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ten- and eleven-dimensional supergravities. This theory is formulated on a (3+248) dimen-
sional spacetime (modulo section constraint) in which the extended coordinates transform
in the adjoint representation of Eg(g). All bosonic fields are Eg(g) tensors and transform
under internal generalized diffeomorphisms. The fermions are tensors under the general-
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extent they are required to formulate the field equations and supersymmetry transforma-
tion laws. We determine the supersymmetry transformations for all bosonic and fermionic
fields such that they consistently close into generalized diffeomorphisms. In particular, the
covariantly constrained gauge vectors of Eg(g) exceptional field theory combine with the
standard supergravity fields into a single supermultiplet. We give the complete extended
Lagrangian and show its invariance under supersymmetry. Upon solution of the section
constraint the theory reduces to full D=11 or type IIB supergravity.
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1 Introduction

Exceptional field theories provide an E,,) covariant formulation of supergravity which
unites eleven-dimensional supergravity and type IIB supergravity in a common frame-
work [1-4]. This formulation gives a natural explanation for the exceptional symmetries
known to appear upon dimensional reduction of supergravity theories [5-7]. It is based
on the underlying symmetry algebra of E,,) generalized diffeomorphisms on an internal
spacetime whose coordinates are embedded into representations of the underlying excep-
tional groups (together with the associated section constraints) [8, 9]. Action function-
als invariant under these generalized diffeomorphisms consistently reproduce subsectors of
eleven-dimensional supergravity [8, 10, 11]. Coupling of external tensor fields and further
imposing invariance under diffeomorphisms on the external part of spacetime determines a



unique action functional — the exceptional field theory — which depending on the solution
of the section constraint reproduces the full eleven-dimensional supergravity and full type
[IB supergravity, respectively. For the lower rank groups Ej) = Dss), Eg) = Ay,
E3@) = Agg) ® A1), and Egp) = Ay ® R*, these theories have been constructed
in [12-15]. Remarkably, this construction uniquely reproduces the full bosonic sectors of
the higher-dimensional supergravities without any reference to the fermionic field content
and supersymmetry. Nevertheless these actions can be supersymmetrized with fermions
transforming under the maximal compact subgroups K(E, ). For E;;) and Eg) the
supersymmetric completions have been worked out in [16, 17].

The exceptional field theory based on the group Eg(g) appears to differ in some respects
from its lower-rank cousins. In the physical context the special role of Egg) is often assigned
to the ‘dual graviton barrier’. Upon dimensional reduction to three dimensions, the Kaluza-
Klein vectors are dualized into scalar fields in order to exhibit the full duality group. As
a result, the scalar sector of the dimensionally reduced theory carries degrees of freedom
descending from the higher dimensional ‘dual graviton’ [18-21]. While this dualization goes
through straightforwardly for the free vector fields of the dimensionally reduced theory,
their non-abelian gauge structure in presence of the higher Kaluza-Klein modes requires a
modification of the standard dualization procedure. On the formal side, this is reflected by
the fact that the Egg) generalized diffeomorphisms do not close into an algebra [8, 9] which
has obstructed a straightforward extension of the constructions for the lower-rank groups.
In Eg(g) exceptional field theory this is taken care of by the appearance of an extra gauge
symmetry in the commutator of two generalized diffeomorphisms, such that the combined
algebra closes and allows for the construction of a gauge invariant action functional which in
turn reproduces the full higher-dimensional supergravities [4]. In particular, the realization
of this extra gauge symmetry takes the form of constrained Eg(g) rotations and requires
the introduction of an additional (constrained) gauge connection B, o4 which is invisible in
the dimensionally reduced theory. This extra gauge symmetry is in fact a generic feature
of exceptional field theories but for the lower rank groups it only kicks in at the higher-
rank p-forms. More specifically, the theories associated to the E, () groups exhibit such
extra constrained gauge symmetry among the (9 —n)-forms. Only for Egg) this symmetry
comes down to the vector fields and becomes an integral part of the algebra of generalized
diffeomorphisms.

In this paper, we construct the supersymmetric completion of the Egg) exceptional field
theory. The theory is defined on a (3+248)-dimensional generalized spacetime. In addition
to the usual dependency on spacetime (‘external’) coordinates z#, u = 0, 1,2, all fields
and gauge parameters formally depend also on extended coordinates YM, M =1,...,248,
transforming in the adjoint representation of Egg). As usual, not all of these internal
coordinates are physical. This is taken care of by the Egg) covariant section constraints,

?MNouoav=0, MYRoueIN=0, @sm)un Foc©d =0, (1.1)

where nMN and fMNK are respectively the Cartan-Killing form and the structure constants
of Eg(s) (see appendix A for more details on the conventions used throughout this paper),
and Pgg7s is the projector onto the irreducible representation 3875 in the tensor product



of two adjoint representation

248 © 248 = 1 ® 248 © 3875 @ 27000 © 30380 , (1.2)
explicitly given by
1 1 1
(P3grs) a1 = - S o)™ - % M e - ﬁfPN(Mfm:K) : (1.3)

The bosonic sector of the theory combines an external three-dimensional metric g, (or
dreibein e,®), an internal frame field V%, parametrizing the coset space Eg(3)/S0O(16),
and gauge connections AMM and B, p associated with generalized internal diffeomorphisms
and constrained Eg(g) rotations, respectively. Fermions enter the theory as spinors under
the SO(1,2) x SO(16) generalized Lorentz group and transform as weighted scalars under
generalized diffeomorphisms. Specifically, under SO(16), the gravitinos %LI and fermions
XA transform in the fundamental vector 16 and spinor 128, representations, respectively.
Their couplings require the introduction of spin connections

| D, Dum
SO(1,2) | w,®  wm® (1.4)
SO(16) | 9,17 oMl

in the external and internal coordinates, and for the two factors of the generalized Lorentz
group, respectively. In the external sector, the SO(1,2) connection w,ﬁb is defined by the
usual vanishing of external torsion according to

D[A,w][“e,,]a =0 — F[wj]p =0, (15)

where (in contrast to standard geometry) derivatives are also covariantized w.r.t. internal
generalized diffeomorphisms under which the dreibein e, transforms as a weighted scalar.
For the internal sector on the other hand, the generalized Christoffel connection is egg)
valued

Can™ =T 550 (1.6)

and the proper condition of vanishing torsion amounts to the projection condition [22]

[FM,N] 143875 0, (1.7)

within the tensor product (1.2). As for the lower-rank exceptional groups [8, 23] this
condition together with a generalized vielbein postulate turns out to determine the internal
SO(16) spin connection Qu¢!/ up to contributions that drop out from all equations of
motion and supersymmetry transformations of the theory. The off-diagonal blocks in (1.4)
are determined by demanding that the algebra-valued currents

IMm™ = e Dlwlme,, Tu=VIDIAB, QLY € e, (1.8)



of the external and internal frame fields live in the orthogonal complement of the Lorentz
algebra within GL(3) x Eg(g):

=0, ~0. (1.9)

s0(1,2) 50(16) B

The spin connections (1.4) are the central object for the description of fermionic cou-
plings and supersymmetry transformation rules in Eg(g) x SO(16)-covariant form. In this
paper, we construct the unique supersymmetric completion of the bosonic Egg) exceptional
field theory from [4]. Upon explicit solution of the section condition (1.1), the resulting
Lagrangian reduces to full D = 11 supergravity and the IIB theory, respectively, for ap-
propriate reformulations of these theories, as pioneered in [24-26].

