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Abstract: We study thermalization in the holographic (1 + 1)-dimensional CFT after

simultaneous generation of two high-energy excitations in the antipodal points on the

circle. The holographic picture of such quantum quench is the creation of BTZ black

hole from a collision of two massless particles. We perform holographic computation of

entanglement entropy and mutual information in the boundary theory and analyze their

evolution with time. We show that equilibration of the entanglement in the regions which

contained one of the initial excitations is generally similar to that in other holographic

quench models, but with some important distinctions. We observe that entanglement

propagates along a sharp effective light cone from the points of initial excitations on the

boundary. The characteristics of entanglement propagation in the global quench models

such as entanglement velocity and the light cone velocity also have a meaning in the

bilocal quench scenario. We also observe the loss of memory about the initial state during

the equilibration process. We find that the memory loss reflects on the time behavior of

the entanglement similarly to the global quench case, and it is related to the universal

linear growth of entanglement, which comes from the interior of the forming black hole.

We also analyze general two-point correlation functions in the framework of the geodesic

approximation, focusing on the study of the late time behavior.
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1 Introduction

The description of thermalization and equilibration in closed quantum systems has been a

long-standing theoretical problem. An interesting setting to study non-equilibrium physics

in quantum systems is a quantum quench, when one prepares the ground state of a given

Hamiltonian H1 and then evolves it unitarily under the action of a different Hamiltonian

H2 6= H1. The system is going to evolve to some pure state |ψ(t)〉 after time t > 0. The

system is said to thermalize if for any subsystem A the density matrix ρA = TrĀ|ψ(t)〉〈ψ(t)|
becomes equal to the thermal density matrix with a certain non-zero temperature. The

entanglement entropy of the subsystem S(A) = −TrA ρA log ρA and related quantities are

very useful tools to probe subsystems which relax to thermal equilibrium as the full system

evolves in time after the quantum quench.

The AdS/CFT-correpsondence and holography [1, 2] have given new tools for studying

physics out of equilibrium in strongly coupled QFT. According to the holographic dictio-

nary, thermal state in the boundary theory corresponds to a black hole in the bulk. The

problem of studying the behavior of observables during thermalization after a quench in

strongly-coupled quantum field theory can be treated in the leading order of the semiclas-

sical approximation using non-stationary asymptotically AdS classical gravity solutions

which describe formation of a black hole in the bulk. In holographic context, the entan-

glement entropy then can be calculated according to the Ryu-Takayanagi prescription [3]

generalized to the general time-dependent case by Hubeny, Rangamani and Takayanagi [4],

as area of the minimal surface anchored on the boundary region where the subsystem under

the study is located. The most well studied holographic model of thermalization in CFT

is the Vaidya dust shell collapse [5–19]. This gravity dual models the global quench in

CFT [20, 21], when in the initial time moment a spatially uniform distribution of energy

is injected into the system. Another known holographic model of global quantum quench

is the end of world brane model [11]. The entanglement dynamics of the global quench

in CFT were found to share many similarities between these two different models [11, 17],

hinting at the possibility of some universality of entanglement spreading at least in global

quench situations.

Another type of quantum quenches is the local quench [21–32]. Such quenches have

been studied holographically as perturbations of the zero temperature vacuum [22, 24]

as well as of thermal equilibrium state [26, 27, 29–33]. In the present paper we study the

thermalization in holographic (1+1)-dimensional compact CFT after a particular variation

of a local quantum quench. This quench protocol, which we call the bilocal quench, is

realized by simultaneously creating two high-energy excitations in the antipodal points on

the cylinder. In the bulk the dynamics after this quench are described by the collision

of two massless particles in the AdS3 spacetime which leads to the formation of a static

massive particle or a BTZ black hole [34]. We focus on the black hole formation case, which

describes thermalization in the boundary theory after the quench.

The main feature of this model, which is not prominent in the Vaidya global quench

model of thermalization, is the fact that the AdS3 spacetime with two colliding particles

which create a black hole is explicitly described as a topological quotient space of AdS3 by

– 2 –
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a certain topological identification [34–37]. This simplifies dealing with boundary physical

quantities which are expressed geometrically in the bulk as e.g. geodesic lengths by relating

all geodesics in the quotient to certain auxiliary geodesics in the global AdS3 spacetime.

The bilocal quench setup is also interesting because the thermalization of a closed system

after introduction of two high-energy local excitations is an attractive toy model for de-

scription of thermalization in systems such as quark-gluon plasma after a collision of two

heavy ions [38].

Our main object of study in the present paper is behavior of the entanglement en-

tropy of subsystems in the boundary CFT in the non-equilibrium regime after the quench

described above. We perform the holographic computation of the entanglement entropy

and mutual information in different subsystems after the bilocal quench, and we analyze

the time dependence and spreading of the entanglement. We make a direct comparison to

the global quench thermalization models, in particular the model based on the null dust

collapse in the Vaidya-AdS spacetime. We find that because of lack of translational invari-

ance in the initial state, the equilibration picture globally is substantially different from

the picture given by the global quench. Specifically, subsystems which do not contain one

of the initial excitations inside, exhibit thermal behavior of the holographic entanglement

entropy right from the beginning of the time evolution. For subsystems, which do con-

tain one of the excitations, however, the entanglement entropy demonstrates non-trivial

non-equilibrium dynamics in many ways similar to the global quench situation, but with

some substantial differences. Since the bulk spacetime is explicitly represented as a locally

AdS3 space with a topological identification, construction of HRT geodesics which calculate

entanglement entropy becomes a purely geometrical problem. We discuss it in detail and

make some observations about the loss of memory about the initial state upon equilibration

of subsystems. We also study the leading behavior of two-point correlation functions in

the framework of the geodesic approximation [35], including the long-time behavior.

The paper is organized as follows. In the section 2 we first set up our conventions

and introduce the basic objects which are necessary for description of the bulk holographic

dual to the thermalization after the bilocal quench. Then we describe the geometry of

the AdS3 spacetime with two colliding massless point particles which create a BTZ black

hole and explain how it works as a bulk holographic dual. In the section 3 we study

the boundary-to-boundary geodesics which are necessary for holographic computations in

this bulk spacetime. We classify them, calculate the geodesic lengths and prove several

statements about their behavior with respect to topological identifications generated by

colliding particles. In the section 4 we use the results of the section 3 applied to the bulk

spacetime described in the section 2.2 in BTZ coordinate patch to perform the holographic

calculation of the entanglement entropy and mutual information and study the time de-

pendence of entanglement in detail. In the section 5 we continue the holographic study

of thermalization by analyzing the two-point correlation functions in the framework of the

geodesic approximation. In the section 6 we recollect the results of the work and discuss

their implications and future directions.

– 3 –
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2 Holographic setup

2.1 Geometry of AdS3 and global defects

2.1.1 The AdS3 spacetime

We start the discussion by establishing the conventions and describing the basic objects

which will help us then construct the holographic dual for bilocal quench in the boundary.

On the gravity side, we deal with the pure AdS3 spacetime, as well as with asymptotically

locally AdS3 solutions of 3D Einstein equations. Because 3D gravity is topological, solutions

of gravitational equations with negative cosmological constant are global defects in AdS3.

More precisely [39], they have the general form of AdS’3/Γ, where Γ - a discrete subgroup

of the isometry group SL(2,R)2, and AdS’3 is the subset of AdS3 where Γ acts discretely.

The objects in AdS3 in which we are interested, namely point particles and black holes, are

particular examples of such solutions. The AdS3 spacetime has a simple geometry, which

allows to use a unified framework to describe global defects in AdS3.

We begin with the description of pure AdS3 space as a hypersurface in the 4-

dimensional flat spacetime R2,2. It is given by the quadratic equation (we set the AdS

radius to 1):

− x2
0 − x2

3 + x2
1 + x2

2 = −1. (2.1)

This quadric surface can be parametrized by coordinates, to which we will refer as global

coordinates on AdS3:

x0 = coshχ sin τ , (2.2)

x1 = sinhχ cosφ ,

x2 = sinhχ sinφ ,

x3 = coshχ cos τ .

The induced metric on the AdS3 is given by

ds2 = −cosh2χdτ2 + dχ2 + sinh2χdφ2. (2.3)

Here χ ∈ [0, +∞) is the holographic coordinate, and other coordinates have ranges φ ∈
[0, 2π) and τ ∈ [−π, π]. The conformal boundary of the AdS3 spacetime is located at

χ→∞. The spacetime can be visually represented as a cylinder together with its interior,

where χ plays the role of a radial coordinate, τ is a coordinate along the vertical axis of

the cylinder and φ is the angular coordinate. The global coordinates are most suitable for

description of global defects in the bulk, since they keep the complete information about

the topological identification associated with the given defect.

Another coordinate system which we will use is obtained by parametrization:

x0 = − r
R

coshR ϕ ,

x1 =

√
r2

R2
− 1 coshR t ,

x2 =
r

R
sinhR ϕ ,

x3 =

√
r2

R2
− 1 sinhR t ; (2.4)
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where t, ϕ ∈ R are the coordinates on the boundary, and r ∈ (R,+∞) is the radial

coordinate. There is a coordinate singularity at r = R > 0. The metric in these coordinates

has the form

ds2 = −(r2 −R2) dt2 +
dr2

r2 −R2
+ r2dϕ2 , (2.5)

We will refer to these coordinates as BTZ coordinates. In the AdS3 spacetime, this patch

covers only a part of the global AdS3. Note that the choice of the BTZ coordinate system

is ambiguous. This ambiguity is the choice of the part of the global AdS3 spacetime to

cover with a BTZ patch. Namely, different choices of the patch can be implemented by

changing the signs in front of the square root in the parametrization formulas.

As we will see, the BTZ coordinates are most natural for the holographic description

of thermalization in CFT on a cylinder. However, description of topological defects in

AdS3 is more convenient in the global coordinates. Hence we will need the transformation

formulas from the global coordinates to BTZ patch. They are obtained using the embedding

coordinate parametrizations (2.2) and (2.4):

x0 = coshχ sin τ = − r
R

coshR ϕ

x2 = sinhχ sinφ =
r

R
sinhR ϕ

x3 = coshχ cos τ =

√
r2

R2
− 1 sinhR t

x1 = sinhχ cosφ =

√
r2

R2
− 1 coshR t , (2.6)

To deal with classical solutions, which are quotients of AdS3, it is most convenient to

use the algebraic representation of AdS3. The AdS3 spacetime can be described as the

SL(2,R) group manifold. We can treat points in AdS3 as matrices:

X = x31 +
∑

µ=0,1,2

γµx
µ =

(
x3 + x2 x0 + x1

x1 − x0 x3 − x2

)
; (2.7)

where the matrix basis is introduced

1 =

(
1 0

0 1

)
, γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
, (2.8)

In this notation the condition detX = 1 then gives the hypersurface equation (2.1).

The physical quantities on the boundary which we are interested in are calculated from

geodesics in the bulk. To study geodesics on quotients of AdS3, it is most convenient to

work in terms of matrix notations. The geodesics in AdS3 embedded into R(2,2) can be

described as solutions of the Lagrangian [40, 41]:

L =
1

2
ẋ2 + λ(x2 + 1) , (2.9)

where λ is a Lagrange multiplier. The geodesic length in AdS3 can be expressed in terms of

the scalar product in the embedding spacetime R(2,2). Suppose that x and y are two points

– 5 –
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in the embedding space, and we denote their respective matrices defined according to (2.7)

as X and Y . Then if points x and y belong to the AdS3 hyperboloid, i.e. detX = detY = 1,

then it is true that

ηMNx
MyN = −1

2
tr XY −1 = −1

2
tr X−1Y . (2.10)

The length of a spacelike geodesic between points x and y is expressed by formula

coshLspacelike(x, y) =
1

2
tr XY −1 ; (2.11)

and length of a timelike geodesic is given by the formula

cosLtimelike(x, y) =
1

2
tr XY −1 . (2.12)

The isometry group of AdS3 is the group SO(2, 2) ' SL(2,R) × SL(2,R), which acts

on matrix X as follows:

X → gXh−1 , g, h ∈ SL(2,R) ; (2.13)

This group has an PSL(2,R) = SL(2,R)/Z2 subgroup which corresponds to isometries

which leave the origin of AdS3 (which is represented by the unit matrix) fixed. It is

realized by choosing u = g−1 = h as an element of the SL(2,R) group up to an overall

sign. Then it can represent an isometry of AdS3 which preserves the origin by acting on

X via conjugation:

X → X∗ = u−1Xu , (2.14)

Point-like objects in AdS3 such as particles and black holes are obtained from empty AdS3

by taking a topological quotient. The identification is defined by the isometry u acting

on the SL(2,R) group manifold via conjugation (2.14). We will refer to the identification

isometry u as the holonomy of the topological defect, in agreement with the discussion

in [34]. Let us now proceed to concrete discussion of topological defects which we deal with

in the present investigation.

2.1.2 Massless point particles in AdS3

Our main ingredient for constructing the bulk spacetime is a couple of massless particles. A

point particle in (2+1)-dimensional gravity produces a defect, which holnomy is determined

by the momentum vector of the particle [42]. The most general form of a holonomy of a

point particle with momentum pµ is given by

u = u 1 + pµγµ ; (2.15)

The condition detu = 1 then means that

u2 − pµpµ = 1 ; (2.16)

In the present work we focus on the case of massless particles, which means that we have

– 6 –
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(a) (b)

Figure 1. (a) Cartoon of propagation of a massless particle in the AdS3 spacetime projected onto

synchronous time slices of the AdS3 cylinder in different moments of time. The particle moves from

left (right) to right (left), and the spacetime is obtained by cutting out the wedge behind (in front

of) the particle between the surfaces W±. (b) 3D plot of massless particle moving through the AdS3

spacetime in global coordinates. The intersection of surfaces W± is the worldline of the particle.

to set p2 = 0. Then from the equation above we have1 u = 1. Thus, the holonomy of a

massless particle is given by

umassless = 1 + pµγµ ; (2.17)

It produces an identification in AdS3, which glues together two surfaces W− and W+:

W+ = u−1W−u ; (2.18)

and these surfaces intersect along the worldline of the particle, see figure 1. The surfaces

W± intersect time slices of AdS3 along the equal-time geodesics which we denote as w± (see

figure 1(a)). Thus in the AdS3 spacetime the massless particle cuts out the wedge between

surfaces W− and W+. One can cut out the wedge either in front of the particle worldline,

or behind the worldline. Or, equivalently, one can think that on the figure 1 the particle

moves either from left to right, or from right to left. Sometimes we will call the region space

which is cut out by the identification, i.e. the complement of the fundamental domain to

the global AdS3, as the dead zone, and we call the boundary of the fundamental domain as

living space. The holonomy of a massless particle belongs to the parabolic conjugacy class,

since |tr u| = 2 in this case. The fixed point of a parabolic holonomy is on the boundary

of the H2 [43]. That means that a massless particle can actually reach the boundary of the

AdS3 spacetime, and the turning points of its worldline at τ = π
2 + πn are located there.

The motion of the particle is periodic with return points located at the boundary.

1The ambiguity of the sign of u here is the ambiguity of the overall sign of the holonomy, and thus can

be fixed arbitrarily.

– 7 –
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2.1.3 Maximally extended BTZ black hole

The bulk dual for the thermalization process in the CFT2 is the creation of the BTZ black

hole in the bulk. More specifically, in the present work we consider formation of the static

BTZ black hole from point particle collisions. The black hole formed from matter in a

dynamical process of some kind is dual to a pure state on the boundary, in contrast to the

eternal (maximally extended) black hole, which is dual to the mixed thermal state on the

boundary [44]. However, we will use the eternal black hole geometry as a reference point

for description of the black hole formed from particle collisions.

The maximally extended BTZ black hole in global coordinates is described as an

AdS3 space quotient by a hyperbolic SL(2,R) element. We focus on the static case. The

corresponding holonomy has the following form [34]:

uBTZ = −e−µγ1 = − coshµ1 + sinhµγ1 =

(
− coshµ sinhµ

sinhµ − coshµ

)
; (2.19)

Here µ > 0 is a parameter related to the mass of the black hole. This holonomy generates

an identification which identifies two surfaces V±:

V+ = u−1
BTZV−uBTZ ; (2.20)

In global coordinates these surfaces are defined by equations [34]:

V± : tanhχ sinφ = ∓ sin t tanhµ. (2.21)

These surfaces intersect AdS3 time slices along equal-time geodesics v±, as shown in figure 2.

The maximally extended BTZ spacetime is defined as the region of the AdS3 spacetime

between the surfaces V±. The part outside of this region is the dead zone which is cut out

from the spacetime. The surface V+ and V− do not intersect, except for τ = nπ, n ∈ Z,

where they intersect along the horizontal diameter of the time slice disc. The spacetime

is singular in these moments of time. The spacetime manifold as the region between the

two surfaces has two boundaries. Holographically this means that the maximally extended

BTZ black hole is dual to the thermofield double state on the boundary. The spacetime

has an event horizon, which consists of two surfaces described by the equation

cosφ tanhχ = cos τ . (2.22)

Spacetime splits into four regions, and for τ ∈ [−π, 0] has the same global causal structure

as the maximally extended AdS-Schwarzschild black hole, i.e. we have two external regions,

to the left and to the right of both horizons, which are causally completely disconnected.

At τ = −π we have the past singularity of the spacetime, and at τ = 0 we have the future

singularity. Each of these two regions can be covered by a BTZ coordinate patch, with

metric given by (2.5) with horizon located at R = µ
π . The action of the holonomy (2.19)

results in the identification ϕ ∼ ϕ+ 2π. The length of the horizon equals 2µ = 2πR. The

horizon radius is related to the mass of the black hole by the relation

M =
R2

8G
=

µ2

8π2G
, (2.23)

– 8 –
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(a) (b)

Figure 2. Maximally extended BTZ black hole in global coordinates. (a) Projection of surfaces

V± onto equal time slices in different moments of global time. The dashed lines are identified. (b)

3D plot of the BTZ black hole identification surfaces V± between τ = −π2 and τ = 0.

where G is three-dimensional Newton constant. The Hawking temperature of the black

hole which equals the temperature in the dual theory is given by

T =
R

2π
. (2.24)

2.2 Black hole creation from particle collisions in AdS3

Now let us discuss the picture of massless point particle collisions. We begin by setting

up the stage in global AdS3 as presented by Matschull in [34]. After that, we will make a

transition to the BTZ coordinate patch in a similar way to [36], which gives the natural

dual description of the thermalizing CFT on a cylinder. We will need both pictures for our

analysis, the first one containing all the data we need for our holographic computations,

and the second one for straightforward definition of holographic observables and temporal

evolution in the boundary theory after the quench.

