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Abstract: We investigate the robustness of the Araki-Lieb inequality in a two-dimensional

(2D) conformal field theory (CFT) on torus. The inequality requires that ∆S = S(L) −
|S(L − `) − S(`)| is nonnegative, where S(L) is the thermal entropy and S(L − `), S(`)

are the entanglement entropies. Holographically there is an entanglement plateau in the

BTZ black hole background, which means that there exists a critical length such that when

` ≤ `c the inequality saturates ∆S = 0. In thermal AdS background, the holographic en-

tanglement entropy leads to ∆S = 0 for arbitrary `. We compute the next-to-leading order

contributions to ∆S in the large central charge CFT at both high and low temperatures.

In both cases we show that ∆S is strictly positive except for ` = 0 or ` = L. This turns

out to be true for any 2D CFT. In calculating the single interval entanglement entropy

in a thermal state, we develop new techniques to simplify the computation. At a high

temperature, we ignore the finite size correction such that the problem is related to the

entanglement entropy of double intervals on a complex plane. As a result, we show that the

leading contribution from a primary module takes a universal form. At a low temperature,

we show that the leading thermal correction to the entanglement entropy from a primary

module does not take a universal form, depending on the details of the theory.

Keywords: AdS-CFT Correspondence, Conformal Field Theory, Field Theories in Lower

Dimensions
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1 Introduction

The holographic entanglement entropy [1–3] relates the quantum gravity to quantum in-

formation, and opens a new window to study the AdS/CFT correspondence [4–7]. The

entanglement entropy in a quantum field theory is usually not easy to compute. For a

conformal field theory (CFT) dual to the AdS Einstein gravity, it was suggested in [1, 2]

that the entanglement entropy of a subregion A could be holographically computed by the

so-called Ryu-Takayanagi (RT) formula

SA =
Area of γA

4GN
, (1.1)

where γA is the minimal surface in the bulk homologous to the subregion A. The area

law of the RT formula indicates a deep relation between the holographic entanglement

entropy and the black hole entropy. It has actually been shown in [8] that the holographic

entanglement entropy is actually a kind of generalized gravitational entropy. More precisely,

the RT formula originates from the semi-classical Euclidean gravity action, and there could

be gravitational quantum corrections to the holographic entanglement entropy [9–12].

– 1 –
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One of the situations that the quantum corrections to the holographic entanglement

entropy are important is the so-called holographic entanglement plateau [13]. For a subsys-

tem A and its complement Ac in a thermal state the Araki-Lieb inequality [14] requires that

∆S = Sth − |SAc − SA| ≥ 0, (1.2)

with Sth being the thermal entropy of the whole system and SA, SAc being the entan-

glement entropies. For the holographic entanglement entropies, when the subsystem A is

small enough but still finite the inequality could be saturated at a high enough tempera-

ture [1, 13, 15, 16]. The saturation is called the entropy plateaux. In this case, the minimal

surface γAc for the region Ac is the disconnected sum of the minimal surface γA for the

region A and the horizon of the black hole corresponding to the thermal state. However,

the saturation is possible if only the classical contribution has been considered. It was

pointed out in [12] that quantum corrections to the holographic entanglement entropy can

resolve the saturation. In other words, after considering the quantum correction, there is

always ∆S > 0, except for the case that the size of A or Ac becomes vanishing.

From the AdS/CFT correspondence, the classical action of the bulk configuration

corresponds to the leading order contribution in the field theory at large c (orN) limit, while

the one-loop quantum correction corresponds to the next-to-leading order contribution.

Such quantum correction is usually hard to compute in the bulk side [12]. In the case

of AdS3/CFT2 [17, 18], one may find the gravitational configuration via the Schottky

uniformization [19, 20] and compute the one-loop corrections by using the heat kernel and

the image method [21, 22]. However, in the large interval limit at finite temperature, the

computation becomes complicated and needs appropriate treatment on the monodromy

condition [23]. On the other hand, the large interval limit is singular in the sense that the

usual level expansion of the thermal density matrix becomes ill-behaved under the limit.

One has to find another kind of expansions to get the partition function perturbatively.

In [24], it was proposed that one has to insert the complete set of basis of the twist sector to

compute the partition function. For the large interval at a high temperature, this proposal

gives consistent results for the large c CFT with the bulk computation [23].

In this paper we revisit the issue of the large interval entanglement entropy and pay spe-

cial attention to the corrections to the entanglement plateau1 in AdS3/CFT2. We mainly

work on two-dimensional large central charge CFT with a sparse light spectrum [19, 25],

which is dual to the semiclassical limit of AdS3 gravity. On the CFT side we first focus on

the vacuum module in the large c limit, compute the short interval and long interval expan-

sions of the entanglement entropies, and get nonvanishing corrections to the entanglement

plateau. Moreover we also consider the leading contribution from a primary module. The

contribution is at the next-to-leading order in the large c limit. We find that in the high

temperature case the correction from the primary operator takes an universal form, but in

the low temperature case the correction is not universal and takes a complicated form.

1Strictly speaking, the entanglement plateau only appear in the high temperature CFT with large central

charges. Here we refer to the quantity ∆S loosely as the entanglement plateau even in the low temperature

case. The CFT at the low temperature is dual to the thermal AdS background, and the holographic

entanglement entropy trivially leads to ∆S = 0 for arbitrary size of A.

– 2 –
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Though we mainly do computation in the large c CFT, the study can actually be

applied to a general 2D CFT as well. In a 2D CFT, the vacuum module plays an essential

role as it involves the stress tensor and its contribution to the entanglement entropy includes

the part proportional to the central charge. Most of the study in this paper can be used in

a general 2D CFT. The only thing one should be cautious is the large c expansion, which

could not make sense.

The rest of the paper is organized as follows. In section 2 after giving a brief review

of the holographic entanglement plateau, we investigate ∆S (1.2) in the high temperature

case. We show that after omitting the finite size correction, which is exponentially small in

the high temperature limit, we can relate the computation to the one for the two-interval

entanglement entropy on a complex plane. Therefore we are allowed to read the mutual

information and the universal correction from a nonvacuum module. In section 3, we

discuss the low temperature case with contributions from only the vacuum module using

the method of multi-point correlation functions. We conclude in section 4 with discussions.

In appendix A we review the mutual information of two intervals on a complex plane that

is useful for section 2. In appendix B we calculate the relation relation (B.1) that is useful

to sections 3. In appendix C, we apply the operator product expansion (OPE) of the twist

operators to compute for the low temperature case and find agreement with the results in

sections 3.

2 High temperature case

We consider a two-dimensional CFT on a circle of length L and in a thermal state with

inverse temperature β. In this section we consider the high temperature case with β �
L. We are interested in the single interval entanglement entropy. From the Araki-Lieb

inequality [14], we know that

|S(L− `)− S(`)| ≤ S(L), (2.1)

with S(`), S(L− `) being the entanglement entropies of the intervals with lengthes ` and

(L− `) respectively and S(L) being the thermal entropy of the system. Holographically, it

was found that there exists a critical length `gr
c so that when ` ≤ `gr

c , or equivalently when

` ≥ L−`gr
c , the Araki-Lieb inequality is saturated. The saturation is called the holographic

entanglement plateau [13]. Indeed, the holographic entanglement entropy in this case is

given by [13, 26]

Sgr(`) =


c
3 log

(
β
πε sinh π`

β

)
when ` < L− `gr

c ,

c
3 log

(
β
πε sinh π(L−`)

β

)
+ πcL

3β when ` > L− `gr
c .

(2.2)

with

`gr
c =

β

2π
log

2

1 + e−2πL/β
≈ β

2π
log 2. (2.3)

– 3 –
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Figure 1. Holographic entanglement plateau in AdS3/CFT2. The Araki-Lieb inequality is satu-

rated for a small enough critical length ` ≤ `grc . The figures are plotted in unit c/3. The right figure

is the one being zoomed in around zero. It is obvious that there exists a critical length `grc , when `

is smaller than which ∆S vanishes.

The thermal entropy is holographically given by the Bekenstein-Hawking entropy of a

non-rotating BTZ black hole

Sgr(L) =
πcL

3β
. (2.4)

Then one can get the holographic entanglement plateau

Sgr(L)− Sgr(L− `) + Sgr(`) = 0, for ` ≤ `gr
c . (2.5)

This has been shown in figure 1.

One implication of the entanglement plateau is that [26]

lim
`→0

S(L− `)− S(`) = S(L). (2.6)

This looks weaker than the holographic entanglement plateau, but it actually has interest-

ing implications in 2D CFT. First of all, it has been proved to be true for any 2D CFT with

a discrete spectrum [27]. Secondly it makes sense at any temperature, not just the high

temperature limit. However, the relation (2.6) generically holds only at strict `→ 0 limit.