The supersymmetric completion in particular underlines the role of the extra con-
strained gauge connection B, ¢ which joins the other fields in an irreducible supermul-
tiplet and whose variation contributes to the supersymmetry invariance of the resulting
action. Although its supersymmetry variation is given by some non-covariant expression,
remarkably it turns out that the following combination of variations

ACB#M = 5eB,uM —FM’N‘(SGAMN s (1.10)
takes a tensorial form

AeBuM = —2 (DMglq/’,uI - EIDMTZJ/LI) + e 5uupgpaDM (EI'YV@DUI) ) (1.11)

with supersymmetry parameter e/. The structure of the r.h.s. is such that it exhibits the
full internal spin connection Q4!”, however its undetermined parts precisely cancel against
the corresponding contributions from the Christoffel connection I'yq o on the Lh.s., such
that the net variation d.B, r( is uniquely determined and compatible with the constraints
this connection is subject to.

The paper is organized as follows. After a brief review of the symmetry structure of
bosonic Eg(g) exceptional field theory, we construct the necessary tools such as an internal
fully covariant derivative and the SO(1,2)®SO(16) spin connections needed to describe the
coupling to fermions and supersymmetry transformation rules. We discuss their generalized
curvatures whose components provide the building blocks for the bosonic field equations. In
section 3, we then analyze the algebra of supersymmetry transformations and show that its
closure into the bosonic symmetries of the theory entirely determines all the supersymmetry
transformations. Finally, in section 4 we present the fermionic completion of the bosonic
Lagrangian and prove its invariance under supersymmetry.

2 Egs) X SO(16) exceptional geometry

2.1 Eg) generalized diffeomorphisms

Let us start by a brief review of the field content and symmetry structures of Eg(g) bosonic
exceptional field theory. For details, we refer to [4]. The field content is given by

{e,ua 5 VMgv AMM > B,uM} ; (21)



i.e. external and internal frame fields together with gauge connections AMM, B, pm . The
‘dreibein’ e,* defines the external metric g,, = 74 e,ﬂe,,b. The ‘248-bein’ VL is the
internal analogue of the dreibein and parametrises the coset space Eg)/SO(16). Under
SO(16), the collective index K splits according to the decomposition of the algebra

88(8) — 50(16) @ 128, R (22)
into the adjoint and the spinor of SO(16), i.e.
ik = v v}, (2.3)

satisfying Va!/ = VIVl with SO(16) vector indices I,.J = 1,...,16, and spinor indices
A, B =1,...,128." In the same way the dreibein defines the external metric, the general-
ized vielbein defines the internal metric Mz

Mun = VAV E ke = Vv + %VM” Wi, (2.4)
in terms of which the bosonic theory can be formulated. The inverse 248-bein then is
given by

(Vﬁl)&M _ {VMB,—VMU} = {nMNVNB,—nMNVNU} 7 (2'5)
where
VuvMp =645, vl VMip = 261, . (2.6)

Throughout, we raise and lower adjoint indices M, N, ..., with the Cartan-Killing form
nmn- Finally, the 248-bein is an Egg) group-valued matrix, which results in the standard
decomposition of the Cartan form

_ 1
VN ot = 3 o' (X1 e + o (YEL (2.7)
where X7; and Y4 denote the compact and non-compact generators of Eg(s), respectively.
With the explicit expressions for the structure constants in the SO(16) basis from (A.1),
one finds the internal currents

1 1
am" = G TV BNt o = e TE A (28)

which will be our building blocks for the internal spin connection and later the Ricci scalar.
This sums up the basic properties of the generalized vielbein.

The local symmetries of this exceptional field theory are generalized internal diffeo-
morphisms, constrained Egg) rotations, and external diffeomorphisms with respective pa-
rameters AM, Sy, and €*. Let us first review the generalized internal diffeomorphisms.
The generalized Lie derivative acting on a vector WM of weight Ay is defined by

Lo sy WM = Ao M — 60PM\K Lo ASTWY + A oy AN WM — 5 MW L (2.9)

'See appendix A for more details on the relevant group and algebra conventions.
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Field | e, | V& | 4,M AM | By, S

Weight (M) | 1 0 1 0 -

¢u17 el

1
2

=

D[

Table 1. Weights of all fields and gauge parameters under generalized diffeomorphisms.

Here PM\ /X, projects onto the adjoint representation 248 and guarantees compatibility
with the Egg) structure, cf. the explicit expression (A.3). The weight Ay of the various
fields in the theory coincides with the three-dimensional Weyl weight of the fields, i.e.
weight 2 and 0 for the external and internal metrics g, and My, respectively, and
weights 1 and 0 for the gauge connections A“M and B, p, respectively. Fermions come
with half-integer weight. This is summarized for all fields in table 1.

Unlike the lower-rank E,,) cases with n < 7, the generalized Lie derivative (2.9)
depends on two parameters, AM and Y, with the latter being subject to the section
condition (1.1), i.e.

(Pagzs) mn” " B @ Bz = 0 = (Pagrs) mn - Tk © O etc. . (2.10)

This is needed together with the section constraints (1.1) in order to ensure closure of the
full symmetry algebra. Schematically, we have an algebra

[5(/\1,21)76(/\2,22)] = 6(/\12,212) bl (211)

with notably the gauge parameter > given by
Siam = —2 8 mONAY + 2 AN NSy p — 288 OnAna+ e A OmOVAS L (212)

confirming that the A transformations do not close among themselves.

Before we describe the associated gauge connections and curvatures, let us make a
small digression to discuss connections and torsion compatible with the generalized diffeo-
morphisms (2.9). For an algebra-valued connection

Tan™ = Tae 5% (2.13)

the fact that pure A-transformations do not close into an algebra implies that the naive
definition of torsion as

TAWIM = TaM ANWE = L 5 WM = Ly 5y WM (2.14)

does no longer define a tensorial object. Here, LV refers to generalized Lie derivatives (2.9)
with partial derivatives replaced by covariant ones V = 0 —I". Following [22], this suggests
to rather define torsion as the part of the Christoffel connection that transforms covariantly
under the generalized diffeomorphisms. With the transformation of (2.13) under (2.9)
given by

Samlen = 6%y Ten + fon” 0c0pA° + 0,5y (2.15)



projection onto its irreducible Eg(g) representations according to (1.2) shows that only its
components in the 1 @ 3875 transform as tensors under (2.9). The proper definition of a
torsionless connection thus corresponds to the condition

[FM,N] 143875 0, (216)

which can be made explicit with the form of the projector (A.4). Let us note that such a
torsionless connection gives rise to the identity

Lias) WM = L(V o WM (2.17)

A7 )
with EMEEM—FM”/\[AN.

With the r.h.s. of (2.17) manifestly covariant, this shows that the combination 3, behaves
as a tensorial object under generalized diffeomorphisms. In this sense it may appear more
natural to parametrize generalized diffeomorphisms in terms of the parameters (A, f)). The
disadvantage of using 3 w.r.t. the original formulation is the fact that the constraint (2.10)
which ¥ has to satisfy, takes a much less transparent form when expressed in terms of )
since the connection I'aq n in general will not be constrained in its first index and will not
even be fully determined by covariant constraints. For the description of generalized diffeo-
morphisms we thus have the choice between a description with covariant parameters (A, ZNI)
and a description in terms of parameters (A, X)) in terms of which the constraints (2.10) are
well defined and easily expressed. We will in general stick with the latter but observe that
the existence of the covariant combination ¥ 4 gives rise to some compact reformulations
of the resulting formulas.?

