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1 Introduction

Black holes are inarguably the most fascinating predictions of general relativity. A remark-

able resemblance exists between the laws of thermodynamics and black hole mechanics [1].

This gravity-thermodynamics correspondence becomes non-trivial when one associates a

“temperature” [2, 3] as well as an “entropy” with the event horizon [4, 5], which is a causal

boundary, that hides the central singularity of the black hole from an outside observer.

Thus, the properties of the event horizon may provide some deep insight into the nature of

black holes and particularly towards a theory of quantum gravity. Also, it has been shown

that one can relate these thermodynamic parameters to various geometric constructions

not only for event horizons, but for any null surface acting as a causal horizon, includ-

ing the Rindler horizon [6, 7] (see also [8–10]). The equilibrium version of the first law of

black hole mechanics relates the variation of the ADM charges at asymptotic infinity to the

change of the horizon area for two stationary black holes which are infinitesimally close in

the phase space of solutions. Strictly speaking, this stationary state version of the first law

is only applicable to a stationary event horizon with a regular bifurcation surface.1 On the

other hand, another version of the first law involves the direct computation of the horizon

1The requirement that a regular bifurcation surface be present can however be avoided in some quasi-

local definitions of horizons viz. Isolated horizons [11, 12].
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Past bifurcation surface: λ = 0

Future stationary slice: λ = λ f

Matter flux

λ = λ1

λ = λ2

Time

Background 
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Figure 1. A pictorial depiction of the geometry considered in the Physical process version of the

first law. The green line depicts the evolution of the unperturbed stationary event horizon while

the black curve denotes the evolution of the perturbed dynamical event horizon. The change in

area is calculated between the two slices λ = 0 (the bifurcation surface) and λ = λf (a stationary

final slice) along the black curve. We would like to generalize this and calculate the change between

two arbitrary slices λ = λ1 and λ = λ2.

area change when a flux of matter perturbs the horizon [13] (see figure 1). This came to

be known as the physical process first law [14] (henceforth referred to as PPFL). Unlike

the stationary state version, PPFL is local in nature and does not require the information

about the asymptotic structure of the space time and is therefore expected to hold for a

wide class of horizons which does not rely on the asymptotic structure. Consequently, after

some initial debate regarding the applicability of PPFL in the context of Rindler [7], it was

later demonstrated, following [15, 16], that the physical process version of first law indeed

holds for Rindler horizon, or for that matter, any bifurcate Killing horizon.

Consider a situation, in which a black hole is perturbed matter influx with stress energy

tensor Tab and the black hole finally settles down to a new stationary horizon in the future.

Then the PPFL which determines the change of the horizon area AH, is given by,

κ

2π
∆

(
AH

4

)
=

∫
H
Tab ξ

a dΣb . (1.1)

Here dΣb = kb dAdλ is the surface area element of the event horizon and ka = (∂/∂λ)a

stands for the null generator of the horizon. The integration is over the dynamical event

horizon and the affine parameter λ varies from the bifurcation surface (set at λ = 0) to

the future stationary cross section at λ = λf . Also, the background event horizon is a

Killing horizon with the Killing field ξa being null on the background horizon. On the

background horizon surface, it is related with the affinely parametrized horizon generator

(ka) as ξa = λκka, where κ is the surface gravity of the background Killing horizon. It is
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important to note that the derivation of the above result crucially hinges to the fact that

the terms quadratic in expansion and shear of the null generator ka can be neglected, since

the process has been assumed to be sufficiently close to stationarity. This approximation

ensures that there will be no caustic formation in the range of integration.

For the generalization of these results to higher curvature theories of gravity, first one

needs to define a suitable notion of entropy of the horizon. For stationary event horizon with

a regular bifurcation surface, the entropy of black hole is given by Wald’s entropy formula

and the stationary state version of first law directly follows [17, 18]. However, when applied

to a non-stationary cross section, the Wald’s entropy turns out to be ambiguous [19] and as

far as the PPFL is concerned, it no longer can be used as a good measure of entropy. Hence,

it is very important to understand, how the ambiguities affect the PPFL and consequently

the entropy increase theorem at various orders of perturbation. In this article we prove that,

the ambiguities in Wald entropy doesn’t affect the PPFL at first order perturbation, when

integrated from a bifurcation surface to a stationary surface. Therefore if the horizon is

involved in a quasi stationary process such that the perturbation remains small throughout

the evolution, then an unambiguous version of PPFL can be obtained by the variation of

Wald entropy, independent of the ambiguities in the Noether charge construction. However,

the second order variation of entropy turns out to be affected by ambiguities. For these

general theories of gravity the above ambiguities can however be fixed such that linearized

second law holds, leading to modified expressions for the horizon entropy [20–22].

Another interesting aspect transpires when one tries to link it with the horizon mem-

brane, where the coefficient of θ2 and σ2 in the Raychaudhuri equation can be identified as

bulk and shear viscosity respectively of the fictitious fluid living on the horizon. Therefore

by a careful study of the PPFL in a more general form, i.e., by keeping terms quadratic in

expansion and shear, one can comment on the behaviour of the membrane fluid in a more

general context [23].

The physical process first law therefore relates the total change of entropy from the

bifurcation surface to a final slice due to the matter flux. If we assume that the black

hole horizon is stable under perturbation, then the future slice can always be taken to

be stationary with vanishing expansion and shear and the initial cross section can be set

at the bifurcation surface (λ = 0). In fact, the choice of these initial and final states are

necessary for this derivation of the physical process first law, to make some boundary terms

vanish. Here we will also provide a derivation of the physical process version of the first

law between two arbitrary non equilibrium cross sections of the dynamical event horizon

and properly interpret the additional boundary terms appearing in eq. (1.1) for entropy

change. We will show how these boundary terms are related to the energy of the horizon

membrane arising in the context of the black hole membrane paradigm. Moreover, we will

establish that such a correspondence transcends beyond general relativity and also holds

true for Lanczos-Lovelock theories of gravity.

The paper is organized as follows: in the first section we start by describing the horizon

geometry and set up the notations and conventions. Then, a general expression for the

PPFL is illustrated and possible limiting cases are also discussed. At first order we obtain

an equation for the flow of entropy. We start section 2 with a very brief discussion on am-
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biguities in the Wald’s entropy formula, when evaluated on a non-stationary cross-section

of the horizon. In section 4 we show that, at first order of perturbation the ambiguities do

not affect the PPFL obtained from Wald entropy. In subsequent sections we will generalize

PPFL to dynamical situations (i.e., for arbitrary cross-sections of the horizon) using the

stress tensor of the horizon fluid in membrane paradigm. The dynamical version of the

physical process first law for Einstein-Gauss-Bonnet theories of gravity will be derived in

section 7 and finally the generalization of the same to general Lanczos-Lovelock theories

of gravity will be performed in section 8. We conclude with a discussion on our results as

well as with some future outlook.

