
J
H
E
P
0
9
(
2
0
1
7
)
0
9
4

Published for SISSA by Springer

Received: July 12, 2017

Revised: August 16, 2017

Accepted: August 21, 2017

Published: September 20, 2017

Natural fermion hierarchies from random Yukawa

couplings

Gero von Gersdorff

Department of Physics, Pontif́ıcia Universidade Católica de Rio de Janeiro,
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1 Introduction

One of the great unsolved puzzles of the Standard Model (SM) concerns the large mass hi-

erarchies of the quarks and leptons. For the up quark, down quark and charged leptons sec-

tors, one finds respectively mt/mu ∼ 6.9×104, mb/md ∼ 8.7×102 and mτ/me ∼ 3.4× 103.

It appears quite unnatural that such large hierarchies arise purely by chance from generic

Yukawa matrices.

The most popular solutions to this problem employ an order parameter ε ∼ 0.1 in

terms of which the Yukawa couplings scale as (up to order one coefficients)

(Yu)ij ∼ εqi+uj , (Yd)ij ∼ εqi+dj , (Ye)ij ∼ ε`i+ej (1.1)

where qi, ui, di, `i, and ei are real positive numbers of order unity. Such relations can be

given a convincing UV description in terms of spontaneously broken U(1) symmetries [1]

or in terms of wave-function localization in extra dimensions [2–4]. If flavor violating new

physics (NP) is present at the TeV scale, these models typically feature somehow suppressed

flavor changing neutral currents (FCNC) (as opposed to a generic flavor structure), but

nevertheless are tightly constrained, in particular by data on KK̄ mixing and µ → eγ

decays (see, for instance, ref. [5] for a review of flavor bounds in extra dimensions.).

In this short note we suggest a new mechanism that provides a natural explanation

of the fermion mass hierarchies of the SM. Instead of invoking an order parameter, the

mechanism is based on completely random couplings of order one. Due to the properties

of the probability distributions for the effective Yukawa couplings extreme ratios of eigen-

values become completely common, and mass hierarchies are hence the rule rather than

the exception. We will refer to this mechanism as the stochastic hierarchy mechanism.

The peculiar almost-diagonal nature of the Cabbibo-Kobayashi-Maskawa (CKM) matrix

can also easily explained with our approach, as the alignment/misalignment of the up and

down Yukawa matrices can be controlled by some judicious choice of the matrix products.

The “randomness” hypothesis has previously been considered in the context of neu-

trino mixing [6] and is commonly referred to as neutrino anarchy. Moreover, anarchic

perturbations to a hierarchical model were investigated in ref. [7], and in the context of
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supersymmetry it was found that some hierarchies can also arise stochastically [8]. Fur-

thermore, in models giving rise to Yukawa couplings of the type eq. (1.1), the unknown

O(1) numbers multiplying the suppression factors are often considered to be stochastic as

well. However, the goal of the present manuscript is the generation of the large (charged)

fermion hierarchies “out of nothing”, i.e., from purely O(1) random couplings, which to

the best of our knowledge has never been achieved in the literature.

2 Products of random matrices

As a warm-up to the study of more realistic models, let us imagine that the Yukawa

matrices of the SM are given by a product of individual “proto-Yukawa” matrices:

Y = Y1Y2 · · ·YN . (2.1)

This is a simplified version of the effective Yukawa coupling arising from the explict models

constructed in the next section. However, it will be sufficient for the illustration of the

most important features of the stochastic hierarchy mechanism.

In the absence of an explicit UV model for the proto-Yukawas Y i
ab, our best guess is

that they are random O(1) numbers. We will assume that they are real and follow some

“base distribution” (or “prior”) with mean zero and variance σ2. A simple and natural

choice is the uniform distribution with

− 1 < Y i
ab < 1 , (2.2)

which has variance σ2 = 1/3, but many of our results below are valid for any other sym-

metric prior.

We would like to find the probability distribution for the largest mass hierarchies in

the matrix Yab,

h ≡ max |yi|/min |yi| , (2.3)

where y2i are the three eigenvalues of Y Y T . In theory, the analytical calculation of these dis-

tributions is straightforward: one substitutes one of the matrix elements by h and marginal-

izes (integrates) over the remaining ones. Unfortunately, this calculation is obstructed by

the resulting complicated region of integration, and one has to result to numerical simu-

lations. However, some aspects of these distributions can be computed analytically and

allow for a rough understanding of the mechanism.

