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1 Introduction

Recent investigations into asymptotic symmetries of gauge theory and gravity have illumi-

nated connections between gauge field zero-mode sectors, the corresponding soft factors,

and their classically observable counterparts called “memories”. The connections between

these concepts can be illustrated by the following triangle:

Recent literature has drawn the links connecting soft factors, symmetries, and mem-

ories for two of the three sets above (see [1] for ii), [2] for iii)). This paper closes the
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triangle for case i). Meanwhile, the individual vertices and edges have been studied for

quite some time. Of the connections/edges, the oldest and most well known are those

that lie between the leading gauge and gravity soft factors and their corresponding global

symmetries: charge and four-momentum conservation, respectively, as derived by Wein-

berg [3]. Also in the 1960’s, Bondi, van der Burg, Metzner, and Sachs (BMS) worked out

the symmetry group for asymptotically flat spacetimes [4, 5]. However, it was not until [6]

that these two lines of research were connected, with Weinberg’s soft graviton theorem

reinterpreted as a Ward identity for the BMS asymptotic symmetry group [7]. The final

step of connecting these soft-factors/asymptotic symmetries to a classical observable came

in [1], which found that Weingberg’s soft graviton theorem corresponds to the gravitational

memory effect [8–10].

The utility of thinking in terms of the above triangle is best illustrated in cases where

some of the vertices are ‘missing,’ and the above connections can serve as a guide to fill in

these gaps. The superrotation iteration iii) is a prime example. In the early 2000’s, it was

suggested [11] that the globally defined BMS supertranslations could be accompanied by

locally defined superrotations, extending the standard homogenous Lorentz group [12–14].

The utility of such an extension was demonstrated by Strominger and collaborators when

they derived the corresponding tree-level subleading soft factor [15], showed its connection

to superrotation generators [16], and completed the above triangle by proposing the spin

memory effect [2].

The electromagnetic iteration is one where the vertices are known separately but only

some of the connections have been made. The first step, linking soft factors and symme-

tries was made in [17], connecting the leading Weinberg soft photon factor to an asymptotic

large U(1) gauge symmetry. What remains is to draw the final links to the electromagnetic

version of a “memory effect”. We are aided by recent work discussing the electromagnetic

analog of gravitational memory [18]. Intent on establishing a connection between electro-

magnetic memory, the asymptotic U(1) gauge symmetry of [17] and the leading Weinberg

soft factor, the goal of this paper is to show that a measurement of the electromagnetic

memory produced by scattering charges with fixed initial and final momenta yields the

soft factor corresponding to the S-matrix element with those in and out states plus an

additional soft photon.

This paper is organized as follows. In section 2 we introduce conventions, and set the

groundwork for the finite-r measurement interpretation. Section 3 describes different man-

ifestations of the electromagnetic memory effect related to the massive/massless splitting

of [18]. In 3.1, we outline the applicable boundary conditions. In 3.2, we clarify what one

means by a “memory” effect and discuss equations relevant to the results of [18]. Sec-

tion 3.3 explores the connection to Weinberg’s soft factor in the massive case, as can be

seen from using retarded radiation solutions in classical electromagnetism a la [19]. Then

in 3.4, we review the asymptotic U(1) gauge symmetry of [17] and how the previous discus-

sions connect to the new boundary conditions for a massless scattering process. Section 4

describes an alternative measurement for the electromagnetic memory effect, where suspen-

sion of test charges in a viscous fluid results in a net displacement, rather than a velocity

kick [18], and section 5 concludes the discussion of electromagnetic memory’s connections

and consequence.
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2 Conventions

We will now summarize our conventions. In all three iterations of the symmetry/soft

factor/memory triangle, computations are best performed in retarded and advanced coor-

dinates. The flat Minkowski metric is:

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ (u = t− r)
= −dv2 + 2dvdr + 2r2γzz̄dzdz̄ (v = t+ r)

(2.1)

in retarded (u) and advanced (v) coordinates, where γzz̄ = 2
(1+zz̄)2 is the round metric

on the S2, with (z, z̄) coordinates describing the stereographic projection of the Riemann

sphere

x̂ =
1

1 + zz̄
(z + z̄, i(z̄ − z), 1− zz̄). (2.2)

The four-momentum of an on-shell massless particle can thus be parameterized by an

energy (ω) and a direction on the S2:

qµ = ω(1, q̂). (2.3)

On a Penrose diagram, massive particles enter at past timelike infinity i− and exit at future

timelike infinity i+, while massless particles enter at past null infinity I− and exit at future

null infinity I+ (see figure 1).

