ls

invariant. Therefore, an exchange Rm ↔ Rn in 11D can be also realized as a combination of Ui,j,k .

Furthermore, the 11D uplift of Tm S Tm corresponds to a permutation Rm ↔ RM . Therefore, the U -

duality (2.10) contains all possible permutations Ri ↔ Rj in 11D.

– 10 –
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Since the inner products aij ≡ αi · αj among the vectors αi (i = 1, . . . , n) take the form

(aij) =














2 −1 0

−1 2 −1 0

−1 2 −1 −1

−1
. . .

. . . 0

. . .
. . . −1

.

.

.

−1 2 0

0 0 −1 0 · · · 0 2














↔ ��������

α1

��������

α2

��������

α3

��������αn

��������

α4

· · · ��������
αn−1

, (3.6)

we can regard αi as the simple roots of the En(n) U -duality group and transformations (2.10)

as the Weyl reflections. Corresponding to the invariance of the d-dimensional Newton

constant (or ld = R1 · · ·Rn/l
9
p), a vector

δ ≡ e1 + · · ·+ en − 3 e0 (δ · δ = n− 9) , (3.7)

is invariant under the reflections associated with the simple roots αi . This shows that, for

an arbitrary vector v = vµ eµ , a quantity 3 v0 + v1 + · · · + vd (= p) is invariant under the

Weyl reflections.

Now, we introduce the fundamental weights λi associated with the simple roots (sat-

isfying λi · αj = δij) as follows:

λ1 ≡ e1 − e0 , λ2 ≡ e1 + e2 − 2 e0 , λ3 ≡ e1 + e2 + e3 − 3 e0 , . . . ,

λn−1 ≡ e1 + · · ·+ en−1 − 3 e0 , λn ≡ −e0 . (3.8)

Since the vector δ is orthogonal to all of the simple roots, there is an ambiguity in the

choice of λi ; λi ∼ λi + ci δ (ci: constant). We can determine the constants ci by requiring

αi = aij λ
j , but the δ-direction is irrelevant for our purpose, and we can mod out the

direction from the (n+1)-dimensional space spanned by eµ . With the above choice, we have

αi = aij λ
j (i 6= n− 1) , αn−1 = a(n−1)j λ

j − δ ∼ a(n−1)j λ
j . (3.9)

3.1.2 p-brane multiplet

According to the relation (3.1) between the tension and the vector, the tension associated

with a fundamental weight λ1 is T1 = R1/l
3
p . This is the tension of a string in the external

d-dimensional spacetime. More concretely, this string can be interpreted as an M2-brane

wrapped along the internal x1-direction. By acting En(n) U -duality transformations, we

obtain the U -duality multiplet, known as the string multiplet, that is associated with the

fundamental weight λ1 .

The tension associated with λ2 is T3 = R1R2/l
6
p, which corresponds to the tension of a

3-brane in the external d-dimensional spacetime. In terms of M-theory states, it is an M5-

brane wrapped along the internal x1 and x2-directions. Performing En(n) transformations,

we obtain the 3-brane multiplet. Note that in order to consider the 3-brane multiplet, the

dimension d needs to satisfy d ≥ 4 .

Similarly, the tension associated with λ3 is T ′
5 = R1R2R3/l

9
p and it makes a certain

5-brane multiplet. If there is an “M8-brane” that has a tension 1
lp(2πlp)8

, the tension can

– 11 –
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p Dynkin label Tension M-theory brane

0 [0, 0, 0, 0, . . . , 0, 1, 0] T0 = 1/Rn P

1 [1, 0, 0, 0, . . . , 0, 0, 0] T1 = R1/l
3
p M2

2 [0, 0, 0, 0, . . . , 0, 0, 1] T2 = 1/l3p M2

3 [0, 1, 0, 0, . . . , 0, 0, 0] T3 = R1R2/l
6
p M5

4 [1, 0, 0, 0, . . . , 0, 0, 1] T4 = R1/l
6
p M5

5 [1, 1, 0, 0, . . . , 0, 0, 0] T5 = R2
1R2/l

9
p KKM

5 [0, 0, 0, 0, . . . , 0, 0, 2] T5 = 1/l6p M5

5 [0, 0, 1, 0, . . . , 0, 0, 0] T5 = R1R2R3/l
9
p ?

Table 1. Dynkin labels of the p-brane multiplets, and the tension associated with the highest

weight vector and the associated M-theory brane.

be interpreted as the tension of an M8-brane wrapped along the internal x1, x2, and x3-

directions. However, the existence of such object is not clearly understood. The tensions

associated with λi (i = 4, . . . , n− 2) do not have a clear interpretation either.

The tension associated with λn−1 = δ− en ∼ −en is T0 = 1/Rn . This can be regarded

as the mass of the pp-wave, and the corresponding multiplet is called the particle multiplet.

Finally, the tension associated with λn is T2 = l−3
p which is nothing but the tension

of the M2-brane. The corresponding multiplet is known as the membrane multiplet. This

completes the fundamental representations of the En(n) U -duality group.

We can also consider the 4-brane multiplet by considering a tension of the M5-brane

wrapped along the x1-direction, T4 = R1/l
6
p . This corresponds to a weight λ

(4) = e1−2 e0 =

λ1 + λn . Thus, the 4-brane multiplet is the representation labelled by the Dynkin label

[1, 0, . . . , 0, 1] . Similarly, associated with the tension of the M5-brane T
(M5)
5 = 1/l6p that

corresponds to λ(M5) = 2λn, the representation for the 5-brane multiplet is labelled by

the Dynkin label [0, 0, . . . , 0, 2]. There is another 5-brane multiplet associated with the

KKM with the Taub-NUT direction given by the x1-direction and wrapping along the

x2-direction. The tension is given by T
(KKM)
5 = R2

1R2/l
9
p and it corresponds to λ(KKM) =

λ1+λ2 . Namely, the second 5-brane multiplet has the Dynkin label [1, 1, 0, . . . , 0]. Higher

p-brane multiplets can also be constructed similarly. We can summarize this subsection

with table 1.

3.1.3 Example: string multiplet in E6(6)

As an example, let us consider a string multiplet in M-theory compactified on T 6 , where

the U -duality group is E6(6) . We start from the highest weight vector [1, 0, 0, 0, 0, 0] that

corresponds to a 23-brane wrapped along the x1-direction. In order to indicate that the

23-brane behaves as a string in the external five-dimensional spacetime, we denote it as

23(·1)-brane, where the dot “ · ” corresponds to one external dimension. As described

in table 2, by subtracting the simple roots, we can obtain the weight diagram for the

27-dimensional string multiplet.
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[1, 0, 0, 0, 0, 0]

[−1, 1, 0, 0, 0, 0]

[0,−1, 1, 0, 0, 0]

[0, 0,−1, 1, 0, 0, 1]

[0, 0, 0,−1, 1, 1] [0, 0, 0, 1, 0,−1]

[0, 0, 0, 0,−1, 1] [0, 0, 1,−1, 1,−1]

[0, 0, 1, 0,−1,−1] [0, 1,−1, 0, 1, 0]

[0, 1,−1, 1,−1, 0] [1,−1, 0, 0, 1, 0]

[0, 1, 0,−1, 0, 0] [1,−1, 0, 1,−1, 0] [−1, 0, 0, 0, 1, 0]

[1,−1, 1,−1, 0, 0] [−1, 0, 0, 1,−1, 0]

[1, 0,−1, 0, 0, 1] [−1, 0, 1,−1, 0, 0]

[1, 0, 0, 0, 0,−1] [−1, 1,−1, 0, 0, 1]

[−1, 1, 0, 0, 0,−1] [0,−1, 0, 0, 0, 1]

[0,−1, 1, 0, 0,−1]

[0, 0,−1, 1, 0, 0]

[0, 0, 0,−1, 1, 0]

[0, 0, 0, 0,−1, 0]

α1

α2

α3

α4 α6

α5 α3 α4

α6 α5 α3

α3 α5 α2

α4 α2 α5 α1

α2 α4 α1 α5

α3 α1 α4

α6 α1 α3

α1 α6 α2

α2 α6

α3

α4

α5

23(·1)

23(·2)

23(·3)

23(·4)

23(·5) 56(·1234)

23(·6) 56(·1235)

56(·1236) 56(·1245)

56(·1246) 56(·1345)

56(·1256) 56(·1346) 56(·2345)

56(·1356) 56(·2346)

56(·1456) 56(·2356)

619(·23456, 1) 56(·2456)

619(·13456, 2) 56(·3456)

619(·12456, 3)

619(·12356, 4)

619(·12346, 5)

619(·12345, 6)

Table 2. The weight diagram for the string multiplet in E6(6) case.
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d\p 0 1 2 3 4 5 6 7 8

9 3 2 1 1 2 2 + 1 2 ⊂ 3 2 ⊂ 3 2 ⊂ 4

8 6 3 2 3 6 6 + 2 ⊂ 8⊕ 3 6 ⊂ 12 6 ⊂ 15

7 10 5 5 10 20 ⊂ 24 20 + 5 ⊂ 40⊕ 15 20 ⊂ 70

6 16 10 16 40 ⊂ 45 80 ⊂ 144 80 + 16 ⊂ 320⊕ 126

5 27 27 72 ⊂ 78 216 ⊂ 351 432 ⊂ 1728

4 56 126 ⊂ 133 576 ⊂ 912 2016 ⊂ 8645

3 240 ⊂ 248 2160 ⊂ 3875 17280 ⊂ 147250

Table 3. Dimensions of the p-brane multiplet and numbers of branes in the same Weyl orbit as the

highest weight state. Only the 5-brane multiplet consists of two irreducible representations. This

table was originally obtained in [30] from a discussion based on the E11.

Here, let us briefly explain how to make the identification between the Dynkin labels

and the brane charges. When we subtract a simple root αn = e0− (e1+e2+e3) , the brane

tension is multiplied by R1R2R3/l
3
p . At the same time, the Dynkin label is reduced by

[an1, . . . , ann] corresponding to αn = anj λ
j . Similarly, when we subtract αk = ek− ek+1 =

aki λ
i (k 6= n − 1), the brane tension is multiplied by Rk/Rk+1 and the Dynkin label is

reduced by [ak1, . . . , akn] . On the other hand, when we subtract αn−1 = en−1 − en =

a(n−1)j λ
j − δ, the brane tension is multiplied by Rn−1/Rn . In this case, the Dynkin label

is reduced by [a(n−1)1, . . . , a(n−1)n] and the information about δ, which corresponds to the

inverse of the d-dimensional Newton constant ld, is lost. Accordingly, when we try to

reproduce the tension from the Dynkin label, we should introduce ld appropriately. For

example, the Dynkin label [0,−1, 1, 0, 0,−1] corresponds to

− λ2 + λ3 − λ6 ↔ R3 . (3.10)

In order to make the mass dimension the same as that of the string tension, we multiply

it by l5 and obtain

T1 = l5 ×R3 =
R1R2R4R5R6R

2
3

l9p
, (3.11)

By using the convention (2.13), this is interpreted as the tension of the 619(·12456, 3)-brane.
From a similar consideration, we can find the identifications between the Dynkin labels

and branes shown in table 2.

From table 2, we can summarize the detailed number of degeneracy as

23 (6) , 56 (15) , 619 (6) . (3.12)

which is consistent with table 8. It is noted that, in this case, all of the states correspond

to weight vectors with the same length, and the 27 states are connected via the Weyl

reflections, or the U -duality transformations (2.10).

3.2 Web of supersymmetric branes

Utilizing the duality transformation rule (2.10), we can generate a chain of exotic branes

in M-theory. Indeed, by brute force applications of duality (2.10) to the tensions of the
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standard branes, we obtain tables 7–15, which show the explicit brane charges and the

degeneracies in each multiplet. By summing up the degeneracies of all branes, we obtain

the size of the Weyl orbit in each p-brane multiplet in d-dimensions, as summarized in

table 3. In M-theory compactified to d-dimensions with d ≥ 3, all of the branes appearing

in the Weyl orbit are summarized as follows (potentials that couple to the following branes

are listed in [30]):

P , 23 , 56 , 619 , 5312 , 8
(1,0)
12 , 2615 , 5

(1,3)
15 , 0

(1,7)
18 , 3

(2,4)
18 , 6

(3,1)
18 , 5

(1,0,4)
18 ,

2
(4,3)
21 , 1

(1,1,6)
21 , 4

(1,2,3)
21 , 2

(7,0)
24 , 1

(1,4,3)
24 , 4

(1,5,0)
24 , 3

(2,2,3)
24 , 2

(1,0,2,5)
24 ,

1
(2,5,1)
27 , 3

(3,3,1)
27 , 2

(4,0,4)
27 , 2

(1,1,3,3)
27 , 1

(4,4,0)
30 , 3

(5,2,0)
30 , 2

(1,3,2,2)
30 , 2

(2,0,5,1)
30 , 2

(1,0,0,7,0)
30 ,

1
(7,1,0)
33 , 2

(2,3,2,1)
33 , 2

(1,0,3,4,0)
33 , 2

(3,4,0,1)
36 , 2

(4,1,3,0)
36 , 2

(1,1,4,2,0)
36 , 2

(1,3,3,1,0)
39 , 2

(2,0,6,0,0)
39 ,

2
(1,6,0,1,0)
42 , 2

(2,3,3,0,0)
42 , 2

(3,4,1,0,0)
45 , 2

(5,3,0,0,0)
48 , 2

(8,0,0,0,0)
51 .

(3.13)

In the literature, 23, 56, 6
1
9, and 8

(1,0)
12 are respectively called M2, M5, KKM, and M9-brane

while the others do not have familiar common names. We consider a b
(cs,...,c2)
n -brane as a

kind of (b+ c2 + · · ·+ cs)-brane, and the codimension is given by 10− (b+ c2 + · · ·+ cs).

If the codimension of a brane is equal to 2, 1, or 0, we call it a defect brane, a domain-wall

brane, or a space-filling brane, respectively. These are also called the non-standard branes

while branes with codimension 3 or greater are called the standard branes. For clarification,

in (3.13), we have colored the defect branes, the domain-wall branes, and the space-filling

branes in purple, blue, and darkcyan, respectively.

As we can see from table 3, in each dimension d, there is a symmetry between the

dimensions of the p-brane multiplet and (d− 4− p) for p ≤ d− 4 . The representation for

p = d− 3 is always the adjoint representation of the En(n) group.

In the previous subsection, we have shown the Dynkin labels only for p-brane multiplets

with p ≤ 5 . In d ≥ 7 , we also have the p-brane multiplet with p = 6, 7, 8 . For the 6-brane

multiplet, the highest weight corresponds to a 619-brane with the Taub-NUT direction

given by the x1-direction. The tension is T6 = R2
1/l

9
p and it corresponds to 2λ1 + λn ,

whose Dynkin label is [2, 0, 0, 1] in d = 7 and [2, 0, 1] in d = 8 . For the 7-brane multiplet,

the highest weight corresponds to a 8
(1,0)
12 -brane with the special isometry direction given

by the x1-direction and wrapped along the x2-direction. The tension is T7 = R3
1R2/l

12
p ,

corresponding to 2λ1 + λ2 and [2, 1, 0] in d = 8.

We can also consider the type II branes by using the 11D/10D relation (2.7), and the

type IIA branes associated with all of the “elementary” M-branes are obtained in table 4.

It may be more convenient to summarize a list of the type IIA branes as follows, where

defect branes, domain-wall branes, and space-filling branes are colored in the same way as

the M-theory branes:
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M-branes IIA branes M-branes IIA branes M-branes IIA branes M-branes IIA branes

P //

++❲
❲

❲

❲

❲

❲

❲

❲

❲ P 23
//

++❲
❲

❲

❲

❲

❲

❲

❲

❲
10 56

//

++❲
❲

❲

❲

❲

❲

❲

❲

❲
41 619

//

00

,,

61

01 21 52 512

613

5312
//

00

++

522 8
(1,0)
12

//

..

**

81 2615
//

00

++

253 5
(1,3)
15

//

..

**

&&

532

433 7
(1,0)
3 164 5

(1,2)
3

534 8
(1,0)
4 265 4

(1,3)
4

5
(1,3)
5

0
(1,7)
18

//

**❱
❱

❱

❱

❱

❱

073 3
(2,4)
18

//

..

**

&&

3
(1,4)
3 5

(1,0,4)
18

//

..

**

542 6
(3,1)
18

//

..

**

6
(2,1)
3

0
(1,6)
4 3

(2,3)
4 5

(1,0,3)
4 6

(3,0)
4

2
(2,4)
5 4

(1,0,4)
5 5

(3,1)
5

3
(2,4)
6

2
(4,3)
21

//

..

**

&&

2
(3,3)
4 1

(1,1,6)
21

//

..

**

1
(1,6)
3 4

(1,2,3)
21

//

..

**

&&

4
(2,3)
3 2

(7,0)
24

//

..

**

2
(6,0)
5

2
(4,2)
5 1

(1,0,6)
4 4

(1,1,3)
4 1

(7,0)
7

1
(4,3)
6 1

(1,1,5)
5 4

(1,2,2)
5 2

(7,0)
8

2
(4,3)
7 3

(1,2,3)
6

1
(1,4,3)
24

//

..

**

1
(4,3)
4 4

(1,5,0)
24

//

..

**

4
(5,0)
4 3

(2,2,3)
24

//

..

**

&&

3
(1,2,3)
4 2

(1,0,2,5)
24

//

--

))

2
(2,5)
3

1
(1,3,3)
5 4

(1,4,0)
5 3

(2,1,3)
5 2

(1,0,1,5)
5

1
(1,4,2)
6 3

(1,5,0)
7 3

(2,2,2)
6 2

(1,0,2,4)
6

2
(2,2,3)
7

1
(2,5,1)
27

//

..

**

1
(1,5,1)
5 3

(3,3,1)
27

//

..

**

&&

3
(2,3,1)
5 2

(4,0,4)
27

//

**❱
❱

❱

❱

❱

2
(3,0,4)
5 2

(1,1,3,3)
27

//

--

))

&&

2
(1,3,3)
4

1
(2,4,1)
6 3

(3,2,1)
6 2

(4,0,3)
7 2

(1,0,3,3)
5

1
(2,5,0)
7 3

(3,3,0)
7 2

(1,1,2,3)
6

2
(3,3,1)
8 2

(1,1,3,2)
7

1
(4,4,0)
30

//

**❱
❱

❱

❱

❱

1
(3,4,0)
6 3

(5,2,0)
30

//

..

**

3
(4,2,0)
6 2

(1,3,2,2)
30

//

--

))

&&

2
(3,2,2)
5 2

(2,0,5,1)
30

//

--

))

2
(1,0,5,1)
5

1
(4,3,0)
7 3

(5,1,0)
7 2

(1,2,2,2)
6 2

(2,0,4,1)
7

2
(5,2,0)
9 2

(1,3,1,2)
7 2

(2,0,5,0)
8

2
(1,3,2,1)
8

2
(1,0,0,7,0)
30

//

**❱
❱

❱

2
(7,0)
4 2

(2,3,2,1)
33

//

--

))

&&

2
(1,3,2,1)
6 2

(1,0,3,4,0)
33

//

,,

((

2
(3,4,0)
5 2

(3,4,0,1)
36

//

--

))

2
(2,4,0,1)
7

2
(1,0,0,6,0)
7 2

(2,2,2,1)
7 2

(1,0,2,4,0)
7 2

(3,3,0,1)
8

1
(7,1,0)
33

//

**❱
❱

❱

❱

❱

1
(6,1,0)
7 2

(2,3,1,1)
8 2

(1,0,3,3,0)
8 2

(3,4,0,0)
10

1
(7,0,0)
8 2

(2,3,2,0)
9

2
(4,1,3,0)
36

//

--

))

2
(3,1,3,0)
7 2

(1,1,4,2,0)
36

//

,,

((

&&

2
(1,4,2,0)
6 2

(1,3,3,1,0)
39

//

,,

((

&&

2
(3,3,1,0)
7 2

(2,0,6,0,0)
39

//

**❱
❱

❱

2
(1,0,6,0,0)
7

2
(4,0,3,0)
8 2

(1,0,4,2,0)
7 2

(1,2,3,1,0)
8 2

(2,0,5,0,0)
9

2
(4,1,2,0)
9 2

(1,1,3,2,0)
8 2

(1,3,2,1,0)
9

2
(1,1,4,1,0)
9 2

(1,3,3,0,0)
10

2
(1,6,0,1,0)
42

//

,,

((

2
(6,0,1,0)
8 2

(2,3,3,0,0)
42

//

,,

((

2
(1,3,3,0,0)
8 2

(3,4,1,0,0)
45

//

,,

((

2
(2,4,1,0,0)
9 2

(5,3,0,0,0)
48

//

**❱
❱

❱

2
(4,3,0,0,0)
10

2
(1,5,0,1,0)
9 2

(2,2,3,0,0)
9 2

(3,3,1,0,0)
10 2

(5,2,0,0,0)
11

2
(1,6,0,0,0)
11 2

(2,3,2,0,0)
10 2

(3,4,0,0,0)
11 2

(8,0,0,0,0)
51

// 2
(7,0,0,0,0)
11

Table 4. A map between branes in M-theory and type IIA theory.
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0
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(
2
0
1
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)
0
7
2

01 , P , 01 , 21 , 41 , 61 , 81 , 52 , 512 , 522 , 532 , 542 , 613 , 433 , 253 , 073 , 7
(1,0)
3 , 5

(1,2)
3 ,

3
(1,4)
3 , 1

(1,6)
3 , 6

(2,1)
3 , 4

(2,3)
3 , 2

(2,5)
3 , 164 , 0

(1,6)
4 , 1

(1,0,6)
4 , 534 , 4

(1,3)
4 , 3

(2,3)
4 , 2

(3,3)
4 , 1

(4,3)
4 ,

5
(1,0,3)
4 , 4

(1,1,3)
4 , 3

(1,2,3)
4 , 2

(1,3,3)
4 , 8

(1,0)
4 , 6

(3,0)
4 , 4

(5,0)
4 , 2

(7,0)
4 , 265 , 2

(2,4)
5 , 2

(4,2)
5 , 2

(6,0)
5 ,

1
(1,1,5)
5 , 1

(1,3,3)
5 , 1

(1,5,1)
5 , 2

(1,0,1,5)
5 , 2

(1,0,3,3)
5 , 2

(1,0,5,1)
5 , 5

(1,3)
5 , 5

(3,1)
5 , 4

(1,0,4)
5 , 4

(1,2,2)
5 ,

4
(1,4,0)
5 , 3

(2,1,3)
5 , 3

(2,3,1)
5 , 2

(3,0,4)
5 , 2

(3,2,2)
5 , 2

(3,4,0)
5 , 1

(4,3)
6 , 1

(1,4,2)
6 , 1

(2,4,1)
6 , 1

(3,4,0)
6 ,

3
(2,4)
6 , 3

(1,2,3)
6 , 3

(2,2,2)
6 , 3

(3,2,1)
6 , 3

(4,2,0)
6 , 2

(1,0,2,4)
6 , 2

(1,1,2,3)
6 , 2

(1,2,2,2)
6 , 2

(1,3,2,1)
6 , 2

(1,4,2,0)
6 ,

1
(7,0)
7 , 1

(2,5,0)
7 , 1

(4,3,0)
7 , 1

(6,1,0)
7 , 3

(1,5,0)
7 , 3

(3,3,0)
7 , 3

(5,1,0)
7 , 2

(1,0,0,6,0)
7 , 2

(1,0,2,4,0)
7 , 2

(1,0,4,2,0)
7 ,

2
(1,0,6,0,0)
7 , 2

(4,3)
7 , 2

(2,2,3)
7 , 2

(4,0,3)
7 , 2

(1,1,3,2)
7 , 2

(1,3,1,2)
7 , 2

(2,0,4,1)
7 , 2

(2,2,2,1)
7 , 2

(2,4,0,1)
7 ,

2
(3,1,3,0)
7 , 2

(3,3,1,0)
7 , 1

(7,0,0)
8 , 2

(7,0)
8 , 2

(2,0,5,0)
8 , 2

(4,0,3,0)
8 , 2

(6,0,1,0)
8 , 2

(3,3,1)
8 , 2

(1,3,2,1)
8 ,

2
(2,3,1,1)
8 , 2

(3,3,0,1)
8 , 2

(1,0,3,3,0)
8 , 2

(1,1,3,2,0)
8 , 2

(1,2,3,1,0)
8 , 2

(1,3,3,0,0)
8 , 2

(5,2,0)
9 , 2

(2,3,2,0)
9 , 2

(4,1,2,0)
9 ,

2
(1,1,4,1,0)
9 , 2

(1,3,2,1,0)
9 , 2

(1,5,0,1,0)
9 , 2

(2,0,5,0,0)
9 , 2

(2,2,3,0,0)
9 , 2

(2,4,1,0,0)
9 , 2

(3,4,0,0)
10 , 2

(1,3,3,0,0)
10 ,

2
(2,3,2,0,0)
10 , 2

(3,3,1,0,0)
10 , 2

(4,3,0,0,0)
10 , 2

(1,6,0,0,0)
11 , 2

(3,4,0,0,0)
11 , 2

(5,2,0,0,0)
11 , 2

(7,0,0,0,0)
11 . (3.14)

Here, 10, p1, 52, and 512 respectively represent the standard F1, Dp, NS5, and KKM, while

p7−p
3 are known as the higher KK branes denoted as Dp7−p [7]. In addition, 7

(1,0)
3 is known

as the KK8A-brane in [76]. As one can clearly see, in dimensions d ≥ 3 , there exist the

type IIA branes with tensions proportional to gαs with −11 ≤ α ≤ 0 .

In order to obtain all of the “elementary” type IIB branes, we act a T -duality to each

of the type IIA branes. Since a T -duality does not change the power of gs , the type IIB

branes also have tensions proportional to gαs with −11 ≤ α ≤ 0 . A list of all of the

“elementary” type IIB branes is as follows:

10 , P , 11 , 31 , 51 , 71 , 91 , 52 , 512 , 522 , 532 , 542 , 73 , 523 , 343 , 163 , 6
(1,1)
3 , 4

(1,3)
3 , 2

(1,5)
3 ,

7
(2,0)
3 , 5

(2,2)
3 , 3

(2,4)
3 , 164 , 0

(1,6)
4 , 1

(1,0,6)
4 , 534 , 4

(1,3)
4 , 3

(2,3)
4 , 2

(3,3)
4 , 1

(4,3)
4 , 5

(1,0,3)
4 , 4

(1,1,3)
4 ,

3
(1,2,3)
4 , 2

(1,3,3)
4 , 94 , 7

(2,0)
4 , 5

(4,0)
4 , 3

(6,0)
4 , 2

(1,5)
5 , 2

(3,3)
5 , 2

(5,1)
5 , 1

(1,0,6)
5 , 1

(1,2,4)
5 , 1

(1,4,2)
5 , 1

(1,6,0)
5 ,

2
(1,0,0,6)
5 , 2

(1,0,2,4)
5 , 2

(1,0,4,2)
5 , 2

(1,0,6,0)
5 , 545 , 5

(2,2)
5 , 5

(4,0)
5 , 4

(1,1,3)
5 , 4

(1,3,1)
5 , 3

(2,0,4)
5 , 3

(2,2,2)
5 ,

3
(2,4,0)
5 , 2

(3,1,3)
5 , 2

(3,3,1)
5 , 1

(4,3)
6 , 1

(1,4,2)
6 , 1

(2,4,1)
6 , 1

(3,4,0)
6 , 3

(2,4)
6 , 3

(1,2,3)
6 , 3

(2,2,2)
6 , 3

(3,2,1)
6 , 3

(4,2,0)
6 ,

2
(1,0,2,4)
6 , 2

(1,1,2,3)
6 , 2

(1,2,2,2)
6 , 2

(1,3,2,1)
6 , 2

(1,4,2,0)
6 , 1

(1,6,0)
7 , 1

(3,4,0)
7 , 1

(5,2,0)
7 , 1

(7,0,0)
7 , 3

(6,0)
7 , 3

(2,4,0)
7 ,

3
(4,2,0)
7 , 3

(6,0,0)
7 , 2

(1,0,1,5,0)
7 , 2

(1,0,3,3,0)
7 , 2

(1,0,5,1,0)
7 , 2

(1,3,3)
7 , 2

(3,1,3)
7 , 2

(1,0,4,2)
7 , 2

(1,2,2,2)
7 , 2

(1,4,0,2)
7 ,

2
(2,1,3,1)
7 , 2

(2,3,1,1)
7 , 2

(3,0,4,0)
7 , 2

(3,2,2,0)
7 , 2

(3,4,0,0)
7 , 1

(7,0,0)
8 , 2

(1,0,6,0)
8 , 2

(3,0,4,0)
8 , 2

(5,0,2,0)
8 , 2

(7,0,0,0)
8 ,

2
(3,3,1)
8 , 2

(1,3,2,1)
8 , 2

(2,3,1,1)
8 , 2

(3,3,0,1)
8 , 2

(1,0,3,3,0)
8 , 2

(1,1,3,2,0)
8 , 2

(1,2,3,1,0)
8 , 2

(1,3,3,0,0)
8 , 2

(1,4,2,0)
9 ,

2
(3,2,2,0)
9 , 2

(5,0,2,0)
9 , 2

(1,0,5,1,0)
9 , 2

(1,2,3,1,0)
9 , 2

(1,4,1,1,0)
9 , 2

(2,1,4,0,0)
9 , 2

(2,3,2,0,0)
9 , 2

(2,5,0,0,0)
9 , 2

(3,4,0,0)
10 ,

2
(1,3,3,0,0)
10 , 2

(2,3,2,0,0)
10 , 2

(3,3,1,0,0)
10 , 2

(4,3,0,0,0)
10 , 2

(7,0,0,0)
11 , 2

(2,5,0,0,0)
11 , 2

(4,3,0,0,0)
11 , 2

(6,1,0,0,0)
11 . (3.15)

We can also summarize the T -duality web between the type IIA branes (upper) and

the type IIB branes (lower) as in figures 1–20:
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J
H
E
P
0
9
(
2
0
1
8
)
0
7
2

10
[σ3]

0 1

[σ3]
10(1)

0 1

P
[1l]

−1 0

[1l]
P

−1 0

Figure 1. T -duality chain of F(undamental)-branes.

01
[iσ2]

0

[σ1]
11(0)

1 0

21
[σ1]

1 0

[iσ2]
31

1 0

41
[iσ2]

1 0

[σ1]
51(2)

1 0

61
[σ1]

1 0

[iσ2]
71(3)

1 0

81
[iσ2]

1 0

[σ1]
91(4)

1

Figure 2. T -duality chain of D(irichlet)-branes.

52
[1l]

1 0

[σ3]
52(1)

1 0

512
[σ3]

2 1 0

[1l]
512

2 1 0

522
[1l]

2 1 0

[σ3]
522(3)

2 1 0

532
[σ3]

2 1 0

[1l]
532(4)

2 1 0

542
[1l]

2 1

[σ3]
542(5)

2 1

Figure 3. T -duality chain of S(olitonic)-branes.