2.2.1 Black hole creation in global coordinates

An AdS3 quotient spacetime contains a black hole if its total defect holonomy belongs to

the hyperbolic conjugacy class. i.e. that it coincides with the BTZ holonomy (2.19) up

to a coordinate transformation. The total holonomy of two colliding massless particles is

a product of two holonomies of each particle. This product holonomy is not neccessarily

hyperbolic, but it depends on the energies of the particles. The black hole creation threshold

is thus can be expressed [34] as the condition:

1

2
tr utotal =: − coshµ < 1 ; (2.25)

This translates into a lower bound of energy for colliding particles, which in itself produces

a lower bound for the energy of excitations in the bilocal quench which would thermalize

– 9 –
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the boundary CFT. Since we are interested in thernalization after the quench, we consider

only those particle collisions which create black holes. Thus the topological identification in

the spacetime is constructed in such a way that we have two singularities with holonomies

u1 and u2 corresponding to massless particles, and the total holonomy when circling around

both particles must equal the BTZ black hole holonomy (2.19). The resulting spacetime

can be obtained by making additional cutting and gluing in the maximally extended BTZ

black hole spacetime.

More specifically that means that we have to choose two holonomies for particles u1

and u2 such that their product would equal uBTZ. The choice of holonomy of a massless

particle is dictated by the choice of its momentum vector, according to (2.17). Suppose that

two massless particles start from points φ = θ and φ = 0 from the boundary at τ = −π
2 .

they move along the radial worldlines given by the equation

tanh
χ

2
= − tan

τ

2
; (2.26)

At the moment of global time τ = 0, particles meet each other at the origin χ = 0, and

the collision happens.

We can choose one holonomy, say u1, freely, and let the product constraint determine

the other one. Since we can multiply in two different orders, there will be two possible

choices for the holonomy of the second particle:2

u2+ = u−1
1 uBTZ , u2− = uBTZ u−1

1 ; (2.27)

From these equations, one can find the parameters of the particles (see [34] for more details).

We choose the momentum of the reference particle 1 such that it has the energy tan ε1 and

it moves along the radial direction, starting from the point φ = 0. The corresponding

holonomy, from (2.17), reads

u1 = 1 + tan ε1(γ0 − γ1) ; (2.28)

The second particle which starts from φ = θ will have the energy tan ε2. The equation (2.27)

then dictates that the particle 2 moves with along the radial geodesic with angle φ = ±θ,
where sin θ = tanhµ. It has the energy tan ε2 = coshµ coth µ

2 , and the first particle moves

along the geodesic has the energy tan ε1 = coth µ
2 . The last expression appears in many

formulas in this work, so we introduce the notation:

E := tan ε1 = coth
µ

2
. (2.29)

The resulting holonomy of the second particle reads

u2± = 1 + tan ε2(γ0 − cos θ γ1 ∓ sin θ γ2) ; (2.30)

Henceforth all parameters of the infalling particles are determined through the holonomy

from the black hole mass parameter µ. Let us now recollect the kinematic data of the

particles in the BTZ black hole creation process in global coordinates:

2Note that in [34] the numeration of particles is reversed.

– 10 –
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(a) (b)

(c) (d)

Figure 3. Collision of particles in the BTZ rest frame. The dark red curve represents the horizon

of the black hole which is about to form. The dark red curve is the apparent horizon.

• Particle 1: energy tan ε1 = coth µ
2 , angle φ = 0 ;

• Particle 2: energy tan ε2 = coshµ coth µ
2 , angle sinφ = ± tanhµ.

Having defined the holonomy of the particle 2 as a product of the other particle inverse

holonomy with the black hole holonomy, we now can try to represent the geometry of the

identification by this holonomy through the identifications corresponding to u1 and uBTZ.

One can show [34] that the second particle sits precisely on the intersection of a wedge

face of the particle 1 with an identification geodesic of the BTZ black hole. The choice of

the sign corresponds to the choice of the copy of the second particle with respect to the

isometry of the first particle, plus corresponding to the copy located on the W+ face, and

the minus sign corresponding to the copy located on the W− wedge face. The holonomy

of a defect can be thought of as an action of the identification which one encounters when

moving along the closed contour with the defect inside. For example, when considering a

time slice of AdS with a single particle, the identification cuts out a wedge with faces W±
(see figure 1), which are identified by the action of the holonomy:

u1 : W− →W+ ; (2.31)

– 11 –
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The surfaces W± are given by equation [34]:

tanχ sin(ε1 ± φ) = − sin ε1 sin τ , tan ε1 = coth
µ

2
; (2.32)

The forming BTZ black hole is represented by another holonomy, which identifies two

surfaces V±, which are described by the equation (2.21):

uBTZ : V− → V+ ; (2.33)

Using these identifications, we can represent the action of u2± defined as composition of

the upper two holonomies by (2.27). That means that once we circle around the particle

2, we have to go through the identification V− → V+ and through W+ → W− (note that

the u2 enters in (2.27) as inverse) for any closed contour which lies inside a time slice and

contains only the second particle.

For the spacetime with two particles colliding into a black hole, we have to impose two

more analogous requirements. So, if we circle along a contour containing both particles, we

have to pass through the BTZ identification V− → V+. If we circle along the contour around

the particle 1, we have to pass only through the identification W− →W+. Combining these

requirements, one arrives to the conclusion that the geometry of identifications in the black

hole rest frame looks as illustrated on figures 3 and 4.

Having described the collision picture in global coordinates, we now have to make some

important remarks. First, the black hole which is formed in the collision is not an eternal

one, it has only one external region with respect to the apparent horizon. The boundary

of this spacetime has only one connected component, which holographically means that

this black hole is dual to a pure state in the boundary, as expected in our quench scenario.

This situation is very similar to black hole formation from the cloud of collapsing dust

in the AdS-Vaidya metric. However, while in the latter case the pure state black hole is

usually illustrated through a Penrose diagram, we have the precise picture on figure 3 of

the full spacetime in global coordinates similar to the Penrose diagram of a pure state

black hole, but with more detail because we have no spherical symmetry. In particular, the

future singularity in a Penrose diagram would correspond to the moment of the collision

of particles τ = 0, when the spacetime in global coordinates shrinks into a singularity, see

figure 3(d). However, we emphasize that there is much more information contained this

picture than in Penrose diagram, because our spacetime is not just a cut out piece of AdS3,

but a topological quotient. This simplifies the holographic calculation procedure, and yields

some interesting details. For example, while the second external region of the BTZ black

hole never becomes a part of the spacetime in the collision process and remains inside of

the identification dead zone, it actually influences the behavior of holographic observables.

This phenomenon will be pointed out precisely when we will discuss HRT geodesics which

govern the behavior of holographic entanglement entropy. Another important point is

that from the bulk point of view it is most intuitive to perform the diagnostic of black hole

formation in the center of mass reference frame [34], where particles start from the opposite

sides of the AdS3 cylinder and move towards each other head-on. Unlike the black hole rest

frame, the center of mass frame picture also covers the case of low energies, when a static
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Figure 4. 3D picture of identification surfaces in AdS3 which correspond to the BTZ black hole

creation in the rest frame in global coordinates.

massive particle is created instead of the black hole. However, the resulting holonomy in

that picture (in the high energy case) is not equal to a holonomy of a static BTZ black

hole, but it is related to uBTZ by a conjugation, which corresponds to the coordinate

transformation from the black hole rest frame to the center of mass frame. However, while

intuitively attractive, the center of mass picture is not a natural gravitational dual to the

CFT2 on a cylinder, because the living space is changing with time as wedges move, and it

cannot be mapped straightforwardly to a cylinder by a simple coordinate transoformation,

unlike the black hole rest frame picture. Nevertheless, the bulk spacetimes with defects

which make the living space time-dependent were also studied in the context of holography,

e.g. in case of a single moving particle [35, 45–48], colliding massless particles in center of

mass frame [35, 37], moving particles which orbit around the origin of AdS3 [49].

2.2.2 Colliding particles in BTZ coordinates

We are finally ready to discuss the direct holographic dual to the CFT on a cylinder

which equilibrates after the bilocal quench. We make transformation from the global

coordianates to BTZ coordinates introduced in section 2.1. The collision of particles in

BTZ coordinates in AdS3 was discussed previously in holographic context in [35] and in

context of near-horizon dynamics of black holes in [36].

The transformation formulas from global coordinates to BTZ coordinates are given

by equations (2.6), and the metric is given by (2.5). We set the radius of the coordinate

horizon R = µ
π and we will express all quantities appearing from this point in terms of

R, since it is proportional to the temperature. In this case one can show that the surface

r = R coincides with the part of the surface of the horizon of maximally extended BTZ

black hole given by equation (2.22) which bounds the patch covered by our parametrization

in BTZ coordinates. Hence we see that the horizon of the black hole which is about to

be formed will be located at r = R. The initial time slice in global coordinates τ = −π
2 ,

when particles start from the boundary, is mapped into the t = 0 time slice in the BTZ
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Figure 5. Embedding of BTZ coordinate time slices into AdS3 cylinder. The blue surface is the

horizon, which coincides with the t =∞ time slice.

coordinates. Likewise, the t = ∞ time slice in the BTZ coordinates coincides with the

horizon surface given by eq. (2.22). The embedding of finite-time BTZ time slices in the

global AdS3 cylinder is shown on figure 5. Thus, the BTZ coordinates cover a patch which

is outside of the horizon of the black hole, or in our case is outside of the apparent horizon

of the colliding particles.

Now have to answer the question: how all the cutting and gluing on global AdS3

performed in the previous section is reflected in the BTZ coordinate patch? In the global

coordinates we have two sets of identification surfaces: BTZ identification V− → V+ defined

by equations (2.21) and the particle 1 wedge W− →W+. The BTZ black hole identification

in BTZ coordinates leads to the periodic condition for the angular coordinate:

V− ∼ V+ ⇔ ϕ ∼ ϕ+ 2π . (2.34)

This identification does not depend on the BTZ coordinate time t, and thus the living

space in these coordinates is a cylinder, which is exactly what we want. We use transfor-

mations (2.6) to get the initial data for particles in the BTZ coordinates. Dividing the first

equation by the second equation in (2.6), one gets

tanhχ
sinφ

sin τ
= − tanhRϕ ; (2.35)

Taking the boundary limit of this formula and substituting the above angle values for both

particles in the global coordinates, one gets ϕ1 = 0 for the particle 1 and ϕ2 = ±π for the

particle 2. We choose the fundamental domain in the BTZ coordinates as ϕ ∈ [−π, π]. In

this case the identification in global coordinates φ = −θ ∼ φ = θ translates precisely into

the identification ϕ = −π ∼ ϕ = π. Thus we arrive at a picture where two particles move

towards each other head-on from the antipodal points of the cylinder, particle 1 moving

along the ϕ = 0 and particle 2 moving along the ϕ = π ∼ −π worldline [36], see figure 6.

What is left is to describe the wedge cut out by the particle 1. To derive the equations

for its faces, we transform the equation (2.32) in global coordinates to BTZ coordinates,
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Figure 6. Creation of the black hole by colliding particles in BTZ coordinates. Red surfaces are

the faces of identification W± introduced by colliding particles. As particles move towards one

another, they asymptotically approach the black hole horizon, showed as the black cylinder (which

is obscured behind the identification surfaces) in the center.

which is the following:

tanhχ sin

(
arctan

(
coth

µ

2

)
± φ

)
= − sin τ sin

(
arctan

(
coth

µ

2

))
; (2.36)

We can expand the sine of sum into two terms and use the formula (2.35) for one term and

an analogous formula

tanhχ
cosφ

sin τ
= −

√
1− R2

r2

coshR t

coshR ϕ
, (2.37)

for the second term. We arrive at the following expression for the W± wedge faces in the

BTZ coordinate patch (our choice of coordinate differs from that of Jevicki and Thaler [36]

by a rescaling): √
1− R2

r2
coshR t = coshRϕ∓ tanh

µ

2
sinhR ϕ ; (2.38)

These identification surfaces are anchored onto worldlines of particles given by equation

r(t) = R coth R t ; (2.39)

and the horizon is located inside the dead zone between W− and W+. The 3D picture

of particles moving towards each other in BTZ coordinates is shown in figure 6, and the

cartoon of time evolution is shown on figure 7. Note that from the equation (2.39) it follows

that particles cannot reach the horizon in finite time. This agrees with earlier observation

that we will not see the emergence of the horizon in the BTZ coordinate picture in any finite

time. Holographically, this means that the state in the dual theory will always remain pure.

We conclude this section with a brief discussion of another property of thermalization

which is prominent in our holographic description. A common feature of thermalization in

a closed quantum system after unitary time evolution of a certain pure state is that at late
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(a) (b) (c)

Figure 7. Cartoon of the black hole creation in the BTZ coordinates. The space between the

two red curves is the dead zone cut out by the identification. The black circle is the horizon. (a)

particles start from the boundary at t = 0. (b) particles move through the bulk towards each other.

(c) particles asymptotically approach the horizon.

times the system loses memory about any particular details of the initial state, keeping only

information about the extensive characteristics of the initial state, such as total energy,

total conserved charge, etc. In our case, these “details” are the initial locations and energies

of the individual particles. From the shape of the identification wedge shown on figure 6

we see that at late times the shape of the identification wedge gradually approaches the

cylindrical shape, and cusps at the particle worldlines become smoother and smoother

with time. One could say that as the time goes by, the bulk spacetime geometry gradually

forgets about the parameters of the particles themselves. The thermal state is recovered

in the limit of the infinite time, when the wedge completely falls onto the horizon, and

complete rotational symmetry is restored. This kind of memory loss is not so evident in

the global quench holographic duals, because by definition in the global quench scenario

one deals with a translationally invariant initial state. That means that the details of the

initial state are already smeared over the entire boundary time slice from the beginning

(however the memory loss still absolutely can be observed in the time evolution of physical

quantities such as HEE [8, 9, 19], which we will discuss later). We are certain that one could

find the same property for situations where more than two particles create a black hole, or

even more complex scenarios of thermalization with a non-homogeneous initial state.

3 Geodesics in AdS3 with colliding particles

To proceed with investigation of dynamics of entanglement and two-point correlation func-

tions in the boundary dual of the AdS3 spacetime with colliding particles, we need to study

the geodesics in this spacetime with the endpoints located on the boundary. Generally

speaking, we have a (locally) asymptotically AdS3 spacetime with two conical singulari-

ties, moving along the lightlike worldlines. Geodesics can go from boundary to boundary

directly, or they can wind around one defect, or around both of them. To avoid possible

confusions, we will refer to the geodesics of the first kind as direct geodesics, to the sec-

ond kind as crossing geodesics (the meaning of the name will be clarified in the further
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discussion), and to the third kind as winding geodesics. The main task which we address

in this section is to find all geodesics between two given boundary points in BTZ coor-

dinates of colliding particles background, to calculate their lengths and to analyze what

happens to geodesics when we evolve the system, that is move the boundary points along

the time direction.

To calculate the lengths of geodesics, it is most convenient to use the SL(2,R) group

formula (2.11). We are interested in geodesics between boundary points a and b. These

points are parametrized by SL(2,R) matrices according to (2.7), where points in embedding

space are parametrized by BTZ coordinates using (2.4):

A =

 ra
R sinhRϕa +

√
r2a
R2 − 1 sinhRta − ra

R coshRϕa +
√

r2a
R2 − 1 coshRta√

r2a
R2 − 1 coshRta + ra

R coshRϕa

√
r2a
R2 − 1 sinhRta − ra

R sinhRϕa

 ; (3.1)

B =

 rb
R sinhRϕb +

√
r2b
R2 − 1 sinhRtb − rb

R coshRϕb +

√
r2b
R2 − 1 coshRtb√

r2b
R2 − 1 coshRtb + rb

R coshRϕb

√
r2b
R2 − 1 sinhRtb − rb

R sinhRϕb

 ;

We set ra = rb = r0 � R as radial cut-off near the boundary. We’ll also introduce the

auxiliary notation which we will use throughout the rest of the paper:

t0 =
1

2
(ta + tb) , ∆t = tb − ta ; (3.2)

ϕ0 =
1

2
(ϕa + ϕb) , ∆ϕ = ϕb − ϕa ; (3.3)

Using the formula (2.11), one can now find the length of a direct geodesic between

spacelike-separated points a and b. In the limit r0 � R, it will have the form

Ldir(a, b) = log trA−1B . (3.4)

All holographic quantities which we consider in this paper are expressed through lengths

of specific geodesics. However, in the length formula itself (3.4) there is no account for

actual existence of the geodesic in the spacetime, since this formula is native to pure AdS3

and not to a specific topological quotient which we consider in this paper. In order to

make any holographic calculations correct in such spacetimes, one has to add to the length

formulas the data about the interaction of geodesics with topological identifications. In

the rest of this section, we are focusing on this issue in the case of AdS3 spacetime with

colliding particles described in the previous section. We will be using the parametrizations

of geodesics in different coordinate systems, as well as isometry formulas from appendix A

and B.

3.1 Direct geodesics

It is known that between two given points at the boundary in the BTZ coordinates of the

BTZ black hole spacetime one can construct one direct geodesic and an infinite number

of geodesics which wind around the horizon (see e.g. [12, 59, 61]). Once we introduce the
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infalling particle topological identification described by the holonomy u1, some of those

geodesics will cross the identification wedge in some manner. The subject of this subsection

is to explain which points on the boundary can be connected by direct geodesics in the

geometry described in section 2.2.2. In BTZ coordinates the identification wedge bisects

the initial time slice, hence the geodesics between endpoints located on the same side

to the collision line will behave differently compared to geodesics between the endpoints

located to different sides of the collision line. Since the topological identification is realized

by an isometry and the identification surfaces intersect the time slices along the pieces

of boundary-to-boundary geodesics themselves, we can prove some statements about the

behavior of the geodesics.

Proposition 1. Suppose that a and b are spacelike-separated points on the boundary such

that either ϕa, ϕb ∈ (−π, 0), or ϕa, ϕb ∈ (0, π). Then there always exists a direct geodesic

between these two points at any given moment of time and any time separation.

Proof. To prove this proposition, we observe that the geodesics w± in BTZ coordinates

shown on the figure 7 are themselves parts of equal-time boundary-to-boundary geodesics.

A direct geodesic between two given boundary endpoints can cease to exist if it somehow

reaches w±. The depth of the geodesic, i.e. minimum radial distance from the origin to the

geodesic in the bulk, is given by the formula (B.11):

Γ2
+ = R2 1 + tanh2 R∆t

2

tanh2 R∆t
2 + tanh2 R(∆ϕ)

2

; (3.5)

where we set n = 0 since we are only interested in direct geodesics. We can directly

compare the Γ+ to the distance r± from origin to w±, which we can determine from the

equations (2.38). Solving in terms of the radial variable, one gets

r2 = R2

1−

(
coshRϕ∓ tanh πR

2 sinhRϕ

coshRt

)2
−1

. (3.6)

The r.h.s. is minimal at ϕ = ±π
2 , which is indeed clear from the symmetry of the wedge,

see figures 6–7. It gives the distance

r2
± =

R2

tanh2Rt (1− tanh2 πR
2 ) + tanh2 πR

2

. (3.7)

First, let us restrict ourselves to the case of equal-time geodesics, ∆t = 0. In this case r±
equals Γ+ for ∆ϕ = π. Since by assumptions of the proposition we consider only points

in upper or lower parts of the boundary, ∆ϕ < π, we have r± < Γ+ for all equal-time

geodesics, as shown on figure 8 in case of t = 0, when the wedge takes up the most space

in the bulk. Now we only have to prove that r± < Γ+ for non-equal-time geodesics. From

equations of geodesics (B.2)–(B.4) it is clear that a geodesic reaches deepest into the bulk

in the moment t0 = 1
2(ta + tb). Therefore it is this moment which makes sense as the

edge case in (3.7) when a geodesic could possibly try to reach r±. Further, Γ+ depends
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Figure 8. Direct equal-time geodesics in the upper half of the initial time slice.

on tanh R∆t
2 , whereas r± depends on tanhRt. It is true that t ≥ ∆t

2 , and the inequality is

saturated when either ta or tb is zero. Both r± and Γ+ are decreasing functions of their

respective temporal arguments, and their initial values coincide if ∆t = 2t0. The question

that remains is how fast these functions decrease with time compared to each other. We

have to compare two functions, which are proportional to the inverse of (3.5) and (3.7),

respectively:

f(x) := x(1− y) + y , g(x) :=
x+ y

1 + x
; (3.8)

where x = tanh2Rt ∈ [0, 1] is a variable and y = tanh2Rπ
2 < 1 is a constant. Obviously

f(0) = g(0), but for x > 0 we have f(x) > g(x), since one can expand g(x) around x = 0

as follows:

g(x) = x(1− x+O(x2)) + y(1− x+ x2 +O(x3)) = f(x)− (1− y)x2 +O(x3) ; (3.9)

(both functions are monotonic). Thus we conclude that r± < Γ+ for any direct geodesic,

and the proposition is proved.

