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Föhringer Ring 6, 80805 Munich, Germany

E-mail: brageg@mppmu.mpg.de, angnissm@mpp.mpg.de

Abstract: We present the construction of a gravitational action including an infinite

series of higher derivative terms. The outcome is a classically consistent completion of a

well-studied quadratic curvature theory. The closed form for the full action is ghost-free

bimetric theory, describing the interactions of a massive and a massless spin-2 field. At

energies much smaller than the spin-2 mass scale, the theory reduces to general relativity.

For energies comparable to the spin-2 mass, the higher derivative terms completing the

Einstein-Hilbert action capture the effects of the additional massive spin-2 field. The

theory is only ghost-free when the full series of higher derivatives is kept.

Keywords: Classical Theories of Gravity, Models of Quantum Gravity

ArXiv ePrint: 1807.05011

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2018)044

mailto:brageg@mppmu.mpg.de
mailto:angnissm@mpp.mpg.de
https://arxiv.org/abs/1807.05011
https://doi.org/10.1007/JHEP09(2018)044


J
H
E
P
0
9
(
2
0
1
8
)
0
4
4

Contents

1 Introduction 1

2 Ghost-free bimetric theory 2

2.1 The action for two tensor fields 2

2.2 Bimetric mass spectrum 3

2.3 Strong interaction limit 3

3 Construction of the infinite derivative theory 4

3.1 Outline of procedure 4

3.2 Solution for fµν 6

3.3 Higher derivative action 7

3.3.1 Kinetic and potential contributions 7

3.3.2 Quadratic curvature terms 8

3.3.3 Cubic curvature terms 8

4 Discussion 9

1 Introduction

The Einstein-Hilbert action for general relativity (GR) is linear in the curvature Rµν and

thus corresponds to a two-derivative field theory. It describes the nonlinear self-interactions

of a massless spin-2 field. Adding higher derivative terms to the Einstein-Hilbert action

without introducing inconsistencies has been a long-standing problem. Such terms are

expected to arise from quantum corrections in the effective field theory [1]. They also

appear in effective actions for string theory [2–5] and can possibly cure singularities of

pure Einstein gravity [6].

In this work we will consider the following four-derivative action proposed by Stelle [7],

S4[g] = m2
Pl

∫
d4x
√
−g
[
−2Λ +R+

1

µ2

(
1

3
R2 −RµνRµν

)]
. (1.1)

Its free parameters are the Planck mass mPl, the cosmological constant Λ and the mass

scale µ. The spectrum of the theory includes an additional massive spin-2 mode with

mass µ whose kinetic term in the action has a sign opposite to that of the massless mode.

This means that the action contains a spin-2 ghost giving rise to classical instabilities since

the energy is not bounded from below. The ghost is a direct consequence of the finite

number of higher derivatives in the action, which is implied by Ostrogradsky’s theorem [8].

In d = 3 dimensions the above action can be rendered consistent by changing the overall

sign in front of the integral [9]. This theory, called “New Massive Gravity”, is ghost-free

– 1 –



J
H
E
P
0
9
(
2
0
1
8
)
0
4
4

because in d = 3 the massless spin-2 mode does not possess any local propagating degrees

of freedom. The procedure cannot be generalized to d ≥ 4 where the massless mode is

dynamical [10, 11].1 In fact, the only ghost-free quadratic curvature theory in d = 4 is

given by
∫

d4x
√
−g R2 whose spectrum contains only a scalar in addition to the massless

spin-2 graviton [13].