Rather than calculating the full distributions we will focus on their lowest moments.

For instance, for mean and (co)variance of Yab one easily finds

〈Yab〉 = 0 , 〈YabYcd〉 =
1

Nf

(
Nf σ

2
)N

δab,cd , (2.4)

where Nf denotes the number of families. Note that the correlations between different

matrix elements vanish. For higher moments this is no longer true and the matrix elements

are in fact statistically dependent. Interestingly, for Nf = 3 and flat priors, the variance is

independent of N and equals the one of the flat prior (σ2 = 1/3).
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Let us now examine the distribution for the determinant of Y . One finds

〈detY 〉 = 0 , 〈(detY )2〉 =
(
Nf !σ2Nf

)N
. (2.5)

The power of N in the expression for the variance is a simple consequence of the determi-

nant multiplication theorem which causes the integrals over (Yi)ab and (Yj)ab to factorize.

For Nf = 3 and the flat prior, the variance is given by (2/9)N and hence the determi-

nant tends to be very suppressed despite the fact that the matrix elements are typically

of O(1). At first this seems at odds with the fact that the covariance matrix is diagonal.

However, correlations of higher moments do not vanish, and it is those that make these

cancellations possible.

To get a feeling for the typical size of eigenvalues, we can compute the mean of tr Y Y T .

One gets

〈trY Y T 〉 = Nf

(
Nf σ

2
)N

. (2.6)

Let us focus first on the flat uniform prior. For Nf = 3, eq. (2.6) becomes independent of

N , and from eq. (2.6) and (2.5) we get the estimate

y21 + y22 + y23 ∼ 3 , |y1y2y3| .
(

2

9

)N/2
. (2.7)

Thus, at least one eigenvalue has to be of O(1), and the geometric mean of the other two

is suppressed. Ordering y1, y2 � y3, one gets from eq. (2.7) the estimate

(y1y2)
1
2

y3
.

1

3
3
4

(
2

9

)N/4
∼ 0.43× 0.68N . (2.8)

Interestingly, this ratio is actually independent of σ2 and hence valid for any prior, even

though the size of the largest eigenvalue is no longer independent of N and can be both

supressed or enhanced, depending on wether σ2 is smaller or larger than 1/3.1

Finally, we comment that there is typically also a hierarchy between the lighter two

eigenvalues. To show this, we would have to examine the distributions of other quantities

(such as the principal minors), but we will not go into this much detail here. Instead we

show in figure 1 the simulated distributions of the Nf = 3 eigenvalues for the case N = 7,

from which the hierarchical spectrum y1 � y2 � y3 is quite evident. We also provide,

for comparison, the cases of a Gaussian prior and a log-uniform prior, showing excellent

prior-independence.2 We also find empirically

y3
y2

<
y2
y1

(2.9)

in about 80% of the cases, roughly independent of N , which shows that up-like and lepton-

like spectra are more common than down-like ones.

1The behaviour of hierarchies of random matrices at large Nf (rather thanN) has been studied previously

in the context of neutrino masses [9].
2All priors are chosen to have the same variance. As already mentioned, the absolute scale of the

eigenvalues depends on the variance, but the hierarchies do not.
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Figure 1. Distribution of the small, medium, and large eigenvalues for N = 7 for different priors.

Next we would like to examine the CKM mixing matrix. It also has a hierarchical

structure, with diagonal elements ∼ 1 and more suppressed entries the more one moves

away from the diagonal. The CKM matrix is the ratio of the left handed rotation matrices

VCKM = VuLV
†
dL
, (2.10)

where VuL and VdL are the unitary matrices diagonalizing the combinations Y uY u † and

Y dY d † respectively. Therefore, in order to obtain an approximately diagonal CKM matrix,

the two left handed rotations have to be similar, or equivalently, the up and down Yukawa

couplings have to be roughly aligned. This can easily be achieved as follows. In addition to

the physical Yukawas being products of several matrices, we stipulate that some of these

matrices are the same (we will see in the next section how this can be achieved in a model):

Y d = Y q
1 · · ·Y

q
Nq
Y
d
1 · · ·Y

d
Nd
, Y u = Y q

1 · · ·Y
q
Nq
Y
u
1 · · ·Y

u
Nu
. (2.11)

Note that the first Nq factors are common, and it is this common factor that guarantees a

certain degree of (left-handed) alignment. Without this factor, there would be no alignment

and the CKM matrix becomes democratic. To see why the CKM matrix is hierarchical, it

is instructive to diagonalize the respective factors

Y d = UqŶ
qŨ †q ŨdŶ

dU †d , Y u = UqŶ
qŨ †q ŨuŶ

dU †u . (2.12)

Here, Ŷ q,u,d are diagonal and hierarchical (according to the numbers Nq, Nu, and Nd).

