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1 Introduction

Very roughly speaking, the Weak Gravity Conjecture (WGC) says that a U(1) gauge theory

with coupling g � 1 can only be consistently coupled to quantum gravity if there are

charged states or even a cutoff at the scale gMP � MP [1]. This is expected to extend

to (p + 1)-form gauge theories with charged p-branes in any number of dimensions.1 The

simplest way to formulate the analogous statement about a low cutoff is then to say that

Λp+1 ∼ g in Planck units (see [4–20] for a selection of recent related work).

Much of the recent phenomenological interest in the WGC derives from its potential

power to constrain axion inflation [21–37]: to this end, one views axion models as 0-form

gauge theories in the regime where the axionic coupling 1/f is small (i.e. f � MP ).

However, fundamental justifications for the WGC both in the 1-form, the 0-form and

various other cases and different regimes are difficult to obtain. Thus, we believe that

supplying any arguments for or against it, even if in a slightly unusual setting, is important.

It is our aim to analyse possible arguments in favor of the WGC on the dual side of

the more familar axion / large-field-inflation case mentioned above. Indeed, we dualise the

0-form ϕ to a 2-form, dB2 = f2 ∗ dϕ, and consider the action

−
∫
d4x
√
−g 1

f2
|dB2|2 +

∫
worldsheet

B2 . (1.1)

We want to understand whether we can have small f without light charged objects, i.e.

without light strings. In the extreme, the tension σ of the lightest string might be σ ∼
1Notice that our convention for designating generalized gauge theories differs from that of, e.g. [2, 3].

Here, standard theories of charged particles coupled to 1-form gauge fields are refered to as 1-form gauge

theories, rather than 0-form ones.
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M2
P , but still f � MP (see [28] for constraints on such regimes in perturbative string

compactifications). Is this inconsistent in any tangible way?

The standard magnetic WGC would have to argue about the smallest instanton not

yet being a ‘black hole’ (in this case wormhole or gravitational instanton). This is clearly

questionable. The electric WGC would have to argue about the stability of extremal black

strings. But such macroscopic objects appear rather pathological (having a deficit angle

greater than 2π) and, morevoer, possess no horizon.2 What is worse, both routes rest

simply on assumptions, such as ‘stable extremal black holes (BHs) must not exist’ (see

however [18] for recent progress towards justifying this requirement rigorously).

Here we suggest a completely different approach and, with certain caveats to be ex-

plained, arrive at an actual physical inconsistency for parametrically small f in the absence

of light strings.

The basic idea is to consider axionic BHs as in [38]. Such objects are distinguished from

standard Schwarzschild BHs exclusively by having non-zero values of 2πb ≡
∫
B2, where

the integral is over any sphere homotopic to their horizon. Such a ‘Wilson-loop variable’ b

is locally unobservable and carries no energy (the field strength H3 = dB2 vanishes), and

so the axionic BH behaves at the semi-classical level exactly as a Schwarzschild one.

A paradox arises in the evaporation process of such a black hole: by causality, the B2

boundary integral far away from the BH can not change. Once the BH is gone, spacetime

has become non-singular and the interior of this boundary must, according to Gauss’ law,

contain a minimal H3 field strength. The energy carried by this field strength is too large

compared to the mass of the black hole just before the low-energy effective theory has

broken down. Thus, energy can not be conserved.

In slightly more detail, the BH is expected to shrink via Hawking radiation, maintaining

the value of b, at least up to a radius r of the order of the Planck length. While the later

stages in the life of the BH cannot be properly described without a UV complete theory,

it is clear that the only way in which a complete evaporation can be consistent with a

non-zero b is through a ‘leftover’ field strength:∫
V (r)

H3 =

∫
S2(r)

B2 ∼ b ∼ O(1) . (1.2)

Here the sphere is the boundary of the volume V (r), the latter being a ball of radius r at

the place where the BH used to be. But in the regime of small f , the prefactor 1/f2 of

the field energy stored in H3 is huge. It is in fact much larger than the available energy

∼ O(MP ) of the smallest semiclassical BH which was still controlled in the low-energy

effective theory. Unless there is a remnant, we have a contradiction.3

This contradiction is resolved if light strings are present in the spectrum of the theory.