Our goal in this work is to construct a ghost-free completion of the quadratic curva-

ture action (1.1). Removing the ghost requires adding an infinite series of higher derivative

terms in order to avoid Ostrogradsky’s theorem. Our starting point will be ghost-free bi-

metric theory [14], the only known two-derivative theory describing interactions between a

massless and a massive spin-2 field. Relations among bimetric theory and higher curvature

gravity have been the subject of previous investigations. In ref. [15] a parameter scaling

limit was taken which resulted in an auxiliary field formulation for the quadratic curva-

ture action in (1.1). This construction required flipping the sign of a kinetic term which

introduces the spin-2 ghost into the action. Refs. [16, 17] instead derived a set of higher

derivative equations from the bimetric equations of motion. However, the higher deriva-

tive action obtained through the same procedure is not equivalent to the original theory

and hence its consistency is not guaranteed. Recently, ref. [18] suggested that it could be

still free from ghosts. Lastly, ref. [19] derived an equivalent higher derivative action from

bimetric theory to lowest order in metric fluctuations around a flat space solution.

Summary of results. In this work we outline the construction of a higher-derivative

action for gµν whose lowest orders are given precisely by (1.1). We demonstrate that the

resulting theory is classically equivalent to ghost-free bimetric theory with two tensor fields

gµν and fµν , restricted to a wide class of solutions. Due to the on-shell equivalence, the

untruncated higher curvature theory is free from ghosts at the classical level. The higher

order corrections are suppressed by the spin-2 mass scale of bimetric theory. Bimetric

theory also delivers a clear physical interpretation for the higher derivative terms: they

describe the effects of a gravitating heavy spin-2 field with strong self-interactions.

2 Ghost-free bimetric theory

2.1 The action for two tensor fields

We begin by briefly reviewing the ghost-free bimetric theory for two symmetric tensor fields

gµν and fµν in vacuum. For more details we refer the reader to ref. [20]. The bimetric

action is,

S[g, f ] = Skin[g, f ] + Sint[g, f ] . (2.1)

Here the Einstein-Hilbert kinetic terms are,

Skin[g, f ] = m2
g

∫
d4x

(√
−g R+ α2

√
−f Rf

)
, (2.2)

1For an alternative approach of generalizing New Massive Gravity to any dimension (at the linearized

level), see ref. [12].
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where mg and αmg are the Planck masses and R and Rf are the Ricci scalars for the

respective metrics. The interaction potential is of the following form,

Sint[g, f ] = −2m2m2
g

∫
d4x
√
−g

4∑
n=0

βn en
(
S
)
, (2.3)

which involves five free dimensionless parameters βn and a mass scale m. The interac-

tions are given in terms of the square-root matrix Sµν = (
√
g−1f )µν and the elementary

symmetric polynomials en(S) defined as,

e0(S) = 1 , e1(S) = TrS ,

e2(S) =
1

2

(
[TrS]2 − Tr

[
S2
])

,

e3(S) =
1

6

(
[TrS]3 − 3Tr

[
S2
]

[TrS] + 2Tr
[
S3
])

, e4(S) = detS . (2.4)

This specific structure of interactions is crucial for the consistency of the theory [14, 21, 22],

since it avoids the presence of a scalar mode known as the Boulware-Deser ghost [23]. This

scalar mode is an additional degree of freedom and therefore different from the spin-2 ghost

in quadratic curvature gravity. Its presence in the action (1.1) is avoided by the choice of

relative coefficient 1/3 between the two four-derivative terms.

2.2 Bimetric mass spectrum

The bimetric equations of motion admit maximally symmetric solutions for which the two

metrics are proportional, fµν = c2gµν . The proportionality constant c 6= 0 is determined

by the following polynomial equation [24],

α2
(
cβ0 + 3c2β1 + 3c3β2 + c4β3

)
= β1 + 3cβ2 + 3c2β3 + c3β4 . (2.5)

Around the proportional backgrounds, the equations for the linear metric fluctuations δgµν
and δfµν can be decoupled by diagonalizing the mass matrix of the spin-2 modes. The

resulting spectrum consists of a massless and a massive spin-2 mode given by,

δGµν = δgµν + α2δfµν , δMµν = δfµν − c2δgµν . (2.6)

The Fierz-Pauli mass of the massive fluctuation δMµν is,

m2
FP = m2

(
1 + α−2c−2

) (
cβ1 + 2c2β2 + c3β3

)
. (2.7)

We emphasize that, in contrast to the quadratic higher curvature theory with similar

spectrum, here both the massless and the massive spin-2 fields possess a healthy kinetic

term in the action. Bimetric theory does therefore not contain any ghost modes.

