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1 Introduction

It is commonly believed that unitary, compact conformal field theories in two dimensions

with central charge c > 1 and no conserved Virasoro primary currents (of any spin) are

ubiquitous.1 In particular, the holographic duals of generic quantum theories of gravity

in AdS3 are expected to have such properties [3–9]. Such theories are hard to construct

using standard CFT techniques, however. For instance, rational CFTs always contain

an extended chiral algebra and therefore extra conserved currents [10–12]. Product orb-

ifolds and (GSO projected) superconformal theories also contain higher spin conserved

currents [13]. Evidently there is a tremendous gap in our knowledge of two-dimensional

CFTs: the vast majority of CFTs that are believed to exist are inaccessible with available

analytic methods.2 In this paper, we undertake initial steps towards closing this gap, by

1After all, spin-1 currents are always governed by current algebra in a unitary theory, and can be gauged

away, while higher spin currents hint at some sort of integrability [1, 2].
2See however [14, 15] for families of candidate irrational CFTs that potentially admit no extra conserved

currents.
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refining the modular bootstrap approach of [16–21]. A surprisingly rich set of new con-

straints on the CFT spectrum will be uncovered from unitarity and the modular invariance

of the torus partition function alone.

To begin with, we consider the Virasoro character decomposition of the torus partition

function of a CFT with no conserved current primaries (the latter assumption may be

relaxed, as we will consider later), of the form

Z(τ, τ̄) = χ0(τ)χ̄0(τ̄) +
∑
h,h̄>0

d(h, h̄)χh(τ)χ̄h̄(τ̄),
(1.1)

and impose positivity on the coefficients d(h, h̄). The characters χh with h > 0 are non-

degenerate, and the spins h − h̄ are assumed to be integers. Modular invariance can be

formulated as the “modular crossing equation”

E0,0(τ, τ̄) +
∑
h,h̄>0

d(h, h̄)Eh,h̄(τ, τ̄) = 0,
(1.2)

where

Eh,h̄(τ, τ̄) ≡ χh(τ)χ̄h̄(τ̄)− χh(−1/τ)χ̄h̄(−1/τ̄). (1.3)

Constraints on the spectrum of Virasoro primaries, namely the set of (h, h̄) in the sum as

well as the coefficients d(h, h̄), due to the positivity condition on d(h, h̄), can be extracted

using the powerful numerical method of semi-definite programming. One proceeds by

assuming certain properties of the spectrum, say the presence of a gap in the dimensions,

and seeks a linear functional α that acts on functions of (τ, τ̄), such that α[E0,0] takes the

same sign as α[Eh,h̄] for all (h, h̄) in the hypothetical spectrum.3 If such a linear functional

is found, the positivity condition on d(h, h̄) cannot be satisfied and the proposed spectrum

would be ruled out.

In [16, 19, 20], the linear functional α was taken to be a linear combination of derivatives

in τ2 up to a certain order, evaluated at the self-dual point τ = i (i.e., modular invariance

was imposed only on the restriction of the partition function to the imaginary τ axis).

Using such linear functionals, one finds an upper bound on the scaling dimension of the

primaries that is insensitive to the spin. We denote this bound by ∆
(N)
HFK(c), where N is

the maximal derivative order of the linear functional.4 It was found in [19] that, for fixed

N , ∆
(N)
HFK(c) = c

6 +O(1) in the c→∞ limit.

In this paper, we make two important refinements of the analysis of [19]. Firstly, we

find substantial numerical evidence that the N →∞ limit and c→∞ limit of ∆
(N)
HFK(c) do

not commute. The optimal gap ∆HFK(c) ≡ ∆
(∞)
HFK(c) appears to have the property that its

slope d∆HFK/dc decreases monotonically with c, and asymptotes to a value bHFK that lies

between 1
9 and 1

12 . Secondly, we find a stronger bound on the gap, ∆
(N)
mod(c), using linear

functionals built out of derivatives in both τ and τ̄ up to total derivative order N . The

3Typically, there are infinitely many primaries and we would only make assumptions on the properties

of a finite subset of operators. We need α[Eh,h̄] to have the same sign for sufficiently large h or h̄ in order

to derive a useful constraint.
4N was taken to be 3 in [16] and up to 23 in [19].
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optimal bound on the gap, ∆mod(c) ≡ ∆
(∞)
mod(c), appears to have the same property that

d∆HFK/dc decreases monotonically with c, and asymptotes to a value bmod ≤ bHFK.5

We can also obtain spin-dependent bounds, by applying the most general linear func-

tional to the modular crossing equation. For instance, we have computed an upper bound

∆s=0
mod(c) on the gap in the dimension of scalar primaries, regardless of the gaps in the

spectra of higher-spin primaries. While initially we assume the absence of extra conserved

currents, this assumption will later be relaxed, with very little difference in the resulting

bounds.6 It is observed that ∆s=0
mod(c) < 2 for c < 8, that is, unitary CFTs with c < 8

must admit a relevant deformation. There is a kink on the bounding curve at c = 8, with

scalar gap ∆s=0
mod = 2, which we believe is exact. The gap at this kink is saturated by the

E8 WZW model at level 1.7 Based on this, we conclude that “perfect metals” [22] do not

exist for c ≤ 8. Interestingly, ∆s=0
mod(c) diverges at c = 25, and in fact modular invariance

is compatible with a spectrum that contains no scalar primaries for c > 25. We will give

an explicit example of a spectrum that has such a property.

It is also possible to place upper bounds on the degeneracies of the lightest primaries,

provided that their dimension lies in between c−1
12 and ∆mod (the former is the upper

bound on the twist gap). When this upper bound on the degeneracy is saturated, the

entire spectrum of primaries is determined as zeroes of the optimal linear functional acting

on the characters as a function of the weights.8 We refer to this spectrum as the extremal

spectrum.9 We will demonstrate the extraction of the extremal spectrum in a number of

examples. It is observed that when the upper bound on the (scalar) dimension gap is

saturated for 1 ≤ c ≤ 4, the extremal spectrum always contains conserved spin-1 currents

and marginal scalar primaries. Rather strikingly, we will uncover precisely the spectra

of SU(2), SU(3), G2 and SO(8) WZW models at level 1 from the extremal spectra with

maximal gap at the respective values of central charge.

5Our numerical precision at large values of c is insufficient in resolving the difference between bmod and

bHFK, if there is any.
6More precisely, when conserved primary currents are allowed, we find no difference in the bound ∆s=0

mod

within the numerical error of the binary search for the optimal bound based on semi-definite programming

for 1 ≤ c ≤ 8 and a slightly weaker bound for c > 8 obtained using linear functionals up to a fixed

derivative order. Our numerical extrapolation to infinite derivative order is not accurate enough to resolve

the difference between the two bounds.
7Note that while this CFT does contain extra conserved currents, its partition function happens to admit

a formal decomposition in terms of non-degenerate Virasoro characters with non-negative coefficients, due

to the contributions from twist-2 primaries. We refer to such a partition function as that of the generic

type, which may be viewed as a limiting case of partition functions with no conserved current primaries.
8A priori, the degeneracies of higher-dimension primaries in the extremal spectrum are not fixed by

this procedure. However, in several examples of CFTs that realize the extremal spectrum, we find that

the degeneracies of higher dimension operators agree with the respective upper bounds subject to the

assumed gap.
9Note that in our definition of the extremal spectrum, the degeneracies are only required to be positive,

and not necessarily integers. Demanding the latter would slightly refine our bounds.
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2 Constraining gaps in the operator spectrum

2.1 Basic setup

The vacuum Virasoro character χ0 and the non-degenerate Virasoro character χh are

given by

χ0(τ) =
q−

c−1
24

η(τ)
(1− q), χh(τ) =

qh−
c−1
24

η(τ)
, (2.1)

where q = e2πiτ , η(τ) is the Dedekind eta function, and c is the central charge. In general,

the partition function of a compact, unitary CFT admits the character decomposition