The various terms of the bosonic action are constructed as invariants under the gener-
alized internal Lie derivatives (2.9). In the full theory, the gauge parameters AM and X
depend not only on the internal Y™ but also on the external z* coordinates. From the
three-dimensional perspective, these symmetries are implemented as (infinite-dimensional)
gauge symimetries, such that external derivatives are covariantized with gauge connections
AM, By

Dy =08, —La, 5, - (2.18)

In accordance with (2.10), the connection By, ¢ is constrained to obey the same constraints
as the gauge parameter ¥s. The commutator of the covariant derivatives (2.18) closes
into the field strengths

[Dys Dol = =L(F,,.6,.) s (2.19)

2The existence of the covariant combination 34 may suggest to impose ¥ = 0 in order to reduce
the number of independent gauge parameters [22] while preserving closure of the algebra. In view of the
constraints (2.10), this is only possible in case the connection I'aq a is identified with the Weitzenbock
connection Ve E (V™) p" fac” which itself is constrained in the first index. We will in the following
keep both gauge parameters A™ and Y, independent which seems important for the supersymmetric
extension.



with
Fur = 20, 4™ — 2 A,V O AgM 4 14 (Pagrs )WV e A S oxe A E

1 1
3 A NOMA e — 3 PN P A fovAS + oo,

Guvm = 2D By — N AN omonvA S + L. (2.20)

The ellipsis denote additional two-form terms required for the proper transformation be-
havior of the field strengths, cf. (2.23) below. As required for consistency, the section con-
straints (1.1) ensure that all these terms drop from the commutators of covariant derivatives
where the field strengths are contracted with particular differential operators according
to (2.19). Moreover, all the two-form terms drop out from the bosonic Lagrangian.

Under gauge transformations

a5y AM = D AM (2.21)
Sias)Bum = DuSaq — ANOmB v + N e ACOMmoN AL (2.22)
(where just as the associated gauge connections, the parameters A™ and ¥ carry weight

1 and 0 under (2.9), respectively, cf. table 1), the full field strengths (2.20) transform
according to

Sy Fu™ = Lias) Fu™
5(A,E) (g,uu/\/l - FM,N f,ul/N) = IL‘(A,Z) (g,uy/\/l - 1—\/\/l,./\/ ]:,LLVN) > (2'23)

i.e. not G, p but only the combination GWM =Guwm—Tun .7-"WN behaves as a tensor
under (2.9). This reflects the tensorial structure (2.17) of generalized diffeomorphisms.
Pushing this structure further ahead, we are led to introduce the general ‘covariant’ vari-
ation of the connection B, pq as

ABym = 0By — Ty 04,7 (2.24)
cf. (1.10), in order to cast the gauge transformations (2.21) into the more compact form
Sa s AM = DAM
AnsyBum = DS+ A DT, (2.25)
with ¥ from (2.17). This will turn out to be very useful in the following.

2.2 Section constraints

Since the section constraints (1.1) play a central role in the construction of the exceptional
field theory, for the coupling of fermions it will be useful to spell out the decomposition of
these constraints under the subgroup SO(16) according to (2.2). With the eg(g) represen-
tations of (1.1) decomposing as

13248 ® 3875 — 1412064 128,64135 ¢ 1820 ¢ 1920, , (2.26)



the section constraints take the explicit form

MMN O @Oy = 2VM N 1 om @ A
1
YMEIYWIIK @ oy = —ZFICJDVMCVND Im @
VM VNP O @ Oy = 0

1
YMEIYININK g @ 95 = —FSUVMKLVN KLOM ® Oy

1
yMUIIYMEL gy @ oy = — o TEEE VMY pom @ o
1
PV MV om @ oy = =1 (0T VMV o oy, (227)

which we will use in the following. Following the above discussion, the same algebraic
constraints hold for derivatives daq replaced by the gauge connection B, ¢ or its gauge
parameter g .

Let us recall from [4] that these section constraints allow for (at least) two inequivalent
solutions which break Egg) to GL(8) or GL(7) xSL(2), and in which all fields depend on only
eight or seven among the 248 internal coordinates Y™, respectively. The resulting theory
then coincides with the bosonic sector of D = 11 and type IIB supergravity, respectively.

2.3 Spin connections

Fermions enter the theory as spinors under the SO(1,2) x SO(16) generalized Lorentz group
and transform as weighted scalars under generalized diffeomorphisms. Their couplings thus
require four different blocks of the spin connection

Wy WM
2.28
that ensure covariance of both external and internal derivatives under SO(1,2) and SO(16),
respectively. Via the generalized vielbein postulates

0=V,e,"=Dye + wu“beyb —Tule,”
1
0= V/v{V/\/’K = 8/\/1])/\/K — §QMI‘](X]J)ELVNL — FM/\/’P V’pK , (2.29)

for the external and internal frame fields, the spin connections relate to the external and
internal Christoffel connections

{Tw”, Tan™} . (2.30)

Starting with the external sector, the SO(1,2) connection wuab is defined by the van-
ishing torsion condition of the external Christoffel connection

L)’ = 0. (2.31)

This leads to the standard expression for the spin connection in terms of the objects of an-
holonomity Q. = 2 e[a“eb]” D ey, where however derivatives are covariantized according



to (2.18) with the dreibein transforming as a scalar of weight 1 under (2.9). The external
SO(16) connection on the other hand is defined by imposing that the external current

(T = (v HNDIA, Q" (2.32)
lives in the orthogonal complement of s0(16) within eg(g):
L= PAYA (2.33)

In analogy to (2.8) this yields the explicit expressions

1 1
i 5 VN g DA, PP = ~130 IREAVASWIMVNCEN (2.34)

with covariant derivatives from (2.18). According to their definition, the currents P, and

I1J __
0,1 =

Q,, satisfy Maurer-Cartan integrability conditions

2D Py = —Fu™Mpa + Vo FPN O F v + G VM a (2.35)

Q/UJIJ = 2a[qu}IJ 49 QMK[IQVJ]K
= _]:ul/MCIMIJ + VPIJfPMNaM]:uVN + guuMVMIJ

1
—5 Pu PTG (2.36)

W.r.t. the integrability relations of D = 3 supergravity [27], these relations represent a
deformation with additional terms in field strengths due to the introduction of the gauge
fields AMM and By, p. We will see in the next section how these terms take a manifestly
covariant form. In the fermionic sector, the full external covariant derivatives acting on
the SO(1,2) x SO(16) spinors of the theory are given by

1
Duwl _ Dﬂw[ + Zwuabf}/ab w[ + Q,uIJ va

i i 1 i 1 :
DHXA = DuXA + 1 wuab'}’ab XA + Z QHIJFQJB XB , (2.37)

for spinors ¢! and XA transforming in the 16 and 128, of SO(16), respectively. Under

generalized internal diffeomorphisms (2.9), the spinors 1’ and x? transform as scalars
of weight 1/2 and —1/2, respectively, and the derivatives D,, in (2.37) are covariantized
accordingly.

Now, let us turn to the internal sector. Similar to (2.33) we derive the internal SO(1,2)
spin connection by demanding that the internal current

(Trm)™ = ™ Dlwlpen® (2.38)
lives in the orthogonal complement of so(1,2) within gl(3)
(Tm)™ = mpg ) (2.39)
Explicitly, this yields

wp® = e“[aﬁMe#b] . (2.40)

,10,



In order to define the internal SO(16) connection, we recall that the proper condition of
vanishing torsion in the internal sector is given by setting to zero the tensorial part (2.16)
of the Christoffel connection Ty z*. Via (2.29) this condition determines a large part of
the SO(16) connection. More precisely, the counting goes as follows [22]: decomposition
of (2.16) into SO(16) irreducible representations

1@ 3875 — 1@ 135 @ 1820 & 1920, (2.41)

specifies the representation content of the vanishing torsion conditions. On the other hand,
the various components of the SO(16) connection (Q )’ live in the SO(16) representations

Qi+ 12090120=1®120® 135 @ 1820 ¢ 5304 & 7020 ,

o B (2.42)
Qa 1 120 ® 128, = 128, © 1920, ¢ 13312, .