2.3 Strong interaction limit

In what follows we will focus on the parameter region where α� 1. It is well-known that

the exact limit α→ 0 is the GR limit of bimetric theory when the metric gµν is coupled to

matter [25–27]. We will now interpret this limit in terms of the spin-2 mass eigenstates.
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Namely, for generic values of βn parameters, the Fierz-Pauli mass of the massive spin-

2 mode becomes infinitely large in the α → 0 limit [27]. One can see this very easily

by looking at simplifying parameter choices. Consider for instance the model where all

βn vanish except for β1. In this case eq. (2.5) gives the solution c−2 = 3α2. Reinserted

into (2.7) we see that then indeed mFP → ∞ for α → 0. Another simple example is the

case with β1 = β3 = 0. Then eq. (2.5) gives the solution c2 = 3β2−α2β0
3α2β2−β4 , which approaches

a constant in the limit of vanishing α. Again eq. (2.7) then tells us that the mass goes to

inifinity. For more general parameters, one can simply think of solving (2.5) perturbatively

in α. Then, at lowest order, the solution for c is obtained by the vanishing of the right-hand

side of (2.5), which delivers the constant that c approaches in the limit of α→ 0. For later

purposes it is useful to rewrite the equation (2.5) at lowest order as,

s0(c) ≡
3∑

n=0

(
3

n

)
c−nβ4−n = 0 + O

(
α2
)
. (2.8)

Hence the Fierz-Pauli mass diverges for generic βn when α→ 0 and we conclude that this

limit can be viewed as the limit of large spin-2 mass.

It was furthermore shown in a perturbative analysis in ref. [28] that the self-interactions

of the massive spin-2 field δMµν become infinitely strong in the limit α → 0. The self-

interactions of the massless spin-2 mode δGµν , on the other hand, are always precisely

those of GR. They depend on the Planck scale and the cosmological constant but not on

the value for α. Hence they are insensitive to the strong interaction limit.

In the following we will use the bimetric equations of motion to integrate out the metric

fµν in a perturbative setup with expansion parameter α � 1. To lowest order in α this

corresponds to neglecting all dynamics of the massive, strongly self-interacting spin-2 field.

This procedure of integrating out fµν will result in an effective theory for the metric gµν ,

whose fluctuations δgµν ∝ δGµν − α2δMµν are dominated by the massless spin-2 mode for

small values of α. As expected, we will recover GR at low energies, that is at the zeroth

order approximation in α where effects from the heavy spin-2 mode are completely ignored.

At higher energies, the effects of the massive spin-2 mode will enter the effective theory

through higher curvature corrections to the Einstein-Hilbert term.

We emphasize that the equations we solve are those for fµν , whose linear fluctuations

correspond to a superposition of the massless and massive spin-2 fields. This means that

we will integrate out part of the massless mode and hence the derivative expansion that

we obtain cannot really be viewed as a perturbative setup valid at low energies. Only the

lowest order Einstein-Hilbert term gives a good approximation at low energies because the

fluctuations of the metric gµν become massless in the limit α→ 0.