Z(τ, τ̄) = χ0(τ)χ̄0(τ̄) +

∞∑
j=1

[
djχj(τ)χ̄0(τ̄) + d̃jχ0(τ)χ̄j(τ̄)

]
+
∑
h,h̄

d(h, h̄)χh(τ)χ̄h̄(τ̄),

(2.2)

where dj and d̃j are the degeneracies of holomorphic and anti-holomorphic currents of spin

j, and d(h, h̄) is the degeneracy of primary operators of weight (h, h̄). For the rest of this

paper, we will assume that the spectrum is parity-invariant. The constraints we derive on

the parity invariant-spectrum can be applied to parity non-invariant theories as well, if we

simply consider the projection of the partition function Z(τ, τ̄) onto its parity invariant

part, 1
2 [Z(τ, τ̄) + Z∗(τ̄ , τ)]. For the parity invariant spectrum, we will label the primaries

by their dimension ∆ = h+ h̄ and spin s = |h− h̄| (∈ Z≥0), and write the degeneracies as

d∆,s ≡ d
(

∆ + s

2
,
∆− s

2

)
= d

(
∆− s

2
,

∆ + s

2

)
. (2.3)

As explained in the introduction, we will be primarily interested in genuinely irrational

unitary CFTs with central charge c > 1, no conserved currents, i.e., dj = d̃j = 0, and

all nontrivial primaries obeying ∆ > s. In deriving various numerical bounds, it will be

convenient to allow for the limiting case ∆ → s, which corresponds to a contribution to

the partition function of the form

lim
∆→s

(
χ∆+s

2
χ̄∆−s

2
+ χ∆−s

2
χ̄∆+s

2

)
= χs(χ̄0 + χ̄1) + (χ0 + χ1)χ̄s. (2.4)

That is, the spectrum may contain conserved currents of spin s, along with twist-2 primaries

of dimension s + 1 and spin s − 1. We refer to such a partition function as that of the

generic type. We will see in several instances that certain rational CFTs with partition

functions of the generic type appear at kinks on the boundary of the domain of allowed

spectra.

As in [19], it is convenient to work with the reduced partition function

Ẑ(τ, τ̄) ≡ |τ |
1
2 |η(τ)|2Z(τ, τ̄), (2.5)

decomposed into the reduced characters

χ̂0(τ) ˆ̄χ0(τ̄) = |τ |
1
2 |q−

c−1
24 (1− q)|2, χ̂h(τ) ˆ̄χh̄(τ̄) = |τ |

1
2 qh−

c−1
24 q̄h̄−

c−1
24 . (2.6)

– 4 –
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Since |τ |
1
2 |η(τ)|2 is invariant10 under τ → −1/τ , it suffices to consider the modular crossing

equation for Ẑ.

It is convenient to introduce the variable z defined by τ = i exp(z), so that the modular

S transformation τ → − 1
τ takes z → −z. Modular invariance amounts to the statement

that the partition function is an even function in (z, z̄) (and that all spins are integers).

To implement semi-definite programming on the modular crossing equation, we will apply

to it the basis of linear functionals

∂mz ∂
n
z̄ |z=z̄=0, m+ n odd. (2.7)

In other words, we consider linear functionals of the form

α ≡
∑

m+n odd

αm,n∂
m
z ∂

n
z̄ |z=z̄=0, (2.8)

and turn the modular crossing equation (1.2) into

0 = α[Ẑ(τ, τ̄)] = α[χ̂0(τ) ˆ̄χ0(τ̄)] +

∞∑
s=0

∑
∆∈Is

d∆,sα
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
,

(2.9)

where Is is a (typically infinite) discrete set that consists of the dimensions of primaries of

spin s.

One may proceed by hypothesizing, for instance, that there is a gap ∆∗s (≥ s) in the

spectrum of spin-s primaries, i.e., Is consists of dimensions ∆ ≥ ∆∗s only. If we can find a

functional α, which amounts to a set of αm,n ∈ R in (2.8), such that

α[χ̂0(τ) ˆ̄χ0(τ̄)] > 0,

α
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
≥ 0, ∆ ≥ ∆∗s, ∀s ∈ Z≥0,

(2.10)

we would then arrive at a contradiction with the non-negativity of the degeneracies d∆,s in

the modular crossing equation, thereby ruling out the putative spectrum. In other words,

we would have proven that the gap in the spin-s spectrum cannot exceed ∆∗s simultaneously

for all s.

As examples, we may take

• ∆∗s = max(∆mod, s), where ∆mod is the maximal gap in the scaling dimension spec-

trum of all primaries.

• ∆∗0 = ∆s=0
mod, ∆∗s = s (s ≥ 1), where ∆s=0

mod is the maximal gap in the dimension of

scalar primaries.

• ∆∗s = s+ tmod, where tmod is the maximal twist gap in the spectrum of all primaries.

10It is not invariant under the T transform τ → τ+1, but we have already taken into account T -invariance

of Z(τ, τ̄) by demanding that the spins are integers, so it suffices to examine the S transform.

– 5 –
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To implement the above procedure numerically, we must restrict to a finite subset of

the basis of linear functionals, say ∂mz ∂
n
z̄ |z=z̄=0 with odd m + n ≤ N . We will refer to

N as the “derivative order” of the linear functional. The upper bound on the gap ∆mod

derived by exclusion using linear functionals up to derivative order N , for instance, will be

denoted ∆
(N)
mod. In other words, ∆

(N)
mod is the smallest ∆∗ such that (2.10) can be satisfied

with ∆∗s = max(∆mod, s), by a functional α restricted to derivative order N . While for

each positive integer N , ∆
(N)
mod is a rigorous bound on the gap, the optimal bound would

be obtained by taking the N →∞ limit.

Our numerical analysis is performed using the SDPB package [23]. In practice, we

also need to truncate the spectrum: while SDPB allows us to consider a spectrum that

consists of operators of all dimensions (say, above a hypothetical gap), we will need to

restrict the spins of operators to a (sufficiently large) finite range, s ≤ smax. In seeking

linear functionals for the purpose of excluding a given hypothetic spectrum, increasing

smax puts more constraints on the linear functional, and in principle we need to take the

limit smax →∞. In practice, however, the bound ∆
(N)
mod derived at a given derivative order

N stabilizes to within numerical precision once smax exceeds a certain value (typically of

order N).

In optimizing the bounds with increasing derivative order N , we find that at larger

values of the central charge c, one must also work to higher values of N for the bound

∆
(N)
mod to stabilize. When such a stabilization is unattainable due to the computational

complexity, we will need to numerically extrapolate ∆
(N)
mod to N = ∞, by fitting with a

polynomial in 1/N (say, of linear or quadratic order).

2.2 The twist gap

In a unitary, compact two-dimensional CFT with central charge c > 1, the twist gap11 tgap

can be no larger than c−1
12 . Furthermore, in the absence of conserved currents, there must

be infinitely many high spin primaries whose twists accumulate to c−1
12 . This can be seen

as follows.12

Consider the character decomposition of the partition function (1.1). In the limit

τ̄ → −i0+, Z(τ, τ̄) = Z(−1/τ,−1/τ̄) is dominated by the modular transformed vacuum

character, which may be expressed as

lim
τ̄→−i0+

Z(−1/τ,−1/τ̄)

χ̄0(−1/τ̄)
= χ0(−1/τ) =

∫ ∞
c−1
24

dh′K(0, h′)χh′(τ), (2.11)

where K(h, h′) is the modular kernel [5, 6]. On the other hand, we have

lim
τ̄→−i0+

Z(τ, τ̄)

χ̄0(−1/τ̄)
= lim

τ̄→−i0+

χ0(τ)
χ̄0(τ̄)

χ̄0(−1/τ̄)
+
∑
h,h̄>0

d(h, h̄)χh(τ)
χ̄h̄(τ̄)

χ̄0(−1/τ̄)

 . (2.12)

11In two-dimensional CFTs, the twist t (here we do not use τ to avoid confusion with the modular

parameter) is defined by t = ∆− s = 2 min(h, h̄).
12This argument is due to Tom Hartman.
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Figure 1. Top: the colored curves are the upper bound on the twist gap as a function of the central

charge for increasing derivative order (up to 43) from green to red. The results are consistent with

the convergence to the bound on the twist gap tmod = c−1
12 predicted by the analytic argument in

the infinite-N limit. Bottom: the bound on the twist gap t
(N)
mod as a function of inverse derivative

order for c = 5 and c = 100.