Now let us consider the situation when the direct geodesics not always exist, namely

when the boundary segment between the endpoints crosses the collision line of particles.

Suppose that a and b are spacelike-separated points on the boundary such that ϕa,∈
(−π, 0) and ϕb ∈ (0, π), and ∆ϕ < π (∆ϕ > π). Then by definition the direct geodesic

between points a and b exists if the geodesic does not intersect the identification wedge.

When varying ta and/or tb, we observe that the edge case is when it intersects the worldline

of the particle 1 (particle 2).

We have established the conditions of when the direct geodesics exist and when they

do not. Further we will elaborate more on this in case of equal-time geodesics. For now

we conclude this subsection by giving the expression of the regularized length of direct

geodesic from (3.4). Taking the trace, one obtains the expression (B.15) with n = 0:

Ldir(a, b) = log [2(cosh[R(ϕb − ϕa)]− cosh[R(tb − ta)])] + 2 log
(r0

R

)
. (3.10)
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(a) (b)

Figure 9. (a) Illustration of projection of direct and crossing geodesics on a time slice at t > 0. The

solid black curve is a direct geodesic between a and b. The dashed curves are pieces of the crossing

geodesic between a and b. (b) A plot of direct geodesic and image geodesics which constitute the

crossing geodesic in the 3D global black hole rest frame picture. The BTZ identification surfaces

as well as apparent horizon are not drawn to avoid cluttering.

This expression is valid only for ∆ϕ ≤ π. For ∆ϕ > π, the direct geodesic and the n = −1

winding geodesic change places, so in that case the length of the direct (minimal) geodesic

is given by

Ldir(a, b) = log [2(cosh[R(ϕb − ϕa − 2π)]− cosh[R(tb − ta)])] + 2 log
(r0

R

)
. (3.11)

3.2 Crossing geodesics

The crossing geodesic consists of two pieces of geodesics going from the endpoints to the

identification surfaces. More specifically, suppose we have the endpoints located as follows:

ϕa ∈ [−π, 0), ϕb ∈ [0, π), and ta, tb chosen in such a way that points are spacelike-separated.

In this case the geodesic will consist of two pieces: a geodesic from a to point o ∈W− and

a geodesic from o∗ ∈ W+ to point b, see figure 9(b).3 The surfaces W± are topologically

identified, which is represented by the isometry, which acts according to the rule

∗ : X 7→ X∗ := u−1
1 Xu1 ; (3.12)

We will also need the inverse identification isometry, which is defined as follows:

# = ∗−1 : X 7→ X# := u1Xu−1
1 ; (3.13)

3The image geodesics on this and other similar figures were plotted using parametric representation of

geodesics and explicit formulas for the action of identification isometries in global coordinates. They are

presented for reference in appendix A.
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These isometries act on the identification surfaces W± as follows:

∗ : W− →W+ = u−1
1 W−u1 : o 7→ o∗ , (3.14)

# : W+ →W− = u1W+u
−1
1 : o∗ 7→ o . (3.15)

This enables us to use the geodesic image method [37, 46–48] to find the length of the

crossing geodesic. Since ∗ is an isometry, we have

L(a, o) = L(a∗, o∗) ; (3.16)

On the other hand, we can define the inverse isometry # : W+ → W− = u1W+u
−1
1 ,

so that

L(b, o∗) = L(b#, o) ; (3.17)

Therefore, the length of the crossing geodesic can be found as

Lcross(a, b) := L(a, o) + L(b, o∗) = L(a, o) + L(b#, o) = L(a, b#) ; (3.18)

or, equivalently,

Lcross(a, b) = L(a∗, o∗) + L(b, o∗) = L(a∗, b) . (3.19)

Thus, the length of the crossing geodesic between points a and b is equal to the length of the

image geodesic from a to b# or from a∗ to b, and the crossing geodesic can be completely

recovered from image geodesics and the identification surfaces. These image geodesics

themselves are just regular geodesics in global AdS3 spacetime. In our case of colliding

massless particles in AdS3, we illustrate the behavior of image geodesics4 in the black hole

rest frame picture on the figure 9(b) (BTZ identification is not shown on the picture).

All information about the matter which produces the topological identification is en-

coded in the position of image points a∗ and b#. These points themselves can be generally

located anywhere in AdS3. Because of this, one has to exercise caution when working in

any coordinate patch which does not cover the AdS3 spacetime globally, such as the BTZ

coordinate patch. While the endpoints a and b belong to the BTZ coordinate patch, the

image points, generally speaking, do not. Since the image points generically do not belong

to the BTZ coordinate patch, we are in a tricky situation: while the pieces ao and o∗b

of a crossing geodesic do lie within the BTZ patch, image geodesics as a whole do not.

However, image geodesics are the most convenient way to describe crossing geodesics, and

we can make use of this machinery in global coordinates to prove some facts about crossing

geodesics in BTZ coordinates.

We begin again with establishing the conditions of existence of a crossing geodesic is

that image geodesics must intersect (different) identification surfaces. This ensures that

the actual crossing geodesic will indeed run around the defect. Keeping this in mind, one

can formulate some useful statements. Let us note that the above discussion of image

geodesics representation for crossing geodesics is valid only for points located on different

sides of the boundary. The following statement says that it is, in fact, the only set of

situations when we encounter crossing geodesics.

4In this subsection we discuss only images that are obtained by action of the massless particle holon-

omy u1.
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Proposition 2. There are no crossing geodesics between the endpoints located to the same

side of the identification wedge.

Proof. This statement is not completely obvious in BTZ coordinates, but it is almost trivial

in global coordinates. All the geodesics in this case which we deal with are boundary-to-

boundary spacelike geodesics in global AdS3. A geodesic which starts from one side of the

identification wedge (e.g. from the left on figure 9(b)) and goes to W− comes out of the W+

and has to go to the other side of the boundary, to the right in figure 9(b). Also a spacelike

geodesic starting from the left cannot reach the W+ surface first, before reaching the W−.

An important point to note is that once a geodesic leaves the identification wedge W±, it

cannot enter it once more. The boundary-to-boundary geodesics also cannot go through

both V± and W± identifications, which is again evident from the black hole rest frame in

the global coordinates. That means that winding geodesics cannot be also crossing, and

vice versa. In the BTZ coordinates this is also clear from the fact that the part of winding

geodesics which wraps around the horizon would have been lying inside of the cut out region

close to the horizon, since the behavior given by formulas from the appendix B dictates

that winding geodesics always reach closer to the horizon than direct ones (more on that

in the subsection 3.4), and the surfaces W± can be considered as foliations of segments

of direct geodesics in analogy to the considerations from the proof of the Proposition 1.

These arguments imply the uniqueness of the crossing geodesic constructed from the image

method as above, as well as the statement of the proposition. An important corollary is

that the minimal spacelike geodesic connecting two points on the same side of the boundary

is always the direct one.

Now suppose that a and b are spacelike-separated points located on different sides of

the boundary relative to the collision line. Then the crossing geodesic exists as long as

image geodesics intersect the identification wedge.5 The edge case in this situation is when

o = o∗ belongs to the worldline of the particle. We have similar picture for direct geodesics

in this case, which do not exist until they intersect the worldline. In the following subsection

we begin to address this question in more detail in case of equal-time boundary endpoints.

We conclude this subsection by calculating the length of crossing geodesic in terms

of BTZ coordinates of endpoints. As discussed above, it equals the length of a winding

geodesic, either ab# or a∗b. Suppose that endpoints a and b are parametrized as matrices

according to (3.1). We write

Lcross(a, b) = L(a, b#) = log trA−1B# , where B# := u1Bu−1
1 ; (3.20)

We again note that b# does not necessarily belong to the BTZ patch, however it does not

matter since we do not have to calculate the actual coordinates of b#. To calculate the

length, we take the trace:

Lcross(a, b) = log trA−1u1Bu−1
1 ; (3.21)

5Since the particle itself moves along the lightlike geodesic and image geodesics have to intersect W±,

image geodesics which constitute an existing crossing spacelike geodesic are always spacelike as well.
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where u1 is the holonomy of the particle given by (2.30). We introduce auxiliary notations

∆t = tb − ta ; t0 =
1

2
(tb + ta) ; (3.22)

∆ϕ = ϕb − ϕa ; ϕ0 =
1

2
(ϕb + ϕa) ; (3.23)

Using the formula (2.30) for the holonomy and the matrix parametrization of the end-

points (3.1), we come to the resulting expression:

Lcross(a, b) = log

[
2

(
(−1 + E2) coshR∆t+ (1 + E2) coshR∆ϕ

+E2 cosh 2Rϕ0 + E2 cosh 2Rt0

+4E coshRt0 coshR
∆t

2
coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
+4E sinhRt0 sinhR

∆t

2
sinhRϕ0

(
E sinhR

∆ϕ

2
− coshR

∆ϕ

2

)
−2E sinhR∆ϕ

)]
. (3.24)

This expression has some symmetries:

1. The Z2-symmetry of the bulk background under reflection with respect to the collision

line: ϕa → −ϕb, ϕb → −ϕa;

2. Replacing particle 1 with particle 2: ϕa → ϕb − π, ϕb → ϕa + π;

3. The symmetry between temporal and spatial coordinates of the center of the bound-

ary segment on which the geodesic is anchored: t0 ↔ ϕ0.

The first two symmetries are not surprising, but the last one is a somewhat unexpected

unique feature of our bulk spacetime geometry. It is also worth noting that Lcross is a

monotonically increasing function of t0 and ϕ0.

3.3 ETEBA geodesics

The holographic entanglement entropy of a subsystem in the dual of a non-stationary bulk

spacetime is calculated using the HRT prescription [4] as minimal surface anchored on the

boundary region where the subsystem lives. In our case, this surface is a geodesic in BTZ

coordinates anchored onto a segment [ϕa, ϕb] on the boundary and with ta = tb = t0.

In this subsection, we focus on such geodesics with equal-time boundary endpoints, which

were labeled by Hubeny and Maxfield [12] as “equal-time-endpoint boundary anchored”, or

ETEBA geodesics. We will follow [12, 13, 19] and use this terminology. We are particularly

interested in their behavior during time evolution. The HRT geodesic which computes the

entanglement entropy is the minimal ETEBA geodesic which can connect a given pair of

endpoints. For this reason, we also address the issue of existence of ETEBA geodesics of

different types to know when they can and cannot participate in the HRT prescription.
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3.3.1 Direct equal-time geodesics

These geodesics can be parametrized using equations (B.2), (B.3), (B.4). In the equal-time

case, they have the form (we set λ0 to zero):

r(λ)2 = R2 + (Γ2
+ −R2) cosh2 λ , (3.25)

ϕ(λ) = ϕ0 +
1

R
arctanh

(
R

Γ+
tanhλ

)
, (3.26)

t(λ) = t0 ; (3.27)

where

Γ+ =
R

tanh R(∆ϕ)
2

. (3.28)

From these equations it follows that these geodesics lie completely in the time slice t0,

and their shape or length given by (3.10) does not depend on time. The question which

we are interested in is at what times a direct geodesic exists between given ϕa ∈ (−π, 0)

and ϕb ∈ (0, π). The direct geodesic does not exist when it crosses surfaces W±. The

worldlines of particles go into the bulk towards the horizon, and they are the closest points

of the identification wedge to the boundary in any given time slice, see figure 7. From the

initial moment of time, the direct geodesic would have to intersect w± and pass through

the dead zone inside the wedge, therefore they do not exist for some time. However, as we

evolve the system, the wedge gets smaller, and eventually it will get small enough to let the

direct geodesic run clear of the identification fully inside the fundamental domain. From the

shape of direct geodesics (which is constant under simultaneous evolution of both boundary

points), shown e.g. in figure 14(b), it is clear that the worldlines of particles are the last

points of the shrinking wedge which geodesics can touch before going completely out of

the dead zone. The moment of emergence of a direct geodesic is illustrated in figure 9(a).

The geodesic a2b2 there touches the worldline. After this moment, the particles will move

further into the bulk, the wedge will shrink more and the geodesic will lie completely in

the fundamental domain of the identification, similarly to the smaller geodesic a1b1. Note

that this argument holds both in case when we vary t0 keeping ∆t = 0, and when we vary

e.g. ta with fixed tb = 0. The first scenario is what relevant to the evolution of HEE, and

the second scenario is relevant for time dependence of correlation functions.

Now let us discuss the appearance of the direct geodesic in a bit more detail for

the case of equal-time direct geodesics with ∆t = 0, since they are important for the

calculation of holographic entanglement entropy. We can find explicitly the moment of

time tcr = ta = tb = t0 when the direct geodesic between points with given ϕa and ϕb,

located according to the assumptions of the proposition, crosses the worldline of e.g. particle

1 with ϕ = 0. Suppose this happens at the time t̃ in the point with radial coordinate r̃. We

use the parametrization of geodesics given by (3.25), (3.26), (3.27). The worldline equation

is given by (2.39). Plugging it into (3.25) and solving in terms of λ, we find the value of

the affine parameter at the intersection point as a function of tcr and ∆ϕ:

cosh2 λ̃ =
coth2Rtcr − 1

coth2 R∆ϕ
2 − 1

. (3.29)
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Now we plug this into (3.26), requiring that ϕ(λ̃) = 0. This gives the equation, which we

solve in terms of t0:

coshRtcr =
cosh R∆ϕ

2

coshRϕ0
. (3.30)

This is the moment of emergence of equal-time direct geodesic. Note that for symmetric

segments, i.e. ϕ = 0, this expression reduces to

tcr =
∆ϕ

2
. (3.31)

The length of the direct equal-time geodesic is given by the expression (3.11) with ta = tb:

Ldir(ϕa, ϕb) = 2 log

(
2 sinh

(
R

(ϕb − ϕa)
2

))
+ 2 log

(r0

R

)
. (3.32)

This expression is time-independent.

3.3.2 Crossing geodesics with equal-time endpoints

The evolution of crossing ETEBA geodesics is the key to non-equilibrium dynamics of

entanglement in our holographic bilocal quench setup. As explained in the previous dis-

cussion, the direct equal-time geodesics do not always exist. The following proposition

establishes when crossing ETEBA geodesics exist and the chronology between vanishing of

the crossing geodesic and emergence of the direct geodesic.

Proposition 3. For endpoints located as follows: ϕa ∈ [−π, 0), ϕb ∈ [0, π), and ta, tb
chosen in such a way that points are spacelike-separated, it is true that:

1. For ta = tb = 0 the crossing geodesic always exists;

2. When increasing ta = tb = t, the crossing geodesic disappears only after the corre-

sponding direct geodesic appears;

3. In the moment when the crossing geodesic disappears, Lcrossing(a, b) ≥ Ldirect(a, b).

Proof. As mentioned earlier, we have to work in global coordinates to prove most of this

proposition. To prove the point 1), we have to show that the image points are located in

such a way that the image geodesics have to intersect the wedge at τ = −π
2 (which corre-

sponds to t = 0 in BTZ coordinates. The global time slice τ = −π
2 is special because it is

closed under the action of the isometries, that is (τ = −π
2 )∗,# = −π

2 (see eqs. (A.9), (A.12)).

Therefore, we only have to prove that the angular coordinates of image points take desir-

able values. Specifically, if we have φa ∈ (2π−θ, 2π) and ϕb ∈ (0, θ), then we want to prove

that ϕ#
b /∈ (2π − θ, 2π) mod 2π and ϕ∗a /∈ (0, θ) mod 2π, where the angle θ is defined by

sin θ = tanhπR . (3.33)

More intuitively, we have to prove that the image of a point b (a from the upper (lower)

half of the living space on figure 3(a) does not end up in the lower (upper) half under a
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Figure 10. Location of the #-image point on the initial time slice for different values of the horizon

radius.

single action of the isometry # (∗) defined according to (3.13) ((3.12)). Let us focus on

the point b and look at where does it go under the action of #.

We use the formula (A.13) for the angle of the image point φ∗a, setting in that formula

χ→∞ and τ = −π
2 :

tanφ#
b = − −2E + (2E cosφb + sinφb)

−2E2 + ((2E2 − 1) cosφb + 2E sinφb)
; (3.34)

The dependence of φ#
b (φb) is illustrated on figure 10. The coordinate of the image point

is monotonically increasing function. We know that at τ = −π
2 there is a fixed point of

the isometry located at φ = 0, which is where the particle sits, so φ#(0) = 0. On the

other hand, by definition (3.13) we have θ ∈ W+ ⇒ φ#(θ) = 2π − θ ∈ W−. By continuity

and monotonicity, all image points with φb ∈ [0, θ) will thus have angular coordinates

φ#
b ∈ [0, 2π − θ). In other words, the actions of the #-isometry results in a rotation

counter-clockwise with some angle less than 2π− 2θ. As a result, the φ#
b will never end up

in the interval (2π − θ, 2π). This is exactly what we needed to prove, and the argument

for φ∗a points is completely analogous.