This limit may cover up many interesting points of the large interval entanglement entropy.

Therefore in this work, we do not take this limit rigorously and focus on the quantity

∆S = S(L)− S(L− `) + S(`). (2.7)

On the gravity side, the holographic entanglement entropy is just the leading order

classical contribution. The quantum correction to the holographic entanglement entropy

has been discussed in [9–12]. Especially in [12] by identifying the holographic entanglement

entropy as the bulk entanglement entropy, one can get [12]

Sgr(L)− Sgr(L− `) + Sgr(`) = I(Ab, Cb) > 0. (2.8)

As shown in figure 2, I(Ab, Cb) is the mutual information between the bulk region Ab
and the black hole interior Cb, which is strictly positive as long as the size of ` is not

identically zero.

– 4 –
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Figure 2. Corrections to the holographic entanglement plateau. They are captured by the mutual

information I(Ab, Cb) of two disconnected bulk regions [12]. Using the AdS/CFT correspondence,

they also equal the mutual information I(A,C) in CFT after the system is purified by adding the

region C.

The bulk eternal black hole is dual to the thermo-field double state, which could be

taken as the purification of the thermal state. As shown in figure 2(b), the whole system

A ∪ B is in a thermal state, and the addition of another region C makes the new system

A ∪B ∪ C be in a pure state. Then we get

∆S = S(L)− S(L− `) + S(`) = I(A,C) > 0, (2.9)

with I(A,C) being the mutual information between A and C. Holographically, the mutual

information between A and C is given by the mutual information between Ab and Cb.

Obviously, if one takes into account of the quantum correction, the Araki-Lieb inequality

cannot be saturated [12].

Next we would like to compute the quantity ∆S in the large c CFT, which tells us the

mutual information between two bulk regions. The difficult part is on the computation

of the entanglement entropy of a large interval. In the next subsection, we show how to

relate the problem with the double-interval entanglement entropy on the complex plane,

after omitting the exponentially suppressed terms proportional to the powers of e−2πL/β .

This simplifies the discussion significantly.

2.1 Long interval entanglement entropy

The Rényi entropy of a long interval with length L − ` in a CFT on a torus with spatial

period L and temporal period β has been discussed in [23, 24, 27]. The treatment therein

applies to the case `� β � L. In this section we revisit the problem, and consider the case

β � L and `� L but we do not require `� β. We omit the finite size corrections, which

are the powers of e−2πL/β so are exponentially suppressed. More precisely, as discussed

carefully in [23] such finite size corrections do not appear in the leading order entanglement

entropy in the large c limit but do appear in the Rényi entropies. This allows us to consider

only the contribution of the vacuum in the twist sector. In other words, we may just

consider the single interval entanglement entropy on a cylinder with period β. We show

– 5 –
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that the mutual information in (2.8), or equivalently in (2.9), equals the mutual information

of two intervals on the complex plane.

As shown in the left figure of figure 3, we consider the the long interval A = [−L/2, v]∪
[u, L/2] with β � L and u − v = ` � L. Via the replica trick we need to compute the

partition function of the CFT on a Riemann surface Rn, which is obtained by pasting n

torus along the cuts. In the limits β � L, ` � L, the torus is approximately a cylinder

which we also denote by Rn, and for n = 1 it is an ordinary cylinder R. As shown in the

middle figure of figure 3, the cylinder Rn now is of length L and a temporal period nβ. We

use the coordinate w = x+ iτ on Rn. There are n cuts [v+ ijβ, u+ ijβ], j = 0, 1, · · · , n−1

with the same length u − v = ` in Rn, and the edges with the same color should be

identified. This is due to the fact that one may deform the interval on the torus [27]. The

original interval is very large, almost along the whole spatial direction of the torus. We

may take the interval to be the whole spatial direction minus the complement part, a short

interval of length `. The presence of the interval along the spatial direction is not trivial. It

induce the identification of the field in different replica such that the field theory is defined

on a cylinder with a temporal period nβ and n short cuts of length `. The Rényi entropy is

Sn(L− `) ≈ − 1

n− 1
log

Z[Rn]

Z[R]n
. (2.10)

In the above approximation, we have omitted the exponentially suppressed terms so that

the partition functions are defined on the cylinder. The Riemann surface Rn with coordi-

nate w can be mapped to an annulus with coordinate z by the conformal transformation

z = e
2πw
nβ . (2.11)

We denote the resulting annulus as Sn. The n cuts on Rn are mapped to the cuts on the

annulus along

[z
(j)
2 , z

(j)
1 ] =

[
e

2πv
nβ

+ 2πij
n , e

2πu
nβ

+ 2πij
n

]
, j = 0, 1, · · · , n− 1. (2.12)

The boundaries of the cylinder at x = ±L/2 are mapped to the boundaries of the annulus

|z| = e
±πL
nβ . (2.13)

In the right figure of figure 3, we show the annulus Sn with n cuts, the edges of the same

color should be identified. We have the partition function

Z[Rn] = Z[Sn]. (2.14)

To regularize the ultra-violet(UV) divergences in the partition function and the Rényi

entropy, we have to impose cutoffs at the boundaries of the cuts in Rn and Sn. On Rn we

use the cutoff ε for every boundary, and so on Sn we have the cutoffs

2πε

nβ
z1,

2πε

nβ
z2, (2.15)

for the boundaries z
(j)
1 , z

(j)
2 respectively.

– 6 –
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⇒ ⇒

Figure 3. Illustration on the computation of long interval Rényi entropy. In the left figure we have

the original cylinder R with a length L and a temporal period β. The long interval [−L/2, v] ∪
[u, L/2] with u− v = ` � L has length L− `. Via the replica trick and deforming the interval we

get a cylinder Rn with a length L, a temporal period nβ and n cuts, as shown in the middle figure.

By a conformal transformation, the cylinder is transformed to an annulus, as shown in the right

figure. In the last two figures, we take n = 5.

Though we do not know how to calculate the partition function Z[Sn] directly, we now

show that it is related to the Rényi entropy of double intervals on the complex plane. We

consider two intervals [w4, w3] ∪ [w2, w1] on the complex plane C with the cross ratio

x =
z12z34

z13z24
, (2.16)

where zij ≡ zi−zj . Via the replica trick we get the n-fold complex plane Cn, and the Rényi

entropy

Spl
n = − 1

n− 1
log

Z[Cn]

Z[C]n
. (2.17)

For the Cn with the coordinate w, we can get the Riemann surface S̃n with the coordinate

z by using the transformation

z =

(
w − w3

w − w4

) 1
n

. (2.18)

Then we have the identification of the partition function

Z[Cn] = Z[S̃n]. (2.19)

For the boundary cuts w
(j)
1,2,3,4, j = 0, 1, · · · , n − 1 in Cn we use different cutoffs ε1,2,3,4

respectively. We find that S̃n turns out to be an annulus with boundaries at

|z| =
(
w34

ε4

)1/n

, |z| =
(
ε3
w34

)1/n

. (2.20)

There are n cuts on the annulus, locating along

[z
(j)
2 , z

(j)
1 ] =

[(
w23

w24

)1/n

e
2πij
n ,

(
w13

w14

)1/n

e
2πij
n

]
, j = 0, 1, · · · , n− 1, (2.21)

– 7 –
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⇒ ⇒

Figure 4. Illustration on the computation of the Rényi entropy of double intervals on the complex

plane. In the left figure we have the original complex plane C with the coordinates w and cuts

[w4, w3] ∪ [w2, w1]. Via the replica trick we get the n-fold complex plane Cn in the middle figure.

For the n-fold complex plane with the coordinate w, we may map it into an annulus S̃n with n

cuts, as shown in the right figure. Here we take n = 5 as well.

and at z
(j)
1 , z

(j)
2 there are cutoffs

w34ε1
nw13w14

z1,
w34ε2
nw23w24

z2. (2.22)

This is shown in figure 4.

The annulus S̃n is in fact the same as Sn with different parametrizations. After identi-

fying the boundaries (2.13) (2.20), the cuts (2.12), (2.21), as well as the cutoffs at the cut

boundaries (2.15), (2.22), we get the relations

ε1 =
2πε

β

w13w14

w34
, ε2 =

2πε

β

w23w24

w34
,

ε3 = ε4 = w34e
−πL

β ,
w13

w14
= e

2πu
β ,

w23

w24
= e

2πv
β . (2.23)

Therefore we show that the Rényi entropy of a long interval on a torus with the high

temperature (2.10) equals approximately the Rényi entropy of two intervals on the com-

plex plane

Sn(L− `) ≈ Spl
n . (2.24)

The approximation is exact up to the finite size correction, which is exponentially sup-

pressed by the powers of e−2πL/β . Note that for the entanglement entropy the approxima-

tion is actually exact for the leading order in the large c limit, as there is no finite size

correction in the n→ 1 limit [23].