In the limit τ̄ → −i0+, χ̄0(−1/τ̄) ∼ [q̄(−1/τ̄)]−
c
24 while χ̄h̄(τ̄) ∼ (iτ̄)

1
2 [q̄(−1/τ̄)]−

1
24 , and

thus limτ̄→−i0+
χ̄h̄(τ̄)

χ̄0(−1/τ̄) = 0 for c > 1. If we could exchange the limit and summation over

primaries in (2.12), we would have concluded that the right-hand side of (2.12) vanished,

which would contradict (2.11). In particular, in the τ → i∞ limit (after taking τ̄ → −i0+

first), the right-hand side of (2.11) is dominated by the character of weight h′ = c−1
24 .

For (2.12) to be consistent, there must be infinitely many primaries with left conformal

weight h accumulating to c−1
24 , or equivalently, their twists accumulating to c−1

12 .

As a test of our numerical approach to modular bootstrap, we can indeed reproduce

this twist gap bound, by seeking linear functionals with the following positivity properties,

α
[
χ̂0(τ) ˆ̄χ0(τ̄)

]
> 0

α
[
χ̂ t

2
+s(τ) ˆ̄χ t

2
(τ̄) + χ̂ t

2
(τ) ˆ̄χ t

2
+s(τ̄)

]
≥ 0, t ≥ t∗mod, ∀s ∈ Z≥0. (2.13)

The smallest t∗mod such that there exists a linear functional α satisfying the above equation

then yields the strongest upper bound on the twist gap, which we denote tmod. Figure 1

shows t
(N)
mod(c) as a function of the central charge. Indeed it appears that the bounds are

– 7 –
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converging to the twist gap predicted by the above argument as the derivative order is taken

to infinity. However, we observe that the convergence of the bound with N−1 is slower as the

central charge is increased. This will turn out to be a generic feature of bounds we obtain

from semi-definite programming, and will prevent accurate determinations of asymptotic

bounds as c→∞.

2.3 Refinement of Hellerman-Friedan-Keller bounds

Bounds on the gap in the dimension of all primaries, regardless of spin, were derived

in [16, 19] by applying linear functionals of the form

α =
∑

odd n≤N
αn(τ∂τ + τ̄ ∂τ̄ )n|τ=i (2.14)

to the modular crossing equation. We refer to (2.14) as HFK functionals, and the resulting

bound on the dimension gap ∆
(N)
HFK.

The HFK functional amounts to restricting the partition function to the imaginary

τ -axis. Writing τ = iβ, for real β, the character decomposition is blind to the spins of

operators in the spectrum. In particular, the reduced partition function takes the form

Ẑ(β) = Ẑ0(β) +
∑
∆

d∆Ẑ∆(β), (2.15)

where d∆ is the degeneracy including all primary operators with dimension ∆ = h+ h̄, and

Ẑ0(β) = β
1
2 e2πβ c−1

12 (1− e−2πβ)2, Ẑ∆(β) = β
1
2 e−2πβ(∆− c−1

12 ). (2.16)

The HFK functional can be written as

α =
∑

odd n≤N
αn (β∂β)n|β=1 . (2.17)

To place upper bounds on the dimension of the lightest operator in the spectrum, we search

for linear functionals that satisfy the following positivity properties

α[Ẑ0(β)] > 0

α[Ẑ∆(β)] ≥ 0, ∆ ≥ ∆∗HFK. (2.18)

If such a functional can be found, then ∆∗HFK is a rigorous upper bound on the gap. The

bound ∆
(N)
HFK is obtained as the smallest ∆∗HFK such that (2.18) holds.

In [19], the bound on the gap in the large c limit was of primary interest. It was found

that, for fixed N (taken to be 3 in [16] and 23 in [19]), in the large c limit,

∆
(N)
HFK =

c

6
+O(1). (2.19)

We employ the strategy of [19] but consider the extrapolation limN→∞∆
(N)
HFK(c) at each

value of c, thereby exhausting the constraints from the HFK functionals (2.17). Examples

of data points used to obtain such extrapolations are shown in figure 2. We observe

– 8 –
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0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/N

3.00

3.05

3.10

3.15

3.20

ΔHFK (N) (c=20)

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1/N

8.0

8.5

9.0

ΔHFK (N) (c=60)

Figure 2. The gap bound ∆
(N)
HFK(c) obtained using HFK functionals up to derivative order N = 175

for central charge c = 20 (left) and up to N = 183 for c = 60 (right).

numerically that as we increase N , the value of N at which ∆
(N)
HFK(c) stabilizes grows with

the central charge c. Thus, it becomes increasingly difficult to extrapolate to ∆
(∞)
HFK(c) as

we go to larger values of c, requiring that we work to larger derivative orders N to obtain

an accurate extrapolation. Figure 3 shows the result of an extrapolation of ∆
(∞)
HFK(c)/c, as

well as the slope d∆
(∞)
HFK(c)/dc of the bound as a function of the central charge, over a range

of the central charge where the numerical extrapolation appears reliable (using results up

to N = 183).

We observe that the slope of ∆HFK(c) decreases monotonically, and we conjecture

that this property holds for all values of c. Note that this slope falls well below 1
6 , the

large c asymptotic slope of ∆
(N)
HFK(c) for fixed N (as was found in [19]). Since a reliable

extrapolation requires going to derivative order N that grows with c, so far we have not

been able to perform a reliable extrapolation for c & O(102). Based on the numerical

results, together with the known constraint ∆HFK(c) ≥ tgap(c) = c−1
12 , we conjecture that

in the large c limit,

lim
c→∞

∆HFK(c)

c
= bHFK, with

1

12
≤ bHFK <

1

9
. (2.20)

The need for computing the bound using HFK functionals to very large derivative order

N suggests that {(β∂β)n|β=1}odd n is in fact a poor choice of basis for the optimal linear

functional at large c. We will examine such optimal functionals in detail in section 2.5.

2.4 Bounds from full modular invariance

We now consider the stronger constraints obtained by imposing modular invariance on

Ẑ(τ, τ̄) on the entire upper half τ -plane (as opposed to the imaginary τ -axis), by applying

to the modular crossing equation linear functionals of the form

α =
∑

odd m+n≤N
αm,n∂

m
z ∂

n
z̄ |z=z̄=0 (2.21)
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Figure 3. Left : the green to red curves are plots of ∆
(N)
HFK(c) with increasing N ranging from 7

to 183, while the black curve represents the numerically extrapolated bound ∆HFK(c) = ∆
(∞)
HFK(c).

Right : the slope of ∆HFK(c) as a function of c, obtained from taking the derivative of the Bezier

fitting function of the extrapolated ∆
(∞)
HFK(c), over a range of c where the numerical extrapolation

appears reliable. The slope drops below 1
9 for c > 75.5.

that satisfy

α
[
χ̂0(τ) ˆ̄χ0(τ̄)

]
> 0

α
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
≥ 0, ∆ ≥ max (∆∗mod, s) , (2.22)

for some ∆∗mod. If such a linear functional α is found, we learn that the gap in the dimension

spectrum of all primaries is bounded from above by ∆∗mod. The bound that results from

the smallest such ∆∗mod will be denoted ∆
(N)
mod(c). The optimal bound would be obtained

in the infinite N limit, namely,

∆mod(c) = lim
N→∞

∆
(N)
mod(c). (2.23)

Note that, just as with the HFK bound, it is important that we take the N →∞ limit at

fixed c.

