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1 Introduction

Using the operator product expansion (OPE), correlation functions in conformal field the-

ories naturally organize themselves into contributions from “conformal blocks”. These

blocks sum up the contributions of all the descendants associated with a given primary

operator arising in the OPE of a given pair of operators. In field theories with holographic

dual, correlation functions in the bulk can be calculated from Witten diagrams [1], that is

position space Feynman diagrams in asymptotically anti-de Sitter (AdS) space. While the

full correlation function must of course respect its decomposition into conformal blocks, the

individual Witten diagrams do not nicely separate the contribution from any given block.

It has been argued in [2] that one can isolate the contribution of a single conformal block to

a conformal 4-pt function by calculating so called “geodesic Witten diagrams”. Geodesic

Witten diagrams differ from their standard cousins in that the bulk interaction vertices

are only integrated along a geodesic connecting two boundary operator insertions instead

of over all of AdS space. One can show that these geodesic Witten diagrams represent

the contribution of a single block by explicit calculation. But a more elegant method is to

demonstrate that they obey the defining Casimir differential equations that blocks must

obey together with the correct boundary conditions.
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In conformal field theories with boundaries (bCFTs) the notion of conformal blocks

becomes more interesting [3]. The presence of a conformally invariant boundary reduces

the conformal group in d spacetime dimensions from SO(d, 2) to SO(d−1, 2). The reduced

symmetry allows for the appearance of a non-trivial function depending on a single con-

formally invariant cross-ratio already at the level of the 2-pt function. This correlator can

be decomposed into conformal blocks in two distinct ways: in the “ambient space channel”

one uses the standard ambient space1 OPE to re-express the two-point function as a sum

over one-point functions (which need not vanish in a bCFT). The contribution of a given

primary and its descendants gets summed up into an “ambient block”. In the “boundary

channel” one uses a novel operators expansion, the BOPE or boundary operator expansion,

to expand any ambient operators in terms of boundary localized operators [3]. This way

the full ambient space 2-pt functions gets reduced to a sum over 2-pt functions of boundary

localized operators. Once again, the contribution of a given primary and its descendants

can be summed up into a “boundary block”. Demanding equality of the decompositions

into ambient blocks and boundary blocks gives interesting constraints on the bCFT data,

as encapsulated in the boundary bootstrap program [5].

It is natural to expect that the conformal block decompositions of the 2-pt function in

a bCFT with holographic dual can once again be captured by geodesic Witten diagrams.

First steps in this direction have been taken in [6]. bCFTs are dual to a spacetime with

d+1 non-compact directions that allow a slicing in terms of AdSd [7]. The simplest models

have a d+ 1 dimensional bulk given by a metric

ds2 = e2A(r)ds2
AdSd

+ dr2 (1.1)

potentially times some internal space. If eA = cosh(r/L) (hereafter we take the AdS radius

L = 1) this metric is simply AdSd+1. For the holographic dual of genuine bCFTs the

standard holographic dictionary requires the warpfactor A to approach this asymptotic

form for large r. Examples in this class include AdS sliced Randall-Sundrum models [7, 8],

the very closely related AdS/bCFT proposal by Takayanagi [9], as well as the d = 4 Janus

solution of type IIB supergravity [10] together with its cousins in other d. The former two

are toy models, based on Einstein gravity coupled to branes with tension. They have no

known embedding in string theory and no explicitly known dual field theory. The latter

is an explicit top-down solution; its dual field theory consists of N = 4 super Yang-Mills

(SYM) theory with a step function defect across which the coupling constant jumps.2 The

1As in [4] we use the term ambient space for the d-dimensional space-time (labelled by indices µ, ν) in

which the d − 1 dimensional defect (labelled by i, j) is embedded. The direction transverse to the defect

is called w. We reserve the term “bulk” for the d+ 1 dimensional spacetime of the holographic dual given

by (1.1).
2Solutions like the Janus solution in which ambient space extends on both sides of the defect with

different properties are often referred to as (holographic duals of) interface conformal field theories, or

iCFTs. If the field theory on both sides of the interface is the same but extra degrees of freedom are

localized on it, the system is often referred to as a defect CFT or dCFT. Both iCFTs and dCFTs can

be seen as special cases of bCFT by employing the folding trick: the interface/defect can be viewed as a

boundary in a theory whose ambient space contains two decoupled copies of the original CFT on half-space

with interactions localized on the boundary.
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non-trivial metric (1.1) is supported by matter fields whose profile is independent of the

coordinates on the slice. We’ll collectively denote these background fields as X(r). For

example, in the Janus solution there is a single scalar turned on (the dilaton) with an

r-dependent profile. In more general holographic bCFT constructions, such as the dual

of N = 4 SYM on half-space with supersymmetry preserving boundary conditions [11–

13], the warpfactor A depends non-trivially also on the compact internal space. In this

case we can still use the metric (1.1) with the understanding that in this D dimensional

metric r stands for the set of all internal variables, dr2 is the D − d dimensional metric

on the internal space, and A(r) really is, in general, a function of all these D − d internal

coordinates.

In [6] only the simplest case of a holographic dCFT was addressed. In the case where

the bCFT is really a dCFT with a small number of matter fields localized on a defect

in a large N gauge theory, one can neglect the backreaction of the matter fields on the

ambient space field theory. A simple top-down example of such a “probe brane dCFT”

is the D3/D5 system of [8, 14], representing N = 4 SYM coupled to a 2 + 1 dimensional

hypermultiplet in the fundamental representation of the gauge group. In this case, the dual

geometry remains AdS5 throughout (that is eA = cosh(r) for all values of r). The defect

is dual to a probe D5 brane living on one of the AdS4 slices.3 In this case the prescription

for geodesic Witten diagrams is fairly straightforward as both geodesic and propagator

retain their standard AdS form and all one has to account for are the extra brane localized

matter and interactions. The resulting proposals of [6] can once again be confirmed by

explicit calculation as well as by the Casimir method. But the prescriptions as phrased in

this work heavily rely on the special probe brane scenario and it remained far from clear

of how to implement the idea of geodesic Witten diagrams in generic boundary conformal

field theories. It is our aim in this work to fill this gap.

In fact, the bulk manifestation of boundary conformal blocks has been understood in

a slightly different context before. In [4] it was shown that the BOPE manifests itself as a

mode decomposition in the bulk. This construction was used in [15] to show that particular

integrals of bulk scalar fields along geodesics, the so called weighted X-ray transforms, are

the correct bulk duals to the boundary conformal blocks. They naturally live in “boundary

kinematic space”. We will review both these constructions in the next section, as they

will play a crucial role in deriving the correct geodesic Witten diagram prescriptions for

generic holographic bCFTs. In section 3 we will give this derivation of the diagrams

associated to the contribution of a single conformal block in the boundary and ambient

channel respectively. After presenting some simple examples in section 4 we will conclude

in section 5.

2 Holographic boundary operator expansion and boundary blocks

Underlying the decomposition of the 2-pt function into boundary conformal blocks is the

notion of a boundary operator expansion (or BOPE). As was demonstrated in [4], the

3For the simplest case of a D5 brane intersecting N D3 branes the probe is located at r = 0, but it can

move to a different r∗ if we let some of the D3 branes end on the D5 brane [8].
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BOPE in the bulk can naturally be understood as a mode-decomposition of fields living on

an AdSd sliced geometry with metric (1.1). We want to solve the equation of motion for a

scalar field φd+1(r, y), dual to an ambient space operator O of dimension ∆. Here y and

r stand collectively for the coordinates along the AdSd slice and the transverse directions

respectively. Let us for concreteness focus on the case with only on internal variable r;

the generalization to many r is straight forward as we will see as we go along. Using the

d + 1 dimensional geometry (1.1) with background fields X(r) turned on the equation of

motion reads

(�g −M2(r))φd+1 = (D2
r + e−2A∂2

d −M2(r))φd+1 = 0 . (2.1)

�g is the Laplacian in the full Janus background geometry (1.1) and ∂2
d stands for the

AdSd Laplacian on the slice. The radial operator D2
r is defined as

D2
rψn(r) ≡ ψ′′n(r) + dA′(r)ψ′n(r) . (2.2)