2 General structure of PPFL

We start this section by describing the geometry of the event horizon. The event horizon

H of a stationary black hole in D spacetime dimensions is a null hypersurface generated

by a null vector field ka = (∂/∂λ)a with λ being an affine parameter. The cross section

(H) of the event horizon, which is a co-dimension two spacelike surface, is given by each

λ = constant slice. Being a co-dimension two surface, H posses two normal direction.

One of them is the null normal ka and the other corresponds to an auxiliary null vector la

defined on H such that kal
a = −1. Then, the induced metric on the horizon cross section

takes the form, hab = gab + kalb + kbla. Taking xA to be the coordinates on H, (λ, xA)

spans the horizon. The event horizon of a stationary black hole is also a killing horizon,

which is defined as the set of points on which the killing vector ξa is proportional to the

horizon generator ka, i.e., ξa = λκka. We consider the background event horizon, on which

the perturbation is introduced, to be stationary with respect to the killing vector ξa. Here

κ represents the surface gravity of the horizon and defined as ξa∇aξb
H
= κξb.

With this setting, we define the expansion and shear of the horizon to be the trace and

traceless symmetric part of the extrinsic curvature and denoted as (θk, σ
k
ab) and (θl, σ

l
ab)

with respect to ka and la respectively. Taking h to be the determinant of the induced

metric hab, the expansion θk of horizon can be written as,

θk =
1√
h

d

dλ

√
h (2.1)

Then, the evolution of θk along the horizon with respect to the affine parameter λ is

governed by the Raychaudhuri equation,

dθk
dλ

= − 1

D − 2
θ2
k − σkabσabk −Rabkakb (2.2)

An important notion that will play a significant role throughout our discussion is a bifur-

cation surface. A bifurcation surface is a (D−2) dimensional spacelike surface B, on which

the killing field ξa identically vanishes. Also B is the surface on which the past and future

horizon intersects. For our purpose it is convenient to choose B to be at λ = 0, otherwise it

is completely arbitrary. The traditional illustration of the PPFL and the horizon entropy

increase theorem extensively rely on the existence of a bifurcation surface. But, in general
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Figure 2. The point B (U = 0, V = 0), a (D−2)-dimensional cross-section of the Horizon represents

the Bifurcation surface, where θk, θl = 0.

the bifurcation surface is not a part of black hole space time formed by the gravitational

collapse of an object. However, if the geodesics that generate the horizon are complete to

the past, one can always have a bifurcation surface at some earlier λ. This can be realized

by the maximal extension of the black hole space-time. For instance, no notion of bifurca-

tion surface exist in the Schwarzschild space-time. Nevertheless, in its maximal extension

i.e., in the Kruskal space-time, the 2-sphere at U = 0, V = 0 represents a bifurcation sur-

face, as indicated in figure 2. A simple calculation leads to the following expressions of the

expansion coefficients along k and l,

θk ∝ U ; θl ∝ V (2.3)

Hence, at the future horizon U = 0, the expansion θk = 0 and at the past horizon where

V = 0, we have θl = 0. But, at the bifurcation surface (U = 0, V = 0) both θk and θl
vanishes. Also the shear can be shown to be vanishing on B. As a result, θk and σk are of

first order in perturbation, i.e., O(ε), while θl and σl are of zeroth order, with ε referring

to the strength of perturbation everywhere on the future event horizon. However, since

θl and σl vanishes at the bifurcation surface of the stationary black hole, they must be of

at least O(ε) only at B. This result is indeed a property of the bifurcation surface itself

and independent of the physical theory one considers. Hence it also generalizes beyond

general relativity and holds for higher curvature theories as well. In summary we have,

θk, σk, Rabk
akb, dρ/dλ v O(ε) and θl, σl v O(ε) at B. As a result, terms like θkθl v O(ε2)

only at the bifurcation surface of the background stationary horizon.

Having defined the geometry of the horizon, we are now set to illustrate the physical

process version of first law for an arbitrary diffeomorphism invariant theory of gravity

in its most general form. In order to discuss the PPFL, first one needs to define some

suitable notion of entropy on the horizon. But, since we consider theories beyond general

relativity here, the standard formula for entropy, as being proportional to area, no longer

holds. Nevertheless, whatever the expression for entropy might be, it must be some local
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functional density integrated over the horizon. Hence we start by considering the following

expression for horizon entropy:

S =
1

4

∫
H

(1 + ρ)
√
h dD−2x, (2.4)

where ρ is some entropy density constructed locally on the horizon and contains the higher

curvature contributions. The area-entropy relation in general relativity limit can be ob-

tained by setting ρ = 0. The field equation in such a general theory can always be

written as,

R(k, k) +H(k, k) = 8πT (k, k) (2.5)

where, R(k, k) ≡ Rabk
akb and T (k, k) = Tabk

akb along with H(k, k) ≡ Habk
akb represents

the deviation from general relativity. With this setting, let us now compute the variation

of the entropy along the horizon generator ka, in response to some influx of matter,

∆S(ρ) =
1

4

∫
H
dD−2x

∫
d

dλ
[(1 + ρ)

√
h] dλ (2.6)

This can be further simplified by integrating by parts and finally the change in entropy

takes the form,

∆S(ρ) =
1

4

(∫
dAλΘk

)λ2
λ1

+2π

∫
dAdλλT (k,k)+

1

4

∫
dAdλλ

[
−
(
D−3

D−2

)
(1+ρ)θ2

k+(1+ρ)σ2

]
− 1

4

∫
dAdλλ

(
d2ρ

dλ2
+2θk

dρ

dλ
−ρR(k,k)+H(k,k)

)
, (2.7)

where Θk = θk + ρθk + dρ
dλ and T (k, k) is understood as the (k, k) component of the matter

stress tensor.

We would like to emphasize that eq. (2.7) represents the most general form of the

variation of entropy along the null generator and no assumption regarding the strength

of the perturbation or the range of integration has been made throughout the derivation.