Figure 4 shows the bound ∆mod(c) obtained by a numerical extrapolation of ∆
(N)
mod to

infinite derivative order N . We find with high numerical precision that

∆mod(c) =
c

6
+

1

3
, for c ∈ [1, 4]. (2.24)

A kink appears at c = 4 and ∆mod = 1, where the slope of ∆mod(c) jumps from 1
6 to

the left of the kink, to 1
8 to the right of the kink. As the central charge is increased, the

slope of ∆mod(c) appears to decrease monotonically, just as ∆HFK(c) seen in the previous

subsection. For larger values of c, a numerical extrapolation to infinite derivative order N

is again needed. Based on the numerical results, we conclude that

∆mod(c) <
c

8
+

1

2
, c > 4. (2.25)

– 10 –



J
H
E
P
0
9
(
2
0
1
8
)
0
6
1

Figure 4. The bound on the dimension gap ∆mod as a function of central charge c, obtained by

extrapolating ∆
(N)
mod to N = ∞. The numerical extrapolation is performed by fitting 31 ≤ N ≤ 55

bounds with a quadratic polynomial in 1/N .

Furthermore, we conjecture that the slope ∆mod(c) decreases monotonically, and asymp-

totic to a value

lim
c→∞

∆mod(c)

c
= bmod, with

1

12
≤ bmod ≤ bHFK <

1

9
. (2.26)

Interestingly, ∆mod(c) coincides with ∆HFK(c) at c = 4 (where both are equal to 1),

but the bounds do not agree for c above or below 4. The numerical evaluation of ∆
(N)
mod(c)

is more time consuming than that of ∆
(N)
HFK(c), and we are unable to perform a reliable

extrapolation of the large c asymptotics of ∆mod(c) directly. We can nonetheless analyze

the difference between the two bounds, ∆HFK(c) − ∆
(N)
mod(c), for moderate values of c, as

shown in figure 5. We observe that at a fixed derivative order N of the linear functional,

the difference between ∆HFK(c) and ∆
(N)
mod(c) will initially grow with the central charge

until it eventually begins to decrease and becomes negative. This is related to the observed

phenomenon that as the central charge is increased, one must use linear functionals of

larger and larger derivative order to obtain stabilized bounds. While it is possible that

the asymptotic slope bmod is smaller than bHFK, we have not been able to resolve their

difference numerically.

2.5 The optimal linear functional

It is somewhat unexpected that such delicate numerical analysis is required to extract

bounds from a very simple form of the modular crossing equation for the reduced partition

function, and we still do not know the value of the asymptotic slopes, bHFK and bmod. As

an analytic derivation of the optimal bounds is not yet available, we may look for hints

in the optimal linear functional α. At a given derivative order N , by minimizing the gap

bound ∆∗HFK or ∆∗mod, we can determine the optimal linear functional, which we denote by

α
(N)
HFK or α

(N)
mod. Numerically, it appears that there are indeed well defined N → ∞ limits

on the optimal linear functionals,

αHFK = lim
N→∞

α
(N)
HFK = FHFK(β∂β)|β=1,

αmod = lim
N→∞

α
(N)
mod = Fmod(∂z, ∂z̄)|z=z̄=0.

(2.27)
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Figure 5. ∆HFK −∆
(N)
mod as a function of central charge c, for c ∈ [4, 22] and increasing N . The

numerical values of the HFK bound are obtained by a linear extrapolation of ∆
(N)
HFK to 1/N → 0

using bounds for 137 ≤ N ≤ 175.

Figure 6. Plots of F
(N)
HFK(t) with increasing derivative orders N (from green to red), at central

charges c = 10, 30, 100.

Here FHFK is a power series in β∂β (to be evaluated at β = 1), and Fmod is a power series in

∂z, ∂z̄ (to be evaluated at z = z̄ = 0). Both FHFK and Fmod can be computed numerically.

Figure 6 shows a few examples of the polynomials F
(N)
HFK(t) that represent the optimal

HFK functional up to derivative order N , that converge in the infinite N limit. For small

values of c, FHFK(t) can be rather accurately fitted by a linear combination of sin(at)

and sinh(bt), for some constants a, b, suggesting that the optimal linear functional is well

approximated by a linear combination of the modular crossing equation evaluated at two

values of β, one real and the other lying on the unit circle (analytically continued in β). At

large c, however, the behavior of FHFK(t) changes: it can be approximately fitted by te−at
2

over a large range of t, suggesting that the optimal linear functional is more appropriately

represented by an integral transform in β rather than taking derivatives at β = 1.13

Similarly, we can obtain F
(N)
mod(w, w̄) that represents the optimal functional obtained

by imposing full modular invariance. It exhibits a nontrivial dependence on both the real

and imaginary parts of w, refining the HFK functional. An example is shown in figure 7.

13It is tempting to suggest that the optimal functional in the large c limit has the form ∂ze
−a∂2

z |z=0, for

some c-dependent constant a, but the latter by itself does not take the same sign when acting on arbitrarily

high dimension characters as on the vacuum character, and thus cannot be used to derive an analytic bound

on the gap.
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Figure 7. A plot of F
(N)
mod(u+ iv, u− iv) with increasing derivative orders N (as indicated by colors

from green to red), at central charge c = 5.

3 Spin-dependent bounds

Using the complete basis of linear functionals (2.8), it is now possible to obtain more refined

bounds on the spectrum that distinguish primaries of different spins. In this section, we

present a number of results on the spin-dependent bounds.

3.1 Gap in the spectrum of scalar primaries

By searching for linear functionals that satisfy the following positivity conditions

α
[
χ̂0(τ) ˆ̄χ0(τ̄)

]
> 0

α
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
≥ 0,

{
∆ ≥ ∆∗s=0, s = 0

∆ ≥ s, s > 0
(3.1)

we can place upper bounds on the dimension of the lightest scalar primary operator, with

no assumption on the spectra of other spins. Namely, if such a linear functional is found,

we would learn that the gap in the dimensions of scalar primaries must be bounded from

above by ∆∗s=0. The smallest such ∆∗s=0, obtained using functionals up to derivative order

N , will be denoted ∆
s=0,(N)
mod . We can numerically extrapolate to infinite N , which results

in the optimal bound ∆s=0
mod on the scalar gap. Our results are shown in figure 8.

By definition, ∆s=0
mod(c) ≥ ∆mod(c), and the two agree when c ≤ 4 (where the bound is

less than 1 and only scalars could lie below the bound). It appears that the discontinuity

in the slope at c = 4 is absent in ∆s=0
mod(c). However, there appear to be new kinks14 in the

∆s=0
mod(c) curve when the bound attains integer values 2, 3, 4, · · · . In particular, ∆s=0

mod(c) < 2

for c < 8, which implies that unitary CFTs with no conserved currents and c < 8 must

admit relevant deformations. The kink at c = 8 and ∆s=0
mod = 2 is in fact realized by a Narain

14We would like to emphasize, however, that the extrapolation to infinite N is not accurate enough to

determine whether the apparent kinks at ∆s=0
mod = 3, 4, . . . represent genuine discontinuities in the derivative

of the ∆s=0
mod(c) curve.
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Figure 8. Top-left: the upper bound on the gap in the dimension of scalar primaries obtained at

increasing derivative order of the linear functional (from green to red, up to N = 51) as a function

of the central charge. Top-right: the extrapolated bounds on the dimension of the lightest scalar

operator ∆s=0
mod (red) as a function of the central charge, superposed with the bound on the overall

gap ∆mod (blue). For the bound on the scalar gap, the numerical extrapolation is performed by

fitting 19 ≤ N ≤ 51 bounds with a quadratic polynomial in 1/N . Bottom: the extrapolated bound

on the scalar gap (black) superposed with the bounds at fixed derivative orders (increasing from

green to red) near the first two kinks.

lattice CFT of 8 free compact bosons (even though this CFT contains conserved currents,

its partition function is of generic type), as will be discussed, among other examples, in

the next subsection.