The potential term M2(r) includes the bulk scalar mass M2
0 , but also all the interactions

with the background fields X(r).4 For example a quartic X2φ2 coupling in the Lagrangian

will give rise to an extra X2(r) term in M2. The only important property we need from

M is that it does not depend on the y coordinates as guaranteed by the SO(d−1, 2) defect

conformal symmetry. We can make a separation of variables ansatz

φd+1(r, y) =
∑
n

ψn(r)φd,n(y) (2.3)

so modes φd,n obey a standard scalar wave equation on the slice

∂2
dφd,n = m2

nφd,n . (2.4)

The eigenvalues m2
n are then determined by the internal mode equation:

D2
rψn(r)−M2(r)ψn(r) = − e−2A(r)m2

nψn(r) . (2.5)

This 2nd order differential equation can easily be brought into the form of a 1d Schrödinger

equation by a simple change of variables;5 correspondingly the modefunctions can be chosen

to be complete and orthonormal with respect to the Schrödinger norm, which in the original

variables implies∑
n

ψn(r)ψn(r′) = e−(d−2)A(r)δ(r − r′) ,
∫

dr e(d−2)A(r) ψmψn = δmn , (2.7)

4The dilaton is special because its coupling appears in front of a kinetic term. We will treat this case in

section 4 as an example of our prescription.
5A change of variables from r to a conformal coordinate z with dr = eAdz removes the e−2A factor

in front of the eigenvalues m2
n and a further rescaling ψn = e−(d−1)A/2Ψn eliminates the first derivatives

acting on the mode-function so that we are left with a standard Schrödinger equation for Ψn(z) together

with its usual norm and an effective potential of [16]

V (z) =
1

2

[(
d− 1

2

dA

dz

)2

+
d− 1

2

d2A

dz2
+M2e2A

]
. (2.6)
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and the eigenvalues m2
n are real. For cases with more than one internal coordinate or

couplings of X(r) to terms involving derivatives of φd+1, it is straightforward to write

down the corresponding eigenvalue problem. This is the only ingredient that needs to be

changed in these cases.

Since each mode φd,n on the slice obeys a scalar wave equation on AdSd, it is dual to

an SO(d− 1, 2) primary operator on localized on the defect. It was shown in [4] that these

d− 1 dimensional operators are exactly the ones appearing in the BOPE of O, that is they

appear in the expansion of O in terms of boundary localized operators

O(~x,w) =
cO1

(2w)∆
+
∑
k

cOk
(2w)∆−∆k

ok(~x) . (2.8)

We broke out the contribution cO1 of the identity operator for clarity. In the BOPE as

written in (2.8) the operators on the right hand side, labeled by k, are both primaries and

descendants. However the contribution of the descendants are completely determined by

that of the primaries, labeled by n, and they can be summed into non-local block operators

Bn(~x,w) so that the BOPE reads:

O(~x,w) =
cO1

(2w)∆
+
∑
n

cOnBn(~x,w) . (2.9)

The functional form of the blocks is uniquely fixed by symmetry [3]. According to [4] the

primaries appearing in the BOPE are in 1-to-1 correspondence with the modes φd,n, their

dimensions are given by the eigenvalues m2
n by the usual AdSd relation

∆n[∆n − (d− 1)] = m2
n (2.10)

and the OPE coefficients cOn are encoded in the asymptotic fall-off of the modefunc-

tions ψn [4].

The decomposition of an ambient operator O into conformal blocks can be inserted

into any correlation function which reduces the ambient space correlator into correlators of

the non-local blocks. In order to implement this procedure for the special case of the 2-pt

function,6 we would like to get a bulk representation of the conformal block itself. This

was provided in [15] using the construction of boundary kinematic space, which generalized

the previously introduced kinematic space of [17–20] to bCFTs. It was shown that from

the bulk field φd+1 one can construct kinematic space operators Rnφ by a weighted X-

ray transform

Rnφ(y) =

∫
γ
dr e(d−2)Aψn(r)φd+1(r, y) . (2.11)

6In the literature the name “conformal block” is often used both for the non-local operator B itself, but

also for the non-trivial function of cross-ratios it contributes to a particular correlation function (usually

the 4-pt function in CFTs without boundary and the 2-pt function in bCFTs). We will try to be careful

in the following to reserve the name for the operator itself and will refer to the non-trivial function of the

cross-ratio appearing in the 2-pt function as the contribution from a particular block.

– 5 –
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Here γ is a symmetry enhanced geodesic, as defined in [15], emanating from the boundary

point y at r → ∞. Of course there are many geodesics anchored at this point and their

detailed properties depend on the warp-factor A. But it was shown in [15] that the line

y(r) = const. (2.12)

is a geodesic for any choice of warpfactor A(r) and is in fact singled out to be the only

one compatible with the expected symmetries of the block. This is the geodesic γ that

appears in the weighted X-ray transform. The weights ψn are exactly the mode-functions

appearing in (2.5). Using the orthogonality of the modefunctions as well as the mode

decomposition (2.3) we see that the weighted X-ray transform exactly pulls out the AdSd
modes φd,n:

Rnφ(y) = φd,n(y) . (2.13)

Writing the AdSd metric on the slice parametrized by the d coordinates y as7

ds2
AdSd

=
dw2 + d~x2

w2
(2.14)

it was further shown in [15] that Rnφ(~x,w) was in fact equal to the conformal block

Bn(~x,w), that is the radial direction along the slice takes the role of the direction orthogonal

to the defect. In the following section we will use this insight to derive the contribution of

a given boundary conformal block to the 2-pt function of two ambient space operators in

terms of geodesic Witten diagrams.

3 Block decomposition of the 2-pt function

3.1 2-pt function in bCFT

3.1.1 General structure

In a conformal field theory without boundary, the conformal block decomposition is usually

applied to 4-pt functions since they are the simplest correlators that allow any non-trivial

functional dependence on the position of the insertion points. With 4 insertion points

one can form 2 conformally invariant cross-ratios and the correlator can be a non-trivial

function of both of them which can be decomposed (in different ways) into contributions

from blocks appearing in the OPE applied to two operators at a time. For the case of a

bCFT, a non-trivial cross-ratio already appears in the 2-pt function 〈O1(~x1, w1)O2(~x2, w2)〉
of two ambient space primary operators.

η =
(~x1 − ~x2)2 + (w1 − w2)2

w1w2
(3.1)

is conformally invariant and correspondingly the general form of the 2-pt function is

〈O1(~x1, w1)O2(~x2, w2)〉 =
f(η)

(2w1)∆1(2w2)∆2
. (3.2)

7The coordinate w transverse to the defect also corresponds to a radial direction on the AdSd slice.
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Note that, unlike in the case without boundary, this 2pt-function need not vanish in the

case when the two operators have different dimensions ∆1 and ∆2.

Both ambient and boundary block expansions can in principle be applied to the general

case of two different operators. In the following we will however restrict ourselves to

the case where both insertions are the same operator O with dimension ∆. Applying

the BOPE to O(~x1, w1) and O(~x2, w2) separately, the 2-pt function can be written as a

sum of contributions from 2-pt functions of the blocks. The residual boundary conformal

group insures that the only non-vanishing 2-pt functions arise from one and the same

primary on appearing in both BOPEs. Furthermore, for 2-pt functions of scalar operators

angular momentum conservation implies that only blocks build from scalar operators can

contribute. This allows one to give a boundary-channel expansion for f(η) of the form

f(η) = (cO1 )2 +
∑
n

(cOn )2f∂(∆n, η) . (3.3)

cO1 denotes the contribution of the identity operator. The contribution of the n-th bound-

ary block, f∂(∆n, η), is fixed by conformal invariance.8 The explicit form of f∂ can either

be obtained by summing up the contributions of the descendants [3] or, more elegantly, by

the Casimir method [5]: since all the descendants of a given primary sit in the same repre-

sentation of the conformal algebra, they all have to correspond to the same eigenvalue of

the Casimir operator L2
∂ of the conformal group. In terms of the generators D (dilatation),