3 Construction of the infinite derivative theory

3.1 Outline of procedure

Our aim is to solve the equations of motion for fµν which follow from varying the bimetric

action (2.1),
δS[g, f ]

δfµν
= 0 . (3.1)
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Our solution fµν(g) to these equations will be expressed in terms of gµν , its Christoffel

connection and its curvatures. Plugging this solution into the equations of motion for gµν
results in a set of effective equations for gµν alone,

δS[g, f ]

δgµν

∣∣∣∣
f=f(g)

= 0 . (3.2)

Alternatively, we can use the solution fµν(g) to remove fµν from the bimetric action and

obtain an effective action for gµν alone,

Seff [g] = S[g, f ]|f=f(g) (3.3)

The equations for gµν following from Seff [g] then are,

0 =
Seff [g]

δgµν(x)
=
δS[g, f ]

δgµν(x)

∣∣∣∣
f=f(g)

+

∫
d4y

δfρσ(y)

δgµν(x)

δS[g, f ]

δfρσ(y)
. (3.4)

From this we see that when fµν is a solution to its own equation of motion (3.1), then

the equations for gµν obtained from Seff [g] in (3.4) are equivalent to those obtained from

S[g, f ] in (3.2). Note that we had to include an integral in (3.4) because fµν(g) will

contain derivatives acting on gµν which upon integrating by parts will act on δS/δfρσ. At

this point we stress the difference between our approach and the one taken in refs. [16, 17].

The mentioned reference solved the gµν equations (i.e. δS/δgµν = 0) for fµν and arrived

at an effective action which was not equivalent to the original one due to the additional

operator acting on δS/δfρσ. Here we will instead solve the fµν equations (3.1) and obtain

an effective theory for gµν which is fully equivalent to bimetric theory restricted to a wide

class of solutions, as we will explain below.

Explicitly, the equations of motion for fµν read [29],

α2

m2
Gfµν = −fµρ

3∑
n=0

β4−n(−1)n
[
Y (n)

(
S−1

)]ρ
ν
, (3.5)

where Gfµν = Rfµν− 1
2fµνR

f is the Einstein tensor and the contributions without derivatives

coming from the potential are,[
Y (n)

(
S−1

)]ρ
ν

=
n∑
k=0

(−1)kek
(
S−1

) [
Sk−n

]ρ
ν
. (3.6)

Since the structure of the action is symmetric in both metrics, the equations for gµν have

a very similar form. We will not need them in the following.

The equations (3.5) contain terms of two different orders in α2. We will solve them

iteratively with an ansatz for fµν written as an expansion in α2. The lowest order is

obtained from the potential contributions in (3.5) which are independent of α2. The next

order is generated by plugging the lowest order into α2Gfµν and thereby generating terms

of order α2 which again need to be cancelled by contributions from the potential. Iterating

this procedure we can construct the solution to any order in α2. Our ansatz will therefore

have the form of a perturbative expansion containing all possible covariant terms built

from curvatures and covariant derivatives for gµν .
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3.2 Solution for fµν

In order to solve the fµν equations, it is useful to start with an ansatz for the inverse

square-root matrix (S−1)µν = (
√
f−1g )µν . Including all possible tensors up to order α4

we write,

(S−1)µν = a−1δµν +
α2

m2

[
b1P

µ
ν + b2TrP δµν

]
+
α4

m4

[
c1

(
P 2
)µ
ν

+ c2P
µ
νTrP + c3Tr

(
P 2
)
δµν

+ c4(TrP )2δµν + c5∇µ∇νP + c6∇2Pµν + c7∇2Pδµν + c8g
µσ∇ρ∇(σP

ρ
ν)

]
+O

(
α6
)
,

(3.7)

with coefficients a, bi, ci to be determined from the equations. The ansatz contains only

tensors related to the metric gµν which is also used to raise and lower indices. Instead of

using the Ricci curvature Rµν , we have parameterized the ansatz in terms of the (rescaled)

Schouten tensor, Pµν = Rµν − 1
6gµνR, for later convenience. The terms of order α4 corre-

spond to all possible tensors generated by plugging the order α2 terms into the curvatures

for fµν . Note that we did not include the terms ∇µ∇ρPρν and ∇ρ∇σPρσδµν since they are

identical to other existing terms due to ∇ρPρν = ∇νPαα which follows from the Bianchi

identity. We will comment on the generality of the ansatz below.