The point 2) concerns the time evolution of crossing ETEBA geodesics. From the

transformation formulas from global to BTZ coordinates 2.6 we find that

tanhRt = cothχ
cos τ

cosφ
; (3.35)

which means that on the boundary at χ → ∞ time evolution in BTZ coordinates corre-

sponds to time evolution in global coordinates with angle-dependent rate. That means that

once we fix the angles of endpoints in the initial moment, we can consider the evolution in

global time to describe the evolution in BTZ time. Note, although, that in general case un-

der the BTZ time evolution an equal-time geodesic on the initial time slice will be mapped

to a geodesic with non-equal-time endpoints in global coordinates. The time coordinates of

the endpoints will depend on their angular coordinates. However, in a special case of sym-

metric intervals ϕa = −ϕb the crossing ETEBA geodesic in BTZ coordinates will always

remains an ETEBA geodesic in global coordinates. The statement 2) itself can be veri-

fied by plotting the geodesics in global coordinates and using the isometry formulas from

appendix A. The sample plots of geodesics are presented on the figure 11. For symmetric
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(a) (b)

Figure 11. Direct and crossing geodesics in global coordinates. (a) The moment τ = −0.86

when the symmetric direct geodesic with φb = −φa = 0.614 emerges coincides with the moment

of vanishing of the corresponding crossing geodesic. Here R = 5. (b) The case of non-symmetric

geodesics: the direct geodesic with φa = −0.1, φb = 1.182, τa = −0.816, τb = −0.928 exists, whereas

the corresponding crossing geodesic has not yet vanished as well; R = 0.5.

endpoints, the direct geodesic appears precisely in the same moment when the crossing

geodesic vanishes, as shown on figure 11(a). For general endpoints evolving in time, the di-

rect geodesic appears before the crossing geodesic vanishes, as shown on figure 11(b). This

argument can be strengthened by looking at isometry formulas and certain light cones. We

know that the crossing geodesic vanishes after the image geodesics intersect the particle

worldline in the same point o = o∗. First, consider formulas (A.9), (A.12) with χ→∞:

tan τ∗,# = tan τ(1 + 2E2) +
2E

cos τ
(E cosφ∓ sinφ) ; (3.36)

For fixed φ, it is clear that these are growing functions of t. Moreover, since the coefficient

in front of the first term 1 + 2E2 > 1, we observe that τ∗,# ≥ τ for τ ∈ [−π
2 , 0), where

the inequality is saturated only in the initial moment. That means that generally for some

τ ∈ (−π
2 , 0)

τ∗a > τa , τ#
b > τb . (3.37)

Because of the continuity and monotonicity of geodesics in global time (see eq. (A.2)) that

also means that

τo > τa , τo∗ > τb . (3.38)

This is confirmed by figures 9(b), 11. The crossing geodesic vanishes when o = o∗, and this

happens at some moment in global time τo > τa, τb. Next, for a given direct boundary-

to-boundary spacelike geodesic in AdS3 we can always imagine a certain future light cone,

to which the said geodesic belongs. The origin point of such light cone would be located
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(a) (b) (c)

(d) (e)

Figure 12. Evolution of ETEBA geodesics which compete in the HRT prescription during the

particle collision process.

on the boundary somewhere to the past of the geodesic. Since the ∗ and # mappings

are generated by parabolic Lorentz isometries, that means that both image geodesics a∗b

and ab# also belong to the same light cone. For a moment let us focus on the case of

symmetric endpoints. In this case the particle lightlike worldline also belongs to this light

cone in the moment of time when the given direct geodesic intersects it, which means that

the image geodesic will also intersect it in the same moment, so we get precisely the picture

shown on figure 11(a). For a case of general endpoints, the particle worldline intersects our

imaginary light cone in the point of intersection of the direct geodesic and the worldline,

when the direct geodesic appears, and then goes inside the light cone to the future, missing

image geodesics. The time evolution with fixed angular coordinates of endpoints from that

moment effectively means that we move the imaginary light cone upwards in time, while

the worldline remains fixed. The intersection point between the imaginary light cone and

the worldline will always move to the future, and inevitably will coincide with the point of

intersection of two image geodesics between themselves, eventually. This will be precisely

the moment when the crossing geodesic vanishes. Thus the point 2) is proved. The point

3) can be seen from the geometric picture of geodesics, as illustrated in figure 12(d). The

crossing geodesic at this point crosses the wedge in the position of the particle, and it

consists of two AdS3 geodesics joined together in that point in the bulk. Thus we have a

curved triangle, all sides of which are spacelike geodesics in AdS3. From the Lorentzian AdS
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version of the triangle inequality for spacelike-separated points, it is therefore correct that

Ldir(a, b) ≤ L(a, o) + L(b, o∗)|o∗=o ; (3.39)

which is precisely what we needed to prove. Note even though we work with geodesics

which have diverging lengths we still can use the triangle inequality, since two corners of

the triangle rest on the boundary, and we have identical divergences from both sides of the

above inequality, understanding it in regularized sense.

The length of the ETEBA crossing geodesic is given by (3.24) with ta = tb = t:

Lcross(ϕa, ϕb) = log

[
2

(
(−1 + E2) + (1 + E2) coshR∆ϕ+ E2 cosh 2Rϕ0

+E2 cosh 2Rt+ 4E coshRt coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
−2E sinhR∆ϕ

)]
. (3.40)

This is the primary formula we will use for study of non-equilibrium behavior of entangle-

ment in our model.

3.4 Winding geodesics

The BTZ black hole solution admits infinitely many geodesics between two given spacelike-

separated endpoints on the boundary. One of these geodesics is the direct geodesic and all

other geodesics wind around the horizon. In BTZ coordinates all geodesics are parametrized

by equations (B.2), (B.3), (B.4), direct and winding geodesics alike. For the direct geodesic

|∆ϕ| = |ϕb − ϕa| < π, and for winding geodesics ∆ϕ > π.

Our holographic dual to the bilocal quench is the AdS3 spacetime with colliding par-

ticles in BTZ coordinates. Locally, the geometry of this spacetime is identical to that of

the BTZ black hole, so in principle the geodesic equations also admit winding geodesic

solution. However, the topological identification can actually interrupt the existence of

winding geodesics, just like in case of direct geodesics. So, in order to answer the question

whether the winding geodesic exists, we have to check if it crosses surfaces W±. A winding

geodesic wraps around the horizon. It approaches to the horizon into radial distance given

by eq. (B.11):

Γ+ = R

√√√√ 1 + tanh2 R∆t
2

tanh2 R∆t
2 + tanh2 R(∆ϕ+2πn)

2

, (3.41)

where n 6= 0 ∈ Z is the winding number. From this formula it is clear that between two

given endpoints all winding geodesics approach to the horizon closer than direct geodesics.

Moreover, there is a strict hierarchy between the depths of windings: a winding with higher

n always approaches closer to the horizon than any winding with lower n. Also, for smaller

∆ϕ winding geodesics approach the horizon closer.

The identification wedge shrinks with time according to equation (2.38) (see figure 6).

Thus we arrive to the following statement:
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(a) (b) (c)

Figure 13. Emergence of winding geodesics during the black hole creation. The blue geodesic has

n = 1, and the green geodesic has n = −1. Here the disc depicts the bulk region r < 1, with the

horizon at r = R = 0.3.

Proposition 4. For given angular coordinates of endpoints ϕa, ϕb and the winding number

n the corresponding winding geodesic exists only for t0 = 1
2(ta + tb) > t̃n, where t̃0 is the

moment of time when the winding geodesic crosses synchronous slices w± of the wedge faces

at particle worldlines.

In other words, winding geodesics with given time separation between the endpoints

will appear one by one as particle go deeper into the bulk towards the horizon. Geodesics

with higher winding numbers will appear later than those with lower winding numbers.

We illustrate the emergence of equal-time n = ±1 winding geodesics on figure 13. On

figure 13(a) the wedge is still too large to accommodate both winding geodesics. Note that

the direct geodesic at that time between two points on the lower half already exists from the

beginning, according to proposition 1. On figure 13(b) the identification wedge decreased

in size enough to allow the blue winding geodesic to appear, but the green geodesic still

intersects it. On figure 13(c) even later moment of time is shown, when the green geodesic

appears. In the initial moment t = 0 there are no winding geodesics, and in the limit

t → ∞ the infinite amount of winding geodesic appears, which is the same situation as

in the BTZ black hole spacetime. Note that these time scales of appearance of winding

geodesics are generally much larger than the time scales of appearance of direct geodesics

and vanishing of crossing geodesics. Holographically this means that winding geodesics

are irrelevant for equilibration of entanglement, however they do contribute to late time

behavior of correlation functions, as we will discuss later.

To conclude this subsection, we remind that length of a winding geodesic is given by

the formula (B.15):

Lwind(a, b) = log (2(cosh[R(ϕb − ϕa + 2πn)]− cosh[R(tb − ta)])) + 2 log
(r0

R

)
. (3.42)

The key observation is that lengths of winding geodesics between the given endpoints on the

boundary are always larger than the lengths of corresponding direct and crossing geodesics.

– 30 –



J
H
E
P
0
9
(
2
0
1
7
)
1
1
5

4 Equilibration of entanglement

We now have at our disposal all tools needed to perform the holographic computation of the

entanglement entropy in the boundary CFT after the bilocal quench and analyze its time

dependence during the thermalization process. We start our analysis with calculation of the

holographic entanglement entropy (HEE). We then use it to investigate the equilibration

and spreading of entanglement in subsystems in the boundary theory which live on segments

of the circle during the particle collision process. We also compute holographic mutual

information and discuss different possibilities of its non-equilibrium behavior, depending

on the location of subsystems.

4.1 Holographic entanglement entropy

Consider a subsystem in the boundary theory which lives on a segment L of the circle,

which is bounded by points a and b. Then the entropy is calculated, according to the Ryu-

Takayanagi proposal [3] generalized to the non-stationary case [4], as the minimal area of

the codimension two surface in the bulk anchored on equal-time points a and b. In an

asymptotically AdS3 spacetime, this surface is a geodesic, so we need to find the minimal

geodesic between two given equal-time points on the boundary and calculate its length:

S(a, b) =
Lmin(a, b)

4G
; (4.1)

Here G = 3
2c is the gravitational constant, and c is the central charge of the boundary

CFT. In our case, the bulk background is set up explicitly as a quotient of the AdS3

spacetime by a non-trivial identification. That means that the metric itself is stationary

in our case, but the identification is non-stationary, which is what makes the entire space-

time non-stationary and requires the use of the HRT proposal, which generalizes usual

Ryu-Takayanagi prescription to the non-stationary case. Our bulk spacetime is arranged

in such a way, that depending on the position of the endpoints, the crossing geodesic

either participates in the HRT prescription, or does not. These two situations describe

qualitatively different behavior of entanglement.

In the BTZ black hole spacetime, which corresponds to the CFT at thermal equilib-

rium, the minimal geodesic is a direct geodesic. The length of such geodesic gives a result

for HEE, and is obtained from (3.10) for small subsystems with size less than half of the

circle, ∆ϕ ≤ π, by setting ta = tb. Introducing the UV cut-off in the boundary theory

ε := (R/r0)2 , (4.2)

we have:

Seq(a, b) =
c

3
log

(
2

ε
sinh

(
R

(ϕb − ϕa)
2

))
; (4.3)

This is the entanglement entropy of the thermal equilibrium state with temperature given

by T = R
2π of a subsystem of size ∆ϕ = ϕb − ϕa < π. For large subsystems with ∆ϕ > π,

one obtains the HEE from the expression (3.11) instead, which results in

Seq(a, b) =
c

3
log

(
2

ε
sinh

(
R

(ϕb − ϕa − 2π)

2

))
; (4.4)
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Figure 14. Illustration of positions of subsystems which are in and out of equilibrium in the

initial state.

Since the geodesics which do not intersect W± are identical to those in the BTZ black

hole spacetime, direct equal-time geodesics always govern the equilibrium regime in our

model. Meanwhile, the length of a crossing ETEBA geodesic (3.40) is time dependent

because of the shape of the identification wedge, hence crossing geodesics must govern the

non-equilibrium regime. In the further discussion we will focus on the small subsystems

with ∆ϕ ≤ π. The results for small subsystems can be related to large subsystems if one

keeps in mind the subtraction of 2π in the equilibrium HEE formula (4.4) and symmetries

of the formula (3.40). Since the horizon never appears in any finite time, we do not have to

worry about its contribution in the Ryu-Takayanagi prescription. Note also that the HEE

of the complement of a subsystem is always given by the same geodesic as the HEE of the

subsystem itself, because of the same reason. This is what we expect when considering the

evolution of a pure state in the boundary CFT.

4.1.1 Equilibrium in the initial state

From the proposition 1 it follows that one can anchor a direct geodesic on segments of the

boundary spatial circle which lie to the side of the collision line at any moment of time.

Therefore the entanglement entropy of a subsystem located in either upper or lower (with

respect to the collision line) semi-circle is maximal and is given by the expression (4.3),

and is constant in time. Therefore we can come a conclusion that for subsystems which

lie in between the initial excitations (orange subsystems on figure 14) the single-interval

HEE is exhibits constant equilibrium behavior. To study non-equilibrium dynamics in

these subsytems, one might want to use more “fine-grained” observables, which would

require information from the bulk beyond the minimal geodesic length. For example, one

can consider Renyi entropies [23–25], entwinement [59], or contributions to holographic

correlation functions from the non-minimal geodesics [37, 46–48]. We will discuss the

latter in the bilocal quench scenario in section 5.
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4.1.2 Crossing geodesics and non-equilibrium regime

On the other hand, the subsystems with endpoints on different sides of the boundary

with respect to the collision line are initially out of equilibrium. This is because in the

initial moment the corresponding HRT geodesic is a crossing geodesic, and the evolution of

crossing and direct HRT geodesics for such subsystems are described by the proposition 3.

These subsystems contain one of the excitations on the boundary in the initial moment,

like illustrated by blue subsystems in figure 14. Let us restrict our attention without loss

of generality to subsystems which contain the particle 1 moving along the ϕ = 0 worldline.

Then we are interested in the case when ϕa ∈ (−π, 0), and ϕb ∈ (0, π). The evolution of

the entanglement in such subsystems goes as follows, according to the proposition 3:

• From the point 1) of the proposition, at t = 0, the HRT geodesic has to be a crossing

ETEBA geodesic, as shown on figure 12(a). The length of the crossing ETEBA

geodesic, given by (3.40), is initially smaller than the length of the direct geodesic

and starts growing with time. The crossing geodesic length evolves with time with

the identification, so the crossing geodesic corresponds to the non-equilibrium regime

of HEE, as shown on figure 12(b)–(d).

• For early times, the behavior of HEE is governed by the crossing geodesic. At the

moment of time tcr given by (3.30) the direct geodesic emerges, see figure 12(c). It

competes with the crossing geodesic for being responsible for the behavior of HEE,

when their lengths are equal. The transition to the direct geodesic in the leading HEE

channel happens at the moment t
(a,b)
∗ , which we call the thermalization time of the

subsystem. The points 2) and 3) of the proposition 3 ensure that the crossing geodesic

still exists in that moment and the transition is continuous, as we will see below.

• At late times, for t > t
(a,b)
∗ , the behavior of HEE is governed by the direct equal-

time geodesic, which corresponds to the equilibrium regime and is expressed by the

formula (4.3). The point 3) of the proposition 3 ensures that the vanishing of the

crossing geodesic does not influence the behavior of HEE (see figure 12(d)–(e)).

Thus, the general formula for HEE of a crossing subsystem can be expressed as

S(a, b|t) = min

{
Snon-eq(a, b|t)

Seq(a, b) ;
(4.5)

where Snon-eq is the contribution to HEE from the crossing ETEBA geodesic. It is obtained

using the formula (3.40) with the boundary UV-cutoff introduced as in (4.2) for the length

of the crossing ETEBA geodesic:

Snon-eq(a, b|t) =
c

6
log

[
2

ε

(
−1 + E2 + (1 + E2) coshR∆ϕ+ E2 cosh 2Rϕ0 + E2 cosh 2Rt

+4E coshRt coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
− 2E sinhR∆ϕ

)]
.

(4.6)
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Figure 15. Typical time dependence of HEE of a non-equilibrium subsystem. Here the dark red

curve is the function ∆S(t), green dashed curve is the quadratic approximation given by the leading

term in (4.8), and blue dashed line is the linear asymptotic given by the leading term in (4.10).

The values of parameters are R = 5 and ϕb = −ϕa = 0.8.

where we remind that E = coth πR
2 , ∆ϕ = ϕb−ϕa and ϕ0 = 1

2(ϕa +ϕb). At E = 0 one can

recover the equilibrium result (4.3). The initial value at t = 0 is given by

Snon-eq(a, b|0) =
c

3
log

[
2

ε

(
E
(

coshR
∆ϕ

2
− coshRϕ0

)
− sinhR

∆ϕ

2

)]
. (4.7)

As mentioned above, this quantity is smaller than the equilibrium value (4.3) for the

same segment. From the formula (4.6) it is clear that the quantity Snon-eq(a, b|t) grows

monotonically with time, until the crossing geodesic vanishes. However, as we evolve the

system with time, after the moment t = tcr the direct geodesic appears as well and starts

competing in the HRT prescription, and takes over at t = t
(a,b)
∗ , realizing the saturation of

HEE at equilibrium. Now let us discuss the time dependence of the HEE in more detail.

We illustrate the typical time dependence of ∆S(t) = Snon-eq(t)− Seq on figure 15.

In the further discussion we assume that we deal with the formation of large black

holes6 with R > 1, or in other words when the temperature is higher than the AdS3

Hawking-Page temperature, T > 1
2π . The formulae (4.6) and (4.3) are still valid for R < 1,

but the bulk geometry with a small black hole gives a subdominant contribution to the

CFT path integral and thus is not a proper holographic dual for a thermal state [61].

6Nevertheless, some illustrations are still presented with R < 1. This is done to make certain features

more prominent on the availible scale.
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Early-time evolution. We can expand the expression (4.6) in time around t = 0. The

leading terms of the expansion read:

Snon-eq(a, b|t) = Snon-eq(a, b|0)

+
c

6
R2E

E + coshR∆ϕ
(

sinh Rϕ0

2 − E cosh Rϕ0

2

)
(
E coshR∆ϕ+ sinh Rϕ0

2 − E cosh Rϕ0

2

)2 t
2 +O(t4) ; (4.8)

where Snon-eq(a, b|0) is given by the formula (4.7). This behavior is the same as the

so-called pre-local equilibration growth [8, 9], which appears in the Vaidya global quench

scenario. On the figure 15 it is shown that the HEE behavior is well approximated by the

quadratic expansion until a time scale t = t1. We observe that

t1 =
∆ϕ

2R
. (4.9)

We conjecture that this time scale has similar meaning as the “local equilibration” time

scale in the Vaidya quench. However, the important difference of our case is that we do not

make any assumptions about the size of the subsystem compared to the horizon radius,

and due to this the time scale depends on ∆ϕ, unlike in AdS-Vaidya case in Poincare

coordinates [9].

Intermediate regime and linear growth. For t > t1 the behavior of HEE deviates

from the quadratic growth. It starts approaching the linear regime, and reaches the linear

asymptotic growth at a time scale t = t2. The time scale t2 depends inversely on the horizon

radius R, which is shown on the plot 16(a), and thus the higher the temperature, the more

prominent is the linear growth regime. The leading linear asymptotic behavior can be

established by expanding the difference Snon-eq − Seq in e−Rt. The result is the following:7

∆S(t) = Snon-eq − Seq =
c

3
R t+

c

3
log

(
coth πR

2

8 sinh2R∆ϕ
2

)
+O(e−Rt) . (4.10)

The global quench models also exhibit the linear growth regime, which is evident from

both CFT calculations [20, 21] and holographic calculations [5, 6, 8–13, 16, 17, 19]. In

the context of holographic thermalization global quench scenarios the linear growth regime

is often referred to as entanglement tsunami [8–10]. It was found [8–11] that the linear

behavior in global quench models is universal and can be expressed as

∆S(t) = vEseqA t+ . . . ; (4.11)

Here seq is the equilibrium density of HEE, A is the surface area of the boundary of the

subsystem, and vE is the entanglement velocity, which depends only on the dimension of

the spacetime. We can make contact with our case in a similar way to the discussion

in [13], if we consider the case R ∆ϕ/2 � 1. In this case the equilibrium entanglement

entropy (4.3) is given by pure area law (we omit the UV cutoff):

Seq '
c

6
R∆ϕ ; (4.12)

7Note that this expansion is convergent only for high temperatures or long times, such that e−Rt is small.
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Figure 16. (a) time dependence of HEE for different values of horizon radius. The parameters of

the subsystem are ϕ0 = −π4 , ∆ϕ = π
2 . (b) time dependence of HEE for subsystems of different size.