Strings ‘lassoing’ the black hole do interact with the B2 integral, and indeed generate an

effective potential for the Wilson loop variable of the form V (b) ∼ e−4πσr2 cos b. This is

2One might try to overcome this by demanding instead that two same-charge microscopic strings should

always repel.
3Similar ideas have been used in [39, 40] in a somewhat different context to argue that certain types of

global symmetries (carried by skyrmions/baryons) can be preserved in BH evaporation.
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analogous to the familiar potential for the Wilson line variable
∮
A1 in a standard (1-form)

gauge theory compactification from 5d to 4d. As long as the BH radius R is much larger

than the length scale set by the string tension, R � 1/
√
σ, the strings are irrelevant:

the effective potential induced by a virtual string ‘lassoing’ the BH has a suppression

∼ exp(−4πσR2) and is negligible. However, once R ∼ 1/
√
σ, the effective potential for

the ‘Wilson loop variable’ b ceases to be exponentially suppressed. Now b is driven to zero

dynamically near the BH, the value of b at larger radii is supported by a non-vanishing

field strength H3 near the BH, and the BH can eventually disappear without a trace. The

problem with the evaporation of axionic BHs is resolved if light strings exist.4

The rest of this paper is organized as follows. In section 2 we estimate the specific

parametric bounds on the string tension that result from different evaporation rates of

small black holes. We spell out in section 3 several assumptions implicit in our arguments

and the physical effects that motivate them. Finally, in section 4 we study a setup in which

a massless 2-form field with small effective f arises via alignment, upon Higgsing a linear

combination of two B2 fields, in analogy to [14, 26]. Our arguments suggest the appearance

of light monopoles in such a theory.

The simultaneous work [41] also discusses generalized (global) symmetries and their

possible problems from a somewhat different perspective.

2 The final moments of an axionic black hole

As we have discussed in the Introduction, a contradiction arises in the process of evapo-

ration of axionic black holes in the absence of light strings.5 This implies a parametric

upper bound on the tension of strings (for a given gauge coupling f). In order to derive

the parametric form of the bound, we need to make certain assumptions about the latest

stages of the evaporation of axionic BHs. We consider next two possibilities and derive the

parametric form of the constraints that arise in each case.

2.1 Immediate breakdown at critical radius

The simplest assumption, or at least the assumption leading to the simplest estimate, is

a catastrophic, explosion-like evaporation of the BH at the moment when it reaches the

4The appearance of a potential due to lassoing strings is not undisputed [44]. Indeed, in a partition

function calculation in the scalar field basis, a single lassoing string has infinite action. First, this does

not preclude single-instanton contributions in the B2 basis. Second, even staying in the scalar field basis,

nothing speaks against contributions from even numbers of lassoing strings. This is analogous to calculating

the familiar instanton-induced cosine potential in quantum mechanics, but using a basis of fixed discrete

momenta, such that only even numbers of instantons occur. The toy model calculation of [34] shows that a

potential can still be derived in this way. Moreover, if it still turned out that a potential in the strict sense

does not arise, tunneling processes corresponding to lassoing strings are certainly possible and can give rise

to a dynamical effect on b. In any event we can argue, without directly referring to light strings, that the

dynamical activation of b kicks in at a scale R ∼ Λ−1 given by the cutoff of the theory. A bound on such a

cutoff, analogous to the magnetic rather than electric WGC, would then be obtained. Although we mostly

refer to light strings throughout this work, both points of view are related by associating the cutoff to the

tension of charged objects, i.e. Λ ∼
√
σ.

5There are several important caveats to this simple reasoning that must be considered to reach our

conclusions. In order to avoid obscuring our results, we postpone their discussion to later sections.
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critical radius Rc ≡ 1/
√
σ. This is not a totally unnatural expectation: according to

the arguments of [8, 12, 13], not just one but many string states should come in and an

extreme growth of the number of degrees of freedom with energy may indeed lead to an

instantaneous evaporation at a temperature Tc ∼ 1/Rc ∼ Λ ≡
√
σ.