Thinking of quantities such as the asymptotic gauge fields or metric as living on the

R × S2 of future or past null infinity allows one to separate out the massless from the

massive degrees of freedom. However, when computing quantities that live on null infinity,

there should be a way to pull the physical observables into the bulk and make statements

at large-but-finite r and also for massive detectors (the generators along I are null).

In setting up a large-r observing sphere, accelerating charges/masses sourcing the

radiation are assumed to be at a small distance from the center of the sphere compared to

the radius |rs| � |r|. When comparing to Ward identities and other quantities described

in terms of data — in particular zero modes — along null infinity [17], one should keep

in mind that an integral along v on past null infinity and then u on future null infinity

captures the incoming and outgoing radiation that would be seen by a large fixed-r observer

in the “radiation zone”, integrating over all time t (or any other of time coordinate {u, v, t}
at fixed large but finite r when we are in Minkowski space). When one “integrates over

all time” the relevant changes in the gauge field should start after an early enough v and

stop at some late enough u, so that a finite time integration can still capture the relevant

observables.

If one thinks of the measurement sphere as extruding a cylinder (R×S2) in spacetime,

all massless matter fluxes through the walls of the cylinder while massive matter goes

through the endcaps (purple outline in figure 1). One must take this into account since

states where the particles are moving with constant velocities at early and late times will

eventually cross the sphere at some point, but a massive particle will never reach I+. The

time interval starts and stops the clock when the massive particles are well within the

sphere. Detectors sitting on the sphere in that interval still capture all of the radiation.
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Figure 1. Radiation resulting from the acceleration of charges.

(Equivalently, one could restrict oneself to detectors at a large angular separation from

where the particles enter or emerge to maintain the radiative 1
r power counting.) This is

an intuitive picture for what is made precise by the boundary conditions we impose on the

fields.

3 Maxwell in the radiation zone

3.1 Boundary conditions

There are two sets of boundary conditions relevant to discussing asymptotic symmetries

and the electromagnetic memory effect. First, specifying the radial fall-off conditions on

the electromagnetic fields allows one to solve for the radiation-zone solution to Maxwell’s

equations. Second, placing matching conditions on the gauge potential across spatial infin-

ity i0, and adding field strength boundary conditions at the temporal extremes of past and

future null infinity, allows one to establish S-matrix symmetries. There is more flexibility

in the second step. Multiple methods can consistently give a “memory effect” with varying

degrees of utility as an asymptotic S-matrix symmetry.

The derivations of the relevant classical field equations in [17] and [18] are equivalent

with respect to the first of these two steps. The fall-off conditions in Cartesian coordinates

include: i) an O
(

1
r2

)
radial electric field, ii) O

(
1
r

)
radiative fields, and iii) vanishing radial

magnetic field (at each angle) at very early and very late times. In checking that this is

– 4 –
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consistent with the retarded radial coordinates of [17] one should keep in mind the factor

of r accompanying components tangential to the S2 coming from the Jacobian ∂zx
µ.

For later use, let us make explicit our conventions for the gauge field components,

following [17]. Here, one assumes the gauge field Aµ(r, u, z, z̄) can be expanded in powers

of O
(

1
r

)
. In the retarded radial gauge choice of [17]:

Ar = 0

Au|I+ = 0
(3.1)

the radial fall-offs are Au = O(r−1), Az = O(1). We will define Aµ(u, z, z̄) as the leading

coefficients of the 1
r expansion of Aµ(r, u, z, z̄). Performing a radial expansion of F = dA

one has Fur = O(r−2), Fzz̄ = O(1), Fuz = O(1). If we similarly defining Fµν as the

corresponding leading coefficients in the radial expansion of Fµν , we get the following

relations for the large r limit of the field strength tensor [17]:

Fur = Au
Fzz̄ = ∂zAz̄ − ∂z̄Az
Fuz = ∂uAz.