Here ϕ0 = 0 and R = 0.5. (c) time dependence of HEE for different positions of the subsystem.

Here ∆ϕ = π
2 and R = 0.5.

from where we find that seq = c
6R. Taking into account that A = 2, since our subsystem

is bounded only by two points, we find that the asymptotic linear behavior (4.11) should

look like

∆S(t) = vE
c

3
Rt+ . . . ; (4.13)

The universal result for global quenches in 2d CFT is vE = 1, and from comparing of (4.10)

to (4.13) we see that this value for the entanglement velocity holds true for our bilocal

quench scenario as well. Thus we obtain another argument for the fact that the notion

of the entanglement velocity and its bounds is relevant not only for global quenches, but

also for local quenches as well [29, 30, 32]. As it turns out, the linear growth regime in our

case is directly related to the memory loss regime [8, 9, 19], since the function ∆S in the

leading order only depends on the difference U = t = ∆ϕ
2 . Another interesting fact that

the time scale t2 is related to the crossing HRT geodesic going inside the horizon, which

is an evidence for the fact that the linear growth of HEE is related to the HRT geodesics

probing the interiors of the black hole. We discuss these observations in more detail later

in subsection 4.1.4.
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Thermalization. The transition to the equilibrium regime happens when the crossing

geodesic and the direct geodesic have the same length. Hence thermalization time can be

found from the condition

Lcrossing(t
(a,b)
∗ , ϕa; t

(a,b)
∗ , ϕb) = Ldirect(ϕa;ϕb) . (4.14)

where we have emphasized the time dependence in the length of the crossing geodesic.

Using the formula (3.40) for l. h. s. and the formula (3.32) for r. h. s., we find the

expression for thermalization time:

coshR t
(a,b)
∗ = coshRϕ0

(
coshR

∆ϕ

2
− 1

E
sinhR

∆ϕ

2

)
(4.15)

+

√
cosh2Rϕ0

(
coshR

∆ϕ

2
− 1

E
sinhR

∆ϕ

2

)2

− cosh2Rϕ0 − sinh2R
∆ϕ

2
+

1

E
sinhR∆ϕ ;

It is important that this moment in time is later than the time of emergence of the direct

geodesic tcr given by (3.30), but it is also before the time when the crossing geodesic van-

ishes, since the point 3) of the proposition (3) directly states that the crossing geodesic

vanishes at some time when its length has grown higher than the length of the direct

geodesic. Thus we have the continuous transition from the non-equilibrium growth to sat-

uration of HEE happening at t = t
(a,b)
∗ . The formula (4.15) dictates that larger subsystems

thermalize slower, see plot 16(b), which is expected. Also let us note that for symmetric

intervals ϕ0 = 0 one can obtain from (4.15) and (3.30) the result

t∗ = tcr =
∆ϕ

2
. (4.16)

This is the same thermalization time as in the AdS-Vaidya quench model [5, 6, 8, 13]. For

a subsystem of the same given size ∆ϕ but non-zero ϕ0 the thermalization time defined

from (4.15) will be smaller than ∆ϕ
2 , as shown on the plot 15(c).

Now let us discuss the character of the transition to saturation. While the HEE itself

is continuous, which is what expected from the thermalization models, particularly those

based on the global quench scenario [5–13, 15–21], the time derivative of the entanglement

entropy is discontinuous at the transition point, which results in sharp transition to sat-

uration. This fact is the key difference of non-equilibrium dynamics in our model from

dynamics in holographic Vaidya [5–11, 13, 15–19] and end-of-world brane [11, 17] quantum

quench models in 2d CFT. However, the sharp transition to saturation, when the linear

growth regime lasts all the way to thermalization, is remarkably similar to that of the

quasiparticle picture of entanglement spreading in 2d CFT [21] and to equilibration of a

strip subsystem after the global Vaidya quench in d ≥ 3 [8, 17].

4.1.3 Emergent light cone

On the figure 17(a) we plot ∆S as a function of time and ϕ = ∆ϕ/2 in the special case of

centered subsystems, ϕ0 = 0. The expression (4.6) in this case simplifies to

Ssym
non-eq(ϕ|t) =

c

3
log

[
2

ε
(E(coshRϕ− coshRt)− sinhRϕ)

]
. (4.17)
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From this picture and for the formula for the thermalization time t = ϕ (4.16) we can

see that the entanglement spreads along an effective light cone. The sharp saturation,

makes the light cone prominent, again hinting at similarity with the quasiparticle picture

of entanglement spreading [21]. The effective light cone velocity is related to the butterfly

velocity vB, which is the speed of propagation of quantum chaos in thermal state [16, 50–

52]. In the setting of global quench in two-dimensional holographic CFT it is true that

vLC = vB = vE = 1 [16]. From the plot 17(a) we observe that vLC = vE = 1 also holds in

our case of the bilocal quench.

One can also verify that vLC = vB = 1 in our quench scneario using considerations

analogous to those in section 5 of [16], which relate thermalization of perturbations with

the concept of entanglement wedge reconstruction. The spreading of information on the

boundary can be characterized by the rate of growth of a boundary region which contains

the information about an initial excitation (for concreteness, we consider the particle 1).

In analogy with [16], we assume that the full information about the infalling excitation

is contained in the centered boundary segment for which the direct geodesic crosses the

wordline of the particle in the given moment of time. The bulk subregion bounded by

this segment and the direct geodesic which crosses the worldline of the particle is the

entanglement wedge [53–56]. The corresponding boundary segment encodes all information

about local physics in this bulk subregion [56]. In this case the rate of growth of this

boundary segment is given by the formula for the thermalization time (4.16). From this

formula it follows that vLC = 1.

Another point to note is that the dependence of Snon-eq(0) as a function of ϕ0 in (4.7)

and the time dependence in (4.17) are identical. Moreover, if one considers the full entropy

at t = 0 as a function of ϕ0, then the dependence will be the same as the time dependence

of the entropy for ϕ0 = 0. In the first case the saturation which happens for |ϕ0| > ∆ϕ
2

corresponds to the case when the segment completely lies in the upper or lower half of

the boundary spatial circle and doesn’t contain an initial excitation - as we discussed, all

such subsystems are at equilibrium from the beginning. This symmetry between temporal

and spatial coordinates of the segment appeared a symmetry 3) in the formula for the

length of the crossing geodesic (3.24). In the case of HEE dynamics, this symmetry can

be qualitatively explained using the quasiparticle model [21]. In 2d CFT after the quench

the spreading entanglement can be approximately modeled as propagation of EPR pairss

of particles, which are created in the moment t = 0 by the quench and propagate with

the speed of light [11, 14, 21]. In our case these EPR pairs are created in two separate

points: ϕ = 0 and ϕ = π. A subsystem with a given size ∆ϕ = 2ϕ will equilibrate once

the quasiparticles will reach the its boundaries. If the subsystem is centered on the source

of particles, i.e. ϕ = 0, then a given moment of time t the quasiparticles will reach the

coordinate ±ϕ̃ = t̃. On the other hand, this is the same situation as if particles were created

at the point ±ϕ̃ at t = 0. When t = ϕ, the particles reach the boundary of the segment,

or, equivalently, the source of particles is at the boundary, thus equilibration happens.

This quasiparticle explanation hints that this symmetry is caused by the production of

entanglement by a point source from a bilocal quench. Consequently, there is no analogue

of such symmetry in any global quench model because there is always full translational
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invariance to work with, and EPR pairs are produced uniformly in every point of space.

It is also unlikely that this symmetry would hold in a higher-dimensional generalization,

because in general velocities which characterize the spread of entanglement are slower

in higher dimensions [8, 9, 16, 50]. However, we can expect that a CFT calculation of

correlation functions after bilocal quench in 2d CFT using the techniques along the lines

of [15, 24] can help reveal its nature in relation to some deep symmetries in CFT such as

modular invariance.

4.1.4 Entanglement tsunami and memory loss

As we mentioned in subsection 2.2.2, it is known that a closed system loses information

about the details of the initial state upon thermalization. In the previos work [8–10, 17,

19] it was found that the memory loss phenomenon in the context of holographic global

quenches is prominent in the late-time evolution of HEE. Namely, at late times for large

enough subsystems it was found out that HEE in the leading order only depends on the

difference of time and the subsystem size, and separate dependence on those variables are

exponentially suppressed at late times. This is referred to as memory loss regime of HEE,

and it happens shortly (in relative terms) before saturation in the global quench scenario.

In this subsection we argue that the model of holographic bilocal quench also exhibits a

property of memory loss for large subsystems, and this memory loss seems to be related

with the black hole interior.

To observe it, we consider the expression for ∆S(t) = Snon-eq(t) − Seq, where Snon-eq

is given by (4.6) and Seq is given by (4.3) in terms of coordinates of boundary points ϕa,

ϕb instead of ∆ϕ and ϕ0. We find asymptotic expansion of ∆S, taking eRϕa ∼ e−Rϕb � 1

and also considering the limit of late times, such that e−Rt → 0, but eR(t−ϕb) and eR(t+ϕa)

are kept fixed. The asymptotic has the form

∆S(t) ∼ log

[(
coth

(
πR

2

)(
eR(ϕa+t) − 1

)
+ 1

)(
coth

(
πR

2

)(
eR(t−ϕb) − 1

)
+ 1

)]
;

So we see that indeed the late-time dynamics of entanglement of large systems are char-

acterized by the functional dependence of time and endpoints of the subsystem as light

cone-like variable combinations t−ϕb, t+ϕa. This asymptotic is dominant for any values

of the horizon radius. For large horizon radius R > 1, one can expand further to obtain

the following leading behavior:

∆S = R(t− ϕb) +R(t+ ϕa) + 2 log coth
πR

2
+O(e−R(t+ϕa)) +O(e−R(t−ϕb)) ; (4.18)

This expression is the linear growth regime discussed above (4.10), but with the additional

requirement of large subsystem. Thus we conclude that for large subsystems during re-

laxation to equilibrium at high enough temperature the memory loss regime is basically

the linear growth regime. On the figure 17(b) we plot ∆S of symmetric intervals with

ϕb = −ϕa = ϕ as a function of U = t − ϕ and ϕ. The region when the lines become

horizontal is where the distinguishable dependence on ϕ gets suppressed, which illustrates

the memory loss regime. In other words, we observe that for large subsystems with bound-

aries far away from initial excitation at ϕ = 0 the entanglement propagates as a wave front

– 39 –



J
H
E
P
0
9
(
2
0
1
7
)
1
1
5

(a) (b)

Figure 17. (a) three-dimensional picture of entanglement spreading in case of symmetric intervals.

The horizontal plateau represents the equilibrium regime. (b) density plot of non-equilibrium HEE

as a function of ϕ = ∆ϕ
2 and U = t−ϕ, with R = 5. The horizontal lines signify the disappearance

of dependence of ϕ, which is the memory loss regime.

with retarded coordinate t − ϕ, and for high temperatures this wave-like behavior can be

identified as the entanglement tsunami linear growth regime. This picture is largely similar

to the global quench story [8, 9] in 2d.

We also can take into account that initially we have two excitations, and segments of

similar size and with positions that mirror each other on the boundary circle will equilibrate

synchronously. That means that on upper or lower half of the boundary circle we will have

two waves of entanglement propagating in opposite directions. One can therefore make a

speculation that the instant equilibrium of HEE in segments which belong completely to

the upper or lower half of the circle can be caused by something similar to a standing wave

of entanglement, which emerges as a result of clash of two waves of entanglement from

initial excitations.

4.1.5 Linear growth and black hole interior

The peculiar feature of non-local observables such as HEE in holographic non-equilibrium

processes is that they can probe the region inside the apparent horizon. More specifically,

in the holographic global quench thermalization scenario it was understood [10, 11] that

HRT surfaces which calculate HEE in the boundary can probe the interior of the black

hole, i.e. region of the spacetime inside the horizon. Moreover, it was found that the linear

growth of HEE comes from growth of the piece of the HRT surface which lies inside the

horizon. In the present subsection we discuss similar feature of the holographic bilocal

quench model.

We start by noting the fact that a crossing HRT geodesic which consists of two pieces

of image geodesics, can reach inside the black hole. This happens because, as we discussed

in section 3, the image geodesics can span the entire global AdS3 cylinder, and not just
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Figure 18. Evolution of HEE of segments which probe the interior and do not probe the interior.

the fundamental domain of the topological identification. Because of this and the shape of

the identification wedge relative to the image geodesics (see figure 9), the image geodesics

can probe the interior of the black hole, which is located behind the horizon (see figure 3).

More important is the fact that the actual crossing geodesic, that is pieces ao and o∗b of the

image geodesics, can reach inside the horizon as well. In other words, a crossing geodesic

probes the interior of the black hole when points o and o∗ lie inside the horizon. It appears

that in our case the piece of the crossing geodesic lying inside the horizon is responsible for

the linear growth of HEE. We were not able to prove this statement analytically like it was

done in global quench scenario in [10, 11], but we can establish this observation based on

numerics. We also can obtain a bound for the subsystem size which separates subsystems

which probe the black hole interior and thus exhibit the linear growth of HEE, from those

which do not, in a special case.

To accomplish this, let us consider symmetric segments only, with ϕb = −ϕa = ϕ.

For these segments, as discussed in the proof of the point 3) of proposition 3, the direct

geodesic emerges in the same moment when the crossing geodesic vanishes, that is when

o = o∗. That means that we can use the condition o = o∗ as a condition of thermalization

in global coordinates for symmetric segments. Because intervals are symmetric, it is true

that L(a, o) = L(o∗, b). But it is also true that L(o∗, b) = L(o, b#). That means that when

o = o∗, the point o bisects the image geodesics in half. In particular,

τo=o∗ =
1

2
(τa + τb#) . (4.19)

As also discussed in the proof of the proposition 3, the functions τb#(τb) and, conssequently,

τo(τb) are monotonically increasing faster than the value of τb = τa itself. That means that
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we can detect the enetering of the crossing geodesic inside the horizon by looking first at

when the point o = o∗ will enter the horizon in global coordinates. The point o = o∗ is also

located on the worldline of the particle 1, which enters the horizon at τ = −π
4 , which can

be found from the worldline equation (2.26) and the horizon surface equation (2.22) [34].

Thus we come to a condition
1

2
(τa + τb#) = −π

4
; (4.20)

This is the moment of global time when a subsystem will thermalize exactly at the time

when the deepest point of the HRT geodesic o = o∗ will just reach the horizon. The

smaller subsystems which thermalize faster (because of the relation t = ϕ) will not probe

the interior, and larger subsystems which thermalize longer will probe the interior.

Keeping in mind that τa, τb# ∈ [−π
2 ,

π
2 ], we can rewrite this equation as

tan τa = cot τb# =
1

tan τb(1 + 2E2) + 2E
cos τb

(E cosφb + sinφb)
; (4.21)

where we used the formula (A.12) for τ# at the boundary χb → ∞. Next, we use the

equalities φb = −φa, τb = τa and transform the equation (4.21) into BTZ coordinates using

the formulas (2.6:

(1 + 2E2) cosh2Rϕ− 2E2 coshRϕ coshRt− E sinh 2Rϕ = sinh2Rt . (4.22)

Then we substitute the expression (4.16) for thermalization time for symmetric subsystems

t = ϕ, the definition of E = coth πR
2 , and then solve for ϕ. The result is

ϕhor =
1

2R
arcsinh tanh

πR

2
; (4.23)

This is the lower bound for the size of the symmetric segment which will probe interior

of a black hole of the given size at some point during its equilibration. We denote the

corresponding thermalization time as thor

We plot time evolution of HEE for symmetric segments which do or do not probe the

interior on the figure 18. The blue curve corresponds to a segment that doesn’t probe

the interior since its size is smaller than ϕhor. The green curve corresponds to the critical

segment with ϕ = ϕhor, which just touches the horizon in the moment of saturation. Red

and brown curves all correspond to large segments that probe the interior and, as seen

on the plot, exhibit the linear growth regime. Larger segments have longer linear growth.

The time scale t2 which signifies the start of the linear growth (see figure 15) is the time

scale when the crossing HRT geodesics penetrates the horizon. The formula (4.23) gives

the lower bound for t2 in case of symmetric segments for given R.

Thus we see that the probing of the black hole interior by crossing HRT geodesics

is related to the linear growth of HEE. In the previous subsection we also discussed that

for large temperatures the linear growth is related to the memory loss regime for a given

subsystem. We see that in the bilocal quench model it is evident that loss of memory of the

initial state at thermalization for a given subsystem is related to the problem of probing

the black hole interior.
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Figure 19. The grey region is the entanglement shadow, which appears when t > π
2 . The blue

curve is the maximal RT geodesic.

4.1.6 Scrambling time and entanglement shadow

Bigger subsystems thermalize longer, according to the formula (4.15) (see figure 16(b)). On

the other hand, among the segments of the same size ∆ϕ the segments which thermalize

longest are the symmetric segments with ϕ0 = 0. From these considerations it follows that

there are two distinct subsystems among all subsystems which thermalize last: it is the

symmetric segment with ϕb = −ϕa = π
2 and its complement. The thermalization time of

these subsystems can be calculated from the formula (4.16) and equals to

t∗ =
π

2
. (4.24)

At this time, all subsystems, which include half of total degrees of freedom in the boundary

theory or less, are thermalized. This timescale is often referred to as scrambling time [57, 58]

in the context of relaxation of small perturbation of the thermal state. This is the time

scale when the information about the initial state is scrambled so thoroughly that it cannot

be restored from any small fraction of the total amount of degrees of freedom.

Now let us ask the question: how the fact that after the scrambling time all small

subsystems are thermalized is reflected in the bulk geometry? All small subsystems being

at equilibrium means that their entnaglement entropy is governed by direct geodesics,

which means that colliding particles are not probed by HRT geodesics anymore. In other

words, beginning from t = t∗, particles are located in a region of the spacetime which

is not probed by the entanglement. This signifies that the entanglement shadow [59, 60]

appeared in the bulk in the moment t = t∗, that is the region which is not probed by RT

surfaces. This is a region between the horizon and the radius given by the depth of the

direct geodesic with opening angle π or, equivalently, from the position of the particle at

t = π
2 , see figure 19. Using the latter definition and the worldline equation (2.39), we get

rshadow = R coth
πR

2
= RE . (4.25)
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Figure 20. Mutual information with dependence of time for different subsystems. Scales of

subsystems: (a) ∆ϕup = 27π/40, ∆ϕdown = 9π/20; (b) ∆ϕleft = 1.68, ∆ϕright = 2.2; (c) ∆ϕup =

1.2, ∆ϕright = 1.