With this general expression in hand, one can now discuss the change in entropy at various

order of perturbation. Since terms like θ2
k, σ

2
k and θk(dρ/dλ) are of O(ε2), they do not

contribute to the first order variation. Hence, truncating the general result upto first order

in perturbation, we find that the change in entropy takes the form,

∆S(1)(ρ) =
1

4

(∫
dAλΘk

)λ2
λ1

+2π

∫
dAdλλT (k,k)− 1

4

∫
dAdλλ

(
d2ρ

dλ2
−ρR(k,k)+H(k,k)

)
(2.8)

For further simplification lets evaluate the last integrand of the above equation for some

simplified models, say f(R) theory, for which, the field equation takes the form,

f ′(R)Rµν −
1

2
gµνf(R) + gµν�f

′(R)− OµOνf ′(R) = 8πTµν (2.9)

Note that, for f(R) theory, f ′(R) represents the modifications to the entropy density over

and above the Einstein-Hilbert expression, i.e., ρ = f ′(R) − 1, where the prime denotes

– 6 –
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first derivative w.r.t. the Ricci scalar R. Also, one can always rewrite the field equation for

f(R) theory in the form of eq. (2.5), with

H(k, k) = f ′(R)R(k, k)− kakb∇a∇bf ′(R) (2.10)

Substitution of the above expression for H(k, k) results into the following identity for

f(R) theories,
d2ρ

dλ2
− ρR(k, k) +H(k, k) = 0 (2.11)

If eq. (2.11) is a property of the entropy density itself, then our expression for the change

in entropy upto first order as given in eq. (2.8) will take a very simplified form. At this

stage it seems a mere coincident, but as will be pointed out later, one can show the above

equation to hold for arbitrary order Lovelock theory as well. Motivated by these results, we

argue that, eq. (2.11) is a general property of the entropy density and holds in an arbitrary

diffeomorphism invariant theory of gravity. Note that, the above equation for the flow of

entropy density is a result that holds only up to first order in perturbation, i.e., it may be

proportional to terms that are at least quadratic in expansion and shear. Hence in general

eq. (2.11) is indeed of the form,

d2ρ

dλ2
− ρR(k, k) +H(k, k) = O(ε2) (2.12)

With this result, the first order variation of the entropy simplifies to,

∆S(1)(ρ) =
1

4

(∫
dA λ Θk

)λ2
λ1

+ 2π

∫
dA dλ λT (k, k) (2.13)

In the general relativity limit (ρ → 0) Θk → θk and hence the boundary term doesn’t

contribute when integrated from a bifurcation surface to a stationary slice. This is because

we have set the bifurcation surface to be at λ = 0 and the final stationary cross-section has

vanishing expansion. But, when the PPFL is evaluated between two non equilibrium slice

λ1 and λ2, the boundary term θk turns out to be non vanishing. We will discuss the issue

of arbitrary cross sections later and at this stage it will be worthwhile to briefly mention

the standard derivation of the physical process first law, in which the entropy change is

computed using two assumptions:

• The horizon possesses a regular bifurcation surface in the asymptotic past, which is

set at λ = 0 in our coordinate system.

• The horizon is stable under perturbation and eventually settle down to a new sta-

tionary black hole. So, all Lie derivatives with respect to horizon generators vanish

in the asymptotic future.

The first assumption is technical in nature. Note that, in a realistic scenario of black hole

formation by gravitational collapse, the bifurcation surface is not the part of the physical

space time. Therefore, it is desirable to have a formulation of the physical process first law

without this assumption.

– 7 –
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The second assumption is motivated by the cosmic censorship conjecture which asserts

that the black hole horizon must be stable under perturbation, so that expansion and

shear vanish in the asymptotic future at λ = λf . This is in principle similar to the

assertion that a thermodynamic system with dissipation ultimately reaches an equilibrium

state. This is a desirable property of the black hole horizon. Moreover, while deriving the

physical process first law, we are already neglecting higher order terms and this requires

that small perturbations remain small throughout the region of interest. This is equivalent

to not having any caustic formation on any portion of the dynamical horizon. Under these

assumptions, the boundary term in eq. (2.13) drops out, provided the generalized expansion

Θk goes to zero in the future faster than the time scale 1/λ, and we are left with,

∆S = 2π

∫ λf

λ=0
λ dλ d2x

√
q Tabk

akb . (2.14)

Subsequently identifying the background Killing field as ξa = λκ ka one can rewrite the

above equation as,

κ

2π
∆S =

∫
H
Tab ξ

a dΣb . (2.15)

This completes the standard derivation of what is known as the integrated version of

the physical process first law described by eq. (1.1). If the matter field satisfies the null

energy condition, then one will have Tabk
akb ≥ 0. As a consequence, it will follow that

the total change in entropy between the boundary slices is also positive semi-definite. In

comparison with the stationary version of the first law, the PPFL is local and independent

of the asymptotic structure of the space time. In fact, the relationship between these two

versions are not totally straightforward. In the next section, we would like to understand

how these two approaches are related to each other.

3 Stationary comparison version and physical process law

The version of the first law for black holes which deals with the variations in the phase space

of the theory is called the stationary comparison version of the first law. This version is

originally derived in [1] and then generalized to arbitrary diffeomorphism invariant theories

by Wald and others [17, 18]. This version starts with a stationary black hole solution. In

general relativity, the strong rigidity theorem implies that in a stationary spacetime the

event horizon is also a Killing horizon. Although there is a generalization of this theorem

beyond general relativity, it is always assumed that the black hole event horizon is also a

Killing horizon, such that there is a timelike Killing vector field outside, which becomes null

on the horizon. It is also assumed that the horizon possesses a regular bifurcation surface

in the past. This assumption is necessary for Wald’s construction. Also, the existence of

the past bifurcation surfaces lead to a constant surface gravity independent of the theory of

gravity [24]. Then, the stationary comparison version compares two such nearby stationary

solutions in the phase space which differ infinitesimally in ADM mass and relates the change

of ADM mass δM to the entropy variation δS as,
κ

2π
δS = δM (3.1)

The variation δ is to be understood in the space of solutions.

– 8 –
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To understand the relationship with PPFL, consider a time dependent black hole

solution: say for simplicity, a spherically symmetric Vaidya black hole which is accreting

radiation. The metric for such a space time is [25],

ds2 = −
(

1− 2M(v)

r

)
dt2 + 2dv dr + r2dΩ2. (3.2)

The Vaidya space time is an excellent scenario to study the physical process first law. The

area of the event horizon is increasing due to the flux of the ingoing matter. The rate of

change of the time dependent mass M(v) represents the energy entering into the horizon.