The coefficients in (S−1)µν are determined by inserting the ansatz (3.7) into the equa-

tions (3.5) and comparing terms with the same order in α2. From this we then obtain the

solution for fµν by computing the inverse Sµν and using,

fµν = gµρS
ρ
σS

σ
ν . (3.8)

The calculation is somewhat lengthy but straightforward and conceptually identical to the

one performed in ref. [16]. We present only the results here.

At lowest order the coefficient a−1 in (3.7) is constrained to satisfy the following poly-

nomial equation,
3∑

n=0

(
3

n

)
a−nβ4−n = 0 . (3.9)

The next two orders in fµν are then obtained as,

fµν = a2gµν −
2α2

m2s1
Pµν +

α4

m4s3
1a

2

[
PµρP

ρ
ν

(
s1 − 2s2

)
+ 2Tr(P )Pµν

(
s2 − s1

)
+

1

3
gµνTr

(
P 2
) (

2s1 + s2

)
+

1

3
gµνTr(P )2

(
s1 − s2

)
− 2s1

(
∇µ∇νP +∇2Pµν −∇ρ∇µPρν −∇ρ∇νPρµ

)]
, (3.10)

where we have defined the constants,

sk ≡
3∑

n=k

(
3− k
n− k

)
a−nβ4−n . (3.11)

– 6 –
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Equation (3.9) which determines a implies s0 = 0. Since in general this equation is a third-

order polynomial in a, it will give rise to different branches of solutions. Note also that due

to the presence of infinitely many derivatives in the full solution for fµν , its relation to the

metric gµν is nonlocal. This is not surprising because solving the fµν equations requires

inverting the derivative operators contained in the Einstein tensor.

Let us now briefly explain why the above ansatz cannot parameterize the most general

solution to the bimetric equations. For a solution of the form (3.10), if gµν is a metric

with constant curvature, Rµν ∝ gµν , then fµν will necessarily be proportional to gµν .

Solutions that do not satisfy this property are known to exist and tend to show pathological

behaviour [26]. Our higher derivative theory for gµν will not include these bimetric solutions

since they have been eliminated by the ansatz (3.7). Nevertheless, the effective action for

gµν will produce equations of motion that are identical to the bimetric equations (3.2). The

only restriction is that we have solved the fµν equations in a particular way, for instance,

by choosing boundary conditions which exclude the pathological solutions.

3.3 Higher derivative action

3.3.1 Kinetic and potential contributions

Eliminating fµν from the kinetic terms is straightforward if one uses the relations,2

Rfµν = Rµν − 2∇[µC
α

α]ν + 2C β
ν[µC

α
α]β ,

C α
µν ≡

1

2
fαβ (∇µfβν +∇νfβµ −∇βfµν) . (3.12)

Inserting the expanded solution (3.10) for fµν , we can thus express the curvature Rf for

fµν in terms of curvatures Rµν and connections ∇µ of gµν This allows us to write the

Einstein-Hilbert term for fµν entirely as an expansion in terms of gµν . The result is,

α2
√
−f R(f) =

√
−g
[
α2a2R+

2α4

s1m2

(
RµνRµν −

1

3
R2 +∇2Pαα −∇µ∇νPµν

)]
+O

(
α6
)
.

(3.13)

The terms including covariant derivatives action on curvatures drop out due to the Bianchi

identity ∇νPµν = ∇µPαα. Since the Einstein-Hilbert term for fµν already comes with a

pre-factor α2 in the action, obtaining its order α2n contributions to the effective action

requires only orders up to α2n−2 in the expanded solution. Interestingly, this also holds for

the contributions from the potential. In order to see this, we use the identity,

√
−g

4∑
n=0

βnen(S) =
√
−g

4∑
n=0

σnen(M) , (3.14)

with matrix Mµ
ν ≡ a−1Sµν − δµν whose perturbative expression starts at first order in α2.