It is important to stress that the unitary matrices Ũq,u,d and Uq,u,d are not hierarchical.

Making a gauge-invariant change of basis with the matrices Uq,u,d, we obtain the structure

(Y ′d)ij ∼ ŷqi ŷ
d
j , (Y ′u)ij ∼ ŷqi ŷ

u
j , (2.13)

where we have not written O(1) numbers arising from the Ũq,u,d. In this new basis, the

matrices take the familiar Frogatt-Nielsen (FN) form, eq. (1.1). As is well known, for

hierarchical ŷq,u,d, the CKM matrix scales as [1]

(VCKM)ij ∼ exp
(
−
∣∣∣log ŷqi /ŷ

q
j

∣∣∣) , (2.14)
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Figure 2. Distribution of CKM matrix elements for Nq = 5, Nd = 0, Nu = 5. The experimental

values are indicated as vertical lines.

(again up to O(1) numbers), showing that the CKM hierarchy is determined entirely in

terms of the hierarchies of the eigenvalues ŷqi of the common factor.

We can choose the numbers Nu, Nd and Nq in order to maximize the probabilities to

achieve SM-like values for the masses and mixings.3 We have simulated the distributions

for VCKM, drawing from flat priors for all the matrices involved in eq. (2.11), for the case

Nq = 5, Nd = 0, and Nu = 5. In this simulation we have made the additional selection y3/y2
greater (smaller) than y2/y1 for the down (up) sector respectively, as occuring in the SM.

The efficiency of this cut is about 0.13, which is a bit lower than the value 0.8×0.2 = 0.16 to

be expected from the considerations around eq. (2.9), because the eigenvalues in the up and

down sector become mildly correlated. The resulting distributions are shown in figure 2.

One can see clearly that the true CKM angles appear in the bulk of the distributions and

are hence at their natural values.

3 An explicit model

Motivated by the observations of the previous section we now move on to construct a model

with effective Yukawa couplings given by products of matrices. Consider replacing the SM

(say up-type) Yukawa interaction by the Lagrangian

Lu =

Nq∑
i=1

Q̄i(/p+M q
i )Qi − (Q̄iK

q
iQi+1 + h.c.)

+

Nu∑
i=1

Ūi(/p+Mu
i )Ui − (ŪiK

u
i Ui+1 + h.c.)

− (Q̄1H̃ Y u
0 U1 + h.c.) , (3.1)

where QN+1 = qL and UN+1 ≡ uR are chiral fields, the remaining Ui and Qi are vector-like

quarks, and H is the SM Higgs field. The masses Mi are hermitian and the mass mixings

3An additional global suppression factor can be introduced for the down sector, mimicking the effect of

large tan β in supersymmetry.
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Ki arbitrary 3×3 matrices. Lagrangians of this kind are familiar from discretizations of

extra dimensions [10] and composite Higgs models with partial compositeness [11]. They

have recently been reconsidered in the so-called clockwork mechanism [12]. In contrast to

these constructions, here no small parameter will be needed.4 Let us briefly comment on

how one can achieve that the fermions Ui (Qi) only couple to Ui+1 (Qi+1). One possibility

is to promote the spurions Ki and Mi to physical fields that obtain vacuum expectation

values via some mechanism. in fact, for vanishing couplings a large chiral symmetry (with a

U(3)L×U(3)R at each site) emerges. The nearest neighbor interaction can then be achieved

by introducing physical fields Mi and Ki only in the bifundamentals of U(3)L,i × U(3)R,i
and U(3)L,i ×U(3)R,i+1 respectively.