Comparison to (2.41) exhibits which SO(16) components of (Q)!”/ are not fixed by im-
posing vanishing torsion. For practical purposes, these undetermined parts 120 & 128, ¢
135 @ 5304 @ 7020 ® 13312, do not pose a problem as they drop out of all physically
relevant quantities such as the supersymmetry transformations, the Lagrangian etc., a
property that all known supersymmetric exceptional field theories share.

Concretely, the four irreducible components (2.41) of the torsion-free condition (2.16)
take the form

1
_QFIJ,IJ +T4a=0,

1

—Lavra,nm — EdlerN,MN =0,

6 (2.43)
Uirgkr) + ﬂrﬁgﬂ Fap=0,

1
T2 (Crga+Tar)+ 6 @TMNTH) i Cuva +Tamn) =0.

To explicitly solve these equations (2.43), we use (2.29), to express the internal Christoffel
connection in terms of derivatives of the vielbein

1 1
T = o AP (VPAD[Q} VA — 5vp”za[g] MW”) , (2.44)

or, more explicitly

T VN a = —pra, TV = o — qu” (2.45)

in terms of the Cartan form (2.8). Then, combining these equations with (2.43) trans-
lates conditions on the Christoffel connection into conditions on the spin connection. The
solution for the SO(16) spin connection is then found to be

1
ol = VMA ol — §VMKL Orrl | (2.46)

— 11 —



with
1 1 1k )
Qi = g — 50 oFFpaa+ i s't FA}B DPA,B
1 1 1k, LJ
+5 T pap+ - ST Y M T MN 4 Urikr »

1 1
Q4" = qa’ +prsa— % I prip + % TS prin

3 1
+@ FA‘IBKLPKL,B + @ VMBFQJBFNMN + (R13312)A1J : (2.47)

cf. [22], in terms of the Cartan forms (2.8), whose first indices we have ‘flattened’ with the
248-bein VL. The contributions Urikr, (Ri3312) 47 in (2.47) are constrained by

Urikr = Upg kL) - Uik =0=Urk ks,
(Rissi2)a’ = (Riszi2)a™,  TL i (Rissin)a™ =0, (2.48)

and not determined by the vanishing torsion condition, in accordance with (2.42). The
undetermined parts in the 120 @ 128 in (2.47) have been expressed via the trace I'yr Y
of the Christoffel connection. The latter can be fixed by imposing as an additional condition

that the determinant of the external vielbein e = det e, be covariantly constant

N N

3 2
Vme=0pme— =Tapme=0, = Ty = ge_laMe. (2.49)

2

To summarize, the full internal covariant derivative act on an Egg) x SO(16) tensor X Ml
of weight \x as

1
VX! = ouXn' + o7 X = T X! — §AXF;CM’CXNI , (2.50)

with the connections defined by (2.47) and (2.45), respectively. This covariant derivative
transforms as a generalized tensor of weight A = Ax — 1 under generalized diffeomorphisms.
In particular, for the spinor fields of the theory, the covariant internal derivatives take

the form
1 1
Vo, = 0+ Q") + 1 WM™ Yap V), — 1 T )
Vaxt = omx? + 1 oM™ T P + 1 W™ Yap X + 1 Tieaxt . (251)

We conclude this section with a collection of the different covariant derivatives we have
used and will use throughout this paper:

Dy = D[A]u )
D,u - D[Aawa Q],u ) DM - D[wa Q]M )
V,=V[Aw 9T, Vim=Vw, QT nm, (2.52)

where AHM is the gauge field associated with generalized diffeomorphisms symmetry and
the four blocks of the spin connection wy,, Q,,wa, Qum defined in (2.31), (2.34), (2.40),
and (2.47), respectively.
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2.4 Curvatures

Having defined the various components of the spin connection (2.28), we can now discuss
their curvatures which will be the building blocks for the bosonic Lagrangian and field
equations. Moreover, we will require a number of identities for the commutators of covariant
derivatives in order to prove the invariance of the full Lagrangian under supersymmetry.

Let us start with the commutator of two external covariant derivatives on an SO(1,2) x
SO(16) spinor ¢! which is obtained straightforwardly from (2.37)

1
D, D) el = —~F,Mopme - 58/\4.7-"#1/\/‘61 +Qu el + RW Yab€' (2.53)

with the field strength of the gauge field AMM introduced in (2.20), the usual external
Riemann curvature defined by

R,ul,ab = 2D[“wy]ab + 20.)[#(16 Wy cb , (2.54)

(with covariant derivatives (2.18)), and its analogue Q,,!7 from (2.36) for the SO(16)
external spin connection. As the commutator of two external covariant derivatives, the
left-hand side of (2.53) is covariant whereas this is not manifest from the r.h.s.. Embedding
the internal derivatives on the r.h.s. into full covariant derivatives (2.51), the commutator
can be rewritten as

1

1 .
Dy, D) e = ~FuMV e - fv MmFu™M R yape’

+ Q' e’ +IWMQM ¢’/ (2.55)

,p

with the improved Riemann tensor ﬁuyab = RW“b + w M“b}"u,,M. The latter is covariant
under local SO(1,2) Lorentz transformations, shows up in the gravitational field equations
and whose contraction in particular gives rise to the improved Ricci scalar

R = egtey” ﬁwab , (2.56)

that is part of the bosonic action. With the first line of (2.55) now manifestly covariant,
the second line can be rewritten upon using the explicit expression (2.36) for Q,,’/ such
that the commutator takes the manifestly covariant form

1
273 AP BFIJ J+ ,R/,ul/ ’Yabe + Vp IJfPMNVM.FMV/\/'ﬁ

G mVMrs el — Fu MV el —vaf M (2.57)

[Dm DV] el =

with the tensorial combination of field strengths fg;,, M from (2.23). Similarly, one may
rewrite the second integrability relation (2.35) into the manifestly covariant form

2D[MPV]A = VPAfPMNVM-FuVN + g~;wMVMA . (258)

We now turn to the mixed curvature, arising from the commutators of one exter-
nal and one internal covariant derivatives. We will only be interested in those projec-
tions of this commutator, in which the undetermined part of the SO(16) connection drops
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out. Fortunately, they are the projections relevant to prove the invariance of the La-
grangian under supersymmetry. Evaluating different projections of such a commutator on
an SO(1,2) x SO(16) spinor €/, we obtain the relations

1
VML [V, Dyl el = i VMATT Rt Yave!
3 1
= DLV VPt e STV VAPt e
1

VM VD! = ZVMIJ R Yave”

1

8

where the mixed curvature tensor is defined by

1
VMUV P A el — ZF%BVM AVMPE el (2.59)

RMqu = e ey’ (aMw”ab o 'D#wMab> _ <8MF'LLO'[V) gp}a ) (2.60)

One can show it constitutes a tensor under generalized diffeomorphisms (2.9), and satisfies
a Bianchi identity

RM[,ul/p] =0. (2.61)
Its contraction to a ‘mixed Ricci tensor’ yields the following current
1 ~
Rt = —3 JH = e ey’ <8Mwl,ab - D, (ep[aﬁMepb]>> , (2.62)
which is related to the improved Ricci scalar (2.56) by variation w.r.t. the vector fields
SAR = TPy 6AM + VT + D, IH (2.63)

up to boundary currents jj‘\’l, T of respective weights Ay, = —1, Az, = —2, that do not
contribute under the integral.