Thus we get that the dimensionless radius of the entanglement shadow equals the energy

of the particle 1 in global coordinates. This entanglement shadow is precisely the same as

the entanglement shadow of the BTZ black hole spacetime [59, 61].

Thus we observe that during the evolution of a pure state after the quench the in-

formation about the initial state gets scrambled when the ingoing matter falls into the

entanglement shadow, which is associated with the forming black hole. While the true

mixed thermal state is unreachable during the unitary time evolution, we do get the state,

where all the initial data is completely scrambled over the entire system. Holographically

this means that the horizon does not form in finite amount of time, however the entangle-

ment shadow appears after the scrambling time, which is finite for compact CFT.

4.2 Mutual information

In this section we consider the behavior of mutual information using HRT prescription.

The mutual information for two disjoint regions is defined as:

I(A,B) = S(A) + S(B)− S(A ∪B) (4.26)

where S(A ∪ B) is a joint entropy, i.e. a minimal geodesic length between two possible

types of geodesics. It means that the mutual information is zero if two regions are well

separated.
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We compute the mutual information for different scales and locations of regions and

analyze the time dependence. We are interested in equilibration of mutual information

that can be described as reaching plateau behavior.

The mutual information in thermal equilibrium is either zero or a positive constant.

We expect that the mutual information reaches equilibrium regime when all terms in the

eq. (4.26) saturate. We present the most destinctive cases of mutual information behavior

as function of time in the figure 20. We can see that the equilibration comes at the different

moments of time that we called tAB∗ that has been considered in several papers [13, 18,

23, 27, 28]. A value of this time scale depends on the location and size of the regions,

but is bounded from above by the scrambling time of the entire system t∗ = π
2 (see the

discussion above).

We have plotted the pictures of the mutual information in dependence of time up to

scrambling time (4.24). The mutual information behavior in the system with two excita-

tions is generally similar to the behavior in AdS-Vaidya geometry [13], however there are

kinks that can be described differently which occur when the change of a regime happens

in one of the terms in (4.26). In the figure 20(a) two kinks correspond to the thermalization

of the small and large joined geodesics. In the figure 20(b) the first kink means that a small

subsystem thermalizes as well as the second kink corresponds to the thermalization of the

second subsystem. The mutual information in the last case, presented in the figure 20(c),

has a peak that corresponds to the thermalization of the subsystem which contains the

initial excitation.

5 Thermalizing correlators

Another way to probe thermalization is to study two-point correlation functions in the

state in the boundary CFT which is dual to the bulk spacetime with a forming black

hole. In this section we discuss non-equilibrium two-point correlation functions of a scalar

operator O∆. We calculate the Lorentzian two-point correlation functions in the frame-

work of the geodesic approximation [35], which holds for ∆ � 1. We apply the geodesic

approximation in the BTZ coordinates of AdS3 spacetime with colliding massless parti-

cles. According to this prescription, to calculate the two-point correlator between points

a and b on the boundary of a given asymptotically AdS spacetime, one has to sum over

all geodesics between these points. The original formulation [35] is valid in the Lorentzian

signature only when the points on the boundary are spacelike-separated. In the case of

timelike-separated points, the situation is more tricky, and a generalization is needed, e.g.

see [7, 47, 48]. Because of this issue, we consider two cases separately. The pole structure

of Lorentzian correlators is recovered by introducing the phase factors which result in a de-

sired iε-prescription. With that in mind, the schematic formula for the correlator between

spacelike-separated points a and b in geodesic approximation reads:

GA∆(ta, ϕa; tb, ϕb) =
∑
n

e−∆Lren(a,b) × Φ∆
A(a, b;n) ; (5.1)

where index A stands for ret (retarded), F (Feynman) or W (Wightman) correlators. The

lengths of the geodesics are appropriately renormalized by subtraction of diverging part.
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The limits of summation are defined by the concrete geometry of the defect in the AdS3

spacetime. It can include a finite number of winding geodesics, like in case of a point

particle [37, 45–49, 62, 63], or an infintite amount of winding geodesics, like in case of

the BTZ black hole [64], see formula (C.1). In the general case, the set of values of the

summation variable n depends on the choice of points a and b as well. However, one can

always distinguish the dominating contribution coming from a minimal geodesic.

5.1 Spacelike correlations

5.1.1 Leading contributions

In the section 3 we have established that if points a and b are spacelike-separated, one

can always distinguish a minimal geodesic among the set of all geodesics between them

- this is either direct geodesic, or the crossing geodesic, depending on the location of the

endpoints. So for the most of this section we will only consider the leading contributions

to correlators:

GA∆(ta, ϕa; tb, ϕb) ∼ e−∆Lmin(a,b) × Φ∆
A(a, b; 0) . (5.2)

Here ΦA is an appropriate factor for a given correlator dictated by the iε-prescription in the

Lorentzian signature. The explicit formulas for different ΦA are given by (C.3), (C.4), (C.5).

Let us restrict ourselves to Wightman and Feynman correlators. Then for spacelike-

separated points ΦF,W = 1, and we omit these factors in this subsection.

Analogously to HEE, we have two kinds of behavior of correlation functions depending

on the location of the endpoints.

1. Suppose that endpoints are located to the same side of the collision line, that is

either ϕa, ϕb ∈ [0, π] or ϕa, ϕb ∈ [−π, 0]. Then the minimal geodesic is the direct geodesic,

as stated by proposition 1. The length of the direct geodesic is given by (3.10). We

renormalize it by subtracting the 2 log r0
R piece, and thus the correlator is thus given by

GA∆(ta, ϕa; tb, ϕb) ∼
(

1

2(coshR∆ϕ− coshR∆t)

)∆

. (5.3)

This is the same result as in case of thermal equilibrium (C.1), and it is expected since in

section 4 we discussed that with these endpoints HEE, which is also defined by the minimal

geodesic length, is at its equilibrium value.

2. Suppose that endpoints are located on different sides of the boundary with respect

to the collision line. More specifically, suppose that ϕa ∈ [−π, 0] and ϕb ∈ [0, π]. Then

the minimal geodesic is either the direct geodesic, or the crossing geodesic. In the general

case the lengths of these two geodesics are comparable, as evident from our discussion

of HEE, so we take into account both these contributions on equal footing. However, as

we discussed, generally crossing and direct geodesics for such choice of endpoints do not

always exist, so we need to account for that as well. For this purpose we introduce auxiliary
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Θ-functions:

Θcross(a, b) =

{
1 , if a∗b and ab# intersect W±

0 , if a∗b and ab# do not intersect W± .
; (5.4)

Θdir(a, b) =

{
1 , if the direct geodesic does not intersect W±

0 , if the direct geodesic intersects W± .
; (5.5)

The idea is that Θ = 1 if the corresponding geodesic exists, and Θ = 0 if it does not. The

crossing geodesic exists when the image geodesics cross the identification wedge, and the

direct geodesic exists when it does not cross the identification wedge and fully belongs to

the fundamental domain in the bulk. Hence the definition.

Now, using the formula for length of the crossing geodesic (3.24) and for length of the

direct geodesic (3.10) and again subtracting the divergence, we can write the expression

for the correlator as:

GA∆(ta, ϕa; tb, ϕb) ∼
(

2

(
(−1 + E2) coshR∆t+ (1 + E2) coshR∆ϕ+ E2 cosh 2Rϕ0

+E2 cosh 2Rt0 + 4E coshRt0 coshR
∆t

2
coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
+4E sinhRt0 sinhR

∆t

2
sinhRϕ0

(
E sinhR

∆ϕ

2
− coshR

∆ϕ

2

)
− 2E sinhR∆ϕ

))−∆

×Θcross(a, b) +

(
1

2(coshR∆ϕ− coshR∆t)

)∆

×Θdir(a, b) . (5.6)

This is a discontinuous function because of the fact that different geodesics not always

exist. We will discuss the issue of these discontinuities in geodesic approximation in more

detail in the next subsection. For now, let us consider the correlation function (5.6) in

more detail in particular case of equal-time points ta = tb = t. In this case we can write

Θ-functions as Heaviside step functions of time:

Θdir(a, b) = θ(t− tcr) ; (5.7)

Θcross(a, b) = θ(−t+ to=o∗) ; (5.8)

The first equality reflects the fact that the direct geodesic exists after t = tcr given by

formula (3.30). The second line means that the crossing geodesic exists until the time

when the corresponding image geodesics cross W± in the same point o = o∗ located on the

worldline of the particle 1. The equal-time correlator then reads

GA∆(t, ϕa; t, ϕb) ∼
(

2

(
(−1 + E2) + (1 + E2) coshR∆ϕ+ E2 cosh 2Rϕ0

+ E2 cosh 2Rt+ 4E coshRt coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
−2E sinhR∆ϕ

))−∆

× θ(−t+ to=o∗)

+

(
1

2(coshR∆ϕ− 1)

)∆

× θ(t− tcr) . (5.9)
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In the section 4.1.2 we have calculated the thermalization time t
(a,b)
∗ of a segment between

a and b (4.15). From the perspective of correlation functions, this is the time when two

terms in (5.9) exchange dominance: for t < t
(a,b)
∗ the first term is leading and we have

non-equilibrium regime, and for t > t
(a,b)
∗ the second, equilibrium term dominates. Note

that from proposition 3 it follows that tcr < t
(a,b)
∗ < to=o∗ . That means that in general

there are two small intervals in the end of non-equilibrium regime and in the beginning

of the equilibrium regime when both terms contribute. This is a feature which arises in

correlation functions, but the HEE is always defined by a single minimal geodesic and

therefore is insensitive to such details.

5.1.2 Contribution of windings

In the section 3.4 we have discussed that in the bulk between the two given boundary

points winding geodesics emerge at late times. These winding geodesics give subleading

contributions to two-point functions in geodesic approximation, according to the general

formula (5.1). The correlators dual to BTZ black hole spacetime include the contribution

of infinite amount of winding geodesics (C.1), whereas in case of our bulk spacetime with

particles the identification wedge prohibits the existence of any winding geodesics at least

at early times. Therefore, it is interesting to look at the emergence of winding geodesics

as subleading contributions to the correlation functions, as they tell us how thermalizing

correlation functions approach the equilibrium correlation functions (C.1) at late times.

In the proposition 4 we have discussed that a winding geodesic between points a and

b with the winding number n exists after the time t̃n, when it is able to wind around the

horizon without intersecting W±, see figure (13). We thus can define the Θ-functions which

regulate the presence of winding contributions in the correlation functions:

Θwinding(a, b;n) =

{
1 , if the n-th winding geodesic does not intersect W±

0 , if the n-th winding geodesic intersects W± .
; (5.10)

where n 6= 0 is an integer. Note that Θwinding(a, b; |n|) 6= Θwinding(a, b;−|n|) (as can be

seen from figure 13). According to the proposition 4, we can simply write

Θwinding(a, b;n) = θ(t0 − t̃n) ; (5.11)

and also in the limit t0 → ∞ it is true that Θwinding(a, b;n) = 1 for any n and any

angular coordinates of endpoints a and b. Using these functions and the expression for

the length of a winding geodesic (3.42), we conclude that the general form of the two-

point correlation functions with spacelike-separated points in geodesic approximation is

the following, depending on the location of the endpoints.

• For ϕa, ϕb ∈ [0, π] or ϕa, ϕb ∈ [−π, 0], we have

GA∆(ta, ϕa; tb, ϕb) =

(
1

2(coshR∆ϕ− coshR∆t)

)∆

(5.12)

+
∑

n∈Z, n 6=0

(
1

2(cosh[R(∆ϕ+ 2πn)]− cosh[R∆t]

)∆

θ(t0 − t̃n) ;
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• For ϕa ∈ [−π, 0] and ϕb ∈ [0, π], we have

GA∆(ta, ϕa; tb, ϕb) ∼
(

2

(
(−1 + E2) coshR∆t+ (1 + E2) coshR∆ϕ+ E2 cosh 2Rϕ0

+E2 cosh 2Rt0 + 4E coshRt0 coshR
∆t

2
coshRϕ0

(
sinhR

∆ϕ

2
− E coshR

∆ϕ

2

)
+4E sinhRt0 sinhR

∆t

2
sinhRϕ0

(
E sinhR

∆ϕ

2
− coshR

∆ϕ

2

)
−2E sinhR∆ϕ

))−∆

×Θcross(a, b)

+

(
1

2(coshR∆ϕ− coshR∆t)

)∆

×Θdir(a, b)

+
∑

n∈Z, n 6=0

(
1

2(cosh[R(∆ϕ+ 2πn)]− coshR∆t

)∆

θ(t0 − t̃n) . (5.13)

From these formulas (5.12)–(5.13) it is clear that in the limit t→∞ one recovers the equi-

librium two-point function (C.1). The geodesic approximation dictates that the subleading

terms in the image sum appear one by one with time, as the particles move towards each

other in the bulk.

The presence of Θ-functions in the correlators obtained from geodesic approxima-

tion when there are multiple geodesics possible between two given endpoints are a com-

mon occurence in cases of locally AdS3 spacetimes with singularities which admit multiple

geodesics. A prime example for such occurence is the AdS3 with a point particle [35, 45–

48, 62, 63]. Our bulk spacetime is a special case of AdS3 with two massless point particles.

Correlators dual to AdS3 with two particles were studied in global coordinates in [37, 49],

and they also exhibit such discontinuities. On the example of massive static particle in

AdS3 it was shown in [62, 63] that geodesic approximation gives a continuous result which

coincides with the correlators obtained from GKPW dictionary, if the spacetime is an AdS3

orbifold. In the general case, however, the geodesic correlators are discontinuous, and these

discontinuities are smoothened by corrections to the geodesic approximation, which is ev-

ident if one calculates correlation functions using e.g. full GKPW dictionary [62, 63]. In

the orbifold case, these corrections to the geodesic approximation are exactly zero.

In our case, the bulk spacetime itself is not an orbifold. However, as the time goes

on, the spacetime geometry approaches that of the BTZ black hole spacetime, which is an

oribfold. So one could say that in our case the bulk spacetime looks more and more like

an AdS3 orbifold. So if we assume that considerations from [62, 63] can be extended for

our case of the AdS3 spacetime with two massless particles, then it can be expected that

the corrections to the geodesic approximation will be diminishing at late times.

5.2 Timelike correlations

Now let us turn to the discussion of the time dependence of two-point correlation functions.

We consider the case of endpoints a = (0, ϕa) and b = (t, ϕb) (with t > 0) and study

the time dependence of correlation functions in the approximation of the leading term in
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Figure 21. A reflection geodesic in relation to the wedge of the infalling particle.

geodesic approximation (5.2). First, let us note that when t is small enough such that

t2 − ∆ϕ2 < 0, then the interval between the endpoints is spacelike and we can just use

the geodesic approximation as discussed above. However, for timelike-separated points on

the boundary t2 −∆ϕ2 > 0 there is no real smooth geodesic between them. The geodesic

approximation requires some continuation to the case of timelike-separated points.

This issue previously was tackled in the study of holographic global quench models [5–

7] and other non-stationary backgrounds [45–48]. Several methods to continue the geodesic

approximation to the timelike case were proposed in [7]: a specific analytic continuation,

complexified geodesics and quasigeodesics. Here we use the method based on reflection

mapping [46–48], which can be considered as a streamlined version of method of quasi-

geodesics adapted for topological quotients of AdS3 in global coordinates.

The idea is the following [47, 48]. Let us define a mapping R which acts on the

boundary of AdS3 in global coordinates:

R : (τ, φ) 7→ (τ + π, φ+ π) ; (5.14)

This mapping has the key property that is useful for us. Consider a timelike interval ab

on the boundary. If one acts with R on the point a, then the resulting interval aRb is

spacelike. This is because in global coordinates φ ∼ φ + 2π. Now, since aR and b are

spacelike-separated, we can consider the AdS3 geodesic between points aR and b. We will

call it the reflection geodesic. Its length can be found from the matrix formula (3.4).

We parametrize the points a and b by matrices A and B, according to (2.7), by global

coordinates (2.2), keeping in mind that they are located near the boundary at χ0 →∞:

A = eχ0

(
cos τa + sinφa sin τa + cosφa
− sin τa + cosφa cos τa − sinφa

)
; (5.15)

B = eχ0

(
cos τb + sinφb sin τb + cosφb
− sin τb + cosφb cos τb − sinφb

)
;
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Using (5.14), we write the matrix parametrization for coordinates of reflected point aR:

AR = eχ0

(
− cos τa − sinφa − sin τa − cosφa
sin τa − cosφa − cos τa + sinφa

)
= −A ; (5.16)

This formula is explicitly invariant and we will use it later for points a and b parametrized

by BTZ coordinates as in (3.1). Now we can use (3.4) and (5.16) to write the expression

for the reflection geodesic length in terms of matrices of initial endpoints A and B:

L(aR, b) = log tr(AR)−1B = log
(
−trA−1B

)
; (5.17)

In our case we deal with timelike-separated endpoints on the boundary, which in global

coordinates are parametrized as a = (−π
2 , φa) and b = (τ, φb). To find the two-point

correlation function between these points, we use the reflection prescription [47, 48] and

replace regular direct geodesic with the reflection geodesic for timelike-separated points:

GA∆(a, b) ∼ e−∆Lren(aR,b) × Φ∆
A(a, b) ; (5.18)

Note that we also take into account the Φ-factors of Lorentzian correlators, which are

given in appendix C by formulas (C.3), (C.4), (C.5). For our choice of endpoints, the

reflection geodesic is a regular direct geodesic. This follows from the fact that by definition

of reflection mapping τaR = π. Meanwhile, in global coordinate the particle worldline is a

light-like geodesic which goes from the point (0, 0) to the point (π, π) on the boundary, and

the identification surfaces W± are located beneath the worldline, see figure 21 (the BTZ

identification surfaces V± are not shown for clarity). This means that all reflection geodesic

will pass freely above the wedge, without intersecting it. Moreover, φaR = φa + π means

that the point aR is located in the second external region with respect to the BTZ black

hole identification, and thus the reflection geodesic is a direct geodesic that goes through

the wormhole from the external region under consideration in our problem into the other

exterior region which is located in the identification dead zone. Thus, the direct geodesic

which goes through the wormhole is the only possible reflection geodesic.

Now we can calculate its length using the formula (5.17) and parametrizing points a

and b by BTZ coordinates according to (3.1). The result is (we subtract the diverging part):

Lren(aR, b) = log [2(− cosh(ϕb − ϕa) + cosh(tb − ta))] . (5.19)

Note how it is different from the expression for the length of direct spacelike geodesic (3.10)

by opposite sign of the expression under the logarithm, as expressed by the formula (5.17.

Now we substitute this expression into (5.18) to obtain the two-point correlation functions

between timelike-separated points a = (0, ϕa) and b = (t, ϕb), t > 0:

GA∆(0, ϕa; t, ϕb) ∼
(

1

2(− coshR∆ϕ+ coshRt)

)∆

Φ∆
A(a, b) . (5.20)

This expression establishes the fact that the leading temporal behavior of the two-point

correlation functions after the quantum quench is the same as in thermal equilibrium (C.1)
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and does not carry any details about the infalling matter which forms the black hole. The

same result was obtained in the case of Vaidya global quench [7]. Note, however, that if

one takes the temporal coordinate of one endpoint before the quench, e.g. ta < 0, then the

time dependence of the correlation function will be different [7, 15]. In the context of our

holographic bilocal quench model of colliding particles forming a black hole this calculation

is out of the scope of this paper. However we can speculate that in such situation we would

have to consider reflection geodesics which somehow pass through the identification W±
like spacelike crossing geodesic. Such reflection geodesic will carry information about the

holonomy of the infalling particle and will lead to a more distinct time dependence of the

correlation function.