We can integrate out the Ui nad Qi, yielding the effective Lagrangian

L′u = q̄L δZ
q
Nq
/p qL + ūR δZ

u
Nu/p uR − H̃q̄L(Ỹ q

1 · · · Ỹ
q
Nq

)†Y u
0 (Ỹ u

1 · · · Ỹ u
Nu)uR + h.c. , (3.2)

with the recursively defined matrices

δZk = Ỹ †k (1 + δZk−1)Ỹk , δZ1 = Ỹ †1 Ỹ1 , (3.3)

and

Ỹk = (Mk −K
†
k−1Ỹk−1)

−1Kk , Ỹ1 = M−11 K1 . (3.4)

We stress that the effective Lagrangian eq. (3.2) is exact as long as none of the (true) masses

of the heavy fields are at or below the electroweak scale. The expressions for N > 1 quickly

get quite complicated. However, the recursive definitions are well suited for numerical

simulations, and in particular are much easier to handle than the full diagonalization of

the mass matrix.

The down-type Yukawa couplings arise in the same way, by introducing Nd vectorlike

down quarks Di and replacing the second and third line of eq. (3.1). In the lepton sector,

we introduce N` vectorlike doublets Li, Ne vectorlike charged singlets Ei, and Nν vectorlike

neutral singlets Ni. Since our mechanism implies that the largest Yukawa coupling is of

O(1), we introduce heavy Majorana masses for the fields NNν+1 ≡ νR, implementing the

sea-saw mechanism [14–16]. The six integer numbers Nq, Nu, Nd, Ne and Nν are the only

parameters that we treat non-stochastically, They can be viewed as the analogue of the

FN charges in our model.

We have simulated this model, using flat priors with

−m < M i
ab < m , −m < Ki

ab < m , −1 < Y 0
ij < 1 , (3.5)

where m is a heavy mass scale. It is clear that the physical Yukawa couplings (being

dimensionless parameters) cannot depend on the mass m and hence we will work in units

of m = 1, and analogous expressions hold for the down-quark and charged lepton sectors.

4Our Lagrangian also resembles somewhat the model presented in ref. [13] (section 5) which also uses

vectorlike fermions. In that model a judicious choice of the proto-Yukawa couplings ensures that after

integrating out the heavy fermions some of the SM fermions only couple to higher powers of the Higgs field,

creating the observed hierarchies. Here all fields have linear couplings to the Higgs, and the hierarchies

appear via products of matrices, as explained below.
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Figure 3. Probabilities to find hierarchies greater than h0 for various N . The vertical lines mark

the SM values hd, he, and hu respectively.

Note that the dependence on the variance of the prior then only enters in the quantity Y 0,

and hence does not get magnified with powers of N as would be the case in the simple toy

model of the previous section.

We will first consider the hierarchies h defined in eq. (2.3), where the yi are now the

physical eigenvalues, determined from

det
[
Ỹ u †(Zq)−1Ỹ u − y2i Zu

]
= 0 , (3.6)

where Zq,u = 1 + δZq.uN and Ỹ u = (Ỹ q
1 · · · Ỹ

q
Nq

)†Y u
0 Ỹ

u
1 · · · Ỹ u

Nu
. We will use as benchmarks

the SM hierarchies

hd ≡ 8.7× 102 , he ≡ 3.4× 103 , hu ≡ 6.9× 104 . (3.7)

In figure 3 we plot the probabilities for the occurence of hierarchies greater than h0 as

a function of h0. To a good approximation, the eigenvalue distributions only depend on

the sums (Nq + Nu, N` + Ne etc.), so for simplicity we report only the results for these

sums (called N in the following). From the curve N = 0, corresponding to the SM, one

can see that even though h > 10 occurs with probability of roughly 1/3, larger hierarchies

are very unlikely. This however changes drastically when a few vectorlike fermions are

introduced. As is evident from the curves, rather large hierachies quickly become the rule

rather than the exception. In table 1 we quote explicitely the probabilities for the SM

model benchmarks. We also plot in figure 4 the distributions for the actual eigenvalues

in the case N = 7. They do not look very different from the distributions of the simple

product struture obtained in the previous section (see figure 1). The independence of the

exact form of the matrix product shows the robustness of our mechanism.