In this case, there is no time for any effect arising from the dynamical strings to

propagate. The H3 field they dynamically induce is limited to a ball of radius Rc, the total

resulting field energy being

E ∼ 1

f2

∫
V (Rc)

d3x
√
g |H3|2 ∼

b2

f2R3
c

∼ 1

f2R3
c

. (2.1)

Now, we should require E .M(Rc) ∼ RcM2
p if energy is to be conserved in the final stage

of the evaporation. This leads to a lower bound on the string tension σ of the form

σ . f ·Mp , or Λ2 . f ·Mp (2.2)

This simple parametric estimate coincides precisely with the standard WGC bound for

strings.

The origin of this bound is conceptually very simple, and perhaps finds a general-

ization to other setups (in particular to different dimensions and for objects of different

co-dimension). On the one hand, a non-vanishing generalized Wilson-line can be supported

by a topologically non-trivial p-cycle of a gravitational object with energy ∼Md−2
P . On the

other hand, in a trivial topology, a field strength Hp+1 that supports the same Wilson-line

has an energy that scales with the coupling constant g as ∼ 1/g2. When both situations

are related by a dynamical change in the topology, energy conservation imposes a bound

Md−2
P & 1/g2. Of course, one needs to complete this inequality to make it dimensionally

consistent. If one can argue that there is only one other scale Λ ∼ R−1
c involved in the

process, the WGC is recovered.

2.2 Slow evaporation and spread flux

While the result (2.2) is suggestive, the assumption of immediate BH evaporation at a

critical temperature is likely too naive. We may obtain a much more conservative bound if

we assume that, after the effective potential is activated at a temperature Tc ∼ 1/Rc ∼ Λ ≡√
σ, the H3 flux induced has a time tev to spread out radially at the speed of light before the

BH completely evaporates. Assuming that in its latest stages the BH still radiates energy

at rate −dM/dt ∼ M4
p /M

2, the evaporation time from the critical mass Mc ∼ RcM
2
p to

zero scales as6 tev ∼M3
c /M

4
p ∼M2

p /σ
3/2 � Rc. In this scenario, the left-over field H3 that

accounts for the Wilson loop variable b after the BH disappears has spread out to a ball

of radius Rc + tev ≈ tev ∼M2
p /σ

3/2. The energy stored in such a flux scales as

E ∼ 1

f2

∫
V (tev)

d3x
√
g |H3|2 ∼

b2

f2t3ev
∼ σ9/2

f2M6
p

. (2.3)

6Given the assumptions we have to make about the latest stage of BH evaporation, our bounds on the

tension of strings can only be considered estimates. In fact, the numerical factors we are neglecting can be

very large. For example, the numerical factor in front of tev is 5120π.
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Arguing as before that this energy should be less than the mass of the axionic BH of radius

Rc, we obtain a bound on the string tension σ of the form

σ ∼ Λ2 . f2/5 ·M8/5
p . (2.4)

This bound is much weaker than the one obtained in (2.2) (which coincides with the WGC).

It would become even weaker if the BH decay process slowed down for some reason at the

latest stages of the evaporation, and the H3 flux had more time to spread over a broader

region. In fact, the bound would disappear entirely if the decay never reached an end (in

this case there would be a remnant which could by itself support a non-zero value of b). We

find it reasonable to assume that the decay will not slow down. By contrast, we think it is

likely that the right bound derived this way will lie somewhere between (2.2) and (2.4).

3 Infrared divergences and quantum effects

We have so far glossed over some key issues that need to be addressed before accepting the

conclusions of last section.

3.1 Non-perturbative effects

A first question one should ask when considering axionic BHs is whether the variable

b =
∫
B2 is measurable and has a physical meaning at all [43–45]. Since B2 is locally pure

gauge, it does not exist in a local sense. The way to measure it is via an Aharonov-Bohm

(AB) type experiment, where strings lassoing the BH acquire a phase proportional to b

which can then be manifested in an interference pattern.

A problem arises because the energy stored in an infinitely long string is logarithmically

divergent in the IR. Strings are hence confining, and there is a limit in the maximum radius

Rmax ∼ f−1 exp(M2
P /f

2) that a string loop can reach [2, 46, 47]. In order for the axionic

hair on a BH to be measurable, we have to make sure that the AB experiment can be

performed, i.e. that the BH’s size is smaller than Rmax. Given the exponential dependence

of Rmax with respect to f (recall that we are interested in the f �MP limit), this condition

can be easily satisfied.