But, although M(v) is changing with time, the ADM mass of the spacetime is constant,

evaluated at the spacelike infinity: MADM = M(v → ∞). In fact, by definition, there

is no physical process which can change the ADM mass of a space time. Therefore, the

relationship between the PPFL and the stationary comparison version is somewhat subtle.

To understand the relationship, we consider the Vaidya space time, as a perturbation

over a stationary black hole of ADM mass m. Therefore, we assume M(v) = m + ε f(v).

The parameter ε signifies the smallness of the perturbation. Note that, the background

spacetime with ADM mass m is used only as a reference, it does not have any physical

meaning beyond this. In the absence of the perturbation, the final ADM mass would be

same as m. Therefore, we may consider the process as a transition from a black hole of

ADM mass m to another with ADM mass MADM and this allows us to relate the PPFL to

the stationary comparison law.

In case of ordinary thermodynamic system, the entropy is a state function and its

change is independent of the path. Therefore, we can calculate the change of entropy

due to some non equilibrium irreversible process between two equilibrium states by using a

completely different reversible path in phase space. In black hole mechanics, the stationary

comparison law can be thought as the change of entropy along a reversible path in the space

of solutions, whereas the PPFL is a direct irreversible process. The equality of the entropy

change for both these process therefore shows that the black hole entropy is indeed behaving

as that of true thermodynamic entropy.

Having understood the relationship between these two versions of the first law for black

holes, we will now study the ambiguities of Wald’s construction for black hole entropy and

how PPFL is affected by such ambiguities.

4 Black hole entropy and ambiguities

The entropy of stationary black holes with a regular bifurcation surface in an arbitrary

diffeomorphism invariant theory of gravity is given by Wald’s formula [17] as,

SW = −2π

∫
B

∂L

∂Rabcd
εabεcd

√
h dD−2x =

∫
B

(1 + ρw)
√
h dD−2x (4.1)

Where εab = kalb−kbla is the bi-normal to the bifurcation surface. Note that, the construc-

tion of Wald entropy formula crucially depends on the existence of a bifurcation surface.

However, as pointed out by [19], the Wald entropy remains unaffected even when evaluated

– 9 –
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on an arbitrary cross section of a stationary event horizon. This can be realized from the

fact that, in a stationary black hole space time, every cross section of the horizon is iso-

morphic to other. Since, in the Wald’s construction, the Noether charge (D − 2)− form is

constructed locally on the (D− 2) dimensional horizon cross section, one would expect the

Noether charge entropy to be the same, irrespective of which cross section it is evaluated on.

Also, as discussed in [18, 19], the ambiguities in the Noether charge construction

doesn’t affect the Wald entropy in case of stationary black hole. However, if the horizon

is involved in a dynamical process i.e., for non stationary black holes, the Wald entropy

formula no longer holds and turns out to be ambiguous upto addition of terms of the form,

∆Sw =

∫
Ω dA , (4.2)

where Ω = (pθkθl+qσkσl) and σkσl = σkabσ
ab
l . Note that, terms in Ω contains equal number

of k and l indices and hence combine to produce a boost invariant object, although they

individually transform non-trivially under boost. The coefficients p and q can be fixed by

demanding that the entropy be locally increasing [27, 28].

Comparing eq. (2.4) and eq. (4.1) and taking into account the ambiguities, we can

identify ρ = ρw + Ω. This identification essentially means that, the black hole entropy

for a non-stationary horizon slice can always be expressed as the entropy of the stationary

horizon plus ambiguities. Note that the black hole entropy coincide with Wald entropy in

the stationary limit. Now, we would like to ask a definite question: how does the physical

process law get affected by the ambiguities in the Noether charge construction? We will

show that as in the case of the stationary version, the physical process law for linear

perturbations is also independent of these ambiguities, provided we consider the entropy

change from the past bifurcation surface to the final stationary cross section. To see this,

consider the first order variation of the Wald entropy,

∆S(1)(ρw) =
1

4

(∫
dA λ Θk(ρw)

)λ2
λ1

+ 2π

∫
dA dλ λT (k, k)

− 1

4

∫
dA dλ λ

(
d2ρw
dλ2

− ρwR(k, k) +H(k, k)

)
(4.3)

Here we emphasize that, the equation for the flow of entropy that is obeyed by ρ may not

hold for ρw because of the presence of ambiguity. Now, we are interested in the difference

between the change in black hole entropy to the change in Wald entropy upto first order

in expansion and shear. A straightforward calculation shows,

∆S(1)(ρ)−∆S(1)(ρw) =
1

4

∫
dAλ

(
dΩ

dλ
+ Ωθk

) ∣∣∣∣∣
λ2

λ1

− 1

4

∫
dAdλ

(
λ
d2Ω

dλ2

)
(4.4)

Where we have neglected the term ΩR(k, k), which is of O(ε2). Also Ωθk is of O(ε2) and

does not contribute to the first order variation. Simplifying it further one can obtain,

∆S(1)(ρ)−∆S(1)(ρw) =
1

4

∫
dA Ω

∣∣∣λ2
λ1

(4.5)
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The above equation represents the difference in the change in black hole entropy and Wald

entropy as a boundary term evaluated between two arbitrary non equilibrium horizon slices

at λ1 and λ2. Since Ω involves shear and expansion, the right hand side of eq. (4.5) doesn’t

vanish in general, when evaluated on non-stationary cross sections. However, consider the

case when the background stationary black hole has a regular bifurcation surface and the

lower limit of the integration is at that surface set at λ = 0. Then, as discussed in the

previous section, terms like θkθl are of second order in perturbation and therefore Ω turns

out to be O(ε2) and does not contribute to the linear order calculation. Hence, up to first

order, the ambiguities does not affect the PPFL when integrated from a bifurcation surface

to a stationary surface. This is analogous to the case of stationary version of first law as

proven in [18, 19].