We find no bound on the dimension of the lightest scalar operator for c ≥ 25. At a

given derivative order N , we denote by c
(N)
∗ the central charge at which the scalar gap

bound ∆
s=0,(N)
mod ceases to exist. As shown in figure 9, c

(N)
∗ approaches 25 from below

as N →∞.

The disappearance of an upper bound on the scalar gap for c ≥ 25 has a very simple

explanation. Our positivity criteria on the degeneracy of the primaries do not exclude the

limit where the degeneracies of the primaries diverge, and the partition function becomes

a divergent factor multiplied by the partition function of a noncompact CFT spectrum,

namely that of a continuous spectrum with a finite density of states, with no SL(2,R) ×
SL(2,R) invariant vacuum. Indeed, consider the modular invariant function

Z(τ, τ̄) =
J(τ) + J̄(τ̄)

τ
1
2

2 |η(τ)|2
, (3.2)
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Figure 9. Left : the upper bound on the dimension of the lightest scalar primary operator as

a function of central charge at fixed derivative order of the linear functional. Right : the central

charge at which a bound on the scalar dimension gap can no longer be found as a function of inverse

derivative order of the linear functional.

where J(τ) is related to the elliptic j-invariant j(τ) by J(τ) = j(τ)−744 = q−1 +196884q+

O(q2). When interpreted as the partition function of a noncompact CFT of central charge

c, it admits a decomposition in terms of Virasoro characters associated with primaries of

nonzero spin and twist ≥ c−25
12 . Thus, the absence of scalar primaries is consistent with

modular invariance for c ≥ 25.

3.2 Kinks and CFTs with generic type partition function

An obvious question is whether there are CFTs whose spectra saturate the dimension gap

bounds. This turns out to be the case for a few values of the central charge, where the

bound is saturated by a rational CFT whose partition function is of the generic type. These

examples provide good consistency checks of our numerical methods.

• At c = 1, the bound ∆mod = 1
2 is saturated by the gap of the SU(2) WZW model at

level 1, otherwise known as the free compact boson at the self-dual radius.

• At c = 2, the bound ∆mod = 2
3 is saturated by the SU(3) WZW model at level 1.

This theory admits a description in terms of free bosons with target space T 2 at the

Z3-invariant point in both its Kähler and complex structure moduli spaces.

• At c = 14
5 , the bound ∆mod = 4

5 is saturated by the G2 WZW model at level 1.

• At c = 4, the bound ∆mod = 1 is saturated by the SO(8) WZW model at level 1.

This theory also admits a description in terms of 8 free fermions with diagonal GSO

projection. Note that this is the kink on the curve ∆mod(c).

• At c = 8, the bound ∆s=0
mod = 2 is saturated by the E8 WZW model at level 1. This

theory also admits a description in terms of 8 compact bosons at the holomorphically

factorized point in its moduli space, where the holomorphic factor can be described

as the Narain compactification on the root lattice of E8. This is the first kink on the

curve for the upper bound on the scalar dimension gap ∆s=0
mod(c).
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In section 4, we will show that the spectra of these theories are in fact completely

determined by the saturation of the gap bound.

3.3 Allowing for primary conserved currents

So far, we have focused on spectra with no conserved current primaries, together with

the limiting case of generic type spectra, where conserved currents were allowed as long

as their contributions to the partition function were combined with twist-2 primaries to

give non-degenerate Virasoro characters. It is straightforward to relax this assumption by

including degenerate characters of the form χj(τ)χ̄0(τ̄) and χ0(τ)χ̄j(τ̄) in the partition

function, as in (2.2), and try to rule out hypothetical spectra by seeking linear functionals

that act non-negatively on the degenerate Virasoro characters as well as the non-degenerate

characters present in the spectrum.

Before doing so, let us note that there are many constraints on the spectrum due

to the associativity of the OPE that are not taken into account by modular invariance

of the partition function alone. This is apparent in the presence of conserved current

primaries:15 operators must form representations of an extended chiral algebra, and in

particular, operators formed by taking product of left and right moving currents (e.g. of

the form Ja(z)J̃b(z̄)) are part of the spectrum.

In the discussion that follows, we will again assume that the spectrum is parity-

invariant. If there are holomorphic and anti-holomorphic spin-1 currents in the CFT, then

the spectrum consists of representations of a current algebra, whose characters always ad-

mit non-negative decompositions into non-degenerate Virasoro characters. In other words,

if conserved spin-1 currents are present in a parity invariant CFT, then the partition func-

tion is necessarily of the generic type, except the case where there is a single U(1) current

algebra, which can easily be taken into account by replacing the vacuum Virasoro character

by the U(1) current algebra character.

We shall study the numerical bounds on the scalar dimension gap in the following

three cases:

(I) Conserved current primaries of all spins are allowed. Due to the basic OPE constraints

discussed above (under the assumption of a parity-invariant spectrum), it suffices to

assume either there are no conserved spin-1 currents (i.e. case (II) below), or there

is a U(1) current (in both the left and right sector) while higher-spin primaries come

with non-degenerate characters.

(II) Conserved current primaries of spins j ≥ 2 are allowed.

(III) Conserved current primaries of spins j ≥ 3 are allowed, i.e., we consider CFTs with

a unique stress-energy tensor and no spin-1 currents.

The resulting upper bound on the scalar gap will be denoted ∆
s=0,(N)
mod,j≥1(c), ∆

s=0,(N)
mod,j≥2(c),

and ∆
s=0,(N)
mod,j≥3(c) respectively.

15When the currents are not conserved, the constraints on their OPE are much more delicate.
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Figure 10. Top-left: the difference between the bounds ∆s=0
mod(c) obtained with and without

allowing extra conserved currents, computed using linear functionals up to a given derivative order

N . The colors from green to red indicate bounds at increasing values of N , up to N = 51. The

black lines indicate the error threshold due to our binary search for the bound. Top-right: the

same plot zoomed into the range 11 ≤ c ≤ 13. Bottom: the extrapolated bounds ∆s=0
mod(c) obtained

with and without allowing extra conserved currents, plotted in the vicinity of the second kink. The

numerical extrapolation is performed by fitting 19 ≤ N ≤ 51 bounds with a quadratic polynomial

in 1/N .

In case (III), we find essentially no difference between ∆
s=0,(N)
mod,j≥3(c) and ∆

s=0,(N)
mod (c),

up to the numerical error due to the finite resolution ε of the binary search implemented for

determining the optimal bound,16 except for a tiny peak in their difference that is localized

near c ∼ 12.5 and narrows with increasing derivative truncation order N .

In cases (I) and (II), we find the same bounds ∆
s=0,(N)
mod,j≥1(c) and ∆

s=0,(N)
mod,j≥2(c) for the

scalar gap, at sufficiently high derivative order N . For N ≥ 19, we find no difference

between ∆
s=0,(N)
mod,j≥1(c) and ∆

s=0,(N)
mod (c) (the latter obtained assuming the absence of con-

served current primaries) for c ≤ 8, up to our numerical resolution. A small difference

∆
s=0,(N)
mod,j≥1(c) −∆

s=0,(N)
mod (c) is found for 9 . c . 15, as shown in figure 10, for N up to 51.

The numerics suggests that when conserved current primaries of all spins are allowed, the

second kink near c ∼ 12.5 for ∆s=0
mod(c) may be shifted slightly to the left in the curve for

∆s=0
mod,j≥1(c). Note that unlike the first kink in figure 8 at c = 8, we do not know of a

candidate CFT that resides at this second kink.

