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1 Introduction

Exceptional field theories provide an En(n) covariant formulation of supergravity which

unites eleven-dimensional supergravity and type IIB supergravity in a common frame-

work [1–4]. This formulation gives a natural explanation for the exceptional symmetries

known to appear upon dimensional reduction of supergravity theories [5–7]. It is based

on the underlying symmetry algebra of En(n) generalized diffeomorphisms on an internal

spacetime whose coordinates are embedded into representations of the underlying excep-

tional groups (together with the associated section constraints) [8, 9]. Action function-

als invariant under these generalized diffeomorphisms consistently reproduce subsectors of

eleven-dimensional supergravity [8, 10, 11]. Coupling of external tensor fields and further

imposing invariance under diffeomorphisms on the external part of spacetime determines a
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unique action functional — the exceptional field theory — which depending on the solution

of the section constraint reproduces the full eleven-dimensional supergravity and full type

IIB supergravity, respectively. For the lower rank groups E5(5) = D5(5), E4(4) = A4(4),

E3(3) = A2(2) ⊗ A1(1), and E2(2) = A1(1) ⊗ R
+, these theories have been constructed

in [12–15]. Remarkably, this construction uniquely reproduces the full bosonic sectors of

the higher-dimensional supergravities without any reference to the fermionic field content

and supersymmetry. Nevertheless these actions can be supersymmetrized with fermions

transforming under the maximal compact subgroups K(En(n)). For E7(7) and E6(6) the

supersymmetric completions have been worked out in [16, 17].

The exceptional field theory based on the group E8(8) appears to differ in some respects

from its lower-rank cousins. In the physical context the special role of E8(8) is often assigned

to the ‘dual graviton barrier’. Upon dimensional reduction to three dimensions, the Kaluza-

Klein vectors are dualized into scalar fields in order to exhibit the full duality group. As

a result, the scalar sector of the dimensionally reduced theory carries degrees of freedom

descending from the higher dimensional ‘dual graviton’ [18–21]. While this dualization goes

through straightforwardly for the free vector fields of the dimensionally reduced theory,

their non-abelian gauge structure in presence of the higher Kaluza-Klein modes requires a

modification of the standard dualization procedure. On the formal side, this is reflected by

the fact that the E8(8) generalized diffeomorphisms do not close into an algebra [8, 9] which

has obstructed a straightforward extension of the constructions for the lower-rank groups.

In E8(8) exceptional field theory this is taken care of by the appearance of an extra gauge

symmetry in the commutator of two generalized diffeomorphisms, such that the combined

algebra closes and allows for the construction of a gauge invariant action functional which in

turn reproduces the full higher-dimensional supergravities [4]. In particular, the realization

of this extra gauge symmetry takes the form of constrained E8(8) rotations and requires

the introduction of an additional (constrained) gauge connection BµM which is invisible in

the dimensionally reduced theory. This extra gauge symmetry is in fact a generic feature

of exceptional field theories but for the lower rank groups it only kicks in at the higher-

rank p-forms. More specifically, the theories associated to the En(n) groups exhibit such

extra constrained gauge symmetry among the (9−n)-forms. Only for E8(8) this symmetry

comes down to the vector fields and becomes an integral part of the algebra of generalized

diffeomorphisms.

In this paper, we construct the supersymmetric completion of the E8(8) exceptional field

theory. The theory is defined on a (3+248)-dimensional generalized spacetime. In addition

to the usual dependency on spacetime (‘external’) coordinates xµ, µ = 0, 1, 2, all fields

and gauge parameters formally depend also on extended coordinates Y M, M = 1, . . . , 248,

transforming in the adjoint representation of E8(8). As usual, not all of these internal

coordinates are physical. This is taken care of by the E8(8) covariant section constraints,

ηMN ∂M ⊗ ∂N ≡ 0 , fMNK ∂M ⊗ ∂N ≡ 0 , (P3875)MN
KL∂K ⊗ ∂L ≡ 0 , (1.1)

where ηMN and fMNK are respectively the Cartan-Killing form and the structure constants

of E8(8) (see appendix A for more details on the conventions used throughout this paper),

and P3875 is the projector onto the irreducible representation 3875 in the tensor product
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of two adjoint representation

248⊗ 248 = 1⊕ 248⊕ 3875⊕ 27000⊕ 30380 , (1.2)

explicitly given by

(P3875)NL
MK =

1

7
δ(N

M δL)
K −

1

56
ηMK ηNL −

1

14
fP

N
(MfPL

K) . (1.3)

The bosonic sector of the theory combines an external three-dimensional metric gµν (or

dreibein eµ
a), an internal frame field VM

K, parametrizing the coset space E8(8)/SO(16),

and gauge connections Aµ
M and BµM associated with generalized internal diffeomorphisms

and constrained E8(8) rotations, respectively. Fermions enter the theory as spinors under

the SO(1, 2)× SO(16) generalized Lorentz group and transform as weighted scalars under

generalized diffeomorphisms. Specifically, under SO(16), the gravitinos ψµ
I and fermions

χȦ transform in the fundamental vector 16 and spinor 128c representations, respectively.

Their couplings require the introduction of spin connections

Dµ DM

SO(1, 2) ωµ
ab ωM

ab

SO(16) Qµ
IJ QM

IJ

, (1.4)

in the external and internal coordinates, and for the two factors of the generalized Lorentz

group, respectively. In the external sector, the SO(1, 2) connection ωµ
ab is defined by the

usual vanishing of external torsion according to

D[A,ω][µeν]
a = 0 ⇐⇒ Γ[µν]

ρ = 0 , (1.5)

where (in contrast to standard geometry) derivatives are also covariantized w.r.t. internal

generalized diffeomorphisms under which the dreibein eµ
a transforms as a weighted scalar.

For the internal sector on the other hand, the generalized Christoffel connection is e8(8)

valued

ΓMN
K ≡ ΓM,L fLK

N , (1.6)

and the proper condition of vanishing torsion amounts to the projection condition [22]

[ ΓM,N ]1⊕3875 = 0 , (1.7)

within the tensor product (1.2). As for the lower-rank exceptional groups [8, 23] this

condition together with a generalized vielbein postulate turns out to determine the internal

SO(16) spin connection QM
IJ up to contributions that drop out from all equations of

motion and supersymmetry transformations of the theory. The off-diagonal blocks in (1.4)

are determined by demanding that the algebra-valued currents

JM
ab ≡ eaµD[ω]Meµ

b , Jµ ≡ V−1D[A,B,Q]µV ∈ e8(8) , (1.8)
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of the external and internal frame fields live in the orthogonal complement of the Lorentz

algebra within GL(3)× E8(8):

JM

∣∣∣
so(1,2)

= 0 , Jµ

∣∣∣
so(16)

= 0 . (1.9)

The spin connections (1.4) are the central object for the description of fermionic cou-

plings and supersymmetry transformation rules in E8(8) × SO(16)-covariant form. In this

paper, we construct the unique supersymmetric completion of the bosonic E8(8) exceptional

field theory from [4]. Upon explicit solution of the section condition (1.1), the resulting

Lagrangian reduces to full D = 11 supergravity and the IIB theory, respectively, for ap-

propriate reformulations of these theories, as pioneered in [24–26].

The supersymmetric completion in particular underlines the role of the extra con-

strained gauge connection BµM which joins the other fields in an irreducible supermul-

tiplet and whose variation contributes to the supersymmetry invariance of the resulting

action. Although its supersymmetry variation is given by some non-covariant expression,

remarkably it turns out that the following combination of variations

∆ǫBµM ≡ δǫBµM − ΓM,N δǫAµ
N , (1.10)

takes a tensorial form

∆ǫBµM = −2
(
DMǭIψµ

I − ǭIDMψµ
I
)
+ ie εµνρg

ρσDM(ǭIγνψσ
I) , (1.11)

with supersymmetry parameter ǫI . The structure of the r.h.s. is such that it exhibits the

full internal spin connection QM
IJ , however its undetermined parts precisely cancel against

the corresponding contributions from the Christoffel connection ΓM,N on the l.h.s., such

that the net variation δǫBµM is uniquely determined and compatible with the constraints

this connection is subject to.

The paper is organized as follows. After a brief review of the symmetry structure of

bosonic E8(8) exceptional field theory, we construct the necessary tools such as an internal

fully covariant derivative and the SO(1, 2)⊗SO(16) spin connections needed to describe the

coupling to fermions and supersymmetry transformation rules. We discuss their generalized

curvatures whose components provide the building blocks for the bosonic field equations. In

section 3, we then analyze the algebra of supersymmetry transformations and show that its

closure into the bosonic symmetries of the theory entirely determines all the supersymmetry

transformations. Finally, in section 4 we present the fermionic completion of the bosonic

Lagrangian and prove its invariance under supersymmetry.

2 E8(8) × SO(16) exceptional geometry

2.1 E8(8) generalized diffeomorphisms

Let us start by a brief review of the field content and symmetry structures of E8(8) bosonic

exceptional field theory. For details, we refer to [4]. The field content is given by

{eµ
a , VM

K , Aµ
M , BµM} , (2.1)
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i.e. external and internal frame fields together with gauge connections Aµ
M, BµM . The

‘dreibein’ eµ
a defines the external metric gµν = ηab eµ

aeν
b. The ‘248-bein’ VM

K is the

internal analogue of the dreibein and parametrises the coset space E8(8)/SO(16). Under

SO(16), the collective index K splits according to the decomposition of the algebra

e8(8) −→ so(16)⊕ 128s , (2.2)

into the adjoint and the spinor of SO(16), i.e.

VM
K =

{
VM

IJ ,VM
A
}
, (2.3)

satisfying VM
IJ = VM

[IJ ] with SO(16) vector indices I, J = 1, . . . , 16, and spinor indices

A,B = 1, . . . , 128.1 In the same way the dreibein defines the external metric, the general-

ized vielbein defines the internal metric MMN

MMN = VM
KVN

L δKL ≡ VM
AVN

A +
1

2
VM

IJVN
IJ , (2.4)

in terms of which the bosonic theory can be formulated. The inverse 248-bein then is

given by

(V−1)K
M =

{
VM

B,−VM
IJ

}
≡

{
ηMNVN

B,−ηMNVN
IJ
}

, (2.5)

where

VM
AVM

B = δAB , VM
IJVM

KL = −2 δIJKL . (2.6)

Throughout, we raise and lower adjoint indices M,N , . . . , with the Cartan-Killing form

ηMN . Finally, the 248-bein is an E8(8) group-valued matrix, which results in the standard

decomposition of the Cartan form

(V−1)L
N∂MVN

K =
1

2
qM

IJ (XIJ)
K
L + pM

A (Y A)KL , (2.7)

where XIJ and Y A denote the compact and non-compact generators of E8(8), respectively.