073
[iσ2]

2

1
(1,6)
3
[σ1]

3 2

[σ1]
163(4)

1 0 2

253
[σ1]

1 0 2

[iσ2]

2
(1,5)
3(5)

1 3 0 2

2
(2,5)
3
[iσ2]

3 2

[iσ2]
343

1 0 2

3
(1,4)
3
[iσ2]

1 3 0 2

[σ1]

3
(2,4)
3(6)

1 3 2

433
[iσ2]

1 0 2

[σ1]

4
(1,3)
3(4)

1 3 0 2

4
(2,3)
3
[σ1]

1 3 2

[σ1]
523(2)

1 0 2

5
(1,2)
3
[σ1]

1 3 0 2

[iσ2]

5
(2,2)
3(5)

1 3 2

613
[σ1]

1 0 2

[iσ2]

6
(1,1)
3

1 3 0 2

6
(2,1)
3
[iσ2]

1 3 2

[iσ2]
73(1)

1 0

7
(1,0)
3
[iσ2]

1 3 0

[σ1]

7
(2,0)
3(4)

1 3

Figure 4. T -duality chain of the E(xotic)-branes.

0
(1,6)
4
[1l]

2 3

[1l]

0
(1,6)
4

2 3

164
[σ3]

1 2 0

[σ3]
164(3)

1 2 0

1
(1,0,6)
4
[σ3]

4 2

[σ3]

1
(1,0,6)
4(5)

4 2

Figure 5. T -duality chain of the E(4;6)-branes.
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H
E
P
0
9
(
2
0
1
8
)
0
7
2

1
(4,3)
4
[1l]

2 3

[1l]

1
(4,3)
4(6)

2 3

2
(3,3)
4
[σ3]

1 2 0 3

[σ3]

2
(3,3)
4(5)

1 2 0 3

2
(1,3,3)
4
[σ3]

4 2 3

[σ3]

2
(1,3,3)
4(7)

4 2 3

3
(2,3)
4
[1l]

1 2 0 3

[1l]

3
(2,3)
4

1 2 0 3

3
(1,2,3)
4
[1l]

1 4 2 3

[1l]

3
(1,2,3)
4(6)

1 4 2 3

4
(1,3)
4
[σ3]

1 2 0 3

[σ3]

4
(1,3)
4(3)

1 2 0 3

4
(1,1,3)
4
[σ3]

1 4 2 3

[σ3]

4
(1,1,3)
4(5)

1 4 2 3

534
[1l]

1 2 0

[1l]
534(2)

1 2 0

5
(1,0,3)
4
[1l]

1 4 2

[1l]

5
(1,0,3)
4

1 4 2

Figure 6. T -duality chain of the E(4;3)-branes.

2
(7,0)
4
[1l]

3

[σ3]

3
(6,0)
4(7)

1 3

4
(5,0)
4
[1l]

1 3

[σ3]

5
(4,0)
4(5)

1 3

6
(3,0)
4
[1l]

1 3

[σ3]

7
(2,0)
4(3)

1 3

8
(1,0)
4
[1l]

1 3

[σ3]
94(1)

1

Figure 7. T -duality chain of the E(4;0)-branes.

[σ1]

1
(1,0,6)
5(4)

2 4

1
(1,1,5)
5
[σ1]

3 2 4

[iσ2]

1
(1,2,4)
5

3 2 4

1
(1,3,3)
5
[iσ2]

3 2 4

[σ1]

1
(1,4,2)
5(6)

3 2 4

1
(1,5,1)
5
[σ1]

3 2 4

[iσ2]

1
(1,6,0)
5(7)

3 4

265
[σ1]

1 2 0

[iσ2]

2
(1,5)
5(3)

1 3 2 0

2
(2,4)
5
[iσ2]

1 3 2 0

[σ1]

2
(3,3)
5(4)

1 3 2 0

2
(4,2)
5
[σ1]

1 3 2 0

[iσ2]

2
(5,1)
5

1 3 2 0

2
(6,0)
5
[iσ2]

1 3 0

[iσ2]

2
(1,0,0,6)
5

5 2

2
(1,0,1,5)
5
[iσ2]

5 3 2

[σ1]

2
(1,0,2,4)
5(6)

5 3 2

2
(1,0,3,3)
5
[σ1]

5 3 2

[iσ2]

2
(1,0,4,2)
5(7)

5 3 2

2
(1,0,5,1)
5
[iσ2]

5 3 2

[σ1]

2
(1,0,6,0)
5(8)

5 3

Figure 8. T -duality chain of the E(5;6)-branes.

2
(3,0,4)
5
[σ1]

2 4

[iσ2]

2
(3,1,3)
5(7)

3 2 4

2
(3,2,2)
5
[iσ2]

3 2 4

[σ1]

2
(3,3,1)
5(8)

3 2 4

2
(3,4,0)
5
[σ1]

3 4

[iσ2]

3
(2,0,4)
5

1 2 4

3
(2,1,3)
5
[iσ2]

1 3 2 4

[σ1]

3
(2,2,2)
5(6)

1 3 2 4

3
(2,3,1)
5
[σ1]

1 3 2 4

[iσ2]

3
(2,4,0)
5(7)

1 3 4

4
(1,0,4)
5
[iσ2]

1 2 4

[σ1]

4
(1,1,3)
5(4)

1 3 2 4

4
(1,2,2)
5
[σ1]

1 3 2 4

[iσ2]

4
(1,3,1)
5

1 3 2 4

4
(1,4,0)
5
[iσ2]

1 3 4

[σ1]
545(2)

1 2

5
(1,3)
5
[σ1]

1 3 2

[iσ2]

5
(2,2)
5(3)

1 3 2

5
(3,1)
5
[iσ2]

1 3 2

[σ1]

5
(4,0)
5(4)

1 3

Figure 9. T -duality chain of the E(5;4)-branes.

1
(4,3)
6
[σ3]

3 2

[1l]

1
(4,3)
6(4)

3 2

1
(1,4,2)
6
[1l]

4 3 2

[σ3]

1
(1,4,2)
6(5)

4 3 2

1
(2,4,1)
6
[σ3]

4 3 2

[1l]

1
(2,4,1)
6

4 3 2

1
(3,4,0)
6
[1l]

4 3

[σ3]

1
(3,4,0)
6(7)

4 3

Figure 10. T -duality chain of the E(6;4)-branes.
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2
(1,0,2,4)
6
[1l]

3 2 5

[σ3]

2
(1,0,2,4)
6(5)

3 2 5

2
(1,1,2,3)
6
[σ3]

4 3 2 5

[1l]

2
(1,1,2,3)
6

4 3 2 5

2
(1,2,2,2)
6
[1l]

4 3 2 5

[σ3]

2
(1,2,2,2)
6(7)

4 3 2 5

2
(1,3,2,1)
6
[σ3]

4 3 2 5

[1l]

2
(1,3,2,1)
6(8)

4 3 2 5

2
(1,4,2,0)
6
[1l]

4 3 5

[σ3]

2
(1,4,2,0)
6(9)

4 3 5

3
(2,4)
6
[1l]

1 3 2

[σ3]

3
(2,4)
6(3)

1 3 2

3
(1,2,3)
6
[σ3]

1 4 3 2

[1l]

3
(1,2,3)
6(4)

1 4 3 2

3
(2,2,2)
6
[1l]

1 4 3 2

[σ3]

3
(2,2,2)
6(5)

1 4 3 2

3
(3,2,1)
6
[σ3]

1 4 3 2

[1l]

3
(3,2,1)
6

1 4 3 2

3
(4,2,0)
6
[1l]

1 4 3

[σ3]

3
(4,2,0)
6(7)

1 4 3

Figure 11. T -duality chain of the E(7;2)-branes.

1
(7,0)
7
[iσ2]

3

[iσ2]

1
(1,6,0)
7(5)

4 3

1
(2,5,0)
7
[σ1]

4 3

[σ1]

1
(3,4,0)
7(6)

4 3

1
(4,3,0)
7
[iσ2]

4 3

[iσ2]

1
(5,2,0)
7

4 3

1
(6,1,0)
7
[σ1]

4 3

[σ1]

1
(7,0,0)
7(8)

4

Figure 12. T -duality chain of the E(7;7)-branes.

2
(1,0,0,6,0)
7
[iσ2]

3 6

[iσ2]

2
(1,0,1,5,0)
7

4 3 6

2
(1,0,2,4,0)
7
[σ1]

4 3 6

[σ1]

2
(1,0,3,3,0)
7(8)

4 3 6

2
(1,0,4,2,0)
7
[iσ2]

4 3 6

[iσ2]

2
(1,0,5,1,0)
7(9)

4 3 6

2
(1,0,6,0,0)
7
[σ1]

4 6

[σ1]

3
(6,0)
7(4)

1 3

3
(1,5,0)
7
[iσ2]

1 4 3

[iσ2]

3
(2,4,0)
7(5)

1 4 3

3
(3,3,0)
7
[σ1]

1 4 3

[σ1]

3
(4,2,0)
7(6)

1 4 3

3
(5,1,0)
7
[iσ2]

1 4 3

[iσ2]

3
(6,0,0)
7

1 4

Figure 13. T -duality chain of the E(7;6)-branes.

2
(4,3)
7
[σ1]

3 2

[σ1]

2
(1,3,3)
7(4)

4 3 2

2
(2,2,3)
7
[iσ2]

4 3 2

[iσ2]

2
(3,1,3)
7(5)

4 3 2

2
(4,0,3)
7
[σ1]

4 2

[iσ2]

2
(1,0,4,2)
7(5)

5 3 2

2
(1,1,3,2)
7
[σ1]

5 4 3 2

[σ1]

2
(1,2,2,2)
7(6)

5 4 3 2

2
(1,3,1,2)
7
[iσ2]

5 4 3 2

[iσ2]

2
(1,4,0,2)
7

5 4 2

2
(2,0,4,1)
7
[iσ2]

5 3 2

[iσ2]

2
(2,1,3,1)
7

5 4 3 2

2
(2,2,2,1)
7
[σ1]

5 4 3 2

[σ1]

2
(2,3,1,1)
7(8)

5 4 3 2

2
(2,4,0,1)
7
[iσ2]

5 4 2

[σ1]

2
(3,0,4,0)
7(8)

5 3

2
(3,1,3,0)
7
[iσ2]

5 4 3

[iσ2]

2
(3,2,2,0)
7(9)

5 4 3

2
(3,3,1,0)
7
[σ1]

5 4 3

[σ1]

2
(3,4,0,0)
7(10)

5 4

Figure 14. T -duality chain of the E(7;4)-branes.

1
(7,0,0)
8
[σ3]

4

[σ3]

1
(7,0,0)
8(7)

4

Figure 15. T -duality chain of the E(8;7)-branes.
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2
(7,0)
8
[1l]

3

[σ3]

2
(1,0,6,0)
8(5)

5 3

2
(2,0,5,0)
8
[1l]

5 3

[σ3]

2
(3,0,4,0)
8(7)

5 3

2
(4,0,3,0)
8
[1l]

5 3

[σ3]

2
(5,0,2,0)
8(9)

5 3

2
(6,0,1,0)
8
[1l]

5 3

[σ3]

2
(7,0,0,0)
8(11)

5

Figure 16. T -duality chain of the E(8;0)-branes.

2
(3,3,1)
8
[σ3]

4 3 2

[σ3]

2
(3,3,1)
8(5)

4 3 2

2
(1,3,2,1)
8
[1l]

5 4 3 2

[1l]

2
(1,3,2,1)
8(6)

5 4 3 2

2
(2,3,1,1)
8
[σ3]

5 4 3 2

[σ3]

2
(2,3,1,1)
8(7)

5 4 3 2

2
(3,3,0,1)
8
[1l]

5 4 2

[1l]

2
(3,3,0,1)
8

5 4 2

2
(1,0,3,3,0)
8
[σ3]

6 4 3

[σ3]

2
(1,0,3,3,0)
8(7)

6 4 3

2
(1,1,3,2,0)
8
[1l]

6 4 5 3

[1l]

2
(1,1,3,2,0)
8

6 4 5 3

2
(1,2,3,1,0)
8
[σ3]

6 5 4 3

[σ3]

2
(1,2,3,1,0)
8(9)

6 5 4 3

2
(1,3,3,0,0)
8
[1l]

6 5 4

[1l]

2
(1,3,3,0,0)
8(10)

6 5 4

Figure 17. T -duality chain of the E(8;3)-branes.

2
(5,2,0)
9
[iσ2]

4 3

[σ1]

2
(1,4,2,0)
9(6)

5 4 3

2
(2,3,2,0)
9
[σ1]

5 4 3

[iσ2]

2
(3,2,2,0)
9(7)

5 4 3

2
(4,1,2,0)
9
[iσ2]

5 4 3

[σ1]

2
(5,0,2,0)
9(8)

5 3

[iσ2]

2
(1,0,5,1,0)
9(7)

6 4 3

2
(1,1,4,1,0)
9
[iσ2]

6 5 4 3

[σ1]

2
(1,2,3,1,0)
9(8)

6 5 4 3

2
(1,3,2,1,0)
9
[σ1]

6 5 4 3

[iσ2]

2
(1,4,1,1,0)
9

6 5 4 3

2
(1,5,0,1,0)
9
[iσ2]

6 5 3

2
(2,0,5,0,0)
9
[σ1]

6 4

[iσ2]

2
(2,1,4,0,0)
9

6 5 4

2
(2,2,3,0,0)
9
[iσ2]

6 5 4

[σ1]

2
(2,3,2,0,0)
9(10)

6 5 4

2
(2,4,1,0,0)
9
[σ1]

6 5 4

[iσ2]

2
(2,5,0,0,0)
9(11)

6 5

Figure 18. T -duality chain of the E(9;5)-branes.

2
(3,4,0,0)
10
[1l]

5 4

[σ3]

2
(3,4,0,0)
10(7)

5 4

2
(1,3,3,0,0)
10
[σ3]

6 5 4

[1l]

2
(1,3,3,0,0)
10(8)

6 5 4

2
(2,3,2,0,0)
10
[1l]

6 5 4

[σ3]

2
(2,3,2,0,0)
10(9)

6 5 4

2
(3,3,1,0,0)
10
[σ3]

6 5 4

[1l]

2
(3,3,1,0,0)
10

6 5 4

2
(4,3,0,0,0)
10
[1l]

6 5

[σ3]

2
(4,3,0,0,0)
10(11)

6 5

Figure 19. T -duality chain of the E(10;3)-branes.

[σ1]

2
(7,0,0,0)
11(8)

5

2
(1,6,0,0,0)
11
[iσ2]

6 5

[iσ2]

2
(2,5,0,0,0)
11(9)

6 5

2
(3,4,0,0,0)
11
[σ1]

6 5

[σ1]

2
(4,3,0,0,0)
11(10)

6 5

2
(5,2,0,0,0)
11
[iσ2]

6 5

[iσ2]

2
(6,1,0,0,0)
11

6 5

2
(7,0,0,0,0)
11
[σ1]

6

Figure 20. T -duality chain of the E(11;7)-branes.
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Here, for the S-duality non-singlets in the type IIB side, we have appended the sub-

script with round brackets. For example, 2
(7,0,0,0)
11(8) in figure 20 represents the 2

(7,0,0,0)
11 -brane,

and also denotes that its S-dual partner is the 2
(7,0,0,0)
8 -brane. The characters in the squared

brackets are not important here, and will be explained in section 5.9. Each (solid or dashed)

line corresponds to a T -duality and the circled numbers have the following meaning. For

example, the 532-brane in figure 3 has three types of direction along which we can perform

T -duality; (i) directions along which the mass does not depend on the radii, which we call
0©, (ii) directions, denoted as 1©, along which the mass linearly depends on the radii, (iii)

three directions denoted as 2© along which the mass quadratically depends on the radii. If

we perform a T -duality along the 0© direction, we obtain the 542-brane, while if we perform

a T -duality along the 1© direction, we obtain the 532-brane, and along the 2© direction,

we obtain the 522-brane. Namely, the circled number can be understood as the power of

the radius dependence along which the T -duality is performed. The meaning between the

solid or dashed line, which is not important here, is that each line connected to even/odd

number in the type IIB side is a solid/dashed line.

3.3 Web of the missing states

In the previous subsection, we have only considered the branes that are connected to the

standard branes via T - and S-duality transformations, i.e. the Weyl reflections (2.10). How-

ever, as we can clearly see from table 3, if we consider the non-standard branes (i.e. colored

branes with codimension 2 or less), these are not enough to make up the whole U -duality

multiplet. We need to introduce additional states, which we call missing states for obvious

reason.

The existence of the missing states was originally noted in [1], and they were later

discussed for example in [30, 80, 81]. Properties of such missing states are not clearly

understood, and they may not be supersymmetric states as conjectured in [30]. Here,

we only compute the tensions of these states by simply extrapolating the correspondence

between tensions and Dynkin labels discussed in the previous sections to arbitrary weight

vectors (see [29] for a similar work in the context of E11).

3.3.1 Example: 4-brane multiplet in E4(4)

Let us start with a simple example, a 4-brane multiplet in M-theory compactified on T 4.

In this case, table 3 shows that the number of supersymmetric branes is 20, although the

dimension of the 4-brane multiplet is 24. Thus, there are four missing states. In order to

identify the missing states, let us consider the weight diagram for the 4-brane multiplet

given in table 5.

Since the mass dimension of the tension T4 is five, the four degenerate Dynkin labels

[0, 0, 0, 0] correspond to

T4 = l7 =
R1R2R3R4

l9p
. (3.16)

By using the convention (2.13), this should be understood as a tension of the 89(· · · ·1234)-
brane, where the four dots · · ·· represent that the 8-brane is extended along certain four
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[1, 0, 0, 1]

[−1, 1, 0, 1] [1, 0, 1,−1]

[0,−1, 1, 1] [−1, 1, 1,−1] [1, 1,−1, 0]

[0, 0,−1, 2] [0,−1, 2,−1] [−1, 2,−1, 0] [2,−1, 0, 0]

[0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0] [0, 0, 0, 0]

[0, 0, 1,−2] [0, 1,−2, 1] [1,−2, 1, 0] [−2, 1, 0, 0]

[0, 1,−1,−1] [1,−1,−1, 1] [−1,−1, 1, 0]

[1,−1, 0,−1] [−1, 0,−1, 1]

[−1, 0, 0,−1]

“missing states”

α1 α4

α2 α4 α1 α3

α3 α4 α2 α3 α1 α2

α4 α3 α2 α1

α4 α3 α2 α1

α3 α4 α2 α3 α1 α2

α2 α4 α1 α3

α1 α4

56(· · · · 1)

56(· · · · 2) 619(· · · · 23, 1)

56(· · · · 3) 619(· · · · 13, 2) 619(· · · · 24, 1)

56(· · · · 4) 619(· · · · 12, 3) 619(· · · · 14, 2) 619(· · · · 34, 1)

89(· · · · 1234) 89(· · · · 1234) 89(· · · · 1234) 89(· · · · 1234)

5312(· · · · 4, 123) 619(· · · · 12, 4) 619(· · · · 14, 3) 619(· · · · 34, 2)

5312(· · · · 3, 124) 619(· · · · 13, 4) 619(· · · · 24, 3)

5312(· · · · 2, 134) 619(· · · · 23, 4)

5312(· · · · 1, 234)

Table 5. The weight diagram for the 4-brane multiplet in M-theory compactified on T 4.

external spatial directions. This kind of 8-brane was predicted in [1] and called M8-brane

in [3], although its properties are unclear so far. We can just extrapolate their tensions.

From the tension, we can find that these states are singlets under the Weyl reflections.

3.3.2 List of missing states

Generalizing the above procedure, we can compute the tensions of missing states in all of

the multiplets. In order to obtain a list of the weights for the exceptional groups E6(6),

E7(7), and E8(8), it will be useful to use a computer program such as SimpLie [96]. By

transforming the Dynkin labels into the tensions, we obtain tables 16–22. The states

contained in a single column have the weights with the same length, and we have checked

that they are indeed in a single U -duality orbit of (2.10).

In terms of M-theory, the following states are contained in tables 16–22:

89 , 7
2
12 , 9

1
12 , 4

5
15 , 6

4
15 , 7

(1,2)
15 , 1818 , 2

(1,6)
18 , 3718 , 4

(1,5)
18 , 5

(2,3)
18 , 1

(3,5)
21 , 2

(2,6)
21 , 3

(3,4)
21 , 4

(4,2)
21 , 2

(1,0,7)
21 , 3

(1,1,5)
21 ,

1
(6,2)
24 , 2

(5,3)
24 , 3

(6,1)
24 , 2

(1,3,4)
24 , 3

(1,4,2)
24 , 2

(2,1,5)
24 , 1

(1,7,0)
27 , 2

(8,0)
27 , 2

(1,6,1)
27 , 2

(2,4,2)
27 , 3

(2,5,0)
27 , 2

(3,2,3)
27 , 2

(1,0,5,2)
27 ,

2
(3,5,0)
30 , 2

(4,3,1)
30 , 2

(5,1,2)
30 , 2

(1,1,6,0)
30 , 2

(1,2,4,1)
30 , 2

(6,2,0)
33 , 2

(7,0,1)
33 , 2

(1,4,3,0)
33 , 2

(1,5,1,1)
33 , 2

(2,2,4,0)
33 ,

2
(1,7,0,0)
36 , 2

(2,5,1,0)
36 , 2

(3,3,2,0)
36 , 2

(1,0,6,1,0)
36 , 2

(5,2,1,0)
39 , 2

(4,4,0,0)
39 , 2

(1,2,5,0,0)
39 , 2

(7,1,0,0)
42 , 2

(1,5,2,0,0)
42 , 2

(2,6,0,0,0)
45 .
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One can also make a list of type II branes appearing in tables 16–22 and draw a duality

web along these states.

As we can see from tables 16–22, the missing states in the p-brane multiplet have

degeneracies which depend on p . For example, the 89-brane in the p-brane multiplet

(1 ≤ p ≤ 6) has degeneracy (8 − p) , although for p = 6 the degeneracy becomes 1. The

p-dependence is non-trivial, but the degeneracy is independent of d for all missing states.

The missing states in higher d can be obtained from the missing states in lower d just by

truncating the states that are disallowed by dimensionality.

3.4 Web of mixed-symmetry potentials

The standard branes in type II theory couple to certain potentials in type II supergrav-

ity. For example, the F1 and the pp-wave (electrically) couple to the B-field B2 and the

graviphoton Am
1 , and Dp-branes couple to the R-R potentials Cp+1 . Following a series

of works [8–17], we call F1 and the pp-wave the F(undamental)-branes. There are also

the S(olitonic)-branes, which consist of 52-brane (NS5-brane), 512-brane (KK monopole),

522-brane, 5
3
2-brane, and 542-brane. This chain of 5-branes is recently studied well and the

5n2 -branes are known to couple to a set of mixed-symmetry potentials D6+n,n , which rep-

resents a mixed-symmetry potential Dm1···m6+n, p1···pn where multiple indices separated by

comma are totally antisymmetrized. For n = 0 (NS5-brane), the 6-form potential D6 is

nothing but the magnetic dual of the B-field. For n = 1 (KK monopole), the potential D7,1

is the magnetic dual of the graviphoton, known as the dual graviton. The worldvolume

action of the KK monopole including the Wess-Zumino term has been obtained in [97].

For n = 2, the potential D8,2 is rather non-standard but it is known to be the magnetic

dual of the so-called β-field. Its coupling to the 522-brane has been determined in [98, 99]

(see also [100, 101]). The M-theory uplift, the action for the 5312-brane was also studied

in [102]. Generalizations to n = 3 and 4 in the manifestly T -duality covariant approach

have been achieved in [103].

The S-dual of the 522-brane is 523-brane is a member of the E(xotic)-branes. The E-

brane (p + n)
(n,7−p−n)
3 couples to the mixed-symmetry potential E8+n,7−p,n . In general,

there is a conjectural relation between supersymmetric branes and the mixed-symmetry

potentials:

b(cs,...,c2)n -brane ⇔ potential E1+b+c2+···+cs,...,cs−1+cs,cs . (3.17)

In the convention of [13], depending on the power of the string coupling n, the potentials

are denoted as E (n = 3), F (n = 4), G (n = 5), H (n = 6), . . . . In this paper, since the

integer n runs up to 11, we call them E(n) (i.e. E(4) = F , E(5) = G, E(6) = H, and so on)

and denote the corresponding brane the E(n)-brane. In fact, as we can see from table 6, for

example, there are three families of E(4)-branes, and we distinguish them by introducing

additional integers as E(4;6), E(4;3), and E(4;0) . The general rule for the second integer

is very simple; an exotic brane b
(cs, ··· , c2)
2n is a member of the E(2n;cn)-brane and an exotic

brane b
(cs, ··· , c2)
2n+1 is a member of the E(2n+1;cn+cn+1)-brane.

The first set of indices in the mixed-symmetry potential E
(n)
m1···m1+b+c2+···+cs,···

corre-

sponds to the worldvolume directions of the brane, and the directions after the first comma
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α = 0 B1M F1/P (F-brane)

A/B 10 , P

α = −1 Cp+1 p1-brane (D-brane)

IIA 01 , 21 , 41 , 61 , 81

IIB 11 , 31 , 51 , 71 , 91

α = −2 D6+n,n 5n2 -brane (S-brane)

A/B 52 , 512 , 522 , 532 , 542

α = −3 E8+n,7−p,n (p + n)
(n,7−p−n)
3 -brane (E-brane)

IIA 613 , 433 , 253 , 073 , 7
(1,0)
3 , 5

(1,2)
3 , 3

(1,4)
3 , 1

(1,6)
3 , 6

(2,1)
3 , 4

(2,3)
3 , 2

(2,5)
3

IIB 73 , 523 , 343 , 163 , 6
(1,1)
3 , 4

(1,3)
3 , 2

(1,5)
3 , 7

(2,0)
3 , 5

(2,2)
3 , 3

(2,4)
3

α = −4 E
(4)
8+n,6+m+n,m+n,n

(1 − m)
(n,m,6)
4 -brane (E(4;6)-brane)

A/B 164 , 0
(1,6)
4 , 1

(1,0,6)
4

α = −4 E
(4)
9+n,3+m+n,m+n,n

(5 − m)
(n,m,3)
4 -brane (E(4;3)-brane)

A/B 534 , 4
(1,3)
4 , 3

(2,3)
4 , 2

(3,3)
4 , 1

(4,3)
4 , 5

(1,0,3)
4 , 4

(1,1,3)
4 , 3

(1,2,3)
4 , 2

(1,3,3)
4

α = −4 E
(4)
10,q,q (9 − q)

(q,0)
4 -brane (E(4;0)-brane)

IIA 8
(1,0)
4 , 6

(3,0)
4 , 4

(5,0)
4 , 2

(7,0)
4

IIB 94 , 7
(2,0)
4 , 5

(4,0)
4 , 3

(6,0)
4

α = −5 E
(5)
9+n,6+m,p,m,n

(2 − m)
(n,m−n,p−m,6+m−p)
5 -brane (E(5;6)-brane)

IIA 265 , 2
(2,4)
5 , 2

(4,2)
5 , 2

(6,0)
5 , 1

(1,1,5)
5 , 1

(1,3,3)
5 , 1

(1,5,1)
5 , 2

(1,0,1,5)
5 , 2

(1,0,3,3)
5 , 2

(1,0,5,1)
5

IIB 2
(1,5)
5 , 2

(3,3)
5 , 2

(5,1)
5 , 1

(1,0,6)
5 , 1

(1,2,4)
5 , 1

(1,4,2)
5 , 1

(1,6,0)
5 , 2

(1,0,0,6)
5 , 2

(1,0,2,4)
5 , 2

(1,0,4,2)
5 , 2

(1,0,6,0)
5

α = −5 E
(5)
10,4+n,q,n

(5 − n)
(n,q−n,4−q+n)
5 -brane (E(5;4)-brane)

IIA 5
(1,3)
5 , 5

(3,1)
5 , 4

(1,0,4)
5 , 4

(1,2,2)
5 , 4

(1,4,0)
5 , 3

(2,1,3)
5 , 3

(2,3,1)
5 , 2

(3,0,4)
5 , 2

(3,2,2)
5 , 2

(3,4,0)
5

IIB 545 , 5
(2,2)
5 , 5

(4,0)
5 , 4

(1,1,3)
5 , 4

(1,3,1)
5 , 3

(2,0,4)
5 , 3

(2,2,2)
5 , 3

(2,4,0)
5 , 2

(3,1,3)
5 , 2

(3,3,1)
5

α = −6 E
(6)
9,7,4+n,n

1
(n,4,3−n)
6 -brane (E(6;4)-brane)

A/B 1
(4,3)
6 , 1

(1,4,2)
6 , 1

(2,4,1)
6 , 1

(3,4,0)
6

α = −6 E
(6)
10,6+n,2+m+n,m+n,n

(3 − n)
(n,m,2,4−m)
6 -brane (E(7;2)-brane)

A/B 3
(2,4)
6 , 3

(1,2,3)
6 , 3

(2,2,2)
6 , 3

(3,2,1)
6 , 3

(4,2,0)
6 , 2

(1,0,2,4)
6 , 2

(1,1,2,3)
6 , 2

(1,2,2,2)
6 , 2

(1,3,2,1)
6 , 2

(1,4,2,0)
6

α = −7 E
(7)
9,7,7,p 1

(p,7−p,0)
7 -brane (E(7;7)-brane)

IIA 1
(7,0)
7 , 1

(2,5,0)
7 , 1

(4,3,0)
7 , 1

(6,1,0)
7

IIB 1
(1,6,0)
7 , 1

(3,4,0)
7 , 1

(5,2,0)
7 , 1

(7,0,0)
7

α = −7 E
(7)
10,6+n,6+n,q,n,n

(3 − n)
(n,0,q−n,6+n−q,0)
7 -brane (E(7;6)-brane)

IIA 3
(1,5,0)
7 , 3

(3,3,0)
7 , 3

(5,1,0)
7 , 2

(1,0,0,6,0)
7 , 2

(1,0,2,4,0)
7 , 2

(1,0,4,2,0)
7 , 2

(1,0,6,0,0)
7

IIB 3
(6,0)
7 , 3

(2,4,0)
7 , 3

(4,2,0)
7 , 3

(6,0,0)
7 , 2

(1,0,1,5,0)
7 , 2

(1,0,3,3,0)
7 , 2

(1,0,5,1,0)
7

α = −7 E
(7)
10,7,4+n,p,n

2
(n,p−n,4−p+n,3−n)
7 -brane (E(7;4)-brane)

IIA 2
(4,3)
7 , 2

(2,2,3)
7 , 2

(4,0,3)
7 , 2

(1,1,3,2)
7 , 2

(1,3,1,2)
7 , 2

(2,0,4,1)
7 , 2

(2,2,2,1)
7 , 2

(2,4,0,1)
7 , 2

(3,1,3,0)
7 , 2

(3,3,1,0)
7

IIB 2
(1,3,3)
7 , 2

(3,1,3)
7 , 2

(1,0,4,2)
7 , 2

(1,2,2,2)
7 , 2

(1,4,0,2)
7 , 2

(2,1,3,1)
7 , 2

(2,3,1,1)
7 , 2

(3,0,4,0)
7 , 2

(3,2,2,0)
7 , 2

(3,4,0,0)
7

α = −8 E
(8)
9,7,7,7 1

(7,0,0)
8 -brane (E(8;7)-brane)

A/B 1
(7,0,0)
8

α = −8 E
(8)
10,7,7,p,p 2

(p,0,7−p,0)
8 -brane (E(8;0)-brane)

IIA 2
(7,0)
8 , 2

(2,0,5,0)
8 , 2

(4,0,3,0)
8 , 2

(6,0,1,0)
8

IIB 2
(1,0,6,0)
8 , 2

(3,0,4,0)
8 , 2

(5,0,2,0)
8 , 2

(7,0,0,0)
8

α = −8 E
(8)
10,7,6+n,3+m+n,m+n,n

2
(n,m,3,3−m,1−n)
8 -brane (E(8;3)-brane)

A/B 2
(3,3,1)
8 , 2

(1,3,2,1)
8 , 2

(2,3,1,1)
8 , 2

(3,3,0,1)
8 , 2

(1,0,3,3,0)
8 , 2

(1,1,3,2,0)
8 , 2

(1,2,3,1,0)
8 , 2

(1,3,3,0,0)
8

α = −9 E
(9)
10,7,7,5+n,p,n

2
(n,p−n,5−p+n,2−n,0)
9 -brane (E(9;5)-brane)

IIA 2
(5,2,0)
9 , 2

(2,3,2,0)
9 , 2

(4,1,2,0)
9 , 2

(1,1,4,1,0)
9 , 2

(1,3,2,1,0)
9 , 2

(1,5,0,1,0)
9 , 2

(2,0,5,0,0)
9 , 2

(2,2,3,0,0)
9 , 2

(2,4,1,0,0)
9

IIB 2
(1,4,2,0)
9 , 2

(3,2,2,0)
9 , 2

(5,0,2,0)
9 , 2

(1,0,5,1,0)
9 , 2

(1,2,3,1,0)
9 , 2

(1,4,1,1,0)
9 , 2

(2,1,4,0,0)
9 , 2

(2,3,2,0,0)
9 , 2

(2,5,0,0,0)
9

α = −10 E
(10)
10,7,7,7,3+n,n

2
(n,3,4−n,0,0)
10 -brane (E(10;3)-brane)

A/B 2
(3,4,0,0)
10 , 2

(1,3,3,0,0)
10 , 2

(2,3,2,0,0)
10 , 2

(3,3,1,0,0)
10 , 2

(4,3,0,0,0)
10

α = −11 E
(11)
10,7,7,7,7,q 2

(q,7−q,0,0,0)
11 -brane (E(11;7)-brane)

IIA 2
(1,6,0,0,0)
11 , 2

(3,4,0,0,0)
11 , 2

(5,2,0,0,0)
11 , 2

(7,0,0,0,0)
11

IIB 2
(7,0,0,0)
11 , 2

(2,5,0,0,0)
11 , 2

(4,3,0,0,0)
11 , 2

(6,1,0,0,0)
11

Table 6. Exotic branes with the tension proportional to gαs (α ≤ −3) and the corresponding

mixed-symmetry potentials in type II string theories. Here, n and m are non-negative integers

while p (q) runs over non-negative even/odd (odd/even) numbers in type IIA/IIB theory.
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correspond to the isometry directions, namely the internal toroidal directions. As it is sug-

gested from the relation (3.17), in order to relate the supersymmetric branes to the mixed-

symmetry potentials, a set of indices delimited by commas has to be a subset of the set

of indices sitting to the left. For example, E0µνρ1234,34 couples to the exotic 523(µνρ12, 34)-

brane while there is no supersymmetric brane which couples to E0µνρ1234,45. By considering

this argument, there is a one-to-one correspondence between supersymmetric branes and

mixed-symmetry potentials. The explicit counting of the number of mixed-symmetry po-

tentials in each dimension is summarized in appendix D.