Finally, for the internal curvature, we are again interested in specific projections of
two internal covariant derivative in which the undetermined part of the connection drops
out. The pertinent projection for the definition of an internal curvature scalar R in the
Eg(g) X SO(16) exceptional geometry is given by

(16 VM VN e + 2VMVN 3 61y + 2T VM VN B) VoV ! =
1
=3 Rel + VMV 1k R @ ape” (2.64)
On the Lh.s. the double derivative terms vanish by means of the section constraints (2.27),
while a straightforward computation shows that also all linear derivative terms Oaqe’ cancel.

The curvature of the internal spin connection on the r.h.s. is defined in analogy to (2.54)
and computed to be

RM/\/ab = 28[MWMab + 2w[Macchb

1 a blv ot
= —5 e“[ eb] qg VMg,wVNgw . (265)
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Upon using the expressions for the SO(16) spin connection (2.47), the internal curvature
scalar R in (2.64) can be calculated explicitly in terms of the Cartan forms (2.8) and the
derivative of the external vielbein determinant e as

R = —% MMN 20, e Opve + % MMN e Lo + % VMV T pad® e e
+ VMV T (3(/\420/\/)3 + %FIBJC Q(MIJPN)C> + MMV p i pa?
+2VMVN o Bpat - %VMIJVNKL (THTEE) 5 o pa”
£ VM B TR padCn (2.66)

By construction it transforms as a scalar (of weight A\x = —2) under generalized diffeo-
morphisms (2.9). Its dependence on the external metric is such that

d(eR) = (0e) R + total derivatives . (2.67)
The other relevant projection of two internal derivatives on a spinor is given by
(12VMaN T (D -+ 2r 675 ) VM N 4 ) Ve =
= %F{MRA e + % VMV 4 (Ffﬁ( —14 5JKF{4A) R vap €, (2.68)
where again all double derivatives on the l.h.s. vanish due to the section constraints. The
generalized curvature R 4 on the r.h.s. plays the analogue of a Ricci tensor in this geometry

and is most conveniently defined by variation of the curvature scalar R w.r.t. to a non-
compact local eg(g) transformation of the internal frame field, i.e.

0sR =SAY)RA + VT,  under 05V =VYAS4(Y), (2.69)

up to a boundary current jé\/‘ of weight A7, = —1. It can be explicitly given in terms of
the Cartan forms (2.8) as

2 1
Ra = =3 DIV i pome dwe e + 3 THETERN "V My p VY ppadEpa®
3
— DMV M VY o C AP — 5 TIMVM VN 5o Cpa©
23
—2TEEVM VN cpapa® + T AT E VM NV padPon®
FTIIVM VN o Coa® + 2TIMVM VN p i Bpa©
1
+( — 4N YMp _ 35,5 VMWV o — 1 MNP VMW wp
1 1
3 TR V) (00 + (T i) (2.70)

This expression above is given in compact form, after simplification by various Fierz-like
identities, some of which are collected in appendix B.
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3 Supersymmetry algebra

In this section we establish the supersymmetry transformation of the various fields and
verify that the supersymmetry algebra closes. Before discussing supersymmetry, we briefly
review the bosonic symmetries of Eg(g) exceptional field theory, since these are the transfor-
mations we are going to recover in the commutator of two supersymmetry transformations.

3.1 Bosonic symmetries of Egg) exceptional field theory

In section 2.1 we have extensively discussed the structure of internal generalized Lie deriva-
tives which depend on two parameters AM and ¥ 54 with associated gauge connections AMM
and By, r. A closer analysis [4] shows that these gauge connections come with additional
shift symmetries which take the form

0= A,M = OxcE 3875 + UMNEHN + JNVU\/ICEW\/IC ;
0zBum = OpmEun™ + onEu (3.1)

Here, the symmetry parameter Eu3875MN lives in the projection of the two adjoint indices
MN onto the 3875 representation, explicitly realized by (A.4). The parameter =, nr
is constrained in the same way as the fields B, a and ¥py, cf. (2.10). Similarly, the
parameter =, A is constrained as (2.10) in its first internal index N. It is straightforward
to check that the shift symmetries (3.1) leave the covariant derivatives (2.18) invariant.
More precisely, they correspond to the tensor gauge transformations associated to the
two-form gauge fields that complete the vector field strengths FHVM and G,,, A into fully
covariant objects, but drop out from the Lagrangian of the theory.

Apart from the internal gauge symmetries, the full set of bosonic symmetries also
includes a covariantized version of the (2+1)-external diffeomorphism with the parameter
¢" depending on both set of coordinates {z*, Y™}, On the bosonic fields these act as®

deey = " Dye,” + Dy,
SeMmn = E"DyMpmy
SeAM = —2VMA (e, PPA VN4, VieY) |

AeBunt = e (97 D" (920 Vans) = €701 (3:2)

where the variation of B, y( is given in terms of the current JP M introduced in (2.62) and
most compactly expressed via the general covariant variation AB,, o introduced in (2.24).
With (2.24), (2.45), and the explicit form of ¢4, it is straightforward to verify that
the variation d¢B, o¢ is uniquely determined and compatible with the constraints (2.10)
this connection satifies. The external diffeomorphisms (3.2) take the expected form for the
frame fields e,%, M. In contrast, for the gauge connections AMM, B, pm, they relate
only on-shell to the standard diffeomorphism transformation of gauge fields.

SW.r.t. the form of these transformations given in [4], we have expressed the current bosonic current j°**
by the coset current P, see (4.4) below, and furthermore changed the vector transformations by a shift
transformation (3.1) with parameter Z, m = —guOMmE”, in order to obtain a more compact presentation
of the external diffeomorphisms. Also some signs differ from the formulas in [4] due to the fact that in this
paper we use mostly minus signature (+ — —) for the external metric.
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3.2 Closure of the supersymmetry algebra

Let us now move on to the fermionic fields and the supersymmetry algebra. In addi-
tion to the bosonic fields introduced in section 2, the supersymmetric completion of the
Eg(g) exceptional field theory contains the following spinor fields: sixteen gravitinos @Z)MI
as well as 128 matter fermions XA, transforming in the vector and spinor representation
of SO(16), respectively. With respect to generalized diffeomorphisms, they transform as
scalar densities with half-integer weights given in table 1. We are working in the Majorana
representation and mostly minus signature, i.e. spinors are taken to be real and SO(1,2)
gamma matrices -, purely imaginary, cf. [28] for our spinor conventions. In particular, we
use Yuvp = —1€€uup -
In this section, we present the supersymmetry transformation rules

See, = idlyoyl . Vs v =T yAlyA
54[},5 = Duel + QVM[JVM (i’yué‘]) +20M 5 i’yuvMe‘] ,

5€XA = E'y“eIFI PpA QVMAFQAVMEI )

2 AA" M
0 AM = —aVyMp ey, +or! VM iyt
ABum = —2(V el — @V a)) + eeupg” Vm(E i vl) | (3.3)

and show its algebra closes into generalized diffeomorphisms and gauge transformations.
The bosonic transformationss (first and fourth line) precisely coincide with the supersym-
metry transformations of standard D=3 supergravity [27, 28] with all fields now living on
the exceptional space-time. The fermionic transformation rules on the other hand have
been modified w.r.t. the three-dimensional theory with the addition of term containing
internal covariant derivatives V4 introduced in section 2.3. As in higher dimensions,
the supersymmetry transformation rules only carry specific projections of these covariant
derivatives, such that the undetermined part in the SO(16) connection Q!’ drops out.
The supersymmetry variations of the gauge connection B), ¢ finally have no analogue in
the three-dimensional theory and are entirely determined from closure of the supersym-
metry algebra. Although its r.h.s. is such that not all undetermined parts of the SO(16)
connection Q¢! drop out, these terms precisely cancel the corresponding contributions
from the Christoffel connection in the covariant variation (2.24) on the Lh.s.. The resulting
variation 6B, o4 is uniquely determined and compatible with the constraints (2.10) this
field has to satisfy.