The Rényi entropy of two intervals on the complex plane (2.19) can be calculated by

the correlation function of the twist operators [10, 28–31]

Spl
n =

c(n+ 1)

6n
log

w12w34

(ε1ε2ε3ε4)1/2
− In

(
z12z34

z13z24

)
. (2.25)

Here In(x) is the Rényi mutual information between the two intervals, and one can take

n→ 1 limit to read the mutual information I(x). In general, the mutual information I(x)

– 8 –
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depends on the spectrum and the structure constants of the CFT. For a large c CFT, the

contributions are dominated by the those from the vacuum module. We review the results

in appendix A. Using the identifications (2.23), we get

Sn(L− `) ≈ c(n+ 1)

6n
log

(
β

πε
sinh

π`

β

)
+
πc(n+ 1)

6n

L

β
− In

(
1− e

− 2π`
β

)
. (2.26)

Note that we need β, ` � L for the above approximation to be valid. When ` � β � L,

it is just

Sn(L− `) ≈ c(n+ 1)

6n
log

(
β

πε
sinh

π`

β

)
+
πc(n+ 1)

6n

L

β
. (2.27)

and this is in accord to the holographic entanglement entropy (2.2) and the results

in [23, 24, 27]. When β � ` � L, the mutual information In in (2.26) gives an order

c contribution, which should be taken into account into the leading order contribution.

Finally we get

Sn(L− `) ≈ c(n+ 1)

6n
log

(
β

πε
sinh

π(L− `)
β

)
, (2.28)

which is in accord to the holographic entanglement entropy (2.2).

It is remarkable that the treatment in this section has a larger validity domain than

that in [23, 24, 27]. An important simplification in our discussion is to omit the finite size

correction, which include the exponentially suppressed terms. This allows us to get the

result in the region β � `� L, which is beyond the one in the existing treatment.

Another remarkable fact is that the terms proportional to c in the entanglement en-

tropies are actually of universal form. They are either the single-interval Rényi entropy at

a finite temperature, or the Rényi entropy of the whole system. They are still true even

for a general 2D CFT.

2.2 Corrections to entanglement plateau

In the high temperature limit β � L, the entanglement entropy of a short interval with

`/L� 1 is approximately

Ssh(`) ≈ c

3
log

(
β

πε
sinh

π`

β

)
. (2.29)

Taking n→ 1 limit of the result in the previous subsection we get the entanglement entropy

of a long interval

Slo(L− `) ≈ c

3
log

(
β

πε
sinh

π`

β

)
+
πcL

3β
− I

(
1− e

− 2π`
β

)
. (2.30)

For the large c CFT, if we only consider the leading contributions, then using (A.2) we get

Slo(`) =


c
3 log β

2πε + cπ`
3β when ` < L− `cft

c

c
3 log

(
β
πε sinh π(L−`)

β

)
+ πcL

3β when ` > L− `cft
c ,

(2.31)

with the critical length

`cft
c =

β

2π
log 2 (2.32)

which is the same as the gravity critical length `gr
c (2.3) in high temperature limit.

– 9 –
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Figure 5. In the large c limit, the leading order entanglement entropy of a short interval (2.29)

and a long interval (2.31). We use the holographic entanglement entropy (2.2) as the benchmark

to compare. The figures are plotted in unit of c/3.

Although the short interval entanglement entropy (2.29) is derived with the assumption

`/L� 1, it has a much larger validity domain and matches the gravity result (2.2) as long

as 0 < ` < L−`c. The long interval entanglement entropy (2.31) is derived with assumption

(L − `)/L � 1, and it strictly matches the gravity result (2.2) for L − `c < ` < L, and

it also approximately matches (2.2) for β � ` < L. One can see this in figure 5. Note

that the short interval result (2.29) breaks down abruptly as `→ L, and and long interval

result (2.31) breaks down in a milder way as `→ 0.

Next we consider the next-to-leading order contribution to the entanglement entropies

of the long and the short intervals in the large c limit. We will see how such correction

change the entanglement plateau. First of all, for a CFT at a high temperature, omitting

the exponentially suppressed terms, one can easily get its thermal entropy

S(L) ≈ πcL

3β
, (2.33)

which equals the black hole entropy (2.4). Then the correction to the entanglement

plateau is

∆S = S(L)− Slo(L− `) + Ssh(`) = I
(

1− e
− 2π`

β

)
> 0, (2.34)

which is strictly positive as long as ` 6= 0. With the contributions from only the vacuum

module, we use (A.2), (A.3) and plot it in figure 6, and one can compare it with the gravity

result in figure 1.

There are other contributions to the mutual information from nonvacuum modules.

As we have shown, the function I(x) is actually related to the mutual information between

two intervals. The contribution from other modules can be read in a straightforward way.

In particular, as shown in [29, 32], the leading contribution from a primary module could

– 10 –
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(b)

Figure 6. Corrections to the entanglement plateau in 2D CFT. We just set c = 3 to plot the

figures. From the left figure it seems suggest that the plateau is still there. The right figure shows

∆S after zooming in around the zero. From the right figure, it is easy to see that the plateau

disappears: ∆S = 0 only when l→ 0.

be of a universal form. As a result, when `� β, the correction from a nonvacuum module

with a primary operator X of scaling dimension ∆X takes a universal form so that we have

δX
(
S(L)− Slo(L− `) + Ssh(`)

)
=

√
πΓ(2∆X + 1)

4Γ(2∆X + 3/2)

(
π`

β

)2∆X

+O(`2∆X+1, `3∆X ). (2.35)

Note that the universal contribution from the nonvacuum module is independent of the

central charge and the structure constants. For the contributions from the nonvacuum

modules, only the leading one from each module takes a universal form, while the subleading

ones rely on the details of the theory.

3 Low temperature case

In this section we consider the low temperature case. To make the equations concise,

we only include the contributions of the holomorphic sector, and those from the anti-

holomorphic sector can be added easily.

At a low temperature, the dual gravity configuration is the thermal AdS, and the

holographic entanglement entropy is always

Sgr(`) =
c

6
log

(
L

πε
sin

π`

L

)
. (3.1)

One can see that Sgr(L− `) = Sgr(`), and this leads to

Sgr(L− `)− Sgr(`) = 0. (3.2)

This is consistent with the fact that the classical entropy of thermal AdS is vanishing

Sgr(L) = 0. (3.3)

The holographic entanglement plateau is trivial for the low temperature case

∆S = Sgr(L)− |Sgr(L− `)− Sgr(`)| = 0. (3.4)

– 11 –
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Figure 7. Purification of the thermal density matrix in gravity. In (b) there is no macroscopic

horizon that connects the two asymptotic AdS regions Ab ∪ Bc and Cb. However, there are still

microscopic connections between Ab ∪ Bc and Cb, and the two boundaries A ∪ B and C. We have

the mutual information I(Ab, Cb) > 0 and I(A,C) > 0.

Although there is no horizon in the thermal AdS, the idea in [12] still applies. At

the high temperature, the purification of the thermal density matrix leads to the thermo-

field double state. Holographically there is the eternal black hole, in which the wormhole

connecting two asymptotically AdS regions. At the low temperature, we do not have

the eternal black hole picture, but we can still have the picture on purification of the

thermal density matrix, see figure 7. Therefore, we still have the quantum corrections (2.8)

and (2.9):

∆S = Sgr(L)− |Sgr(L− `)− Sgr(`)| = I(Ab, Cb) = I(A,C) > 0. (3.5)

Note that even at the low temperature, the thermal entropy is not strictly vanishing. In

the following, we would like to compute ∆S to the next-to-leading order. The computation

relies on the expansion of the thermal density matrix. In appendix C, as a double check we

use the OPE of the twist operators to compute the entanglement entropies in this section,

and find good agreement.