(3.2)

Note that Fur corresponds to the radial electric field (Au = −e2r2Er), Fzz̄ to the radial

magnetic field, and Fuz to the radiative fields (tangent to the S2). We will also impose

Fzz̄ = 0 at the boundaries of I+ (denoted I+
− and I+

+ ).

The second step of boundary matching will be considered in section 3.4. The funda-

mental choice one confronts is whether to choose only retarded radiation solution or some

other propagator to solve Maxwell’s equations. The underlying question is whether to

consider the charges taking part in a scattering process as transmitters or receivers. If one

shoots a charged mass down an otherwise straight, rigid, frictionless wire with a kink in

it (we can just as well smooth it out to a rounded elbow), then one can imagine that the

mechanical forces causing the charge to accelerate as it rounds the bend will also cause it

to emit radiation, making the retarded solution the best choice. On the other hand, one

could look at the effects of incoming radiation on a set of charges. Explicit CPT symmetry

ends up preferring a symmetric combination of incoming and outgoing radiation.

3.2 Electromagnetic memory

In this section, we specify a “memory effect” operator (3.8) for the U(1) case after a brief

discussion of what we mean by memory observables in the first place — i.e. what criterion

we use to distinguish the classical observable that we call a “memory”. The term stems

from the gravitational memory effect (see [1] for a review), where an array of test masses

receive a finite nudge in position as a result of radiation. Given a scattering process,

solving the linearized Einstein equations for the metric perturbation gives a net change

in distance. Gravitational waves (e.g. from an inspiraling binary system) can themselves

source such a perturbation in the metric. One often hears this referred to as the “non-

linear” Christodoulou effect; however, the same equations can be used to calculate the

shift after including the gravitational contribution to the stress tensor (see the constraint

equations in [2]).

– 5 –
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The essence of this process and its measurement is a “net effect”, (i.e. it probes the zero-

frequency limit of the gauge field sourcing the radiation). This picking out of zero-frequency

modes comes from time integration. In gauge theory and gravity one can construct specific

time integrated quantities determined by the same variables used to define |in〉 and |out〉
states, making it possible to connect them to S-matrix Ward identities. Meanwhile, the

fact that these S-matrix related quantities pick out the zero-frequency modes of the corre-

sponding gauge field motivates why they are connected to soft factors. The key ingredient

to linking these phenomena is the ability to transition between position and momentum

space.

The underlying principle behind the memory effect/soft theorem link is the connection

between position and momentum space which can be made for massless modes as they

approach null infinity. It relies on the saddle point approximation picking out q̂ · x̂ = 1

in the Fourier transformation of the massless field. Consider the mode expansion of the

vector potential in the free Maxwell theory [17]:

Aµ(x) = e
∑
α=±

∫
d3q

(2π)3

1

2ωq

[
εα
∗
µ (~q )aα(~q )eiq·x + εαµ(~q )aα(~q )†e−iq·x

]
. (3.3)

In retarded coordinates the plane wave phase becomes:

eiq·x = e−iωu−iωr(1−q̂·x̂), (3.4)

and one sees that having the integral over on-shell momenta pick out the parallel direction

comes from the order of limits, r → ∞ first (i.e. before taking |u| large). Moreover, the

polarization choice [16, 17]

ε+µ(~q ) =
1√
2

(w̄, 1,−i,−w̄) ,

ε−µ(~q ) =
1√
2

(w, 1, i,−w) , (3.5)

convenient for evaluating soft factors, matches the gauge choice (3.1) to the relevant order

in 1
r . Then, for q̂ parameterized by w (analogous to (2.2)), one finds that in this collinear

q̂ · x̂ = 1 limit

ε−z (~q )
∣∣
q̂·x̂=1

= ∂zx
µε−µ (~q )

∣∣
q̂·x̂=1

=

√
2r

1 + zz̄
, ε+z (~q )

∣∣
q̂·x̂=1

= ∂zx
µε+µ (~q )

∣∣
q̂·x̂=1

= 0, (3.6)

and similarly for ε±z̄ using ε±µ = (ε∓µ )∗. One gets for the leading in 1
r radiative compo-

nents [17]:

Az(u, z, z̄) ≡ lim
r→∞

∂zx
µAµ(x) = − i

8π2

√
2e

1 + zz̄

∫ ∞
0

dω
[
a+(ωx̂)e−iωu − a−(ωx̂)†eiωu

]
.