As a first test, we use this ansatz to calculate the commutator of two supersymmetry
transformations on the dreibein e,* to obtain

[0c1 s 0e,] €4 = eEé’y“ (Duel + ZVMIJVM (i’yu)e‘] + 4VM]J1:’)/MVM€J) — (14 2)
=D, (Eﬁ iy® 6{) — 4VM[J€£ E{VMQMQ +Vum (—4VM[J€£ 6‘1]) €'ua
—4yMy, (gé YV el — Vmegy™ €f> €ub

= D, (€%e,") + AMOpe,® + OpmAMe,* + Q% . (3.4)

,17,



The first term reproduces the action of covariantized external diffeomorphisms, the second
and third term describe the action of internal generalized diffeomorphisms on the dreibein,
and the last term is an SO(1,2) Lorentz transformation, with the respective parameters
given by
& =iggel
AM = 4 Vijgée‘lj ,
O = —aVMy (4™ Vel = Vnebr™ e ) + MMy (3.5)
Similarly, one can show closure of the supersymmetry algebra on the 248-bein. Us-

ing (3.3), we find the commutator

VM [0ey, 6] V™ F = (-ZPHCFéAgl ™= 2VN0F({~AVN€{> el (V) 5

2
—(1+2)
= f”'PMA (YA)KLB + 60 VMBPNM’CLVNKLVKAE
—2VMp (Ve — &Vnel) 7Vl (3.6)

with the adjoint projector from (A.3). We recognize the first term as the action of exter-
nal diffeomorphisms on the 248-bein. The second term reproduces the action (2.9) of a
generalized internal diffeomorphism with parameter A* when parametrized covariantly as
in (2.17) (note that the transport term ANV AV KL vanishes due to the vielbein postu-
late (2.29)). The last term thus describes the covariantized Egg) rotation from which we
read off the parameter X

Sy o= —2 (Vnehel — EVel) . (3.7)

As a consistency check, it is straightforward to verify that although the expression for
the parameter (3.7) carries the full internal SO(16) spin connection Qx’/ (including its
undetermined parts), its form is such that the constrained parameter ¥ = Sa+T N M AM
which actually appears in the rotation term of (2.9) is uniquely determined (with the
undetermined part from Qx/” cancelling the undetermined part from T’ N, M) and moreover
satisfies the required constraints (2.10).

Also on the gauge field AMM we obtain closure of the supersymmetry algebra by a
standard calculation which gives the explicit result

ety 0] AM = —aVMipe e (Dl + 2VN k) Vinr(iv)el + 4V iy iy, Vel
g (i
+2 F{L‘A'VMAﬁélf)/u <2 ’yyeljféAP”B -2 VNBI’]JBAVNG‘{> — (14 2)
= DA + Vi (=16 VM g ) VM cEbyued)
+8i fMN VR (B Vel — Vivebe])
—2i e, VM APP AR i el + AVM VN 469V pre, — AVM VN 4V e,
= D AM — 20MA (e, VPPA L VNAG T ae?)

+ONEL sg75 MV 4 AN Zun™ + UMNEMN (3.8)
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with the parameters AM and ¢* from (3.5) and the shift parameters =, of the last line
defined as

Eu/\f = _28N§u )

—_ _(I. J _K -
Zpasms M) = 16 VM[KVNKJeé Wuﬁ) — VM VN el
Eup’ = =8V 0 (Vnvésinuel — &ivuVvel)
+L v m (Eu3875(MK) — 277MK€M> , (3.9)

corresponding to the shift symmetries (3.1) discussed above. The fact that =, 3575 M)

lives in 3875 representations is an immediate consequence of its specific form

_ (I 1
23875 M) = —16 VMW ks €ur §ury = Zﬁg ’Y;ﬁf) 16 6ry&u,  (3.10)

with a parameter £, 77 in the 135 of SO(16), combined with the fact that the tensor product
of two adjoint representations (1.2) contains only a single representation 135 of SO(16)
which lives within the 3875 representation of Egg). Moreover, the last term in (3.9)
carrying the Christoffel connection ensures that the parameter =, N’C does not carry any
of the undetermined parts of the SO(16) connection Qx/” and furthermore is constrained
in its first index, as required by the shift symmetries (3.1).

We have at this point fully determined the supersymmetry algebra

[561’562] = 5E+6Q+5A+5E+5E ) (3.11)

with parameters given in (3.5), (3.7), (3.9). As a consistency check of the construction it
remains to verify that the algebra closes in the same form on the constrained connection
B, pm. This computation is greatly facilitated by the notation of the covariant varia-
tion (2.24) in terms of which its supersymmetry variation takes the covariant form (3.3).
To lowest order in fermions, the supersymmetry algebra on B, ¢ is given by

[6e1+6e) Byt = 20, Ay Bupa + 2T 0, 0, A (3.12)

For the second term we may use the closure of the algebra on the vector fields AMM
established above. The first term after some calculation yields

206 Ay Byt = An By + AeByup
+2V 0 E ™ + e Ran? AN
N 1. J . J
8V 17 ([Vm, Y l&ivuel — &ivu[Vas Valel) o (3.13)

with the parameters given in (3.5), (3.7), (3.9) and the covariant combination

= K K I J I . J
EuNT = =8V (VNezz’yuel — EQZ’YMVNQ) ,

= 2, — Ty (EN 475 M) an’Cgu) : (3.14)
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The first line of (3.13) reproduce the covariant variation of B, ¢ under generalized internal
and external diffeomorphisms. For the supersymmetry algebra to close, the second and
third line of (3.13) must reproduce the shift symmetries

AEB;LM = 5EB;LM - FM,N 5EA,MM )

=2 V(MEMN)N + QT[NM}PEMPN - FP[NPEMM]N
(ONTwp = TP 9T m.0) (Bussrs™” — 20V7¢,) |

=2 v(/Vléu/\/)N + 5/WpR/\/l/\fypAN

+8VN 1 (Y, Vv )&iue! — @i [V, Vivlel) (3.15)

where we have obtained the last equality with the use of the following identity
1
(20 mTpyp — FM,ﬁFN,QfLQP) (V(NIKVP)KJ + gVNAVPA 51J>

W1k 20MmQa " + 20" Q™) = 0. (3.16)

This is reminiscent of standard Riemannian geometry, where the curvature of the Christoffel
symbols is the curvature of the spin connection

R 1] = R [w]eaer” (3.17)
albeit here, in a projected fashion.
This proves the closure of the supersymmetry algebra on B, zq
[5617562] BMM = 6(A,Z)BMM + 5§BMM + (5EBMM ) (3.18)

and concludes the discussion on the consistency of the supersymmetry algebra (3.11).

4 Action

Having introduced fermion fields and supersymmetry transformation laws, we now have
at our disposal all the necessary tools to construct the fermionic completion of the Egg)
bosonic Lagrangian constructed in [4]. We start by giving a brief review of the bosonic
Lagrangian in the form most suited for the coupling of fermions before presenting its
supersymmetric completion.