With the explicit expressions for the structure constants in the SO(16) basis from (A.1),

one finds the internal currents

qM
IJ =

1

64
ΓIJ
BAV

N
B∂MVN

A , pM
B = −

1

120
ΓIJ
BAV

N
A∂MVN

IJ , (2.8)

which will be our building blocks for the internal spin connection and later the Ricci scalar.

This sums up the basic properties of the generalized vielbein.

The local symmetries of this exceptional field theory are generalized internal diffeo-

morphisms, constrained E8(8) rotations, and external diffeomorphisms with respective pa-

rameters ΛM, ΣM, and ξµ. Let us first review the generalized internal diffeomorphisms.

The generalized Lie derivative acting on a vector WM of weight λW is defined by

L(Λ,Σ)W
M = ΛK∂KW

M − 60PM
N

K
L∂KΛ

LWN + λW∂NΛNWM − ΣLf
LM

NWN . (2.9)

1See appendix A for more details on the relevant group and algebra conventions.
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Field eµ
a VM

K Aµ
M, ΛM BµM, ΣM χȦ ψµ

I , ǫI

Weight (λ) 1 0 1 0 −1
2

1
2

Table 1. Weights of all fields and gauge parameters under generalized diffeomorphisms.

Here P
M

N
K
L projects onto the adjoint representation 248 and guarantees compatibility

with the E8(8) structure, cf. the explicit expression (A.3). The weight λW of the various

fields in the theory coincides with the three-dimensional Weyl weight of the fields, i.e.

weight 2 and 0 for the external and internal metrics gµν and MMN , respectively, and

weights 1 and 0 for the gauge connections Aµ
M and BµM, respectively. Fermions come

with half-integer weight. This is summarized for all fields in table 1.

Unlike the lower-rank En(n) cases with n ≤ 7, the generalized Lie derivative (2.9)

depends on two parameters, ΛM and ΣM, with the latter being subject to the section

condition (1.1), i.e.

(P3875)MN
KLΣK ⊗ ΣL ≡ 0 ≡ (P3875)MN

KLΣK ⊗ ∂L , etc. . (2.10)

This is needed together with the section constraints (1.1) in order to ensure closure of the

full symmetry algebra. Schematically, we have an algebra

[δ(Λ1,Σ1), δ(Λ2,Σ2)] = δ(Λ12,Σ12) , (2.11)

with notably the gauge parameter Σ12 given by

Σ12M ≡ −2Σ[2M∂NΛN
1] + 2ΛN

[2 ∂NΣ1]M − 2ΣN
[2 ∂MΛ1]N + fN

KL ΛK
[2 ∂M∂NΛL

1] , (2.12)

confirming that the Λ transformations do not close among themselves.

Before we describe the associated gauge connections and curvatures, let us make a

small digression to discuss connections and torsion compatible with the generalized diffeo-

morphisms (2.9). For an algebra-valued connection

ΓMN
K = ΓM,L fLK

N , (2.13)

the fact that pure Λ-transformations do not close into an algebra implies that the naive

definition of torsion as

T̄ (Λ,W )M = T̄NK
M ΛNWK = L

∇
(Λ,Σ)W

M − L(Λ,Σ)W
M , (2.14)

does no longer define a tensorial object. Here, L∇ refers to generalized Lie derivatives (2.9)

with partial derivatives replaced by covariant ones ∇ = ∂−Γ. Following [22], this suggests

to rather define torsion as the part of the Christoffel connection that transforms covariantly

under the generalized diffeomorphisms. With the transformation of (2.13) under (2.9)

given by

δ(Λ,Σ)ΓL,N = δcov(Λ,Σ) ΓL,N + fQN
P ∂L∂PΛ

Q + ∂LΣN , (2.15)

– 6 –
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projection onto its irreducible E8(8) representations according to (1.2) shows that only its

components in the 1 ⊕ 3875 transform as tensors under (2.9). The proper definition of a

torsionless connection thus corresponds to the condition

[ ΓM,N ]1⊕3875 = 0 , (2.16)

which can be made explicit with the form of the projector (A.4). Let us note that such a

torsionless connection gives rise to the identity

L(Λ,Σ)W
M = L

∇
(Λ,Σ̃)

WM , (2.17)

with Σ̃M ≡ ΣM − ΓM,N ΛN .

With the r.h.s. of (2.17) manifestly covariant, this shows that the combination Σ̃M behaves

as a tensorial object under generalized diffeomorphisms. In this sense it may appear more

natural to parametrize generalized diffeomorphisms in terms of the parameters (Λ, Σ̃). The

disadvantage of using Σ̃ w.r.t. the original formulation is the fact that the constraint (2.10)

which ΣM has to satisfy, takes a much less transparent form when expressed in terms of Σ̃

since the connection ΓM,N in general will not be constrained in its first index and will not

even be fully determined by covariant constraints. For the description of generalized diffeo-

morphisms we thus have the choice between a description with covariant parameters (Λ, Σ̃)

and a description in terms of parameters (Λ,Σ) in terms of which the constraints (2.10) are

well defined and easily expressed. We will in general stick with the latter but observe that

the existence of the covariant combination Σ̃M gives rise to some compact reformulations

of the resulting formulas.2

The various terms of the bosonic action are constructed as invariants under the gener-

alized internal Lie derivatives (2.9). In the full theory, the gauge parameters ΛM and ΣM

depend not only on the internal Y M but also on the external xµ coordinates. From the

three-dimensional perspective, these symmetries are implemented as (infinite-dimensional)

gauge symmetries, such that external derivatives are covariantized with gauge connections

Aµ
M, BµM

Dµ = ∂µ − L(Aµ,Bµ) . (2.18)

In accordance with (2.10), the connection BµM is constrained to obey the same constraints

as the gauge parameter ΣM. The commutator of the covariant derivatives (2.18) closes

into the field strengths

[Dµ, Dν ] = −L(Fµν ,Gµν) , (2.19)

2The existence of the covariant combination Σ̃M may suggest to impose Σ̃ = 0 in order to reduce

the number of independent gauge parameters [22] while preserving closure of the algebra. In view of the

constraints (2.10), this is only possible in case the connection ΓM,N is identified with the Weitzenböck

connection ∂MVL
P (V−1)P

K fNK
L which itself is constrained in the first index. We will in the following

keep both gauge parameters ΛM and ΣM independent which seems important for the supersymmetric

extension.
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with

Fµν
M = 2 ∂[µAν]

M − 2A[µ
N∂NAν]

M + 14 (P3875)
MN

KLA[µ
K∂NAν]

L

+
1

4
A[µ

N∂MAν]N −
1

2
fMN

Pf
P
KLA[µ

K∂NAν]
L + . . . ,

GµνM = 2D[µBν]M − fN
KLA[µ

K∂M∂NAν]
L + . . . . (2.20)

The ellipsis denote additional two-form terms required for the proper transformation be-

havior of the field strengths, cf. (2.23) below. As required for consistency, the section con-

straints (1.1) ensure that all these terms drop from the commutators of covariant derivatives

where the field strengths are contracted with particular differential operators according

to (2.19). Moreover, all the two-form terms drop out from the bosonic Lagrangian.

Under gauge transformations

δ(Λ,Σ)Aµ
M = DµΛ

M , (2.21)

δ(Λ,Σ)BµM = DµΣM − ΛN∂MBµN + fN
KLΛ

K∂M∂NAµ
L , (2.22)

(where just as the associated gauge connections, the parameters ΛM and ΣM carry weight

1 and 0 under (2.9), respectively, cf. table 1), the full field strengths (2.20) transform

according to

δ(Λ,Σ)Fµν
M = L(Λ,Σ)Fµν

M ,

δ(Λ,Σ)

(
GµνM − ΓM,N Fµν

N
)
= L(Λ,Σ)

(
GµνM − ΓM,N Fµν

N
)
, (2.23)

i.e. not GµνM but only the combination G̃µνM ≡ GµνM −ΓM,N Fµν
N behaves as a tensor

under (2.9). This reflects the tensorial structure (2.17) of generalized diffeomorphisms.

Pushing this structure further ahead, we are led to introduce the general ‘covariant’ vari-

ation of the connection BµM as

∆BµM ≡ δBµM − ΓM,N δAµ
N , (2.24)

cf. (1.10), in order to cast the gauge transformations (2.21) into the more compact form

δ(Λ,Σ)Aµ
M = DµΛ

M ,

∆(Λ,Σ)BµM = DµΣ̃M + ΛN DµΓM,N , (2.25)

with Σ̃M from (2.17). This will turn out to be very useful in the following.

2.2 Section constraints

Since the section constraints (1.1) play a central role in the construction of the exceptional

field theory, for the coupling of fermions it will be useful to spell out the decomposition of

these constraints under the subgroup SO(16) according to (2.2). With the e8(8) represen-

tations of (1.1) decomposing as

1⊕ 248⊕ 3875 −→ 1⊕ 120⊕ 128s⊕135⊕ 1820⊕ 1920c , (2.26)

– 8 –
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the section constraints take the explicit form

MMN ∂M ⊗ ∂N = 2VM
AV

N
A ∂M ⊗ ∂N ,

VMK[IV |N | J ]K ∂M ⊗ ∂N = −
1

4
ΓIJ
CDV

M
CV

N
D ∂M ⊗ ∂N ,

V [M
IJV

N ]
AΓ

IJ
AB ∂M ⊗ ∂N = 0

VMK(IV |N | J)K ∂M ⊗ ∂N = −
1

16
δIJVM

KLV
N

KL ∂M ⊗ ∂N ,

VM [IJV |N |KL] ∂M ⊗ ∂N = −
1

24
ΓIJKL
CD VM

CV
N

D ∂M ⊗ ∂N ,

ΓJ
AȦ

V(M
IJV

N )
A ∂M ⊗ ∂N = −

1

16
(ΓMNΓI)AȦ V(M

MNVN )
A ∂M ⊗ ∂N , (2.27)

which we will use in the following. Following the above discussion, the same algebraic

constraints hold for derivatives ∂M replaced by the gauge connection BµM or its gauge

parameter ΣM .