(3.7)

One sees from (3.7) that the operator

∆Az ≡
∫ ∞
−∞

du∂uAz(u, z, z̄) (3.8)

– 6 –
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acting on an outgoing state picks out the mode lim
ω→0

ωa+(ωx̂), extracting the residue of the

1
ω Weinberg soft photon pole. By comparing to (3.2) we can identify this observable as the

retarded-time integrated radiative electric field. As pointed out by [18], the electromagnetic

analog of the gravitational memory effect amounts to the time integrated radiated electric

field, so we can thus identify ∆Az as a “memory effect” operator. (Note subleading terms

are suppressed by O(1
r ) in position space and O(ω) for the soft photon, in momentum

space.)

The saddle point has the following implication: the Weinberg soft factor in electro-

magnetism corresponds to the time integral of the radiated electric field where one replaces

q̂, describing the direction of the emitted soft photon, with the x̂ for the position of the

large-r observer measuring the radiation. We will now see why this observable has the

property of memory effects mentioned above regarding its dependence on the same data

used to specify the |in〉 and |out〉 states for S-matrix elements.

Consistent with [18] but in the notation of [17], the relevant Maxwell equation is

∂uAu = ∂u(DzAz +Dz̄Az̄) + e2ju, (3.9)

where D denotes a covariant derivative with respect to the unit S2 and ju is the O(r−2)

term in the electric charge current. This is the constraint equation analogous to Gauss’s

law for future null infinity. Integrating along u, one gets at each angle,

∆Au = 2Dz∆Az + e2

∫
duju, (3.10)

where we have used Fzz̄ = 0 at the boundaries of I+, as described after (3.2), which also

implies that ∆Az = ∂zφ for some function φ(z, z̄). Since we will be considering outgoing

radiation when comparing to the retarded Liénard-Wiechert solution, we will be looking at

insertions of our memory effect operator on outgoing states. Integrating along u at fixed r

is equivalent to integrating for all times the radiation that reaches that detector, and for

the outgoing case this measured radiation will be emerging from, rather than entering, the

observing sphere. When all of the charges are massive, the ju term is zero, and one finds

that the integrated gauge field is related to the change in the radial electric field. This

is the Coulomb term. The key then is to look at the radial electric field for a constantly

moving charge. We will next show that the Weinberg soft factor gives precisely the change

in radial electric field ∆Au for given initial and final configurations of boosted charges.

3.3 Weinberg soft factor

In this section, we use Weinberg’s soft photon theorem to evaluate an insertion of our

memory effect operator (3.8) on outgoing states in an S-matrix element. The simplest way

of seeing the connection between the Weinberg soft factor and the above electromagnetic

memory effect is to make a few more assumptions about trajectories so one can evaluate

∆Au for the Liénard-Wiechert solution and show that it is the same as the Weinberg soft

factor with q̂ for the soft photon replaced by x̂ giving the location of the observer.

– 7 –
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First, consider the radial electric field of a boosted, but constantly moving charge for

|rs| � |r| evaluated at ~x = rn̂ in terms of the position of the charge at the retarded time:

Er =
Q

4πr2

1

γ2(1− ~β · n̂)2
. (3.11)

Next, note that the electromagnetic soft factor contribution for a massive particle with

momentum p is:

S(0)±
p = eQ

p · ε±

p · q
, (3.12)

where explicitly

pµ = mγ(1, ~β ) (3.13)

and γ with no indices refers to the Lorentz factor. This is the contribution from a single

external particle to Weinberg’s soft photon theorem:

〈out|a+(~q )S|in〉 = S(0)+〈out|S|in〉+O(ω0) (3.14)

where the full soft factor is the signed sum of outgoing minus incoming charged particle

contributions

S(0)+ =
∑
k∈out

S(0)+
pk
−
∑
k∈in

S(0)+
pk

. (3.15)