This result however doesn’t hold when second order perturbations are considered. Tak-

ing the difference between ∆S(ρ) and ∆S(ρw) by keeping terms upto O(ε2) one can obtain,

∆S(2)(ρ)−∆S(2)(ρw) =
1

4

∫
dA (λθkΩ + Ω)

∣∣∣λ2
λ1

+
1

4

∫
dAdλ

(
λθk

d∆

dλ
+ λΩR(k, k)− Ωθk

)
(4.6)

Unlike first order, the difference in the change in black hole entropy and Wald entropy

is given by a boundary term and a bulk integral. As a result, any conclusion about the

change of black hole entropy beyond linearized perturbation requires the resolution of these

ambiguities. In fact, if we demand an instantaneous second law, such that the entropy is

increasing at every cross section, to hold beyond general relativity, we can fix the ambigu-

ities and find the appropriate black hole entropy [27, 28]. Then, it is possible to study the

higher order perturbations and obtain the transport coefficients related to the horizon [23].

So far, we have only considered the integrated version of PPFL, where the entropy

change is calculated between the past bifurcation surface and the future stationary regime.

In the next sections, we would like to understand the PPFL for two arbitrary cross sec-

tions of the horizon. In order to do so, we would require some results from the membrane

paradigm formulation for black hole. We therefore, briefly describe the membrane con-

struction for the event horizon, in the next section.

5 Membrane paradigm for black holes

The membrane paradigm is an effective description of black hole physics from the point of

view of an outside observer. In membrane paradigm, one models the black hole horizon by

a membrane of a fictitious fluid living on the horizon surface. Thus the interaction of the

black hole with outside matter is mimicked by the interaction of the horizon fluid with the

matter and hence is related to the transport coefficients of the fluid [29].

It is possible to derive a membrane stress tensor using a variational principle in a

space time with an inner-boundary such as black hole horizon. For example, varying the

Einstein-Hilbert action functional with the Gibbons-Hawking surface term [30, 31] leads

to boundary contributions which vanish when Dirichlet boundary condition is imposed.

But, in the presence of a black hole horizon as the inner boundary, the contribution at the

inner boundary makes the variational principle ill defined. As a result, to derive the field
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equation, a new contribution is added at the horizon to make the on-shell action stationary

under a variation. This new contribution can be interpreted as due to some fictitious

matter living on the stretched horizon, a time like surface just outside the horizon [26].

The matter stress tensor on the time like membrane is then shown to be of the following

form [26, 29]:

tab = p hab + 2 η σab + ζ θk h
ab, (5.1)

where the constants appearing in the above stress tensor has the following expressions:

p = κ, η = 1/16π and ζ = −1/16π for general relativity. For other theories of gravity

the form of the stress energy tensor remains unchanged. However the coefficients get

modified [32–34].

This stress tensor resembles that of a viscous fluid with shear viscosity η and a negative

bulk viscosity ζ. Using this stress tensor and the tangent to the stretched horizon ua, it is

possible to obtain the following energy density, Σ ≡ tabuaub = −θk/8π, where a limit from

the stretched horizon to the true horizon has been taken and the result is derived in the non-

affine parametrization. Note that, because of Hawking’s area theorem, the expansion θk is

always positive, which makes the energy of the membrane negative as long as matter obeys

null energy condition. Also, this energy for the membrane vanishes for a stationary horizon.

The negativity of the membrane energy can be explained as follows [29]: the event

horizon exhibits a teleological property and one has to impose future boundary conditions

to ensure the stability under perturbation. Consequently, the horizon tends to expand

even before matter energy actually hits the horizon. Since the matter has energy which is

positive, an expanding event horizon must have negative energy so that once the matter

has passed through the horizon, the total energy at equilibrium becomes zero. The same

teleological condition also results in the negative bulk viscosity [35–38].

6 Physical process first law and the membrane paradigm

We seek to formulate a generalization of the physical process first law for two arbitrary

dynamical cross section of the horizon and like to understand the physics behind the above

process when we integrate and evaluate the entropy change between two arbitrary slices

at λ = λ1 and λ = λ2. Since the boundary terms already have a contribution from θk,

to first order the affine parameter λ can always be taken to be the one for the stationary

background. Also, we switch to non-affine parametrization of the null generators and use

following relation between the expansion scalars in different parametrization,

θ
(affine)
k =

1

κλ
θ , (6.1)

where κ stands for the surface gravity in the background stationary black hole and hence

can be treated as constant, while θ represents the expansion in non-affine parametrization.2

Using the above relation between expansion scalars in eq. (6.1) and multiplying both sides of

2This will be the general strategy followed in the rest of the paper. The quantity without the subscript

k will correspond to the quantity in non affine parametrization.
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the equation by the surface gravity κ, we obtain the entropy change between two arbitrary

slices as,

κ

2π
∆S = ∆

[
1

4

∫
d2x θ

√
q

]
+

∫
H
Tab ξ

a dΣb , (6.2)

where all the quantities correspond to non-affine parametrization. The last term in the left

hand side is identified as the energy flux ∆Q flowing into the horizon. It is now clear that

the above equation indeed has a thermodynamic interpretation provided one can interpret

θ to be proportional to some sort of energy. It turns out that this can indeed be done in

connection with the black hole membrane paradigm. This will enable us to write down

a thermodynamic physical process first law for the entropy change between two arbitrary

dynamical slices of the horizon. Before delving into details of this, let us first briefly

recollect the basics of membrane paradigm.

A look at the first term in the right hand side of eq. (6.2) is sufficient to convince that

it is the change of this membrane energy. Using the expression of the membrane energy,

Σ = −θ/8π, we obtain,

κ

2π
∆S = ∆E +

∫
H
Tab ξ

a dΣb ; E = −
∫
d2x
√
qΣ , (6.3)

which is the first law in a dynamical context, where unlike eq. (1.1), we have an additional

energy term E, which has its origin in the energy of the horizon fluid arising from membrane

paradigm. Since the membrane energy density Σ is negative it immediately follows that

the energy E defined here is positive. In the context of integrated version where the range

of integration is from the bifurcation surface to future stationary slice, it follows that the

membrane energy identically vanishes at both the limits and one immediately arrives at

the original physical process version of the first law.

If we identify κ/2π as the Hawking temperature TH of the background stationary

horizon, we have the following from of the physical process first law: TH∆S = ∆E + ∆Q

for changes between two arbitrary non stationary cross sections of the dynamical event

horizon. Therefore, we have explicitly shown that one can indeed write down a well defined

physical process version of the first law for any two arbitrary cross sections of the horizon

and the energy density of the horizon fluid in the membrane paradigm plays a crucial role in

the analysis. This result illuminates a connection between the laws of black hole mechanics

and membrane paradigm in a dynamical context.