In conclusion, apart from a small shift in the position of the second kink near c ∼ 12.5,

we do not find any significant weakening of the scalar gap bound ∆s=0
mod(c) when conserved

current primaries are allowed.

16Here the resolution of our binary search for the optimal bound is taken to be ε = c−1
48000

.
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Figure 11. The gap in the dimension of scalar primaries as a function of the gap in the twist at

increasing derivative order (from green to red, up to N = 47) for c = 4, 8, 12.

Unitary CFTs that admit only irrelevant deformations describe what are known as

“perfect metals” [22]. It follows from our bound on the scalar dimension gap that perfect

metals do not exist when the central charge c is less than or equal to 8.

3.4 Turning on a twist gap

As remarked in the introduction, while there is a nontrivial upper bound on the twist gap

tmod = c−1
12 , we do not know any explicit construction of unitary, compact CFTs with c > 1

and nonzero twist gap.17 Obviously it would be of interest to exhibit such theories, if they

are indeed as ubiquitous as one might expect (some candidates for irrational CFTs with

no extra conserved currents have been considered in [14, 15]). Here we study the upper

bound on the gap in the dimension of scalar primaries while imposing a nonzero gap in the

twist of all primary operators in the spectrum. This would in particular exclude theories

that contain conserved current primaries (regardless of whether their partition functions

are of the generic type).

Figure 11 shows the bound on the scalar dimension gap ∆
(N)
mod(tgap) as a function of

the twist gap tgap, for various values of central charge c. As tgap is increased from 0 to

its upper bound tmod = c−1
12 , ∆mod(tgap) decreases smoothly (but interestingly, it never

approaches c−1
12 ).

If we further increase the twist gap for nonzero-spin primaries beyond c−1
12 , the bound

on scalar dimension gap drops to c−1
12 as expected. An example of this is shown in figure 12.

As we will explain in sections 4.1 and 4.2, when the upper bound on the degeneracy

of the lightest operator is saturated, the rest of the spectrum (which we refer to as the

“extremal spectrum”) is uniquely determined by the zeroes of the optimal linear functional

acting on the characters as a function of the dimension. This provides a procedure to

explicitly construct a spectrum for which the twist gap is nonzero.18 As a proof of principle,

in figure 13 we plot the optimal functional acting on spin-0 and spin-1 characters for c = 4

with the maximal twist gap and a value of the dimension gap close to the upper bound.

The resulting spectra with finite twist gap and maximal degeneracy of the lightest primary

appear to be discrete and are not obviously inconsistent.

17Nor do we know one with zero twist gap but no conserved primary currents, i.e., a unitary, compact

CFT with infinitely many non-conserved higher spin primaries whose twists accumulate to zero.
18However, this procedure does not on its own determine the degeneracies of the higher-dimension oper-

ators in the extremal spectrum.
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Figure 12. The gap in the dimension of scalar primaries as a function of the gap in the twist of all

nonzero-spin primaries at increasing derivative order (from green to red, up to N = 47) for c = 5.

The dotted lines denote ts≥1gap = c−1
12 and ∆

s=0,(N)
mod = c−1

12 .

Figure 13. The optimal linear functional acting on spin-0 and spin-1 reduced characters with the

maximal twist gap imposed. The zeroes of this functional determine the dimensions of operators

in the extremal spectrum.

It is interesting to compare ∆s=0
mod(tgap) with the bound on scalar dimension gap when

a nonzero twist gap only for spin-1 primaries is introduced. We denote the latter bound

by ∆̃s=0
mod(ts=1

gap ). Obviously, by definition ∆̃s=0
mod(t) ≥ ∆s=0

mod(t). We find numerically that

∆̃s=0
mod(t) coincides with ∆s=0

mod(t) for t ≤ c−1
12 . A transition occurs at a larger value of t, after

which ∆̃s=0
mod(t) decays smoothly with t (potentially exponentially fast) towards c−1

12 . We

have not managed to obtain a reliable plot of the full curve of ∆̃s=0
mod(ts=1

gap ) as the numerics

stabilize slowly with the truncation on derivative order N , for an intermediate range of ts=1
gap .

4 Operator degeneracies and extremal spectra

4.1 Bounds on the degeneracy at the gap

If we impose a dimension gap ∆gap on the spectrum (not to be confused with the upper

bound on such a gap, which we denoted by ∆mod), we can use semi-definite programming
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to place universal bounds on the degeneracies of primary operators in such a CFT. In

particular, if ∆gap lies between the twist gap bound c−1
12 and the upper bound on the

dimension gap (that follows from modular invariance) ∆mod, one can place upper bounds

on the degeneracies of primaries, as follows.

Fixing the dimension ∆gap(≤ ∆mod) of the lowest primary operator, consider all linear

functionals ρ of the form (2.8) such that

ρ
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
≥ 0, ∆ ≥ max (∆gap, s) . (4.1)

Since the gap ∆gap is allowed by the modular crossing equation, ρ must be negative when

acting on the vacuum character. We will normalize ρ so that

ρ
[
χ̂0(τ) ˆ̄χ0(τ̄)

]
= −1. (4.2)

The degeneracy19 d∆,s of a primary of dimension ∆ and spin s is then subject to the

following upper bound (this mirrors the upper bound on the squared OPE coefficients

derived in the context of the four-point function bootstrap in [24])

d∆,s ≤
(
ρ
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
])−1

. (4.3)

Obviously, the optimal bound on the degeneracy would be obtained using the functional

that maximizes ρ
[
χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄) + χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄)
]
, subject to the conditions (4.1)

and (4.2).

We will illustrate this method starting with the special case of c = 1. Figure 14 shows

the upper bound on the degeneracy of the lowest dimension scalar primaries above the

vacuum as a function of the dimension gap ∆gap in the spectrum. As the derivative order N

is increased, the degeneracy bound converges to 3
2 except for a sequence of peaks located at

∆gap = 1
2 ,

2
9 ,

1
8 , · · · where the degeneracy bound is 4 or 2. This is in fact precisely consistent

with what we know about the partition function of c = 1 CFTs, as we now explain.

To our knowledge, the only known unitary, compact c = 1 CFTs are the compact

boson and its orbifolds [25]. The S1/Z2 orbifold partition function is not of the generic

type, due to the degenerate character of a conserved spin-4 current, except at the self-dual

radius R = 1, where the CFT is equivalent to a compact boson at R = 2. The compact

boson CFT at radius R has a reduced partition function of the form

ẐCB(R) = |τ |
1
2

∑
a,b∈Z

q
1
4( a

R
+bR)

2

q̄
1
4( a

R
−bR)

2

. (4.4)

For R ≥ 1, the gap in the spectrum is ∆gap(R) = 1
2R2 . If we decompose the reduced

partition function in terms of non-degenerate reduced characters, ẐCB(R) generically has

a single negative coefficient of −1 at weight (1, 1). When the radius R is a half-integer R =
n
2 , n ∈ Z≥0 (or a T -dual equivalent thereof), however, the weight (1, 1) coefficient becomes

19Of course, the coefficients {d∆,s} only have an interpretations as degeneracies of primary operators

in the absence of conserved currents. In the presence of conserved currents, the {d∆,s} are simply the

coefficients in the decomposition of the partition function into non-degenerate characters.
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Figure 14. The upper bound on the degeneracy of the lowest-lying operator for c = 1 as a function

of the assumed gap in the spectrum for derivative orders N = 15, 31, 47.

positive due to the appearance of extra marginal primaries, and thus the corresponding

partition function is of the generic type to which our bounds apply despite the presence of

conserved currents. When R = 1, it is easy to see that the reduced partition function has

degeneracy 4 at the gap:

ẐCB(1) = χ̂0(τ)χ̂0(τ̄) + |τ |
1
2

[
4(qq̄)

1
4 + 3(q + q̄) + 3qq̄ + . . .