3.1 Short interval entanglement entropy

Let us focus on the vacuum module, which is dominant in the large c limit. We revisit

the contributions of the holomorphic stress tensor T to the short interval entanglement

entropy. In [33], it was shown that the entanglement entropy is

S(`) =
c

6
log

(
L

πε
sin

π`

L

)
+ 4q2

(
1− π`

L
cot

π`

L

)
+O(q3), (3.6)

with

q ≡ e−2πβ/L. (3.7)

It was believed that it applies to an interval of length ` as long as ` is not comparable to

the size of the circle L. In fact the result is divergent in the limit `→ L. In this subsection,

we give a more scrutinized derivation of the short interval entanglement entropy, and find

a result that is consistent with (3.6).
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The un-normalized thermal density matrix could be expanded as

ρ = |0〉〈0|+ q2

αT
|T 〉〈T |+O(q3), (3.8)

with αT = c
2 , and so the reduced density matrix is

ρA = ρA,0 +
q2

αT
ρA,T +O(q3), (3.9)

with

ρA,0 = trB|0〉〈0|, ρA,T = trB|T 〉〈T |. (3.10)

The Rényi entropy is

Sn(`) = − 1

n− 1
log

trAρ
n
A

(trAρA)n
, (3.11)

with

trAρA = trρ = 1 + q2 +O(q3). (3.12)

We organize trAρ
n
A by the expansion of q2 as

trAρ
n
A

trAρnA,0
= f(n) +O(q3) =

n∑
k=0

q2kf(n, k) +O(q3). (3.13)

Note that as we will take n → 1 limit in the last, now we keep all the terms of orders q2,

q4, · · · , q2(n−1), q2n. This is different from the treatment in [33]. In the following we use

the subscript “sh” to denote the results for a short interval of length `, and the subscript

“lo” to denote the ones for a long interval of length L− `.
It is known that the contribution from the vacuum is [34]

trAρ
n
A,0 =

(
L

πε
sin

π`

L

)−2hσ

, (3.14)

with hσ being the conformal dimension of the twist operators

hσ =
c(n2 − 1)

24n
. (3.15)

To compute the contributions fsh(n, k) from the excitations in the vacuum module, we may

map the n-fold cylinder to a complex plane [33, 35], and find

fsh(n, k) =
∑

0≤j1<···<jk≤n−1

(
2i
n sin π`

L

)4k
αkT

〈 k∏
a=1

[
e

4πi
n (2ja+ `

L)T
(

e
2πi
n (ja+ `

L)
)
T
(

e
2πi
n
ja
) ]〉

C

+
n(n2 − 1)

12

∑
1≤j1<···<jk−1≤n−1

(
2i
n sin π`

L

)4k
αk−1
T

〈[
e

4πi`
nL T

(
e

2πi`
nL

)
+ T (0)

]

×
k−1∏
a=1

[
e

4πi
n (2ja+ `

L)T
(

e
2πi
n (ja+ `

L)
)
T
(

e
2πi
n
ja
) ]〉

C
+O(n− 1)2, (3.16)

– 13 –



J
H
E
P
0
9
(
2
0
1
7
)
1
5
1

among which

fsh(n, 0) = 1, fsh(n, 1) = n

(
sin π`

L

n sin π`
nL

)4

+O(n− 1)2. (3.17)

Note that to calculate the entanglement entropy, we do not need the O(n− 1)2 term. We

get the short interval Rényi entropy

Ssh
n (`) =

c(n+ 1)

12n
log

(
L

πε
sin

π`

L

)
+

1

n− 1
log

(1 + q2 +O(q3))n∑n
k=0 q

2kfsh(n, k) +O(q3)
. (3.18)

To calculate the entanglement entropy for the case at hand, we need to take four limits,

i.e., the low temperature limit q = e−2πβ/L → 0, the large central charge limit 1/c→ 0, the

short interval limit ` → 0, and the n → 1 limit. There may be subtleties in the order of

taking the limits. We have taken the low temperature first. Since we do not know how to

calculate the the Rényi entropy (3.18) for general length `, we will take the limit 1/c→ 0,

and then ` → 0 before taking n → 1. We just assume that the chosen order of taking the

limits does not affect the final result.

Noting that

lim
`→0

fsh(n, k) = Ckn, lim
`→0

fsh(n) = (1 + q2)n, (3.19)

we read

lim
`→0

Ssh
n (`) =

c(n+ 1)

12n
log

`

ε
+O(q3). (3.20)

We define

a(n) ≡ (1 + q2)n − fsh(n) =

n∑
k=0

q2ka(n, k), (3.21)

and further write it as

a(n) = aI(n) + aII(n) + aIII(n), a(n, k) = aI(n, k) + aII(n, k) + aIII(n, k). (3.22)

Explicitly, we have

aI(n, k) =Ckn

(
1−

(
sin π`

L

n sin π`
nL

)4k)
,

aII(n, k) =
∑

0≤j1<···<jk≤n−1

(
sin π`

L

n sin π`
nL

)4k

×
〈

1−
(
2i sin π`

nL

)4k
αkT

k∏
a=1

[
e

4πi
n (2ja+ `

L)T
(

e
2πi
n (ja+ `

L)
)
T
(

e
2πi
n
ja
) ]〉

C
,

aIII(n, k) =−n(n2−1)

12

∑
1≤j1<···<jk−1≤n−1

{(
sin π`

L

n sin π`
nL

)4(k−1)(2i

n
sin

π`

L

)4〈[
e

4πi`
nL T(e

2πi`
nL )+T (0)

]

×
(2i sin π`

nL)4(k−1)

αk−1
T

k−1∏
a=1

[
e

4πi
n

(2ja+ `
L

)T (e
2πi
n

(ja+ `
L

))T (e
2πi
n
ja)
]〉
C

}
. (3.23)
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Putting (3.21) in (3.18) and taking the limit n→ 1, we get the short interval entanglement

entropy

Ssh(`) =
c

6
log

(
L

πε
sin

π`

L

)
+

a′(1) +O(q3)

1 + q2 +O(q3)
, (3.24)

with

a′(1) = ∂na(n)|n=1 = a′I(1) + a′II(1) + a′III(1). (3.25)

Using (3.23) we can easily get

aI(n) = (1 + q2)n −
(

1 + q2

(
sin π`

L

n sin π`
nL

)4)n
,

a′I(1) = 4q2

(
1− π`

L
cot

π`

L

)
. (3.26)

Note that aII(n), aIII(n) defined in (3.22), (3.23) are at least of order q2, we get the

short interval entanglement entropy

Ssh(`) =
c

6
log

(
L

πε
sin

π`

L

)
+ 4q2

(
1− π`

L
cot

π`

L

)
+ a′II(1) + a′III(1) +O(q3). (3.27)

We cannot evaluate a′II(1) or a′III(1) explicitly for general c or general `. We may expand

the entanglement entropy in powers of 1/c and `. Then the order c0 part of aII(n) is of

order `8, and the order c0 part of aIII(n) is of order `6. So we get that

Ssh(`) =
c

6
log

(
L

πε
sin

π`

L

)
+ 4q2

(
1− π`

L
cot

π`

L

)
+O(q3, 1/c, `6). (3.28)

Here O(q3, 1/c, `6) is schematic. It can denote the terms that are of order q3, no mater

what orders the terms are in the expansion of 1/c, `. It may also denote the terms that are

of order 1/c, no mater what orders they are in the expansion of q, `, or denote the terms

that are of order `6, no mater what orders in the expansion of q, 1/c. This is consistent

with (3.6), and is in fact a much relaxed version.

3.2 Long interval entanglement entropy

The result (3.6) is divergent in `→ L limit, and this suggests that for a long interval, the

entanglement entropy should be reconsidered carefully. We keep ` to be small and take

L − ` to be large. The above computation still make sense and we need to set ` → L − `
in (3.16) to get the result for a long interval

flo(n, k) =
∑

0≤j1<···<jk≤n−1

(
2i
n sin π`

L

)4k
αkT

〈 k∏
a=1

[
e

4πi
n (2ja+1− `

L)T
(

e
2πi
n (ja+1− `

L)
)
T
(

e
2πi
n
ja
) ]〉

C

+
n(n2 − 1)

12

∑
1≤j1<···<jk−1≤n−1

(
2i
n sin π`

L

)4k
αk−1
T

〈[
e

4πi
n (1− `

L)T
(

e
2πi
n (1− `

L)
)

+ T (0)
]

×
k−1∏
a=1

[
e

4πi
n (2ja+1− `

L)T
(

e
2πi
n (ja+1− `

L)
)
T
(

e
2πi
n
ja
) ]〉

C
+O(n− 1)2. (3.29)
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As the results (3.17) still apply, after sending `→ L− ` we get

flo(n, 0) = 1, flo(n, 1) = n

(
sin π`

L

n sin π(L−`)
nL

)4

+O(n− 1)2, (3.30)

and flo(n, n) = fsh(n, n). Therefore we get the long interval Rényi entropy

Slo
n (L− `) =

c(n+ 1)

12n
log

(
L

πε
sin

π`

L

)
+

1

n− 1
log

(1 + q2 +O(q3))n∑n
k=0 q

2kflo(n, k) +O(q3)
. (3.31)