Another effect that we have not yet considered is that induced by instantons. When

non-perturbative effects are taken into account, there is no strictly massless propagating

degree of freedom (other than the graviton) in the theory. The instantons induce a mass

gap, albeit an exponentially suppressed one. Under certain conditions this can be described

in terms of a coupling of B2 to a non-dynamical 3-form (see [48–52]), but it is most easily

seen in the dual description where instantons generate a periodic potential for the axion.

Recall that, upon circumnavigating a string, the axion field shifts by a period φ →
φ + 2π. In the absence of a potential, this shift will be uniformly distributed around the

string, i.e. φ ∼ θ, where θ is the angle that parametrizes the winding trajectory. When

a potential V (φ) is present, however, φ will tend to remain at its minimum for most of

the trajectory. In this case, the string will be the boundary of a domain wall where the

field φ jumps discretely. As before, this puts a limit in the maximum size Rmax of the

string loops one can consider. Beyond Rmax, strings loops are unstable due to nucleation
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of smaller string loops which eat up the axionic domain wall. Also as before, this effect is

non-perturbatively suppressed (the axionic potential scales typically as e−MP /f ) and can

be safely ignored for sufficiently small strings.

One may ask, still, whether axionic BHs can even exist once instantons are taken

into account. One possibility would be that instanton effects induced a non-perturbative

potiential to the Wilson-line variable b. In this case, a non-zero b could not spread all

the way to infinity, since this would carry an infinite potential energy, independently of

how small the instanton effects are. However, one may simply consider a pair of axionic

BHs, with opposite value of
∫
B2 so that the system still has a finite energy. As long

as the non-perturbative potential induced is small enough, it will take an exponentially

long time for the system to relax to its stable configuration (by merging the two axionic

BHs). In this note we implicitly work in a regime of parameters where instanton effects

are highly suppressed and do not play a role for the relatively small black holes that we

are considering.

It is finally also interesting to describe the B2 Wilson-line in the dual axionic picture.

Consider for simplicity a quantum mechanical model, obtained by compactifying a 4d the-

ory with a massless B2 field on a T 3, parametrized by coordinates (x, y, z). We can turn on

a Wilson-line along any of the torus two-cycles, say T 2
xy. The quantum mechanical canon-

ical momentum of Bxy is given by ∂tBxy. By Heisenberg’s uncertainty principle, a state

with highly localized value of the Wilson line will correspond to a very broad superposition

of states with fixed ∂tBxy. Upon 4d Hodge duality, dφ = ∗4B2, such states correspond to

axion flux turned on along the one-cycle dual to T 2
xy, i.e. our original state with Wilson-line

Bxy will be described as a superposition of states with different values of ∂zφ. The value

of the Wilson line corresponds to the phase, analogous to the θ-angle, introduced in this

superposition. In the case of an axionic BH, the two-cycle is the (homology class of the)

horizon, and its dual corresponds to the (non-compact) radial direction. Hence, in the

scalar language, a non-trivial value of the axionic hair b corresponds to the phase in the

superposition of states with non-trivial axionic gradient ∂rφ. Of course, once instanton ef-

fects are taken into account and a non-perturbative potential for φ is generated, the duality

between φ and B2 becomes more involved.

3.2 Quantum vs. classical

It is essential to understand under which conditions the Wilson line variable b of a BH can

be thought of as a classical degree of freedom. To this end, consider the action

S ∼ −
∫
d4x
√
−g 1

f2
|dB2|2 (3.1)

in the BH background

ds2 = −(1−R/r)dt2 + (1−R/r)−1dr2 + r2dΩ2 . (3.2)

Assuming that B2 is proportional to the normalized harmonic 2-form on S2, parametrized

by b = b(t, r), gives

S ∼
∫
dt

∫ ∞
R

dr

r2
· 1

f2

[
(1−R/r)−1 (∂tb)

2 − (1−R/r) (∂rb)
2
]
. (3.3)

– 6 –
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We see that the kinetic term diverges near the horizon. This agrees with the intuition that

any dynamics near the horizon should be extremely slow in the time variable suitable for

the observer at infinity. Furthermore, the gradient term goes to zero near the horizon. This

is again intuitive since there should be no suppression of configurations where the values

of b very near the horizon and further away differ significantly. Indeed, the (effectively

frozen) value of b near the horizon should not be able to influence an observer at a certain

distance. We thus take it for granted that, in total, the effect of the near-horizon region in

the above action will be as follows: the BH horizon does not fix the value of b, in agreement

with the intuitive expectation from the no-hair theorem.