So far, we have only considered the first law for general relativity. As a result, our

horizon entropy is taken to be a quarter of the area. But, the integrated version of the

physical process law can be generalized beyond Einstein gravity, in particular to higher

curvature theories of gravity as well. For example, it is possible to write down a physical

process first law for Lanczos-Lovelock class of theories [22] where the entropy is no longer

proportional to the area, rather is a complicated function of the horizon geometry [39].

As a result, the extra terms arising in the expression of entropy change, between two

arbitrary cross sections, is different. We would like to understand if our interpretation

of the boundary terms as the energy associated with horizon membrane holds true even
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in such a situation. We answer this in the affirmative in the next sections, where we

show how the integrated physical process first law for Lanczos-Lovelock gravity can also

be generalized for entropy change between arbitrary slices. In this case also, the boundary

terms can be interpreted as the energy associated with the corresponding membrane at

the horizon. This result shows that our generalization transcends beyond general relativity

and have a much broader applicability.

In the next section, we will consider the case of Einstein-Gauss Bonnet gravity, the first

non-trivial Lanczos-Lovelock term. We will depict how the physical process first law for

arbitrary cross sections can be obtained for Einstein-Gauss-Bonnet gravity and shall show

its relationship with the corresponding membrane energy. We will extend our analysis to

the full Lanczos-Lovelock gravity in later sections.

7 First law for dynamical black holes in Einstein-Gauss-Bonnet gravity

We have derived the first law for dynamical black holes in a quasi-stationary scenario

albeit in the context of Einstein gravity. It will be worthwhile to explore whether the

same result applies to other gravity theories as well. This will establish our formalism in a

broader framework. Even though there can be a large class of theories which would satisfy

the diffeomorphism invariance property and qualify as a gravitational Lagrangian, they

can be distinguished by the additional criteria of providing second order field equations

under variation. One can show that such Lagrangians are unique and are known as the

Lanczos-Lovelock Lagrangians [40]. The Lanczos-Lovelock Lagrangians are polynomials

in the Riemann curvature tensor, suitably contracted with the completely antisymmetric

determinant tensor. A Lanczos-Lovelock Lagrangian of order m will involve product of m

Riemann curvature tensors. The case m = 1 corresponds to the Einstein gravity, while m =

2 is known as the Gauss-Bonnet gravity. Incidentally, the Gauss-Bonnet term appears quiet

naturally from the low energy effective action of string theory as well ([41] and references

therein). Thus, so to speak, it has a ‘quantum’ origin. We have already elaborated on

the physical process version of the first law in dynamical situations for Einstein gravity

and shall explore the corresponding scenario when the Gauss-Bonnet term is present. The

action for the Einstein-Gauss-Bonnet gravity in D spacetime dimensions reads,

A =

∫
dDx
√
−g 1

16π

{
R+ α

(
R2 − 4RabR

ab +RabcdR
abcd
)}

, (7.1)

where α is a dimensionful coupling constant with dimension (length)2. One can write down

an expression for the entropy associated with black holes in Einstein-Gauss-Bonnet gravity

as [39],

SEGB ≡
1

4

∫
dD−2x

√
q ρ ; ρ = 1 + 2α (D−2)R , (7.2)

where (D−2)R stands for the intrinsic Ricci scalar of the (D− 2) dimensional cross section

of the horizon. Note that when α = 0, ρ becomes unity and one recovers the (area/4) law

for general relativity. One can easily compute the change in entropy due to the dynamical
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evolution of the event horizon triggered by in falling matter. This can be computed by

evaluating the change in the entropy along the null generator ka parametrized by affine

parameter λ and leads to the expression,

∆SEGB =
1

4

∫
dD−2x

∫ λ2

λ1

dλ
√
q

[
ρ θ(k) +

dρ

dλ

]
≡ 1

4

∫
dD−2x

∫ λ2

λ1

dλ
√
q ϑk , (7.3)

where ϑk is the analog of the expansion θk in Einstein-Gauss-Bonnet gravity. One can

apply the integration by parts method and hence separate out a total divergence from the

above integral. This essentially results in,

∆SEGB = ∆

{
1

4

∫
dD−2x λ

√
q ϑk

}
− 1

4

∫
dD−2x

∫ λ2

λ1

dλ λ
√
q
dϑk
dλ

. (7.4)

In order to arrive at the above expression we have neglected all the quadratic terms in

θ(k), as we are working under quasi-stationary approximation. Among the terms in the

boundary, the dρ/dλ term essentially depends on how (D−2)R changes along the null

generators. Since (D−2)R depends on the metric qab projected on to the (D−2) dimensional

cross section of the horizon it follows that change of (D−2)R is essentially related to dqab/dλ.

This is nothing but the extrinsic curvature of the surface generated by the space of null

generators. Thus one obtains,

d

dλ
(D−2)R = −2 (D−2)Rab

(
σab(k) +

θ(k)

D − 2
qab
)
, (7.5)

where σab(k) is the shear tensor associated with the null generator ka. Regarding the bulk

term, which corresponds to dϑk/dλ, it is possible to simplify it considerably by keeping

in mind the approximations under which we are working. In particular one can show

that this term is nothing but −8πTabk
akb [22], alike the corresponding scenario in general

relativity. Finally, we arrive at the following expression for the change in entropy for the

Einstein-Gauss-Bonnet gravity,

∆SEGB =
1

4
∆

{∫
dD−2x

√
q λ ϑk

}
+ 2π

∫
dD−2x

∫ λ2

λ1

dλ λ
√
q Tabk

akb . (7.6)

However, the above result is in affine parametrization and therefore it is necessary to make

a transition to a non-affine parametrization following the routes described in the earlier

section. Further since λ appears multiplied with the expansion and we are working under

linear approximation, one can take it to be the one corresponding to the Killing vector of

the stationary background. When these are taken into account, the change in entropy due

to the evolution of the horizon along the non-affinely parametrized null generators can be

written as,

κ

2π
∆SEGB = ∆

{
1

8π

∫
dD−2x

√
q ϑ

}
+

∫
H
Tabξ

adΣb . (7.7)