Let us recall from [4] that these section constraints allow for (at least) two inequivalent

solutions which break E8(8) to GL(8) or GL(7)×SL(2), and in which all fields depend on only

eight or seven among the 248 internal coordinates Y M, respectively. The resulting theory

then coincides with the bosonic sector of D = 11 and type IIB supergravity, respectively.

2.3 Spin connections

Fermions enter the theory as spinors under the SO(1, 2)×SO(16) generalized Lorentz group

and transform as weighted scalars under generalized diffeomorphisms. Their couplings thus

require four different blocks of the spin connection
{
ωµ ωM

Qµ QM

}
(2.28)

that ensure covariance of both external and internal derivatives under SO(1,2) and SO(16),

respectively. Via the generalized vielbein postulates

0 ≡ ∇µeν
a ≡ Dµeν

a + ωµ
abeνb − Γµν

ρeρ
a ,

0 ≡ ∇MVN
K ≡ ∂MVN

K −
1

2
QM

IJ(XIJ)
K

LVN
L − ΓMN

P VP
K , (2.29)

for the external and internal frame fields, the spin connections relate to the external and

internal Christoffel connections

{
Γµν

ρ, ΓMN
K
}

. (2.30)

Starting with the external sector, the SO(1,2) connection ωµ
ab is defined by the van-

ishing torsion condition of the external Christoffel connection

Γ[µν]
ρ = 0 . (2.31)

This leads to the standard expression for the spin connection in terms of the objects of an-

holonomity Ωabc ≡ 2 e[a
µeb]

ν Dµeνc, where however derivatives are covariantized according

– 9 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
8

to (2.18) with the dreibein transforming as a scalar of weight 1 under (2.9). The external

SO(16) connection on the other hand is defined by imposing that the external current

(Jµ)
K
L ≡ (V−1)L

ND[A,Q]µVN
K , (2.32)

lives in the orthogonal complement of so(16) within e8(8):

Jµ ≡ Pµ
A Y A . (2.33)

In analogy to (2.8) this yields the explicit expressions

Qµ
IJ =

1

64
ΓIJ
BAV

N
B DµVN

A , Pµ
B = −

1

120
ΓIJ
BAV

N
ADµVN

IJ , (2.34)

with covariant derivatives from (2.18). According to their definition, the currents Pµ and

Qµ satisfy Maurer-Cartan integrability conditions

2D[µPν]
A = −Fµν

MpMA + VP
AfPMN∂MFµνN + GµνMVM

A , (2.35)

Qµν
IJ ≡ 2 ∂[µQν]

IJ + 2Qµ
K[IQν

J ]K

= −Fµν
MqM

IJ + VP
IJfPMN∂MFµνN + GµνMVM

IJ

−
1

2
Pµ

APν
BΓIJ

AB . (2.36)

W.r.t. the integrability relations of D = 3 supergravity [27], these relations represent a

deformation with additional terms in field strengths due to the introduction of the gauge

fields Aµ
M and BµM. We will see in the next section how these terms take a manifestly

covariant form. In the fermionic sector, the full external covariant derivatives acting on

the SO(1, 2)× SO(16) spinors of the theory are given by

Dµψ
I = Dµψ

I +
1

4
ωµ

abγab ψ
I +Qµ

IJ ψJ ,

Dµχ
Ȧ = Dµχ

Ȧ +
1

4
ωµ

abγab χ
Ȧ +

1

4
Qµ

IJΓIJ
ȦḂ

χḂ , (2.37)

for spinors ψI and χȦ transforming in the 16 and 128c of SO(16), respectively. Under

generalized internal diffeomorphisms (2.9), the spinors ψI and χȦ transform as scalars

of weight 1/2 and −1/2, respectively, and the derivatives Dµ in (2.37) are covariantized

accordingly.

Now, let us turn to the internal sector. Similar to (2.33) we derive the internal SO(1,2)

spin connection by demanding that the internal current

(JM)ab ≡ ebµD[ω]Meµ
a , (2.38)

lives in the orthogonal complement of so(1, 2) within gl(3)

(JM)ab ≡ πM
(ab) . (2.39)

Explicitly, this yields

ωM
ab = eµ[a∂Meµ

b] . (2.40)
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In order to define the internal SO(16) connection, we recall that the proper condition of

vanishing torsion in the internal sector is given by setting to zero the tensorial part (2.16)

of the Christoffel connection ΓMN
K. Via (2.29) this condition determines a large part of

the SO(16) connection. More precisely, the counting goes as follows [22]: decomposition

of (2.16) into SO(16) irreducible representations

1⊕ 3875 −→ 1⊕ 135⊕ 1820⊕ 1920c , (2.41)

specifies the representation content of the vanishing torsion conditions. On the other hand,

the various components of the SO(16) connection (QM)IJ live in the SO(16) representations

QKL
IJ : 120⊗ 120 = 1⊕ 120⊕ 135⊕ 1820⊕ 5304⊕ 7020 ,

QA
IJ : 120⊗ 128s = 128s ⊕ 1920c ⊕ 13312s .

(2.42)

Comparison to (2.41) exhibits which SO(16) components of (QM)IJ are not fixed by im-

posing vanishing torsion. For practical purposes, these undetermined parts 120⊕ 128s ⊕

135 ⊕ 5304 ⊕ 7020 ⊕ 13312s do not pose a problem as they drop out of all physically

relevant quantities such as the supersymmetry transformations, the Lagrangian etc., a

property that all known supersymmetric exceptional field theories share.

Concretely, the four irreducible components (2.41) of the torsion-free condition (2.16)

take the form

−
1

2
ΓIJ,IJ + ΓA,A = 0 ,

−ΓM(I,J)M −
1

16
δIJΓMN,MN = 0 ,

Γ[IJ,KL] +
1

24
ΓIJKL
AB ΓA,B = 0 ,

ΓJ
AȦ

(ΓIJ,A + ΓA,IJ) +
1

16
(ΓMNΓI)AȦ (ΓMN,A + ΓA,MN ) = 0 .

(2.43)

To explicitly solve these equations (2.43), we use (2.29), to express the internal Christoffel

connection in terms of derivatives of the vielbein

ΓM,N =
1

60
fN

KP

(
VP

AD[Q]MVK
A −

1

2
VP

IJD[Q]MVK
IJ

)
, (2.44)

or, more explicitly

ΓM,NVN
A = −pM,A , ΓM,NVN

IJ = QM
IJ − qM

IJ , (2.45)

in terms of the Cartan form (2.8). Then, combining these equations with (2.43) trans-

lates conditions on the Christoffel connection into conditions on the spin connection. The

solution for the SO(16) spin connection is then found to be

QM
IJ = VM

AQA
IJ −

1

2
VM

KLQKL
IJ , (2.46)
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with

QIJ
KL = qIJ

KL −
1

60
δKL
IJ pA,A +

1

14
δ
I[K

Γ
L]J
AB pA,B

+
1

4!
ΓIJKL
AB pA,B +

1

7
δ
I[K

VM
L]J

ΓN
MN + UIJ,KL ,

QA
IJ = qA

IJ + pIJ,A −
1

56
ΓIK
AB pKJ,B +

1

56
ΓJK
AB pKI,B

+
3

364
ΓIJKL
AB pKL,B +

1

60
VM

BΓ
IJ
ABΓNM

N + (R13312)A
IJ , (2.47)

cf. [22], in terms of the Cartan forms (2.8), whose first indices we have ‘flattened’ with the

248-bein VM
K. The contributions UIJ,KL, (R13312)A

IJ in (2.47) are constrained by

UIJ,KL = U[IJ ],[KL] , U[IJ,KL] = 0 = UIK,KJ ,

(R13312)A
IJ = (R13312)A

[IJ ] , ΓI
AȦ

(R13312)A
IJ = 0 , (2.48)

and not determined by the vanishing torsion condition, in accordance with (2.42). The

undetermined parts in the 120⊕ 128s in (2.47) have been expressed via the trace ΓNM
N

of the Christoffel connection. The latter can be fixed by imposing as an additional condition

that the determinant of the external vielbein e ≡ det eµ
a be covariantly constant

∇Me ≡ ∂Me−
3

2
ΓNM

N e ≡ 0 , =⇒ ΓNM
N =

2

3
e−1∂Me . (2.49)

To summarize, the full internal covariant derivative act on an E8(8) × SO(16) tensor XM
I

of weight λX as

∇MXN
I ≡ ∂MXN

I +QM
IJXN

J − ΓMN
KXK

I −
1

2
λXΓKM

KXN
I , (2.50)

with the connections defined by (2.47) and (2.45), respectively. This covariant derivative

transforms as a generalized tensor of weight λ = λX−1 under generalized diffeomorphisms.

In particular, for the spinor fields of the theory, the covariant internal derivatives take

the form

∇MψI
µ ≡ ∂MψI

µ +QM
IJψI

µ +
1

4
ωM

ab γab ψ
I
µ −

1

4
ΓKM

K ψI
µ ,

∇MχȦ ≡ ∂MχȦ +
1

4
QM

IJ ΓIJ
ȦḂ

χḂ +
1

4
ωM

ab γab χ
Ȧ +

1

4
ΓKM

K χȦ . (2.51)

We conclude this section with a collection of the different covariant derivatives we have

used and will use throughout this paper:

Dµ = D[A]µ ,

Dµ = D[A,ω,Q]µ , DM = D[ω,Q]M ,

∇µ = ∇[A,ω,Q,Γ]µ , ∇M = ∇[ω,Q,Γ]M , (2.52)

where Aµ
M is the gauge field associated with generalized diffeomorphisms symmetry and

the four blocks of the spin connection ωµ,Qµ, ωM,QM defined in (2.31), (2.34), (2.40),

and (2.47), respectively.
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2.4 Curvatures

Having defined the various components of the spin connection (2.28), we can now discuss

their curvatures which will be the building blocks for the bosonic Lagrangian and field

equations. Moreover, we will require a number of identities for the commutators of covariant

derivatives in order to prove the invariance of the full Lagrangian under supersymmetry.