The CKM mixing angles are well reproduced from Nq ≈ 6–8 (see figure 5) while absence

of alignment between the charged leptons and neutrinos require N` ≈ 0–1. One can also

ask the question whether one can find a choice of parameters that is compatible with SU(5)

quantum numbers of a potential grand unified theory. Taking into account both the masses

and mixings, we find that

Nq = Nu = Ne = 6 , N` = Nd = 0 (3.8)

– 7 –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
4

N p(h > hd) p(h > he) p(h > hu)

0 3.9× 10−3 1.0× 10−3 5.4× 10−5

1 2.0× 10−2 5.9× 10−3 3.6× 10−4

4 0.20 0.10 1.3× 10−2

7 0.55 0.36 0.097

1 9.1× 10−2 3.4× 10−2 3.2× 10−3

2 0.33 0.17 3.0× 10−2

4 0.80 0.63 0.28

Table 1. Probabilities for the hierarchies defined in eq. (3.7) to occur by pure chance for various N .

Upper block: priors chosen according to eq. (3.5). Lower block: modified prior eq. (3.9) with q � 1.
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Figure 4. Distribution of the small, medium, and large eigenvalues for N = 7, for the full model

defined in eq. (3.1).
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Figure 5. Distribution of CKM matrix elements for Nq = 7, Nd = 1, Nu = 4. The experimental

values are indicated as vertical lines. For comparison, we show the case Nq = 0, Nd = 5, Nu = 11,

in which all angles follow the same distribution (dashed-dotted line).

– 8 –



J
H
E
P
0
9
(
2
0
1
7
)
0
9
4

works rather well. Furthermore, in order to avoid a too-large hierarchy between the two

heaviest neutrinos, we choose Nν . 2. The case N` = Nν = 0 then corresponds to standard

anarchic see-saw neutrinos. Taking Nν 6= 0 in addition creates a small hierarchy in the

Neutrino Yukawa couplings, but as long as N` = 0 we do not generate any alignment with

the charged lepton sector, and mixing angles will stay large.

One could be worried that a large number of new fermions will give rise to Landau

poles for the gauge couplings in the UV. Notice however that up to now nothing has been

said about the mass scale for the new fermions. It is fully consistent (and in fact natural)

that these masses are at or just below the Planck scale. In this case the model is consistent

with the absence of any additional New Physics below the Planck scale. Notice that such

a high mass scale automatially suppresses dangerous FCNCs which would otherwise be an

issue due to the presence of the vector like quarks and leptons. An alternative scenario

would be an additional UV completion of the model at a lower scale, in which case a

detailed assessment of flavor violating effects would be necessary.

Finally, we would like to point out two more ways to even further improve the perfor-

mance of the mechanism. Firstly, assume that there is a reason for the mass mixings Ki

to be systematically suppressed with respect to the masses Mi. We can incorporate this

assumption easily by modifying the priors for Ki as

− q m < Ki
ab < qm , (3.9)

with q a dimensionless number q � 1. In this case, one has approximately δZk ≈ 0, and

Ỹk ≈M
−1
k Kk . (3.10)

Thus in this approximation of small q the physical Yukawa couplings simply scale as qN

and the hierarchies, being ratios of eigenvalues, become independent of q. The probabilities

from these distributions are also given in table 1. We find that hierarchies are generated

even more efficiently, presumably because accidentally small vectorlike masses have a larger

effect or occur more common than in the case q = 1 considered above.

A second possible modification is the assumption of some kind of minimal flavor vio-

lation meachanism, that fixes all mixings to be proportional to, say, Y0,

Ki ∝ Y0 . (3.11)

For simplicity we may assume that the masses Mi are proportional to the identity. There

are always mild hierarchies h0 in the random eigenvalues of Y0 (confer the N = 0 curve in

figure 3), and since there is a basis in which everything is diagonal simultaneously, these

hierarchies are coherently amplified h ∼ hN0 . We leave the construction of an explicit

mechanism to future work.
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4 Conclusions

In this note we have presented a new explanation for the large hierarchy of fermion masses

present in the SM. It is based on the observation that products of a few random matrices

typically feature strong hierarchies in their eigenvalue spectrum, even though the individual

entries are of order unity. Moreover, we have shown that the peculiar form of the CKM

matrix can easily be recovered within this paradigm, as up and down Yukawa couplings can

become naturally aligned if they include common factors as in eq. (2.11). We have presented

a model that generates an effective Yukawa coupling as a product of several matrices. This

model is by no means unique, and we expect that any model with such a product structure

has similar eigenvalue distributions. Finally, even though we have focused on the case of

real random matrices for simplicity, CP violation can easily be accommodated by including

random complex phases.
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