In the `→ 0 limit, we have

lim
`→0

flo(n, k) = 0 for k = 1, 2, · · · , n− 1,

lim
`→0

flo(n, n) = 1, lim
`→0

flo(n) = 1 + q2n, (3.32)

Let us define

b(n) ≡ 1 + q2n − flo(n) = bI(n) + bII(n) + bIII(n) + bIV(n), (3.33)

with

bI(n) = q2n

(
1−

(
sin π`

L

n sin π`
nL

)4n)
,

bII(n) = q2n

(
sin π`

L

n sin π`
nL

)4n〈
1−

(2i sin π`
nL)4n

αnT

n−1∏
j=0

[
e

4πi
n (2j+ `

L)T
(

e
2πi
n (j+ `

L)
)
T
(

e
2πi
n
j
) ]〉

C
,

bIII(n) = −n(n2 − 1)

12
q2n

(
sin π`

L

n sin π`
nL

)4(n−1)(2i

n
sin

π`

L

)4〈[
e

4πi`
nL T

(
e

2πi`
nL

)
+ T (0)

]
×
(
2i sin π`

nL

)4(n−1)

αn−1
T

n−1∏
j=1

[
e

4πi
n (2j+ `

L)T
(

e
2πi
n (j+ `

L)
)
T
(

e
2πi
n
j
) ]〉

C
+O(n− 1)2,

bIV(n) = −
n−1∑
k=1

q2kflo(n, k). (3.34)

Putting (3.33) into (3.31) and taking n → 1 limit, we get the long interval entanglement

entropy

Slo(L− `) =
c

6
log

(
L

πε
sin

π`

L

)
+ S(L) +

b′(1) +O(q3)

1 + q2 +O(q3)
, (3.35)

with

b′(1) = ∂nb(n)|n=1 = b′I(1) + b′II(1) + b′III(1) + b′IV(1). (3.36)

Here we have the thermal entropy

S(L) =

(
1 +

4πβ

L

)
q2 +O(q3). (3.37)

It is easy to get

b′I(1) = 4q2

(
1− π`

L
cot

π`

L

)
, (3.38)
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which is the same as a′I(1) in (3.26). We have the long interval entanglement entropy

Slo(L−`) =
c

6
log

(
L

πε
sin

π`

L

)
+S(L)+4q2

(
1− π`

L
cot

π`

L

)
+b′II(1)+b′III(1)+b′IV(1)+O(q3),

(3.39)

with the definitions bII(n), bIII(n), bIV(n) in (3.34). We cannot evaluate b′II(1), b′III(1), or

b′IV(1) for general `, but we can expand them by 1/c and `. The c0 part of bII(n) is of order

`8, the c0 part of bIII(n) is of order `6, and the c0 part of bIV(n) is of order `4. Explicitly,

we have

bIV(n) = −
(
π`

L

)4 n−1∑
k=1

q2k

sin4 πk
n

+O(1/c, `5, (n− 1)2). (3.40)

Using (B.1), we arrive at

b′IV(1) = −32π5β`4

15L5

(
β2

L2
+ 1

)(
4β2

L2
+ 1

)
q2 +O(q3, 1/c, `5). (3.41)

Finally, we get

Slo(L− `) =
c

6
log

(
L

πε
sin

π`

L

)
+ S(L) + 4q2

(
1− π`

L
cot

π`

L

)
− 32π5β`4

15L5

(
β2

L2
+ 1

)(
4β2

L2
+ 1

)
q2 +O(q3, 1/c, `5). (3.42)

It is easy to see that at the leading order the entanglement entropies of the long interval

and short interval are the same, as expected. The thermal entropy is not vanishing, but at

the next-to-leading order in expansion of 1/c. Different from the high temperature case,

we can not ignore the exponentially suppressed terms in the low temperature. Actually in

the entanglement entropies and the thermal entropy, the next-to-leading terms appear as

the powers of q.

Let us focus on the dominant q2 terms in the entropies. For the short interval entropy

Ssh(`), the coefficient before q2 is

4

(
1− π`

L
cot

π`

L

)
. (3.43)

For the long interval entanglement entropy Slo(`) = Slo(L− `)|`→L−` the coefficient is

1 +
4πβ

L
+ 4

(
1− π(L− `)

L
cot

π(L− `)
L

)
− 32π5β(L− `)4

15L5

(
β2

L2
+ 1

)(
4β2

L2
+ 1

)
, (3.44)

and for the thermal entropy S(L) the coefficient is

1 +
4πβ

L
. (3.45)

Note that in (3.43) we have omitted the possible terms of order O(1/c, `6), and in (3.44)

we have omitted the terms of order O(1/c, (L − `)5). In the large c limit, the omission of

order O(1/c) terms is justified. However, the omission of O(`6) or O(L− `)5 terms would

potentially spoil the validity of the results for general `. We show the q2 parts of the

entropies in figure 8.
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Figure 8. The q2 parts of thermal entropy and the entanglement entropies of the short interval

and the long interval. There is no overlapping for the validity regions of the short interval and long

interval results.

3.3 Corrections to entanglement plateau

For small `, we have the short interval entanglement entropy Ssh(`) (3.28) and the long

interval entanglement entropy Slo(L − `) (3.42). We refer to the quantity ∆S = S(L) −
Slo(L− `) + Ssh(`) loosely as entanglement plateau even in the low temperature case, and

we can read the correction to the entanglement plateau from the holomorphic stress tensor

∆S = S(L)− Slo(L− `) + Ssh(`) = c′II(1) + c′III(1) + c′IV(1) + c′V(1) +O(q3), (3.46)

with

cII(n) =
n−1∑
k=2

{
q2k

∑
0≤j1<···<jk≤n−1

(
sin π`

L

n sin π`
nL

)4k

×
〈

1−
(
2i sin π`

nL

)4k
αkT

k∏
a=1

[
e

4πi
n (2ja+ `

L)T
(

e
2πi
n (ja+ `

L)
)
T
(

e
2πi
n
ja
) ]〉

C

}
,

cIII(n) = −n(n2 − 1)

12

n−1∑
k=2

{
q2k

∑
1≤j1<···<jk−1≤n−1

(
sin π`

L

n sin π`
nL

)4(k−1)(2i

n
sin

π`

L

)4

×
〈[

e
4πi`
nL T (e

2πi`
nL ) + T (0)

]
×
(
2i sin π`

nL

)4(k−1)

αk−1
T

k−1∏
a=1

[
e

4πi
n (2ja+ `

L)T
(

e
2πi
n (ja+ `

L)
)
T
(

e
2πi
n
ja
) ]〉

C

}
,
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cIV(n) =
n−1∑
k=1

{
q2k

∑
0≤j1<···<jk≤n−1

(
2i
n sin π`

L

)4k
αkT

×
〈 k∏
a=1

[
e

4πi
n (2ja+1− `

L)T
(

e
2πi
n

(ja+1− `
L

)
)
T
(

e
2πi
n
ja
) ]〉

C

}
,

cIV(n) =
n(n2 − 1)

12

n−1∑
k=2

{
q2k

∑
1≤j1<···<jk−1≤n−1

(
2i
n sin π`

L

)4k
αk−1
T

〈[
e

4πi
n T

(
e

2πi
n

)
+ e

4πi`
nL T

(
e

2πi`
nL

) ]

×
k−1∏
a=1

[
e

4πi
n (2ja+1+ `

L)T
(

e
2πi
n

(ja+1)
)
T
(

e
2πi
n (ja+ `

L)
) ]〉

C

}
. (3.47)

We expand the result (3.46) by small ` while keeping the central charge c general. It is

easy to see that cII(n), cIV(n) are of order `4, and cIII(n), cV(n) are of order `6. Explicitly,

we get

cII(n) = −4

c

(
π`

L

)4 n−1∑
k=2

Ck−2
n−2q

2k
n−1∑
j=1

1

sin4 πj
n

+O(`5, (n− 1)2),

cIV(n) =

(
π`

L

)4 n−1∑
k=1

q2k

sin4 πk
n

+O(`5, (n− 1)2). (3.48)

Then we get the corrections to the entanglement plateau

S(L)−Slo(L−`)+Ssh(`) =
32q2

15

(
π`

L

)4[1

c
+
πβ

L

(
β2

L2
+1

)(
4β2

L2
+1

)]
+O(q3, `5). (3.49)

Note that in the above result we do not require the central charge to be large, but we have

only incorporated the contributions from the vacuum module.