Let us start with the commutator of two external covariant derivatives on an SO(1, 2)×

SO(16) spinor ǫI which is obtained straightforwardly from (2.37)

[Dµ,Dν ] ǫ
I = −Fµν

M∂MǫI −
1

2
∂MFµν

MǫI +Qµν
IJǫJ +

1

4
Rµν

abγabǫ
I , (2.53)

with the field strength of the gauge field Aµ
M introduced in (2.20), the usual external

Riemann curvature defined by

Rµν
ab = 2D[µων]

ab + 2ω[µ
ac ων] c

b , (2.54)

(with covariant derivatives (2.18)), and its analogue Qµν
IJ from (2.36) for the SO(16)

external spin connection. As the commutator of two external covariant derivatives, the

left-hand side of (2.53) is covariant whereas this is not manifest from the r.h.s.. Embedding

the internal derivatives on the r.h.s. into full covariant derivatives (2.51), the commutator

can be rewritten as

[Dµ,Dν ] ǫ
I = −Fµν

M∇MǫI −
1

2
∇MFµν

MǫI +
1

4
R̂µν

abγabǫ
I

+Qµν
IJǫJ + Fµν

MQM
IJǫJ (2.55)

with the improved Riemann tensor R̂µν
ab ≡ Rµν

ab + ωM
abFµν

M. The latter is covariant

under local SO(1,2) Lorentz transformations, shows up in the gravitational field equations

and whose contraction in particular gives rise to the improved Ricci scalar

R̂ = ea
µeb

ν R̂µν
ab , (2.56)

that is part of the bosonic action. With the first line of (2.55) now manifestly covariant,

the second line can be rewritten upon using the explicit expression (2.36) for Qµν
IJ such

that the commutator takes the manifestly covariant form

[Dµ,Dν ] ǫ
I =

1

2
Pµ

APν
BΓIJ

AB ǫJ +
1

4
R̂µν

abγab ǫ
I + VP

IJfPMN ∇MFµνN ǫJ

+G̃µνMVM
IJ ǫ

J −Fµν
M∇M ǫI −

1

2
∇MFµν

M ǫI , (2.57)

with the tensorial combination of field strengths G̃µνM from (2.23). Similarly, one may

rewrite the second integrability relation (2.35) into the manifestly covariant form

2D[µPν]
A = VP

AfPMN∇MFµνN + G̃µνMVM
A . (2.58)

We now turn to the mixed curvature, arising from the commutators of one exter-

nal and one internal covariant derivatives. We will only be interested in those projec-

tions of this commutator, in which the undetermined part of the SO(16) connection drops
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out. Fortunately, they are the projections relevant to prove the invariance of the La-

grangian under supersymmetry. Evaluating different projections of such a commutator on

an SO(1, 2)× SO(16) spinor ǫI , we obtain the relations

VM
AΓ

I
AȦ

[∇M,Dµ] ǫ
I =

1

4
VM

AΓ
I
AȦ

RMµ
ab γabǫ

I

−
3

4
ΓI
AȦ

VM
IJ∇MPµ

A ǫJ +
1

8
ΓIJK
AȦ

VM
IJ∇MPµ

A ǫK ,

VM
IJ [∇M,Dµ] ǫ

J =
1

4
VM

IJ RMµ
ab γabǫ

J

−
1

8
VM

A∇MPµ
A ǫI −

1

4
ΓIJ
ABV

M
A∇MPµ

B ǫJ , (2.59)

where the mixed curvature tensor is defined by

RMµ
νρ = ea

νeb
ρ
(
∂Mωµ

ab −DµωM
ab
)
=

(
∂MΓµσ

[ν
)
gρ]σ . (2.60)

One can show it constitutes a tensor under generalized diffeomorphisms (2.9), and satisfies

a Bianchi identity

RM[µ νρ] ≡ 0 . (2.61)

Its contraction to a ‘mixed Ricci tensor’ yields the following current

RMν
µν = −

1

2
Ĵµ

M ≡ ea
µeb

ν
(
∂Mων

ab −Dν

(
eρ[a∂Meρ

b]
))

, (2.62)

which is related to the improved Ricci scalar (2.56) by variation w.r.t. the vector fields

δAR̂ = Ĵµ
M δAµ

M + ∇MJM
A +DµI

µ
A , (2.63)

up to boundary currents JM
A , Iµ

A of respective weights λJA
= −1, λIA = −2 , that do not

contribute under the integral.

Finally, for the internal curvature, we are again interested in specific projections of

two internal covariant derivative in which the undetermined part of the connection drops

out. The pertinent projection for the definition of an internal curvature scalar R in the

E8(8) × SO(16) exceptional geometry is given by

(
16VM

KIV
N

JK + 2VM
AV

N
A δIJ + 2ΓIJ

ABV
M

AV
N

B

)
∇M∇N ǫJ =

= −
1

8
R ǫI + VM

KIV
N

JK RMN
abγabǫ

J . (2.64)

On the l.h.s. the double derivative terms vanish by means of the section constraints (2.27),

while a straightforward computation shows that also all linear derivative terms ∂MǫI cancel.

The curvature of the internal spin connection on the r.h.s. is defined in analogy to (2.54)

and computed to be

RMN
ab = 2 ∂[MωN ]

ab + 2ω[M
ac ωN ] c

b

= −
1

2
eµ[aeb]νgστ∇Mgµσ∇N gντ . (2.65)
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Upon using the expressions for the SO(16) spin connection (2.47), the internal curvature

scalar R in (2.64) can be calculated explicitly in terms of the Cartan forms (2.8) and the

derivative of the external vielbein determinant e as

R = −
2

3
MMN e−2∂Me ∂N e+

4

3
MMN e−1∂M∂N e+

4

3
V(M

AV
N )

IJ Γ
IJ
AB pM

B e−1∂N e

+ VM
AV

N
IJ Γ

IJ
AB

(
∂(MpN )

B +
1

4
ΓIJ
BC q(M

IJpN )
C

)
+MMN pM

A pN
A

+ 2VM
AV

N
B pM

BpN
A −

1

8
VM

IJV
N

KL

(
ΓIJΓKL

)
AB

pM
ApN

B

+
1

4
VM

AV
N

B ΓIJ
ACΓ

IJ
BD pM

CpN
D . (2.66)

By construction it transforms as a scalar (of weight λR = −2) under generalized diffeo-

morphisms (2.9). Its dependence on the external metric is such that

δ(eR) = (δe)R + total derivatives . (2.67)

The other relevant projection of two internal derivatives on a spinor is given by

(
12VM

AV
N

IJ Γ
I
AȦ

+
(
ΓIJK
AȦ

+ 2ΓI
AȦ

δJK
)
VM

IKVN
A

)
∇M∇N ǫJ =

=
1

8
ΓI
AȦ

RA ǫI +
1

16
VM

IJV
N

A

(
ΓIJK
AȦ

− 14 δJKΓI
AȦ

)
RMN

abγab ǫ
K , (2.68)

where again all double derivatives on the l.h.s. vanish due to the section constraints. The

generalized curvature RA on the r.h.s. plays the analogue of a Ricci tensor in this geometry

and is most conveniently defined by variation of the curvature scalar R w.r.t. to a non-

compact local e8(8) transformation of the internal frame field, i.e.

δΣR ≡ ΣA(Y )RA + ∇MJM
Σ , under δΣV = V Y AΣA(Y ) , (2.69)

up to a boundary current JM
Σ of weight λJΣ

= −1 . It can be explicitly given in terms of

the Cartan forms (2.8) as

RA = −
2

3
ΓIM
ABV

M
IMVN

B∂Me ∂N e e−2 +
1

4
ΓIM
ABΓ

IMNP
CD VM

NPV
N

BpM
CpN

D

−ΓIM
ABΓ

IN
CDV

M
MNVN

BpM
CpN

D −
3

2
ΓIM
ABV

M
IMVN

BpM
CpN

C

−2ΓIM
CBV

M
IMVN

CpM
ApN

B +
23

16
ΓIM
ABΓ

IN
CDV

M
MNVN

C pM
DpN

B

+ΓIM
CBV

M
IMVN

ApM
CpN

B + 2ΓIM
ABV

M
IMVN

CpM
BpN

C

+
(
− 4VN

AV
M

B − 3 δAB VM
CV

N
C −

1

4
ΓIMNP
AB VM

IMVN
NP

+
1

2
ΓIM
ACΓ

IM
BD VN

CV
M

D

)(
∂(MpN )

B +
1

4
ΓIJ
BC q(M

IJpN )
C

)
. (2.70)

This expression above is given in compact form, after simplification by various Fierz-like

identities, some of which are collected in appendix B.
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3 Supersymmetry algebra

In this section we establish the supersymmetry transformation of the various fields and

verify that the supersymmetry algebra closes. Before discussing supersymmetry, we briefly

review the bosonic symmetries of E8(8) exceptional field theory, since these are the transfor-

mations we are going to recover in the commutator of two supersymmetry transformations.

3.1 Bosonic symmetries of E8(8) exceptional field theory

In section 2.1 we have extensively discussed the structure of internal generalized Lie deriva-

tives which depend on two parameters ΛM and ΣM with associated gauge connectionsAµ
M

and BµM . A closer analysis [4] shows that these gauge connections come with additional

shift symmetries which take the form

δΞAµ
M = ∂KΞµ3875

MK + ηMNΞµN + fMN
KΞµN

K ,

δΞBµM = ∂MΞµN
N + ∂NΞµM

N . (3.1)

Here, the symmetry parameter Ξµ3875
MN lives in the projection of the two adjoint indices

MN onto the 3875 representation, explicitly realized by (A.4). The parameter ΞµN

is constrained in the same way as the fields BµM and ΣM, cf. (2.10). Similarly, the

parameter ΞµN
K is constrained as (2.10) in its first internal index N . It is straightforward

to check that the shift symmetries (3.1) leave the covariant derivatives (2.18) invariant.

More precisely, they correspond to the tensor gauge transformations associated to the

two-form gauge fields that complete the vector field strengths Fµν
M and GµνM into fully

covariant objects, but drop out from the Lagrangian of the theory.

Apart from the internal gauge symmetries, the full set of bosonic symmetries also

includes a covariantized version of the (2+1)-external diffeomorphism with the parameter

ξµ depending on both set of coordinates {xµ, Y M}. On the bosonic fields these act as3

δξeµ
a = ξνDνeµ

a +Dµξ
νeν

a ,

δξMMN = ξνDνMMN ,

δξAµ
M = −2VMA

(
eεµνρ ξ

νPρA + VNAgµν∇N ξν
)
,

∆ξBµM = −eεµνρ

(
gρλDν (gλσ∇Mξσ)− ξν Ĵρ

M

)
, (3.2)

where the variation of BµM is given in terms of the current Ĵρ
M introduced in (2.62) and

most compactly expressed via the general covariant variation ∆BµM introduced in (2.24).