4 Exotic-brane solutions in DFT

In this section, we explain how to construct the supergravity solutions for the variety of

exotic branes discussed in the previous section. If we consider only the standard branes or

the defect branes, we can (at least locally) write down the solutions satisfying the standard

supergravity equations of motion. However, as we discuss in this section, for domain-wall

branes or space-filling branes, we need to employ the manifestly duality-covariant formu-

lations of supergravity, such as the DFT or EFT. This section is devoted to descriptions

of exotic-brane solutions in DFT while the descriptions in EFT are discussed in section 5.

Solutions of the domain-wall branes or the space-filling branes can be obtained from

the standard-brane solutions or the defect-brane solutions by performing duality transfor-

mations. Since the standard branes or the defect branes are contained only in the T -duality

webs given in figures 1–5, in DFT, we can at most construct brane solutions contained in

figures 1–5. For branes contained in figures 6–20, we need to perform S-duality as well,

and we need EFT. In this section, we consider only two examples, the D8-brane solution

and the 532-brane solution, and consider other solutions in section 5.

4.1 D7-brane solution

Let us begin with the standard D7(1234567)-brane solution,

ds2 = τ
−1/2
2

(
dx201···7 + τ2 dx

2
89

)
, e−2Φ = τ22 , |A〉 =

(
τ1 − τ−1

2 γ0···7
)
|0〉 , (4.1)

where τ(x8, x9) ≡ τ1 + i τ2 is given by

τ(x8, x9) ≡ i σ

2π
ln(rc/z) = σ

[
θ

2π
+ i ln

(
rc
r

)]
(
z ≡ x8 + i x9 ≡ r eiθ

)

[
σ : constant representing the number of D7-branes , rc(> 0) : cut-off parameter

]
.

(4.2)

Here, we have introduced a shorthand notation,

dx20m1···mp
≡ −(dx0)2 + dx2m1···mp

, dx2m1···mp
≡

p
∑

k=1

(dxmk)2 . (4.3)

We now consider a domain-wall solution, the D8 solution. Since the D7 solution has

codimension two, we need to implement the standard smearing procedure, which changes
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the function τ(x8, x9) keeping the expression (4.1) intact. The resulting functions after

the smearing are

τ1 ≡ mx8 , τ2 ≡ h0 +m |x9| , (4.4)

where h0 and m are constants. In the case of the Dp-brane solution with p ≤ 6 that

depends on the transverse (9− p) coordinates, the standard smearing procedure produces

an additional isometry direction, and by performing a T -duality in the isometry direction,

we can obtain the D(p + 1)-brane solution. However, in the case of p = 7, the smeared

solution still depends on the two coordinates x8 and x9 and we cannot perform the usual T -

duality to obtain the D8-brane solution. This is a new feature of the domain-wall solution.

4.2 A quick review of DFT

In order to perform a formal T -duality, we utilize the DFT on a 20-dimensional doubled

spacetime with the generalized coordinates (xM ) = (xm, x̃m) .4 In DFT, all of the bosonic

fields are packaged into the generalized metric HMN (x) , the T -duality-invariant dilaton

d(x) , and the O(10, 10) spinor |A〉 . In the framework of DFT, we can consider formal T -

dualities even in the absence of isometries. Indeed, without assuming the existence of any

isometries, the equations of motion are transformed covariantly under a T -duality along

the xi-direction,

HMN → (ΛT)M
P HPQ ΛQ

N , d → d , |A〉 → γ11 (γi − γi) |A〉 ,

xM → (Λ−1)MN xN , (ΛM
N ) ≡

(
1− ei ei

ei 1− ei

)

, (4.5)

where we have defined a matrix ei ≡ diag(0, . . . , 0,
i
1, 0, . . . , 0) .

The relation between the DFT fields and the usual supergravity fields is as follows.

The generalized metric and the dilaton can be parameterized as5

(HMN ) =

(

(g −B g−1B)mn −Bmp g
pn

gnpBpn gmn

)

, e−2d =
√−g e−2Φ . (4.6)

On the other hand, the O(10, 10) spinor |A〉 is defined on the Clifford vacuum |0〉
(
satisfying

γm |0〉 = 0
)
as

|A〉 ≡
∑

p

1

p!
Am1···mp γ

m1···mp |0〉 . (4.7)

Here, the gamma matrices (γM ) ≡ (γm, γm) are defined by

{γM , γN} = ηMN , (ηMN ) ≡
(

0 δnm

δmn 0

)

, (4.8)

4For our purpose, it is not necessary to double the time direction, but just for notational simplicity, we

double all of the directions.
5In our convention, the sign of the B-field is opposite to the conventional DFT.
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and γm1···mp ≡ γ[m1 · · · γmp] . Note that the O(10, 10) metric ηMN and its inverse ηMN are

used to raise or lower the indicesM,N, . . . . The coefficients of the O(10, 10) spinor Am1···mp

are identified as the (curved) components of the R-R potential in type II supergravity, and

they are related to another definition of the R-R potential Cm1···mp as A = e−B2∧C (A, C :

polyform). In type IIA/IIB theory, only the R-R odd/even-form potentials are included,

and thus |A〉 is defined to satisfy

γ11 |A〉 = ∓|A〉 (IIA/IIB) . (4.9)

Here, γ11 is defined as γ11 ≡ (−1)Nf , where Nf ≡ γm γm counts the number of gamma

matrices. The field strength is defined as

|F 〉 ≡ /∂ |A〉
(
/∂ ≡ γM ∂M

)
. (4.10)

Unlike the standard supergravity fields, the DFT fields can depend on the generalized

coordinates xM but the consistency condition, namely the SC,

ηMN ∂M ⊗ ∂N = 0 , (4.11)

requires that the DFT fields cannot depend on more than ten coordinates out of twenty. If

we keep the dependence on the standard coordinates xm , for example, the field strength (4.10)

is reduced to the usual one,

|F 〉 =
∑

p

1

(p+ 1)!
Fm1···mp+1 γ

m1···mp+1 |0〉 , Fm1···mp+1 ≡ (p+ 1) ∂[m1
Am2···mp+1] .

(4.12)

In this paper, we consider different choices of coordinates where supergravity fields depend

on some of the winding coordinates x̃m .

4.3 D8-brane solution

By using the above setup, let us construct the D8-brane solution in DFT. We start from the

smeared D7 solution (4.1), and perform the formal T -duality (4.5) along the x8-direction.

We then obtain

ds2 = τ
−1/2
2

(
dx201···8 + τ2 dx

2
9

)
, e−2Φ = τ

5/2
2 , |A〉 =

(
τ1 γ

8 − τ−1
2 γ0···8

)
|0〉 . (4.13)

Since the formal T -duality changes the coordinates x8 ↔ x̃8 , the τ1 here has the linear

winding-coordinate dependence; τ1 = mx̃8 . In fact, this is precisely the D8 solution in

DFT [67] (which corresponds to the familiar D8 solution [75]). The field strength becomes

|F 〉 = /∂|A〉 =
(
m+ ∂9τ

−1
2 γ0···9

)
|0〉 , (4.14)

which means that the background has the constant 0-form and the dual 10-form field

strengths

F0 = m, F0 = ∗10F10 . (4.15)

The relation to the Romans massive IIA supergravity [66] is discussed in section 6.
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4.4 532-brane solution

There is another known domain-wall solution in DFT, the 532-brane solution, also known

as the R-brane solution [104–106].

Let us start with the background of the (smeared) exotic 522(12345, 67)-brane [76],

ds2 = dx201···5 +
τ2
|τ |2 dx

2
67 + τ2 dx

2
89 , e−2Φ =

|τ |2
τ2

,

B2 = − τ1
|τ |2 dx

6 ∧ dx7 , D6 = −|τ |2
τ2

dx0 ∧ · · · ∧ dx5 ,

(4.16)

where τ1 = mx8 and τ2 = h0 +m |x9| . Here, D6 is the potential of the dual field strength

H7 ≡ dD6 + · · · (where the ellipses denote non-linear terms depending on type IIA or

IIB) satisfying H7 = e−2Φ ∗10H3 . Again by performing a formal T -duality along the x8-

direction, we obtain the background of the 532(12345, 678)-brane,

ds2 = dx201···5+
τ2
|τ |2 dx

2
67+τ−1

2 dx28+τ2 dx
2
9 , e−2Φ = |τ |2 , B2 = − τ1

|τ |2 dx
6∧dx7 , (4.17)

where τ1 = mx̃8 and τ2 = h0 + m |x9| . The DFT fields associated with these fields

(gmn, Bmn, Φ) satisfy the equations of motion of DFT as it is expected, as the formal

T -duality always maps a solution to a solution.

In fact, in order to describe the 522 or the 532 backgrounds, it is more convenient to

introduce the dual supergravity fields (g̃mn, β
mn, φ̃) suggested in [107, 108]. They are

defined through

(HMN ) =

(

(g −B g−1B)mn −Bmp g
pn

gnpBpn gmn

)

=

(

g̃mn −g̃mp β
pn

βnp g̃pn (g̃−1 − β g̃ β)mn

)

,

e−2d =
√−g e−2Φ =

√

−g̃ e−2φ̃ ,

(4.18)

and can be regarded as redefinitions of the supergravity fields. More explicitly, we obtain6

g̃mn = EmpEnq g
pq , βmn = EmpEnq Bpq , e−2φ̃ ≡ det(gmn)

det(Emn)
e−2Φ ,

Emn ≡ gmn +Bmn , Emn ≡ (E−1)mn = g̃mn − βmn .

(4.19)

From the relation, we can determine the dual parameterization for the 522 background

as [104]7

ds̃2 = dx201···5 + τ−1
2 dx267 + τ2 dx

2
89 , e−2φ̃ = τ2 , β67 = mx8 , (4.20)

and the 532 background as

ds̃2 = dx201···5 + τ−1
2 dx2678 + τ2 dx

2
9 , e−2φ̃ = τ22 , β67 = mx̃8 . (4.21)

6Let us note that this map can be singular in certain backgrounds, for example, when Emn is not

invertible.
7Here, we have dropped an unimportant minus sign in front of m by a redefinition of m . Similarly, in

the following computation, such minus sign can appear during a course of duality transformations, but we

will always absorb the sign into m for simplicity.
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In the dual description, the winding-coordinate dependence in the 532 background is

contained only in the β-field. Moreover, its dependence is only linear similar to the D8

background. In fact, as we show in the next section, in all of the “elementary” domain-wall

solutions, the winding-coordinate dependence appears only in a certain gauge field linearly.

Non-geometric fluxes and mixed-symmetry potentials. In the dual parameteriza-

tion, we can define the so-called non-geometric Q-flux [109–112] as

Qpq
1 ≡ Qm

pq dxm ≡ dβpq . (4.22)

The non-geometricity of the 522-brane (or the Q-brane) background was pointed out in [93],

and as shown in [104, 113], the 522(12345, 67) background has a constant Q-flux,

Q8̄
6̄7̄ = m. (4.23)

Here and hereafter, in order to avoid confusion, we may add bars on integers, like 6̄ and 7̄,

indicating that these integers are associated with certain spacetime directions.

The low-energy effective Lagrangian for the non-geometric Q-flux was obtained in [108]

as

L ∼
√

−g̃ e−2φ̃

(

R̃+ 4 |dφ̃|2 − 1

2
|Q|2

)

, (4.24)

where |Q|2 ≡ g̃mn g̃pq, rsQm
pq Qn

rs , and we have used g̃p1···pn, q1···qn ≡ g̃p1r1 · · · g̃pnrn δr1···rnq1···qn

and δr1···rnq1···qn ≡ δ
[r1
[q1

· · · δrn]qn]
, and R̃ is the Ricci scalar associated with g̃mn . The equation of

motion for the β-field takes the form

∂m
(
e−2φ̃

√

−g̃ g̃mn g̃pq, rsQn
rs
)
= 0 , (4.25)

and this suggests to introduce the dual field strength as [101]

Q9,2 ≡ e−2φ̃ g̃pq, rs ∗̃10Qpq
1 ⊗ dxr ∧ dxs . (4.26)

Here, the subscript “9, 2” represents that the field strength is the mixed-symmetry tensor

with 9 antisymmetric indices and 2 antisymmetric indices, and the Hodge star opera-

tor ∗̃10 is associated with the dual metric g̃mn . By introducing the associated poten-

tial Q9,2 ≡ dD8,2 , we can find a connection between the non-geometric Q-flux and the

mixed-symmetry potential D8,2 introduced in a series of works [8–17] (see [12, 79] for a

similar Hodge duality between Q-flux and the mixed-symmetry potential D8,2). In the

522(12345, 67) background, we obtain

Q9, 6̄7̄ = d
(
−mτ−1

2 dx0 ∧ · · · ∧ dx7
)
, D0̄1̄2̄3̄4̄5̄6̄7̄, 6̄7̄ = −mτ−1

2 . (4.27)

As discussed in [104], by T -dualizing the Q-brane background, we can obtain the

background of the R-brane, which is nothing but the 532-brane. By defining the non-

geometric R-flux,

Rmnp ≡ 3 ∂̃[mβnp] , (4.28)
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we can show that the 532 background contains a constant R-flux,

R8̄6̄7̄ ≡ 3 ∂̃[8β67] = m. (4.29)

The R-flux is sometimes called the locally non-geometric flux. In [114], the effective La-

grangian for the R-flux was derived from the DFT Lagrangian as (see also [115–119])

L ∼
√

−g̃ e−2φ̃

(

R̃+ 4 |dφ̃|2 − 1

2
|R|2

)

, (4.30)

where |R|2 ≡ 1
3! g̃m1m2m3, n1n2n3 R

m1m2m3 Rn1n2n3 . This again suggests to define the dual

field strength as

R10,m1m2m3 ≡ e−2φ̃ g̃m1m2m3, n1n2n3 ∗̃10Rn1n2n3 . (4.31)

By defining the corresponding potential R10,3 ≡ dD9,3 , we obtain

R10, 6̄7̄8̄ = d
(
−mτ−1

2 dx0 ∧ · · · ∧ dx8
)
, D0̄1̄2̄3̄4̄5̄6̄7̄8̄, 6̄7̄8̄ = −mτ−1

2 , (4.32)

in the 532(12345, 678) background. A similar duality relation between the mixed-symmetry

potential D9,3 and the R-flux was recently discussed in [79]. As it has been discussed there,

D9,3 is the T -dual of D8,2 ,

Da1···a8, b1b2
Tz←→ Da1···a8y, b1b2y

(
y 6∈ {a1, . . . , a8} , {b1, b2} ∈ {a1, . . . , a8}

)
. (4.33)

By observing the explicit form of the D8,2 in the 522 background and the D9,3 in the 532
background, our result is consistent with the above T -duality rule.

According to the above relation between Q- and R-fluxes and the mixed-symmetry

potentials, we can summarize the famous T -duality chain [110] as follows:






52

Hxyz

D6







Tz←→







512

fxy
z

D6z, z







Ty←→







522

Qx
yz

D6yz, yz







Tx←→







532

Rxyz

D6xyz, xyz







. (4.34)

Let us make an additional comment on the 532(12345, 678) solution (4.21). It does not

have a symmetry between the {x6, x7} and x8-directions although there is no particular

difference between these three internal directions {x6, x7, x8}. However, this is just a

matter of a gauge choice, and there is no asymmetry at the level of the field strength

R8̄6̄7̄ = 3 ∂̃[8̄β6̄7̄] since the indices are totally antisymmetrized. In the next section, we

encounter many locally non-geometric backgrounds, for which proper definitions of the

locally non-geometricR-fluxes are not known. In such cases, we provide heuristic definitions

of the R-fluxes by considering the symmetry of exotic branes and providing an appropriate

antisymmetrization, like Rmnp = 3 ∂̃[mβnp] .

5 All exotic-brane solutions in EFT

In this section, we give a prescription to construct all of the elementary exotic-brane so-

lutions in EFT. After introducing duality transformations in sections 5.1 and 5.2, in sec-

tions 5.3 to 5.6 we construct all the domain-wall solutions contained in (3.13), (3.14),
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and (3.15) as well as their associated R-fluxes and mixed-symmetry potentials. In sec-

tion 5.7, we uplift these domain-wall solutions to M-theory and obtain various domain-wall

solutions in M-theory. In section 5.8, we show the validity of our method to construct any

exotic-brane background and give some space-filling branes solutions as examples. Finally,

in section 5.9 we discuss the projection conditions for Killing spinors.

5.1 Duality rotations in EFT

Type II string theory compactified on an (n− 1)-torus has the En(n) U -duality symmetry,

which contains the O(n− 1, n− 1) T -duality symmetry as a subgroup. The En(n) EFT is a

generalization of DFT that manifests the U -duality symmetry in supergravity [18, 52–65].

Similar to DFT, it is defined on an extended spacetime with the generalized coordinates

xI associated with the branes in the particle multiplet of the En(n) group. In particular,

when we consider M-theory/Tn, the set of coordinates xI is parameterized as

(xI(M)) = (xi, yi1i2 , yi1···i5 , yi1···i7, j , yi1···i8, j1j2j3 , yi1···i8, j1···j6 , yi1···i8, j1···j8, k) , (5.1)

where the indices i, j, k run over the internal toroidal directions i = d, . . . , 11 and the

external spacetime has the usual coordinates xµ (µ = 0, · · · , d−1). Each of the generalized

coordinates corresponds to that of M-theory branes such as P, M2, M5, KKM etc., and the

total number is equal to the dimension of the particle multiplet of the En(n) group. On

the other hand, when we consider type IIB theory/Tn−1, we can parameterize the same

generalized coordinates as

(xI(IIB)) = (xm, yαm, ym1m2m3 , y
α
m1···m5

, ym1···m6, n, y
αβ
m1···m7

,

yαm1···m7, n1n2
, ym1···m7, n1···n4 , y

α
m1···m7, n1···n6

, ym1···m7, n1···n7, p) ,
(5.2)

where m,n, p = d, . . . , 10 . In the type IIB parameterization, all of the coordinates are

associated with the type IIB branes, such as P, F1/D1, D3, NS5/D5 etc., and the index

α represents the SL(2) S-duality doublet. The winding-coordinates y
αβ
m1···m7 = y

(αβ)
m1···m7

correspond to the triplet of the 7-branes.

In EFT, the supergravity fields are contained in the generalized metric MIJ and ad-

ditional fields which contain the external d-dimensional indices µ. For simplicity, we here

concentrate on the generalized metric MIJ . Corresponding to the two parameterizations

of xI , we can parameterize the generalized metric MIJ in two ways; in terms of the bosonic

fields in 11D supergravity (M-theory parameterization) and the bosonic fields in type IIB

supergravity (type IIB parameterization). We refer to appendix B for a more detailed study

of these parameterizations. As determined in [120] for the cases En(n) EFT (n ≤ 7), the

two parameterizations can be related by a linear map,

M(IIB)

IJ = (ST)I
K M(M)

KL SL
J , xI(IIB) = (S−1)IJ x

J
(M) . (5.3)

Here, the SI
J is a constant matrix and under this transformation, the equations of motion

of EFT (prior to choosing a particular solution of the SC) are transformed covariantly. If

we rewrite the fields in 11D supergravity in terms of those in type IIA supergravity, by

comparing both sides in (5.3), we find the standard T -duality rules between type IIA and
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type IIB supergravity [120]. Therefore, we can do T -duality transformations throughout

the linear map (5.3), as the matrix SI
J contains the information of the T -duality direction.

On the other hand, the S-duality rule is rather trivial. In the type IIB parameterization,

all of the generalized coordinates and the supergravity fields are SL(2) tensors, and the

indices α and β are rotated by a matrix Λα
β ≡

(
0 1
−1 0

)
as usual.

5.2 Dual parameterization in the whole bosonic sector

In the case of DFT, the conventional fields and the dual fields are related through the

expression (4.18). Here, we briefly explain how to generalize the relation (4.18) to EFT.

As we already explained, the generalized metric MIJ in EFT can be parameterized by

the bosonic fields in type IIB supergravity, which we call M(IIB)

IJ . We can also parameterize

the same generalized metric in terms of the dual fields in type IIB supergravity such as

(g̃, φ̃, βmn, γm1···mp , · · · ) [87, 120, 121]. This is called the non-geometric parameterization

since the dual fields are related to the non-geometric fluxes, and we call the generalized

metric M(IIB, non-geometric)

IJ . Similar to (4.18), by comparing the two parameterizations as

M(IIB)

IJ = M(IIB, non-geometric)

IJ , (5.4)

we can, in principle, determine the dual fields in terms of the conventional fields.

Since the generalized metric contains only the supergravity fields with internal

(toroidal) components, for the metric with external indices gµν and gµm , we need a more

elaborated recipe. For our purposes, it is enough to know the transformation rule for the

components gµν . By truncating other external fields, the duality relation becomes [121]

(
det gE

mn

) 1
d−2 gE

µν =
(
det g̃E

mn

) 1
d−2 g̃E

µν , (5.5)

where gE
mn ≡ e−

1
2
Φ gmn and g̃E

mn ≡ e−
1
2
φ̃ g̃mn are internal components of the Einstein-

frame metric that are contained in MIJ . We can compute the external components of the

Einstein-frame dual metric g̃E
µν and the string-frame metric is obtained as g̃µν ≡ e

1
2
φ̃ g̃E

µν .

Reorganization of the generalized coordinates. In order to simplify the T -duality

rule, we here consider the following redefinitions of the generalized coordinates in type II

theory. The winding coordinates for P and F1 (that appear also in DFT) are defined as

(
xm, x̃m

)
≡

{(
xm, ymM

)
(IIA) ,

(
xm, y1m

)
(IIB) ,

(5.6)

in terms of the generalized coordinates in the M-theory/type IIB parameterizations. Here,

M denotes the M-theory direction. The winding coordinates for the D-branes yD
m1···mp
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(p = 0, . . . , 7) and the solitonic branes 5n2 (n = 0, 1, 2) are denoted as

(yD
m1···mp

) ≡
(
−xM

︸︷︷︸

D0

, −y2m
︸︷︷︸

D1

, ym1m2
︸ ︷︷ ︸

D2

, ym1m2m3
︸ ︷︷ ︸

D3

, ym1···m4M
︸ ︷︷ ︸

D4

, y1m1···m5
︸ ︷︷ ︸

D5

, ym1···m6M,M
︸ ︷︷ ︸

D6

, y11m1···m7
︸ ︷︷ ︸

D7

)
,

(5.7)

(
yS
m1···m5n1···nn, n1···nn

)
≡







(
ym1···m5
︸ ︷︷ ︸

52

, ym1···m6M, n
︸ ︷︷ ︸

512

, ym1···m7M, n1n2M
︸ ︷︷ ︸

522

)
(IIA) ,

(
−y2m1···m5
︸ ︷︷ ︸

52

, ym1···m6, n
︸ ︷︷ ︸

512

, y1m1···m7, n1n2
︸ ︷︷ ︸

522

)
(IIB) .

(5.8)

The winding coordinates for the exotic p7−p
3 -branes (p = 0, . . . , 7) and the (164, 0

(1,6)
4 )-branes

are called

(yE
m1···m7,n1···n7−p

)≡
(
ym1···m7M,n1···n7M,M
︸ ︷︷ ︸

073

, y1m1···m7,n1···n6
︸ ︷︷ ︸

163

, ym1···m7M,n1···n5M
︸ ︷︷ ︸

253

, ym1···m7,n1···n4
︸ ︷︷ ︸

343

,

ym1···m7M,n1n2n3
︸ ︷︷ ︸

433

,−y2m1···m7,n1n2
︸ ︷︷ ︸

523

, ym1···m7, s
︸ ︷︷ ︸

613

, y22m1···m7
︸ ︷︷ ︸

73

)
. (5.9)

(
x̃m1···m7,n1···n6
︸ ︷︷ ︸

164

, x̃m1···m7,n1···n7,p
︸ ︷︷ ︸

0
(1,6)
4

)
≡
{(

ym1···m7M,n1···n6 , ym1···m7M,n1···n7M,p

)
(IIA) ,

(
−y2m1···m7,n1···n6

, ym1···m7,n1···n7,p

)
(IIB) .

(5.10)

The remaining eight coordinates in the E8(8) exceptional space,

ym1···m6M, n

(
n 6∈ {m1 · · ·m6}

)
, ym1···m7M (IIA) , (5.11)

ym1···m6, n

(
n 6∈ {m1 · · ·m6}

)
, y12m1···m7

(IIB) , (5.12)

correspond to the eight missing states that are not connected to other branes under T -

and S-dualities (see section 3.3). In the following discussion, we do not consider these

coordinates any more since these do not appear in our solutions.

In summary, when we consider type II theory, we use the following set of generalized

coordinates:

(xI) =
{
xm, x̃m, yD

m1···mp
, yS

m1···m5
, yS

m1···m5n, n, y
S
m1···m5n1n2, n1n2

,

yE
m1···m7, n1···n7−p

, x̃m1···m7, n1···n6 , x̃m1···m7, n1···n7, p, (missing states)
}
,

(5.13)

where p is an even/odd number in type IIA/IIB. On the other hand, when we consider

M-theory, we employ the original parameterization (5.1).

T -duality rule. With the above parameterization, the linear map (5.3) (a T -duality

along the y-direction) between the generalized coordinates can be summarized as follows:8

8A sign flip may happen in the maps for winding coordinates associated with 512 ↔ 522, 1
6
3 ↔ 253, 3

4
3 ↔ 433,

523 ↔ 613, 1
6
4 ↔ 164, and 164 (IIA) ↔ 0

(1,6)
4 (IIB) , since the linear map for the E8(8) case is determined only

up to sign in [120]. However, even if a minus sign can appear, it does not affect the following computations

for obtaining exotic-brane solutions in EFT since the minus sign can be absorbed into a free parameter m .
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xa ↔ xa , x̃a ↔ x̃a , xy ↔ x̃y , yD
a1···ap

↔ yD
a1···apy

,

yS
a1···a4b1···bny, b1···bn ↔ yS

a1···a4b1···bny, b1···bn , yS
a1···a5b1···bn, b1···bn ↔ yS

a1···a5b1···bny, b1···bny ,

yE
a1···apb1···b7−py, b1···b7−p

↔ yE
a1···apb1···b7−py, b1···b7−py

, x̃ab1···b5y, b1···b5y ↔ x̃ib1···b5y, b1···b5y ,

x̃a1···a6y, a1···a6
↔ x̃a1···a6y, a1···a6y, y , x̃a1···a6y, a1···a6y, a6

↔ x̃a1···a6y, a1···a6y, a6
, (5.14)

where a and b run over the internal directions other than y .

In the following, we utilize the dual parameterization of the generalized metric. The

dual fields in M-theory and type IIB theory can be summarized as

M-theory :
{
G̃ij , Ω

i1i2i3 , Ωi1···i6 , Ωi1···i8, j
}
, (5.15)

type IIB :
{
g̃mn, φ̃, γ, β

mn, γmn, γm1···m4 , βm1···m6 , γm1···m6 , βm1···m7, n
}
. (5.16)

If we decompose the dual fields in M-theory as

G̃mn = e−
2
3
φ̃(A) g̃mn

(A) + e
4
3
φ̃(A) γm(A) γ

n
(A) , G̃mM = − e

4
3
φ̃(A) γm(A) ,

G̃MM = e
4
3
φ̃(A) , ΩmnM = βmn

(A) , Ωmnp = γmnp
(A) ,

Ωm1···m5M = γm1···m5
(A) − 5 γ

[m1m2m3
(A) β

m4m5]
(A) , Ωm1···m6 = βm1···m6

(A) ,

(5.17)

the linear map (5.3) reproduces the following T -duality transformation rules [120]:

g̃ab(A) = g̃ab − g̃ay g̃by − βay βby

g̃yy
, g̃ay(A) =

βay

g̃yy
, g̃yy(A) =

1

g̃yy
,

βab
(A) = βab +

βay g̃by − g̃ay βby

g̃yy
, βay

(A) =
g̃ay

g̃yy
, e−2φ̃(A) =

e−2φ̃

g̃yy
,

γ
a1···an−1y
(A) = γa1···an−1 − (n− 1)

γ[a1···an−2|y| g̃an−1]y

g̃yy
, (5.18)

γa1···an(A) = γa1···any + nγ[a1···an−1 βan]y + n (n− 1)
γ[a1···an−2|y| βan−1|y| g̃an]y

g̃yy
,

βa1···a5y
(A) = βa1···a5y + 5 η[a1···a4 γa5]y + 5 η[a1a2a3|y| γa4a5] − 45

2
γ[a1a2 βa3a4 γa5]y

− 15

2
γ[a1a2 γa3a4 βa5]y +

10 η[a1···a3|y| γa4|y|g̃a5]y

g̃yy
− 15 γ[a1a2 βa3|y| γa4|y| g̃a5]y

g̃yy
,

where ηm1···m4 ≡ γm1···m4 + 3β[m1m2 γm3m4] . In the following, for simplicity, we drop the

subscript (A) for the type IIA fields.