3.4 Low temperature case with nonvacuum module

In this subsection we consider the low temperature case with the leading contributions from

a holomorphic nonvacuum module. We consider the module with a general holomorphic

primary operator X of conformal weight hX and normalization αX . It was shown in [33]

the leading order correction to the single-interval entanglement entropy from the module

X takes a universal form

δXS(`) = 2hX q
hX

(
1− π`

L
cot

π`

L

)
+O(qhX+1, q2hX ). (3.50)

It was believed that this applies to a general interval as long as the length ` cannot be

comparable to length of the system L.

Due to the presence of the primary module, we find that the corrections to the density

matrix and the reduced density matrices are respectively

δXρ =
qhX

αX
|X 〉〈X |+O(qhX+1), δXρA =

qhX

αX
ρA,X +O(qhX+1). (3.51)
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Using the same method as in subsection 3.1 we may get the corrections to the short interval

entanglement entropy

δXSsh(`) = 2hX q
hX

(
1− π`

L
cot

π`

L

)
+ ∂na

II
X (n)|n=1 +O(qhX+1, q2hX ), (3.52)

with

aII
X (n) = −

n∑
k=2

{
qkhX

(
sin π`

L

n sin π`
nL

)2khX(
1 + qhX

(
sin π`

L

n sin π`
nL

)2hX)n−k
(3.53)

×
∑

Z1,··· ,Zk

∑
0≤j1<···<jk≤n−1

〈 k∏
a=1

[
DXXZa

(
e

2πi
n
ja
(
e

2πi`
nL − 1

))hZaZa (e
2πi
n
ja
) ]〉

C

}
.

In aII
X (n) the quantities DXXZa are defined by the OPE of X (z1)X (z2)

FX (z1, z2) = 1 +
∑
Y

CXXY
αXαY

∞∑
r=0

arY
r!

(z1 − z2)hY+r∂rY(z2)

= 1 +
∑
Z
DXXZ(z1 − z2)hZZ(z2), (3.54)

with arY =
CrhY+r−1

Cr2hY+r−1
. The summation for Y runs over all the nonidentity holomorphic

quasiprimary operators with each Y being of conformal weight hY , and the summation

for Z runs over all the nonidentity holomorphic operators, including the quasiprimary

operators and their derivatives. It is possible that the term ∂na
II
X (n)|n=1 give the same

order of contribution as qhX . It would be nice if ∂na
II
X (n)|n=1 can be evaluated without

taking small ` expansion.

Similarly, we can read the correction to the thermal entropy and the entanglement

entropy of the long interval. The correction to the thermal entropy from the primary

module X is

δXS(L) =

(
1 +

2πhXβ

L

)
qhX +O(qhX+1, q2hX ). (3.55)

The corrections to the long interval entanglement entropy is

δXSlo(L− `) = (3.56)

δXS(L) + 2hX q
hX

(
1− π`

L
cot

π`

L

)
+ ∂nb

II
X (n)|n=1 + ∂nb

III
X (n)|n=1 +O(qhX+1, q2hX ),
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with the definitions

bIIX (n) = −qnhX
(

sin π`
L

n sin π`
nL

)2nhX

(3.57)

×
n∑
k=2

∑
Z1,··· ,Zk

∑
0≤j1<···<jk≤n−1

〈 k∏
a=1

[
DXXZa

(
e

2πi
n
ja
(
e

2πi`
nL − 1

))hZaZa (e
2πi
n
ja
) ]〉

C
,

bIIIX (n) = −
n−1∑
k=1

qkhX
∑

0≤j1<···<jk≤n−1

(
2i
n sin π`

L

)2khX
αkX

×
〈 k∏
a=1

[
e

2πihX
n (2ja+1− `

L)X
(

e
2πi
n (ja+1− `

L)
)
X
(

e
2πi
n
ja
) ]〉

C
.

The long interval result (3.56) is not universal and depends on the structure con-

stants, and the short interval result (3.52) is also possibly not universal. One can com-

pare (3.52), (3.56) with the result (3.50), which was obtained in [33]. We get the different

results by using a refined n → 1 limit. We sum all the terms of orders qhX , q2hX , · · · ,
q(n−1)hX , qnhX before taking the n→ 1 limit, while in [33] only the term of order qhX was

kept in obtaining (3.50). Though it is fine to keep only the order qhX term in calculating

the n-th Rényi entropy with n = 2, 3, 4, · · · , we need to keep all the terms of orders qhX ,

q2hX , · · · , q(n−1)hX , qnhX to get the correct n → 1 limit. One justification for our treat-

ment is that δXS(`) in (3.50) is ill-defined in the limit `→ L while δXSlo(L− `) in (3.56)

is well-defined in the limit `→ 0. Note that it is still possible (3.50) is correct for a short

interval, i.e., that in (3.52) it is possible ∂na
II
X (n)|n=1 ∼ O(q2hX ).

Summing up all the contributions, we find the correction to the entanglement plateau

δX (S(L)− Slo(L− `) + Ssh(`)) = ∂nc
II
X (n)|n=1 + ∂nc

III
X (n)|n=1 +O(qhX+1, q2hX ), (3.58)

with the definitions

cII
X (n) = −

n−1∑
k=2

{
qkhX

(
sin π`

L

n sin π`
nL

)2khX

(3.59)

×
[(

1 + qhX
(

sin π`
L

n sin π`
nL

)2hX)n−k
− q(n−k)hX

(
sin π`

L

n sin π`
nL

)2(n−k)hX ]

×
∑

Z1,··· ,Zk

∑
0≤j1<···<jk≤n−1

〈 k∏
a=1

[
DXXZa

(
e

2πi
n
ja
(
e

2πi`
nL − 1

))hZaZa (e
2πi
n
ja
) ]〉

C

}
,

cIII
X (n) =

n−1∑
k=1

qkhX
∑

0≤j1<···<jk≤n−1

(
2i
n sin π`

L

)2khX
αkX

×
〈 k∏
a=1

[
e

2πihX
n (2ja+1+ `

L)X
(

e
2πi
n

(ja+1)
)
X
(

e
2πi
n (ja+ `

L)
) ]〉

C
.
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We expand the results (3.59) by small ` and get

cII
X (n) =

qhX

2

∑
Y

[
C2
XXY

α2
XαY

(
π`

L

)2hY n−1∑
j=1

1

(sin πj
n )2hY

+O(`2hY+1, `3hY )

]
+O(q2hX , (n−1)2),

cIII
X (n) =

(
π`

L

)2hX n−1∑
k=1

qkhX

(sin πk
n )2hX

+O(`2hX+1, (n− 1)2). (3.60)

The summation for Y runs over all the nonidentity holomorphic quasiprimary operators.

Finally we find

δX (S(L)− Slo(L− `) + Ssh(`))

=

√
πqhX

4

∑
Y

[
C2
XXY

α2
XαY

Γ(hY + 1)

Γ(hY + 3/2)

(
π`

L

)2hY

+O(`2hY+1, `3hY )

]

+

(
π`

L

)2hX

∂n

[ n−1∑
k=1

qkhX

(sin πk
n )2hX

]∣∣∣
n→1

+O(qhX+1, q2hX , `2hX+1). (3.61)

In the summation over Y, the holomorphic quasiprimary operator with the smallest con-

formal weight in each module dominates. For the vacuum module it is the stress tensor T ,

and for a nonvacuum module it is just the primary operator. The summation of Y in (3.61)

runs over T and all the nonidentity holomorphic primary operators. For the stress tensor,

it gives the correction (3.49). Note that that the result (3.61) does not take a universal

form, as it depends on the structure constants.

4 Conclusion and discussions

In this work, we studied the single-interval entanglement entropies at finite temperature in

2D CFT. We focused on the high temperature case with β � L and the low temperature

case with L� β. In particular we computed the entanglement entropies in the short and

large interval limits. This allows us to discuss the subleading correction to the entanglement

plateau

∆S = S(L)− |S(L− `)− S(`)| (4.1)

where S(L) is the thermal entropy of the system at the finite temperature. A general

lesson is that the Araki-Lieb inequality is robust and cannot be saturated for a finite ` if

the next-to-leading order contributions of large c limit are taken into account.

For the large c CFT with a gravity dual, it was found that there could be a holographic

entanglement plateau at a high temperature. As suggested in [12], ∆S is the mutual

information between the interior of the black hole and the region enclosed by the minimal

surface γ` [12]. We explicitly computed this mutual information in this work. In the semi-

classical AdS3/CFT2, we showed that ∆S is nonvanishing but is always an order c0 effect,

including both the contributions from the vacuum module and other primary modules.

In computing the entanglement entropies at a high temperature, we omitted the fi-

nite size effect, which contributes the exponentially suppressed terms. This simplifies the
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computation significantly and allows us to relate the computation with the computation

on the Rényi entropy of the two disconnected intervals on a complex plane. One impor-

tant consequence is that the leading contribution from the a nonvacuum module takes a

universal form.