4.1 The bosonic theory

Let us start by a brief review of the action of bosonic Eg(g) exceptional field theory fol-
lowing [4]* however adapted to the further coupling of fermions, in particular using the
internal frame field (the 248-bein) from (2.3). The bosonic field content has been given
and discussed in (2.1). The action of bosonic Eg(s) exceptional field theory is given by

Sbos = /dgx d248Y (»CEH + ['scalar + Ltop + Lpot) , (41)

4As mentioned above, in this paper we use the metric signature (4 — —). Some signs in the present
Lagrangian thus differ from the ones in [4] which was given in mostly plus signature.

®As usual, the integral over the 248 internal coordinates is to be taken in a formal sense since the
section constraint (1.1) remains to be imposed by hand and eliminates the field dependence on most of
these coordinates.
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where each term is separately invariant under generalized internal diffeomorphisms (2.9).
The Einstein-Hilbert Lagrangian is given by the Ricci scalar (2.56) obtained from contrac-
tion of the improved Riemann tensor

Lrn = —eele” ﬁuyab , (4.2)
where e denotes the determinant of the dreibein e,*. The scalar kinetic term in (4.1) is
given by

1

Locatar = ~555 DuMom NDEFMMN = p AprA (4.3)

where we have used the expression
MNP D Mpp = 2 PR VAP (4.4)

of the scalar currents (with covariant derivatives from (2.18)) in terms of the Egg) structure
constants fMX, and the coset currents (2.34). The topological term in (4.1) carries the
non-abelian Chern-Simons couplings of the gauge connections according to

1 2
Lcs = ) ghve <~7:,u1/MBp M — fICLNauAVKaNApﬁ - g leCﬁaMaNA,u’CAuMApL
1

—3 Fraef*P o fRs AuMa’PAVQaRApS> : (4.5)

Its covariance becomes manifest upon spelling out its variation as
1 ~
6Les = =5 7 (FuM BBy i+ (Guv ot — Fran™ Vi) 64,M) . (46)

with the covariant field strengths from (2.20), (2.23) and the general covariant variation
introduced in (2.24). As anticipated above, we note that the two-form contributions to the
field strengths F and G (whose explicit form has been suppressed in (2.20)) drop out from
this expression due to the section constraint. Moreover, the contributions to the Christoffel
connection in Vi that are left undetermined by the vanishing torsion condition cancel in
this expression against the corresponding contributions in AB, o4.

Finally, the last term in (4.1) carries only derivatives in the internal coordinates and
is explicitly given by

Epot = _EV, (47)

with the ‘potential’ V' given by

1. .
= Z]MRJNS (MM irs — 2MEE fr o foxc™M 4+ 2007 65™M) (4.8)

1 . 1 - - 1
- 59 Lapg MMV fre P iph — ZMMNg Yomg g Ong — ZMMNaMg“”ﬁNgW :

in terms of the internal current ju" defined as

MEPOuMpr = jadN e
=2 fvc o VN 4 = — S T (MPY 9PN (4.9)
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where we have used (2.45) in the last equality. The scalar potential (4.8) then takes the
manifestly covariant form

1
V=R- 1/\AMNngf“fv/\/gW + V™M, (4.10)

with the internal curvature scalar R from (2.66) and up to a boundary contribution I" of
weight A\; = —1. This completes the definition of the bosonic Lagrangian.

Let us finally present the vector field equations in a manifestly covariant form.
Parametrizing the variation of the Lagrangian (4.1) w.r.t. the gauge fields as

0L = e (DM AB aq+ E N 04,M) (4.11)

with the general covariant variation of (2.24), the Chern-Simons couplings together with
the minimal couplings in the covariant derivatives give rise to duality equations relating
the field strengths to matter currents according to

1 1
AM M -p M
E/SV) = —5 nv + 566Nl’pjp s
B 1~ 1 1 , ~
éﬁu)/v( ) G M+ 5 fMN’CVIC}-WN 5 CCumwp (fMNKV;c]pN + JpM) . (4.12)

with the covariant field strengths from (2.20), (2.23) and the current J# ¢ from (2.62). Let
us stress that the equations of motion do not imply the full vanishing Sﬁf)M = 0 due to
the fact that the corresponding variation (4.11) is a variation w.r.t. a constrained gauge
connection subject to the section constraint (2.10). In other words, the equations of motion
only imply the weaker projected equation

g}(j})/\/l = O,uVM ) (4.13)

where (’)WM vanishes when contracted with a field satisfying the section constraints (2.10).

4.2 Supersymmetric Lagrangian

We can now present the supersymmetric completion of the bosonic action (4.1). The
fermionic field content comprises the gravitinos 1,/1#[ and spin 1/2 fermions XA transforming
in the fundamental vector 16 and spinor 128, representations of SO(16), respectively. The
full Egg) Lagrangian is given by

eI = R+ g"PAPA + e Liop — V
+2i YA D, — 2i XDt — 2y T P

AATY
—|—€_1 £quartic +8 VMIJ@{[YMVVMZbg — 81 VMA FQA'LE;I;VM (’YMXA)
—2VM T AV A (4.14)

The first line is the bosonic Lagrangian (4.1). The terms in the second line are obtained
via a direct uplift (and proper covariantization) from D = 3 maximal supergravity [27, 28]:
a Rarita-Schwinger term for the gravitinos 1/1{“ a kinetic term for the 128 matter fermions
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x*, and the Noether coupling between the coset current PHA and the fermions. The three

last terms of (4.14) carrying internal covariant derivative Va4 have been added to ensure
invariance of the Lagrangian under supersymmetry transformations. After proper Scherk-
Schwarz reduction of the Lagrangian [29], these terms provide the Yukawa couplings of
the gauged three-dimensional supergravity. Finally, Lquartic denotes the quartic fermion
terms. We expect these to coincide with the corresponding terms of the three-dimensional
theory [27, 28]

e Lyuartic = —% (MFI Ix (AP = plyP T + xx ﬂv“v%i)
+ % <(X><)(X><) - %Y’Y“Fl Ix ! "X) : (4.15)

but as far as this paper is concerned we will only deal with fermions at quadratic order.

For the proof of invariance of (4.14) under supersymmetry (3.3), we first note that all
terms that do not carry internal derivatives cancel precisely as in the three-dimensional
theory. Terms carrying internal derivatives arise in the bosonic sector from variation of the
potential V' and the topological term Liqp. In the fermionic sector, such terms arise from
the corresponding terms in the supersymmetry transformations (3.3), from variation of the
last three terms in (4.14), as well as from the modified integrability relations (2.57), (2.58).