Considering outgoing radiation emitted during scattering, (3.7) and (3.14) give:

lim
ω→0

〈out|∆AzS|in〉
〈out|S|in〉

= − e

4π
ε̂∗+z ωS(0)+, (3.16)

where ωS(0)+ is O(ω0). Using (2.3) with q̂ = n̂, we evaluate:

− e
4π lim

ω→0
ω[Dz ε̂∗+z S

(0)+
p +Dz̄ ε̂∗−z̄ S

(0)−
p ] = −e2 Q

4π
1

γ2(1−~β·n̂)2
, (3.17)

where ε̂ is the r-stripped polarization tensor in retarded radial coordinates (3.5). This

is consistent with the expectation value interpretation of [1] if we compare the operator

insertion (3.16) to (3.10) evaluated for the Liénard-Wiechert solution. By additionally

assuming that the acceleration occurs over a small window during which the charges do

not appreciably move from the center of the observing sphere, one can evaluate ∆Au by

subtracting the initial from the final Au of a superposition of constantly moving charges near

the same value of u. This connects the single particle contribution to the soft factor to the

radial electric field of the asymptotic configuration. Using Au = −e2r2Er, comparing the

righthand side of (3.17) with (3.11), and summing up the contributions from each scatterer,

we see that (3.17) and (3.16) exhibit the relation between ∆Au and ∆Az in (3.10).

Having early and late asymptotic states with constant on-shell velocities implies this

∆Au corresponds to the electromagnetic soft factor. Consistency of Maxwell’s equations at

– 8 –
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I+ given a scattering process with no charges exiting I+, demands the outgoing radiation

solution have a net impulse corresponding to the soft factor.1

3.4 Large U(1) symmetry

By ‘large gauge symmetries’ we are referring to a class of pure gauge transformations that

act non-trivially on the boundary data. In particular, for certain large-r falloffs one finds

a symplectic paring between these modes and the physical memory modes [17], indicating

that despite their pure gauge nature, they must be included in the phase space. In this

section, we review the derivation of the asymptotic U(1) gauge symmetry found in [17] and

discuss the second step in setting the boundary conditions for an S-matrix symmetry.

As a primer, let us take a moment to consider how a residual large gauge symmetry can

be seen as necessary for self consistency of the theory with radiation along I+. Consider

the plot in the upper righthand corner of in figure 1. One can look at the gauge field at a

particular angle on the S2 as a function of u. The first round of boundary conditions (see

text after (3.2) and (3.10)) results in the electromagnetic memory depending on a “pure

gauge” function, i.e. ∆Az = ∂zφ(z, z̄). Consider situations where the durations over which

accelerations emitting radiation occur have compact support along u. Then separate out

the intervals between scattering processes. This follows naturally from assuming one can

isolate a single interaction. One should be able to measure the radiation over the time

interval relevant to a particular process and extract information that does not depend on

later processes. As such, one can imagine intervals of “pure gauge” between each such

segment for well-separated events. Indeed, in the Light-Shell Effective Theory (LSET)

solutions for massless scattering considered by [20], consistency with the soft factor comes

from a step function profile in the radiation (on the u = 0 shell propagating from an

interaction at the spacetime origin).

t null infinity, the classical vacuum “picks out” a pure gauge Az configuration that is

constant in u. If we consider a scattering process in which the Az background agrees with

this profile at early retarded times, and then decide perform a large gauge transformation

to “set” Az at early times to zero, one finds that Weinberg’s soft theorem implies that at

late times we will generically not have φ = 0. Moreover, given the picture of well-separated

events, between any two wavefronts of radiation (i.e. in any of the three regions in figure 1),

1As a side note, the same analysis can be applied to the leading Weinberg pole in the gravity case.