In summary, the T -duality transformation (5.14) and (5.18) maps a solution of EFT

to another solution of EFT. Although (5.18) is the result for the E7(7) EFT [120], if we

consider the E8(8) EFT, there appears an additional dual field βm1···m7, n . Its duality rule

has not been determined yet in the context of EFT, but in the following discussion, it is

enough to employ the T -duality rule9

βa1···a6 Ty←→ βa1···a6y, y + (irrelevant non-linear terms) , (5.19)

9Our purpose is to study supergravity solutions of the exotic branes. In these brane solutions, only a

single potential has a non-vanishing value and we can ignore non-linear terms.
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which is the dual of the transformation rule D6
Ty←→ D6y,y +

(irrelevant non-linear terms) [97].

S-duality rule. The S-duality transformation rules are as follows:

g̃′mn =

√

e−2φ̃+γ2 g̃mn , e−φ̃′
=

e−φ̃

e−2φ̃+γ2
, γ′ = − γ

e−2φ̃+γ2
,

β′mn = −γmn , γ′mn = βmn , γ′m1···m4 = γm1···m4 + 6β[m1m2 γm3m4] ,

γ′m1···m6 = −βm1···m6 + 45 γ[m1m2 γm3m4 βm5m6] ,

β′m1···m6 = γm1···m6 − 45β[m1m2 βm3m4 γm5m6] .

(5.20)

The S-duality rule for βm1···m7, n will be β′m1···m7, n = βm1···m7, n+(non-linear terms) . The

S-duality transformation also rotates the generalized coordinates as

x̃′m = −yD
m , y′Dm = x̃m , y′Dm1···m5

= −yS
m1···m5

,

y′Sm1···m5
= yD

m1···m5
, y′Dm1···m7

= yE
m1···m7

, y′Em1···m7
= yD

m1···m7
,

y′Sm1···m7, n1n2
= −yE

m1···m7, n1n2
, y′Em1···m7, n1n2

= yS
m1···m7, n1n2

,

y′Em1···m7, n1···n6
= −x̃m1···m7, n1···n6 , x̃′m1···m7, n1···n6

= yE
m1···m7, n1···n6

,

(5.21)

while keeping other coordinates invariant.

5.3 First two examples of domain-wall solutions in EFT

Before considering all of the “elementary” domain-wall solutions, let us begin with two

simple examples.

5.3.1 p
(1,7−p)
3 -brane background

We start with the smeared exotic p7−p
3 (1 · · · p, p+ 1 · · · 7)-brane solution,

ds2 =
|τ |
τ
1/2
2

(
dx201···p + τ2 dx

2
89

)
+

τ
1/2
2

|τ | dx2(p+1)···7 ,

e−2Φ =

( |τ |2
τ2

) 3−p
2

, C(p+1)···7 = − τ1
|τ |2 ,

(5.22)

where τ1 = mx8 , τ2 = h0+m |x9| , dx2(7+1)···7 ≡ 0 , and C(7+1)···7 represents the R-R 0-form

C0 . By performing the T -duality along the x8-direction, we obtain the p
(1,7−p)
3 (1 · · · p, p+

1 · · · 7, 8)-brane solution

ds2 =
|τ |
τ
1/2
2

(
dx201···p + τ2 dx

2
9

)
+

τ
1/2
2

|τ | dx2(p+1)···7 +
τ
−1/2
2

|τ | dx28 ,

e−2Φ =
|τ |4−p

τ
2−p
2

2

, C(p+1)···78 = − τ1
|τ |2 .

(5.23)

where τ1 = mx̃8 and τ2 = h0 +m |x9| .
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Dual parameterization for the 73-brane solution. For the 73 background, the non-

vanishing fields are the (gµν , gmn, Φ, C0) . In this case, (5.4) and (5.5) are reduced to

gE
mn = g̃E

mn ,
(
mαβ

)
= eΦ

(

e−2Φ+(C0)
2 C0

C0 1

)

= eφ̃

(

1 γ

γ e−2φ̃+γ2

)

,

(
det gE

mn

) 1
d−2 gE

µν =
(
det g̃E

mn

) 1
d−2 g̃E

µν , (5.24)

and we obtain the dual parameterization for the 73-brane solution,

ds̃2 = τ
1/2
2

(
dx201···7 + τ2 dx

2
89

)
, e−2φ̃ = τ−2

2 , γ = mx8 . (5.25)

Dual parameterization for other p-brane solutions. We can similarly obtain the

dual parameterizations for other p-brane solutions in (5.22) and (5.23). However, in general,

a direct comparison of the generalized metrics is very complicated.

For simplicity, we instead use the T -duality rules (5.14) and (5.18). Then, we can

easily obtain the dual parameterization of the p7−p
3 background. The p

(1,7−p)
3 background

is also obtained by further performing a T -duality along the x8-direction. The results are

as follows:

p
7−p
3 (1 · · · p, p + 1 · · · 7) : (5.26)

ds̃2 = τ
1/2
2

(
dx201···p + τ2 dx

2
89

)
+ τ

−1/2
2 dx2(p+1)···7 , e−2φ̃ = τ

3−p
2

2 , γ(p+1)···7 = mx8 ,

p
(1,7−p)
3 (1 · · · p, p + 1 · · · 7, 8) :

ds̃2 = τ
1/2
2

(
dx201···p + τ2 dx

2
9

)
+ τ

−1/2
2 dx2(p+1)···7 + τ

−3/2
2 dx28 ,

e−2φ̃ = τ
6−p
2

2 , γ(p+1)···8 = mx̃8 .

(5.27)

In the p
(1,7−p)
3 solution, similar to the 532 solution (4.21), the winding-coordinate dependence

is appearing only in the γ-field linearly.

Non-geometric flux and mixed-symmetry potentials. As discussed in [101], back-

grounds of the exotic p7−p
3 -branes are the magnetic sources of the non-geometric P -fluxes.

The non-geometric P -fluxes were introduced in [122–124] and in particular, a P -flux Pm
pq

is S-dual of the Q-flux. They are roughly defined as (see [121] for more details)

P
n1···n7−p

1 ≡ Pm
n1···n7−p dxm ≡ dγn1···n7−p , (5.28)

and in the p7−p
3 (1 · · · p, p+ 1 · · · 7) background, it takes the form

P8̄
p+1···7̄ = m. (5.29)

According to [101, 121], the effective Lagrangian for the P -fluxes has the form

L ∼ −1

2

√

−g̃ e−4φ̃
∑

p=even/odd

|P 7−p
1 |2 (IIA/IIB) , (5.30)
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where |P 7−p
1 |2 ≡ g̃pq g̃m1···m7−p, n1···n7−p Pp

m1···m7−p Pq
n1···n7−p . The equations of motion

suggest the dual field strength of the form [101]

P9,7−p ≡ e−4φ̃ g̃n1···n7−p, q1···q7−p ∗̃10P
n1···n7−p

1 ⊗ dxq1 ∧ · · · ∧ dxq7−p , (5.31)

and its potential may be defined as P9,7−p ≡ dE8,7−p . These mixed-symmetry potentials

were discussed in [11] and the Hodge duality similar to (5.31) was discussed in [12, 79]. In

the p7−p
3 (1 · · · p, p+ 1 · · · 7) solution, we obtain

E0̄1̄2̄3̄4̄5̄6̄7̄, p+1···7̄ = −mτ−1
2 . (5.32)

Similarly, in the p
(1,7−p)
3 (1 · · · p, p+ 1 · · · 7, 8) background, the derivative of the γ-field

gives a locally non-geometric flux introduced in [79],

Rm1···m7−p,m ≡ ∂̃mγm1···m7−p . (5.33)

In the p
(1,7−p)
3 (1 · · · p, p+ 1 · · · 7, 8) solution, we obtain a constant flux,

Rp+1···8̄, 8̄ ≡ ∂̃8̄γp+1···8̄ = m. (5.34)

The dual field strengths may be defined as

R10,8−p,1 ≡ e−4φ̃ g̃m1···m8−p, n1···n8−p g̃rs ∗̃10Rm1···m8−p, r ⊗ dxn1 ∧ · · · ∧ dxn8−p ⊗ dxr , (5.35)

which should be derived from DFT/EFT but here we introduced them heuristically. If we

also introduce the potential as R10,8−p,1 ≡ dE9,8−p,1 , we obtain

E0̄1̄2̄3̄4̄5̄6̄7̄8̄, p···8̄,8̄ = −mτ−1
2 , (5.36)

in the p
(1,7−p)
3 (1 · · · p, p+ 1 · · · 7, 8) background, suggesting the T -duality rule

Ea1···a8, b1···b7−p

Ty←→ Ea1···a8y, b1···b7−py, y

(
y 6∈ {a1, . . . , a8} , {b1, b2} ∈ {a1, . . . , a8}

)
,

(5.37)

which is consistent with the result of [16].

5.3.2 1
(1,0,6)
4 -brane background

As the second example, we consider the 1
(1,0,6)
4 -brane background. It can be obtained from

the smeared 164(1, 234567)-brane background:

ds2 =
|τ |2
τ2

(
dx201 + τ2 dx89

)
+ dx22···7 , e−2Φ =

τ2
|τ |2 ,

B2 = −|τ |2
τ2

dx0 ∧ dx1 , D6 = − τ1
|τ |2 dx

2 ∧ · · · ∧ dx7 .

(5.38)

By performing a formal T -duality along the x8-direction, we obtain the 1
(1,0,6)
4 (1, 234567, , 8)

background,

ds2 =
|τ |2
τ2

(
dx201 + τ2 dx9

)
+ dx22···8 , e−2Φ =

τ2
|τ | , B2 = −|τ |2

τ2
dx0 ∧ dx1 , (5.39)
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where τ is τ1 = mx̃8 and τ2 = h0 + m |x9| . Since there are no R-R fields, we can easily

check that this is a solution of DFT.

The dual parameterization again can be obtained by comparing two parameterizations

of the generalized metric in EFT, but in order to obtain the dual parameterization for the

164 solution, it is easier to S-dualize the 163 solution (5.26). The dual parameterization for

the 1
(1,0,6)
4 solution can be obtained by further performing a T -duality. The results are as

follows:

164(1, 234567) :

ds̃2 = τ2
(
dx201 + τ2 dx

2
89

)
+ dx22···7 , e−2φ̃ = τ−1

2 , β2···7 = mx8 ,
(5.40)

1
(1,0,6)
4 (1, 234567, , 8) :

ds̃2 = τ2
(
dx201 + τ2 dx

2
9

)
+ τ−1

2 dx28 + dx22···7 , e−2φ̃ = τ2 , β2···8, 8 = mx̃8 .
(5.41)

Non-geometric fluxes and mixed-symmetry potentials. We can again consider a

definition of a non-geometric flux [101, 121]

Qn1···n6
1 ≡ Qm

n1···n6 dxm ≡ dβn1···n6 . (5.42)

In the 164(1, 234567) background, we obtain

Q8̄
2̄···7̄ = m. (5.43)

In this case, the effective Lagrangian becomes [101, 121]

L ∼ −1

2

√

−g̃ e−6φ̃|Q6
1|2 , (5.44)

where |Q6
1|2 ≡ g̃pq g̃m1···m6, n1···n6 Qp

m1···m6 Qq
n1···n6 and the dual field strength is defined

as [101]

Q9,6 ≡ e−6φ̃ g̃m1···m6, n1···n6 ∗̃10Qm1···m6
1 ⊗ dxn1 ∧ · · · ∧ dxn6 . (5.45)

This kind of Hodge duality has been also suggested in [12]. The mixed-symmetry potential

may be defined through Q9,6 ≡ dE
(4)
8,6 , and in the 164(1, 234567) background, we obtain

E
(4)

0̄···7̄, 2̄···7̄
= −mτ−1

2 . (5.46)

Similarly, in the 1
(1,0,6)
4 (1, 234567, , 8) background, a new locally non-geometric flux

may be defined as

R2̄···8̄, 8̄, 8̄ ≡ ∂̃8̄γ2̄···8̄, 8̄ = m. (5.47)

If we define the dual field strength as

R10,7,1,1 ≡ e−6φ̃ g̃m1···m7, n1···n7 g̃pr g̃qs ∗̃10Rm1···m7, p, q

⊗ dxn1 ∧ · · · ∧ dxn7 ⊗ dxr ⊗ dxs ,
(5.48)

and also define the potential through R10,7,1,1 ≡ dE
(4)
9,7,1,1 , we obtain

E
(4)

0̄···8̄,2̄···8̄, 8̄, 8̄
= −mτ−1

2 . (5.49)

– 39 –



J
H
E
P
0
9
(
2
0
1
8
)
0
7
2

5.3.3 A short summary

Up to here, we have discussed the defect-brane solutions

D7 (4.1), 522 (4.20), p7−p
3 (5.26), 1

(1,0,6)
4 (5.40) , (5.50)

and the domain-wall-brane solutions

D8 (4.13), 532 (4.21), p
(1,7−p)
3 (5.27), 1

(1,0,6)
4 (5.41) , (5.51)

in DFT or EFT. The D7 and D8-branes are rather exceptional, but for other branes, the

results can be summarized as follows. The defect branes are the magnetic sources of the 1-

form fluxes {QA
1 } ≡ {Q2

1, P
7−p
1 , Q6

1}, which are known as the globally non-geometric fluxes.

The electric potentials are 8-forms {E8,A} ≡ {D8,2, E8,7−p, E
(4)
8,6} , whose field strengths

are related to the magnetic fluxes, schematically written as

E8,A = e2(1−n) φ̃ (g̃ · · · g̃) ∗̃10QA
1 , (5.52)

where n represents the power of gs in the tension of the exotic brane T ∼ g−n
s and (g̃ · · · g̃)

denotes that all of the upper indices in QA
1 are lowered with the dual metric g̃mn . On the

other hand, the domain-wall branes are the magnetic sources of the locally non-geometric

R-fluxes {R{A}} ≡ {R3, R8−p,1, R7,1,1}. The electric potentials are 9-forms {E9,{A}} ≡
{D9,3, E9,8−p,1, E

(4)
9,7,1,1} , whose field strengths are related to the magnetic fluxes as

E9,{A} = e2(1−n) φ̃ (g̃ · · · g̃) ∗̃10R{A} . (5.53)

This suggests that there is a one-to-one correspondence between domain-wall branes, the

9-form mixed-symmetry potentials, and the R-fluxes. Further, the set of indices {A} in the

R-fluxes can be found from the set of indices {A} in the mixed-symmetry potentials, which

are consistent with the general rule (3.17). In fact, this appears to be a general structure

as we see below.

In the following, we will firstly introduce a generalization of the locally non-geometric

R-fluxes, and then show that the domain-wall solutions in EFT have a constant R-flux.

5.4 Locally non-geometric fluxes

As we have already discussed, a domain-wall brane, say the b
(cs,...,c2)
n -brane, is the

magnetic source of the non-geometric flux with a set of antisymmetrized indices,

Rc2+···+cs,...,cs−1+cs,cs , which is a U -duality version of the familiar R-flux (see [87–89] for

definitions of locally non-geometric fluxes in M-theory compactified on up to the 7-torus).

In this subsection, we obtain a generalization of the locally non-geometric fluxes for the

case of E8(8) EFT, both in terms of type II theories and M-theory.

Rather than the systematic analysis similar to [87–89], we here take a heuristic ap-

proach to define the locally non-geometric fluxes. Our starting point is the familiar R-flux,

Rm1m2m3 ≡ 3 ∂̃[m1βm2m3] , whose magnetic source is the 532-brane. Under S-duality trans-

formation, the 532-brane is mapped to the 534-brane, and at the same time, the R-flux is
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mapped to another flux, Rm1m2m3 ≡ 3 ∂
[m1
D γ

m2m3] . By using the transformation rules given

in section 5.1, we can further perform the T - and S-duality transformations, and obtain

the U -dual counterpart of the locally non-geometric R-fluxes. At certain points, we need to

prescribe appropriate antisymmetrizations such that the R-fluxes have the expected index

structure. By repeating the procedures, we can find appropriate definitions of the R-fluxes

that transform covariantly under the T - and S-duality transformations. For simplicity, we

only consider the linear dependence on the potentials and ignore non-linear terms of the

form β··· ∂··· γ
··· , but it is enough to study backgrounds of exotic brane, where only a single

potential is non-vanishing.

5.4.1 Locally non-geometric fluxes in type IIA theory/T 7

The obtained R-fluxes in type IIA theory and the corresponding domain-wall branes can

be summarized as follows:

R3
(2) ↔ 532-brane:

Rm1m2m3

(2) ≡ 3 ∂̃[m1βm2m3] ,
(5.54)

R7,1
(3) ↔ 1

(1,6)
3 -brane:

Rm1···m7,n

(3) ≡ ∂̃n γm1···m7 −7∂
[m1···m6

D βm7]n ,
(5.55)

R5,1
(3) ↔ 3

(1,4)
3 -brane:

Rm1···m5,n

(3) ≡ ∂̃n γm1···m5 −5∂
[m1···m4

D βm5]n−∂m1···m5q
D An

q ,
(5.56)

R3,1
(3) ↔ 5

(1,2)
3 -brane:

Rm1m2m3,n

(3) ≡ ∂̃n γm1m2m3 −3∂
[m1m2

D βm3]n−∂m1m2m3q
D An

q ,
(5.57)

R1,1
(3) ↔ 7

(1,0)
3 -brane:

Rm,n

(3) ≡ ∂̃n γm−∂mq
D An

q ,
(5.58)

R7,1,1
(4) ↔ 1

(1,0,6)
4 -brane:

Rm1···m7,n,p

(4) ≡ ∂̃nβm1···m7,p−7∂
[m1···m6|,p
S β|m7]n+∂m1···m7,nq

S Ap
q ,

(5.59)

R3
(4) ↔ 534-brane:

Rm1m2m3

(4) ≡ ∂Dγ
m1m2m3 −3∂

[m1m2

D γm3] ,
(5.60)

R4,1
(4) ↔ 4

(1,3)
4 -brane:

Rm1···m4,n

(4) ≡ 4!

2!2!
∂
[m1m2

D γm3m4]n−∂m1···m4
D γn+∂m1···m4q

S An
q ,

(5.61)

R5,2
(4) ↔ 3

(2,3)
4 -brane: (5.62)

Rm1···m5,n1n2

(4) ≡ ∂n1n2
D γm1···m5 −5∂

[m1···m4

D γm5]n1n2 +∂m1···m5
S βn1n2 +2∂

m1···m5q, [n1

S An2]
q ,

R6,3
(4) ↔ 2

(3,3)
4 -brane:

Rm1···m6,n1n2n3

(4) ≡ 6!

4!2!
∂
[m1···m4

D γm5m6]n1n2n3 −∂m1···m6
D γn1n2n3 +3∂

m1···m6, [n1

S βn2n3]

+3∂
m1···m6q, [n1n2

S An3]
q ,

(5.63)
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R7,4
(4) ↔ 1

(4,3)
4 -brane:

Rm1···m7,n1···n4

(4) ≡ ∂n1···n4
D γm1···m7 −7∂

[m1···m6

D γm7]n1···n4 +
4!

2!2!
∂
m1···m7, [n1n2

S βn3n4] ,
(5.64)

R6
(5) ↔ 265-brane:

Rm1···m6

(5) ≡ ∂Dβ
m1···m6 +6∂

[m1···m5

S γm6] ,
(5.65)

R6,2
(5) ↔ 2

(2,4)
5 -brane: (5.66)

Rm1···m6,n1n2

(5) ≡ ∂n1n2
D βm1···m6 +2∂

m1···m6, [n1

S γn2]+6∂
[m1···m5

S γm6]n1n2 −2∂
m1···m6q, [n1

E An2]
q ,

R6,4
(5) ↔ 2

(4,2)
5 -brane:

Rm1···m6,n1···n4

(5) ≡ ∂n1···n4
D βm1···m6 +4∂

m1···m6, [n1

S γn2n3n4]+6∂
[m1···m5

S γm6]n1···n4

−4∂
m1···m6q, [n1n2n3

E An4]
q ,

(5.67)

R6,6
(5) ↔ 2

(6,0)
5 -brane:

Rm1···m6,n1···n6

(5) ≡ ∂n1···n6
D βm1···m6 +6∂

m1···m6, [n1

S γn2···n6]−6∂
m1···m6q, [n1···n5

E An6]
q ,

(5.68)

R7,2,1
(5) ↔ 1

(1,1,5)
5 -brane:

Rm1···m7,n1n2,p

(5) ≡ ∂n1n2
D βm1···m7,p−2∂

m1···m7,p[n1

S γn2]−7∂
[m1···m6|,p
S γ|m7]n1n2

−2∂
m1···m7, [n1

E βn2]p−∂m1···m7,n1n2q
E Ap

q ,

(5.69)

R7,4,1
(5) ↔ 1

(1,3,3)
5 -brane:

Rm1···m7,n1···n4,p

(5) ≡ ∂n1···n4
D βm1···m7,p−4∂

m1···m7,p[n1

S γn2n3n4]−7∂
[m1···m6|,p
S γ|m7]n1···n4

−4∂
m1···m7, [n1n2n3

E βn4]p−∂m1···m7,n1···n4q
E Ap

q ,

(5.70)

R7,6,1
(5) ↔ 1

(1,5,1)
5 -brane:

Rm1···m7,n1···n6,p

(5) ≡ ∂n1···n6
D βm1···m7,p−6∂

m1···m7,p[n1

S γn2···n6]−7∂
[m1···m6|,p
S γ|m7]n1···n6

−6∂
m1···m7, [n1···n5

E βn6]p−∂m1···m7,n1···n6q
E Ap

q ,

(5.71)

R7,4
(6) ↔ 1

(4,3)
6 -brane: (5.72)

Rm1···m7,n1···n4

(6) ≡ 7!

5!2!
∂
[m1···m5

S βm6m7]n1···n4 +4∂
m1···m7, [n1

E γn2n3n4]−4∂
m1···m7, [n1n2n3

E γn4] ,

R7,5,1
(6) ↔ 1

(1,4,2)
6 -brane:

Rm1···m7,n1···n5,p

(6) ≡ 7∂
[m1···m6|,p
S β|m7]n1···n5 −∂n1···n5

S βm1···m7,p− ∂̃m1···m7,n1···n5qAp
q

+∂m1···m7,p
E γn1···n5 − 5!

2!3!
∂
m1···m7,p[n1n2

E γn3n4n5]+ ∂̃m1···m7,n1···n5γp ,

(5.73)

R7,6,2
(6) ↔ 1

(2,4,1)
6 -brane:

Rm1···m7,n1···n6,p1p2

(6) ≡ ∂m1···m7,p1p2
S βn1···n6 −2∂

n1···n6, [p1|
S βm1···m7, |p2]

+ ∂̃m1···m7,n1···n6βp1p2 +2 ∂̃m1···m7,n1···n6q, [p1Ap2]
q

+6∂
m1···m7,p1p2[n1

E γn2···n6]− 6!

3!3!
∂
m1···m7,p1p2[n1n2n3

E γn4n5n6] ,

(5.74)
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R7,7,3
(6) ↔ 1

(3,4,0)
6 -brane:

Rm1···m7,n1···n7,p1p2p3

(6) ≡ 3∂
m1···m7, [p1p2|
S βn1···n7, |p3]+3 ∂̃n1···n7,m1···m7, [p1βp2p3]

−∂m1···m7,p1p2p3
E γn1···n7 +

7!

2!5!
∂
m1···m7,p1p2p3[n1n2

E γn3···n7]

−∂n1···n7,m1···m7,n1···n7
E γp1p2p3 ,

(5.75)

R7,7
(7) ↔ 1

(7,0)
7 -brane:

Rm1···m7,n1···n7

(7) ≡ 7∂
n1···n7, [m1

E βm2···m7]+7 ∂̃m1···m7, [n1···n6γn7] ,
(5.76)

R7,7,2
(7) ↔ 1

(2,5,0)
7 -brane:

Rm1···m7,n1···n7,p1p2

(7) ≡−2∂
n1···n7, [p1|
E βm1···m7, |p2]+7∂

n1···n7,p1p2[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p1p2 +2 ∂̃m1···m7,n1···n7, [p1γp2] ,

(5.77)

R7,7,4
(7) ↔ 1

(4,3,0)
7 -brane:

Rm1···m7,n1···n7,p1···p4

(7) ≡−4∂
n1···n7, [p1p2p3|
E βm1···m7, |p4]+7∂

n1···n7,p1···p4[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p1···p4 +4 ∂̃m1···m7,n1···n7, [p1γp2p3p4] ,

(5.78)

R7,7,6
(7) ↔ 1

(6,1,0)
7 -brane:

Rm1···m7,n1···n7,p1···p6

(7) ≡−6∂
n1···n7, [p1···p5|
E βm1···m7, |p6]+7∂

n1···n7,p1···p6[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p1···p6 +6 ∂̃m1···m7,n1···n7, [p1γp2···p6] ,

(5.79)

R7,7,7
(8) ↔ 1

(7,0,0)
8 -brane:

Rm1···m7,n1···n7,p1···p7

(8) ≡ 7 ∂̃n1···n7, [p1···p6|βm1···m7, |p7]+7 ∂̃m1···m7,n1···n7, [p1βp2···p7] .
(5.80)

Here, the vector field Am
n ≡ g̃mn/g̃nn is the graviphoton, which is T -dual of the β-field;

Am
y

Ty↔ βmy . We have attached the subscript (n) to the R-flux that is associated with the

exotic brane b
(cs,...,c2)
n .

In the type IIA case, there is another famous domain-wall brane, the D8-brane. As

we have already discussed, it is the magnetic source of the R-R 0-form flux F0 = ∂̃mAm .

Only in this example, the conventional supergravity field contains the winding-coordinate

dependence.

By the construction, indices of the obtained R-flux R
m1,...,mi, n1,...,nj , p1,...,pk
(n) satisfy

{m1, . . . ,mi} ⊃ {n1, . . . , nj} ⊃ {p1, . . . , pk} . (5.81)

Then, for example, a combination 2A··· , n[m1 Bm2] is equal to −A··· ,m1m2 Bn since

3A··· , [m1m2 Bn] = 0 , (5.82)

which follows from {m1, m2} ⊃ {n} . Similarly, R
m1···mp, n1···np, ···
(n) is equal to

R
m1···mp,m1···mp, ···
(n) . The above expressions for the R-fluxes are correct only up to such

identities, and in order to obtain the precise definitions of the R-fluxes, other approaches

such as [87–89] will be necessary. In such approaches, the constraints (5.81) may be relaxed.
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5.4.2 Locally non-geometric fluxes in type IIB theory/T 7

In type IIB theory, the R-fluxes and the corresponding domain-wall branes are as follows:

R3
(2) ↔ 532-brane:

Rm1m2m3

(2) ≡ 3 ∂̃[m1βm2m3] ,
(5.83)

R6,1
(3) ↔ 2

(1,5)
3 -brane:

Rm1···m6,n

(3) ≡ ∂̃n γm1···m6 +6∂
[m1···m5

D βm6]n+∂m1···m6q
D An

q ,
(5.84)

R4,1
(3) ↔ 4

(1,3)
3 -brane:

Rm1···m4,n

(3) ≡ ∂̃n γm1···m4 +4∂
[m1m2m3

D βm4]n+∂m1···m4q
D An

q ,
(5.85)

R2,1
(3) ↔ 6

(1,1)
3 -brane:

Rm1m2,n

(3) ≡ ∂̃n γm1m2 +2∂
[m1

D βm2]n+∂m1m2q
D An

q ,
(5.86)

R7,1,1
(4) ↔ 1

(1,0,6)
4 -brane:

Rm1···m7,n,p

(4) ≡ ∂̃nβm1···m7,p−7∂
[m1···m6|,p
S β|m7]n+∂m1···m7,nq

S Ap
q ,

(5.87)

R3
(4) ↔ 534-brane:

Rm1m2m3

(4) ≡ 3∂
[m1

D γm2m3]−∂m1m2m3
D γ ,

(5.88)

R4,1
(4) ↔ 4

(1,3)
4 -brane:

Rm1···m4,n

(4) ≡−4∂
[m1

D γm2m3m4]n+4∂
[m1m2m3

D γm4]n+∂m1···m4q
S An

q ,
(5.89)

R5,2
(4) ↔ 3

(2,3)
4 -brane: (5.90)

Rm1···m5,n1n2

(4) ≡ 5!

3!2!
∂
[m1m2m3

D γm4m5]n1n2 −∂m1···m5
D γn1n2 +∂m1···m5

S βn1n2 +2∂
m1···m5q, [n1

S An2]
q ,

R6,3
(4) ↔ 2

(3,3)
4 -brane:

Rm1···m6,n1n2n3

(4) ≡ ∂n1n2n3
D γm1···m6 +6∂

[m1···m5

D γm6]n1n2n3 +3∂
m1···m6, [n1

S βn2n3]

+3∂
m1···m6q, [n1n2

S An3]
q ,

(5.91)

R7,4
(4) ↔ 1

(4,3)
4 -brane: (5.92)

Rm1···m7,n1···n4

(4) ≡ 7!

5!2!
∂
[m1···m5

D γm6m7]n1···n4 −∂m1···m7
D γn1···n4 +

4!