Ki (special conformal), Pi (translations), and Mij (boosts and rotations) in their standard

representation as differential operators acting on a scalar at (~x,w) one has

L∂(~x,w)2 = −2D2 − (KiPi + P iKi) +M ijMij (3.4)

with
D = i(w∂w + xi∂i) , Ki = i(2xi(x

j∂j + w∂w)− (xjxj + w2)∂i) ,

Pi = − i∂i , Mij = − i(xi∂j − xj∂i) .
(3.5)

The differential equation

(L∂(~x1, w1) + L∂(~x2, w2))2〈O(~x1, w1)O(~x2, w2)〉 = ∆n(∆n − d+ 1)〈O(~x1, w1)O(~x2, w2)〉
(3.6)

together with the boundary condition that as the ambient operators approach the defect

(η →∞) the contribution of the blocks is dominated by the primary or in other words

f∂(∆n, η) ∼ η−∆n (3.7)

gives the contribution of the n-th block as [5]

f∂(∆n, η) =
(η

4

)−∆n

2F1

(
∆n,∆n −

d

2
+ 1, 2∆n − d+ 2,−4

η

)
. (3.8)

A different expansion of f(η) can be obtained by using the standard ambient space OPE

on the product O(~x1, w1)O(~x2, w2). This reduces the calculation of the 2-pt function to a

8As remarked before, sometimes f∂ itself is referred to as the block, but for clarity we reserve this name

for the non-local operator appearing the BOPE, not its contribution to the 2-pt function.
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sum over 1-pt functions of all the operators appearing in the OPE of O with itself. In a

standard CFT the only non-vanishing 1-pt function comes from the identity operator. So

the 2-pt function is completely determined by the identity block. In a bCFT any scalar

primary operator can have a non-trivial 1-pt function

〈O(~x,w)〉 =
aO

(2w)∆
(3.9)

and so the 2-pt function of ambient operators can be reduced to a sum over 1-pt functions.

This give us an expansion of f of the form

f(η) = λ1

(
4

η

)∆

+
∑
N

λNaNfambient(∆N , η) (3.10)

where the sum over N is a sum over ambient space primaries (that is primaries under the

full SO(d, 2)), λN are the OPE coefficients and aN the constants determining their 1-pt

functions according to (3.9). The contribution of the N -th ambient block can once more

be obtained by explicit summation or the Casimir method [5]:

fambient(η) =
(η

4

)∆N/2−∆

2F1

(
∆N

2
,

∆N

2
,∆N −

d

2
+ 1,−η

4

)
. (3.11)

Like f∂ , fambient can be found as an eigenfunction of a conformal Casimir operator, but

this time it is the full SO(d, 2) Casimir (acting on ~x1, w1, ~x2, w2) and the eigenvalue is

∆N (∆N−d). Equating the two expansion gives rise to the boundary bootstrap equation [5],

which will however not play a major role in this work.

3.1.2 Simple examples: Dirichlet, Neumann and “No-brane”

The simplest examples to illustrate the various block decompositions are free field theories.

The three cases one wants to distinguish are a free scalar bCFT with Dirichlet boundary

conditions (the “Dirichlet theory”), a free scalar bCFT with Neumann boundary conditions

(the “Neumann theory”) or the “free No-braner” theory: a free scalar ϕ without boundary

or interface in which one randomly picks the w = 0 surface to be treated as an interface. As

emphasized in [4], in a free theory the BOPE is essentially a Taylor expansion. Correspond-

ingly, the defect operators on are built from O(~x,w = 0) and ∂wO(~x,w = 0) and so on.9

Due to the equations of motion, in a free theory ∂2
wO for O = ϕ is related to the on-slice

Laplacian and hence is already a descendent of the defect conformal algebra. Correspond-

ingly, the only operators that can appear in the BOPE are O (dimension ∆ϕ = d/2 − 1)

and ∂wO (with dimension d/2). The Dirichlet theory only has the former, the Neumann

theory the latter and the free no-braner has both. Correspondingly the boundary channel

9As shown in [4] these w derivatives of O are not primaries by themselves, but one can build primaries

from linear combination of w derivatives and operators built form derivatives along the slice.
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expansion yields [5]

fDirichlet(η) =

(
4

η

)∆ϕ
[

1−
(

η

η + 4

)∆ϕ
]

(3.12)

fNeumann(η) =

(
4

η

)∆ϕ
[

1 +

(
η

η + 4

)∆ϕ
]

(3.13)

fno-brane(η) =
1

2

(
4

η

)∆ϕ
[

1 +

(
η

η + 4

)∆ϕ

+ 1−
(

η

η + 4

)∆ϕ
]

=

(
4

η

)∆ϕ

(3.14)

which means that the full correlator takes the expected form one would get from a method

of images construction

〈ϕ(~x1, w1)ϕ(~x2, w2)〉 =



1

(∆x2)∆ϕ
− 1

(∆x2
R)∆ϕ

for Dirichlet

1

(∆x2)∆ϕ
+

1

(∆x2
R)∆ϕ

for Neumann

1

(∆x2)∆ϕ
for no-brane

(3.15)

where

∆x2 = (~x1 − ~x2)2 + (w1 − w2)2 , ∆x2
R = (~x1 − ~x2)2 + (w1 + w2)2 . (3.16)

Instead of interpreting the mirror charge terms as the contribution of boundary blocks with

dimension ∆ϕ+1 and ∆ϕ in the Dirichlet and Neumann case respectively, we can also give

them an ambient channel representation: they are the ambient block of dimension 2∆ϕ

associated with the operator ϕ2 appearing in the operator product of ϕ with itself. The

difference in sign comes from the difference in vacuum expectation value of ϕ2.

Note that the “no-braner” construction can be applied to any CFT, be it interacting

or not. The fact that the BOPE truncates to only two primaries is special to the case of

a free no-braner. In particularly, in the “no-braner” of a theory with holographic duals,

one finds the entire tower of fields with dimension ∆n = ∆ + n associates to the primaries

built from w-derivatives of O in the BOPE of O [4].

3.1.3 Holographic calculation

In principle it is easy to calculate a dCFT 2-pt function from Witten diagrams: we simply

need to obtain the bulk-to-boundary propagator in the full holographic dCFT geometry

of (1.1). This amounts to calculating a single Witten diagram as depicted in figure 1. So to

some extend there is much less urgency in this case to organize the contributions according

to conformal blocks. Nevertheless, it may sometimes be convenient to do so. We can use

the exact representation in terms of the diagram of figure 1 in order to derive the geodesic

Witten diagrams associated with the block decomposition.

– 9 –
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w

w

r

w

(x1,w1) (x2,w2)

Figure 1. Full 2-pt function in an iCFT. The red triangle indicates the region in which the metric

strongly deviates from AdSd+1. In a bCFT space would truncate smoothly inside the triangle. We

also indicated how the r and w coordinates used in the main text parametrize the space depicted

in this figure. All following figures also depict the same r-w plane.

In principle the Witten diagram in figure 1 is very easy to calculate. In terms of the

bulk-to-boundary propagator K∆,d+1(r, ~x1, w1, ~x2, w2) we have10

〈O(~x1, w1)O(~x2, w2)〉 = C lim
r→∞

e−∆rK∆,d+1(r, ~x1, w1, ~x2, w2) . (3.17)

The constant C encodes the prefactor of the action.11 The bulk-to-boundary propagator

is, as usual, defined as a solution to the scalar equations of motion

(�g −M2(r))K∆,d+1 = 0 (3.18)

approaching the appropriate delta function at the boundary

lim
r→∞

e(d−∆)rK∆,d+1(r, ~x1, w1, ~x2, w2) = δ(~x1 − ~x2)δ(w1 − w2) . (3.19)

As in (2.5), M2(r) is a non-trivial function of the radial direction not just encoding the

mass of the scalar field but also its interactions with all the matter fields that have a non-

trivial profile in the background geometry. Asymptotically the metric approaches that of

AdSd+1 and all matter fields go to constants so that M2(r) approaches M2
0 which is related

to the dimension ∆ by the usual

∆(∆− d) = M2
0 . (3.20)

10For the propagators and their relation to the correlation functions we are following the conventions

of [21].
11For a scalar field, we take the action to be

S = −C
2

∫
dd+1x

√
−g(gMN∂Mφd+1∂Nφd+1 +M2(r)φ2

d+1) ,

where M,N label d+ 1 coordinates of the bulk spacetime.
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(a) Probe brane boundary channel. (b) Generic iCFT boundary channel.