With (2.24), (2.45), and the explicit form of δξAµ
M it is straightforward to verify that

the variation δξBµM is uniquely determined and compatible with the constraints (2.10)

this connection satifies. The external diffeomorphisms (3.2) take the expected form for the

frame fields eµ
a, MMN . In contrast, for the gauge connections Aµ

M, BµM, they relate

only on-shell to the standard diffeomorphism transformation of gauge fields.

3W.r.t. the form of these transformations given in [4], we have expressed the current bosonic current jρM

by the coset current PρM, see (4.4) below, and furthermore changed the vector transformations by a shift

transformation (3.1) with parameter ΞµM = −gµν∂Mξν , in order to obtain a more compact presentation

of the external diffeomorphisms. Also some signs differ from the formulas in [4] due to the fact that in this

paper we use mostly minus signature (+−−) for the external metric.
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3.2 Closure of the supersymmetry algebra

Let us now move on to the fermionic fields and the supersymmetry algebra. In addi-

tion to the bosonic fields introduced in section 2, the supersymmetric completion of the

E8(8) exceptional field theory contains the following spinor fields: sixteen gravitinos ψµ
I

as well as 128 matter fermions χȦ, transforming in the vector and spinor representation

of SO(16), respectively. With respect to generalized diffeomorphisms, they transform as

scalar densities with half-integer weights given in table 1. We are working in the Majorana

representation and mostly minus signature, i.e. spinors are taken to be real and SO(1,2)

gamma matrices γµ purely imaginary, cf. [28] for our spinor conventions. In particular, we

use γµνρ = −ieεµνρ .

In this section, we present the supersymmetry transformation rules

δǫeµ
a = iǭIγaψI

µ , V−1δǫV = ΓI
AȦ

χ̄ȦǫIY A ,

δǫψ
I
µ = Dµǫ

I + 2VM
IJ∇M(iγµǫ

J) + 2VM
IJ iγµ∇MǫJ ,

δǫχ
Ȧ =

i

2
γµǫIΓI

AȦ
P̂A
µ − 2VM

AΓ
I
AȦ

∇MǫI ,

δǫAµ
M = −4VM

IJ ǭ
Iψµ

J + 2ΓI
AȦ

VM
A ǭI iγµχ

Ȧ ,

∆ǫBµM = −2(∇MǭIψI
µ − ǭI∇MψI

µ) + e εµνρg
ρσ∇M(ǭI iγνψI

σ) , (3.3)

and show its algebra closes into generalized diffeomorphisms and gauge transformations.

The bosonic transformationss (first and fourth line) precisely coincide with the supersym-

metry transformations of standard D=3 supergravity [27, 28] with all fields now living on

the exceptional space-time. The fermionic transformation rules on the other hand have

been modified w.r.t. the three-dimensional theory with the addition of term containing

internal covariant derivatives ∇M introduced in section 2.3. As in higher dimensions,

the supersymmetry transformation rules only carry specific projections of these covariant

derivatives, such that the undetermined part in the SO(16) connection QM
IJ drops out.

The supersymmetry variations of the gauge connection BµM finally have no analogue in

the three-dimensional theory and are entirely determined from closure of the supersym-

metry algebra. Although its r.h.s. is such that not all undetermined parts of the SO(16)

connection QM
IJ drop out, these terms precisely cancel the corresponding contributions

from the Christoffel connection in the covariant variation (2.24) on the l.h.s.. The resulting

variation δǫBµM is uniquely determined and compatible with the constraints (2.10) this

field has to satisfy.

As a first test, we use this ansatz to calculate the commutator of two supersymmetry

transformations on the dreibein eµ
a to obtain

[δǫ1 , δǫ2 ] eµ
a = eǭI2γ

a
(
Dµǫ

I + 2VM
IJ∇M(iγµ)ǫ

J + 4VM
IJ iγµ∇MǫJ

)
− (1 ↔ 2)

= Dµ

(
ǭI2 iγ

a ǫI1
)
− 4VM

IJ ǭ
I
2 ǫ

J
1∇Meµ

a +∇M

(
−4VM

IJ ǭ
I
2 ǫ

J
1

)
eµ

a

− 4VM
IJ

(
ǭI2 γ

ab∇MǫJ1 −∇MǭI2 γ
ab ǫJ1

)
eµ b

≡ Dµ(ξ
νeν

a) + ΛM∂Meµ
a + ∂MΛMeµ

a + Ω̃abeµ b . (3.4)
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The first term reproduces the action of covariantized external diffeomorphisms, the second

and third term describe the action of internal generalized diffeomorphisms on the dreibein,

and the last term is an SO(1,2) Lorentz transformation, with the respective parameters

given by

ξµ = iǭI2 γ
µ ǫI1 ,

ΛM = −4VM
IJ ǭ

I
2ǫ

J
1 ,

Ω̃ab = −4VM
IJ

(
ǭI2 γ

ab∇MǫJ1 −∇MǭI2 γ
ab ǫJ1

)
+ ΛM ωM

ab . (3.5)

Similarly, one can show closure of the supersymmetry algebra on the 248-bein. Us-

ing (3.3), we find the commutator

VM
B [δǫ1 , δǫ2 ]VM

KL =

(
−
i

2
Pµ

CΓJ
CȦ

ǭJ1γ
µ − 2VN

CΓ
J
CȦ

∇N ǭJ1

)
ǫI2Γ

I
AȦ

(Y A)KL
B

− (1 ↔ 2)

= ξµPµ
A (Y A)KL

B + 60VM
BP

N
M

K
LVN

KL∇KΛ
L

− 2VM
B

(
∇N ǭI2ǫ

I
1 − ǭI2∇N ǫI1

)
fNP

MVP
KL , (3.6)

with the adjoint projector from (A.3). We recognize the first term as the action of exter-

nal diffeomorphisms on the 248-bein. The second term reproduces the action (2.9) of a

generalized internal diffeomorphism with parameter ΛL when parametrized covariantly as

in (2.17) (note that the transport term ΛN∇NVM
KL vanishes due to the vielbein postu-

late (2.29)). The last term thus describes the covariantized E8(8) rotation from which we

read off the parameter Σ̃N

Σ̃N = −2
(
∇N ǭI2ǫ

I
1 − ǭI2∇N ǫI1

)
. (3.7)

As a consistency check, it is straightforward to verify that although the expression for

the parameter (3.7) carries the full internal SO(16) spin connection QN
IJ (including its

undetermined parts), its form is such that the constrained parameter ΣN = Σ̃N +ΓN ,MΛM

which actually appears in the rotation term of (2.9) is uniquely determined (with the

undetermined part from QN
IJ cancelling the undetermined part from ΓN ,M) and moreover

satisfies the required constraints (2.10).

Also on the gauge field Aµ
M we obtain closure of the supersymmetry algebra by a

standard calculation which gives the explicit result

[δǫ1 , δǫ2 ]Aµ
M = −4VM

IK ǭI2
(
Dµǫ

K
1 + 2VN

KJ∇N (iγµ)ǫ
J
1 + 4VN

KJ iγµ∇N ǫJ1
)

+2ΓI
AȦ

VM
Aǭ

I
2iγµ

(
i

2
γνǫ

J
1Γ

J
BȦ

Pν B − 2VN
BΓ

J
BȦ

∇N ǫJ1

)
− (1 ↔ 2)

= DµΛ
M +∇N

(
−16iVM

K(IV
M

J)K ǭI2γµǫ
J
1

)

+ 8i fMN
KV

K
IJ

(
ǭI2γµ∇N ǫJ1 −∇N ǭI2γµǫ

J
1

)

−2i eεµνρV
M

AP
ρAǭI2iγ

νǫI1 + 4VM
AV

N
Aξ

a∇N eµ
a − 4VM

AV
N

A∇N ξµ

= DµΛ
M − 2VMA

(
eεµνρ ξ

νPρA + VNAgµν∇N ξν
)

+∂NΞµ 3875
(MN ) + fMN

K ΞµN
K + ηMNΞµN (3.8)
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with the parameters ΛM and ξµ from (3.5) and the shift parameters Ξµ of the last line

defined as

ΞµN = −2∂N ξµ ,

Ξµ 3875
(MN ) = −16VM

IKVN
KJ ǭ

(I
2 iγµǫ

J)
1 − VM

IJV
N

IJ ǭ
K
2 iγµǫ

K
1 ,

ΞµN
K = −8VK

IJ

(
∇N ǭI2iγµǫ

J
1 − ǭI2iγµ∇N ǫJ1

)

+ΓN ,M

(
Ξµ 3875

(MK) − 2ηMKξµ

)
, (3.9)

corresponding to the shift symmetries (3.1) discussed above. The fact that Ξµ 3875
(MN )

lives in 3875 representations is an immediate consequence of its specific form

Ξµ 3875
(MN ) = −16VM

IKVN
KJ ξµ IJ , ξµ IJ ≡ iǭ

(I
2 γµǫ

J)
1 −

1

16
δIJ ξµ , (3.10)

with a parameter ξµ IJ in the 135 of SO(16), combined with the fact that the tensor product

of two adjoint representations (1.2) contains only a single representation 135 of SO(16)

which lives within the 3875 representation of E8(8) . Moreover, the last term in (3.9)

carrying the Christoffel connection ensures that the parameter ΞµN
K does not carry any

of the undetermined parts of the SO(16) connection QN
IJ and furthermore is constrained

in its first index, as required by the shift symmetries (3.1).

We have at this point fully determined the supersymmetry algebra

[δǫ1 , δǫ2 ] = δξ + δΩ̃ + δΛ + δΣ + δΞ , (3.11)

with parameters given in (3.5), (3.7), (3.9). As a consistency check of the construction it

remains to verify that the algebra closes in the same form on the constrained connection

BµM. This computation is greatly facilitated by the notation of the covariant varia-

tion (2.24) in terms of which its supersymmetry variation takes the covariant form (3.3).