]
, (4.5)

which corresponds to the peak at ∆gap = 1
2 in figure 14. When the compactification radius

takes another half-integer value, the degeneracy of the lowest-lying primary is 2:

ẐCB

(n
2

)
= χ̂0(τ) ˆ̄χ0(τ̄) + |τ |

1
2

[
2(qq̄)

1
n2 + . . .

]
, n ≥ 3, (4.6)

which corresponds to peaks of the degeneracy bound at ∆gap = 2
n2 for n ≥ 3, as seen in

figure 14.

At first sight, it might seem odd that the degeneracy bounds in figure 14 approach
3
2 at a generic value of ∆gap. Recall that the compact boson reduced partition function

will generically have a negative coefficient −1 at weight (1, 1) in its decomposition into

non-degenerate reduced characters. On the other hand, from (4.5), the reduced partition

function at the self-dual radius R = 1 has a coefficient 3 at weight (1, 1), and so the linear

combination

3

4
ẐCB(R) +

1

4
ẐCB(1) = χ̂0(τ) ˆ̄χ0(τ̄) + |τ |

1
2

[
3

2
(qq̄)

1
4R2 + . . .

]
(4.7)

has non-negative coefficients; it is a partition function of the generic type. Furthermore, we

see that the “degeneracy” at the gap ∆gap = 1
2R2 is 3

2 , as seen in figure 14.20 In this case,

a more refined bound would be obtained if we demand that the degeneracies are integers.

20One could also have considered the linear combinations 3
4
ẐCB(R)+ 1

4
ẐCB(2) (for R > 2) or 1

2
ẐCB(R)+

1
2
ẐCB

(
n
2

)
for n = 3, 5, 6, 7, . . . (for R > n

2
), but the conclusion that 3

2
is the maximal leading coefficient is

unchanged.
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Figure 15. The upper bound on the degeneracy of the lowest-lying operators as a function of ∆gap

for a few values of the central charge, and the growth of the degeneracy at the maximal gap ∆mod

as a function of the central charge. In the bottom-right plot, the black points denote the special

theories discussed in section 3.2.

The bounding curves on the degeneracies of the lightest primary operators at larger

values of the central charge are shown in figure 15. Note that the bound diverges as ∆gap

approaches c−1
12 , as expected.21

4.2 Extremal spectrum from the optimal linear functional

When the degeneracy bound at the gap ∆gap is saturated (for c−1
12 < ∆gap ≤ ∆mod), the

entire spectrum of the CFT is in fact determined [26, 27], for reasons we explain below. Such

a spectrum will be called “extremal”, and the corresponding reduced partition function will

be denoted Ẑext(c,∆gap).22 The spectrum of spin-s primaries will be denoted Iext
s . The

optimal functional ρ we use to determine the degeneracy bound, as in (4.3), satisfies

0 = ρ

χ̂0(τ) ˆ̄χ0(τ̄) +
∑
s

∑
∆∈Iext

s

d∆,s

(
χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄) + χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄)
)

=
∑
s

∑
∆∈Iext

s ,∆>∆gap

d∆,sρ
[
χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄) + χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄)
]
. (4.8)

Here, the contribution of the vacuum and that of the primaries at the gap cancel, due to the

saturation of the degeneracy bound at the gap. Positivity of the coefficients d∆,s and (4.1)

21This can be understood by noting that the partition function of Liouville theory, with gap c−1
12

, may

be viewed as an infinite degeneracy limit of a compact CFT partition function.
22This definition of the extremal spectrum does not guarantee that the degeneracies of operators are

integers; in fact, the latter occurs only for a discrete set of values of c and ∆gap, and it is obviously only in

these cases that the extremal spectrum could potentially be realized by a physical CFT.
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Figure 16. The optimal linear functional that maximizes the degeneracy at the gap, acting on the

spin-0 reduced characters. The zeroes of the optimal functional correspond to scalar operators in

the extremal spectrum. The dotted lines correspond to the “dimensions of scalar operators” in the

corresponding generic type compact boson reduced partition functions.

then constrain the extremal spectrum to be such that the corresponding characters are

annihilated by the linear functional ρ, namely

ρ
[
χ̂∆+s

2
(τ) ˆ̄χ∆−s

2
(τ̄) + χ̂∆−s

2
(τ) ˆ̄χ∆+s

2
(τ̄)
]

= 0, ∆ ∈ Iext
s , ∆ > ∆gap. (4.9)

Indeed, the extremal spectrum can be efficiently computed in this way. We will begin

with the c = 1 example. Figure 16 shows the value of the optimal functional acting on

spin-0 reduced characters. For ∆gap = 2
n2 , the zeroes of the optimal functional correspond

exactly to the scaling dimensions of scalar operators in the reduced compact boson partition

function at radius R = n
2 (4.6). On the other hand, at generic values of ∆gap, the zeroes of

the optimal functional precisely correspond to the scaling dimensions of scalar primaries in

two different compact boson CFTs, whose partition functions combine to give one of generic

type (but with non-integer coefficients) as in (4.7). Repeating this exercise with the optimal

linear functional acting on nonzero spin characters also reveals zeroes at the locations

predicted by the corresponding reduced compact boson partition functions (4.6), (4.7).

See figure 17 for some spin-1 examples.
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Figure 17. The action of the optimal linear functional that maximizes the degeneracy of the

lowest-lying operator on the spin-1 reduced characters. Again, the locations of the zeroes agree

with the dimensions of spin-1 operators in the corresponding generic type compact boson reduced

partition functions.

One can also investigate the upper bound on the degeneracies of operators of higher

dimensions that appear in the extremal spectrum. To do this, one fixes the gap and

maximizes the action of the linear functional subject to (4.1), (4.2) on the character cor-

responding to the higher-dimension operator of interest (rather than that of the operator

whose dimension saturates the assumed gap). A priori, it need not be the case that a CFT

that realizes the extremal spectrum also maximizes the degeneracies of the operators other

than the lowest-lying (subject to the assumption that the gap in the spectrum is ∆gap).

However, for c = 1, fixing the gap and maximizing the degeneracies of other operators in

the extremal spectra, we find upper bounds that agree with the corresponding coefficients

in the reduced compact boson partition functions of generic type (4.6), (4.7).

4.3 Extremal spectra with maximal gap

Let us now consider the extremal spectra at higher values of the central charge when

the gap is maximized. For 1 ≤ c ≤ 4, curiously, we find that conserved spin-1 currents

and marginal scalar primaries generically occur in the extremal spectra when the gap is

maximized — figure 18 shows the evidence for this for a few values of the central charge.

Given the generic presence of conserved spin-1 currents and marginal scalar primaries

in the extremal spectra when the upper bound on the dimension gap is saturated, one may

then ask what the maximal degeneracies of these operators are subject to the maximal

gap. Figure 19 shows the growth of the upper bound of the degeneracy of spin-1 conserved

currents subject to the maximal gap as a function of the central charge.

Given the presence of spin-1 conserved currents, the upper bound obtained from (4.3)

with (∆, s) = (2, 0) does not exactly bound the number of marginal scalar primaries in the

extremal spectrum: rather, it is a bound on the coefficient of χ̂1 ˆ̄χ1 in the decomposition

of the reduced partition function into non-degenerate reduced characters. To obtain the

bound on the number of marginal scalar primary operators, one must sum up the bound

obtained from (4.3) together with the bound on the degeneracy of spin-1 conserved currents.
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Figure 18. The action of the optimal functional on spin-0 and spin-1 reduced characters when

the degeneracy of operators at the gap is maximized and the dimension gap bound is saturated

for c > 1. The dotted lines highlight the gap and the presence of marginal scalar primaries in the

spin-0 case, and conserved spin-1 currents in the spin-1 case.