Note that if the end points correspond to past bifurcation surface and future stationary

slice, then the boundary contributions will vanish as in case of general relativity and one
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ends up with integrated version of the physical process first law for Einstein-Gauss-Bonnet

gravity [21]. In situations where we compute the entropy change between arbitrary cross

sections, the boundary terms come into play and it is needed to interpret them in order

for eq. (7.7) to have a proper thermodynamic significance. Before venturing into such an

analysis, we note that the term ϑ also represent the analog of expansion in this case, mea-

suring the change in entropy per unit cross section. For Einstein-Gauss Bonnet theory, the

entropy has been shown to be increasing at any arbitrary slice for linearized perturbation

with positive energy matter. Therefore, as in the case of general relativity, ϑ is also positive

semi-definite at least for linearized perturbation of the horizon. Next, taking a cue from

the situation with Einstein-Hilbert action we try to compare the boundary term with the

energy of the horizon fluid in membrane paradigm, but now for Einstein-Gauss-Bonnet

gravity. The membrane stress energy tensor tab for Einstein-Gauss-Bonnet gravity has

been obtained in [32] for perturbations over a spherically symmetric black hole horizon,

and the corresponding energy density Σ = tabu
aub associated with an evolving horizon in

the membrane paradigm is,

ΣEGB = − θ

8π

[
1 + 2α

D − 4

D − 2
(D−2)R

]
. (7.8)

When α → 0, it follows that Σ = −θ/8π, reproducing the general relativity result for

membrane energy density. We then evaluate ϑ for the case of linearized perturbations

around a spherically symmetric horizon leading to:

ϑ = ΣEGB = − θ

8π

[
1 + 2α

D − 4

D − 2
(D−2)R

]
. (7.9)

This allows us to finally write down a first law for entropy change between two arbitrary

cross section of the dynamical horizon in Einstein-Gauss Bonnet theory as,

κ

2π
∆S = ∆E +

∫
H
Tab ξ

adΣb; E = −
∫
dD−2x

√
qΣEGB . (7.10)

This again coincides with the interpretation put forward in the context of general relativ-

ity. Thus in dynamical situations the matter flow into a horizon in Einstein-Gauss-Bonnet

gravity changes the entropy and the energy associated with the horizon. This provides a

concrete realization of the first law and illustrates the inter-relationship of black hole ther-

modynamics and membrane paradigm both in the context of Einstein as well as Einstein-

Gauss-Bonnet gravity. This prompts us to see whether an identical interpretation can be

put forward for general Lovelock theories. This is what we will do next.

8 Generalization to the full Lanczos-Lovelock Lagrangian

Having described a dynamical version of the physical process first law for entropy change

between arbitrary cross sections, in the context of Einstein-Gauss-Bonnet gravity, we would

like to be more ambitious and try to see whether a similar result persists for the full Lanczos-

Lovelock Lagrangian. As already mentioned earlier, the full Lanczos-Lovelock Lagrangian
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is a sum over various polynomials of the Riemann curvature and it can be presented as,

LLL =
1

16π

∑
m=1

cmδ
a1b1···ambm
c1d1···cmdmR

c1d1
a1b1
· · ·Rcmdmambm

≡ 1

16π

∑
m=1

cmL(m) . (8.1)

Here cm’s are arbitrary dimensionful coupling coefficients and δab···cd··· represent the completely

antisymmetric determinant tensor. The first term in the above Lagrangian corresponds to

the Ricci scalar, while the second one stands for the Gauss-Bonnet invariant. The Lanczos-

Lovelock class of gravity theories have been extensively analyzed in the context of black

hole mechanics [42, 43]. As a warm up, we will first illustrate the first law for a single term

in the above Lagrangian, known as pure Lovelock terms and shall subsequently generalize

to the full Lanczos-Lovelock theory.

8.1 The case of pure Lanczos-Lovelock gravity

In this section we will exclusively work with the mth order Lanczos-Lovelock gravity which

is a product of m Riemann tensors suitably contracted with the determinant tensor, given

by L(m) as in eq. (6.3). For the mth order Lanczos-Lovelock Lagrangian, the corresponding

entropy associated with a horizon corresponds to,

S
(m)
LL ≡

1

4

∫
dD−2x

√
q ρ ; ρ = m (D−2)L(m−1) . (8.2)

Thus the entropy of a (D − 2) dimensional cross section of a horizon in mth order Love-

lock theory is proportional to the (m − 1)th Lanczos-Lovelock Lagrangian in (D − 2)

dimensions [39]. One can immediately compute the associated change in the entropy of

the horizon as some matter falls into the same. This can be obtained by computing how

the entropy changes along the null generator ka associated with the horizon. Thus the

change in entropy, to leading order, would correspond to eq. (7.4), where ρ is now given by

eq. (8.2). The term dρ/dλ in this context depends on how (D−2)L(m−1) changes along the

null generator ka. This again corresponds to (D−2)R(m−1)
ab (dqab/dλ). Here (D−2)R(m−1)

ab

is the analog of Ricci scalar for the (m − 1)th Lanczos-Lovelock Lagrangian in (D − 2)

spacetime dimensions. Note that for Gauss-Bonnet gravity m = 2 and one recovers the

standard Ricci scalar which is exactly what we have shown in the previous section. Again

using the fact that the change of qab along λ is related to the extrinsic curvature associated

with the horizon surface, it follows that,

d

dλ
(D−2)L(m−1) = −2 (D−2)R(m−1)

ab

(
σab(k) +

θ(k)

D − 2
qab
)
. (8.3)

Since, ultimately we will consider perturbations of a spherically symmetric black hole, the

shear part does not contribute in the leading order and we obtain (d/dλ){ (D−2)Lm−1} as

{−2(m − 1)/(D − 2)}θ(k)
(D−2)Lm−1. Note that for the case when m = 2, the result for

Gauss-Bonnet gravity is retrieved. Further, the derivation of the second law for linearized

perturbations in Lanczos-Lovelock gravity [36] shows that the bulk term dϑ/dλ appearing
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in the entropy change as in eq. (7.4) is again equal to −8πTabk
akb. Using these results one fi-

nally arrives at the change of entropy between two arbitrary cross sections of the horizon as,

∆S
(m)
LL = ∆

{
m

4

∫
dD−2x λ

√
q
D−2m

D−2
θ(k)

(D−2)Lm−1

}
+2π

∫
dD−2x

∫ λ2

λ1

dλ λ
√
qTabk

akb

(8.4)

The membrane paradigm for black holes in Lanczos-Lovelock gravity has been studied for

linearized perturbations of spherically symmetric black holes [33] and the membrane stress

tensor is of the form of a viscous fluid as in case of general relativity. The energy density as-

sociated with membrane stress-energy tensor for mth order Lovelock Lagrangian then reads,

Σ
(m)
LL = −m

8π

D − 2m

D − 2
θ (D−2)Lm−1 (8.5)

Thus one can rewrite eq. (8.4) using non-affine parametrization and the energy density of

the membrane fluid in Lovelock theories to finally arrive at,

κ

2π
∆S

(m)
LL = ∆E +

∫
H
Tab ξ

adΣb; E = −
∫
dD−2x

√
qΣ

(m)
LL (8.6)

Thus even in the context of pure Lanczos-Lovelock theories one can arrive at a physical

process version of first law in dynamical situations, leading to an identical description for

the change in entropy between arbitrary non-equilibrium states as in previous scenarios.