This can be modelled by excising a sphere of some radius & R (we do not care about

O(1) factors) and considering only the dynamics of b in the outer region. At our qualitative

level of analysis we can then also set (1 −R/r) to unity and simply write

S ∼
∫
dt

∫ ∞
R

dr

r2
· 1

f2

[
(∂tb)

2 − (∂rb)
2
]
. (3.4)

Here we took the lower limit of integration to be R for simplicity, although it should

of course be slightly larger as explained above. Clearly, an action like (3.4) requires a

boundary condition at r = R. We choose Neumann boundary conditions for consistency

with the classical shift symmetry of b and our expectation, argued above, that the near

horizon region does not break this invariance classically.7

Crucially, the r integral now converges, such the quantum mechanical model for the

zero mode (the r-independent mode of b) reads

S ∼
∫
dt

1

f2R
(∂tb)

2 . (3.5)

In other words, the dynamics is the same that one would obtain from a compactification

to one dimension on a compact 3d space of typical radius R with one non-trivial two-cycle.

We are thus dealing with quantum mechanics of a variable with period 2π and a single

mass scale f2R introduced through the kinetic term. Adopting textbook knowledge to our

setting, it is clear that this mass scale translates into a time-scale which governs the spread

of an optimally localized gaussian wave packet to the maximal width of 2π. On time scales

shorter than

tqm ∼ 1/(f2R) (3.6)

we can then think of our effective potential, induced by lassoing strings, as of a classical

force acting on the classical variable b.

Now, in our ‘immediate breakdown’ scenario, the typical time scale is tc ≡ Rc. It is

simply the time a signal neads to travel across the relevant region of space. For our classical

analysis to be meaningful one should then require that this typical time is small enough:

tc < tqm ∼ 1/(f2Rc) , that is σ > f2 . (3.7)

7A more careful modelling of the dynamics of b in the near horizon region would be interesting but is

not necessary for the point we want to make in this section.

– 7 –
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This comfortably contains the range of very high string tensions constrained by the WGC

and by our analysis.

For the ‘slow-evaporation’ scenario, the much longer time scale of evaporation of a BH

with radius Rc is the relevant one. As we saw, this is tev ∼ M2
p /σ

3/2. We now have to

impose that

tev < tqm ∼ 1/(f2Rc) , that is σ > f ·Mp . (3.8)

We evaluate the implications of this bound for our analysis by considering three possible

regimes: first, if f2/5M
8/5
P . σ, our classical analysis is valid and hence the paradox derived

in section 2.2 should be taken seriously. Second, if fMP . σ . f2/5M
8/5
P , our classical

analysis is valid but no paradox arises according to section 2.2. The existence of this region

exemplifies how, in the slow-evaporation scenario, our constraint on σ is weaker than that

from the WGC. Third, if σ . fMP our classical analysis is not trustworthy. However, we

were anyway not trying to make a new statement about this regime of low string tension,

consistent with the WGC. (It might, independently, be interesting to study axionic black

hole evaporation in this regime. But we do not need this for the present paper.)

Before closing this section we note that one might find it counterintuitive that a field-

theoretic classical analysis breaks down at large rather than at short times. This apparent

problem can be understood by thinking of our integrated field variable b of eq. (3.5) as

of a non-relativistic quantum mechanical particle. Let us denote the position by x and

the mass by m, with the appropriate translation in b, f and R easily derived. Now, if x

is non-compact and the initial state of the particle has a certain Gaussian spread ∆x, we

can always think classically by asking long-distance questions, i.e. questions for which the

spread in x is negligible (and the spread in the dual variable p is as usual ascribed to our

imprecise knowledge of the initial velocity). Long time scales are helpful since they allow

us to know the momentum and hence the position in future measurements rather precisely.