Figure 2. Boundary Channel Geodesic Witten diagrams.

The bulk-to-boundary propagator can also be obtained as a limit of the full bulk-to-bulk

propagator G∆,d+1 which obeys

√
−g(�g −M2(r1))G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) = δ(r1 − r2)δ(~x1 − ~x2)δ(w1 −w2) . (3.21)

We can recover K∆,d+1 via12

K∆,d+1(r1, ~x1, w1, ~x2, w2) = lim
r2→∞

(2∆− d)
e∆r2

(2w2)∆
G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) (3.22)

so that

〈O(~x1, w1)O(~x2, w2)〉 = C(2∆− d)2 lim
r1,2→∞

e∆(r1+r2)

(2w1)∆(2w2)∆
G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) .

(3.23)

3.2 Boundary channel

Despite the simplicity of the Witten diagrams for the full 2-pt function leading to the

expression (3.23) it can be helpful to decompose this full answer into a sum over blocks.

Here we will use the full form of the 2-pt function to derive an expression in terms of

boundary channel blocks. The contribution of a single block will be shown to be given

by the diagrams in figure 2(b). In the special case that the holographic bulk dual is

simply given by a probe brane our prescription reduces to the Witten diagram of 2(a) as

it appeared previously in [6].

To derive the block decomposition, let us start with a representation of the bulk-

to-bulk propagator in the full geometry in terms of mode functions. Instead of directly

12As one approaches the boundary of asymptotically AdSd+1 space, the metric diverges as f−2 where the

“defining function” f has a single zero at the boundary. To extract the asymptotic behavior of the various

fields on this space, one multiplies with the appropriate powers of f . In the metric (1.1) one naively may have

expected to use cosh(r) ∼ er/2 as the defining function and hence multiply K∆,d+1 simply with e∆r/2∆.

However in this case one would obtain answers relevant for a field theory on AdSd. If we are interested in

extracting correlators for a flat space bCFT, we need to use f = er/(2w) as the defining function.
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solving (3.21) for the propagator, we first find a set of appropriate eigenfunctions of the

scalar wave operator. Usually one would look for modes of the form

(�g −M2(r))Φd+1,K(X) = EKΦd+1,K(X) , (3.24)

and then write the Green’s function as

G(X1, X2) =
∑
K

Φd+1,K(X1)Φd+1,K(X2)

EK
. (3.25)

Here X stands for all the coordinates and K labels the modes. As long as the modes are

a complete set, the right hand side automatically gives a delta function when acted upon

with the wave operator. In our coordinate system it is easier to follow a slight variation of

this strategy. We are looking for modes obeying

(�g −M2(r))φd+1,n,k = e−2A(r)En,kφd+1,n,k . (3.26)

Using the separation of variables ansatz (2.3) together with the form (2.1) of the wave

operator these yield

∂2
dφd,n,k −m2

nφd,n,k = En,kφd,n,k (3.27)

instead of our earlier equation (2.4) which we found when looking for solutions of the scalar

equation of motion instead of eigenfunctions of the wave operator. Importantly, with our

choice to look for solutions of (3.26) the mode equation (2.5) remains unchanged and the

discrete index n labels its eigenvalues as before. k is labelling the eigenfunctions of the

on-slice wave equation (3.27) for a given m2
n. In the Poincaré patch slicing of (2.14) k is a

continuous label. As standard eigenfunctions of the wave equation, φd,n,k form a complete

set on the AdSd slice:

∫
dk φd,n,k(~x1, w1)φd,n,k(~x2, w2) =

δ(~x1 − ~x2)δ(w1 − w2)√
−g0

(3.28)

where g0 is the determinant of the AdSd metric on the slice. In terms of these we can write

G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) =

∫
dk
∑
n

φd+1,n,k(r1, ~x1, w1)φd+1,n,k(r2, ~x2, w2)

En,k
. (3.29)

Using the defining equation (3.26) as well as completeness (2.7) and (3.28) of the modes it

is straightforward to check that this representation indeed obeys the equation defining the

– 12 –
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bulk-to-bulk propagator:

(�g −M2(r1))G∆,d+1(r1, ~x1, w1, r2, ~x2, w2)

= (�g −M2(r1))

∫
dk
∑
n

φd+1,n,k(r1, ~x1, w1)φd+1,n,k(r2, ~x2, w2)

En,k

= e−2A(r1)

∫
dk
∑
n

φd+1,n,k(r1, ~x1, w1)φd+1,n,k(r2, ~x2, w2)

=
∑
n

e−2A(r1)ψn(r1)ψn(r2)×
[∫

dk φd,n,k(~x1, w1)φd,n,k(~x2, w2)

]
=
δ(~x1 − ~x2)δ(w1 − w2)√

−g0

δ(r1 − r2)

edA

=
δ(r1 − r2)δ(~x1 − ~x2)δ(w1 − w2)√

−g
. (3.30)

An important observation is to note that this representation can be used in order to re-

express the full d+ 1 dimensional bulk-to-bulk propagator in terms of d dimensional bulk-

to-bulk propagators G0
∆n,d

of the modes on the slice (that is, these are propagators for

a d dimensional scalar on AdSd with mass squared given by m2
n). The 0 superscript

here is reminding us that, unlike G∆,d+1, these d dimensional propagators on the slice

are calculated using an AdSd geometry and so are completely known. Given a mode

representation of G0
∆n,d

G0
∆n,d(~x1, w1, ~x2, w2) =

∫
dk

φd,n,k(~x1, w1)φd,n,k(~x2, w2)

En,k
(3.31)

and the separation of variables ansatz (2.3) we can easily see that the full d+1 dimensional

propagator can also be represented as13

G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) =
∑
n

ψn(r1)ψn(r2)G0
∆n,d(~x1, w1, ~x2, w2) . (3.32)

Our claim is that this is exactly the decomposition into boundary blocks. This immediately

follows from the prescription of [15] for identifying the blocks. The bulk-to-bulk propagator

13As a final check of our construction, note that it is easy to confirm that the propagator in this repre-

sentation indeed obeys the defining equation (3.21):

(�g −M2)G∆,d+1 = (D2
r + e−2A∂2

d −M2)
∑
n

ψn(r1)ψn(r2)G0
∆n,d

=
∑
n

ψn(r1)ψn(r2)

[
G0

∆n,d(−e−2Am2
n + e−2Am2

n) + e−2A δ(~x1 − ~x2)δ(w1 − w2)√
−g0

]

=
δ(~x1 − ~x2)δ(w1 − w2)δ(r1 − r2)√

−g

where we used the completeness of the radial modes (2.7) as well as

(∂2
d −m2

n)G0
∆n,d =

δ(~x1 − ~x2)δ(w1 − w2)√
−g0

.
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is the correlation function of two bulk scalar insertions. We can perform a weighted X-ray

transform (2.13) on both insertion points to extract the contribution of a given block:

f∂,n ∼ Gn ≡
∫
γ1

dr1

∫
γ2

dr2 e(d−2)(A(r1)+A(r2))ψn(r1)ψn(r2)G∆,d+1(r1, ~x1, w1, r2, ~x2, w2) .