There the analog of the radial electric field is the boosted Bondi mass mB in Bondi gauge. For massive

scattering with no flux through I+ the linearized constraint equation and soft factor/expectation value

interpretation give:

∆mB =
1

4

[
DzDz∆Czz +Dz̄Dz̄∆Cz̄z̄

]
, ∆Czz = − κ

4π
ε̂∗+zz S

(0)+ (3.18)

where the last relation is shorthand for the analog of (3.16) in light of the expectation value-like behavior

observed here and in [1]. This is consistent with the analog of (3.17):

− κ

4π
lim
ω→0

ω[DzDz ε̂∗+zz S
(0)+
p +Dz̄Dz̄ ε̂∗−z̄z̄ S

(0)−
p ] =

4Gm

γ3(1− ~β · n̂)3
= 4mB(~β ), (3.19)

where the second equality can be compared with [4, 5] for a boosted mass, and the single particle soft factor

contribution is now S
(0)±
p = κ

2
(p·ε±)2

p·q with κ =
√

32πG.

– 9 –
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we should be able to “reset” our baseline — i.e. perform a large gauge transformation to

set Az = 0 over that no-radiation interval (which won’t effect the physical radiation pulses

but will change us to φ = const. in the intervals between them). Thus, while one zero

mode corresponds to a step, it must naturally be accompanied by an overall shift at each

angle which corresponds to the resetting. The gauge transformation necessary for such a

resetting is the negative of the domain-wall like transition effected by a pulse of radiation

hitting the detector between retarded times ui and uf , which can be computed analogously

to (3.7) of [1]:

∆φ(z, z̄) =
1

4π

∫
d2z′γz′z̄′ log |z − z′|2

[
∆Au − e2

∫ uf

ui

duju

]
(3.20)

up to a constant function in the kernel of ∂z and ∂z̄ (taking into account the reality of

Aµ). Here we have used (3.10), the condition on the late time behavior of Fzz̄ to write

∆Az = ∂z∆φ, and ∂z∂z̄ log |z − z′|2 = 2πδ(2)(z − z′).
Note that one can heuristically see how the presence of the Weinberg pole corresponds

to a step from the fact that the Fourier transformation of a step function is a pole. Mean-

while, the Fourier transformation of a constant is a delta function, so this overall shift

can be added in by hand to the standard Fourier transform modes [19] as a strictly zero

frequency extension of the phase space. The fact that any classical vacuum spontaneously

breaks the symmetry in choice of Az is the origin of the Goldstone mode interpretation

of φ.

Now to address the second step in boundary matching. Among the intriguing aspects

of the S-matrix approach of [17] is the way in which the Ward identity motivates a bracket

between these two zero modes by considering the charge generating the large U(1) symme-

try. The equations of motion (3.10) and the analogous one on I− are treated as operator

statements when inserted into the S-matrix. In constructing a Ward identity of the form

〈out|(Q+
ε S − SQ−ε )|in〉 = 0 (3.21)

boundary conditions setting Au = 0 at I+
+ and I−− , followed by antipodally matching

Az at I+
− and I−+ across i0 allow one to relate the current to the soft factor. This is a

particular feature of massless scattering, where all the charges enter I− and exit I+ and

one can cancel the ∆Au term between incoming and outgoing scatterers. (I.e. the massless

soft factor obeys a differential equation that localizes on the S2, just as the massless

current does.)

The required mix of incoming and outgoing radiation comes from the way in which

the current, as a generator of gauge transformations on the matter fields, only acts on

the outgoing or incoming particles for ju or jv, respectively, whereas an outgoing soft

photon attaches to both incoming and outgoing legs (ditto for an incoming soft photon).

As such, a factor of 1
2 arises from averaging the incoming and outgoing radiation solutions

to match the combined current contribution that counts incoming and outgoing particles

only once each.

As a final note, we point out a connection to the φ = φm>0 +φm=0 splitting by [18] into

components sourced by ∆Au from massive charges and e2
∫
duju from the massless current.
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The radiation response due to the massive charges results from a change in their kinematic

distributions, whereas the response from the massless charges accounts for them exiting

the sphere. Since the analysis of [18] considers only the solution near I+, one should use

crossing symmetry to consider a neutral incoming state to connect with the analysis of [17].

(For the purpose of visualizing radiation arising from prescribed accelerations of scattered

charges, one can imagine superimposing the non-radiating solution of an oppositely charged

particle moving unperturbed through spacetime parallel to each incoming particle that

scatters. While there is no incoming charge, an oppositely charged particle leaving at

the antipodal angle maintains the outgoing-minus-incoming structure of the original soft

factor). Between the results shown here and in [17], the soft factor is consistent with

measuring the massless and massive contributions to the memory effect, independently.