2!2!
∂
m1···m7, [n1n2

S βn3n4] ,

R6,1
(5) ↔ 2

(1,5)
5 -brane:

Rm1···m6,n

(5) ≡ ∂n
Dβ

m1···m6 +∂m1···m6,n
S γ+6∂

[m1···m5

S γm6]n+∂m1···m6q
E An

q ,
(5.93)

R6,3
(5) ↔ 2

(3,3)
5 -brane:

Rm1···m6,n1n2n3

(5) ≡ ∂n1n2n3
D βm1···m6 +3∂

m1···m6, [n1

S γn2n3]+6∂
[m1···m5

S γm6]n1n2n3

+3∂
m1···m6q, [n1n2

E An3]
q ,

(5.94)

R6,5
(5) ↔ 2

(5,1)
5 -brane:

Rm1···m6,n1···n5

(5) ≡ ∂n1···n5
D βm1···m6 +5∂

m1···m6, [n1

S γn2···n5]+6∂
[m1···m5

S γm6]n1···n5

+5∂
m1···m6q, [n1···n4

E An5]
q ,

(5.95)
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R7,1,1
(5) ↔ 1

(1,0,6)
5 -brane:

Rm1···m7,n,p

(5) ≡ ∂n
Dβ

m1···m7,p−7∂
[m1···m6|,p
S γ|m7]n+∂m1···m7,nq

E Ap
q ,

(5.96)

R7,3,1
(5) ↔ 1

(1,2,4)
5 -brane:

Rm1···m7,n1n2n3,p

(5) ≡ ∂n1n2n3
D βm1···m7,p−3∂

m1···m7,p[n1

S γn2n3]−7∂
[m1···m6|,p
S γ|m7]n1n2n3

+3∂
m1···m7, [n1n2

E βn3]p+∂m1···m7,n1n2n3q
E Ap

q ,

(5.97)

R7,5,1
(5) ↔ 1

(1,4,2)
5 -brane:

Rm1···m7,n1···n5,p

(5) ≡ ∂n1···n5
D βm1···m7,p−5∂

m1···m7,p[n1

S γn2···n5]−7∂
[m1···m6|,p
S γ|m7]n1···n5

+5∂
m1···m7, [n1···n4

E βn5]p+∂m1···m7,n1···n5q
E Ap

q ,

(5.98)

R7,7,1
(5) ↔ 1

(1,6,0)
5 -brane:

Rm1···m7,n1···n7,p

(5) ≡ ∂n1···n7
D βm1···m7,p−7∂

m1···m7,p[n1

S γn2···n7]+7∂
m1···m7, [n1···n6

E βn7]p ,
(5.99)

R7,4
(6) ↔ 1

(4,3)
6 -brane:

Rm1···m7,n1···n4

(6) ≡ 7!

5!2!
∂
[m1···m5

S βm6m7]n1···n4 −∂m1···m7
E γn1···n4

+
4!

2!2!
∂
m1···m7, [n1n2

E γn3n4]−∂m1···m7,n1···n4
E γ ,

(5.100)

R7,5,1
(6) ↔ 1

(1,4,2)
6 -brane:

Rm1···m7,n1···n5,p

(6) ≡ 7∂
[m1···m6|,p
S β|m7]n1···n5 −∂n1···n5

S βm1···m7,p− ∂̃m1···m7,n1···n5qAp
q

+5∂
m1···m7,p[n1

E γn2···n5]− 5!

3!2!
∂
m1···m7,p[n1n2n3

E γn4n5] ,

(5.101)

R7,6,2
(6) ↔ 1

(2,4,1)
6 -brane:

Rm1···m7,n1···n6,p1p2

(6) ≡ ∂m1···m7,p1p2
S βn1···n6 −2∂

n1···n6, [p1|
S βm1···m7, |p2]

+ ∂̃m1···m7,n1···n6βp1p2 +2 ∂̃m1···m7,n1···n6q, [p1Ap2]
q

−∂m1···m7,p1p2
E γn1···n6 +

6!

2!4!
∂
m1···m7,p1p2[n1n2

E γn3···n6]−∂m1···m7,n1···n7
E γp1p2 ,

(5.102)

R7,7,3
(6) ↔ 1

(3,4,0)
6 -brane:

Rm1···m7,n1···n7,p1p2p3

(6) ≡ 3∂
m1···m7, [p1p2|
S βn1···n7, |p3]+3 ∂̃n1···n7,m1···m7, [p1βp2p3]

−7∂
m1···m7,p1p2p3[n1

E γn2···n7]+7∂
n1···n7, [m1···m6

E γm7]p1p2p3 ,

(5.103)

R7,7,1
(7) ↔ 1

(1,6,0)
7 -brane:

Rm1···m7,n1···n7,p

(7) ≡ ∂n1···n7
E βm1···m7,p−7∂

n1···n7,p[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p+ ∂̃m1···m7,n1···n7,pγ ,

(5.104)

R7,7,3
(7) ↔ 1

(3,4,0)
7 -brane:

Rm1···m7,n1···n7,p1p2p3

(7) ≡ 3∂
n1···n7, [p1p2|
E βm1···m7, |p3]−7∂

n1···n7,p1p2p3[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p1p2p3 +3 ∂̃m1···m7,n1···n7, [p1γp2p3] ,

(5.105)
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R7,7,5
(7) ↔ 1

(5,2,0)
7 -brane:

Rm1···m7,n1···n7,p1···p5

(7) ≡ 5∂
n1···n7, [p1···p4|
E βm1···m7, |p5]−7∂

n1···n7,p1···p5[m1

E βm2···m7]

+7 ∂̃m1···m7, [n1···n6 γn7]p1···p5 +5 ∂̃m1···m7,n1···n7, [p1γp2···p5] ,

(5.106)

R7,7,7
(7) ↔ 1

(7,0,0)
7 -brane:

Rm1···m7,n1···n7,p1···p7

(7) ≡ 7∂
n1···n7, [p1···p6|
E βm1···m7, |p7]+7 ∂̃m1···m7,n1···n7, [p1γp2···p7] ,

(5.107)

R7,7,7
(8) ↔ 1

(7,0,0)
8 -brane:

Rm1···m7,n1···n7,p1···p7

(8) ≡ 7 ∂̃n1···n7, [p1···p6|βm1···m7, |p7]+7 ∂̃m1···m7,n1···n7, [p1βp2···p7] .
(5.108)

For an exotic brane that is self-dual under the S-duality, we can check that the associated

R-flux also behaves as a singlet. Under the S-duality, the scalar γ is mapped to the R-R

0-form −C0 , but since C0 is non-linear in terms of the dual fields, we have just truncated

C0 in the above expressions.

5.4.3 Locally non-geometric fluxes in M-theory/T 8

We can easily uplift the R-fluxes obtained in type IIA theory to M-theory. The results are

as follows:

R1,1 ↔ 8
(1,0)
12 -brane:

Ri, j ≡ ∂kiAj
k ,

(5.109)

R4,1 ↔ 5
(1,3)
15 -brane:

Ri1···i4, j ≡ 4!

2! 2!
∂[i1i2Ωi3i4]j + ∂i1···i4kAj

k ,
(5.110)

R6,2 ↔ 3
(2,4)
18 -brane:

Ri1···i6, j1j2 ≡ ∂j1j2Ωi1···i6 + 6 ∂[i1···i5 Ωi6]j1j2 − 2 ∂i1···i6k, [j1A
j2]
k ,

(5.111)

R7,4 ↔ 2
(4,3)
21 -brane:

Ri1···i7, j1···j4 ≡ 7!

5! 2!
∂[i1···i5Ωi6i7]j1···j4 + 4 ∂i1···i7, [j1 Ωj2j3j4] + 4 ∂i1···i7l, [j1j2j3A

j4]
l ,

(5.112)

R8,2,1 ↔ 1
(1,1,6)
21 -brane:

Ri1···i8, j1j2, k ≡ ∂j1j2Ωi1···i8, k + 8 ∂[i1···i7|, k Ω|i8]j1j2 − ∂i1···i8, j1j2l Ak
l ,

(5.113)

R7,7 ↔ 2
(7,0)
24 -brane:

Ri1···i7, j1···j7 ≡ 7 ∂j1···j7, [i1Ωi2···i7] − 7 ∂i1···i7k, [j1···j6A
j7]
k ,

(5.114)

R8,5,1 ↔ 1
(1,4,3)
24 -brane:

Ri1···i8, j1···j5, k ≡ ∂j1···j5Ωi2···i8, k +
5!

2! 3!
∂i1···i8, k[j1j2Ωj3j4j5]

+ 8 ∂[i1···i7|, kΩ|i8]j1···j5 + ∂i1···i8, j1···j5lAk
l ,

(5.115)

R8,7,2 ↔ 1
(2,5,1)
27 -brane:

Ri1···i8, j1···j7, k1k2 ≡ 7 ∂i1···i8, k1k2[j1Ωj2···j7] − 2 ∂j1···j7, [k1|Ωi1···i8, |k2]

+ 7 ∂i1···i8, [j1···j6Ωj7]k1k2 − 2 ∂i1···i8, j1···j7l, [k1A
k2]
l ,

(5.116)
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R8,8,4 ↔ 1
(4,4,0)
30 -brane:

Ri1···i8, j1···j8, k1···k4 ≡ −4 ∂j1···j8, [k1k2k3|Ωi1···i8, |k4]

+
8!

2! 4!
∂j1···j8, k1···k4[i1i2Ωi3···i8] + 4 ∂i1···i8, j1···j8, [k1Ωk2k3k4] ,

(5.117)

R8,8,7 ↔ 1
(7,1,0)
33 -brane:

Ri1···i8, j1···j8, k1···k7 ≡ 7 ∂j1···j8, [k1···k6|Ωi1···i8, |k7] + 7 ∂i1···i8, j1···j8, [k1Ωk2···k7] .
(5.118)

Note that the Am
M is equal to the −γm in type IIA theory while AM

m is a complicated

non-linear expression that will be related to R-R 1-form Cm.

By using the identities such as (5.82), the fluxes R4,1, R7,4, and R7,7 appear to be

consistent with the locally non-geometric fluxes Ri, jklm, Rijkl, and R of [89], respectively.

The flux R6,2 also may be related to Rij
k and Ri .

5.5 Mixed-symmetry potentials in EFT

In the previous subsection, we have introduced various R-fluxes on a heuristic basis. Similar

to the R-fluxes in DFT, we here consider the introduction of the dual field strength to the

R-flux in type II theory, R
m1···ma1 , ..., p1···pas
(n) . As we check in the next subsection, if we

define the dual field strength and its potential as

R
(n)
10,a1,...,as

≡ e2(1−n) φ̃ g̃m1···ma1 , n1···na1
· · · g̃p1···pas , q1···qas ∗̃10R

m1···ma1 , ..., p1···pas
(n)

⊗ dxn1···na1 ⊗ · · · ⊗ dxq1···qas ≡ dE
(n)
9,a1,...,as

,
(5.119)

the mixed-symmetry potential E
(n)
9,a1,...,as

in the exotic domain-wall background always has

the simple form E
(n)

0̄···8̄,··· ,···
= −mτ−1

2 similar to (5.36). This implies that under duality

transformations, the structure of the domain-wall background is not essentially changed and

only the name of the mixed-symmetry potential E
(n)
9,a1,...,as

are changed. The transformation

rule (at the linearized level) is perfectly consistent with the rule [16, 17],

E
(n)
· · · y, · · · y, · · · y
︸ ︷︷ ︸

p

Ty↔ E
(n)
· · · y, · · · y, · · · y
︸ ︷︷ ︸

n−p

. (5.120)

We thus expect that the dual potentials E
(n)
9,a1,...,as

defined above are precisely the U -dual

extensions of the familiar mixed-symmetry potentials, such as D9,3 (i.e. the electric dual

potential for the usual R-flux), which electrically couples to the exotic domain-wall.

In terms of M-theory, we can similarly define the dual field strength and the mixed

potentials as

R11,a1,...,as ≡ G̃i1···ia1 , j1···ja1
· · · G̃k1···kas , l1···las ∗̃11R

i1···ia1 , ..., k1···kas

⊗ dxj1···ja1 ⊗ · · · ⊗ dxl1···las ≡ dE10,a1,...,as .
(5.121)

The mixed-symmetry potential again has the same form E0̄···9̄,··· ,··· = −mτ−1
2 in the exotic

domain-wall background.
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In this manner, the locally non-geometric fluxes and the mixed-symmetry potentials

are in one-to-one correspondence, and moreover, they are associated with the domain-wall

branes.

Note that the conjectured electric-magnetic duality relation does not have a manifestly

duality symmetric form. It will be an important task to manifest the covariance similar to

the approach of [86].

5.6 Exotic-brane solutions in type II theory

Utilizing the technique of the duality rotations in EFT, we here provide a full list of the

type II domain-wall solutions in EFT. The structure of the solutions is quite similar to the

domain-wall solutions discussed above, and only a certain gauge field contains a winding-

coordinate dependence. Similar to the domain-wall solutions in DFT, we can check that

the non-vanishing component of the R-flux Ra1,...,as
(n) and the mixed-symmetry potential

E
(n)
9,a1,...,as

always have the same form,

R··· ,··· ,···
(n) = m, E

(n)

0̄···8̄,··· ,··· ,···
= −mτ−1

2 . (5.122)

5.6.1 E(4;3)-branes

By considering S-dual of the 532-brane or the 4
(1,3)
3 -brane, we obtain the backgrounds of

a T -duality family, E(4;3)-branes. The explicit forms of the dual fields and the locally

non-geometric fluxes are as follows:

534(12345,678) :
{
R3

(4), E
(4)
9,3

}

ds̃2 = τ2 dx
2
01···5 + dx2678 + τ22 dx

2
9 , e−2φ̃ = τ−2

2 ,






γ6̄7̄8̄ = myD , R6̄7̄8̄
(4) = ∂Dγ

6̄7̄8̄ = m (IIA)

γ6̄7̄ = myD
8 , R6̄7̄8̄

(4) = 3 ∂
[8̄
D γ6̄7̄] = m (IIB)

,

(5.123)

4
(1,3)
4 (1234,678,5) :

{
R4,1

(4), E
(4)
9,4,1

}

ds̃2 = τ2 dx
2
01···4 + τ−1

2 dx25 + dx2678 + τ22 dx
2
9 , e−2φ̃ = τ−1

2 ,






γ5̄6̄7̄ = myD
58 , R5̄6̄7̄8̄,5̄

(4) = 4!
2! 2! ∂

[5̄6̄
D γ7̄8̄]5̄ = m (IIA)

γ5̄6̄7̄8̄ = myD
5 , R5̄6̄7̄8̄,5̄

(4) = 4 ∂
[5̄|
D γ5̄|6̄7̄8̄] = m (IIB)

,

(5.124)

3
(2,3)
4 (123,678,45) :

{
R5,2

(4), E
(4)
9,5,2

}

ds̃2 = τ2 dx
2
0123 + τ−1

2 dx245 + dx2678 + τ22 dx
2
9 , e−2φ̃ = 1 ,







γ4̄5̄6̄7̄8̄ = myD
45 , R4̄5̄6̄7̄8̄,4̄5̄

(4) = ∂4̄5̄
D γ4̄5̄6̄7̄8̄ = m (IIA)

γ4̄5̄6̄7̄ = myD
458 , R4̄5̄6̄7̄8̄,4̄5̄

(4) = 5!
3! 2! ∂

[4̄5̄8̄
D γ6̄7̄]4̄5̄ = m (IIB)

,

(5.125)
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2
(3,3)
4 (12,678,345) :

{
R6,3

(4), E
(4)
9,6,3

}

ds̃2 = τ2 dx
2
012 + τ−1

2 dx2345 + dx2678 + τ22 dx
2
9 , e−2φ̃ = τ2 ,







γ3̄···7̄ = myD
3458 , R3̄4̄5̄6̄7̄8̄,3̄4̄5̄

(4) = 6!
4! 2! ∂

[3̄4̄5̄8̄
D γ6̄7̄]3̄4̄5̄ = m (IIA)

γ3̄···7̄8̄ = myD
345 , R3̄4̄5̄6̄7̄8̄,3̄4̄5̄

(4) = ∂3̄4̄5̄
D γ3̄4̄5̄6̄7̄8̄ = m (IIB)

,

(5.126)

1
(4,3)
4 (1,678,2345) :

{
R7,4

(4), E
(4)
9,7,4

}

ds̃2 = τ2 dx
2
01 + τ−1

2 dx22345 + dx2678 + τ22 dx
2
9 , e−2φ̃ = τ22 ,







γ2̄···7̄8̄ = myD
2345 , R2̄3̄4̄5̄6̄7̄8̄,2̄3̄4̄5̄

(4) = ∂2̄3̄4̄5̄
D γ2̄3̄4̄5̄6̄7̄8̄ = m (IIA)

γ2̄···7̄ = myD
23458 , R2̄3̄4̄5̄6̄7̄8̄,2̄3̄4̄5̄

(4) = 7!
5! 2! ∂

[2̄3̄4̄5̄8̄
D γ6̄7̄]2̄3̄4̄5̄ = m (IIB)

.

(5.127)

5.6.2 E(5;6)-branes

Similarly, by performing the S-duality in the 2
(1,5)
3 or the 2

(3,3)
4 solution, we obtain a T -

duality chain of the E(5;6)-branes. The dual fields and the locally non-geometric fluxes are

as follows:

265(12,345678) :
{
R6

(5), E
(5)
9,6

}

ds̃2= τ
3/2
2

(
dx2012+τ2dx

2
9

)
+τ

1/2
2 dx2345678 , e−2φ̃= τ

−5/2
2 ,

β3̄···8̄=myD , R3̄···8̄
(5) = ∂Dβ

3̄···8̄=m,

(5.128)

2
(1,5)
5 (12,45678,3) :

{
R6,1

(5), E
(5)
9,6,1

}

ds̃2= τ
3/2
2

(
dx2012+τ2dx

2
9

)
+τ

−1/2
2 dx23+τ

1/2
2 dx245678 , e−2φ̃= τ−2

2 ,

β3̄···8̄=myD
3 , R3̄···8̄,3̄

(5) = ∂3̄
Dβ

3̄···8̄=m,

(5.129)

2
(2,4)
5 (12,5678,34) :

{
R6,2

(5), E
(5)
9,6,2

}

ds̃2= τ
3/2
2 dx2012+τ

−1/2
2 dx234+τ

1/2
2 dx25678+τ

5/2
2 dx29 , e−2φ̃= τ

−3/2
2 ,

β3̄···8̄=myD
34 , R3̄···8̄,3̄4̄

(5) = ∂3̄4̄
D β3̄···8̄=m,

(5.130)

2
(3,3)
5 (12,678,345) :

{
R6,3

(5), E
(5)
9,6,3

}

ds̃2= τ
3/2
2 dx2012+τ

−1/2
2 dx2345+τ

1/2
2 dx2678+τ

5/2
2 dx29 , e−2φ̃= τ−1

2 ,

β3̄···8̄=myD
345 , R3̄···8̄,3̄4̄5̄

(5) = ∂3̄4̄5̄
D β3̄···8̄=m,

(5.131)

2
(4,2)
5 (12,78,3456) :

{
R6,4

(5), E
(5)
9,6,4

}

ds̃2= τ
3/2
2

(
dx2012+τ2dx

2
9

)
+τ

−1/2
2 dx23456+τ

1/2
2 dx278 , e−2φ̃= τ

−1/2
2 ,

β3̄···8̄=myD
3456 , R3̄···8̄,3̄···6̄

(5) = ∂3̄···6̄
D β3̄···8̄=m,

(5.132)

2
(5,1)
5 (12,8,34567) :

{
R6,5

(5), E
(5)
9,6,5

}

ds̃2= τ
3/2
2

(
dx2012+τ2dx

2
9

)
+τ

−1/2
2 dx234567+τ

1/2
2 dx28 , e−2φ̃=1 ,

β3̄···8̄=myD
34567 , R3̄···8̄,3̄···7̄

(5) = ∂3̄···7̄
D β3̄···8̄=m,

(5.133)
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2
(6,0)
5 (12, ,345678) :

{
R6,6

(5), E
(5)
9,6,6

}

ds̃2= τ
3/2
2

(
dx2012+τ2dx

2
9

)
+τ

−1/2
2 dx2345678 , e−2φ̃= τ

1/2
2 ,

β3̄···8̄=myD
345678 , R3̄···8̄,3̄···8̄

(5) = ∂3̄···8̄
D β3̄···8̄=m,

(5.134)

1
(1,0,6)
5 (1,345678, ,2) :

{
R7,1,1

(5) , E
(5)
9,7,1,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx2345678 , e−2φ̃= τ−1

2 ,

β2̄···8̄,2̄=myD
2 , R2̄···8̄,2̄,2̄

(5) = ∂2̄
Dβ

2̄···8̄,2̄=m,

(5.135)

1
(1,1,5)
5 (1,45678,3,2) :

{
R7,2,1

(5) , E
(5)
9,7,2,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx245678+τ

−1/2
2 dx23 , e−2φ̃= τ

−1/2
2 ,

β2̄···8̄,2̄=myD
23 , R2̄···8̄,2̄3̄,2̄

(5) = ∂2̄3̄
D β2̄···8̄,2̄=m,

(5.136)

1
(1,2,4)
5 (1,5678,34,2) :

{
R7,3,1

(5) , E
(5)
9,7,3,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx25678+τ

−1/2
2 dx234 , e−2φ̃=1 ,

β2̄···8̄,2̄=myD
234 , R2̄···8̄,2̄3̄4̄,2̄

(5) = ∂2̄3̄4̄
D β2̄···8̄,2̄=m,

(5.137)

1
(1,3,3)
5 (1,678,345,2) :

{
R7,4,1

(5) , E
(5)
9,7,4,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx2678+τ

−1/2
2 dx2345 , e−2φ̃= τ

1/2
2 ,

β2̄···8̄,2̄=myD
2345 , R2̄···8̄,2̄···5̄,2̄

(5) = ∂2̄···5̄
D β2̄···8̄,2̄=m,

(5.138)

1
(1,4,2)
5 (1,78,3456,2) :

{
R7,5,1

(5) , E
(5)
9,7,5,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx278+τ

−1/2
2 dx23456 , e−2φ̃= τ2 ,

β2̄···8̄,2̄=myD
23456 , R2̄···8̄,2̄···6̄,2̄

(5) = ∂2̄···6̄
D β2̄···8̄,2̄=m,

(5.139)

1
(1,5,1)
5 (1,8,34567,2) :

{
R7,6,1

(5) , E
(5)
9,7,6,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

1/2
2 dx28+τ

−1/2
2 dx234567 , e−2φ̃= τ

3/2
2 ,

β2̄···8̄,2̄=myD
234567 , R2̄···8̄,2̄···7̄,2̄

(5) = ∂2̄···7̄
D β2̄···8̄,2̄=m,

(5.140)

1
(1,6,0)
5 (1, ,345678,2) :

{
R7,7,1

(5) , E
(5)
9,7,7,1

}

ds̃2= τ
3/2
2

(
dx201+τ2dx

2
9

)
+τ

−3/2
2 dx22+τ

−1/2
2 dx2345678 , e−2φ̃= τ22 ,

β2̄···8̄,2̄=myD
2345678 , R2̄···8̄,2̄···8̄,2̄

(5) = ∂2̄···8̄
D β2̄···8̄,2̄=m.

(5.141)

5.6.3 E(6;4)-branes

We can repeat the duality transformations and obtain the following solutions,

1
(4,3)
6 (1,678,2345) :

{
R7,4

(6), E
(6)
9,7,4

}

ds̃2 = τ22 dx
2
01 + dx22345 + τ2 dx

2
678 + τ32 dx

2
9 , e−2φ̃ = τ−2

2 ,

β2̄···7̄ = myS
2···58 , R2̄···8̄,2̄···5̄

(6) =
7!

5! 2!
∂
[2̄···5̄8̄
S β6̄7̄]2̄···5̄ = m (IIA/IIB) ,

(5.142)
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1
(1,4,2)
6 (1,78,2345,6) :

{
R7,5,1

(6) , E
(6)
9,7,5,1

}

ds̃2 = τ22 dx
2
01 + dx22345 + τ−1

2 dx26 + τ2 dx
2
78 + τ32 dx

2
9 , e−2φ̃ = τ−1

2 ,

β2̄···7̄ = myS
2···68,6 , R2̄···8̄,2̄···6̄,6̄

(6) = 7 ∂
[2̄···7̄|,6̄
S β|8̄]2̄···6̄ = m (IIA/IIB) ,

(5.143)

1
(2,4,1)
6 (1,8,2345,67) :

{
R7,6,2

(6) , E
(6)
9,7,6,2

}

ds̃2 = τ22 dx
2
01 + dx22345 + τ−1

2 dx267 + τ2 dx
2
8 + τ32 dx

2
9 , e−2φ̃ = 1 ,

β2̄···7̄ = myS
2···8,67 , R2̄···8̄,2̄···7̄,6̄7̄

(6) = ∂2̄···8̄,6̄7̄
S β2̄···7̄ = m (IIA/IIB) ,

(5.144)

1
(3,4,0)
6 (1, ,2345,678) :

{
R7,7,3

(6) , E
(6)
9,7,7,3

}

ds̃2 = τ22 dx
2
01 + dx22345 + τ−1

2 dx2678 + τ32 dx
2
9 , e−2φ̃ = τ2 ,

β2̄···8̄,8̄ = myS
2···8,67 , R2̄···8̄,2̄···8̄,6̄7̄8̄

(6) = 3 ∂
2̄···8̄,[6̄7̄|
S β2̄···8̄,|8̄] = m (IIA/IIB) .

(5.145)

Note that the 1
(2,4,1)
6 -brane is self-dual under the S-duality transformation. Apparently, the

above 1
(2,4,1)
6 is not invariant under the S-duality transformation, but since the R-flux is in-

variant under the S-duality, the apparent non-invariance is due to a particular gauge choice.

The R-flux, or the magnetic charge of the 1
(2,4,1)
6 -brane is invariant under the S-duality.

5.6.4 E(7;7)-branes

We can further obtain the following family of solutions:

1
(7,0)
7 (1, ,2345678) :

{
R7,7

(7), E
(7)
9,7,7

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

1/2
2 dx22345678 , e−2φ̃ = τ

−5/2
2 ,

β3̄···8̄ = myE
2···8,2 , R2̄···8̄,2̄···8̄

(7) = 7 ∂
2̄···8̄,[2̄
E β3̄···8̄] = m,

(5.146)

1
(1,6,0)
7 (1, ,345678,2) :

{
R7,7,1

(7) , E
(7)
9,7,7,1

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx22 + τ

1/2
2 dx2345678 , e−2φ̃ = τ−2

2 ,

β2̄···8̄,2̄ = myE
2···8 , R2̄···8̄,2̄···8̄,2̄ = ∂2̄···8̄

E β2̄···8̄,2̄ = m,

(5.147)

1
(2,5,0)
7 (1, ,45678,23) :

{
R7,7,2

(7) , E
(7)
9,7,7,2

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx223 + τ

1/2
2 dx245678 , e−2φ̃ = τ

−3/2
2 ,

β2̄···8̄,2̄ = myE
2···8,3 , R2̄···8̄,2̄···8̄,2̄3̄ = 2 ∂

2̄···8̄,[3̄|
E β2̄···8̄,|2̄] = m,

(5.148)

1
(3,4,0)
7 (1, ,5678,234) :

{
R7,7,3

(7) , E
(7)
9,7,7,3

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx2234 + τ

1/2
2 dx25678 , e−2φ̃ = τ−1

2 ,

β2̄···8̄,2̄ = myE
2···8,34 , R2̄···8̄,2̄···8̄,2̄3̄4̄

(7) = 3 ∂
2̄···8̄,[3̄4̄|
E β2̄···8̄,|2̄] = m,

(5.149)

1
(4,3,0)
7 (1, ,678,2345) :

{
R7,7,4

(7) , E
(7)
9,7,7,4

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx22345 + τ

1/2
2 dx2678 , e−2φ̃ = τ

−1/2
2 ,

β2̄···8̄,2̄ = myE
2···8,345 , R2̄···8̄,2̄···8̄,2̄···5̄

(7) = 4 ∂
2̄···8̄,[3̄4̄5̄|
E β2̄···8̄,|2̄] = m,

(5.150)
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1
(5,2,0)
7 (1, ,78,23456) :

{
R7,7,5

(7) , E
(7)
9,7,7,5

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx223456 + τ

1/2
2 dx278 , e−2φ̃ = 1 ,

β2̄···8̄,2̄ = myE
2···8,3456 , R2̄···8̄,2̄···8̄,2̄···6̄

(7) = 5 ∂
2̄···8̄,[3̄···6̄|
E β2̄···8̄,|2̄] = m,

(5.151)

1
(6,1,0)
7 (1, ,8,234567) :

{
R7,7,6

(7) , E
(7)
9,7,7,6

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx2234567 + τ

1/2
2 dx28 , e−2φ̃ = τ

1/2
2 ,

β2̄···8̄,2̄ = myE
2···8,3···7 , R2̄···8̄,2̄···8̄,2̄···7̄

(7) = 6 ∂
2̄···8̄,[3̄···7̄|
E β2̄···8̄,|2̄] = m,

(5.152)

1
(7,0,0)
7 (1, , ,2345678) :

{
R7,7,7

(7) , E
(7)
9,7,7,7

}

ds̃2 = τ
5/2
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/2
2 dx22345678 , e−2φ̃ = τ2 ,

β2̄···8̄,2̄ = myE
2···8,3···8 , R2̄···8̄,2̄···8̄,2̄···8̄

(7) = 7 ∂
2̄···8̄,[3̄···8̄|
E β2̄···8̄,|2̄] = m.

(5.153)

5.6.5 E(8;7)-branes

Finally, by performing the S-duality in the 1
(7,0,0)
7 background, we obtain

1
(7,0,0)
8 (1, , ,2345678) :

{
R7,7,7

(8) , E
(8)
9,7,7,7

}

ds̃2 = τ32
(
dx201 + τ2 dx

2
9

)
+ dx22345678 , e−2φ̃ = τ−1

2 , (5.154)

β2̄···8̄,2̄ = mx̃2345678,345678 , R2̄···8̄,2̄···8̄,2̄···8̄
(8) = 7 ∂̃2̄···8̄,[3̄···8̄|β2̄···8̄,|2̄] = m (IIA/IIB) .

5.7 Exotic-brane solutions in M-theory

By uplifting the defect-brane solutions in type II theories to M-theory, we obtain the

following defect-brane solutions:

5312(12345,67z) :
{
S3
1 , E9,3

}

ds̃2 = τ
1/3
2

(
dx2012345 + τ2 dx

2
89

)
+ τ

−2/3
2 dx267z ,

Ω6̄7̄z̄ = mx8 , S8̄
6̄7̄z̄ = m,

(5.155)

265(12,34567z) :
{
S6
1 , E9,6

}

ds̃2 = τ
2/3
2

(
dx2012 + τ2 dx

2
89

)
+ τ

−1/3
2 dx234567z ,

Ω3̄···7̄z̄ = mx8 , S8̄
3̄···7̄z̄ = m,

(5.156)

0
(1,7)
18 (2· · ·7z,1) :

{
S8,1
1 , E9,8,1

}

ds̃2 = τ2
(
dx20 + τ2 dx

2
89

)
+ τ−1

2 dx21 + dx22···7z ,

Ω1···7z,1 = mx8 , S8̄
1···7z,1 = m,

(5.157)

where Si
j1···jp ≡ ∂iΩ

j1···jp and Si
j1···j8, k ≡ ∂iΩ

j1···j8, k . The direction z represents one of

the internal ones that is not necessary to be the M-theory direction, which we denote M.