To lowest order in fermions, the supersymmetry algebra on BµM is given by

[δǫ1 , δǫ2 ]BµM = 2 δǫ1 ∆ǫ2 BµM + 2ΓM,N δǫ1 δǫ2 Aµ
N . (3.12)

For the second term we may use the closure of the algebra on the vector fields Aµ
M

established above. The first term after some calculation yields

2 δǫ1 ∆ǫ2 BµM = ∆Λ,ΣBµM +∆ξBµM

+2∇(MΞ̃µN )
N + εµνρRMN

νρΛN

+8VN
IJ

(
[∇M,∇N ]ǭI2iγµǫ

J
1 − ǭI2iγµ[∇M,∇N ]ǫJ1

)
, (3.13)

with the parameters given in (3.5), (3.7), (3.9) and the covariant combination

Ξ̃µN
K = −8VK

IJ

(
∇N ǭI2iγµǫ

J
1 − ǭI2iγµ∇N ǫJ1

)
,

= ΞµN
K − ΓN ,M

(
Ξµ 3875

(MK) − 2ηMKξµ

)
. (3.14)
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The first line of (3.13) reproduce the covariant variation of BµM under generalized internal

and external diffeomorphisms. For the supersymmetry algebra to close, the second and

third line of (3.13) must reproduce the shift symmetries

∆ΞBµM = δΞBµM − ΓM,N δΞAµ
M ,

= 2∇(MΞ̃µN )
N + 2Γ[NM]

P Ξ̃µP
N − ΓP[N

P Ξ̃µM]
N

(
∂NΓN ,P − ΓNP

QΓM,Q

) (
Ξµ 3875

NP − 2ηNPξµ
)
,

= 2∇(MΞ̃µN )
N + εµνρRMN

νρΛN

+8VN
IJ

(
[∇M,∇N ]ǭI2iγµǫ

J
1 − ǭI2iγµ[∇M,∇N ]ǫJ1

)
, (3.15)

where we have obtained the last equality with the use of the following identity

(
2∂[MΓN ],P − ΓM,LΓN ,Qf

LQ
P

)(
V(N

IKVP)
KJ +

1

8
VN

AV
P
A δIJ

)

−VN
IK

(
2∂[MQN ]

KJ + 2Q[M
KLQN ]

LJ
)
= 0 . (3.16)

This is reminiscent of standard Riemannian geometry, where the curvature of the Christoffel

symbols is the curvature of the spin connection

Rµν
ρσ [Γ] = Rµν

ab [ω] ea
ρeb

σ , (3.17)

albeit here, in a projected fashion.

This proves the closure of the supersymmetry algebra on BµM

[δǫ1 , δǫ2 ]BµM = δ(Λ,Σ)BµM + δξBµM + δΞBµM , (3.18)

and concludes the discussion on the consistency of the supersymmetry algebra (3.11).

4 Action

Having introduced fermion fields and supersymmetry transformation laws, we now have

at our disposal all the necessary tools to construct the fermionic completion of the E8(8)

bosonic Lagrangian constructed in [4]. We start by giving a brief review of the bosonic

Lagrangian in the form most suited for the coupling of fermions before presenting its

supersymmetric completion.

4.1 The bosonic theory

Let us start by a brief review of the action of bosonic E8(8) exceptional field theory fol-

lowing [4]4 however adapted to the further coupling of fermions, in particular using the

internal frame field (the 248-bein) from (2.3). The bosonic field content has been given

and discussed in (2.1). The action of bosonic E8(8) exceptional field theory is given by5

Sbos =

∫
d3x d248Y (LEH + Lscalar + Ltop + Lpot) , (4.1)

4As mentioned above, in this paper we use the metric signature (+ − −). Some signs in the present

Lagrangian thus differ from the ones in [4] which was given in mostly plus signature.
5As usual, the integral over the 248 internal coordinates is to be taken in a formal sense since the

section constraint (1.1) remains to be imposed by hand and eliminates the field dependence on most of

these coordinates.
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where each term is separately invariant under generalized internal diffeomorphisms (2.9).

The Einstein-Hilbert Lagrangian is given by the Ricci scalar (2.56) obtained from contrac-

tion of the improved Riemann tensor

LEH = −e ea
µeb

ν R̂µν
ab , (4.2)

where e denotes the determinant of the dreibein eµ
a. The scalar kinetic term in (4.1) is

given by

Lscalar = −
1

240
DµMMNDµMMN = Pµ

A PµA , (4.3)

where we have used the expression

MKPDµMPL = 2 fMK
L VM

APµ
A , (4.4)

of the scalar currents (with covariant derivatives from (2.18)) in terms of the E8(8) structure

constants fMK
L and the coset currents (2.34). The topological term in (4.1) carries the

non-abelian Chern-Simons couplings of the gauge connections according to

LCS = −
1

2
εµνρ

(
Fµν

MBρ M − fKL
N∂µAν

K∂NAρ
L −

2

3
fN

KL∂M∂NAµ
KAν

MAρ
L

−
1

3
fMKLf

KP
Qf

LR
S Aµ

M∂PAν
Q∂RAρ

S

)
. (4.5)

Its covariance becomes manifest upon spelling out its variation as

δLCS = −
1

2
εµνρ

(
Fµν

M∆BρM +
(
G̃µνM − fMN

K ∇KFµν
N
)
δAρ

M
)
, (4.6)

with the covariant field strengths from (2.20), (2.23) and the general covariant variation

introduced in (2.24). As anticipated above, we note that the two-form contributions to the

field strengths F and G (whose explicit form has been suppressed in (2.20)) drop out from

this expression due to the section constraint. Moreover, the contributions to the Christoffel

connection in ∇K that are left undetermined by the vanishing torsion condition cancel in

this expression against the corresponding contributions in ∆BρM.

Finally, the last term in (4.1) carries only derivatives in the internal coordinates and

is explicitly given by

Lpot = −e V , (4.7)

with the ‘potential’ V given by

V ≡
1

4
jM

RjN
S
(
MMN ηRS − 2MKLfRL

N fSK
M + 2δR

N δS
M
)

(4.8)

−
1

2
g−1∂MgMMN fNK

PjP
K −

1

4
MMN g−1∂Mg g−1∂N g −

1

4
MMN∂Mgµν∂N gµν ,

in terms of the internal current jM
N defined as

MKP∂MMPL ≡ jM
N fNL

K

= 2 fNL
KpM

AVN
A = −fNL

K Γ̃M,P

(
MPN + ηPN

)
, (4.9)
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where we have used (2.45) in the last equality. The scalar potential (4.8) then takes the

manifestly covariant form

V = R−
1

4
MMN∇Mgµν∇N gµν +∇MIM , (4.10)

with the internal curvature scalar R from (2.66) and up to a boundary contribution IM of

weight λI = −1 . This completes the definition of the bosonic Lagrangian.

Let us finally present the vector field equations in a manifestly covariant form.

Parametrizing the variation of the Lagrangian (4.1) w.r.t. the gauge fields as

δL = εµνρ
(
E(A)M
µν ∆BρM + Ê

(B)
µνM δAρ

M
)

, (4.11)

with the general covariant variation of (2.24), the Chern-Simons couplings together with

the minimal couplings in the covariant derivatives give rise to duality equations relating

the field strengths to matter currents according to

E(A)M
µν ≡ −

1

2
Fµν

M +
1

2
e εµνρ j

ρM ,

Ê
(B)
µνM = −

1

2
G̃µνM +

1

2
fMN

K∇KFµν
N −

1

2
e εµνρ

(
fMN

K∇Kj
ρN + Ĵρ

M

)
, (4.12)

with the covariant field strengths from (2.20), (2.23) and the current Ĵρ
M from (2.62). Let

us stress that the equations of motion do not imply the full vanishing E
(A)M
µν = 0 due to

the fact that the corresponding variation (4.11) is a variation w.r.t. a constrained gauge

connection subject to the section constraint (2.10). In other words, the equations of motion

only imply the weaker projected equation

E(A)M
µν = Oµν

M , (4.13)

where Oµν
M vanishes when contracted with a field satisfying the section constraints (2.10).

4.2 Supersymmetric Lagrangian

We can now present the supersymmetric completion of the bosonic action (4.1). The

fermionic field content comprises the gravitinos ψµ
I and spin 1/2 fermions χȦ transforming

in the fundamental vector 16 and spinor 128c representations of SO(16), respectively. The

full E8(8) Lagrangian is given by

e−1L = −R̂+ gµνPµ
APν

A + e−1 Ltop − V

+2i γµνρψ̄I
λDµψ

I
ν − 2i χ̄ȦγµDµχ

Ȧ − 2 χ̄ȦγµγνψI
µΓ

I
AȦ

Pν
A

+e−1 Lquartic + 8VM
IJ ψ̄

I
µγ

µν∇MψJ
ν − 8iVM

A ΓI
AȦ

ψ̄I
µ∇M(γµχȦ)

−2VM
IJ Γ

IJ
ȦḂ

χ̄Ȧ∇MχḂ . (4.14)

The first line is the bosonic Lagrangian (4.1). The terms in the second line are obtained

via a direct uplift (and proper covariantization) from D = 3 maximal supergravity [27, 28]:

a Rarita-Schwinger term for the gravitinos ψI
µ, a kinetic term for the 128 matter fermions

– 22 –



J
H
E
P
0
9
(
2
0
1
6
)
1
6
8

χȦ, and the Noether coupling between the coset current Pµ
A and the fermions. The three

last terms of (4.14) carrying internal covariant derivative ∇M have been added to ensure

invariance of the Lagrangian under supersymmetry transformations. After proper Scherk-

Schwarz reduction of the Lagrangian [29], these terms provide the Yukawa couplings of

the gauged three-dimensional supergravity. Finally, Lquartic denotes the quartic fermion

terms. We expect these to coincide with the corresponding terms of the three-dimensional

theory [27, 28]

e−1 Lquartic = −
1

2

(
χγρΓ

IJχ
(
ψI
µγ

µνρψJ
ν − ψI

µγ
ρψµJ

)
+ χχψI

µγ
νγµψI

ν

)

+
1

2

(
(χχ)(χχ)−

1

12
χγµΓIJχχγµΓ

IJχ

)
, (4.15)

but as far as this paper is concerned we will only deal with fermions at quadratic order.

For the proof of invariance of (4.14) under supersymmetry (3.3), we first note that all

terms that do not carry internal derivatives cancel precisely as in the three-dimensional

theory. Terms carrying internal derivatives arise in the bosonic sector from variation of the

potential V and the topological term Ltop. In the fermionic sector, such terms arise from

the corresponding terms in the supersymmetry transformations (3.3), from variation of the

last three terms in (4.14), as well as from the modified integrability relations (2.57), (2.58).

We organise these terms according to their structure

ψ̄Dµ∇Mǫ , χ̄Dµ∇Mǫ , ψ̄∇M∇N ǫ , χ̄∇M∇N ǫ (4.16)

and show that they cancel against the contributions from the bosonic Lagrangian. In the

rest of this section, we will only focus on the last two types of terms in (4.16), which carry

two internal derivatives and thus exhibit an interesting geometric structure of the internal

space. The cancellation of the remaining terms is described in detail in appendix C.