This separation provides insight into extending the [17] formalism to the massive case.

4 Measurement

Now that we have circuited the triad of connections relevant to the electromagnetic memory

effect, let’s consider a compact setup that could measure it. One wants a way to extract just

the zero-mode effect, and we would like to prescribe a way of measuring this time integrated

electric field that entails setting up, waiting for, and then making a final measurement. The

proposition of [18] was to connect the time integrated electric field to a net velocity kick.

Explicitly, a test charge obeying ~F = m~a = Q~Erad has an acceleration proportional to
Q
m times the radiated electric field (which one should keep in mind is a 1

r effect, and the

resultingly small velocity of the test charge will suppress the magnetic contribution to the

force). If the pulse occurs over a short enough period of time that the test charge remains

localized on the sphere, then it receives a net kick in its velocity ∆~v =
∫
dt~a.

If we prefer to keep the test charge localized rather than letting it fly off at some

velocity that would need to be measured (or, if restricted to the sphere, letting it move

enough that a path integral of the tangential force would be required), we instead can

imagine that at the location of where we want to measure the effect, we have a charged

bead suspended in a viscous fluid. Rather than going too deep into how to realistically

separate the scales of the interactions which govern the viscous forces between the bead

and the fluid and the scattering-sourced radiation we want to measure, we can imagine an

idealized situation where the viscous force dominates and any response to a driving force is

proportional to the velocity (i.e. heavily damped rather than inertial). With a drag force

at low Reynolds number of ~FD = −σ~v for some positive constant σ, which dominates and

balances the driving force from the radiated electric field, one finds:∫
dtQ~Erad =

∫
dtσ~v = σ∆~x (4.1)

in this limit, so that the electromagnetic memory is turned into a net displacement (like

in the gravitational memory case) rather than a velocity kick. To distinguish this effect,

the relevant scattering process would need to induce a ∆~x larger than the expected drift

of the test charge during the integration time, due to Brownian motion.

– 11 –
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Now that we have some sense of how to measure the electromagnetic memory, it is

interesting to reflect on how this observable is distinct from other radiation measurements.

What intrigues us about the electromagnetic memory is its universal dependence on the

incoming and outgoing asymptotic states of the charged particles, while being linear in

the electric field. As [18] points out, a typical photon detector would measure the elec-

tromagnetic energy flux, which is quadratic in the field strength. Given the initial and

final momenta, Maxwell’s equations constrain the net time integrated radiated electric

field at any given angle. This corresponds to the electromagnetic memory. However, one

can imagine distributing this radiation over a very slow ramp. If we tune down the rate

at which charges accelerate, we can make the power flux arbitrarily small, while keeping

the same value of the net integrated field because the ramp integrates to the same end

point but takes longer to get there. To keep the position of the accelerating charges near

the origin |rs| � |r| during this ramp, we can simultaneously consider detectors that are

further away to maintain the order of limits consistent with r → ∞ first. The upshot is

that the feature (dependence on initial and final boundary conditions for charge velocities

rather than acceleration profile) of the electromagnetic memory effect that makes it hidden

from typical detectors is also what makes it universal. As such, there is a sense in which

the low energy observables captured by the memory effect are distinct from the quantities

typically measured.

5 Discussion

In summary, we have seen that the connection between asymptotic symmetries, soft factors,

and memory effects extends naturally to the U(1) case and rounds out the interpretation

of any individual link or vertex in this triad. Memory effects pick out zero-mode classical

observables. Meanwhile, the position space interpretation of soft factors connects large dis-

tances with low frequency radiation in the same direction. In this manner, soft factors can

both: i) lead to Ward identities that validate the quantum versions of these symmetries,

and ii) give the expectation value of classical radiation measurements. Furthermore, the

ability to superimpose classical radiation solutions corresponding to the memory effect for

separate scattering processes, combined with the freedom to reset the gauge field between

pulses of radiation when performing calculations, illustrates from a semi-classical perspec-

tive how the presence of “pure gauge” zero modes are essential for self consistency and

should be included in the extended phase space.
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