(3.33)

Furthermore the orthogonality of the mode-functions (2.7) yields

Gn = G0
∆n,d(~x1, w1, ~x2, w2) . (3.34)

That is, the conformal boundary block is supposed to be equal to the AdSd bulk-to-bulk

propagator up to some normalization constant which we will determine shortly. The explicit

form of the AdSd bulk-to-bulk propagator in the conventions of [21] is

G0
∆n,d =

C∆n,d

2∆n(2∆n − (d− 1))
ξ∆n

2F1

(
∆n

2
,

∆n + 1

2
,∆n −

d− 1

2
+ 1, ξ2

)
(3.35)

with

C∆n,d =
Γ(∆n)

π(d−1)/2Γ(∆n − d−1
2 )

(3.36)

and ξ the chordal distance, which in the coordinates of (2.14) becomes

ξ =
2w1w2

w2
1 + w2

2 + (~x1 − ~x2)2
(3.37)

or in other words

ξ =
2

η + 2
=

−4/η

−4/η − 2
. (3.38)

Using a quadratic hypergeometric identity14 we can also write this as

G0
∆n,d =

C∆n,d

4∆n(2∆n − (d− 1))

(η
4

)−∆n

2F1

(
∆n,∆n −

d

2
+ 1, 2∆n − d+ 2,−4

η

)
. (3.39)

Comparing with the expression for f∂ (3.8) we see that they indeed have exactly the same

functional form. This can also easily be verified by the Casimir method [6]; the form of

the block is entirely fixed by conformal invariance. To confirm that the Gn we obtained via

the weighted X-ray transform indeed contribute to the CFT correlation functions exactly

like a boundary block we need to plug in our representation of the propagator (3.32) into

the formula for the full 2-pt function (3.23). To do so we need the asymptotic behavior of

the mode functions ψn(r). According to the analysis in [4] at large r one finds

ψn = Cn(er)−∆ +O(e−(∆+2)r) (3.40)

that is the fall-off is universally determined by the mass M2
0 of the bulk scalar irrespective

of n. The numerical factors Cn are related to the BOPE coefficients as we will also make

explicit below. Correspondingly we find for the 2-pt function

〈O(~x1, w1)O(~x2, w2)〉 =
C(2∆− d)2

(2w1)∆(2w2)∆

∑
n

C2
n Gn . (3.41)

14
2F1(a, b, 2b, z) =

(
1− z

2

)−a
2F1(a/2, a/2 + 1/2, b+ 1/2, [z/(2− z)]2) ..
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Collecting all the numerical factors and comparing with the desired boundary channel

decomposition (3.3) one finds

(cOn )2 = (Cn)2C(2∆− d)2 C∆n,d

2∆n − (d− 1)

1

4∆n
. (3.42)

Recall that C was the prefactor of the action, Cn the coefficient governing and fall-off

of the mode functions, C∆n,d the standard normalization factors (3.36) appearing in the

bulk-to-bulk propagator and cOn the BOPE coefficient. The factor of (2∆− d)2 is inherited

from the relation between correlation function and bulk-to-bulk propagator (3.23).

The prescription of (3.41) with (3.42) provides a full non-perturbative decomposition

of the 2-pt function into conformal blocks valid in any bCFT with holographic dual. It

constitutes the main result of our work. If we want to describe the bCFT in terms of Witten

diagrams in which the effect of the defect itself is treated order by order in a diagrammatic

expansion, we need to look for a situation where the effects of the defect/interface can be

taken into account perturbatively so that a calculation of the wavefunctions order by order

in a diagrammatic expansion is meaningful to begin with. That is, we are interested in a

situation in which the metric and background fields obey

g = gAdSd+1
+ ε2 δg, X = ε δX(r) (3.43)

with ε a small parameter.15 The mode functions encode the bulk geometry via the analog

Schrödinger equation with potential (2.6) as emphasized in [15]. As long as the background

has the form of (3.43), the potential fixing the Hamiltonian of the analog Schrödinger

system takes the form

V = V0 + ε δV (3.44)

where V0 is the potential associated with an AdSd+1 geometry. Correspondingly we can

expand the energy and the eigenfunctions as

m2
n = (m0

n)2 + ε δm2
n and ψn = ψ0

n + ε δψn . (3.45)

We will study the eigenfunctions of V0 in all detail in the next section, for now it suffices

to say that, using our result from (3.32) the propagator,

G0
∆,d+1(r1, ~x1, w1, r2, ~x2, w2) =

∑
n

ψ0
n(r1)ψ0

n(r2)G0
∆n,d(~x1, w1, ~x2, w2). (3.46)

is just a non-standard representation of the usual AdSd+1 bulk-to-bulk propagator.

Now let us turn to the leading correction to the 2-pt function at small ε. Since ψn =

ψ0
n + ε δψn we also have Cn = C0

n + ε δCn. According to standard quantum mechanical

perturbation theory we can write

δm2
n

2
=

∫
dr e(d−2)Aψ0

n(r)δV (r)ψ0
n(r) (3.47)

15As long as the stress tensor is quadratic in X the correction to the metric is of order ε2. This is

generically the case but the analysis in this section can also easily be adapted to the case where this

assumption fails.
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and

δψn =
∑
m 6=n

γmnψ
0
m and δCn =

∑
m 6=n

γmnC
0
m (3.48)

with

γmn = 2

∫
dr

e(d−2)A(r)ψ0
m(r)δV (r)ψ0

n(r)

(m0
n)2 − (m0

m)2
. (3.49)

The leading correction to the 2-pt function hence becomes

δ〈O(~x1, w1)O(~x2, w2)〉

= ε
C(2∆− d)2

(2w1)∆(2w2)∆

(
2
∑
n,m 6=n

γmnC
0
mC

0
n Gn +

∑
n

δm2
n(C0

n)2G̃n

)
(3.50)

with

G̃n =
G0

∆0
n+εδ∆n,d

−G0
∆0
n,d

ε δm2
n

. (3.51)

Eq. (3.50) can be read as our result for the geodesic Witten diagram prescription for cal-

culating the contribution of a given boundary block to the scalar 2-pt function. Symmetry

enhanced geodesics are used to identify points on the AdSd slices associated to a given

boundary point. The first term corresponds to a diagram that represents the bulk-to-bulk

propagator on the slice weighted by
∑

m 6=n γmnC
0
mC

0
n. The second term is proportional to

the correction of the propagator on the slice due to the shifted mass. Diagrammatically

this could be represented by a mass insertion on the slice connected with two propagators,

even though it is not clear this representation would be very illuminating. Note that the

integrand of δm2
n and γmn is only non-vanishing in the region where the geometry differs

from AdSd+1 as depicted in figure 2(b).

The case of probe brane considered in [6] and depicted in figure 2(a) looks similar

but different in detail. In [6] the on-slice propagator is weighted by two bulk-to-boundary

propagators as well as two interaction vertices. We will now show that this result in

fact also naturally arises from our more general prescription. What is new in the probe

brane case is that we have in the holographic theory matter fields which are completely

localized on the brane. They are dual to defect localized operators in the CFT which do

not arise from restriction of an ambient space operator to the defect but instead arise from

matter that only lives on the defect. In terms of our bulk prescription such brane localized

matter fields correspond to special modes ψM of dimension ∆M which, before accounting

for the interactions, have no support near the boundary, meaning C0
M = 0. As such, they

make no contribution to the zeroth order 2-pt function. Since C0
M vanishes, we also have

δCn = γnMC
0
M = 0. The leading contribution of these extra field comes from the correction

to ψM (and hence CM ):

ψM = ψ0
M +

∑
n

ε γnMψ
0
n = ψ0

M + ε δψM . (3.52)

ψ0
M has no support near r →∞ and so does not contributed to correlation functions. The

leading contribution of this mode to the 2-pt function hence is

δ〈O(~x1, w1)O(~x2, w2)〉 = ε2 C(2∆− d)2

(2w1)∆(2w2)∆
(δCM )2 GM . (3.53)
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This result appears already much closer to the answer quoted in [6] in that it is order ε2,

that is it involves two coupling insertions, and is proportional to the propagator of a brane

localized field which did not contribute to the zeroth order answer. In [6] this propagator

was decorated with two bulk-to-boundary propagators of the bulk field dual to the operator

of dimension ∆. These bulk-to-boundary propagators connected the boundary operator

insertion point with coordinates (~x,w) to the bulk point (r = 0, ~x, w) to which it is tied

via a symmetry enhanced geodesic. For this special case the bulk-to-boundary propagators

simply amount to inserting16 the factors of (2w1)∆ and (2w2)∆ which arise automatically

in our answer (3.53). So our answer is indeed completely equivalent to the one found in [6].