Let us start by collecting the terms in ψ̄∇M∇N ǫ in the variation of the fermionic

Lagrangian

e−1δLferm

∣∣∣
ψ̄∇∇ǫ

−→ 8i
(
8VM

IKVN
KJ + VM

AV
N

AδIJ

)
ψ̄I
µγ

µ {∇M,∇N } ǫJ

+ 8i
(
8VM

IKVN
KJ + ΓIJ

ABV
M

AV
N

B

)
ψ̄I
µγ

µ [∇M,∇N ] ǫJ

+ 32i ψ̄I
µ V

M
IKVN

KJ

(
γµν∇Nγν∇MǫJ + 2γµν∇Mγν∇N ǫJ

+∇M(γµν)γν∇N ǫJ
)

+ 16iVM
A(Γ

IΓJ)ABV
N

B ψ̄I
µ∇Mγµ∇N ǫJ

+ 32iVM
IKVN

KJ ψ̄
I
µ

(
γµν∇M∇Nγν +

1

2
∇Mγµν∇Nγν

)
ǫJ . (4.17)

Upon use of the section constraints (2.27) and together with the identity (2.64), one can

show that all the quadratic and linear terms in derivatives of ǫ vanish. Then, the remaining

terms cancel the first two lines of the variation of the scalar potential (4.10) under a
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supersymmetry transformation (up to total derivatives)

δǫ(eV ) =
1

2
e

(
gµνR−

1

4
gµνMMN∇Mgρσ∇N gρσ +∇M(MMN∇N gµν)

+gµρ∇Mgρσ∇N gσνMMN

)
δǫgµν

+ eΓI
AȦ χȦǫI

(
RA +

1

4
ΓIJ
ABV

(M
BV

N )
IJ∇Mgµν∇N gµν

)
, (4.18)

where for the cancellation we have used the following identity

γµν∇M∇Nγν +
1

2
∇Mγµν∇Nγν =

1

2
∇M∇Nγµ −

1

2
gµν∇M∇N γν

−
1

4
RMN

abγµγab −
1

8
γµ∇Mgνρ∇N gνρ . (4.19)

The last line in (4.18) then cancels against the corresponding terms from the variation of

the fermionic Lagrangian

e−1δLferm

∣∣∣
χ̄∇∇ǫ

−→ 4VM
IKVN

A

(
ΓIKJ
AȦ

+ 12ΓI
AȦ

δKJ
)
χ̄Ȧ {∇M,∇N } ǫJ

+ 4VM
IKVN

A(Γ
IKJ
AȦ

− 10ΓI
AȦ

δKJ)χ̄Ȧ [∇M,∇N ] ǫJ

+ 16VN
IJV

M
Aχ̄

ȦΓI
AȦ

γµ∇M∇Nγµ ǫ
J . (4.20)

Using the identity (2.68) and the section constraints (2.27) one finds that all quadratic and

linear terms in ǫ vanish while the remaining terms precisely cancel the last line of (4.18).

For this, the following relations are useful

∇Mγµν = 2 γ[µ∇Mγν] , γµ∇Mγµ = 0 , (4.21)

γν∇M∇Nγν = −
1

2
RMN

abγab −
1

4
γµ∇Mgνρ∇N gνρ . (4.22)

We have thus sketched the vanishing of all terms carrying two internal derivatives in the

supersymmetry variation of (4.14). The cancellation of the remaining terms is described in

detail in appendix C. To summarize the result, we have shown invariance of the action (4.14)

up to quartic fermion terms.

5 Conclusions

In this paper we have constructed the supersymmetric completion of the bosonic E8(8) ex-

ceptional field theory. The final result is given by the action (4.14) and the supersymmetry

transformation laws (3.3). In particular, we have established the supersymmetry algebra

which consistently closes into the generalized internal and external diffeomorphisms to-

gether with the gauge transformations of the theory. The geometry of the internal space

is constrained by the section condition (1.1) which admits (at least) two inequivalent so-

lutions for which the action (4.14) reproduces the full D = 11 supergravity and full type

IIB supergravity, respectively. The fermions of exceptional field theory can consistently
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accommodate the fermions of the type IIA and type IIB theory, since the E8(8)-covariant

formulation (4.14) does not preserve the original D = 10 Lorentz invariance. The resulting

D = 10 fermion chirality thus depends on the solution of the section constraint.

In contrast to the standard formulation of supergravities, in exceptional field theory

the bosonic symmetries already uniquely determine the bosonic Lagrangian without any

reference to fermions and supersymmetry. Nevertheless, it is important to establish that

the resulting bosonic Lagrangian allows for a supersymmetric completion upon coupling

of the proper fermionic field content as we have done in this paper. In particular, in the

context of generalized Scherk-Schwarz reductions [29] this construction provides the con-

sistent reduction formulas for the embedding of the fermionic sector of lower-dimensional

supergravities into higher dimensions.

A particular attribute of E8(8) exceptional field theory is the appearance of an addi-

tional constrained gauge connection BµM related to an additional gauge symmetry which

ensures closure of the algebra of generalized diffeomorphisms. Unlike all other fields of

E8(8) exceptional field theory, this gauge connection is invisible in three-dimensional super-

gravity. More precisely, upon a consistent truncation of exceptional field theory down to

three dimensions by means of a generalized Scherk-Schwarz reduction

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) ,

gµν(x, Y ) = ρ−2(Y ) gµν(x) ,

Aµ
M(x, Y ) = ρ−1(Y )Aµ

N (x)(U−1)N
M(Y ) , (5.1)

with the Y -dependence carried by an E8(8) matrix U and a scaling factor ρ (satisfying

their system of consistency equations), the constrained gauge connection BµM reduces

according to

BµM(x, Y ) ∝ ρ−1(Y ) (U−1)K
P(Y ) ∂MUP

L(Y ) fNL
K Aµ

N (x) , (5.2)

such that its fluctuations are expressed in terms of the same three-dimensional vector

fields Aµ
N (x) that parametrize the fluctuations of the Aµ

M(x, Y ) . It is thus tempting to

wonder if already in exceptional field theory, and before reduction, the constrained gauge

connection can be considered as a function of the remaining fields such as [22]

BµM
?
= ΓM,N Aµ

N , (5.3)

cf. (2.17). However, as seen above, coupling to fermions requires a connection ΓM,N

other than the Weitzenböck connection, such that (5.3) would obstruct compatibility with

the constraints (2.10). Moreover, supersymmetry of the Lagrangian requires a non-trivial

transformation law (3.3) for the constrained connection BµM. It is remarkable that as we

have shown above this additional constrained connection consistently joins the remaining

bosonic and fermionic fields into a single supermultiplet without the need of additional

fermionic matter.

The fact that all transformation laws of BµM are most compactly expressed in terms

of the general covariant variation (2.24) is remnant of structures that appear in a gen-
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eral tensor hierarchy of non-abelian p-forms [30]. This may hint at a yet larger alge-

braic structure which in particular unifies the topological term and the generalized three-

dimensional Einstein-Hilbert term of (4.1) into a single non-abelian Chern-Simons form

on an enlarged algebra. If the present construction should allow for a generalization to

the infinite-dimensional cases of E9 [31–33], E10 [34, 35], (and maybe E11 [20, 36]), this

appearance of additional bosonic representations and their interplay with supersymmetry

may play an essential role.
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A E8(8) conventions

The E8(8) generators tM split into 120 compact ones XIJ ≡ −XJI and 128 non-compact

ones Y A, with SO(16) vector indices I, J, · · · ∈ 16 , spinor indices A,∈ 128, and the

collective label M = ([IJ ], A). The conjugate SO(16) spinors are labeled by dotted indices

Ȧ, Ḃ, . . . . In this SO(16) basis the totally antisymmetric E8(8) structure constants fMNK

possess the non-vanishing components:

f IJ,KL,MN = −8 δ
I[K

δ
L]J
MN , f IJ,A,B = −

1

2
ΓIJ
AB . (A.1)

E8(8) indices are raised and lowered by means of the Cartan-Killing metric

ηMN =
1

60
Tr tMtN = −

1

60
fM

KLf
NKL , (A.2)

with components ηAB = δAB and ηIJ KL = −2δIJKL. When summing over antisymmetrized

index pairs [IJ ], an extra factor of 1
2 is always understood.

We will also need the projector onto the adjoint representation

P
M

N
K
L =

1

60
fM

NPf
PK

L

=
1

30
δM(N δKL) +

7

30
(P3875)NL

MK −
1

240
ηMKηNL +

1

120
fMK

Pf
P
NL , (A.3)

in terms of the Cartan-Killing form and structure constants of E8(8) and the projector

(P3875)NL
MK explicitly given by

(P3875)
MK

NL =
1

7
δM(N δKL) −

1

56
ηMK ηNL −

1

14
fP

N
(M fPL

K) . (A.4)

We refer to [26, 39] for other useful E8(8) identities.
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B Gamma matrix identities

In this appendix, we give some of the SO(16) gamma matrices identities we have used to

rewrite the curvature RA in a more compact form. We started with 14 terms quadratic

in the Cartan forms, where a simple counting gives only 12 independent terms. Then

using an explicit representation of the SO(16) gamma matrices together with the section

constraints (2.27), we were able to write RA with 7 independent terms quadratic in the

Cartan forms.

The main identities behind this simplification are the following

V [M
IJV

N ]
B(Γ

IJΓKL)BDpM
ApN

C = 0 , (B.1)

ΓIM
B[AΓ

IMNP
D]C VM

NPV
N

BpM
CpN

D = −4ΓIM
A[BΓ

IN
C]DV

M
MNVN

BpM
CpN

D

+8ΓIM
ABV

M
IMVN

CpM
(BpN

C)

−ΓIM
BCV

M
IMVN

BpM
ApN

C

−ΓIM
ABV

M
IMVN

BpM
CpN

C . (B.2)

C Supersymmetry of the Lagrangian

In this appendix, we give the remaining details for the invariance of the Lagrangian (4.14)

under the supersymmetry transformations (3.3).