On the other hand, in the low temperature case we cannot ignore the exponentially

suppressed terms. We used two different approaches to compute the thermal corrections

to the entanglement entropies and found consistent results. Quite interestingly we found

that the leading thermal correction to the long interval entanglement entropy actually does

not take a universal form. Instead, the leading correction to entanglement plateau actually

depends on the details of the theory.

It is remarkable that our treatment in this work does not restrict to the large c CFT,

and can be applied to a general CFT. In 2D CFT, the vacuum module is special as it

includes the stress tensor which encodes the information on the central charge. Therefore

the discussion on the vacuum module in this work certainly applies to other CFTs. At

the high temperature the case is related to the double interval mutual information on the

complex plane. In the latter case the leading contribution of the nonvacuum module to the

mutual information is of universal form. At the low temperature, the picture is similar but

the leading contributions from nonvacuum modules depend on the details of the theory.

Simply speaking, in a general 2D CFT the corrections from both vacuum and nonvacuum

modules are not suppressed by 1/c and so the entanglement plateau disappears.
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A Mutual information of two intervals on a complex plane

Here we review the useful property of the mutual information I(x) between two intervals

in a large c CFT with contributions from the vacuum module [10, 11, 29–31, 36, 37]. The

mutual information can be organized by orders of c

I(x) = IL(x) + INL(x) + · · · , (A.1)
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where x is the cross ratio. The leading part of the mutual information is universal and do

not depend on the details of the CFT

IL(x) =

{
0 when x < 1/2
c
3 log x

1−x when x > 1/2,
(A.2)

and with contributions of only the vacuum module the next-to-leading part can be written

in expansion of small x

INL(x) =
x4

630
+

2x5

693
+

15x6

4004
+

x7

234
+

167x8

36036
+

69422x9

14549535
+

122x10

24871
+O(x11). (A.3)

One has [10]

INL(x) = INL(1− x). (A.4)

For a nonvacuum module with a primary operator X of the scaling dimension ∆X , there

is a universal correction at the leading order [29]

δX I(x) =

√
πΓ(2∆X + 1)x2∆X

42∆X+1Γ(2∆X + 3/2)
+O(x2∆X+1, x3∆X ). (A.5)

In fact, for any 2D CFT the small x expansion of the mutual information can be

written as [36, 37]

I(x) = lim
n→1

1

n− 1

∑
K

αKd
2
Kx

hK+h̄K
2F1(hK , hK ; 2hK ;x)2F1(h̄K , h̄K ; 2h̄K ;x), (A.6)

where the summation K runs over all orthogonalized quasiprimary operators ΦK , with

conformal weights (hK , h̄K) and normalization αK , in the n-fold CFT that we call CFTn,

and dK is the OPE coefficient of twist operators. It is just (A.3) with the contributions

from only the vacuum module. The leading contribution from a nonvacuum module takes

the universal form (A.5), while the subleading contributions are not universal and depend

on details of the CFT. Also the subleading contributions from different modules are mixed

and cannot be separated.

B Analytical continuation

In the appendix, we prove the following identity2

∂n

( n−1∑
k=1

q2k

sin4 πk
n

)∣∣∣
n=1

=
32πβ

15L

(
β2

L2
+ 1

)(
4β2

L2
+ 1

)
q2 +O(q3). (B.1)

Note that q = e−2πβ/L.

We consider the Mellin transform and its inverse transform

F (s) =

∫ ∞
0

f(x)xs−1dx,

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−sds. (B.2)

2We thank Peng-xiang Hao for his contributions to this appendix.
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We choose

F (s) =
1

[sin(πs)]4
, (B.3)

and so

f(x) =
(log x)3 + 4π2 log x

6π4(x− 1)
. (B.4)

Then we get
n−1∑
k=1

q2k

sin4 πk
n

=

∫ ∞
0

q2x1/n − q2nx

x(1− q2x1/n)
f(x)dx, (B.5)

which leads to

∂n

( n−1∑
k=1

q2k

sin4 πk
n

)∣∣∣
n=1

=

∫ ∞
0

q2[log(q2) + log x]

q2x− 1
f(x)dx. (B.6)

The integral on the right-hand side is convergent for Req2 ≤ 0, Imq2 6= 0, and with an

analytical continuation we finally get

∂n

( n−1∑
k=1

q2k

sin4 πk
n

)∣∣∣
n=1

=
q2 log(q2)[log(q2) + 4π2][log(q2) + 16π2]

120π4(q2 − 1)
. (B.7)

An immediate check of the result is that when q2 → 1 it is 8
15 , and this is consistent

with (C.8). Then we get (B.1).

C Low temperature case from method of twist operators

As a double check of the results in sections 3 and 3.4, we calculate the short and long

interval entanglement entropies using the OPE of the twist operators in this section.

The replica trick leads to an n-fold CFT, which we call CFTn, on a nontrivial Rie-

mann surface. The partition function of CFTn can be computed by a correlation function

of the twist operators. The twist operators σ, σ̃ are primary operators with conformal

dimension [34]

hσ = hσ̃ =
c(n2 − 1)

24n
. (C.1)

When the interval A = [0, `] is short, we may use the OPE of the twist operators [10, 28–30]

σ(`)σ̃(0) =

(
ε

`

)2hσ∑
K

dK
∑
r≥0

arK
r!
`hK+r∂rΦK(0), arK ≡

CrhK+r−1

Cr2hK+r−1

, (C.2)

with the summation K being over all CFTn quasiprimary operators ΦK . To the order we

consider in this paper, we only need ΦK that can be written as a direct product of the

quasiprimary operators in different replicas

Φj1j2···jk
K = φj11 φ

j2
2 · · ·φ

jk
k , (C.3)
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where 0 ≤ ji ≤ n − 1 labels the replica. From the OPE coefficients dj1j2···jkK for Φj1j2···jk
K ,

we may define

bK =
∑

j1,j2,··· ,jk

dj1j2···jkK , aK = − lim
n→1

bK
n− 1

. (C.4)

For the vacuum module, we only need the quasiprimary operators Tj , Aj , Tj1Tj2 , with

0 ≤ j ≤ n− 1, 0 ≤ j1 < j2 ≤ n− 1, the corresponding dK can be found in [29–31], and the

corresponding bK can be found in [38, 39], from which we may get

aT = −1

6
, aA = 0, aTT = − 1

30c
. (C.5)

For a quasiprimary operator Y, we may have the CFTn quasiprimary operators Yj1Yj2
with 0 ≤ j1 < j2 ≤ n− 1. The corresponding dK is [29, 40, 41]

dj1j2YY =
i2hY

22hYαY

1

[sin π(j1−j2)
n ]2hY

+O(n− 1), (C.6)

from which we get

bYY =
i2hY

22hY+1αY

n−1∑
j=1

1

(sin πj
n )2hY

+O(n− 1)2,

aYY = − i2hY
√
πΓ(hY + 1)

22(hY+1)αYΓ(hY + 3/2)
. (C.7)

Note that we have used the relation [29]

∂n

[ n−1∑
j=1

1

(sin πj
n )2hY

]∣∣∣
n=1

=

√
πΓ(hY + 1)

2Γ(hY + 3/2)
. (C.8)

In the following calculation we need the one-point function of operator Y on a vertical

cylinder capped with two operators X , Z on the two ends, and we denote it by 〈X |Y(w)|Z〉.
When X = Z, we also define 〈Y〉X = 〈X |Y|X 〉/αX . We evaluate it by mapping the cylinder

to a complex plane by conformal transformation z = e
2πiw
L . In the following calculation we

need the relations

〈T 〉0 =
π2c

6L2
, 〈T 〉T =

π2(c− 48)

6L2
,

〈T |T (w)|0〉 = −2π2cz2

L2
, 〈0|T (w)|T 〉 = − 2π2c

L2z2
. (C.9)

Note that we use 0 to denote the identity operator 1 which corresponds to the ground state

|0〉. For a nonidentity primary operator X and a nonidentity primary operator Y, we have

〈T 〉X =
π2(c− 24hX )

6L2
, 〈Y〉0 = 0, 〈Y〉X =

(
2πi

L

)hY CXYX
αX

,

〈X |X (w)|0〉 = αX

(
2πiz

L

)hX
, 〈0|X (w)|X 〉 = αX

(
2πi

Lz

)hX
. (C.10)

Note that for the structure constant CXYX being nonvanishing, we need that Y is bosonic,

i.e., that hY is an integer. There is relation CXYX = (−)hYCXXY .
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C.1 Contributions from the vacuum module