The identity involves the coefficients σn defined as,

σk ≡
4∑

n=k

(
4− k
n− k

)
anβn . (3.15)

2We use the conventions [∇µ,∇ν ]wρ = R σ
µνρ wσ and Rµν = R ρ

µρν .

– 7 –
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Since σ1 = 0 by equation (3.9), the term e1(M) = TrM in the potential drops out from the

action. Hence, the first nontrivial terms in the potential come from e2(M) which contains

only quadratic terms. It is thus sufficient to expand M (or S) up to order α2n−2 in order

to produce the α2n contributions coming from the potential. The contributions up to order

α4 which require the solution expanded up to order α2 read,

√
−g

4∑
n=0

βnen(S) =
√
−g
[
σ0 +

α4σ2

2m4s2
1a

4

(
1

3
R2 −RµνRµν

)]
+O

(
α6
)
. (3.16)

Their structure is the same as that of the contributions (3.13) obtained from the ki-

netic term.

3.3.2 Quadratic curvature terms

By replacing fµν in all terms in the bimetric action we arrive at the final result for the

effective action up to order α4,

Seff [g] =

∫
d4x
√
−g
[
m2

Pl

(
R− 2Λ

)
+
α4cRR
m2

(
1

3
R2 −RµνRµν

)]
+O

(
α6
)
. (3.17)

The coefficients are related to the original bimetric parameters through,

m2
Pl =

(
1 + a2α2

)
m2
g , Λ =

σ0m
2

1 + a2α2
, cRR = − 1

s1

(
2 +

σ2

a4s1

)
m2
g . (3.18)

All terms with derivatives acting on curvatures have dropped out from the action to this

order in α. The ratio of the coefficients in front of the two lowest order terms is,

m2
Plm

2

α4cRR
∝ 1 + a2α2

α4
s1m

2 ∝
(
1 + a−2α−2

) (
aβ1 + 2a2β2 + a3β3

)
m2. (3.19)

This is precisely the expression (2.7) for the Fierz-Pauli mass if we replace a→ c. As we saw

above, for α� 1, the polynomial equation determining c at lowest order is given by (2.8).

This tells us that, to lowest order in α, c is the solution to the equation s0(c) = 0 and thus

indeed coincides with a. We conclude that the curvature corrections in the effective action

are suppressed by the spin-2 mass scale of bimetric theory.

3.3.3 Cubic curvature terms

Finally, we present the next order in the ghost-free completion of the quadratic curvature

terms. These are the six-derivative terms of order α6 in the effective action (3.17) which

can be brought into the form,

S6 =
α6m2

g

m4

∫
d4x
√
−g

(
u1R

µρR ν
ρ Rνµ + u2RR

µνRµν + u3R
3

+ u4

[
2RµνRαβRµανβ +Rµν∇2Rµν −

1

3
R∇2R

])
. (3.20)
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Here, the coefficients ui are related to the bimetric parameters as follows,

u1 =
2

a2s3
1

(
−s1

2
+ s2 +

s2σ2 − s1σ2

a4s1
+

σ3

3a4

)
,

u2 = − 2

a2s3
1

(
5s1

4
+ s2 +

σ2

6a4
+
s2σ2

a4s1
+

σ3

3a4

)
,

u3 =
1

18a2s3
1

(
11s1

2
+ 7s2 −

σ2

9a4
+

55s2σ2

9a4s1
+

7σ3

3a4

)
,

u4 =
1

a2s3
1

(
3s1 +

2σ2

a4

)
, (3.21)

and we have dropped a total derivative term from the action. We emphasize that the action

expanded up to this order still propagates the spin-2 ghost which can only be removed by

the infinite number of derivative terms.

4 Discussion

We have presented the construction of an infinite derivative action for gravity which is

classically equivalent to ghost-free bimetric theory restricted to a wide class of solutions

including the proportional backgrounds. The expansion parameter is small when the spin-2

mass and interaction scale are large. The higher curvature terms in the effective theory

for gµν thus encode the modifications of GR caused by a strongly self-interacting massive

spin-2 mode.