However, we can also consider (and in our case must consider) quantum mechanics

with a periodic x, say x ≡ x + L. Now, to use the classical intuition of a particle on a

circle we need ∆x � L. But the width of an optimally localized Gaussian wave packet

grows according to ∆x(t) ∼ t/(m∆x(0)) at late times t (which of course follows simply

from the necessarily present momentum uncertainty). Requiring both ∆x(0) and ∆x(t) to

be smaller than L implies t . mL2, which is the analogue of our eq. (3.6) in this quantum

mechanical model. Thus, intuitively speaking, there does indeed exist a maximal time

scale beyond which it makes no sense to talk about a particle localized even approximately

somewhere on a circle.

4 Systems with (aligned) multiple axions

A recurring question when addressing quantum gravity constraints on axion decay con-

stants, is how these extend to winding trajectories [53] in the field space of axions. A

particularly simple case of such trajectories arises in the presence of two axions upon Hig-

gsing [48, 54] a linear combination of them [26]. It has been argued more generally in [14]

that such theories, even if they satisfy the WGC in their Coulomb phase, could effectively

– 8 –
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violate it (at least in some of its forms) in their Higgs phase. We would like to study next

how the physical setups and constraints described above behave under Higgsing in a system

with multiple B2 forms.

Let us consider a particular system of two 2-form gauge fields Bi, with i = 1, 2, coupled

to a single one-form field A in a Stueckelberg-like manner

S =

∫
d4x
√
−g
[
− 1

f2
(|H1|2 + |H2|2)− 1

4g2
|dA+B1 +NB2|2

]
. (4.1)

Here N is a (large) integer, Hi = dBi and, for simplicity, we have taken identical axion

decay constants f1 = f2 ≡ f . The coupling between A and Bi gives a mass to the linear

combination Ba ∝ B1 + NB2. The orthogonal combination Bb ∝ −NB1 + B2 remains

(perturbatively) massless. It will feature the desired small coupling feff ∼ f/N and can

hence be used to construct our axionic BHs. We can rewrite (4.1) in terms of these fields as

SA,Ba =

∫
d4x
√
−g
[
−1 +N2

f2
(|Ha|2 + |Hb|2)− 1

4g2
|dA+ (1 +N2)Ba|2

]
(4.2)

where B1 = Ba −NBb and B2 = NBa +Bb.

The Lagrangian (4.1) is invariant under the gauge transformations: {B1, B2, dA} →
{B1 + dΛ1, B2 + dΛ2, dA− dΛ1 −NdΛ2}. For a spacetime with a non-trivial two-cycle σ,

we can define the variables

a ≡ 1

2π

∫
σ
dA , bi =

1

2π

∫
σ
Bi . (4.3)

Under gauge transformations with
∫
σ dΛi = 2πci, these variables shift as {b1, b2, a} →

{b1 + c1, b2 + c2, a− c1−Nc2}. These continuous shift symmetries are of course broken to

discrete periodicities by the presence of strings.

As mentioned before, the axionic hair can only be measured if there exist strings in

the spectrum charged under the Bi. We will assume the existence of strings Σ1 and Σ2

coupled to B1 and B2 with unit charge, i.e.

Sstr =

∫
Σ1

B1 +

∫
Σ2

B2 . (4.4)

This spectrum determines the periodicity of the “Wilson line” type variables bi. The path

integral measure includes eiSstr (in turn the phase measured by Aharonov-Bohm interference

experiments) which is only invariant under large gauge transformations with ci ∈ Z. Hence,

the continuous shift symmetries are broken to discrete periodicities:

{b1, b2, a} → {b1 + 1, b2, a− 1} , and {b1, b2, a} → {b1, b2 + 1, a−N} . (4.5)

The normalization of Ba and Bb in (4.2) has been chosen so that strings still carry

integral charges, i.e.

Sstr =

∫
Σ1

(Ba −NBb) +

∫
Σ2

(NBa +Bb) . (4.6)
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A convenient basis for the space of large gauge transformations (4.5) is given by

{ba, bb, a} → {ba, bb + 1, a} , and {ba, bb, a} →
{
ba −

1

1 +N2
, bb +

N

1 +N2
, a+ 1

}
,

(4.7)

where ba and bb are defined analogously to b1 and b2. We see that bb, the massless field,

still has unit periodicity.

We have constructed an effective theory of a single light two-form Bb with small cou-

pling feff . Following the arguments of previous sections, we would naively conclude that

the strings in this setup should be extremely light, otherwise an inconsistency would arise.