6 Conclusions and discussion

In this paper we have investigated black hole formation from a collision of particles as

a model of holographic thermalization in the boundary theory after the bilocal quantum

quench in the framework of AdS3/CFT2-correspondence. This model holographically de-

scribes unitary time evolution of a non-homogeneous initial state with two excitations on

the antipodal points of the CFT spacetime cylinder. We have probed the thermalization

process by studying the non-equilibrium behavior of entanglement and two-point correla-

tion functions. More specifically, we studied the dynamics of entanglement by using the

time-dependent generalization of the RT prescription [3, 4] to calculate the holographic en-

tanglement entropy and mutual information, and investigating their time dependence, and

we used the geodesic approximation and its extension to timelike case to study real-time

two-point functions. The key results are the following.

1) In the initial state of the boundary theory the subsystems which are located between

the excitations exhibit constant thermal behavior of the entanglement entropy (4.3),

since t = 0. Because we study the evolution of a pure state, their complements,

which contain both initial excitations, are also thermalized, with HEE given by (4.4).

We expect that this partial equilibrium in the initial state from the HEE perspec-

tive is one of the features of the bilocal quench in 2d specifically. One can think

that this partial instant equilibration of the entanglement entropy is caused by the

long-range entanglement induced just after the quench. The emergence of long-range

entanglement is a characteristic feature of holographic local quenches, as discussed

in [22] and also observed in [24]. It happens as a result of the fact that we use

the time reversal-invariant classical bulk dynamics for holographic description of a

non-reversible process, in which we instantly inject a large amount of energy. Mean-

while, the subsystems which at t = 0 contained one of the initial excitations, display

non-trivial non-equilibrium dynamics of HEE (4.6) and two-point correlation func-

tions (5.6). This picture suggests that the bilocal quench setup perhaps could work

as a toy model for diffusion of two quantum fluids in a finite-volume vessel at finite

temperature which are initially divided by two walls, which is analogous to a joining

quench where two systems at the same finite temeprature are brought into contact in
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two points (for holographic consideration of joining quench of two thermal systems

in a single point, see [32]). As explained in [24], the holographic description of the

local joining quench is similar to the description of an operator local quench. In our

case we observe the same on qualitative level.

2) We have obtained the explicit formula (4.6) for the non-equilibrium behavior of the

entanglement for subsystems which contained one of the initial excitations. The time

dependence of HEE governed by the formula (4.6) is substantially similar to the

global quench scenarios [5–9, 11–13, 15, 17–19, 21]. In our case the time evolution

of HEE also display the early-time quadratic growth and the linear growth regime,

see Figs 15–16. This confirms the assumptions about universality of non-equilibrium

growth of entanglement entropy with respect to the choice of initial out-of-equilibrium

state in strongly-coupled systems proposed in previous work [8, 9, 16, 17] for our spe-

cial choice of initial state with two excitations. However, there is a strong difference

in the character of transition to saturation: in our case the HEE undergoes a sharp

transition to saturation with discontinuous first derivative, as the direct geodesic be-

comes dominating in the HRT prescription over the crossing geodesic. This behavior

is similar to a first order phase transition,8 which also happens in higher-dimensional

global quench Vaidya models and in holographic models of formation of a charged

black hole [8, 17]. Contrary to this, in the global quench setup in two dimensions the

saturation transition is smooth. The sharp transition to saturation also reveals that

in our case we can observe a sharp emergent light cone (see figure 17), which hints

at similarity with quasi particle picture of entanglement spreading.

3) Because of the similarities in non-equilibrium dynamics of HEE between the bilocal

quench and global quench setups, we have observed that the universal characteris-

tics of entanglement grwoth in the global quench models, namely the entanglement

velocity vE and the emergent lightcone velocity vLC are relevant characteristics of

the entanglement growth for the equilbration after the bilocal quench as well. We

have confirmed that in our 2d model they equal to the speed of light, which is in

agreement to their respective definitions in the case of 2d global quench. The fact

that such velocity characteristics of entanglement propagation are meaningful in the

case of certain local quenches was established in the work [29, 30, 32], where authors

deal with local quenches which drive the system out of the initial thermal equilib-

rium. We have also discussed that the argument about the relation between vLC , vB
and entanglement wedge subregion duality by Mezei and Stanford [16] also can be

extended to our case. While it is significantly simplified by the fact that we work

solely in (2 + 1)d bulk spacetime, and the RT surfaces are just direct geodesics, the

interesting point is that in our case we deal not with small perturbations of the equi-

librium state that fall into the black hole in the bulk, but with strong perturbations

of vacuum which are responsible for the creation of the black hole and thermalization

8This analogy with classical thermodynamics is not complete, because in the case of thermodynamical

first order transition the entropy itself a discontinuous first derivative of a thermodynamic potential.
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of the pure state. However, the bulk geometry of the particle creation itself in global

coordinates (see figures 3), (4) looks similar to a setup when the particle 1 falls into

a black hole. Such situtations have been considered in the work [26, 27, 29, 30] as

holographic duals to local quench in the thermal state. We can say that the bilocal

quench holographic model is a model of thermalization of a pure state which shares

similarities with both global quench models and local quench models of equilibration

of perturbations of the thermal state.

4) We have observed the relation between the scrambling time of the system t∗ = π
2

and the emergence of the entanglement shadow in the bulk. Namely, once the state

evolves part the scrambling time, the identification wedge gets fully covered by the

entanglement shadow, which cannot be probed by the entangling surfaces, which by

that time are all direct geodesics and cannot reach into the bulk deeper than the

radius of the entanglement shadow given by (4.25). In fact, after the scrambling time

no subsystem can probe the infalling matter in the entanglement shadow, regardless

of its particular features. That means that the same is true for e.g. an infalling

Vaidya shell in AdS-Schwarzschild coordinates. We expect that the relation between

the emergence of the entanglement shadow and scrambling time should be easily

extendable to quantum quenches in higher-dimensional case.

5) We have discussed that the linear growth of HEE at large distances from initial

excitations is identified with the regime of memory loss and wave-like spreading of

entanglement. We also have provided some evidence that, similarly to the holographic

global quench case, the linear growth is governed by HRT geodesics that probe the

interior of the forming black hole. Therefore, the behavior of HRT crossing geodesics

hints that evidently there is a connection between the memory loss of details of the

initial state during the thermalization and the interior of the black hole. We have

also discussed that there are some hints that the thermalizing state loses detailed in-

formation about the initial configuration that can be seen purely from the geometry

of the bulk spacetime. First, as we discussed in the end of section 2.2, the shape of

the identification wedge, defined by holonomies of the colliding particles, approaches

cylindrical at the limit t → ∞. The cusps at the particle worldlines, which break

the rotational symmetry, are gradually smoothed as the state approaches thermal

equilibrium. The other point is related to which geodesics govern equilibrium and

non-equilibrium regimes in our model. The non-equilibrium physics in our model is

governed by crossing geodesics. The information about crossing geodesics is encoded

in image geodesics. These geodesics are constructed using the identification isom-

etry of the matter which forms the black hole, and can go anywhere in the global

AdS3. Meanwhile, the equilibrium regime is described by direct geodesics which are

completely restricted to the fundamental domain of the identification and do not

carry any information about the infalling matter which describes the initial state.

We can say that after the thermalization the system has lost all information about

the infalling matter and about the orbit of its identification isometry which is located

outside of the fundamental domain. All of these points lead us to a conclusion that
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we have a strong parallel between the memory loss during thermalization and infor-

mation loss in the black hole formation, and that this parallel is prominent in the

behavior of holographic entanglement entropy.

6) The holographic mutual information can exhibit a variety of different behaviors,

depending on positions and sizes of the subsystems A and B. The most notable

feature is the kinks in the time dependence of the mutual information, which happen

when segments in the formula (4.26) thermalize. These kinks have the same origin

as the sharp transition to saturation in the time dependence of HEE.

7) Similarly to the HEE, the two-point correlation functions with spacelike-separated

points in the minimal geodesic approximation exhibit non-trivial non-equilibrium

behavior in the case when the collision line is located between the endpoints. However,

the subleading contributions from winding geodesics appear with time for any choice

of endpoints at late times, and they signify the approach to equilibrium of the system

as a whole. The time dependence of the correlation functions after the quantum

quench coincides with the thermal behavior, same as in case of the global quench. To

verify this fact, we were able to use a particularly simple extension of the geodesic

approximation to the timelike case based on the reflection mapping, which is suitable

for dealing with AdS3 topological quotients. It is remarkable that the reflection

geodesics which provide the continuation for correlation functions have to go through

the black hole interior into the second asymptotic region. This shows similarity

between the reflection geodesics prescription and analytic continuation of Lorentzian

amplitudes in the bulk background of the eternal BTZ black hole discussed in earlier

work [70]. Contrary to the latter case, in our setup we deal with a pure state, and the

second exterior region is completely unphysical, yet it still seems to play substantial

role in description of late time behavior of holographic observables.

Now let us discuss some possible future directions of the work.

(i) First of all, we have not actually given the precise proof that the bulk spacetime

with two colliding massless particles creating a black hole can indeed holographically

describe the bilocal quench, realized by two operator excitations on the CFT side.

To do that, one would need to calculate the 6-point correlation functions using CFT

techniques and match the results to our holographic computation. We expect that one

could use the method similar to that of [15], where such computation was performed

for the boundary dual of the Vaidya global quench, and also to other earlier work,

e.g. [24, 69, 71]. Specifically, one could consider a 6-point function of two light

operators in the background generated by two “heavy” operators, and calculate it in

the approximation of the vacuum Virasoro conformal block. The main difference from

the calculation based on the monodromy method in [15] would be that in our case we

have a finite amount (namely two) operators which produce excitations represented

by massless particles in the bulk. Because of this, the limiting procedure which would

allow for perturbative solution of monodromy equations at large central charge, will
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be different. The vacuum Virasoro conformal block of the correlation function can

holographically be obtained from the length of the minimal geodesic [24, 69, 72], so

we expect that such CFT computation would reproduce our holographic expressions

for correlation functions (5.3) and (5.6) in the leading order of the semiclassical

expansion. Also, throughout the paper we have been implicitly assuming that the

energy of initial excitations must be high enough in order to form a BTZ black

hole instead of just a static conical defect. These two cases are easily identified and

separated, if one considers the collision of particles in the center of mass frame, as

shown by the formula (2.25) (see [34]), but the black hole rest frame bulk geometry

doesn’t have a well-defined continuation to the case of the formation of a conical

defect, so in our holographic computations this energy threshold is hidden. The CFT

computation of correlators could clarify this issue as well.

(ii) An interesting related question is study of the bilocal quench away from the holo-

graphic limit c→∞. Specifically, it could be interesting to see how the entanglement

scrambles in examples when the cental charge is finite. Such studies were conducted

for local quench [23, 24], as well as global quench [28] scenarios. The key observation

in the latter case is that in some cases at finite central charge there are memory

effects, which interrupt the equilibrium saturation of HEE and mutual information

at late times. We could expect that in the bilocal quench scenario one would also

observe similar memory effects for finite (small) c theories. Moreover, one could con-

sider the N -local quench protocol generalization for more than 2 excitations in order

to find out how the late time memory effects in HEE depend on the fraction of initial

excitations located inside the given subsystem, or simply speaking how much memory

do these memory effects carry about the initial state. However, of course the study

of quenches produced by multiple localized excitations in a CFT at finite c seems to

be a challenging problem.

(iii) Another related question is the study of the 1/c corrections. We have observed that

HEE in our model exhibits sharp transition to saturation. We could expect that the

perturbative semiclassical corrections in 1/c would smooth out the transition. Even

more interesting are the non-perturbative, e−c corrections. These are considered

to be the corrections which should restore the information lost in black holes in

holographic correlation functions [73]. In case of our setup that would mean that the

e−c corrections to HEE would carry information about the topological identification

even after the saturation. That fact could be used to investigate the question: just

how much the entanglement entropy actually knows about the bulk geometry beyond

the semiclassical approximation and out of the entanglement wedge?

(iv) A possibly promising direction of further study is the higher-dimensional general-

izations of the bilocal quench to the cases of AdS4/CFT3 and AdS5/CFT4. The

holographic dual for thermalization after bilocal quench in those cases should be

the AdS spacetime with colliding shockwaves which create a black hole [38]. From

the present work, as well as from previous work on local quenches in 3d [29, 30]

and bounds on the entanglement propagation [16, 17] we can expect that the non-
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equilibrium dynamics of entanglement will be more rich in higher dimensions. Also,

the bilocal quench in AdS5/CFT4 could serve as a viable more realistic holographic

model of thermalization in heavy ion collisions [38, 68].

(v) Also an interesting direction is to consider the collision of multiple particles. The

shape of the identification surfaces will be much more sophisticated, but we expect

that we could see many similarities. In particular, it is plausible that if we consider

the collision of N particles, then we still will have the HEE of subsystems which are

located in between the particles instantly thermalized, and HEE of subsystems which

contain some (but not all) particles in the initial moment would demonstrate some

sort of non-equilibrium nontrivial dynamcs. It was shown that the Vaidya shell can

be obtained by taking the continuous limit N →∞ of N colliding particles [74], and

the CFT dual of the Vaydia bulk spacetime in [15] was studied in a similar manner.

It is plausible that we could use the bulk geometries with N colliding particles to

study the transition and similarities between N -local quenches and Vaidya global

quench, and extend further the ideas from this work on the similarities between the

local quenches and global quenches which lead to thermalization.

Acknowledgments

The authors are grateful to Dmitri Ageev, Douglas Stanford and Tadashi Takayanagi for

useful discussions. This work is supported by the Russian Science Foundation (project

14-50-00005, Steklov Mathematical Institute).

A Geodesics and isometries in global coordinates

The metric of global AdS3 reads (2.3):

ds2 = −cosh2χdτ2 + dχ2 + sinh2χdφ2. (A.1)

Geodesics can be parametrized as follows (here we present slightly modified form compared

to what was used in [46, 49]):

tan(τ − τ0) = − 2E

1− E2 + J2
cothλ ; (A.2)

tan(φ− φ0) =
−1− E2 + J2

2J
tanhλ ; (A.3)

sinh2 χ =
J2

E2 − J2
cosh2 λ+

(−1− E2 + J2)2

4(E2 − J2)
sinh2 χ . (A.4)

Here τ0, φ0, E, J are constants. If we consider geodesics between the boundary points,

then these constants are related to the coordinates of endpoints as follows:

τ0 =
1

2
(τa + τb) , φ0 =

1

2
(φa + φb) ; (A.5)

2E

1− E2 + J2
= tan

∆τ

2
,

−1− E2 + J2

2J
= tan

∆φ

2
; (A.6)

J2

E2 − J2
=

tan2 ∆φ
2

tan2 ∆τ
2 − tan2 ∆φ

2

,
(−1− E2 + J2)2

4(E2 − J2)
=

1

tan2 ∆τ
2 − tan2 ∆φ

2

; (A.7)

where we introduced ∆τ = τb − τa and ∆φ = φb − φa > 0 for definiteness.
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In the main text we use the image geodesics in global AdS3 with respect to the action

of the isometry generated by the holonomy u2:

X → X∗ := u−1
2 Xu2 , X → X# := u2Xu−1

2 ; (A.8)

where X is parametrized on the group manifold language as (2.8) and the holonomy is

given by (2.30). Using the parametrization (2.8) again for image points X∗ and X#, one

can extract explicit formulas for coordinates of image points. For X∗, we have

tan τ∗ = tan τ(1 + 2E2) + 2E tanhχ

cos τ
(E cosφ− sinφ) ; (A.9)

tanφ∗ =
2E coshχ sin τ + sinhχ(2E cosφ− sinφ)

2E2 coshχ sin τ + sinhχ((2E2 − 1) cosφ− 2E sinφ)
; (A.10)

cosh2 χ∗ = cosh2 χ cos2 τ + ((1 + 2E)2 coshχ sin τ + 2E(E cosφ− sinφ) sinhχ)2 ; (A.11)

and for X# we have

tan τ# = tan τ(1 + 2E2) + 2E tanhχ

cos τ
(E cosφ+ sinφ) ; (A.12)

tanφ# = − 2E coshχ sin τ + sinhχ(2E cosφ+ sinφ)

2E2 coshχ sin τ + sinhχ((2E2 − 1) cosφ+ 2E sinφ)
; (A.13)

cosh2 χ∗ = cosh2 χ cos2 τ + ((1 + 2E)2 coshχ sin τ + 2E(E cosφ+ sinφ) sinhχ)2 ; (A.14)

Here we use the notation E = coth πR
2 .

B Geodesics in the BTZ geometry

We start from the BTZ coordinate patch of the AdS3 spacetime:

ds2 = −(r2 −R2)dt2 +
dr2

r2 −R2
+ r2dϕ2 , (B.1)

where t ∈ [0, +∞), r ∈ (R, +∞), and for now ϕ ∈ R. The geodesics in this geometry are

described by the following formulae [7]:

r(λ)2 = Γ2
− + (Γ2

+ − Γ2
−) cosh2(λ− λ0) , (B.2)

ϕ(λ) = ϕ0 +
1

R
arctanh

(
Γ−
Γ+

tanh(λ− λ0)

)
, (B.3)

t(λ) = t0 +
1

R
arctanh

(√
R2 − Γ2

−
Γ2

+ −R2
tanh(λ− λ0)

)
; (B.4)

The constants Γ±. R are subject to the restriction

0 < Γ2
− < R2 < Γ2

+ ; (B.5)
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One can express the variables as a function of r ∈ [Γ+,∞[:

ϕ±(r) = ϕ0 ±
1

R
arctanh

(
Γ−
Γ+

√
r2 − Γ2

+

r2 − Γ2
−

)
, (B.6)

t±(r) = t0 ±
1

R
arctanh

(√
R2 − Γ2

−
Γ2

+ −R2

√
r2 − Γ2

+

r2 − Γ2
−

)
, (B.7)

λ±(r) = λ0 ± ln


√
r2 − Γ2

− +
√
r2 − Γ2

+√
Γ2

+ − Γ2
−

 . (B.8)

We are interested in geodesics with endpoints on the boundary. From the equations (B.3)

and (B.4), the separation between two boundary endpoints (ϕa, ta, ra =∞) and (ϕb, tb, rb =

∞) is given by

∆ϕ = ϕ2 − ϕ1 = ϕ(λ→∞)− ϕ(λ→ −∞) =
2

R
arctanh

(
Γ−
Γ+

)
, (B.9)

∆t = t2 − t1 = t(λ→∞)− t(λ→ −∞) =
2

R
arctanh

(√
R2 − Γ2

−
Γ2

+ −R2

)
, . (B.10)

In this paper we use BTZ coordinates in the spacetime with BTZ identification generated

by the holonomy (2.19). In the BTZ coordinate patch it periodizes the angular coordinate:

ϕ ∼ ϕ+ 2πn, where n ∈ Z. We choose the fundamental domain such that the worldline of

the first particle is in the middle of the domain, and the worldline of the second particle

is at the periodically identified boundary, i.e. we set ϕ ∈ [−π, π). Depending on the value

of the difference of ∆ϕ = ϕ2 − ϕ1, a geodesic in the BTZ patch of the pure AdS3 space

without topological defects is pulled back to either a direct (|∆ϕ| < π) geodesic, or a

geodesic which winds around the horizon ((|∆ϕ| > π) on the topological quotient. The

above formulas for the geodesics hold when pulled back to the BTZ coordinates, but with

addition of the term 2πn to the ∆ϕ.