The relative factor of 1/3 between the quadratic curvature terms in (3.17) reflects the

absence of the scalar Boulware-Deser ghost in bimetric theory. However, if the expansion is

truncated at any finite derivative level, the incomplete theory has a spin-2 ghost instability.

This ghost is removed by the infinite series of curvature corrections which contribute to the

propagator of the massive spin-2 field and change the sign of its residue. For small values of

α, it could in principle be possible to treat the higher-curvature corrections perturbatively,

which requires carefully removing unphysical solutions containing the instability. This

can be done using a method proposed in ref. [30], whose application to higher derivative

corrections of the Einstein-Hilbert action was discussed in detail in ref. [31]. However, we

do not expect this procedure to give a valid approximation of bimetric theory in our case.

The reason for this is that we have integrated out the metric fµν instead of the massive

spin-2 mode. This means that the higher derivative terms stem partly from expanding the

propagator of the massless mode and hence diverge at low energies. Only the lowest order

Einstein Hilbert term delivers a good approximation for bimetric theory at energies much

smaller than the Fierz-Pauli mass.

Our results here demonstrate that bimetric theory yields a ghost-free completion of

the well-studied curvature corrections. For practical applications it is better to work di-

rectly with bimetric theory where no unphysical solutions need to be isolated and where

no infrared divergences occur. Nevertheless, we believe that the structure of the higher

derivative expansion is interesting from a theoretical point of view and can shed more light

on earlier approaches taken in this direction.
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For instance, higher orders in our expansion could be compared to the infinite derivative

theory proposed in ref. [32]. They derived the most general quadratic curvature action for

gµν around a Minkowski vacuum with Rµν = 0. This type of expansion was considered

prior in [33]. The actions are ghost-free and contain infinitely many derivatives acting on

the curvatures. They could thus be related to our action (3.17) expanded to second order in

curvatures around Rµν = 0, but keeping all higher covariant derivatives. Verifying such a

correspondence requires a better understanding of the structure of higher orders in (3.17).

It is possible to make the two lowest order terms vanish in the effective action (3.17)

by fixing a2 = −α−2 and σ0 = 0. Together with s0 = 0 this requires bimetric parameters

of the form β1 = β3 = 0 and β4 = 3α2β2 = α4β0. In this case the lowest order of the higher

curvature theory corresponds to the well-known conformal gravity action which is invariant

under Weyl transformations, gµν 7→ φ(x) gµν [34]. A similar feature already showed up in

the analysis of refs. [16, 17] and the above parameter choice is related to the presence of a

partially massless spin-2 mode in the linear spectrum and a constant scaling symmetry of

the background [35] . Our result allows us to revisit the analysis of this particular bimetric

model at the level of the higher derivative action. Due to the α dependence in the βn
parameters, the perturbation theory needs to be revisited, which we leave for future work.

We started from the bimetric action vacuum, but introducing matter coupled to gµν is

trivial. If matter was coupled to fµν instead, one would arrive at a highly modified matter

coupling in the effective theory for gµν . We leave further investigations in this direction

(which in spirit are similar to ideas pursued in ref. [36]) for future work. Moreover our

analysis could be extended to general spacetime dimensions and compared to the classifi-

cations of cubic curvature terms in ref. [37]. It would also be interesting to study the case

of multiple heavy spin-2 modes and thereby continue investigations started in ref. [38].

Finally, we believe that our result could be relevant for quantum gravity in the effective

field theory approach. Quantum corrections to the Einstein-Hilbert action are known to

include terms of the form (3.17) (see e.g. ref. [39] and the recent review [40]) and it would

be interesting to find out if there is a relation to the heavy spin-2 field of bimetric theory.

Such investigations could also help us to better understand how bimetric theory, as the

ghost free completion of quadratic gravity, behaves during quantization.
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