As we discuss next, however, there are extra ingredients in this theory that may allow for

a different way out.

Consider a monopole of the theory (4.2), i.e. a particle that sources

1

2π

∫
S2

dA = a . (4.8)

For concreteness, consider an (anti-) monopole of charge a = −1. Because of the Stueck-

elberg coupling between the A and Ba, such a monopole carries a non-trivial value of ba.

From (4.2) one can see that minimum action configurations satisfy dA→ −(1 +N2)Ba as

r →∞. This implies that, asymptotically, the magnetic monopole has{
ba =

1

1 +N2
, bb = 0 , a = −1

}
. (4.9)

It looks as if the particle sources the ‘Wilson loop’ variable associated with the heavy field

Ba, but this is actually just a matter of gauge choice. From (4.7), we see that (4.9) can be

equivalently written as {
ba = 0 , bb =

N

1 +N2
, a = 0

}
. (4.10)

Given that the full periodicity of bb is unity, we see that the anti-monopole carries an

axionic charge of about 1/N (of the maximum, which is of course the same as no axionic

charge). Similar objects have been constructed in [45].

This can be intuitively understood by looking at the (b1, b2) field space. The monopole

charge (4.9) can be rewritten as{
b1 =

1

1 +N2
, b2 =

N

1 +N2
, a = −1

}
. (4.11)

As should be clear from figure 1, the point in (b1, b2) field space given by (4.11) can actually

be viewed as a fractional value of the light Bb ‘Wilson line’.

Crucially, this implies that, from the perspective of the low energy effective theory, a

BH with appropriate axion charge (roughly a multiple of 1/N , e.g. K/N with K ≤ N/2),

can in principle decay. It would decay to K anti-monopoles of the 1-form theory which

was used to create the small axion decay constant feff ' f/N in the first place. However,

this clearly requires the relevant monopoles to be light enough.
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1

1

b2

b1

Figure 1. Field space of b1 and b2. The subspace parametrized by the light axion for N = 3 is

shown. The arrow denotes the point associated with an S2 loop around an anti-monopole.

Let us consider an axionic BH with bb ≈ 1/2. If we denote the mass of the magnetic

monopoles by m, these will start being emitted once the BH reaches a radius Rm ∼ 1/m,

which corresponds to a BH of mass Mbh ∼ M2
P /m. Since the BH is required to emit

N/2 of these monopoles before its decay, we should require that Mbh & Nm/2, that

is, m .MP /
√
N .

This is still a conservative estimate, since in principle both monopoles and anti-

monopoles will be radiated. In the absence of axionic hair, the net axionic charge carried

by these would be zero. The study of the dynamical effect that the axionic hair of the BH

has in the process of (anti-)monopole emission, and how this leads to a discharge of the

axionic BH is a complicated subject that we leave for future work. However, we expect

that, once this effect is taken into account, the actual upper bound on the monopole masses

will be significantly lower than m .MP /
√
N .

To put our result in perspective, recall that in the un-Higgsed theory the existence of

strings with tension σ1,2 ∼ Λ2 . fMP suffices to satisfy the WGC and to avoid the possible

pathologies discussed in section 2. By contrast, the situation in the Higgs phase appears to

be more involved. Indeed, at low energies one encounters a theory with a single light field

Bb, with an effective coupling feff ∼ f/N , while the strings are now much heavier than the

expected cutoff Λeff .
√
feffMP ∼

√
fMP /N . Our pathology of axionic BH evaporation

appears to occur. At the same time, a solution specific to this type of construction suggests

itself: the possible lightness of monopoles of the gauged 1-form theory cures the problem

if m .MP /
√
N . Notice in particular that if f ∼MP , one concludes that these monopoles

have to reside precisely at the expected effective cutoff scale m . Λeff ∼ MP /
√
N . One

may be tempted to conclude that the mechanisms of alignment and Higgsing are insufficient

to generate an effective theory the cutoff of which evades the WGC: new low-scale physics

may be forced to enter in a different sector.