3.2.1 An explicit example: the holographic no-braner

The simplest theory to test our decomposition (3.41) on is the holographic no-braner. That

is, as described in subsection 3.1.2, we take our field theory to be a field theory without

boundary with the plane at w = 0 treated as a defect. In this case the BOPE simply

becomes a Taylor series. It was already found in [4] that this seemingly trivial example

appears actually quite non-trivial from the point of view of the BOPE. Here we will see that

also from the point of view of the conformal block expansion we require some seemingly

miraculous cancellations.

Let us start from the field theory point of view. Consider an operator O of dimension

∆ in a d dimensional CFT without any brane, boundary or defect. In this case, the full

SO(d, 2) conformal group demands that

〈O(~x1, w1)O(~x2, w2)〉 =
N

[(~x1 − ~x2)2 + (w1 − w2)2]∆
. (3.55)

Here N is an overall normalization constant which could be chosen to be 1. Comparing

this with the form (3.2) of the 2-pt function in a bCFT we see that this corresponds to

fno-brane(η) = N
(η

4

)−∆
. (3.56)

This point is obvious from the ambient channel decomposition of the 2-pt function in (3.10).

In the “no-braner” theory only the identity operator has a non-trivial 1-pt function and

so this is the only block that contributes. From the boundary channel point of view,

we however have an infinite tower of boundary operators with dimension ∆ + n for n =

0, 1, 2, . . . contributing to the 2-pt function. The fact that O doesn’t have a vev means there

is no contribution from the identity operator in the boundary channel. The coefficients cOn
in the decomposition (3.3) have to conspire in such a way that the contribution of all the

blocks sums up to the simple expression in (3.56). In the special case of a free no-brane

16The bulk to boundary propagator on AdSd+1 in the standard Poincaré coordinates with ds2 =

W−2(ηMNdXMdXN ) is proportional to W∆/(W 2 + ( ~X1 − ~X2)2)∆. We can change variables to r, w, ~x

by setting

cosh(r)w−1 = W−1, w tanh(r) = Xd−1, ~x = ~X . (3.54)

With this the boundary point (w, ~x) lives at (Xd−1 = w, ~X = ~x) where as the bulk point (r = 0, w, ~x) at

(W = w,Xd−1 = 0, ~x). The bulk-to-boundary propagator connecting the two indeed just gives a factor

of (2w)−∆.

– 17 –



J
H
E
P
0
9
(
2
0
1
7
)
1
2
1

theory we saw that only two boundary operators contributed, but for a general bCFT (in

particular one with a holographic dual) we genuinely need an infinite tower to sum up into

the simple power law we are looking for.

This simple example can then be seen as one explicit solution to the conformal bound-

ary bootstrap where an infinite number of boundary blocks reproduces the ambient channel

decomposition in which only the identity contributes:

N
(η

4

)−∆
=
∞∑
n=0

(cOn )2f∂,n (3.57)

with f∂,n given by (3.8) with dimension ∆n = ∆ + n. This requires a rather involved

identity of hypergeometric functions and provides a non-trivial check for the holographic

calculation of the coefficients in (3.42). Below we will prove the identity for the special

case that d = ∆ = 4, but we expect (3.57) to hold for general d and ∆.17

The dynamics of a holographic bCFT is encoded in the bulk geometry via the warp-

factor eA as well as the non-trivial background fields X(r). As emphasized above, the only

place this data enters into the BOPE coefficients in (3.42) is via the Cn, that is via the

asymptotic fall-off of the mode functions. For the no-brane theory, the geometry is AdSd+1,

which means eA = cosh(r), and all other background fields are turned off. In this case the

mode equation (2.5) can be solved analytically [7, 24]. For d = ∆ = 4 one finds

ψn ∼ (cosh−4 r) 2F1

(
5

2
+
n

2
,−n

2
, 3, cosh−2 r

)
. (3.58)

The overall prefactor can be determined by requiring the orthogonality condition (2.7).

The asymptotic fall-off can now simply be read off and one finds18 [4]

(Cn)2 = 2
(2n+ 5)(n+ 4)!

n!
. (3.59)

Collecting all the prefactors in (3.42) and grouping all n-independent coefficients into an

overall constant α̃ we find

(cOn )2 = α̃
(2n+ 5)(n+ 4)!

n!

Γ(n+ 4)

Γ(n+ 5
2)

1

(2n+ 5)4n
. (3.60)

We are hence tasked to calculate the sum (using z = −4/η for simplicity)

f

(
−4

z

)
= α̃

∞∑
n=0

(2n+ 5)(n+ 4)!

n!

Γ(n+ 4)

Γ(n+ 5
2)

(−z)n+4

(2n+ 5)4n
2F1(n+ 4, n+ 3, 2n+ 6, z) . (3.61)

The claim is that this has to reproduce the simple power law from (3.56). We are not aware

of any known sum formula for hypergeometric functions of this kind, but it is actually quite

17The identity (3.57) is a special case of eq. (A.7b) in [22]. If one inserts h = d/2, `1 = `2 = −∆ and

ρ = η/(η + 4) into eq. (A.7b) in [22], one will obtain (3.57). Closely related identities have also been used

in [23]. We would like to thank Christopher Herzog for pointing out [22, 23] to us.
18Ref. [4] chose to work with un-normalized wavefunctions and an n-independent fall-off Cn. In this case

the non-trivial coefficient was obtained from the norm C−2
n ∼

∫
dr e2Aψ2

n.
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straight forward to show that this is indeed the case. We start by using an integral definition

for the hypergeometric function19 to write

(−z)n+4
2F1(n+4, n+3, 2n+6, z) =

Γ(2n+ 6)

Γ(n+ 3)2
z2

∫ 1

0
dt

(
z
t(t− 1)

1− zt

)n+2 1

(1− zt)2
. (3.62)

This allows us to write (using z = −4/η)

f(z) = α̃z2

∫ 1

0
dt

1

(1− zt)2

[∑
n

βn

(
z
t(t− 1)

1− zt

)n+2
]

(3.63)

where the coefficients βn are given by20

βn = (2n+ 5)(n+ 4)(n+ 3)2(n+ 2)(n+ 1) . (3.64)

Now the sum over n is straightforward to do and so is the subsequent integral over t. We

find, as hoped for,

f(η) = 12α̃

(
4

η

)4

(3.65)

in perfect agreement with (3.56).

3.3 Ambient channel

The boundary channel expansion relied heavily on a new feature of bCFTs: the BOPE.

In contrast, the ambient channel expansion uses the standard OPE for operators. The

defect only makes its presence known via allowing non-vanishing 1-pt functions for scalar

operators. Correspondingly the structure of the ambient channel expansion closely follows

the pattern in the theory without defects [2]. First note that we can always think of the

non-trivial metric (1.1) in the framework of being AdSd+1 plus deformations, as formally

displayed in (3.43) with ε not necessarily small. The simple Witten diagram for the full

2-pt function of figure 1 can be thought of as an infinite sum of Witten diagrams in AdSd+1

with δg and δX insertions. A generic contribution is displayed in figure 3.

For any expansion in terms of Witten diagrams to make sense, we need to focus on

the case of small ε. In this case we consider diagrams in pure AdSd+1 and treat the

deviations of the warpfactor from the eA = cosh(r) form as well as all matter fields with

non-trivial profile X(r) as extra sources. We can derive the ambient channel expansion

from the identity

G∆,d+1(X,Z) =

∫
dd+1Y ′

√
−g G∆,d+1(X,Y ′)[�g −M2]G∆,d+1(Y ′, Z) . (3.66)

19The general expression is

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt tb−1(1− t)c−b−1(1− zt)−a .

.
20We can simplify the product of Gamma functions by using the Legendre Duplication formula

Γ(2z) =
22z−1

π1/2
Γ(z)Γ(z + 1/2)

on Γ(2n+ 6).
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Figure 3. Generic contribution to the full 2-pt function.