If we define the dual field strengths,

S10,m̄1m̄2m̄3 ≡ G̃m̄1m̄2m̄3,n̄1n̄2n̄3 ∗̃11Sn̄1n̄2n̄3
1 ≡ dE9,m̄1m̄2m̄3 ,

S10,m̄1···m̄6 ≡ G̃m̄1···m̄6,n̄1···n̄6 ∗̃11Sn̄1···n̄6
1 ≡ dE9,m̄1···m̄6 ,

S10,m̄1···m̄7,m ≡ G̃m̄1···m̄7,n̄1···n̄7 G̃m̄n̄ ∗̃11Sn̄1···n̄7,n̄
1 ≡ dE9,m̄1···m̄7,m̄ ,

(5.158)
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we find that the non-vanishing component of the dual potentials again has the form

E0̄···8̄,··· ,··· ,··· = −mτ−1
2 . (5.159)

Similarly, we can obtain all of the “elementary” domain-wall-brane solutions in M-

theory as follows:

8
(1,0)
12 (1234567z, ,8) :

{
R1,1, E10,1,1

}

ds̃2 = τ
1/3
2

(
dx20···7z + τ2 dx

2
9

)
+ τ

−5/3
2

(
dx8 +my8z dx

z
)2

,

A8̄
z̄ ≡ G̃8̄z̄/G̃z̄z̄ = −my8z , R8̄, 8̄ = ∂ z̄8̄A8̄

z̄ = m,

(5.160)

5
(1,3)
15 (1234z,678,5) :

{
R4,1, E10,4,1

}

ds̃2 = τ
2/3
2

(
dx201234z + τ2 dx

2
9

)
+ τ

−4/3
2 dx25 + τ

−1/3
2 dx2678 ,

Ω5̄6̄7̄ = my58 , R5̄···8̄,5̄ =
4!

2! 2!
∂[56Ω78]5 = m,

(5.161)

3
(2,4)
18 (12z,5678,34) :

{
R6,2, E10,6,2

}

ds̃2 = τ2
(
dx2012z + τ2 dx

2
9

)
+ τ−1

2 dx234 + dx25···8 ,

Ω3···8 = my34 , R3̄···8̄,3̄4̄ = ∂3̄4̄Ω3̄···8̄ = m,

(5.162)

2
(4,3)
21 (12,78z,3456) :

{
R7,4, E10,7,4

}

ds̃2 = τ
4/3
2

(
dx2012 + τ2 dx

2
9

)
+ τ

−2/3
2 dx23456 + τ

1/3
2 dx278z ,

Ω3̄···8̄ = my3456z , R3̄···8̄z̄,3̄···6̄ =
7!

5! 2!
∂[3̄···7̄Ω8̄z̄]3̄···6̄ = m,

(5.163)

1
(1,1,6)
21 (1,45678z,3,2) :

{
R8,2,1, E10,8,2,1

}

ds̃2 = τ
4/3
2

(
dx201 + τ2 dx

2
9

)
+ τ

−5/3
2 dx22 + τ

−2/3
2 dx23 + τ

1/3
2 dx24···8z ,

Ω2̄···8̄z̄,2̄ = my23 , R2̄···8̄z̄,2̄3̄,2̄ = ∂2̄3̄Ω2̄···8̄z̄,2̄ = m,

(5.164)

2
(7,0)
24 (12, ,345678z) :

{
R7,7, E10,7,7

}

ds̃2 = τ
5/3
2

(
dx2012 + τ2 dx

2
9

)
+ τ

−1/3
2 dx2345678z ,

Ω3̄···8̄ = my3···8z,z , R3̄···8̄z̄,3̄···8̄z̄ = 7 ∂3̄···8̄z̄,[z̄Ω3̄···8̄] = m,

(5.165)

1
(1,4,3)
24 (1,678,345z,2) :

{
R8,5,1, E10,8,5,1

}

ds̃2 = τ
5/3
2

(
dx201 + τ2 dx

2
9

)
+ τ

−4/3
2 dx22 + τ

2/3
2 dx2678 + τ

−1/3
2 dx2345z ,

Ω2̄···8̄z̄,2̄ = my2345z , R2̄···8̄z̄,2̄3̄4̄5̄z̄,2̄ = ∂2̄3̄4̄5̄z̄Ω2̄···8̄z̄,2̄ = m,

(5.166)

1
(2,5,1)
27 (1,8,34567,2z) :

{
R8,7,2, E10,8,7,2

}

ds̃2 = τ22
(
dx201 + τ2 dx

2
9

)
+ τ−1

2 dx22z + dx23···7 + τ2 dx
2
8 ,

Ω2̄···8̄z̄,2̄ = my2···7z,z , R2̄···8̄z̄,2̄···7̄z̄,2̄z̄ = 2 ∂2̄···7̄z̄,[z̄|Ω2̄···8̄z̄,|2̄] = m,

(5.167)

1
(4,4,0)
30 (1, ,2345,678z) :

{
R8,8,4, E10,8,8,4

}

ds̃2 = τ
7/3
2

(
dx201 + τ2 dx

2
9

)
+ τ

1/3
2 dx22345 + τ

−2/3
2 dx2678z ,

Ω2̄···8̄z̄,8̄ = my2···8z,67z , R2̄···8̄z̄,2̄···8̄z̄,6̄7̄8̄z̄ = 4 ∂2̄···8̄z̄,[6̄7̄z̄|Ω2̄···8̄z̄,|8̄] = m,

(5.168)
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1
(7,1,0)
33 (1, ,8,234567z) :

{
R8,8,7, E10,8,8,7

}

ds̃2 = τ
8/3
2

(
dx201 + τ2 dx

2
9

)
+ τ

−1/3
2 dx22···7z + τ

2/3
2 dx28 ,

Ω2̄···8̄z̄,2̄ = my2···8z,34567z , R2̄···8̄z̄,2̄···8̄z̄,2̄···7̄z̄ = 7 ∂2̄···8̄z̄,[3̄···7̄z̄|Ω2̄···8̄z̄,|2̄] = m.

(5.169)

Again, by computing the dual mixed-symmetry potentials through (5.121), we obtain

E0̄···9̄,··· ,··· ,··· = −mτ−1
2 . (5.170)

5.8 Solutions for space-filling branes

We have completed the full list of the “elementary” domain-wall solutions. We can straight-

forwardly continue the duality rotations to obtain all of the space-filling branes given in

figures 1–20 or their M-theory extensions. Since there are too many space-filling branes in

EFT, we will just show several examples and leave the construction of the other branes as

future work.

Let us perform a formal T -duality along the x9-direction to the D8-brane solu-

tion (4.13). We then obtain the D9-brane solution,

ds2 = τ
− 1

2
2 dx201···9 , e−2Φ = τ32 , |A〉 =

(
τ1 γ

89 − τ−1
2 γ0···9

)
|0〉 , (5.171)

where τ1 = mx̃8 and τ2 = h0 +m |x̃9| . The field strength becomes

|F 〉 = γM ∂M |A〉 =
(
mγ9 + ∂̃9τ−1

2 γ0···8
)
|0〉 , (5.172)

and the background has the constant 1-form and 9-form field strengths

F1 = mdx9 , F1 = ∗10F9 . (5.173)

Similarly, we can obtain the solutions of the 542-brane as

ds2 = dx201···5 +
τ2
|τ |2 dx

2
67 + τ−1

2 dx289 , e−2Φ = τ2 |τ |2 , B2 = − τ1
|τ |2 dx

6 ∧ dx7 ,

(5.174)

where τ1 = mx̃8 and τ2 = h0 +m |x̃9| . This is also a solution of DFT.

As the last example, let us consider the 2
(1,0,0,6)
5 -brane appearing in figure 8. By

performing a T -duality along the x9-direction in the 265(12, 345678) solution, we obtain the

2
(1,0,0,6)
5 (12, 345678, 9) solution,

ds̃2 = τ
3/2
2 dx2012 + τ

1/2
2 dx2345678 + τ

−5/2
2 dx29 , e−2φ̃ = 1 , β3̄···9̄, 9̄ = myD

9 , (5.175)

where τ2 = h0 +m |x̃9| .
We can easily construct the space-filling solutions, but their interpretation is not clear.

For example, the D9-brane background is expected to be a flat spacetime, but the above so-

lution contains non-trivial winding-coordinate dependence. Recently, a certain limit which

removes the winding-coordinate dependence was discussed in [106], where the harmonic

function becomes a constant. This may be useful to relate the above solutions to the con-

ventional space-filling solutions such as the D9 solution. It is also not clear how to define

the suitable fluxes in these backgrounds. In this paper, we will not address any further

issues about the backgrounds of the space-filling branes.
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5.9 Projection condition for Killing spinors

As it is well known, actions of the standard type II branes, such as the D-branes, are

invariant under the half of the spacetime supersymmetry, which is generated by the 32-

component Majorana-Weyl Killing spinors ε1 and ε2 satisfying

Γ11 ε1 = ε1 , Γ11 ε2 = ∓ε2 (IIA/IIB) . (5.176)

The supersymmetries preseved by a type II brane can be characterized by a certain pro-

jection operator O acting on the Killing spinors. Here, for convenience, we introduce the

Weyl basis

Γ11 ≡
(

1 0

0 −1

)

, Γm ≡
(

0 γm

γm 0

)

, (5.177)

and the 16-component Majorana-Weyl Killing spinors ǫ1 and ǫ1 , and define matrices

1l ≡
(

1 0

0 1

)

, σ1 ≡
(

1 0

0 1

)

, σ2 ≡
(

0 −i

i 0

)

, σ3 ≡
(

1 0

0 −1

)

, (5.178)

which act on ǫ ≡ (ǫ1, ǫ2)
T . Further, we consider a probe type II brane in a flat target

spacetime. Then, the projection condition for each type II brane is expressed as follows

(see [125] for a textbook):

P(1) :
(
1∓ γ01 1l

)
ǫ = 0 , F1(1) :

(
1∓ γ01 σ3

)
ǫ = 0 ,

NS5(12345) :
(
1∓ γ012345ONS5

)
ǫ = 0

[
ONS5 ≡ 1l (IIA) , ONS5 ≡ σ3 (IIB)

]
,

Dp(1 · · · p) :
(
1∓ γ01···pODp

)
ǫ = 0 , ODp ≡

{

σ1 : p = 1, 2, 5, 6, 9,

iσ2 : p = 3, 4, 7, 8,
(5.179)

In our convention, under a T -duality transformation along the y-direction, the spinor ε1
is invariant while ε2 is transformed as ε2 → Γy ε2 . The S-duality rule has been studied

in [126, 127] and it mixes ǫ1 and ǫ2 as

ǫ → S ǫ , S ≡ 1√
2

(
1l− i σ2

)
. (5.180)

By using these rules, the projection conditions for many exotic branes were studied in [128]

(see also [7] for the conditions for the exotic defect-brane backgrounds in M-theory).

Here, we extend the analysis of [128] to all of the “elementary” exotic branes. We

will not show the detailed computation, but the result is very simple. The projection

condition for an exotic brane that electrically couples to the mixed-symmetry potential

E
(n)
m1···ma1 , ··· , n1···nas

is given by

(
1∓ γm1···ma1 · · · γn1···nas O

)
ǫ = 0 , (5.181)

where O is a 2×2 matrix attached to each brane in figures 1–20. Note that two O connected

with a dashed line in figures 1–20 are different while those connected with a solid line are

the same.

– 55 –



J
H
E
P
0
9
(
2
0
1
8
)
0
7
2

We can easily uplift the type IIA results to M-theory. For a brane that electrically

couples to a mixed-symmetry potential Ei1···ia1 ,··· , j1···jas
, the projection rule becomes

(
132 ∓ Γi1···ia1 · · ·Γj1···jas

)
ε = 0 (ε ≡ ε1 + ε2) . (5.182)

The above discussion is about the supersymmetry preserved by probe-brane actions,

but the same projection condition (with a small modification by the background super-

gravity fields) also will apply to the Killing spinors in the EFT solutions for the exotic

branes. In this paper, we do not check the Killing spinor equations in our EFT solutions

explicitly, and leave the detailed analysis for future work.

6 Exotic brane solutions in deformed supergravities

In the previous sections, we have constructed various exotic-brane solutions in DFT/EFT.

Unlike the case of the standard branes or the defect branes, the obtained solutions explicitly

depend on the dual winding coordinates. In this section, we explain that the winding-

coordinate dependence in the domain-wall solutions can be removed, allowing us to go back

to the standard description. The price to pay is the appearing of massive deformations,

together with isometry directions in the supergravity theory.

For example, in the literature, the D8-brane background [75] is known as the solution of

the massive type IIA supergravity. In this example, the deformation parameter is nothing

but the R-R 0-form potential F0. Once we include the winding-coordinate dependence of

the D8 solution (4.13) into the mass parameter F0, the solution (4.13) without the R-R

potential

ds2 = τ
−1/2
2

(
dx201···8 + τ2 dx

2
9

)
, e−2Φ = τ

5/2
2 , (6.1)

becomes the solution of the massive IIA supergravity. Since the winding-coordinate de-

pendence has disappeared, we no longer need the DFT formulation.

A similar story can also be applied to other domain-wall solutions we have obtained.

In this section, we explain how the linear winding-coordinate dependence provides the

equations of motion of the deformed supergravities and discuss the domain-wall solutions

in such deformed supergravities. As particular examples, the known domain-wall solutions,

KK8A, KK9M and “Unknown (6,2,1)” solutions in [6, 76], are reproduced.

Despite in this section we provide several examples of deformed supergravities, we

leave for a future work the problem of systematically relate exotic branes and gaugings.

6.1 Generalized type II supergravity

In order to get a feeling of the deformed supergravity, it is instructive to review the deriva-

tion of GSE [69, 70] from DFT [71, 72] (see also [73] for a derivation from EFT).

6.1.1 Bosonic sector of type II DFT

The equations of motion of the type II DFT are given as

RMN + EMN = 0 , R = 0 , /∂K |F 〉 = 0 , (6.2)
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where RMN and R are the generalized Ricci tensor/scalar, and K contains the informa-

tion of HMN , and the energy-momentum tensor EMN is defined in [44, 45] (see also for

other conventions). If we parameterize the generalized metric HMN in terms of the con-

ventional fields (gmn, Bmn), and remove the dependence on the winding coordinates x̃m,

the equations of motion of DFT reproduce those of the conventional supergravity.

On the other hand, in order to derive the GSE from DFT, we suppose that the back-

ground admits an isometry. In this case, we can choose a set of ten-dimensional coordinates

(xm) = (xi, xz) such that all fields are independent of xz . Since the SC allows for one

more coordinate dependence, let us introduce a linear x̃z-dependence into the dilaton

d(x) = d(xi) + Im x̃m , Φ(x) = Φ(xi) + Im x̃m , Im ≡ c δmz (c : constant) . (6.3)

Here, we have decomposed the dilaton field into two parts, and in the following, we inter-

pret the xi-dependent fields d(xi) and Φ(xi) as “physical” dilatons whereas the winding-

coordinate-dependent part Im is a (non-dynamical) Killing vector. Regarding the R-R

field, since the field strength F takes the form

F = e−Φ e−B2∧ F̂ , (6.4)

from (6.3), we suppose that the R-R fields have the following winding-coordinate depen-

dence:

F (x) = e−Im x̃m F(xi) . (6.5)

Since Im trivially satisfies the Killing properties

£Igmn = 0 , £IBmn = 0 , £IΦ = 0 , £IF = 0 , (6.6)

we are essentially considering a nine-dimensional background.

For the “nine-dimensional” supergravity fields (gmn, Bmn, Φ, F), the equations of mo-

tion of DFT take the following form:

Rmn−
1

4
HmpqHn

pq+2Dm∂nΦ+DmUn+DnUm = Tmn ,

1

2
DkHkmn−∂kΦHk

mn−UkHkmn+DmIn−DnIm = Kmn ,

R+4Dm∂mΦ−4 |∂Φ|2− 1

2
|H3|2−4

(
ImIm+UmUm+2Um∂mΦ−DmUm

)
= 0 , (6.7)

dF̂−H3∧ F̂ = 0 ,

where Um ≡ Bmn I
n , F̂ ≡ eB2∧ F , and

Tmn ≡ 1

4
e2Φ

∑

p

[
1

(p− 1)!
F̂(m

k1···kp−1 F̂n)k1···kp−1
− 1

2
gmn |F̂p|2

]

,

Kmn ≡ 1

4
e2Φ

∑

p

1

(p− 2)!
F̂k1···kp−2 F̂mn

k1···kp−2 .

(6.8)

These are precisely the generalized type II supergravity equations of motion [69, 70]. When

the winding-coordinate dependence vanishes (i.e. Im = 0), they have the same form as the

usual supergravity equations of motion.
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In this manner, we can consider a slight modification of the supergravity equations of

motion by assuming the existence of an isometry in the doubled space. Since DFT is defined

well for arbitrary solutions of the SC, we can systematically determine the modifications

of, for example, the gauge transformation and the duality transformation rules (see [69, 72]

for the I-modified T -duality transformation rule).

6.1.2 Another viewpoint in terms of the Scherk-Schwarz reduction

As discussed in the addendum of [71], the ansatz for the dilaton (6.3) can be understood

as the Scherk-Schwarz ansatz in DFT [129–133] (see also [73] where the derivation of GSE

from a Scherk-Schwarz compactification of EFT was originally discussed). An ansatz

HMN (x, y) = (UT)M
K(y) ĤKL(x)U

L
N (y) , d(x, y) = d̂(x) + λ(y) , (6.9)

generally introduces gaugings

fMNP ≡ 3 ηS[M (U−1)QN (U−1)RP ] ∂QU
S
R , fM ≡ ∂N (U−1)NM − 2 (U−1)NM ∂Nλ ,

(6.10)

which are constrained to satisfy the consistency constraints such as

fM
NP ∂M = 0 , fM ∂M = 0 , (6.11)

which are closely related to the SC. For the ansatz (6.3) and a constant twist matrix U ,

we obtain a constant flux fM which satisfies the consistency conditions. According to [73],

this corresponds to a nine-dimensional deformed supergravity generated by the gauging of

the trombone symmetry and a Cartan subgroup of SL(2) in type IIB [134, 135]. In this

sense, the introduction of the linear winding-coordinate dependence can be regarded as a

systematic way to introduce constant gaugings satisfying the consistency constraints.

6.2 532 solution in a deformed type II supergravity

Let us next consider the 532(12345, 678) solution (4.21). In this case, the linear winding-

coordinate dependence is contained in the β-field β67 = mx̃8 . For generality, we introduce

an arbitrary constant c and decompose the β-field as

β = mx̃8 ∂6 ∧ ∂7 = c ∂6 ∧ ∂7 +
1

2
Umn ∂m ∧ ∂n , Umn = 2

(
mx̃8 − c

)
δ
[m
6 δ

n]
7 . (6.12)

We then regard the Umn as a part of a β-twist matrix,

HMN =
(
UT ĤU

)

MN
, UM

N ≡
(

δmn −Umn

0 δnm

)

, (6.13)

in the sense of the Scherk-Schwarz ansatz (6.9) (see [136] for a recent study on this twist).

As we infer from their definition, the dual fields associated with the untwisted (or

physical) generalized metric ĤMN are

ds2 = dx201···5 + τ−1
2 dx2678 + τ2 dx

2
9 , e−2φ̃ = τ22 , β67 = c , (6.14)
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or equivalently, in terms of the conventional fields [see (4.17)],

ds2 = dx201···5 +
τ2

c2 + τ22
dx267 + τ−1

2 dx28 + τ2 dx
2
9 ,

e−2Φ = c2 + τ22 , B2 = − c

c2 + τ22
dx6 ∧ dx7 .

(6.15)

Since the winding-coordinate dependence is absorbed into the twist matrix, the solution

no longer depends on the winding coordinates. In particular, when we choose c = 0 , the

solution is simplified as

ds2 = dx201···5 + τ−1
2 dx2678 + τ2 dx

2
9 , e−2Φ = τ22 , (6.16)

where the asymmetry between {6, 7} and 8 disappears.

According to the gauged DFT [129–133], the twist matrix changes the NS-NS part of

the DFT Lagrangian as

LDFT ≡ e−2d R → LGDFT ≡ e−2d
(
R̂+Rf

)
, (6.17)

Rf ≡ −1

2
fMNP ĤNQ ĤPR ∂QĤM

R − 1

12
fMNP fQRS ĤMQ ĤNR ĤPS

+
1

4
fMNP fQRS ηMQ ηNR ĤPS , (6.18)

where R̂ is the generalized Ricci scalar for ĤMN and fMNP is a gauging defined as

fMNP ≡ 3 ηS[M (U−1)QN (U−1)RP ] ∂QU
S
R . (6.19)

In our present example (6.13), the non-vanishing component of the gauging is the R-flux,

f678 = R678 = m. (6.20)

Then, the modification of the Lagrangian Rf becomes [136]

Rf = −3m Ĥ[6
n Ĥ7|

M ∂nĤ|8]M − m2

12
det Ĥij (i, j = 6, 7, 8) . (6.21)

An important point is that, the consistency of the GDFT (6.11) requires that the untwisted

field and the dilaton should satisfy the condition

fMNP ∂P = 0 ⇒ Rmnp ∂p = 0 . (6.22)

This shows that, similar to the GSE, the R-flux-deformed supergravity requires the back-

grounds to admit three Killing vectors. In other words, we are essentially describing a

seven-dimensional supergravity.

In this manner, we have transformed the DFT solution (4.21) into a winding-

coordinate-independent solution (6.16) of the deformed supergravity. In principle, we can

repeat this procedure to all of the “elementary” domain-wall solutions in DFT/EFT and

obtain various (effectively lower-dimensional) supergravities that are deformed by the lo-

cally non-geometric fluxes. In the following, we will just consider several examples, without

calculating the action nor the equations of motion of the deformed supergravities explicitly.
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6.3 D8 solutions in the Romans massive type IIA supergravity

Before considering further new examples, let us briefly go back to the well-studied D8-

brane solution (4.13). In this case, the R-R 1-form potential A1 includes a linear winding-

coordinate dependence,

A1(x) = Â1(x
i) +mx̃8 dx

8 , (6.23)

where Â1(x
i) does not include the x8 dependence that vanishes in the D8-brane solu-

tion (4.13). As it was studied in [67], in such case, the R-R 0-form field strength becomes

constant and the equations of motion of DFT reproduce those of the Romans massive IIA

supergravity [66]. The modifications of the gauge symmetry and T -duality transformation

rules can be reproduced from those of DFT by considering the ansatz (6.23). Once the

winding-coordinate dependence is absorbed into the mass parameter, or the deformation

of the supergravity, the D8-brane solution (4.13) without R-R fields

ds2 = τ
−1/2
2

(
dx201···8 + τ2 dx

2
9

)
, e−2Φ = τ

5/2
2 , (6.24)

becomes a solution of the Romans massive type IIA supergravity. Namely, the winding-

coordinate-dependent solution becomes a winding-coordinate-independent solution of the

modified supergravity.

As the R-R field depends on a winding coordinate, for the SC to be satisfied, one might

expect that it is necessary to require the existence of an isometry direction. However, in

this case, as it was shown in [67], by relaxing the strong constraint to the weak constraint,

we can formulate the massive IIA supergravity in ten dimensions, rather than 9. This

may be understood as follows. We expect that the locally non-geometric R-fluxes will

always play the role of the gaugings and the consistency conditions will require conditions

like R···m ∂m = 0 . However, in the special case of the D8-brane, the corresponding R-

flux (i.e. the R-R 0-form field strength F0) does not have any index and we cannot write a

condition for the derivative. In terms of M-theory, a D8-brane is uplifted to the 8(1,0)-brane

(also known as the KK9M- or the M9-brane) and the associated R-flux is Ri,i . Therefore,

in this case, we may need to require a condition Ri,i ∂i = 0 . This consideration is consistent

with the fact that the eleven-dimensional uplift of the massive IIA supergravity depend on

a certain Killing vector in the eleven dimensions [137].

6.4 KK8A and M9 solutions

Let us consider the solution of the 7
(1,0)
3 (1 · · · 7, , 8)-brane (5.27), which is also known as

the KK8A-brane. At the same time, we consider its eleven-dimensional uplift, the solu-

tion of the 8
(1,0)
12 (1234567z, , 8)-brane (5.160). In this case, the linear winding-coordinate

dependence is included in γ8 = mx̃8 , or in terms of M-theory, A8 = G̃8M/G̃MM = −my8M .

We thus consider the following twist for the generalized metric in EFT:

MIJ =
(
UT M̂U

)

IJ
, U ≡ e−(my8M−c)K8

M
, (6.25)

where Ki
j is a matrix representation of the GL(n) generator given in (B.2). Substituting

this ansatz into the EFT action or the equations of motion, we obtain a deformed type IIA

supergravity, which will effectively be nine-dimensional due to Rm,m
(3) ∂m = 0 .
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Since the winding-coordinate dependence has been absorbed into the twist matrix, we

obtain the following solution of the deformed type IIA supergravity,

ds̃2 = τ
1/2
2

(
dx201···p + τ2 dx

2
9

)
+ τ

−3/2
2 dx28 ,

e−2φ̃ = τ
−1/2
2 , γ8 = c .

(6.26)

By translating the dual fields into the conventional fields (recall (5.23)), we obtain

ds2 =

(
c2 + τ22

τ2

)1/2
(
dx201···7 + τ2 dx

2
9

)
+ τ−1

2

(
c2 + τ22

τ2

)−1/2

dx28 ,

e−2Φ = (c2 + τ22 )
−3/2 τ

5
2
2 , C0̄···8̄ = −c2 + τ22

τ2
, C8̄ = − c

c2 + τ22
.

(6.27)

This is precisely the KK8A solution given in eq. (6.20) of [6]. By choosing c = 0 , we

obtain the KK8A solution originally obtained in [76], which is not a solution of any type II

supergravity, but instead of a deformed ten-dimensional supergravity (which is not Romans’

supergravity).

On the other hand, the 8
(1,0)
12 (1234567z, , 8) solution becomes a solution of the deformed

eleven-dimensional supergravity,

ds̃2 = τ
1/3
2

(
dx20···7z + τ2 dx

2
9

)
+ τ

−5/3
2

(
dx28 + c dx2z

)
. (6.28)

By choosing c = 0 , the conventional metric becomes

ds2 = τ
1/3
2

(
dx20···7z + τ2 dx

2
9

)
+ τ

−5/3
2 dx28 , (6.29)

which is the KK9M solution obtained in [76, 138].

Note that if we consider the T -dual of the 7
(1,0)
3 (1 · · · 7, , 8) solution along the x8-

direction, we obtain 73(1 · · · 7) solution, which is a solution of the undeformed type IIB

supergravity. On the other hand, if we consider the background of the (p, q)-7(1 · · · 7) brane
and perform the T -duality along the x8-direction, we obtain a solution corresponding to

the bound state of the 81(1 · · · 8)-brane and the 7
(1,0)
3 (1 · · · 7, , 8)-brane. This is a solution

of a deformed type IIA supergravity. The eleven-dimensional uplift corresponds to the

bound state of the 8
(1,0)
12 (1 · · · 8, ,M)-brane and the 8

(1,0)
12 (1 · · · 7M, , 8)-brane, and the corre-

sponding background will be a solution of the SL(2)-covariant eleven-dimensional massive

supergravity [76].

6.5 6
(1,1)
3 solution in a deformed IIB supergravity

Finally, let us consider the 6
(1,1)
3 (1 · · · 6, 7, 8) solution of (5.27). In this case, the winding-

coordinate dependence is contained in γ78 = mx̃8 . The corresponding twist is

MIJ =
(
UT M̂U

)

IJ
, U ≡ e−(mx̃8−c)R2

78 , (6.30)

where the matrix Rα
mn can be found in (B.13). In this case, the deformed supergravity will

effectively be eight dimensional since the 6
(1,1)
3 -brane requires two isometry directions or

the R-flux contains two antisymmetric indices.
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By absorbing the winding-coordinates into the twist matrix and choosing c = 0 , the

solution (5.23) reduces to a purely gravitational solution,

ds2 = τ
1/2
2

(
dx201···6 + τ2 dx

2
9

)
+ τ

−1/2
2 dx27 + τ

−3/2
2 dx28 , e−2Φ = 1 . (6.31)

This is precisely a solution corresponding to the “Unknown brane (6,2,1)” obtained in

eq. (6.9) of [76].
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A Conventions

We define the totally antisymmetric delta functions as

δ
m1···mp
n1···np ≡ δ

[m1

[n1
· · · δmp]

np]
, (A.1)

where the antisymmetrization is defined as

A[m1···mn] ≡
1

n!

(
Am1···mn ± permutations

)
. (A.2)

We also define the antisymmetrized metric as

Gm1···mp, n1···np ≡ Gm1r1 · · ·Gmprp δ
r1···rp
n1···np . (A.3)

The Hodge dual operator is defined as

(∗αq)m1···mp+1−q =
1

q!
εn1···nq

m1···mp+1−q αn1···nq , ddx = dx1 ∧ · · · ∧ dxd ,

∗(dσm1 ∧ · · · ∧ dσmq) =
1

(p+ 1− q)!
εm1···mq

n1···np+1−q dx
n1 ∧ · · · ∧ dxnp+1−q ,

ε1···d = − 1√
−G

, ε1···d =
√
−G .

(A.4)

B Parameterizations of the generalized metric in EFT

In this appendix, we review the parameterization of the generalized metric in En(n) EFT

(n ≤ 7). We follow the convention used in [120].
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B.1 M-theory parameterization

When we consider M-theory, we can parameterize the generalized metric MIJ in terms of

the conventional supergravity fields Gij , Ai1i2i3 , and Ai1···i6 as follows [55] (see [54, 139, 140]

for earlier works):

MIJ = (LT
6 LT

3 M̂L3 L6)IJ , L3 = e
1
3!

Ri1i2i3 Ai1i2i3 , L6 = e
1
6!

Ri1···i6 Ai1···i6 ,

M̂ ≡ |G|
1

d−2










Gij 0 0 0

0 Gi1i2, j1j2 0 0

0 0 Gi1···i5, j1···j5 0

0 0 0 Gi1···i7, j1···j7 Gij










, |G| ≡ det(Gij) ,

with eA ≡ I +
∞∑

n=1

1

n!
An , I ≡





δij 0 0 0

0 δ
j1j2
i1i2

0 0

0 0 δ
j1···j5
i1···i5

0

0 0 0 δ
j1···j7
i1···i7

δ
j
i



,

(B.1)

where d ≡ 11−n is the dimension of the external space and we have introduced the matrix

representations of the En(n) generators {Kk1
k2 , Rk1k2k3 , R

k1k2k3 , Rk1···k6 , R
k1···k6} as

(Kk1
k2)IJ ≡









δik1
δk2
j 0 0 0

0 −
δ
k2l

i1i2
δ
j1j2
k1l√

2! 2!
0 0

0 0 −
δ
k2l1···l4
i1···i5

δ
j1···j5
k1l1···l4

4!
√
5! 5!

0

0 0 0 −
1
6!

δ
k2l1···l6
i1···i7

δ
j1···j7
k1l1···l6

δ
j
i
+δ

j1···j7
i1···i7

δ
k2
i

δ
j
k1√

7! 7!









+
δk2k1

9− n
δIJ , (B.2)

(Rk1k2k3)
I
J ≡









0 −
δ
ij1j2
k1k2k3√

2!
0 0

0 0
δ
j1···j5
i1i2k1k2k3√

2! 5!
0

0 0 0
δ
j1···j7
i1···i5l1l2

δ
l1l2j

k1k2k3

2!
√
5! 7!

0 0 0 0









, (B.3)

(Rk1k2k3)IJ ≡









0 0 0 0

−
δ
k1k2k3
i1i2j√

2!
0 0 0

0
δ
j1j2k1k2k3
i1···i5√

2! 5!
0 0

0 0
δ
j1···j5l1l2
i1···i7

δ
k1k2k3
l1l2i

2!
√
5! 7!