We will now collect all these results and generalize this physical process version of first law

to the full Lanczos-Lovelock gravity.

8.2 Physical process first law and the Lanczos-Lovelock gravity

In this section we will consider the full Lanczos-Lovelock Lagrangian given by eq. (6.3). One

can compute the entropy associated with a horizon in the context of full Lanczos-Lovelock

Lagrangian, which corresponds to,

SLL =
∑
m=1

S
(m)
LL =

1

4

∫
dD−2x

√
qρ; ρ ≡ −2P abcdka`bkc`d = 1 +

∑
m=2

cmm
{

(D−2)Lm−1

}
(8.7)

where the notations and constants have the usual meaning. For the Einstein-Hilbert La-

grangian ρ = 1, while for other Lagrangians it is non-trivial. For example, in Einstein-

Gauss-Bonnet gravity one would have obtained ρ = 1+2α (D−2)R, where α is the coupling

parameter associated with the Gauss-Bonnet Lagrangian, which we have explicitly used

in section 7. Taking a cue from our earlier analysis, the change in entropy would corre-

spond to ρθ(k) + dρ/dλ. Again one can separate out a total derivative term and rewrite

the change of entropy as a difference between two boundary terms and a bulk term. The

form is structurally identical with eq. (7.4), with ρ being given by eq. (8.7). Following [33],

it turns out that the dϑ/dλ term in eq. (7.4) will lead to −8πTabk
akb, while the boundary

term can be obtained following the pure Lovelock analysis (see e.g., eq. (8.5) such that,

θkρ+
dρ

dλ
= θk

[
1 +

∑
m=2

mcm
D − 2m

D − 2
(D−2)Lm−1

]
= −8π

κλ
ΣLL (8.8)

– 18 –



J
H
E
P
0
9
(
2
0
1
8
)
0
3
4

where ΣLL is the energy density associated with the horizon fluid in the membrane

paradigm. Transforming to non-affine parametrization, one can finally write down the

following structure of the dynamical version of physical process first law in full Lanczos-

Lovelock gravity as,

κ

2π
∆SLL = ∆E +

∫
H
Tab ξ

adΣb E = −
∫
dD−2x

√
q ΣLL (8.9)

Thus we arrived at an identical interpretation for the change in entropy associated with

a horizon due to matter flowing into it. It further depicts that the energy going into the

horizon in the form of matter stress energy tensor results into a change in black hole entropy

and also modifies the energy density associated with horizon fluid in membrane paradigm.

Interestingly, if the end points of this physical process corresponds to past bifurcation

surface and future stationary cross section then the energy term identically vanishes at

these two boundaries and one arrived at the standard integrated physical process first law.

9 Conclusion

Generically, realistic black holes are supposed to be dynamic due to presence of flux across

the horizon. It can however be stationary for finite intervals of time when there is no flux.

Hence the notion of Black holes as depicted by global stationary solutions of some equations

of motion describing gravity, does not exist in reality. Consequently the assumption of

existence of a regular bifurcation surface associated with every non-extremal black hole is

only an idealization. Therefore there is an immediate difficulty in defining the entropy of

a black hole in such scenarios. As has been discussed this is due to the ambiguities in the

assigning of Wald’s entropy to the cross-sections of such dynamical black holes. We have

therefore discussed the ambiguities in the definition of Wald’s entropy and the extent to

which it affects the PPFL. In particular we show that to linear orders in perturbation the

ambiguities in the Wald entropy do not affect the PPFL as long as the integration range is

from the initial bifurcation surface to the final stationary horizon cross-section. However,

the second order variation of entropy turns out to be affected by ambiguities.

Given a non degenerate Killing horizon K, there are theorems that state that one can

always extend the spacetime such that K, in the extended spacetime is a bifurcate Killing

horizon [24], hence establishing the fact that on a larger manifold the assumption of the

presence of a bifurcation surface is viable. Therefore in the dynamical scenario, provided

the black hole was stationary initially, one may assume the presence of a bifurcation surface.

On the other hand, it also seems reasonable that a version of the physical process first law

for dynamical black holes must hold even without the assumption of the existence of a

bifurcation surface. It is precisely this question that we answer in the affirmative, within

the dynamical event horizon framework. This is a well motivated question considering the

fact that in certain quasi-local definitions of evolving black holes viz. dynamical horizons

which do not assume a bifurcation surface, an integrated form of the first law can be

realized [44, 45].3

3Certain differential forms of the first law also hold under a slow evolution condition [46].
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The main outcome of the second part of the work is being able to write the first law for

entropy change between two non equilibrium cross sections at the expense of introduction

of the extra term ∆E which has an interpretation as the change of the energy of the horizon

fluid in the context of the black hole membrane paradigm. Note that, we can not assert

the sign of the membrane energy unless we demand that the expansion is positive at every

cross section. This is indeed true because of the Hawking’s area theorem. But the area

theorem requires the assumption of cosmic censorship. Therefore, we indirectly require the

stability of the black hole under perturbation even if we are interested only in the change

of entropy between two intermediate cross sections.

Consider the situation in general relativity, where the focusing equation along with null

energy condition forces the expansion to decrease as the matter flux perturbs the horizon.

So, the expansion remains positive but decreases to zero in the future and the matter flux

is used up for two processes. First to increase the entropy of the non equilibrium cross

sections of the horizon, and secondly to decrease the expansion and increase the membrane

energy from negative to zero. It is indeed interesting that all these can be easily extended

to higher curvature theories like Lanczos-Lovelock gravity. This seems to indicate that

the thermodynamic nature of horizon is an universal property independent of the detailed

dynamics of gravity.

There are several possible extensions of our result. We hope that the formalism may be

useful to derive a physical process first law for extremal black holes. Also, except general

relativity, the membrane paradigm is developed only for perturbations about a spherically

symmetric horizon. It would be interesting if more general cases can be compared. Another

important extension could be to go beyond the linear order of perturbation and understand

the effect of dissipative terms.
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