Here X and Z stand for bulk points (r1, ~x1, w1) and (r2, ~x2, w2) respectively. Y ′ is a bulk

point and integration region for Y ′ is the whole of AdSd+1 spacetime. �g denotes the

Laplacian at Y ′. Expanding the identity around the background and taking the r1,2 →∞
limit, we obtain

δ〈O(~x1, w1)O(~x2, w2)〉

= 2Cε

∫
dd+1Y ′

√
−g K0

∆,d+1(Y ′, ~x1, w1)K0
∆,d+1(Y ′, ~x2, w2) e−2AδV (r′) (3.67)

where we used δ[�g −M2] = −2ε e−2AδV (r′). Here, as before, the 0 superscript indicates

that these quantities take their un-deformed AdSd+1 values. The two bulk-to-boundary

propagators can be decomposed as [2]

K0
∆,d+1(~x1, w1, Y

′)K0
∆,d+1(Y ′, ~x2, w2)

=
∑
N

bN

∫
γ̃0

dλK0
∆,d+1(~x1, w1, Y (λ))K0

∆,d+1(Y (λ), ~x2, w2)G0
∆N ,d+1(Y (λ), Y ′)

(3.68)

with

bN =
2Γ(∆N )

Γ(∆N/2)2

(−1)N

N !

[(∆)N ]2

(2∆ +N − d/2)N
and ∆N = 2∆ + 2N .

Here (x)n = Γ(x + n)/Γ(x) represents the Pochhammer symbol. The geodesic γ̃0

parametrized by λ is the usual AdSd+1 geodesic connecting the boundary points (~x1, w1)

and (~x2, w2). Plugging this decomposition into (3.67), we obtain conformal block expan-

sions of the ambient channel,

δ〈O(~x1, w1)O(~x2, w2)〉

= 2Cε
∑
N

bN

∫
γ̃0

dλ

∫
dd+1Y ′

√
−g K0

∆,d+1(Y (λ), ~x1, w1)K0
∆,d+1(Y (λ), ~x2, w2)

×G0
∆N ,d+1(Y (λ), Y ′) e−2AδV (r′) . (3.69)

This shows that there is basically no difference between a probe brane setup (in which case

the sources are localized at a single locus r = r∗ as depicted in figure 4(a)) and the generic
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Y

Y’

(a) Probe brane ambient channel.

Y

Y’

(b) Generic iCFT ambient channel.

Figure 4. Ambient Channel Geodesic Witten diagrams.

holographic bCFT geometry of (1.1) (in which case the sources have support over some

region in r as depicted in figure 4(b)). Note that this integral only involves the uncorrected

AdSd+1 propagators.

The proof in [6] that this is indeed an eigenfunction of the conformal Casimir with

the right boundary conditions and hence corresponds to a contribution of a single ambi-

ent channel block only relied on the properties of the geodesic γ̃0 and the bulk-to-bulk

propagator G0
∆,d+1. It applies immediately to our case as well.

The one interesting upshot of this analysis is that to leading order the only aspect of the

bulk geometry that affects the 2-pt function of two scalar operator O are the bulk scalars

X(r) with non-trivial profile. This is due to the fact that only scalar blocks contribute

in the 2-pt function of ambient space scalars. This follows immediately from angular

momentum conservation.

3.4 Equivalence of two different decompositions

In subsections 3.2 and 3.3 we decomposed 2-pt functions in two different ways; the bound-

ary channel (3.50) and the ambient channel (3.69). These decompositions should be the

same. In this subsection we give an explicit proof of this equivalence. At leading order we

confirmed this in subsection 3.2.1 when discussing the no-brane case.

Our mode decomposition of the AdSd+1 propagator (3.46) implies a similar represen-

tation for the bulk-to-boundary propagator via the limiting procedure of (3.22). Using this

representation for the bulk-to-boundary propagators in our ambient channel result (3.67),

we get

δ〈O(~x1, w1)O(~x2, w2)〉 =
2Cε(2∆− d)2

(2w1)∆(2w2)∆

∫
dr′ e(d−2)A

∫
d~x′dw′

√
−g0

×
∑
n,m

C0
nC

0
mψ

0
n(r′)ψ0

m(r′)δV (r′)G0
∆0
n,d

(~x1, w1, ~x
′, w′)G0

∆0
m,d

(~x′, w′, ~x2, w2) (3.70)

Furthermore, using the usual expression for first order perturbation theory for the analog
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Schrödinger equation

2

∫
dr′ e(d−2)Aψ0

n(r′)ψ0
m(r′)δV (r′) =

δm
2
n for n = m

((m0
n)2 − (m0

m)2)γmn for n 6= m
(3.71)

and a slightly reorganized equation of motion for the propagator

(m0
n)2G0

∆0
n,d

(~x1, w1, ~x
′, w′) = ∂2

dG
0
∆0
n,d

(~x1, w1, ~x
′, w′)− 1√

−g0
δ(~x1 − ~x′)δ(w1 − w′) (3.72)

we obtain

δ〈O(~x1, w1)O(~x2, w2)〉 = ε
C(2∆− d)2

(2w1)∆(2w2)∆

2
∑
n,m 6=n

γmnC
0
nC

0
m Gn (3.73)

+
∑
n

(C0
n)2δm2

n

∫
d~x′dw′

√
−g0G0

∆0
n,d

(~x1, w1, ~x
′, w′)G0

∆0
n,d

(~x′, w′, ~x2, w2)

)
.

The first term is perfect agreement with that of the leading correction of boundary chan-

nel (3.50). To show the equivalence of the second term, some further computations are

required. Using (3.31) and the completeness relation of φd,n,k, we obtain21

ε δm2
n

∫
d~x′dw′

√
−g0G0

∆0
n,d

(~x1, w1, ~x
′, w′)G0

∆0
n,d

(~x′, w′, ~x2, w2)

= ε δm2
n

∫
ddy′

√
−g0

∫
dk

φd,n,k(y1)φd,n,k(y
′)

En,k

∫
d`
φd,n,`(y

′)φd,n,`(y2)

En,`

=

∫
dk

φd,n,k(y1)φd,n,k(y2)

En,k
· ε δm

2
n

En,k

=

∫
dk

φd,n,k(y1)φd,n,k(y2)

En,k − ε δm2
n

−
∫

dk
φd,n,k(y1)φd,n,k(y2)

En,k

= G0
∆0
n+εδ∆n,d

(~x1, w1, ~x2, w2)−G0
∆0
n,d

(~x1, w1, ~x2, w2) . (3.74)

This computation shows that the second terms are also same and we proved that the

boundary channel (3.50) and the ambient channel (3.69) are the same exactly. In this

proof we do not assume any specific form for δV (r). We can apply this proof to any case.

4 Example: the Janus iCFT

In this section, we consider the Janus iCFT as an example. The coupling constant of the

Janus iCFT jumps across the interface. From the bulk point of view, this is because the

dilaton field is not constant and has a non-trivial profile. Regarding the dilaton as a source,

we consider the 2-pt function of operators dual to axions.

21In terms of diagrams what we are saying is that the change of the AdSd propagator of a field with shifted

mass (m0
n)2 + ε δm2

n can be obtained from a Witten diagram with an interaction vertex δm2
n, integrated

over all of AdSd, connecting two propagators associated to mass (m0
n)2.
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The bulk dual of the Janus iCFT is a solution of type IIB supergravity. The dilaton

field φ of Janus has a non-trivial profile and depends only on the radial coordinate. The

dilaton satisfies the equation of motion,

∂M (
√
−ggMN∂Nφ) = 0 . (4.1)

For a dilaton with only dependence on the radial coordinate r this implies

∂rφ = ε e−dA

where ε an integration constant and will be assumed to be small when we consider pertur-

bation theory. ε is proportional to the jump in coupling constant in the dual iCFT. The

corresponding correction to the metric is of order ε2 and so, as in (3.43), can be neglected

to obtain the leading order correction to the 2-pt function.

The action of type IIB supergravity in the Einstein frame contains a coupling term

between the axion field a and the dilaton field,

S = . . .+
1

2κ2

∫
d10x
√
−g e−2φgMN∂Ma ∂Na . (4.2)

Since the dilaton field is not constant, the 2-pt function of the dimension 4 operator TrF∧F
dual to the axion field will be modified by the dilaton field. Plugging a mode expansion of

the axion field as in (2.3)

a =
∑
n

ψn(r)φd,n(y)

into the equation of motion of the axion

1√
−g

∂M (
√
−ggMNe−2φ∂Na) =

(
e−2φD2

r + e−2A−2φ∂2
d + ∂re

−2φ · ∂r
)
a = 0 , (4.3)

it reduces to (
e−2φD2

r + e−2A−2φm2
n + ∂re

−2φ · ∂r
)
a = 0 .