0









, (B.4)

(Rk1···k6)
I
J ≡








0 0
δ
j1···j5i

k1···k6√
5!

0

0 0 0
δ
j1···j7
i1i2l1···l5

δ
l1···l5j

k1···k6

5!
√
2! 7!

0 0 0 0

0 0 0 0







, (B.5)

(Rk1···k6)IJ ≡








0 0 0 0

0 0 0 0

δ
k1···k6
i1···i5j√

5!
0 0 0

0
δ
j1j2l1···l5
i1···i7

δ
k1···k6
l1···l5i

5!
√
2! 7!

0 0







, (B.6)
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where δ
j1···jp
i1···ip

≡ p! δ
j1···jp
i1···ip

. If we consider the E8(8) EFT, the generalized metric additionally

contains the dual graviton Ai1···i8, j [141] although the explicit parameterization in our

convention is not determined yet.

We can also parameterize the same MIJ in terms of the dual fields, G̃ij , Ω
i1i2i3 , and

Ωi1···i6 as follows [121] (see [142, 143] for earlier results in SL(5) EFT):

MIJ = (L̃T
6 L̃T

3 M̃ L̃3 L̃6)IJ , L̃3 ≡ e
1
3!

Ri1i2i3
Ωl1l2l3

, L̃6 ≡ e
1
6!

Ri1···i6 Ωi1···i6
,

M̃ ≡ |G̃|
1

d−2










G̃ij 0 0 0

0 G̃i1i2, j1j2 0 0

0 0 G̃i1···i5, j1···j5 0

0 0 0 G̃i1···i7, j1···j7 G̃ij










, |G̃| ≡ det(G̃ij) .
(B.7)

This is called the non-geometric parameterization.

Similar to the identification in DFT (4.18), by comparing the two parameteriza-

tions (B.1) and (B.7) as [121, 142, 143]

M(M)

IJ = M(M, non-geometric)

IJ , (B.8)

we can in principle express the dual fields (G̃ij , Ω
i1i2i3 , Ωi1···i6) in terms of the conventional

fields (Gij , Ai1i2i3 , Ai1···i6).

B.2 Type IIB parameterization

When we consider type IIB theory, we parameterize the generalized metric as [121, 144]

(see also [87] for the case of SL(5) EFT)

MIJ = (LT6 LT4 LT2 M̂ L2 L4 L6)IJ , |gE| ≡ det(gE
mn) ,

M̂ ≡ |gE|
1

d−2








gEmn 0 0 0 0

0 mαβ gmn
E 0 0 0

0 0 gm1m2m3, n1n2n3
E 0 0

0 0 0 mαβ gm1···m5, n1···n5
E 0

0 0 0 0 gm1···m6, n1···n6
E gmn

E








,

L2 ≡ e
1
2!

R
p1p2
γ Bγ

p1p2 , L4 ≡ e
1
4!

Rp1···p4 Dp1···p4 , L6 ≡ e
1
6!

R
p1···p6
γ Dγ

p1···p6 ,

with eA ≡ I+
∞∑

n=1

1

n!
An , I ≡






δmn 0 0 0 0

0 δαβ δnm 0 0 0

0 0 δ
n1n2n3
m1m2m3

0 0

0 0 0 δαβ δ
n1···n5
m1···m5

0

0 0 0 0 δ
n1···n6
m1···m6

δnm




 ,

(B.9)

where we introduced the type IIB parameterizations of the En(n) generators as

(Kp1
p2)IJ ≡








δmp1δ
p2
n 0 0 0

0 −δ
p2q
m δnp1qδ

α
β 0 0

0 0 −
δ
p2q1q2
m1m2m3

δ
n1n2n3
p1q1q2

δαβ

2!
√
3! 3!

0

0 0 0 −
1
5!

δ
p2q1···q5
m1···m6

δ
n1···n6
p1q1···q5

δnm+δ
n1···n6
m1···m6

δ
p2
m δnp1√

6! 6!








+
δp2p1

9− n
δIJ , (B.10)
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(Rγδ)
I
J ≡







0 0 0 0

0 −δβ
(γ

ǫδ)α δnm 0 0

0 0 −δβ
(γ

ǫδ)α δn1···n5
m1···m5

0

0 0 0 0






, (B.11)

(Rp1p2
γ )IJ ≡










0 0 0 0 0

δαγ δ
p1p2
mn 0 0 0 0

0
ǫβγ δ

np1p2
m1m2m3√

3!
0 0 0

0 0
δαγ δ

n1n2n3p1p2
m1···m5√

3! 5!
0 0

0 0 0 −
2 ǫβγ δ

n1···n5[p1
m1···m6

δ
p2]
m√

5! 6!
0










, (B.12)

(Rγ
p1p2)

I
J ≡










0 δγ
β
δnm
p1p2

0 0 0

0 0
ǫαγ

δ
n1n2n3
mp1p2√
3!

0 0

0 0 0
δ
γ
β

δ
m1···m5
n1n2n3p1p2√

3! 5!
0

0 0 0 0 −
2 ǫαγ

δ
n1···n6
m1···m5[p1

δn
p2]

√
5! 6!

0 0 0 0 0










, (B.13)

(Rp1···p4)IJ ≡










0 0 0 0 0

0 0 0 0 0
δ
p1···p4
m1m2m3n√

3!
0 0 0 0

0 −
δαβ δ

np1···p4
m1···m5√

5!
0 0 0

0 0 −
4 δ

n1n2n3[p1p2p3
m1···m6

δ
p4]
m√

3! 6!
0 0










, (B.14)

(Rp1···p4)
I
J ≡










0 0
δ
n1n2n3m
p1···p4√

3!
0 0

0 0 0 −
δαβ δ

n1···n5
mp1···p4√

5!
0

0 0 0 0 −
4 δ

n1···n6
m1m2m3[p1p2p3

δn
p4]

√
3! 6!

0 0 0 0 0

0 0 0 0 0










, (B.15)

(Rp1···p6
γ )IJ ≡










0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
δαγ δ

p1···p6
m1···m5n√

5!
0 0 0 0

0
6 ǫβγ δ

n[p1···p5
m1···m6

δ
p6]
m√

6!
0 0 0










, (B.16)

(Rγ
p1···p6)

I
J ≡










0 0 0
δ
γ
β

δ
n1···n5m
p1···p6√

5!
0

0 0 0 0
6 ǫαγ

δ
n1···n6
m[p1···p5

δn
p6]

√
6!

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0










. (B.17)

where δ
n1···np
m1···mp ≡ p! δ

n1···np
m1···mp .

The introduced SL(2)-covariant fields (gE
mn, mαβ , B

γ
mn, Dm1···m4 , D

γ
m1···m6) are related

to the standard type IIB supergravity fields as follows. The metric gE
mn is the standard

Einstein-frame metric and Φ is the standard dilaton and the string-frame metric is defined
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as gmn ≡ e
1
2
Φ gE

mn . Other fields are further parameterized as

(
mαβ

)
≡ eΦ

(

e−2Φ+(C0)
2 C0

C0 1

)

, Bα
mn ≡

(

Bmn

−Cmn

)

,

Dm1···m4 = Cm1···m4 − 3B[m1m2
Cm3m4] , Dα

m1···m6
≡

(

D1
m1···m6

D2
m1···m6

)

,

D1
m1···m6

≡ Cm1···m6 − 15D[m1···m4
Bm5m6] − 15B[m1m2

Bm3m4 Cm5m6] ,

D2
m1···m6

≡ −Dm1···m6 + 15D[m1···m4
Cm5m6] + 30C[m1m2

Cm3m4 Bm5m6] .

(B.18)

Then, Φ, Bmn, Cm1···m2n , and Dm1···m6 are the standard dilaton, the B-field, the R-R

potentials, and the dual potential of the B-field.

We can also provide the non-geometric parameterization as [121]

MIJ = (L̃T6 L̃T4 L̃T2 M̃ L̃2 L̃4 L̃6)IJ , |g̃E| ≡ det(g̃E
mn) ,

M̃ = |g̃E|
1

d−2








g̃Emn 0 0 0 0

0 m̃αβ g̃mn
E 0 0 0

0 0 g̃m1m2m3, n1n2n3
E 0 0

0 0 0 m̃αβ g̃m1···m5, n1···n5
E 0

0 0 0 0 g̃m1···m6, n1···n6
E g̃mn

E







,

L̃2 = e
1
2!

Rγ
p1p2

β
p1p2
γ , L̃4 = e

1
4!

Rp1···p4 ηp1···p4 , L̃6 = e
1
6!

Rγ
p1···p6 η

p1···p6
γ .

(B.19)

By using the dual metric gE
mn and the dual dilaton Φ , we define the dual string-frame

metric as g̃mn ≡ e
1
2
φ̃ g̃E

mn . Again, we further parameterize other fields as

(
m̃αβ

)
= eφ̃

(

1 γ

γ e−2φ̃+γ2

)

, βmn
α ≡

(

βmn

−γmn

)

,

ηm1···m4 ≡ γm1···m4 + 3β[m1m2 γm3m4] , ηm1···m6
α ≡

(

ηm1···m6
1

ηm1···m6
2

)

,

ηm1···m6
1 ≡ γm1···m6 + 15 η[m1···m4 βm5m6] − 15β[m1m2 βm3m4 γm5m6] ,

ηm1···m6
2 ≡ −βm1···m6 − 15 η[m1···m4 γm5m6] + 30 γ[m1m2 γm3m4 βm5m6] .

(B.20)

In this paper, we use the fields (g̃mn, φ̃, β
mn, γm1···m2n , βm1···m6) to describe supergravity

solutions of exotic branes in type IIB theory.

Again, by comparing the two parameterizations (B.9) and (B.19) as

M(IIB)

IJ = M(IIB, non-geometric)

IJ , (B.21)

we can in principle determine the dual fields in terms of the conventional supergravity

fields.

C Contents of the p-brane multiplets

In this appendix, we provide a list of branes contained in the p-brane multiplets.

C.1 “Elementary” branes

We first provide a list of “elementary” branes that are connected to the standard branes.
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d D M IIA IIB

9 1 23 (1) 10 (1) P (1)

2 P (2) P (1), 01 (1) 10 (1), 11 (1)

8 6 P (3), 23 (3) P (2), 10 (2), 01 (1), 21 (1) P (2), 10 (2), 11 (2)

7 10 P (4), 23 (6) P (3), 10 (3), 01 (1), 21 (3) P (3), 10 (3), 11 (3), 31 (1)

6 16
P (5), 23 (10),

56 (1)

P (4), 10 (4), 01 (1), 21 (6),

41 (1)
P (4), 10 (4), 11 (4), 31 (4)

5 27
P (6), 23 (15),

56 (6)

P (5), 10 (5), 01 (1), 21 (10),

41 (5), 52 (1)

P (5), 10 (5), 11 (5), 31 (10),

51 (1), 52 (1)

4 56
P (7), 23 (21),

56 (21), 619 (7)

P (6), 10 (6), 01 (1), 21 (15),

41 (15), 61 (1), 52 (6), 512 (6)

P (6), 10 (6), 11 (6), 31 (20),

51 (6), 52 (6), 512 (6)

3 240

P (8), 23 (28),

56 (56),

619 (56),

5312 (56),

2615 (28),

0
(1,7)
18 (8)

P (7), 10 (7), 01 (1), 21 (21),

41 (35), 61 (7), 52 (21),

512 (42), 522 (21), 613 (7),

433 (35), 253 (21), 073 (1), 164 (7),

0
(1,6)
4 (7)

P (7), 10 (7), 11 (7), 31 (35),

51 (21), 71 (1), 52 (21),

512 (42), 522 (21), 73 (1),

523 (21), 343 (35), 163 (7), 164 (7),

0
(1,6)
4 (7)

Table 7. Branes in the particle multiplet.

d D M IIA IIB

9 2 23 (2) 10 (1), 21 (1) 10 (1), 11 (1)

8 3 23 (3) 10 (1), 21 (2) 10 (1), 11 (1), 31 (1)

7 5 23 (4), 56 (1) 10 (1), 21 (3), 41 (1) 10 (1), 11 (1), 31 (3)

6 10 23 (5), 56 (5) 10 (1), 21 (4), 41 (4), 52 (1)
10 (1), 11 (1), 31 (6), 51 (1),

52 (1)

5 27
23 (6), 56 (15),

619 (6)

10 (1), 21 (5), 41 (10), 61 (1),

52 (5), 512 (5)

10 (1), 11 (1), 31 (10), 51 (5),

52 (5), 512 (5)

4 126

23 (7), 56 (35),

619 (42),

5312 (35), 2615 (7)

10 (1), 21 (6), 41 (20), 61 (6),

52 (15), 512 (30), 522 (15), 613 (6),

433 (20), 253 (6), 164 (1)

10 (1), 11 (1), 31 (15), 51 (15),

71 (1), 52 (15), 512 (30), 522 (15),

73 (1), 523 (15), 343 (15), 163 (1),

164 (1)

3 2160

23 (8), 56 (70),

619 (168),

5312 (280),

8
(1,0)
12 (8),

2615 (56),

5
(1,3)
15 (280),

3
(2,4)
18 (420),

2
(4,3)
21 (280),

1
(1,1,6)
21 (56),

2
(7,0)
24 (8),

1
(1,4,3)
24 (280),

1
(2,5,1)
27 (168),

1
(4,4,0)
30 (70),

1
(7,1,0)
33 (8)

10 (1), 21 (7), 41 (35), 61 (21),

81 (1), 52 (35), 512 (105),

522 (105), 532 (35), 613 (42),

433 (140), 253 (42), 7
(1,0)
3 (7),

5
(1,2)
3 (105), 3

(1,4)
3 (105),

1
(1,6)
3 (7), 164 (7), 534 (35),

4
(1,3)
4 (140), 3

(2,3)
4 (210),

2
(3,3)
4 (140), 1

(4,3)
4 (35),

1
(1,0,6)
4 (7), 265 (7), 2

(2,4)
5 (105),

2
(4,2)
5 (105), 2

(6,0)
5 (7),

1
(1,1,5)
5 (42), 1

(1,3,3)
5 (140),

1
(1,5,1)
5 (42), 1

(4,3)
6 (35),

1
(1,4,2)
6 (105), 1

(2,4,1)
6 (105),

1
(3,4,0)
6 (35), 1

(7,0)
7 (1),

1
(2,5,0)
7 (21), 1

(4,3,0)
7 (35),

1
(6,1,0)
7 (7), 1

(7,0,0)
8 (1)

10 (1), 11 (1), 31 (21), 51 (35),

71 (7), 52 (35), 512 (105),

522 (105), 532 (35), 73 (7),

523 (105), 343 (105), 163 (7),

6
(1,1)
3 (42), 4

(1,3)
3 (140),

2
(1,5)
3 (42), 164 (7), 534 (35),

4
(1,3)
4 (140), 3

(2,3)
4 (210),

2
(3,3)
4 (140), 1

(4,3)
4 (35),

1
(1,0,6)
4 (7), 2

(1,5)
5 (42),

2
(3,3)
5 (140), 2

(5,1)
5 (42),

1
(1,0,6)
5 (7), 1

(1,2,4)
5 (105),

1
(1,4,2)
5 (105), 1

(1,6,0)
5 (7),

1
(4,3)
6 (35), 1

(1,4,2)
6 (105),

1
(2,4,1)
6 (105), 1

(3,4,0)
6 (35),

1
(1,6,0)
7 (7), 1

(3,4,0)
7 (35),

1
(5,2,0)
7 (21), 1

(7,0,0)
7 (1),

1
(7,0,0)
8 (1)

Table 8. Branes in the string multiplet.
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9 1 23 (1) 21 (1) 31 (1)

8 2 23 (1), 56 (1) 21 (1), 41 (1) 31 (2)

7 5 23 (1), 56 (4) 21 (1), 41 (3), 52 (1) 31 (3), 51 (1), 52 (1)

6 16
23 (1), 56 (10),

619 (5)
21 (1), 41 (6), 61 (1), 52 (4), 512 (4) 31 (4), 51 (4), 52 (4), 512 (4)

5 72

23 (1), 56 (20),

619 (30), 5312 (20),

2615 (1)

21 (1), 41 (10), 61 (5), 52 (10),

512 (20), 522 (10), 613 (5), 433 (10),

253 (1)

31 (5), 51 (10), 71 (1), 52 (10),

512 (20), 522 (10), 73 (1), 523 (10),

343 (5)

4 576

23 (1), 56 (35),

619 (105),

5312 (140),

8
(1,0)
12 (7), 2615 (7),

5
(1,3)
15 (140),

3
(2,4)
18 (105),

2
(4,3)
21 (35),

2
(7,0)
24 (1)

21 (1), 41 (15), 61 (15), 81 (1),

52 (20), 512 (60), 522 (60), 532 (20),

613 (30), 433 (60), 253 (6), 7
(1,0)
3 (6),

5
(1,2)
3 (60), 3

(1,4)
3 (30), 534 (20),

4
(1,3)
4 (60), 3

(2,3)
4 (60), 2

(3,3)
4 (20),

265 (1), 2
(2,4)
5 (15), 2

(4,2)
5 (15),

2
(6,0)
5 (1)

31 (6), 51 (20), 71 (6), 52 (20),

512 (60), 522 (60), 532 (20), 73 (6),

523 (60), 343 (30), 6
(1,1)
3 (30),

4
(1,3)
3 (60), 2

(1,5)
3 (6), 534 (20),

4
(1,3)
4 (60), 3

(2,3)
4 (60), 2

(3,3)
4 (20),

2
(1,5)
5 (6), 2

(3,3)
5 (20), 2

(5,1)
5 (6)

3 17280

23 (1), 56 (56),

619 (280),

5312 (560),

8
(1,0)
12 (56),

2615 (28),

5
(1,3)
15 (1120),

3
(2,4)
18 (840),

6
(3,1)
18 (280),

5
(1,0,4)
18 (280),

2
(4,3)
21 (280),

4
(1,2,3)
21 (1680),

2
(7,0)
24 (8),

4
(1,5,0)
24 (168),

3
(2,2,3)
24 (1680),

2
(1,0,2,5)
24 (168),

3
(3,3,1)
27 (1120),

2
(4,0,4)
27 (70),

2
(1,1,3,3)
27 (1120),

3
(5,2,0)
30 (168),

2
(1,3,2,2)
30 (1680),

2
(2,0,5,1)
30 (168),

2
(1,0,0,7,0)
30 (8),

2
(2,3,2,1)
33 (1680),

2
(1,0,3,4,0)
33 (280),

2
(3,4,0,1)
36 (280),

2
(4,1,3,0)
36 (280),

2
(1,1,4,2,0)
36 (840),

2
(1,3,3,1,0)
39 (1120),

2
(2,0,6,0,0)
39 (28),

2
(1,6,0,1,0)
42 (56),

2
(2,3,3,0,0)
42 (560),

2
(3,4,1,0,0)
45 (280),

2
(5,3,0,0,0)
48 (56),

2
(8,0,0,0,0)
51 (1)

21 (1), 41 (21), 61 (35), 81 (7),

52 (35), 512 (140), 522 (210), 532 (140),

542 (35), 613 (105), 433 (210), 253 (21),

7
(1,0)
3 (42), 5

(1,2)
3 (420), 3

(1,4)
3 (210),

6
(2,1)
3 (105), 4

(2,3)
3 (210), 2

(2,5)
3 (21),

534 (140), 4
(1,3)
4 (420), 3

(2,3)
4 (420),

2
(3,3)
4 (140), 5

(1,0,3)
4 (140),

4
(1,1,3)
4 (420), 3

(1,2,3)
4 (420),

2
(1,3,3)
4 (140), 8

(1,0)
4 (7), 6

(3,0)
4 (35),

4
(5,0)
4 (21), 2

(7,0)
4 (1), 265 (7),

2
(2,4)
5 (105), 2

(4,2)
5 (105), 2

(6,0)
5 (7),

2
(1,0,1,5)
5 (42), 2

(1,0,3,3)
5 (140),

2
(1,0,5,1)
5 (42), 5

(1,3)
5 (140),

5
(3,1)
5 (140), 4

(1,0,4)
5 (105),

4
(1,2,2)
5 (630), 4

(1,4,0)
5 (105),

3
(2,1,3)
5 (420), 3

(2,3,1)
5 (420),

2
(3,0,4)
5 (35), 2

(3,2,2)
5 (210),

2
(3,4,0)
5 (35), 3

(2,4)
6 (105),

3
(1,2,3)
6 (420), 3

(2,2,2)
6 (630),

3
(3,2,1)
6 (420), 3

(4,2,0)
6 (105),

2
(1,0,2,4)
6 (105), 2

(1,1,2,3)
6 (420),

2
(1,2,2,2)
6 (630), 2

(1,3,2,1)
6 (420),

2
(1,4,2,0)
6 (105), 2

(4,3)
7 (35),

2
(2,2,3)
7 (210), 2

(4,0,3)
7 (35),

2
(1,1,3,2)
7 (420), 2

(1,3,1,2)
7 (420),

2
(2,0,4,1)
7 (105), 2

(2,2,2,1)
7 (630),

2
(2,4,0,1)
7 (105), 2

(3,1,3,0)
7 (140),

2
(3,3,1,0)
7 (140), 3

(1,5,0)
7 (42),

3
(3,3,0)
7 (140), 3

(5,1,0)
7 (42),

2
(1,0,0,6,0)
7 (7), 2

(1,0,2,4,0)
7 (105),

2
(1,0,4,2,0)
7 (105), 2

(1,0,6,0,0)
7 (7),

2
(7,0)
8 (1), 2

(2,0,5,0)
8 (21),

2
(4,0,3,0)
8 (35), 2

(6,0,1,0)
8 (7),

2
(3,3,1)
8 (140), 2

(1,3,2,1)
8 (420),

2
(2,3,1,1)
8 (420), 2

(3,3,0,1)
8 (140),

2
(1,0,3,3,0)
8 (140), 2

(1,1,3,2,0)
8 (420),

2
(1,2,3,1,0)
8 (420), 2

(1,3,3,0,0)
8 (140),

2
(5,2,0)
9 (21), 2

(2,3,2,0)
9 (210),

2
(4,1,2,0)
9 (105), 2

(1,1,4,1,0)
9 (210),

2
(1,3,2,1,0)
9 (420), 2

(1,5,0,1,0)
9 (42),

2
(2,0,5,0,0)
9 (21), 2

(2,2,3,0,0)
9 (210),

2
(2,4,1,0,0)
9 (105), 2

(3,4,0,0)
10 (35),

2
(1,3,3,0,0)
10 (140), 2

(2,3,2,0,0)
10 (210),

2
(3,3,1,0,0)
10 (140), 2

(4,3,0,0,0)
10 (35),

2
(1,6,0,0,0)
11 (7), 2

(3,4,0,0,0)
11 (35),

2
(5,2,0,0,0)
11 (21), 2

(7,0,0,0,0)
11 (1)

31 (7), 51 (35), 71 (21), 91 (1),

52 (35), 512 (140), 522 (210), 532 (140),

542 (35), 73 (21), 523 (210), 343 (105),

6
(1,1)
3 (210), 4

(1,3)
3 (420), 2

(1,5)
3 (42),

7
(2,0)
3 (21), 5

(2,2)
3 (210), 3

(2,4)
3 (105),

534 (140), 4
(1,3)
4 (420), 3

(2,3)
4 (420),

2
(3,3)
4 (140), 5

(1,0,3)
4 (140),

4
(1,1,3)
4 (420), 3

(1,2,3)
4 (420),

2
(1,3,3)
4 (140), 94 (1), 7

(2,0)
4 (21),

5
(4,0)
4 (35), 3

(6,0)
4 (7), 2

(1,5)
5 (42),

2
(3,3)
5 (140), 2

(5,1)
5 (42), 2

(1,0,0,6)
5 (7),

2
(1,0,2,4)
5 (105), 2

(1,0,4,2)
5 (105),

2
(1,0,6,0)
5 (7), 545 (35), 5

(2,2)
5 (210),

5
(4,0)
5 (35), 4

(1,1,3)
5 (420),

4
(1,3,1)
5 (420), 3

(2,0,4)
5 (105),

3
(2,2,2)
5 (630), 3

(2,4,0)
5 (105),

2
(3,1,3)
5 (140), 2

(3,3,1)
5 (140),

3
(2,4)
6 (105), 3

(1,2,3)
6 (420),

3
(2,2,2)
6 (630), 3

(3,2,1)
6 (420),

3
(4,2,0)
6 (105), 2

(1,0,2,4)
6 (105),

2
(1,1,2,3)
6 (420), 2

(1,2,2,2)
6 (630),

2
(1,3,2,1)
6 (420), 2

(1,4,2,0)
6 (105),

2
(1,3,3)
7 (140), 2

(3,1,3)
7 (140),

2
(1,0,4,2)
7 (105), 2

(1,2,2,2)
7 (630),

2
(1,4,0,2)
7 (105), 2

(2,1,3,1)
7 (420),

2
(2,3,1,1)
7 (420), 2

(3,0,4,0)
7 (35),

2
(3,2,2,0)
7 (210), 2

(3,4,0,0)
7 (35),

3
(6,0)
7 (7), 3

(2,4,0)
7 (105),

3
(4,2,0)
7 (105), 3

(6,0,0)
7 (7),

2
(1,0,1,5,0)
7 (42), 2

(1,0,3,3,0)
7 (140),

2
(1,0,5,1,0)
7 (42), 2

(1,0,6,0)
8 (7),

2
(3,0,4,0)
8 (35), 2

(5,0,2,0)
8 (21),

2
(7,0,0,0)
8 (1), 2

(3,3,1)
8 (140),

2
(1,3,2,1)
8 (420), 2

(2,3,1,1)
8 (420),

2
(3,3,0,1)
8 (140), 2

(1,0,3,3,0)
8 (140),

2
(1,1,3,2,0)
8 (420), 2

(1,2,3,1,0)
8 (420),

2
(1,3,3,0,0)
8 (140), 2

(1,4,2,0)
9 (105),

2
(3,2,2,0)
9 (210), 2

(5,0,2,0)
9 (21),

2
(1,0,5,1,0)
9 (42), 2

(1,2,3,1,0)
9 (420),

2
(1,4,1,1,0)
9 (210), 2

(2,1,4,0,0)
9 (105),

2
(2,3,2,0,0)
9 (210), 2

(2,5,0,0,0)
9 (21),

2
(3,4,0,0)
10 (35), 2

(1,3,3,0,0)
10 (140),

2
(2,3,2,0,0)
10 (210), 2

(3,3,1,0,0)
10 (140),

2
(4,3,0,0,0)
10 (35), 2

(7,0,0,0)
11 (1),

2
(2,5,0,0,0)
11 (21), 2

(4,3,0,0,0)
11 (35),

2
(6,1,0,0,0)
11 (7)

Table 9. Branes in the membrane multiplet.
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J
H
E
P
0
9
(
2
0
1
8
)
0
7
2

d D M IIA IIB

9 1 56 (1) 41 (1) 31 (1)

8 3 56 (3) 41 (2), 52 (1) 31 (1), 51 (1), 52 (1)

7 10 56 (6), 619 (4) 41 (3), 61 (1), 52 (3), 512 (3) 31 (1), 51 (3), 52 (3), 512 (3)

6 40
56 (10), 619 (20),

5312 (10)

41 (4), 61 (4), 52 (6), 512 (12),

522 (6), 613 (4), 433 (4)

31 (1), 51 (6), 71 (1), 52 (6),

512 (12), 522 (6), 73 (1), 523 (6),

343 (1)

5 216

56 (15), 619 (60),

5312 (60),

8
(1,0)
12 (6),

5
(1,3)
15 (60),

3
(2,4)
18 (15)

41 (5), 61 (10), 81 (1), 52 (10),

512 (30), 522 (30), 532 (10), 613 (20),

433 (20), 7
(1,0)
3 (5), 5

(1,2)
3 (30),

3
(1,4)
3 (5), 534 (10), 4

(1,3)
4 (20),

3
(2,3)
4 (10)

31 (1), 51 (10), 71 (5), 52 (10),

512 (30), 522 (30), 532 (10), 73 (5),

523 (30), 343 (5), 6
(1,1)
3 (20),

4
(1,3)
3 (20), 534 (10), 4

(1,3)
4 (20),

3
(2,3)
4 (10)

4 2016

56 (21),

619 (140),

5312 (210),

8
(1,0)
12 (42),

5
(1,3)
15 (420),

3
(2,4)
18 (105),

6
(3,1)
18 (140),

5
(1,0,4)
18 (105),

4
(1,2,3)
21 (420),

4
(1,5,0)
24 (42),

3
(2,2,3)
24 (210),

3
(3,3,1)
27 (140),

3
(5,2,0)
30 (21)

41 (6), 61 (20), 81 (6), 52 (15),

512 (60), 522 (90), 532 (60), 542 (15),

613 (60), 433 (60), 7
(1,0)
3 (30),

5
(1,2)
3 (180), 3

(1,4)
3 (30),

6
(2,1)
3 (60), 4

(2,3)
3 (60), 534 (60),

4
(1,3)
4 (120), 3

(2,3)
4 (60),

8
(1,0)
4 (6), 6

(3,0)
4 (20), 4

(5,0)
4 (6),

5
(1,0,3)
4 (60), 4

(1,1,3)
4 (120),

3
(1,2,3)
4 (60), 5

(1,3)
5 (60),

5
(3,1)
5 (60), 4

(1,0,4)
5 (30),

4
(1,2,2)
5 (180), 4

(1,4,0)
5 (30),

3
(2,1,3)
5 (60), 3

(2,3,1)
5 (60),

3
(2,4)
6 (15), 3

(1,2,3)
6 (60),

3
(2,2,2)
6 (90), 3

(3,2,1)
6 (60),

3
(4,2,0)
6 (15), 3

(1,5,0)
7 (6),

3
(3,3,0)
7 (20), 3

(5,1,0)
7 (6)

31 (1), 51 (15), 71 (15), 91 (1),

52 (15), 512 (60), 522 (90), 532 (60),

542 (15), 73 (15), 523 (90), 343 (15),

6
(1,1)
3 (120), 4

(1,3)
3 (120),

7
(2,0)
3 (15), 5

(2,2)
3 (90),

3
(2,4)
3 (15), 534 (60), 4

(1,3)
4 (120),

3
(2,3)
4 (60), 94 (1), 7

(2,0)
4 (15),

5
(4,0)
4 (15), 3

(6,0)
4 (1),

5
(1,0,3)
4 (60), 4

(1,1,3)
4 (120),

3
(1,2,3)
4 (60), 545 (15), 5

(2,2)
5 (90),

5
(4,0)
5 (15), 4

(1,1,3)
5 (120),

4
(1,3,1)
5 (120), 3

(2,0,4)
5 (15),

3
(2,2,2)
5 (90), 3

(2,4,0)
5 (15),

3
(2,4)
6 (15), 3

(1,2,3)
6 (60),

3
(2,2,2)
6 (90), 3

(3,2,1)
6 (60),

3
(4,2,0)
6 (15), 3

(6,0)
7 (1),

3
(2,4,0)
7 (15), 3

(4,2,0)
7 (15),

3
(6,0,0)
7 (1)

Table 10. Branes in the 3-brane multiplet.

d D M IIA IIB

9 2 56 (2) 41 (1), 52 (1) 51 (1), 52 (1)