C.1 Cancellation of the terms carrying field strengths

We start with a simple check: all terms in Fµν
M and GµνM from the supersymmetric

variation of the fermionic terms in the Lagrangian should cancel against the corresponding

contributions from variation of the kinetic and topological terms. The relevant contribution

on the fermionic side are

δ
(
−2 eχ̄ȦγµγνψI

µ Γ
I
AȦ

PA
ν

)
−→ 2 eχ̄ȦγµνǫI ΓI

AȦ
DµP

A
ν

= −iεµνρχ̄Ȧγρǫ
I ΓI

AȦ
VMA

(
G̃µνM − fML

K∇KFµν
L
)

δ
(
2 εµνρψ̄I

µDνψ
I
ρ

)
−→ 2 εµνρψ̄I

µ [Dν ,Dρ] ǫ
I

−→ +2 εµνρ VM
IJ

(
G̃µνM − fML

K∇KFµν
L
)
ψ̄I
ρǫ

J

+εµνρFµν
M

(
∇Mψ̄I

ρǫ
I − ψ̄I

ρ∇MǫI
)
, (C.1)

where we have used the commutator of two external covariant derivative (2.57). On the

bosonic side, all terms with field strength come from the variation of kinetic and topologi-

cal terms

δL −→ εµνρÊ
(B)
µνM δAρ

M + εµνρE(A)M
µν ∆BρM

−→ εµνρ
(
−
1

2
G̃µνM +

1

2
fMN

K∇KFµν
N

)
(−4VM

IJ ǭ
Iψρ

J + 2iΓI
AȦ

VM
Aǭ

Iγµχ
Ȧ)

εµνρFµν
M

(
∇MǭIψρ

I − ǭI∇Mψρ
I
)
+ Fµν

M gσµ∇M(ǭI iγνψσ
I) , (C.2)
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with the exception of an extra contribution from the improved Einstein-Hilbert term

δ
(
−eea

µeb
νFµν

M ωM
ab
)
−→ −eea

µeb
νFµν

M δωM
ab

= −eea
µeb

νFµν
M

(
δeρ[a∇Meρ

b] + eρ[a∇Mδeρ
b]
)

= −eea
µeb

νFµν
M

(
eσ [aeτ

b]∇M (ec
τδeσ

c)
)

= −iegµσFµν
M∇M

(
ǭIγνψI

σ

)
. (C.3)

that cancels the last term of (C.2). Together, all terms with field strengths vanish.

C.2 Cancellation of the ∇MDµχǫ terms

From the variation of the vector fields in the bosonic Lagrangian (we have now dropped

all terms with field strengths), we have the following contribution

δL −→ +ejµM∆BµM − e fMN
K∇Kj

µN δAµ
M − e Ĵµ

M δAµ
M

−→ +4ie fMN
K∇K(V

N
BP

µB)VM
AΓ

I
AȦ

χ̄Ȧγµǫ
I + 2ie Ĵµ

M VM
AΓ

I
AȦ

χ̄Ȧγµǫ
I

= −ieVM
KL∇MPµA ΓIKL

AȦ
χ̄Ȧγµǫ

I − 2ieVM
IJ∇MPµA ΓI

AȦ
χ̄Ȧγµǫ

J

+ 2ie Ĵµ
M VM

AΓ
I
AȦ

χ̄Ȧγµǫ
I . (C.4)

On the fermionic side, the relevant contributions to this sector are

δ
(
−2 eχ̄ȦγµγνψI

µ Γ
I
AȦ

PA
ν

)
−→ −4 i eχ̄Ȧγµγν∇M(γµǫ

J) ΓI
AȦ

PA
ν V

M
IJ

+4 i eχ̄Ȧγµ∇MǫJ ΓI
AȦ

PA
µ V

M
IJ , (C.5)

δ
(
−2i e χ̄ȦγµDµχ

Ȧ
)
−→ 8i e χ̄ȦγµDµ∇MǫIVM

AΓ
I
AȦ

−2i e χ̄Ȧγµ∇MǫIPA
µ V

M
JKΓIJK

AȦ

−4i e χ̄Ȧγµ∇MǫJPA
µ V

M
IJΓ

I
AȦ

, (C.6)

δ
(
−8 eVM

AΓ
I
AȦ

ψ̄µ
Ii∇M(γµχȦ)

)
−→ 8 i eVM

AΓ
I
AȦ

∇Mχ̄ȦγµDµǫ
I

= −8 i eVM
AΓ

I
AȦ

χ̄Ȧγµ∇MDµǫ
I , (C.7)

δ
(
−2eVM

IJΓ
IJ
ȦḂ

χ̄Ȧ∇MχḂ
)
−→ −2i eVM

IJΓ
IJ
ȦḂ

χ̄Ȧ∇M(γµǫKΓK
AḂ

PA
µ )

= 2i eVM
IJΓ

IJK
AȦ

χ̄Ȧ∇M(γµǫKPA
µ )

−4i eVM
IJΓ

I
AȦ

χ̄Ȧ∇M(γµǫJPA
µ ) . (C.8)

Using the commutator

VM
AΓ

I
AȦ

[∇M,Dµ] ǫ
I =

1

4
VM

AΓ
I
AȦ

RMµ
ab γabǫ

I

−
3

4
ΓI
AȦ

VM
IJ∇MPµ

A ǫJ +
1

8
ΓIJK
AȦ

VM
IJ∇MPµ

A ǫK , (C.9)
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all of the above terms simply reduce to

−→ −4 i eχ̄Ȧγµγν∇M(γµ)ǫ
J ΓI

AȦ
PA
ν V

M
IJ − 4i eVM

IJΓ
I
AȦ

χ̄Ȧ∇M(γµ)ǫJPA
µ

− 2ieVM
IJ(∇Mgµν)PA

ν ΓI
AȦ

χ̄Ȧγµǫ
J

− 2i eVM
AΓ

I
AȦ

RMµ
ab χ̄Ȧγµγabǫ

I + 2ie Ĵµ
M VM

AΓ
I
AȦ

χ̄Ȧγµǫ
I

= 4i eVM
AΓ

I
AȦ

(
RMν

µν +
1

2
Ĵµ

M

)
χ̄Ȧγµǫ

I

= 0 , (C.10)

where we have used (2.62) in the last equality.

C.3 Cancellation of the ∇MDµψǫ terms

Similarly, we collect the vector field contributions in the bosonic Lagrangian

δL−→+ejµM∆BµM − e fMN
K∇Kj

µN δAµ
M − e Ĵµ

M δAµ
M

−→ 2ePµAVM
A

(
−4ψ̄µ

I∇MǫI + 2∇M(ψ̄µ
IǫI) + e εµνρg

ρσ∇M(ǭI iγνψσ
I)
)

−8eVN
AV

M
IJ fMN

K∇KP
µAψ̄I

µǫ
J − 4eĴµ

MVM
IJ ψ̄

I
µǫ

J

= −8eVM
AP

µAψ̄I
µ∇MǫI − 4eVM

A∇M(gµνPν
A)ψ̄I

µǫ
I + 2εµνρVM

A∇M(Pµ
A)ψ̄ρ

I iγνǫI

+2εµλρVM
APµ

A∇M(gλν)ψ̄ρ
I iγνǫI

−4eΓIJ
ABV

M
A∇MPµBψ̄I

µǫ
J − 4eĴµ

MVM
IJ ψ̄

I
µǫ

J , (C.11)

together with the relevant contributions from the fermionic Lagragian

δ(2ieγµνρψ̄I
ρDµψ

I
ν) −→ 8ieγµνρVM

IJ ψ̄
I
ρDµ(∇M(iγνǫ

J) + iγν∇MǫJ)

−4ieγµνρψ̄I
ρPµ

AΓIJ
ABV

M
B(∇M(iγνǫ

J) + iγν∇MǫJ)

= −16eVM
IJ ψ̄

I
µγ

µνDν∇MǫJ + 8eψ̄I
µγ

µν∇MǫJPµ
AΓIJ

ABV
M

B

+8ieεµνρVM
IJ ψ̄

I
µDν(∇M(γρ)ǫ

J)

−4ieεµνρψ̄I
µ∇Mγρǫ

JPµ
AΓIJ

ABV
M

B , (C.12)

δ(−2eχ̄ȦγµγνψI
µΓ

I
AȦ

Pν
A) −→ 4eVM

A(Γ
JΓI)ABPν

B∇MǭJγµγνψI
µ

= −4eVM
A(Γ

JΓI)ABPν
Bψ̄I

µγ
µν∇MǫJ

+4eVM
A(Γ

JΓI)ABP
µBψ̄I

µ∇MǫJ , (C.13)

δ(8eVM
IJ ψ̄µ

Iγµν∇Mψν
J) −→ −8ieεµνρVM

IJ ψ̄µ
I∇MγρDνǫ

J

+16eVM
IJ ψ̄µ

Iγµν∇MDνǫ
J

= −8ieεµνρVM
IJ ψ̄µ

IDν(∇Mγρǫ
J)

+8ieεµνρVM
IJ ψ̄µ

IDν(∇Mγρ)ǫ
J

+16eVM
IJ ψ̄µ

Iγµν∇MDνǫ
J , (C.14)
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δ(−8ieψ̄µ
I∇M(γµχȦ)ΓI

AȦ
VM

A) −→ 4eVM
A(Γ

IΓJ)ABψ̄
I
µ∇M(γµγνǫJPν

B)

= 4eVM
A(Γ

IΓJ)ABψ̄
I
µ∇M(γµγν)ǫJPν

B

+4eVM
A(Γ

IΓJ)ABψ̄
I
µγ

µν∇MǫJPν
B

+4eVM
A(Γ

IΓJ)ABψ̄
I
µ∇MǫJPµB

+4eVM
A(Γ

IΓJ)ABψ̄
I
µγ

µγνǫJ∇MPν
B . (C.15)

Upon using the commutator

VM
IJ [∇M,Dµ] ǫ

J =
1

4
VM

IJ RMµ
ab γabǫ

J

−
1

8
VM

A∇MPµ
A ǫI −

1

4
ΓIJ
ABV

M
A∇MPµ

A ǫJ , (C.16)

this reduces to

−→ −8eVM
IJ ψ̄

I
µǫ

J(RMν
µν +

1

2
Ĵµ

M)

+8ieενρσVM
IJ ψ̄

I
µγσǫ

JRMνκρg
κµ

−8ieενρσVM
IJ ψ̄

I
νγσǫ

JRMµκσg
κµ

−8ieεµνρVM
IJ ψ̄

I
ρ([Dµ,∇M]γν)ǫ

J

= 0 , (C.17)

where we have used the Schouten identity

ενρσgκµ(ψ̄I
µγνǫ

JRMρκσ − ψ̄I
νγµǫ

JRMρκσ + ψ̄I
νγρǫ

JRMµκσ) = ενρσψ̄I
νγρǫ

JRMσκµg
κµ ,

= 0 . (C.18)

This completes the results obtained in section 4 and proves the invariance of the extended

Lagrangian (4.14) under supersymmetry.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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