Naively, if we expand the dilaton term in the above equation in ε and regard the leading

term of order ε as δV , we may obtain leading correction terms to modefunctions and energy.

But the problem is not so simple because this naive potential δV contains a first derivative

term about r and the dilaton term appears in front of the energy term. Thus, a more

careful treatment is required to discuss perturbation theory in this case.

As noted in the previous footnote 5, to use standard quantum mechanical perturbation

results we should first change the variable from r to z with dr = eAdz. Furthermore, we

rescale the field as ψn = e−(d−1)A/2+φΨn to remove the first derivative term. Then the

problem reduces to standard quantum mechanics with an energy En = m2
n/2, a kinetic

term −(1/2)d2/dz2, a potential

V (z) =
1

2

[(
d− 1

2

dA

dz
− dφ

dz

)2

+
d− 1

2

d2A

dz2
− d2φ

dz2
+M2e2A+2φ

]
(4.4)
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(where we introduce a mass term though this term does not appear in the equation of

motion of the axion) and a standard normalization22∫ π/2

−π/2
dzΨ0

m(z)Ψ0
n(z) = δmn . (4.5)

Let’s return to the discussion of perturbation due to the dilaton profile. Expanding

the potential to leading order in ε, we obtain

ε δV (z) = −1

2

[
(d− 1)∂zA∂zφ+ ∂2

zφ
]

=
ε

2
sin z cosd−1 z . (4.6)

Note that δV (z) in Janus is an odd function and hence the leading correction to the

eigenvalue vanishes. Finally we obtain

γmn = 2

∫ π/2

−π/2
dz

Ψ0
m(z)δV (z)Ψ0

n(z)

(m0
n)2 − (m0

m)2
. (4.7)

The modefunctions are summarized in appendix A. If we introduce a new variable x = sin z,

the integrand reduces to products of x, 1−x2 and associated Legendre polynomials. Using

the following two relations

xPµν (x) =
(ν − µ+ 1)Pµν+1(x) + (ν + µ)Pµν−1(x)

2ν + 1
, (4.8)√

1− x2Pµν (x) =
Pµ+1
ν+1 (x)− Pµ+1

ν−1 (x)

2ν + 1
(4.9)

iteratively, the integral finally reduces to sum of products of two associated Legendre poly-

nomials. When ∆n − d/2 and ∆− d/2 are both integers, associated Legendre polynomials

satisfy the orthogonality relation,

∫ 1

−1
dxPmn (x)Pm` (x) =


2(n+m)!

(n−m)!(2n+ 1)
δn` for m ≤ n

0 for m > n

(4.10)

and we can compute γmn explicitly. The result are however complicated and not very

illuminating, so we do not give the explicit expressions beyond (4.7).

5 Conclusion and discussion

In this paper we discussed the conformal block expansion of 2-pt functions in general

holographic bCFTs.

In section 3.2, we provided the decomposition of the 2-pt function in the boundary

channel. This was accomplished by decomposing the bulk-to-bulk propagator on the full

22When the dilaton term is in front of the kinetic term, the original orthogonality relation is∫
dr e(d−2)A−2φψmψn = δmn .
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d + 1 dimensional geometry into the radial direction and AdSd space. It was shown that

conformal blocks in the boundary channel are given by bulk-to-bulk propagators on the

AdSd slice. We also obtained the leading correction of 2-pt functions by the perturbation

around pure AdS and background fields.

We also confirmed that our conformal block expansion works in the case without

boundary. The summation of conformal blocks can be written as a 1-pt function of just

the identity operator. This is an expected result because all 1-pt functions except that

of the identity operator vanish without boundary, but reproducing this in the boundary

channel expansion proved to be surprisingly tedious.

In section 3.3, we discussed the ambient channel. We provided the leading correction

due to conformal blocks in the ambient channel from first principles. The contribution of

a given conformal block contains products of two bulk-to-boundary propagators and one

bulk-to-bulk propagator. They intersect at points on the geodesic as in the probe brane

case [6]. The remaining point connected to its bulk-to-bulk propagator couples to a source

term. When the source term is a delta function in the radial direction, our decomposition

reduces to that of [6]. We also proved the equivalence between the two decompositions,

boundary channel and ambient channel, in section 3.4.

In section 4, we considered d dimensional Janus solutions as an example. Since the

d = 4 Janus solutions is constructed from type IIB supergravity, the dual CFT is known

explicitly. So, the Janus geometry is a good example. In Janus, the source is an odd

function with respect to the radial coordinate r. Hence, the conformal dimension is not

affected by the source and only γmn is non-trivial. We explicitly computed the potential

and obtained γmn as integrals over Legendre polynomials . Our prescription can be easily

generalized to other cases.

We would like to comment on the relation between our paper and [6]. Ref. [6] only

addressed a situation where a defect is a probe brane at r = 0. Our paper considers more

general boundary or defect CFTs. In addition, we were able to derive our prescription

and so, in principle, can easily generalize it to higher orders. Most notably, our boundary

channel decomposition into blocks, (3.41) and (3.42), is exact. As we saw sections 3.2

and 3.3, our results (3.50) and (3.69) include those in [6].
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A AdSd+1 Modefunctions

In this appendix, we summarize eigenfunctions of the differential operator D2
r + e−2Am2

n−
M2 when eA = cosh(r), that is for unperturbed AdSd+1, and derive some useful formulas

among them. We use m2
n = ∆n(∆n − (d− 1)) and M2 = ∆(∆− d) to label the eigenvalue

of the mode and the bulk mass in terms of the operator dimension appearing in the BOPE
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and the dimension of the ambient space operator. The eigenfunctions are given by

ψn(r) =
Cn

2∆ cosh∆ r
2F1

(
∆−∆n

2
,

∆ + ∆n − d+ 1

2
,∆− d

2
+ 1,

1

cosh2 r

)
(A.1)

=
CnΓ(∆− d/2 + 1)

2d/2 cosh
d
2 r

P
d
2
−∆

−1+ d
2
−∆n

(tanh r) (A.2)

where Cn is normalization constant. These two different expressions can be shown to be

the same by using the following identities,

2F1

(
2α, 2β, α+ β +

1

2
, z

)
= 2F1

(
α, β, α+ β +

1

2
, 4z(1− z)

)
(A.3)

and

2F1(α, β, γ, z) = (1− z)γ−α−β2F1(γ − α, γ − β, γ, z) . (A.4)

From the boundary condition that the eigenfunctions are normalizable at large r, ∆n are

determined as

∆n = ∆ + n . (A.5)

This is the expected relation given the interpretation of the BOPE as a Taylor expansion

in the no-brane case.

The normalization constant can be determined explicitly. Introducing a new variable

x = 1/ cosh2 r and using a functional identity

2F1

(
a, b, a+ b+

1

2
, z

)2

= 3F2

(
2a, 2b, a+ b, 2a+ 2b, a+ b+

1

2
, z

)
, (A.6)

we obtain

1

C2
n

=

∫ 1

0
dxxa+b−1/2(1− x)−1/2

3F2

(
2a, 2b, a+ b, 2a+ 2b, a+ b+

1

2
, x

)
=

√
πΓ(a+ b+ 1/2)

22∆Γ(a+ b+ 1)
3F2 (2a, 2b, a+ b, a+ b+ 1, 2a+ 2b, 1) (A.7)

where a = (∆−∆n)/2 = −n/2 and b = (∆ + ∆n− d+ 1)/2 are introduced to simplify the

expressions. Furthermore, the hypergeometric 3F2 at x = 1 is evaluated as

3F2(−n, α, β, γ, 1 + α+ β − γ − n, 1) =
(γ − α)n(γ − β)n
(γ)n(γ − α− β)n

(A.8)

for n ∈ N. After some computations, the normalization constant is analytically deter-

mined as

C2
n =

2d−1Γ(∆n + ∆− d+ 1) (2∆n − d+ 1)

n! Γ(∆− d/2 + 1)2
. (A.9)
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