8 6 56 (3), 619 (3) 41 (1), 61 (1), 52 (2), 512 (2) 51 (2), 52 (2), 512 (2)

7 20
56 (4), 619 (12),

5312 (4)

41 (1), 61 (3), 52 (3), 512 (6),

522 (3), 613 (3), 433 (1)

51 (3), 71 (1), 52 (3), 512 (6),

522 (3), 73 (1), 523 (3)

6 80

56 (5), 619 (30),

5312 (20),

8
(1,0)
12 (5),

5
(1,3)
15 (20)

41 (1), 61 (6), 81 (1), 52 (4),

512 (12), 522 (12), 532 (4), 613 (12),

433 (4), 7
(1,0)
3 (4), 5

(1,2)
3 (12),

534 (4), 4
(1,3)
4 (4)

51 (4), 71 (4), 52 (4), 512 (12),

522 (12), 532 (4), 73 (4), 523 (12),

6
(1,1)
3 (12), 4

(1,3)
3 (4), 534 (4),

4
(1,3)
4 (4)

5 432

56 (6), 619 (60),

5312 (60),

8
(1,0)
12 (30),

5
(1,3)
15 (120),

6
(3,1)
18 (60),

5
(1,0,4)
18 (30),

4
(1,2,3)
21 (60),

4
(1,5,0)
24 (6)

41 (1), 61 (10), 81 (5), 52 (5),

512 (20), 522 (30), 532 (20), 542 (5),

613 (30), 433 (10), 7
(1,0)
3 (20),

5
(1,2)
3 (60), 6

(2,1)
3 (30),

4
(2,3)
3 (10), 534 (20), 4

(1,3)
4 (20),

5
(1,0,3)
4 (20), 4

(1,1,3)
4 (20),

8
(1,0)
4 (5), 6

(3,0)
4 (10), 4

(5,0)
4 (1),

5
(1,3)
5 (20), 5

(3,1)
5 (20),

4
(1,0,4)
5 (5), 4

(1,2,2)
5 (30),

4
(1,4,0)
5 (5)

51 (5), 71 (10), 91 (1), 52 (5),

512 (20), 522 (30), 532 (20), 542 (5),

73 (10), 523 (30), 6
(1,1)
3 (60),

4
(1,3)
3 (20), 7

(2,0)
3 (10),

5
(2,2)
3 (30), 534 (20), 4

(1,3)
4 (20),

5
(1,0,3)
4 (20), 4

(1,1,3)
4 (20), 94 (1),

7
(2,0)
4 (10), 5

(4,0)
4 (5), 545 (5),

5
(2,2)
5 (30), 5

(4,0)
5 (5),

4
(1,1,3)
5 (20), 4

(1,3,1)
5 (20)

Table 11. Branes in the 4-brane multiplet.
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H
E
P
0
9
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2
0
1
8
)
0
7
2

d D M IIA IIB

9 1 56 (1) 52 (1) 512 (1)

2 619 (2) 61 (1), 512 (1) 51 (1), 52 (1)

8 2 56 (1), 5312 (1) 52 (1), 522 (1) 512 (2)

6 619 (6) 61 (2), 512 (2), 613 (2)
51 (1), 71 (1), 52 (1), 522 (1),

73 (1), 523 (1)

7 5 56 (1), 5312 (4) 52 (1), 522 (3), 534 (1) 512 (3), 532 (1), 534 (1)

20

619 (12),

8
(1,0)
12 (4),

5
(1,3)
15 (4)

61 (3), 81 (1), 512 (3), 532 (1),

613 (6), 7
(1,0)
3 (3), 5

(1,2)
3 (3)

51 (1), 71 (3), 52 (1), 522 (3),

73 (3), 523 (3), 6
(1,1)
3 (6)

6 16
56 (1), 5312 (10),

5
(1,0,4)
18 (5)

52 (1), 522 (6), 542 (1), 534 (4),

5
(1,0,3)
4 (4)

512 (4), 532 (4), 534 (4), 5
(1,0,3)
4 (4)

80

619 (20),

8
(1,0)
12 (20),

5
(1,3)
15 (20),

6
(3,1)
18 (20)

61 (4), 81 (4), 512 (4), 532 (4),

613 (12), 7
(1,0)
3 (12), 5

(1,2)
3 (12),

6
(2,1)
3 (12), 8

(1,0)
4 (4), 6

(3,0)
4 (4),

5
(1,3)
5 (4), 5

(3,1)
5 (4)

51 (1), 71 (6), 91 (1), 52 (1),

522 (6), 542 (1), 73 (6), 523 (6),

6
(1,1)
3 (24), 7

(2,0)
3 (6), 5

(2,2)
3 (6),

94 (1), 7
(2,0)
4 (6), 5

(4,0)
4 (1),

545 (1), 5
(2,2)
5 (6), 5

(4,0)
5 (1)

Table 12. Branes in the 5-brane multiplet.

d D M IIA IIB

9 2 619 (2) 61 (1), 613 (1) 71 (1), 73 (1)

8 6 619 (3), 8
(1,0)
12 (3) 61 (1), 81 (1), 613 (2), 7

(1,0)
3 (2) 71 (2), 73 (2), 6

(1,1)
3 (2)

7 20

619 (4),

8
(1,0)
12 (12),

6
(3,1)
18 (4)

61 (1), 81 (3), 613 (3), 7
(1,0)
3 (6),

6
(2,1)
3 (3), 8

(1,0)
4 (3), 6

(3,0)
4 (1)

71 (3), 91 (1), 73 (3), 6
(1,1)
3 (6),

7
(2,0)
3 (3), 94 (1), 7

(2,0)
4 (3)

Table 13. Branes in the 6-brane multiplet.

d D M IIA IIB

9 2 8
(1,0)
12 (2) 81 (1), 7

(1,0)
3 (1) 71 (1), 73 (1)

8 6 8
(1,0)
12 (6) 81 (2), 7

(1,0)
3 (2), 8

(1,0)
4 (2)

71 (1), 91 (1), 73 (1), 7
(2,0)
3 (1),

94 (1), 7
(2,0)
4 (1)

Table 14. Branes in the 7-brane multiplet.

d D M IIA IIB

9 2 8
(1,0)
12 (2) 81 (1), 8

(1,0)
4 (1) 91 (1), 94 (1)

Table 15. Branes in the 8-brane multiplet.
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C.2 Missing states

We here provide a list of the missing states in each multiplet.

d D N M IIA IIB

4 7 ⊂ 133 7 89 (1) 72 (1) 72 (1)

3 1680 ⊂ 3875 7

89 (8), 7212 (28),

4515 (56),

2
(1,6)
18 (56),

1
(3,5)
21 (56),

1
(6,2)
24 (28),

1
(1,7,0)
27 (8)

72 (7), 712 (7), 83 (1), 623 (21),

443 (35), 263 (7), 354 (21),

2
(1,5)
4 (42), 1

(2,5)
4 (21),

1
(1,6)
5 (7), 1

(3,4)
5 (35),

1
(5,2)
5 (21), 1

(7,0)
5 (1),

1
(6,1)
6 (7), 1

(1,6,0)
6 (7)

72 (7), 712 (7), 713 (7), 533 (35),

353 (21), 173 (1), 354 (21),

2
(1,5)
4 (42), 1

(2,5)
4 (21), 175 (1),

1
(2,5)
5 (21), 1

(4,3)
5 (35),

1
(6,1)
5 (7), 1

(6,1)
6 (7),

1
(1,6,0)
6 (7)

35 ⊂ 3875 35 1818 (1) 174 (1) 174 (1)

Table 16. Missing states in the string multiplet.

d D N M IIA IIB

5 6 ⊂ 78 6 89 (1) 72 (1) 72 (1)

4 336 ⊂ 912 6

89 (7), 7212 (21),

4515 (21), 2
(1,6)
18 (7)

72 (6), 712 (6), 83 (1), 623 (15),

443 (15), 263 (1), 354 (6),

2
(1,5)
4 (6)

72 (6), 712 (6), 713 (6), 533 (20),

353 (6), 354 (6), 2
(1,5)
4 (6)

3 40320 ⊂ 147250 6

89 (28), 7212 (168),

4515 (168),

7
(1,2)
15 (168),

2
(1,6)
18 (56),

5
(2,3)
18 (560),

4
(4,2)
21 (420),

3
(1,1,5)
21 (336),

3
(1,4,2)
24 (840),

2
(2,1,5)
24 (168),

3
(2,5,0)
27 (168),

2
(3,2,3)
27 (560),

2
(1,0,5,2)
27 (168),

2
(5,1,2)
30 (168),

2
(1,2,4,1)
30 (840),

2
(1,5,1,1)
33 (336),

2
(2,2,4,0)
33 (420),

2
(3,3,2,0)
36 (560),

2
(1,0,6,1,0)
36 (56),

2
(5,2,1,0)
39 (168),

2
(1,2,5,0,0)
39 (168),

2
(1,5,2,0,0)
42 (168),

2
(2,6,0,0,0)
45 (28)

72 (21), 712 (42), 722 (21),

83 (7), 623 (105), 443 (105),

263 (7), 7
(1,1)
3 (42), 5

(1,3)
3 (140),

3
(1,5)
3 (42), 724 (21), 354 (42),

2
(1,5)
4 (42), 6

(1,2)
4 (105),

5
(2,2)
4 (210), 4

(3,2)
4 (210),

3
(4,2)
4 (105), 2

(5,2)
4 (21),

3
(1,0,5)
4 (42), 2

(1,1,5)
4 (42),

455 (21), 4
(2,3)
5 (210),

4
(4,1)
5 (105), 3

(1,1,4)
5 (210),

3
(1,3,2)
5 (420), 3

(1,5,0)
5 (42),

2
(2,0,5)
5 (21), 2

(2,2,3)
5 (210),

2
(2,4,1)
5 (105), 2

(1,6)
6 (7),

3
(4,2)
6 (105), 2

(1,1,5)
6 (42),

3
(1,4,1)
6 (210), 2

(2,1,4)
6 (105),

3
(2,4,0)
6 (105), 2

(3,1,3)
6 (140),

2
(4,1,2)
6 (105), 2

(5,1,1)
6 (42),

2
(6,1,0)
6 (7), 2

(1,0,4,2)
6 (105),

2
(1,1,4,1)
6 (210),

2
(1,2,4,0)
6 (105), 2

(1,4,2)
7 (105),

2
(3,2,2)
7 (210), 2

(5,0,2)
7 (21),

2
(1,0,5,1)
7 (42), 2

(1,2,3,1)
7 (420),

2
(1,4,1,1)
7 (210),

2
(2,1,4,0)
7 (105),

2
(2,3,2,0)
7 (210), 2

(2,5,0,0)
7 (21),

2
(2,5,0)
8 (21), 2

(5,1,1)
8 (42),

2
(1,2,4,0)
8 (105), 2

(1,5,0,1)
8 (42),

2
(2,2,3,0)
8 (210),

2
(3,2,2,0)
8 (210),

2
(4,2,1,0)
8 (105), 2

(5,2,0,0)
8 (21),

2
(1,0,5,1,0)
8 (42),

2
(1,1,5,0,0)
8 (42), 2

(1,5,1,0)
9 (42),

2
(3,3,1,0)
9 (140), 2

(5,1,1,0)
9 (42),

2
(1,0,6,0,0)
9 (7),

2
(1,2,4,0,0)
9 (105),

2
(1,4,2,0,0)
9 (105),

2
(1,6,0,0,0)
9 (7), 2

(5,2,0,0)
10 (21),

2
(1,5,1,0,0)
10 (42),

2
(2,5,0,0,0)
10 (21)

72 (21), 712 (42), 722 (21),

713 (42), 533 (140), 353 (42),

8
(1,0)
3 (7), 6

(1,2)
3 (105),

4
(1,4)
3 (105), 2

(1,6)
3 (7), 724 (21),

354 (42), 6
(1,2)
4 (105),

2
(1,5)
4 (42), 5

(2,2)
4 (210),

4
(3,2)
4 (210), 3

(4,2)
4 (105),

2
(5,2)
4 (21), 3

(1,0,5)
4 (42),

2
(1,1,5)
4 (42), 4

(1,4)
5 (105),

4
(3,2)
5 (210), 4

(5,0)
5 (21),

3
(1,0,5)
5 (42), 3

(1,2,3)
5 (420),

3
(1,4,1)
5 (210), 2

(2,1,4)
5 (105),

2
(2,3,2)
5 (210), 2

(2,5,0)
5 (21),

2
(1,6)
6 (7), 3

(4,2)
6 (105),

2
(1,1,5)
6 (42), 3

(1,4,1)
6 (210),

2
(2,1,4)
6 (105), 3

(2,4,0)
6 (105),

2
(3,1,3)
6 (140), 2

(4,1,2)
6 (105),

2
(5,1,1)
6 (42), 2

(6,1,0)
6 (7),

2
(1,0,4,2)
6 (105),

2
(1,1,4,1)
6 (210),

2
(1,2,4,0)
6 (105), 2

(5,2)
7 (21),

2
(2,3,2)
7 (210), 2

(4,1,2)
7 (105),

2
(1,1,4,1)
7 (210),

2
(1,3,2,1)
7 (420), 2

(1,5,0,1)
7 (42),

2
(2,0,5,0)
7 (21), 2

(2,2,3,0)
7 (210),

2
(2,4,1,0)
7 (105), 2

(2,5,0)
8 (21),

2
(5,1,1)
8 (42), 2

(1,2,4,0)
8 (105),

2
(1,5,0,1)
8 (42), 2

(2,2,3,0)
8 (210),

2
(3,2,2,0)
8 (210),

2
(4,2,1,0)
8 (105), 2

(5,2,0,0)
8 (21),

2
(1,0,5,1,0)
8 (42),

2
(1,1,5,0,0)
8 (42), 2

(6,1,0)
9 (7),

2
(2,4,1,0)
9 (105),

2
(4,2,1,0)
9 (105), 2

(6,0,1,0)
9 (7),

2
(1,1,5,0,0)
9 (42),

2
(1,3,3,0,0)
9 (140),

2
(1,5,1,0,0)
9 (42), 2

(5,2,0,0)
10 (21),

2
(1,5,1,0,0)
10 (42),

2
(2,5,0,0,0)
10 (21)
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62640 ⊂ 147250 29

9112 (8), 6415 (70),

4
(1,5)
18 (168),

3
(3,4)
21 (280),

2
(1,0,7)
21 (8),

3
(6,1)
24 (56),

2
(1,3,4)
24 (280),

2
(2,4,2)
27 (420),

2
(4,3,1)
30 (280),

2
(1,1,6,0)
30 (56),

2
(7,0,1)
33 (8),

2
(1,4,3,0)
33 (280),

2
(2,5,1,0)
36 (168),

2
(4,4,0,0)
39 (70),

2
(7,1,0,0)
42 (8)

92 (1), 813 (7), 633 (35), 453 (21),

273 (1), 544 (35), 4
(1,4)
4 (105),

3
(2,4)
4 (105), 2

(3,4)
4 (35),

3
(1,5)
5 (42), 3

(3,3)
5 (140),

3
(5,1)
5 (42), 2

(1,0,6)
5 (7),

2
(1,2,4)
5 (105), 2

(1,4,2)
5 (105),

2
(1,6,0)
5 (7), 3

(6,0)
6 (7),

2
(3,4)
6 (35), 2

(1,3,3)
6 (140),

2
(2,3,2)
6 (210), 2

(3,3,1)
6 (140),

2
(4,3,0)
6 (35), 2

(1,0,6,0)
6 (7),

2
(6,1)
7 (7), 2

(2,4,1)
7 (105),

2
(4,2,1)
7 (105), 2

(6,0,1)
7 (7),

2
(1,1,5,0)
7 (42), 2

(1,3,3,0)
7 (140),

2
(1,5,1,0)
7 (42), 2

(4,3,0)
8 (35),

2
(1,4,2,0)
8 (105),

2
(2,4,1,0)
8 (105), 2

(3,4,0,0)
8 (35),

2
(7,0,0)
9 (1), 2

(2,5,0,0)
9 (21),

2
(4,3,0,0)
9 (35), 2

(6,1,0,0)
9 (7),

2
(7,0,0,0)
10 (1)

92 (1), 93 (1), 723 (21), 543 (35),

363 (7), 544 (35), 4
(1,4)
4 (105),

3
(2,4)
4 (105), 2

(3,4)
4 (35), 365 (7),

3
(2,4)
5 (105), 3

(4,2)
5 (105),

3
(6,0)
5 (7), 2

(1,1,5)
5 (42),

2
(1,3,3)
5 (140), 2

(1,5,1)
5 (42),

2
(3,4)
6 (35), 3

(6,0)
6 (7),

2
(1,3,3)
6 (140), 2

(2,3,2)
6 (210),

2
(3,3,1)
6 (140), 2

(4,3,0)
6 (35),

2
(1,0,6,0)
6 (7), 2

(1,5,1)
7 (42),

2
(3,3,1)
7 (140), 2

(5,1,1)
7 (42),

2
(1,0,6,0)
7 (7), 2

(1,2,4,0)
7 (105),

2
(1,4,2,0)
7 (105), 2

(1,6,0,0)
7 (7),

2
(4,3,0)
8 (35), 2

(1,4,2,0)
8 (105),

2
(2,4,1,0)
8 (105), 2

(3,4,0,0)
8 (35),

2
(1,6,0,0)
9 (7), 2

(3,4,0,0)
9 (35),

2
(5,2,0,0)
9 (21), 2

(7,0,0,0)
9 (1),

2
(7,0,0,0)
10 (1)

26640 ⊂ 147250 111

3718 (8),

2
(2,6)
21 (28),

2
(5,3)
24 (56),

2
(1,6,1)
27 (56),

2
(3,5,0)
30 (56),

2
(6,2,0)
33 (28),

2
(1,7,0,0)
36 (8)

364 (7), 2
(1,6)
4 (7), 275 (1),

2
(2,5)
5 (21), 2

(4,3)
5 (35),

2
(6,1)
5 (7), 2

(5,2)
6 (21),

2
(1,5,1)
6 (42), 2

(2,5,0)
6 (21),

2
(1,6,0)
7 (7), 2

(3,4,0)
7 (35),

2
(5,2,0)
7 (21), 2

(7,0,0)
7 (1),

2
(6,1,0)
8 (7), 2

(1,6,0,0)
8 (7)

364 (7), 2
(1,6)
4 (7), 2

(1,6)
5 (7),

2
(3,4)
5 (35), 2

(5,2)
5 (21),

2
(7,0)
5 (1), 2

(5,2)
6 (21),

2
(1,5,1)
6 (42), 2

(2,5,0)
6 (21),

2
(7,0)
7 (1), 2

(2,5,0)
7 (21),

2
(4,3,0)
7 (35), 2

(6,1,0)
7 (7),

2
(6,1,0)
8 (7), 2

(1,6,0,0)
8 (7)

370 ⊂ 147250 370 2
(8,0)
27 (1) 2

(7,0)
6 (1) 2

(7,0)
6 (1)

Table 17. Missing states in the membrane multiplet.

d D N M IIA IIB

6 5 ⊂ 45 5 89 (1) 72 (1) 72 (1)

5 135 ⊂ 351 5
89 (6), 7212 (15),

4515 (6)

72 (5), 712 (5), 83 (1),

623 (10), 443 (5), 354 (1)

72 (5), 712 (5), 713 (5),

533 (10), 353 (1), 354 (1)

4 3780 ⊂ 8645 5

89 (21),

7212 (105),

4515 (42),

7
(1,2)
15 (105),

5
(2,3)
18 (210),

4
(4,2)
21 (105),

3
(1,1,5)
21 (42),

3
(1,4,2)
24 (105),

3
(2,5,0)
27 (21)

72 (15), 712 (30), 722 (15),

83 (6), 623 (60), 443 (30),

7
(1,1)
3 (30), 5

(1,3)
3 (60),

3
(1,5)
3 (6), 724 (15), 354 (6),

6
(1,2)
4 (60), 5

(2,2)
4 (90),

4
(3,2)
4 (60), 3

(4,2)
4 (15),

3
(1,0,5)
4 (6), 455 (6),

4
(2,3)
5 (60), 4

(4,1)
5 (30),

3
(1,1,4)
5 (30), 3

(1,3,2)
5 (60),

3
(1,5,0)
5 (6), 3

(4,2)
6 (15),

3
(1,4,1)
6 (30), 3

(2,4,0)
6 (15)

72 (15), 712 (30), 722 (15),

713 (30), 533 (60), 353 (6),

8
(1,0)
3 (6), 6

(1,2)
3 (60),

4
(1,4)
3 (30), 354 (6), 724 (15),

6
(1,2)
4 (60), 5

(2,2)
4 (90),

4
(3,2)
4 (60), 3

(4,2)
4 (15),

3
(1,0,5)
4 (6), 4

(1,4)
5 (30),

4
(3,2)
5 (60), 4

(5,0)
5 (6),

3
(1,0,5)
5 (6), 3

(1,2,3)
5 (60),

3
(1,4,1)
5 (30), 3

(4,2)
6 (15),

3
(1,4,1)
6 (30), 3

(2,4,0)
6 (15)

2772 ⊂ 8645 22

9112 (7), 6415 (35),

4
(1,5)
18 (42),

3
(3,4)
21 (35),

3
(6,1)
24 (7)

92 (1), 813 (6), 633 (20),

453 (6), 544 (15), 4
(1,4)
4 (30),

3
(2,4)
4 (15), 3

(1,5)
5 (6),

3
(3,3)
5 (20), 3

(5,1)
5 (6),

3
(6,0)
6 (1)

92 (1), 93 (1), 723 (15),

543 (15), 363 (1), 544 (15),

4
(1,4)
4 (30), 3

(2,4)
4 (15),

365 (1), 3
(2,4)
5 (15),

3
(4,2)
5 (15), 3

(6,0)
5 (1),

3
(6,0)
6 (1)

77 ⊂ 8645 77 3718 (1) 364 (1) 364 (1)

Table 18. Missing states in the 3-brane multiplet.
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d D N M IIA IIB

7 4 ⊂ 24 4 89 (1) 72 (1) 72 (1)

6 64 ⊂ 144 4
89 (5) 7212 (10)

4515 (1)

72 (4), 712 (4), 83 (1),

623 (6), 443 (1)
72 (4), 712 (4), 713 (4), 533 (4)

5 864 ⊂ 1728 4

89 (15),

7212 (60), 4515 (6),

7
(1,2)
15 (60),

5
(2,3)
18 (60),

4
(4,2)
21 (15)

72 (10), 83 (5), 712 (20),

722 (10), 623 (30), 443 (5),

7
(1,1)
3 (20), 5

(1,3)
3 (20),

724 (10), 6
(1,2)
4 (30),

5
(2,2)
4 (30), 4

(3,2)
4 (10),

455 (1), 4
(2,3)
5 (10), 4

(4,1)
5 (5)

72 (10), 712 (20), 722 (10),

713 (20), 533 (20), 8
(1,0)
3 (5),

6
(1,2)
3 (30), 4

(1,4)
3 (5),

724 (10), 6
(1,2)
4 (30),

5
(2,2)
4 (30), 4

(3,2)
4 (10),

4
(1,4)
5 (5), 4

(3,2)
5 (10),

4
(5,0)
5 (1)

432 ⊂ 1728 16
9112 (6), 6415 (15),

4
(1,5)
18 (6)

92 (1), 813 (5), 633 (10),

453 (1), 544 (5), 4
(1,4)
4 (5)

92 (1), 93 (1), 723 (10),

543 (5), 544 (5), 4
(1,4)
4 (5)

Table 19. Missing states in the 4-brane multiplet.

d D N M IIA IIB

8 2 ⊂ 8 2 89 (1) 72 (1) 72 (1)

1 ⊂ 3 1 89 (1) 72 (1) 72 (1)

7 20 ⊂ 40 2 89 (4), 7212 (6) 72 (3), 712 (3), 83 (1), 623 (3) 72 (3), 712 (3), 713 (3), 533 (1)

10 ⊂ 15 1 89 (4), 7212 (6) 72 (3), 712 (3), 83 (1), 623 (3) 72 (3), 712 (3), 713 (3), 533 (1)

6 160 ⊂ 320 2

89 (10) 7212 (30)

7
(1,2)
15 (30)

5
(2,3)
18 (10)

72 (6), 712 (12), 722 (6),

83 (4), 623 (12), 7
(1,1)
3 (12),

5
(1,3)
3 (4), 724 (6),

6
(1,2)
4 (12), 5

(2,2)
4 (6)

72 (6), 712 (12), 722 (6),

713 (12), 533 (4), 8
(1,0)
3 (4),

6
(1,2)
3 (12), 724 (6),

6
(1,2)
4 (12), 5

(2,2)
4 (6)

80 ⊂ 320 8 9112 (5), 6415 (5) 92 (1), 813 (4), 633 (4), 544 (1)
92 (1), 93 (1), 723 (6),

543 (1), 544 (1)

80 ⊂ 126 1

89 (10),

7212 (30),

7
(1,2)
15 (30),

5
(2,3)
18 (10)

72 (6), 712 (12), 722 (6),

83 (4), 623 (12), 7
(1,1)
3 (12),

5
(1,3)
3 (4), 724 (6),

6
(1,2)
4 (12), 5

(2,2)
4 (6)

72 (6), 712 (12), 722 (6),

713 (12), 533 (4), 8
(1,0)
3 (4),

6
(1,2)
3 (12), 724 (6),

6
(1,2)
4 (12), 5

(2,2)
4 (6)

30 ⊂ 126 3 9112 (5), 6415 (5) 92 (1), 813 (4), 633 (4), 544 (1)
92 (1), 93 (1), 723 (6),

543 (1), 544 (1)

Table 20. Missing states in the 5-brane multiplet.

d D N M IIA IIB

8 6 ⊂ 12 1 89 (3), 7212 (3) 72 (2), 83 (1), 712 (2), 623 (1) 72 (2), 712 (2), 713 (2)

7 30 ⊂ 70 1
89 (6), 7212 (12),

7
(1,2)
15 (12)

72 (3), 712 (6), 722 (3),

83 (3), 623 (3), 7
(1,1)
3 (6),

724 (3), 6
(1,2)
4 (3)

72 (3), 712 (6), 722 (3),

713 (6), 8
(1,0)
3 (3), 6

(1,2)
3 (3),

724 (3), 6
(1,2)
4 (3)

20 ⊂ 70 4 9112 (4), 6415 (1) 92 (1), 813 (3), 633 (1) 92 (1), 93 (1), 723 (3)

Table 21. Missing states in the 6-brane multiplet.

d D N M IIA IIB

8 3 ⊂ 15 1 7212 (3) 712 (2), 724 (1) 72 (1), 722 (1), 724 (1)

6 ⊂ 15 2 9112 (3) 92 (1), 813 (2) 92 (1), 93 (1), 723 (1)

Table 22. Missing states in the 7-brane multiplet.
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p\d 9 8 7 6 5 4 3

0 2 4 6 8 10 12 14

1 1 1 1 1 1 1 1

Table 23. Number of F-branes in the p-brane multiplet in d-dimensions [10].

p\d 9 8 7 6 5 4 3

0 1 2 4 8 16 32 64

1 1 2 4 8 16 32 64

2 1 2 4 8 16 32 64

3 1 2 4 8 16 32

4 1 2 4 8 16

5 1 2 4 8

6 1 2 4

7 1 2

8 1

Table 24. Number of D-branes in the p-brane multiplet in d-dimensions [10].

p\d 9 8 7 6 5 4 3

0 1 12 84

1 1 10 60 280

2 1 8 40 160 560

3 1 6 24 80 240

4 1 4 12 32 80

5 1+1 2+2 4+4 8+8

Table 25. Number of S-branes in the p-brane multiplet in d-dimensions [10].

D Counting of mixed-symmetry potentials

In a series of work on the mixed-symmetry potentials [10, 11, 13, 17], the number of

supersymmetric branes that couple to the mixed-symmetry potentials has been counted up

to α = −7 . We reproduce the same results by counting the number of branes contained in

tables 7–15. Our results include all of the “elementary” exotic branes in d ≥ 3 dimensions,

i.e. up to α = −11 .

For convenience, we consider several examples to elucidate how to reproduce the fol-

lowing tables. Let us consider the string multiplet (p = 1) (8) in d = 4 . In type IIA

theory, the number of D-branes are 21 (6), 41 (20), and 61 (6). In total, there are 32

D-branes, which is consistent with table 24. Even if we count the number of type IIB D-

branes, the result is the same. As another example, let us consider the membrane multiplet

(p = 2) (9) in d = 3 . The number of the E(9;5)-branes in type IIB theory are 2
(1,4,2,0)
9 (105),

2
(3,2,2,0)
9 (210), 2

(5,0,2,0)
9 (21), 2

(1,0,5,1,0)
9 (42), 2

(1,2,3,1,0)
9 (420), 2

(1,4,1,1,0)
9 (210), 2

(2,1,4,0,0)
9

(105), 2
(2,3,2,0,0)
9 (210), and 2

(2,5,0,0,0)
9 (21). In total, there are 1344 E(9;5)-branes, which

are classified in table 40. Repeating a similar argument, we obtain the set of tables 23–42.
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p\d 9 8 7 6 5 4 3

0 64

1 32 448

2 16 192 1344

3 8 80 480

4 4 32 160

5 2 12 48

6 1 4 12

7 1 2

Table 26. Number of E-branes in the p-brane multiplet in d-dimensions [11].

p\d 9 8 7 6 5 4 3

0 14

1 1 14

Table 27. Number of E(4;6)-branes in the p-brane multiplet in d-dimensions [17].

p\d 9 8 7 6 5 4 3

1 560

2 160 2240

3 40 480

4 8 80

5 1 8

Table 28. Number of E(4;3)-branes in the p-brane multiplet in d-dimensions [17].

p\d 9 8 7 6 5 4 3

2 64

3 32

4 16

5 8

6 4

7 2

8 1

Table 29. Number of E(4;0)-branes in the p-brane multiplet in d-dimensions [13].

p\d 9 8 7 6 5 4 3

1 448

2 32 448

Table 30. Number of E(5;6)-branes in the p-brane multiplet in d-dimensions [17].

p\d 9 8 7 6 5 4 3

2 2240

3 480

4 80

5 8

Table 31. Number of E(5;4)-branes in the p-brane multiplet in d-dimensions [17].
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p\d 9 8 7 6 5 4 3

1 280

Table 32. Number of E(6;4)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 3360

3 240

Table 33. Number of E(6;2)-branes in the p-brane multiplet in d-dimensions [17].

p\d 9 8 7 6 5 4 3

1 64

Table 34. Number of E(7;7)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 2240

Table 35. Number of E(7;4)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 448

3 32

Table 36. Number of E(7;6)-branes in the p-brane multiplet in d-dimensions [17].

p\d 9 8 7 6 5 4 3

1 1

Table 37. Number of E(8;7)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 64

Table 38. Number of E(8;0)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 2240

Table 39. Number of E(8;3)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 1344

Table 40. Number of E(9;5)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 560

Table 41. Number of E(10;3)-branes in the p-brane multiplet in d-dimensions.

p\d 9 8 7 6 5 4 3

2 64

Table 42. Number of E(11;7)-branes in the p-brane multiplet in d-dimensions.
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[104] F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and

their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

[105] I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT

monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].

[106] T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet instanton corrections to five-branes and

waves in double field theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].

[107] M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].
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