Clearly, other conclusions are also possible. First of all, it may simply be impossible to

construct the theory with A, B1 and B2 and the required large N in consistent quantum

gravity models, even though the WGC does not directly forbid such a situation. Further-

more, it is conceivable that such models avoid our ‘axionic BH evaporation problem’ in
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some other way, not related to light strings or light monopoles. Nevertheless, the possible

way out through light monopoles looks intriguing.

5 Conclusions

In this note we have presented a novel argument that suggests a parametric bound on the

tension of strings in theories with 2-form fields at weak coupling. While the exact form of

the bound depends on the precise rate of evaporation of small axionic black holes, under

certain assumptions we recover the constraints expected from the WGC. Our arguments

are not air-tight, and allow for ways out that do not involve light strings. If the evaporation

of black holes slowed down at late stages (with respect to the standard rate of Hawking

radiation), or if for some reason the semiclassical description of the evaporation became

invalid at a stage earlier than expected, our bounds would become weaker.

In this respect, one can ask whether paradigms such as the firewall hypothesis would

drastically affect our results. While precise statements are hard to make, our preliminary

conclusion is that they would not. As long as one can construct (young) black holes

with axionic charge at about the critical radius Rc, our results follow exclusively from

the requirement of black hole evaporation in a finite time. Of course, if firewalls were

to significantly extend the axionic black hole lifetime, our results would change. If this

modified lifetime were known, our analysis could easily be adapted and yield a new WGC-

like bound.

Another escape to our conclusions would be the existence of long-lived remnants, which

would by themselves resolve the apparent paradox we have discussed. The absence of rem-

nants has been extensively used to motivate the WGC as well as other ‘folk theorems’

of quantum gravity, such as the absence of global symmetries. The latter conjecture

is supported by convincing arguments against remnants that carry arbitrary conserved

charges [42], but these do not directly apply to remnants that merely support a Wilson-

line b (see nevertheless [41]). In this respect, our no-remnant (or equivalently topology

change) hypothesis is a stronger requirement. This is not too surprising, the WGC is a

much stronger statement than the simple no-global symmetry hypothesis, and is hence

much harder to prove. In fact, we do not know of fully convincing arguments for the WGC

based exclusively on semi-classical analysis (see however [55]).

We have further applied our arguments to a setup in which a light 2-form field with

small effective decay constant feff arises upon Higgsing an ‘aligned’ linear combination of

two 2-forms. Interestingly, rather than constraining the string spectrum, the evaporation of

axionic black holes suggests the appearance of light states in a different sector, namely light

monopoles which carry fractional amounts of axion hair. Given the prominent role played

by similar models in the paradigm of large field (‘natural’) inflation, it would be interesting

to understand whether our conclusions can be confirmed by alternative considerations

and/or for objects of different dimensionality.

Concerning objects of different dimensionality, one encounters some obvious obstacles.

First, in four or less flat space-time dimensions black holes are the only objects with horizon

and a corresponding Hawking evaporation process. So our constraint on 2-forms does not
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generalize in any obvious way. One might be tempted to consider BTZ black holes in

d = 3 AdS and try to constrain the corresponding Wilson line and hence the 1-form gauge

theory, but also here our logic does not go through straightforwardly. Crucially, we can not

follow the evaporation of a macroscopic black hole all the way to empty space. Turning to

space-time dimensions above four, we can in principle consider black branes in flat space,

but then we would face the Gregory-Laflamme instability. Other higher dimensional black

objects such as black rings, whose horizons have richer topologies (S1 × Sd−3), will also

be interesting to consider. We leave the study of how to adopt our logic to these cases to

future work.

Possibly, the right way to extend and generalize our argument is not via other black

objects but via space-time topology changes. Indeed, the main idea we have used is the

disappearance of an (effectively) non-trivial 2-cycle of our space time - the 2-cycle around

the black hole horizon. Now, one might instead consider a geometry where two copies of

Rd are linked by a throat with cross-section Sp (p ≤ d − 2), i.e., a wormhole, possibly

fibered over an appropriate space of dimension d − p − 2. Dynamically, this wormhole

should collapse in pure gravity. But now, one may consider putting a non-zero p-form

‘Wilson-line’ on its non-trivial cycle and demand a consistent dynamical transition to the

trivial topology of two separate Rd spaces. It is conceivable that, following the logic of

section 2.1, one can recover the WGC bound. We leave a more detailed study of such

possibilities to future work.
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