Figure 19. Left : the extrapolated upper bound on the total (holomorphic and antiholomorphic)

number of conserved spin-1 currents as a function of the central charge when the gap is maximized.

Right : the extrapolated upper bound on the number of marginal scalar primaries as a function of the

central charge. This is obtained by adding the naive bound obtained from (4.3) with (∆, s) = (2, 0),

which assumes a decomposition of the partition function into non-degenerate characters, to the

bound on the total number of conserved spin-1 currents, cf., N1

2 (q+ q̄)+N0qq̄ = N1

2 [q(1− q̄)+ q̄(1−
q)]+(N0+N1)qq̄. In both plots, the black points denote the special theories discussed in section 3.2.

In particular, the extremal spectra at central charge c = 1, 2, 145 , 4 are realized respectively by the

SU(2), SU(3), G2 and SO(8) WZW models at level 1.
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The resulting upper bound on the degeneracy of marginal scalar primaries is plotted as a

function of the central charge in figure 19.

Of course, only when the upper bounds on the degeneracies at all weights converge to

integers can the extremal spectrum with maximal gap be realized by a physical conformal

field theory. Based on the locations of the zeroes of the optimal functional and the values of

the maximal degeneracies, we may then attempt to guess the CFTs that realize the extremal

spectra with maximal gap. Let’s consider in particular the case of c = 2, ∆gap = 2
3 . The

upper bound on the degeneracy of scalar primaries at the gap converges to 18, while the

number of ∆ = 2 scalar primaries is bounded above (in the case that the gap is ∆gap = 2
3)

by 64. From figure 18, we see that the extremal spectrum also contains scalar primaries

of dimension 8
3 , 4, 14

3 , . . .. The maximal degeneracies of these scalar primaries subject to

∆gap = 2
3 predicted by (4.3) are 72, 64, 450, . . . , respectively. The extremal spectrum that

saturates these bounds is that of the SU(3) WZW model at level 1. The partition function

of this theory admits a decomposition into non-degenerate characters with precisely the

operator dimensions of the ∆gap = 2
3 extremal spectrum, with integer coefficients equal to

the predicted maximal degeneracies:

(qq̄)
1
24

{
Ẑext

(
2,

2

3

)
− χ̂0(τ) ˆ̄χ0(τ̄)

}
= |τ |

1
2

[
18(qq̄)

1
3 + 8(q + q̄) + 36

(
q

4
3 q̄

1
3 + q

1
3 q̄

4
3

)
+ 8(q2 + q̄2) + 48qq̄ + . . .

]
. (4.10)

Let us now consider the theory that lives at the kink of the bounding curve in figure 4,

with c = 4 and ∆gap = 1. The upper bound on the number of ∆ = 1 scalar primaries

converges to 192, while the bound on ∆ = 2 scalar primaries converges to 784. Furthermore,

the corresponding optimal functional has zeroes at every integer dimension when acting on

spin-0 and spin-1 reduced characters. In fact, this theory is nothing but the CFT of 8 free

fermions (with diagonal GSO projection), with partition function

Zext(4, 1) =
1

2

(∣∣∣∣Θ2(τ)

η(τ)

∣∣∣∣8 +

∣∣∣∣Θ3(τ)

η(τ)

∣∣∣∣8 +

∣∣∣∣Θ4(τ)

η(τ)

∣∣∣∣8
)
, (4.11)

where the {Θa(τ)} are the Jacobi theta functions. The expansion of this extremal par-

tition function into non-degenerate characters yields precisely the operator spectrum and

degeneracies predicted by (4.3) and the zeroes of the optimal functional:

(qq̄)
1
8

{
Ẑext(4, 1)− χ̂0(τ) ˆ̄χ0(τ̄)

}
= |τ |

1
2

[
28(q + q̄) + 192(qq̄)

1
2 + 105(q2 + q̄2) + 728qq̄ + 1344

(
q

1
2 q̄

3
2 + q

3
2 q̄

1
2

)
+ . . .

]
.

(4.12)

In particular, the 28 holomorphic conserved spin-1 currents correspond to the 28 fermion

bilinears.

Another illustrative example is the case of the c = 8 theory that saturates the upper

bound on the gap for scalar primaries, ∆s=0
gap = 2, populating the first kink in figure 8.

Figure 20 shows the action of the optimal functional that maximizes the degeneracy of
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Figure 20. The optimal functional acting on spin-0 and spin-1 reduced characters for c = 8,

∆s=0
gap = 2.

the dimension-two scalar operators on the spin-0 and spin-1 reduced characters. Notice

that the functional has zeroes when acting on spin-0 characters of even integer dimensions

and zeroes at odd integer dimensions when acting on spin-1 characters. Furthermore,

maximizing the degeneracy of ∆ = 2 scalar primaries subject to the scalar gap ∆s=0
gap = 2

reveals an upper bound of 61504 marginal scalar primaries. In fact, the extremal spectrum

is nothing but that of 8 compact bosons on the Γ8 Narain lattice, with holomorphically

factorized partition function23

Zext,s=0(8, 2) = (j(τ)j̄(τ̄))
1
3 . (4.13)

The partition function (4.13) admits a decomposition into non-degenerate characters with

a spectrum of primary operators and non-negative integer coefficients predicted by the

maximal degeneracies (4.3) and the zeroes of the optimal functional

(qq̄)
7
24

{
Ẑext,s=0(8, 2)−χ̂0(τ) ˆ̄χ0(τ̄)

}
= |τ |

1
2
[
248(q+q̄)+3875(q2+q̄2)+61008qq̄+30380(q3+q̄3)+957125(q2q̄+qq̄2)+. . .

]
.

(4.14)

5 Discussion and open questions

By optimizing the linear functional acting on the modular crossing equation, we have

uncovered a surprisingly rich set of constraints on the spectrum. However, the semi-definite

programming approach becomes difficult at large values of the central charge: while we

have concluded that the asymptotic slope of ∆mod(c) at large c lies between 1
12 and 1

9 , we

still do not know its accurate value (which amounts to an upper bound on the mass of the

lightest massive particle in a theory of quantum gravity in AdS3 in Planck units [16]). We

have identified the shape of the optimal linear functional numerically, and hopefully this

23We use the notation Zext,s=0(c,∆s=0
gap ) to refer to the partition function of the CFT with the degeneracy

of scalar primaries saturating the scalar gap ∆s=0
gap maximized.
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will eventually lead to an analytic derivation of the optimal bound on the dimension gap

at large c.

It is nonetheless clear from our results that, at large c, the basis (2.7) is inefficient for

representing the optimal linear functional. Presumably, the latter is more appropriately

expressed as an integral transform, rather than derivatives taken at τ = −τ̄ = i. Our pre-

liminary attempt at a multi-point bootstrap approach [28, 29] has yielded results consistent

with ∆mod, but it did not improve the numerical efficiency due to the need for a polyno-

mial approximation of functions of the conformal weight in implementing the semi-definite

programming with SDPB.

In deriving most of our modular constraints, we have ignored the requirement that

the degeneracies are integers. For instance, if the degeneracy at the maximal gap is not

an integer, demanding that the degeneracy takes an integer value would slightly lower the

upper bound on the gap. However, since the degeneracy bound grows exponentially with

the central charge, the improvement of the bound by demanding integral degeneracy at

the gap seems inconsequential.

One can also place bounds on the gap in the spectrum by considering the OPE of a pair

of primaries (say at the gap), and using the crossing equation of the sphere 4-point function,

by considering the decomposition of the 4-point function in Virasoro conformal blocks and

imposing positivity of the coefficients. This is currently being investigated. Ultimately,

one would like to combine the crossing equation for the sphere 4-point function with the

modular covariance of the torus 1-point function. Perhaps the most efficient way to do

this, instead of considering the crossing equations that involve many external operators, is

to study the modular constraints from higher genus partition functions.
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