For a short interval A = [0, `], we have the reduced density matrix (3.9). Using the twist

operators we get

trAρ
n
A =

n∑
k=0

q2k

αkT

∑
0≤j1<···<jk≤n−1

〈Tj1 · · ·Tjk |σ(`)σ̃(0)|Tj1 · · ·Tjk〉+O(q3). (C.11)

Using the OPE of the twist operators we have

1

αk
T

∑
0≤j1<···<jk≤n−1

〈Tj1 · · ·Tjk |σ(`)σ̃(0)|Tj1 · · ·Tjk〉=
(
ε

`

)2hσ
Ck

n

[
1 + `2bT

(n− k)〈T 〉0 + k〈T 〉T
n

+`4
(
bA

(n−k)〈A〉0+k〈A〉T
n

+ bTT
(n−k)(n−k−1)〈T 〉20 + 2k(n−k)〈T 〉0〈T 〉T + k(k−1)〈T 〉2T

n(n− 1)

)
+O(`6)

]
, (C.12)

with which we get

trAρ
n
A =

(
ε

`

)2hσ{
(1+q2)n + `2bT (1 + q2)n−1(〈T 〉0 + q2〈T 〉T ) + `4

[
bA(1 + q2)n−1(〈A〉0 + q2〈A〉T )

+ bTT (1 + q2)n−2(〈T 〉20 + 2q2〈T 〉0〈T 〉T + q4〈T 〉2T )
]

+O(`6)
}

+O(q3). (C.13)

Then we get the short interval entanglement entropy

Ssh(`) =
c

6
log

`

ε
+
[
`2aT 〈T 〉0 + `4aTT 〈T 〉20 +O(`6)

]
(C.14)

+
[
`2aT (〈T 〉T − 〈T 〉0) + 2`4aTT 〈T 〉0(〈T 〉T − 〈T 〉0) +O(`6)

]
q2 +O(q3).

Using (C.5), (C.9), we further find

Ssh(`) =
c

6
log

`

ε
+

(
− π2c`2

36L2
− π4c`4

1080L4
+O(`6)

)
+

(
4π2`2

3L2
+

4π4`4

45L4
+O(`6)

)
q2 +O(q3).

(C.15)

This is consistent with (3.28) and the results in [24, 33, 38, 42].

The complement of A is a long interval B with length L − `. Instead of (C.11), for a

long interval we have [27]

trBρ
n
B =

n∑
k=0

q2k

αkT

∑
0≤j1<···<jk≤n−1

〈Tj1 · · ·Tjk |σ(`)σ̃(0)|Tj1+1 · · ·Tjk+1〉+O(q3). (C.16)

Using OPE of the twist operators, we evaluate it as

trBρ
n
B =

(
ε

`

)2hσ{
[1 + `2bT 〈T 〉0 + `4(bA〈A〉0 + bTT 〈T 〉20) +O(`6)

]
+

[
`4

n−1∑
k=1

q2kd0k
TT

〈T |T (0)|0〉〈0|T (0)|T 〉
αT

+O(`5)

]
+ q2n[1 + `2bT 〈T 〉T + `4(bA〈A〉T + bTT 〈T 〉2T ) +O(`6)

]}
+O(q3). (C.17)
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We get the long interval entanglement entropy

Slo(`) =
c

6
log

`

ε
+
[
`2aT 〈T 〉0 + `4aTT 〈T 〉20 +O(`6)

]
(C.18)

+

[
− `4∂n

( n−1∑
k=1

q2kd0k
TT

)∣∣∣
n→1

〈T |T (0)|0〉〈0|T (0)|T 〉
αT

+O(`5)

]
+

[
1 +

4πβ

L
+ `2aT (〈T 〉T − 〈T 〉0) + `4aTT (〈T 〉2T − 〈T 〉20) +O(`6)

]
q2 +O(q3).

Using (C.5), (C.6), (C.9), we finally get

Slo(L− `) =
c

6
log

`

ε
+

(
− π2c`2

36L2
− π4c`4

1080L4
+O(`6)

)
+

[
−
(
π`

L

)4

∂n

( n−1∑
k=1

q2k

sin4 πk
n

)∣∣∣
n=1

+O(`5)

]
+

(
1 +

4πβ

L
+

4π2`2

3L2
+

4π4`4

45L4
+O(`6)

)
q2 +O(q3). (C.19)

This is consistent with (3.42).

Using the thermal entropy (3.37), the short interval and long interval entanglement

entropies (C.15), (C.19), we get the correction to the entanglement plateau

S(L)− Slo(L− `) + Ssh(`) =

(
π`

L

)4[32q2

15c
+ ∂n

( n−1∑
k=1

q2k

sin4 πk
n

)∣∣∣∣
n=1

]
+O(q3, `5). (C.20)

The second term in the bracket has been evaluated in the previous appendix. Finally we

find that this is the same as the result (3.49) in section 3.

C.2 Contributions from a nonvacuum module

We consider the contributions from a holomorphic primary operator X to the density

matrix (3.51). Generally, the OPE of the twist operators can be written as

σ(`)σ̃(0) =

(
ε

`

)2hσ{
1 +

∑
Y

[ n−1∑
j=0

`hYdYYj(0) +O(`hY+1)

]

+
∑
Y

[ ∑
0≤j1<j2≤n−1

`2hYdj1j2YY Yj1(0)Yj2(0) +O(`2hY+1, `3hY )

]}
, (C.21)

with the summation of Y being over T and all holomorphic primary operators.

For the short interval A we have the correction to the partition function

δX trAρ
n
A =

n∑
k=1

qkhX

αkX

∑
0≤j1<···<jk≤n−1

〈Xj1 · · · Xjk |σ(`)σ̃(0)|Xj1 · · · Xjk〉+O(qhX+1)

=

(
ε

`

)2hσ{
qhX

[
n+

∑
Y

[`hY bY〈Y〉X +O(`hY+1)] (C.22)

+
∑
Y

[`2hY bYY〈Y〉0(2〈Y〉X − 〈Y〉0) +O(`2hY+1, `3hY )]

]
+O(qhX+1, (n−1)2)

}
.
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Then we get the corrections to the short interval entanglement entropy

δXSsh(`) = qhX
{∑
Y

[`hYaY(〈Y〉X − 〈Y〉0) +O(`hY+1)] (C.23)

+2
∑
Y

[`2hYaYY〈Y〉0(〈Y〉X − 〈Y〉0) +O(`2hY+1, `3hY )]

}
+O(qhX+1, q2hX ).

For the long interval B we have corrections to the partition function [27]

δX trBρ
n
B =

n∑
k=1

qkhX

αkX

∑
0≤j1<···<jk≤n−1

〈Xj1 · · · Xjk |σ(`)σ̃(0)|Xj1+1 · · · Xjk+1〉+O(qhX+1)

=

(
ε

`

)2hσ{[
`2hX

n−1∑
k=1

qkhX d0k
XX
〈X |X (0)|0〉〈0|X (0)|X 〉

αX
+O(`2hX+1)

]
+ qnhX

[
1+
∑
Y

[`hY bY〈Y〉X +O(`hY+1)+
∑
Y

[`2hY bYY〈Y〉2X+O(`2hY+1, `3hY )]

]
+O(qhX+1)

}
, (C.24)

from which we get the corrections to the long interval entanglement entropy

δXSlo(L−`) =

[
− `2hX ∂n

( n−1∑
k=1

qkhX d0k
XX

)∣∣∣∣
n→1

〈X |X (0)|0〉〈0|X (0)|X 〉
αX

+O(`2hX+1)

]
+ qhX

{
1+

4πβhX
L

+
∑
Y

[`hYaY(〈Y〉X − 〈Y〉0) +O(`hY+1)] (C.25)

+
∑
Y

[`2hYaYY(〈Y〉2X − 〈Y〉20) +O(`2hY+1, `3hY )] +O(qhX+1, q2hX ).

The corrections to the thermal entropy are (3.55). Then we get the corrections to the

entanglement plateau

δX (S(L)− Slo(L− `) + Ssh(`))

=

[
`2hX ∂n

( n−1∑
k=1

qkhX d0k
XX

)∣∣∣∣
n→1

〈X |X (0)|0〉〈0|X (0)|X 〉
αX

+O(`2hX+1)

]
−qhX

∑
Y

[
`2hYaYY(〈Y〉X − 〈Y〉0)2 +O(`2hY+1, `3hY )

]
+O(qhX+1, q2hX ). (C.26)

Note that the summation of Y is over T and all holomorphic primary operators. Us-

ing (C.6), (C.7), (C.9), (C.10), we can show easily that this is exactly the same as the

result (3.61).
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