With that in mind, let us now focus on geodesics in BTZ coordinates, taking into

account all windings. The equations (B.9)–(B.10) can be used to express the integration

constants Γ± through the coordinates of the endpoints.

Γ+ = R

√√√√ 1 + tanh2 R∆t
2

tanh2 R∆t
2 + tanh2 R(∆ϕ+2πn)

2

, (B.11)

Γ− = Γ+ tanh
R(∆ϕ+ 2πn)

2
, (B.12)

From the equation (B.2) it is clear that the Γ+ has the meaning of the closest distance

along the radial coordinate to the horizon, into which the geodesic with given endpoints

can approach, i.e. the depth of the geodesic in the bulk. The formula (B.11) shows that

winding geodesics always approach to the horizon closer than direct geodesics. This fact is

key to our understanding of dynamics of the pole structure of non-equilibrium correlators,

as explained in the main text.
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The (regularized) length of a geodesic can be found to be

∆λ = λ+(r → r0)− λ−(r → r0) = 2 ln


√
r2

0 − Γ2
− +

√
r2

0 − Γ2
+√

Γ2
+ − Γ2

−

 (B.13)

in terms of a regularized AdS boundary at r = r0. In the limit r0 →∞ this reduces to

∆λ = 2 ln

 2r0√
Γ2

+ − Γ2
−

 . (B.14)

In terms of coordinates of the endpoints, this formula leads to the expression

Lren(a, b) = log (2(cosh[R(ϕb − ϕa + 2πn)]− cosh[R(tb − ta)])) + 2 log
(r0

R

)
, (B.15)

where r0 is the near-boundary cut-off. From this formula, it is clear that the length of any

winding geodesic is always larger than the length of any direct geodesic. Therefore, the

winding geodesics in BTZ geometry will always give subleading contributions to holographic

correlation functions for any placement of endpoints.

C Lorentzian correlators in thermal equilibrium

Consider real-time two-point correlation functions of a scalar operator O of scaling dimen-

sion ∆ in holographic (1 + 1)d CFT at finite temperature T > R
2π above the Hawking-Page

threshold, so that R > 1. In this case the holographic dual bulk spacetime is the static

BTZ black hole. The Wightman two-point correlator than reads [64, 65]:

〈O∆(t, ϕ)O∆(0, 0)〉T =

+∞∑
n=−∞

(
1

2(cosh[R(ϕ+ 2πn)]− cosh[R(t− iε)]

)∆

; (C.1)

Let us assume for definiteness that t > 0. Then in analogy to the zero-temperature vacuum

case of CFT on a cylinder [46–48, 66, 67], this expression can be rewritten as following sum

over images:

〈O(t, ϕ)O(0, 0)〉T =

+∞∑
n=−∞

(
1

2(cosh[R(ϕ+ 2πn)]− coshRt)

)∆

× Φ∆
W (R; t, ϕ;n) ; (C.2)

where the phase factor is introduced

Φ∆
W (R; t, ϕ;n) = exp (−iπ∆θ(coshRt+ cosh[R(ϕ+ 2πn)])) . (C.3)

If initial points are spacelike-separated, then all phase factors in this expression equal to 1,

and thus the Wightman correlator for spacelike-separated points can be interpreted as sum

over all geodesics in the BTZ black hole geometry with metric (2.5). The n is the winding

number. The leading contribution to the sum is given by the direct geodesic with n = 0, and

winding geodesics give exponentially suppressed contributions to the correlator. If points
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are timelike-separated, then the contribution with n = 0 is interpreted as contribution from

the reflection geodesic times the exponential factor e−iπ∆. The same goes for contribution

from image points.

One can rewrite other real-time two-point functions in similar manner [7, 46–48]. The

difference is in the phase factors, which can be recovered using common QFT definitions

of Green’s functions through Wightman correlators. For example, for the retarded Green’s

function one obtains

Φ∆
ret(R; t, ϕ;n) = −2i sin[π∆ sign(t)]θ(t)θ(coshRt− cosh[R(ϕ+ 2πn)]) ; (C.4)

and for the Feynman propagator one obtains

Φ∆
F (R; t, ϕ;n) =

[
θ(t)e−i π∆ sgn(t) + θ(−t)eiπ∆ sgn(t)]

]
θ(coshRt− cosh[R(ϕ+ 2πn)])

+θ(− coshRt+ cosh[R(ϕ+ 2πn)]) . (C.5)
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[27] P. Caputa, J. Simón, A. Štikonas, T. Takayanagi and K. Watanabe, Scrambling time from

local perturbations of the eternal BTZ black hole, JHEP 08 (2015) 011 [arXiv:1503.08161]

[INSPIRE].

[28] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement scrambling in 2D

conformal field theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].

[29] M. Rangamani, M. Rozali and A. Vincart-Emard, Dynamics of holographic entanglement

entropy following a local quench, JHEP 04 (2016) 069 [arXiv:1512.03478] [INSPIRE].

– 62 –

https://doi.org/10.1007/JHEP05(2013)014
https://arxiv.org/abs/1303.1080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1080
https://doi.org/10.1007/JHEP03(2014)097
https://doi.org/10.1007/JHEP03(2014)097
https://arxiv.org/abs/1312.6887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.6887
https://doi.org/10.1007/JHEP09(2015)114
https://doi.org/10.1007/JHEP09(2015)114
https://arxiv.org/abs/1507.00306
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00306
https://doi.org/10.1007/JHEP07(2016)077
https://arxiv.org/abs/1509.05044
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.05044
https://doi.org/10.1007/JHEP07(2016)123
https://arxiv.org/abs/1603.04856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04856
https://doi.org/10.1007/JHEP05(2017)065
https://doi.org/10.1007/JHEP05(2017)065
https://arxiv.org/abs/1608.05101
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05101
https://doi.org/10.1007/JHEP05(2017)064
https://arxiv.org/abs/1612.00082
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00082
https://arxiv.org/abs/1701.07280
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.07280
https://arxiv.org/abs/1704.07747
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.07747
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://arxiv.org/abs/cond-mat/0503393
https://inspirehep.net/search?p=find+EPRINT+cond-mat/0503393
https://doi.org/10.1088/1742-5468/2016/06/064003
https://arxiv.org/abs/1603.02889
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.02889
https://doi.org/10.1007/JHEP05(2013)080
https://arxiv.org/abs/1302.5703
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5703
https://doi.org/10.1103/PhysRevD.89.066015
https://arxiv.org/abs/1311.4173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4173
https://doi.org/10.1007/JHEP02(2015)171
https://arxiv.org/abs/1410.1392
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1392
https://doi.org/10.1093/ptep/ptu122
https://arxiv.org/abs/1405.5946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5946
https://doi.org/10.1007/JHEP01(2015)102
https://arxiv.org/abs/1410.2287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2287
https://doi.org/10.1007/JHEP08(2015)011
https://arxiv.org/abs/1503.08161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08161
https://doi.org/10.1007/JHEP09(2015)110
https://arxiv.org/abs/1506.03772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03772
https://doi.org/10.1007/JHEP04(2016)069
https://arxiv.org/abs/1512.03478
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03478


J
H
E
P
0
9
(
2
0
1
7
)
1
1
5

[30] M. Rozali and A. Vincart-Emard, Comments on entanglement propagation, JHEP 06 (2017)

044 [arXiv:1702.05869] [INSPIRE].

[31] J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of

local quantum quenches, JHEP 08 (2016) 127 [arXiv:1605.05987] [INSPIRE].

[32] J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and P. Witkowski, Time

evolution of entanglement for holographic steady state formation, arXiv:1705.04696

[INSPIRE].

[33] X. Bai, B.-H. Lee, L. Li, J.-R. Sun and H.-Q. Zhang, Time evolution of entanglement entropy

in quenched holographic superconductors, JHEP 04 (2015) 066 [arXiv:1412.5500] [INSPIRE].

[34] H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav. 16 (1999)

1069 [gr-qc/9809087] [INSPIRE].

[35] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000)

044007 [hep-th/9906226] [INSPIRE].

[36] A. Jevicki and J. Thaler, Dynamics of black hole formation in an exactly solvable model,

Phys. Rev. D 66 (2002) 024041 [hep-th/0203172] [INSPIRE].

[37] D.S. Ageev and I. Ya. Aref’eva, Holographic instant conformal symmetry breaking by

colliding conical defects, Theor. Math. Phys. 189 (2016) 1742 [arXiv:1512.03363] [INSPIRE].

[38] I.Ya. Aref’eva, Holographic approach to quark–gluon plasma in heavy ion collisions, Phys.

Usp. 57 (2014) 527 [Usp. Fiz. Nauk 184 (2014) 569].

[39] A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP

02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

[40] I. Bengtsson, Anti de Sitter space, lecture notes, http://www.fysik.su.se/∼ingemar/Kurs.pdf.

[41] I. Ya. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical formation of trapped surfaces in the

collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009)

009 [arXiv:0905.1087] [INSPIRE].

[42] H.-J. Matschull and M. Welling, Quantum mechanics of a point particle in

(2 + 1)-dimensional gravity, Class. Quant. Grav. 15 (1998) 2981 [gr-qc/9708054] [INSPIRE].

[43] H. Iwaniec, Spectral methods of automorphic forms, American Mathematical Society, U.S.A.

(2002).

[44] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021

[hep-th/0106112] [INSPIRE].

[45] I.Ya. Arefeva and A.A. Bagrov, Holographic dual of a conical defect, Theor. Math. Phys. 182

(2015) 1 [Teor. Mat. Fiz. 182 (2014) 3].

[46] D.S. Ageev, I.Ya. Aref’eva and M.D. Tikhanovskaya, (1 + 1)-correlators and moving massive

defects, Theor. Math. Phys. 188 (2016) 1038 [arXiv:1512.03362] [INSPIRE].

[47] I.Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Improved image method for a

holographic description of conical defects, Theor. Math. Phys. 189 (2016) 1660

[arXiv:1604.08905] [INSPIRE].

[48] M. Tikhanovskaya, Localized quench in 1 + 1 conformal field theory, EPJ Web Conf. 125

(2016) 05026.

– 63 –

https://doi.org/10.1007/JHEP06(2017)044
https://doi.org/10.1007/JHEP06(2017)044
https://arxiv.org/abs/1702.05869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.05869
https://doi.org/10.1007/JHEP08(2016)127
https://arxiv.org/abs/1605.05987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.05987
https://arxiv.org/abs/1705.04696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.04696
https://doi.org/10.1007/JHEP04(2015)066
https://arxiv.org/abs/1412.5500
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5500
https://doi.org/10.1088/0264-9381/16/3/032
https://doi.org/10.1088/0264-9381/16/3/032
https://arxiv.org/abs/gr-qc/9809087
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9809087
https://doi.org/10.1103/PhysRevD.61.044007
https://doi.org/10.1103/PhysRevD.61.044007
https://arxiv.org/abs/hep-th/9906226
https://inspirehep.net/search?p=find+EPRINT+hep-th/9906226
https://doi.org/10.1103/PhysRevD.66.024041
https://arxiv.org/abs/hep-th/0203172
https://inspirehep.net/search?p=find+EPRINT+hep-th/0203172
https://doi.org/10.1134/S0040577916120072
https://arxiv.org/abs/1512.03363
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03363
https://doi.org/10.3367/UFNe.0184.201406a.0569
https://doi.org/10.3367/UFNe.0184.201406a.0569
https://doi.org/10.1007/JHEP02(2010)029
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0155
http://www.fysik.su.se/~ingemar/Kurs.pdf
https://doi.org/10.1088/1126-6708/2009/12/009
https://doi.org/10.1088/1126-6708/2009/12/009
https://arxiv.org/abs/0905.1087
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1087
https://doi.org/10.1088/0264-9381/15/10/008
https://arxiv.org/abs/gr-qc/9708054
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9708054
https://doi.org/10.1088/1126-6708/2003/04/021
https://arxiv.org/abs/hep-th/0106112
https://inspirehep.net/search?p=find+EPRINT+hep-th/0106112
https://doi.org/10.1007/s11232-015-0242-x
https://doi.org/10.1007/s11232-015-0242-x
https://doi.org/10.1134/S0040577916070060
https://arxiv.org/abs/1512.03362
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03362
https://doi.org/10.1134/S0040577916110106
https://arxiv.org/abs/1604.08905
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.08905
https://doi.org/10.1051/epjconf/201612505026
https://doi.org/10.1051/epjconf/201612505026


J
H
E
P
0
9
(
2
0
1
7
)
1
1
5

[49] I. Arefeva, A. Bagrov, P. Saterskog and K. Schalm, Holographic dual of a time machine,

Phys. Rev. D 94 (2016) 044059 [arXiv:1508.04440] [INSPIRE].

[50] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[51] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[52] X.-L. Qi and Z. Yang, Butterfly velocity and bulk causal structure, arXiv:1705.01728

[INSPIRE].

[53] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a

density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[54] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic

entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

[55] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic

entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

[56] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement

wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416]

[INSPIRE].

[57] Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

[58] N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast

scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

[59] V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the

emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

[60] B. Freivogel, R.A. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting shadows on

holographic reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].

[61] V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux,

JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

[62] I.Ya. Aref’eva and M.A. Khramtsov, AdS/CFT prescription for angle-deficit space and

winding geodesics, JHEP 04 (2016) 121 [arXiv:1601.02008] [INSPIRE].

[63] M. Khramtsov, Holographic dictionary and defects in the bulk, EPJ Web Conf. 125 (2016)

05010.

[64] E. Keski-Vakkuri, Bulk and boundary dynamics in BTZ black holes, Phys. Rev. D 59 (1999)

104001 [hep-th/9808037] [INSPIRE].

[65] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: prescription,

renormalization and examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

[66] K. Osterwalder and R. Schrader, Axioms for euclidean Green’s functions, Commun. Math.

Phys. 31 (1973) 83 [INSPIRE].

[67] K. Osterwalder and R. Schrader, Axioms for euclidean Green’s functions. 2., Commun.

Math. Phys. 42 (1975) 281.

[68] I.Y. Arefeva, A.A. Bagrov and E.O. Pozdeeva, Holographic phase diagram of quark-gluon

plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

– 64 –

https://doi.org/10.1103/PhysRevD.94.044059
https://arxiv.org/abs/1508.04440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04440
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0622
https://doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01409
https://arxiv.org/abs/1705.01728
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.01728
https://doi.org/10.1088/0264-9381/29/15/155009
https://arxiv.org/abs/1204.1330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1330
https://doi.org/10.1088/0264-9381/31/22/225007
https://arxiv.org/abs/1211.3494
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3494
https://doi.org/10.1007/JHEP12(2014)162
https://arxiv.org/abs/1408.6300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6300
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05416
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+EPRINT+arXiv:0808.2096
https://doi.org/10.1007/JHEP04(2013)022
https://arxiv.org/abs/1111.6580
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6580
https://doi.org/10.1007/JHEP01(2015)048
https://arxiv.org/abs/1406.5859
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5859
https://doi.org/10.1103/PhysRevD.91.086013
https://arxiv.org/abs/1412.5175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5175
https://doi.org/10.1007/JHEP08(2013)092
https://arxiv.org/abs/1306.4004
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4004
https://doi.org/10.1007/JHEP04(2016)121
https://arxiv.org/abs/1601.02008
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02008
https://doi.org/10.1051/epjconf/201612505010
https://doi.org/10.1051/epjconf/201612505010
https://doi.org/10.1103/PhysRevD.59.104001
https://doi.org/10.1103/PhysRevD.59.104001
https://arxiv.org/abs/hep-th/9808037
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808037
https://doi.org/10.1088/1126-6708/2009/05/085
https://arxiv.org/abs/0812.2909
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2909
https://doi.org/10.1007/BF01645738
https://doi.org/10.1007/BF01645738
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,31,83%22
https://doi.org/10.1007/JHEP05(2012)117
https://arxiv.org/abs/1201.6542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.6542


J
H
E
P
0
9
(
2
0
1
7
)
1
1
5

[69] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics

from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[70] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67

(2003) 124022 [hep-th/0212277] [INSPIRE].

[71] E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks,

JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

[72] K.B. Alkalaev, Many-point classical conformal blocks and geodesic networks on the hyperbolic

plane, JHEP 12 (2016) 070 [arXiv:1610.06717] [INSPIRE].

[73] A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS3/CFT2, JHEP

05 (2016) 109 [arXiv:1603.08925] [INSPIRE].

[74] E.J. Lindgren, Black hole formation from point-like particles in three-dimensional

anti-de Sitter space, Class. Quant. Grav. 33 (2016) 145009 [arXiv:1512.05696] [INSPIRE].

– 65 –

https://doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6829
https://doi.org/10.1103/PhysRevD.67.124022
https://doi.org/10.1103/PhysRevD.67.124022
https://arxiv.org/abs/hep-th/0212277
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212277
https://doi.org/10.1007/JHEP07(2015)131
https://arxiv.org/abs/1501.02260
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.02260
https://doi.org/10.1007/JHEP12(2016)070
https://arxiv.org/abs/1610.06717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06717
https://doi.org/10.1007/JHEP05(2016)109
https://doi.org/10.1007/JHEP05(2016)109
https://arxiv.org/abs/1603.08925
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08925
https://doi.org/10.1088/0264-9381/33/14/145009
https://arxiv.org/abs/1512.05696
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.05696

	Introduction
	Holographic setup
	Geometry of AdS(3) and global defects
	The AdS(3) spacetime
	Massless point particles in AdS(3)
	Maximally extended BTZ black hole

	Black hole creation from particle collisions in AdS(3)
	Black hole creation in global coordinates
	Colliding particles in BTZ coordinates


	Geodesics in AdS(3) with colliding particles
	Direct geodesics
	Crossing geodesics
	ETEBA geodesics
	Direct equal-time geodesics
	Crossing geodesics with equal-time endpoints

	Winding geodesics

	Equilibration of entanglement
	Holographic entanglement entropy
	Equilibrium in the initial state
	Crossing geodesics and non-equilibrium regime
	Emergent light cone
	Entanglement tsunami and memory loss
	Linear growth and black hole interior
	Scrambling time and entanglement shadow

	Mutual information

	Thermalizing correlators
	Spacelike correlations
	Leading contributions
	Contribution of windings

	Timelike correlations

	Conclusions and discussion
	Geodesics and isometries in global coordinates
	Geodesics in the BTZ geometry 
	Lorentzian correlators in thermal equilibrium