We organise these terms according to their structure

YDV e, XDuVme, »VMVne, XVumVae (4.16)

and show that they cancel against the contributions from the bosonic Lagrangian. In the
rest of this section, we will only focus on the last two types of terms in (4.16), which carry
two internal derivatives and thus exhibit an interesting geometric structure of the internal
space. The cancellation of the remaining terms is described in detail in appendix C.
Let us start by collecting the terms in 1) V(Vare in the variation of the fermionic
Lagrangian
Lo > i (8VMIKV§¥J + VMAVNA&J) DA {V ps, Vit €’
€
+ 81 <8VMIKVNKJ + F,{{%VMAVNB> G [V, V) €
+ 320 G VM VN o (VA Vane” + 297V p Vave?
+Vum (’y’“’)’yl,VNeJ>
+ 167 VMA(FIFJ)ABVNB @Z_JIIL VM’}/MV/\/’E‘]
. - 1

+ 320 VM VN s, <~w”v MYNY + 5V MV N%) el . (4.17)

Upon use of the section constraints (2.27) and together with the identity (2.64), one can

show that all the quadratic and linear terms in derivatives of € vanish. Then, the remaining
terms cancel the first two lines of the variation of the scalar potential (4.10) under a
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supersymmetry transformation (up to total derivatives)
de(eV) = % e <g“”7€ - ig“”MMN Vmg" VnGpo + V(MM g
+""V MGpo Vg™ MMV ) SeGpu
+ eFIAA XAeI <RA + iFA%V(MBVN)IJngMVngMV> ) (4.18)
where for the cancellation we have used the following identity

1 1 1
YNV MV N + 5 VMY Vy, = B VMV ayH = B [/ VAVANG

1 1
- RNV Yab — § 7" VMg VG - (419)

The last line in (4.18) then cancels against the corresponding terms from the variation of
the fermionic Lagrangian

e 0 Liorm owe AVM VN (Ffj{ +121 AaKJ) PV, Ve

€
FAVM (DT 10T, 554 V00, T €
+ 16 VN VMARAT APV Ve (4.20)

Using the identity (2.68) and the section constraints (2.27) one finds that all quadratic and
linear terms in e vanish while the remaining terms precisely cancel the last line of (4.18).
For this, the following relations are useful

V™ =24Vt 4"V, =0, (4.21)
1 1
VVMINY = =5 RN ab — 17V M VNG, - (4.22)

We have thus sketched the vanishing of all terms carrying two internal derivatives in the
supersymmetry variation of (4.14). The cancellation of the remaining terms is described in
detail in appendix C. To summarize the result, we have shown invariance of the action (4.14)
up to quartic fermion terms.

5 Conclusions

In this paper we have constructed the supersymmetric completion of the bosonic Eg) ex-
ceptional field theory. The final result is given by the action (4.14) and the supersymmetry
transformation laws (3.3). In particular, we have established the supersymmetry algebra
which consistently closes into the generalized internal and external diffeomorphisms to-
gether with the gauge transformations of the theory. The geometry of the internal space
is constrained by the section condition (1.1) which admits (at least) two inequivalent so-
lutions for which the action (4.14) reproduces the full D = 11 supergravity and full type
IIB supergravity, respectively. The fermions of exceptional field theory can consistently
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accommodate the fermions of the type ITA and type IIB theory, since the Egg)-covariant
formulation (4.14) does not preserve the original D = 10 Lorentz invariance. The resulting
D = 10 fermion chirality thus depends on the solution of the section constraint.

In contrast to the standard formulation of supergravities, in exceptional field theory
the bosonic symmetries already uniquely determine the bosonic Lagrangian without any
reference to fermions and supersymmetry. Nevertheless, it is important to establish that
the resulting bosonic Lagrangian allows for a supersymmetric completion upon coupling
of the proper fermionic field content as we have done in this paper. In particular, in the
context of generalized Scherk-Schwarz reductions [29] this construction provides the con-
sistent reduction formulas for the embedding of the fermionic sector of lower-dimensional
supergravities into higher dimensions.

A particular attribute of Eg(g) exceptional field theory is the appearance of an addi-
tional constrained gauge connection B, r¢ related to an additional gauge symmetry which
ensures closure of the algebra of generalized diffeomorphisms. Unlike all other fields of
Eg(g) exceptional field theory, this gauge connection is invisible in three-dimensional super-
gravity. More precisely, upon a consistent truncation of exceptional field theory down to
three dimensions by means of a generalized Scherk-Schwarz reduction

M (2,Y) = UM (V) Un*(Y) Mz ()

AN (@)U M), (5.1)

with the Y-dependence carried by an Eggy matrix U and a scaling factor p (satisfying
their system of consistency equations), the constrained gauge connection B, r reduces
according to

Bym(z,Y) o p (V) (U )P (V) OmUpE(Y) fae™ AN (=) (5.2)

such that its fluctuations are expressed in terms of the same three-dimensional vector
fields A,V (z) that parametrize the fluctuations of the A,M(x,Y). It is thus tempting to
wonder if already in exceptional field theory, and before reduction, the constrained gauge
connection can be considered as a function of the remaining fields such as [22]

?
Bum = Tuw AN (5.3)

cf. (2.17). However, as seen above, coupling to fermions requires a connection I'aq ar
other than the Weitzenbock connection, such that (5.3) would obstruct compatibility with
the constraints (2.10). Moreover, supersymmetry of the Lagrangian requires a non-trivial
transformation law (3.3) for the constrained connection B, a¢. It is remarkable that as we
have shown above this additional constrained connection consistently joins the remaining
bosonic and fermionic fields into a single supermultiplet without the need of additional
fermionic matter.

The fact that all transformation laws of B, »¢ are most compactly expressed in terms
of the general covariant variation (2.24) is remnant of structures that appear in a gen-
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eral tensor hierarchy of non-abelian p-forms [30]. This may hint at a yet larger alge-
braic structure which in particular unifies the topological term and the generalized three-
dimensional Einstein-Hilbert term of (4.1) into a single non-abelian Chern-Simons form
on an enlarged algebra. If the present construction should allow for a generalization to
the infinite-dimensional cases of Eg [31-33], Eio [34, 35], (and maybe Eq; [20, 36]), this
appearance of additional bosonic representations and their interplay with supersymmetry
may play an essential role.
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A Eg) conventions

The Eg(g) generators tM split into 120 compact ones X'/ = —X /! and 128 non-compact
ones Y4, with SO(16) vector indices I,.J,--- € 16, spinor indices A, € 128, and the
collective label M = ([IJ], A). The conjugate SO(16) spinors are labeled by dotted indices
A, B,.... In this SO(16) basis the totally antisymmetric FEg(g) structure constants fMNK

possess the non-vanishing components:

1K I)J 1
fIJ,KL,MN — _8§ [ 51‘/}]\[ : fIJ,A,B _ _irﬂg ) (A.1)

FEjgg) indices are raised and lowered by means of the Cartan-Killing metric

1 1

MN MN M NKL

= —Trt"t" = — , A2
U s ol xel (A.2)
with components n48 = §48 and n’/ KL = —25{(‘]]4. When summing over antisymmetrized

index pairs [I.J], an extra factor of % is always understood.

We will also need the projector onto the adjoint representation

1
PMAR = 0 M TR,

1 7 1 1
_ Lok P MK MK MK 4P A3
30 OOz + 5 (Pas7s)ve 530" wet e /TP e (A3)

in terms of the Cartan-Killing form and structure constants of Egg) and the projector
(Psgrs ) nc M explicitly given by

1 1 1
(P3875)MKN£ = ? 5(/%/ 55) - % UMK NL — 14 fPN(M fPEK) . (A-4)

We refer to [26, 39] for other useful Egg) identities.
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B Gamma matrix identities

In this appendix, we give some of the SO(16) gamma matrices identities we have used to
rewrite the curvature R4 in a more compact form. We started with 14 terms quadratic
in the Cartan forms, where a simple counting gives only 12 independent terms. Then
using an explicit representation of the SO(16) gamma matrices together with the section
constraints (2.27), we were able to write R4 with 7 independent terms quadratic in the
Cartan forms.

The main identities behind this simplification are the following

VM VN (0 TED g ppaipa© = 0, (B.1)

THAT e Y M eV o Ooa? = —ATETE VM iV 5o o
+8DIMVM VN cp g Bpp®)
—THEVM VN oo ©
~TIEVM N B Eon© (B.2)

C Supersymmetry of the Lagrangian

In this appendix, we give the remaining details for the invariance of the Lagrangian (4.14)
under the supersymmetry transformations (3.3).

C.1 Cancellation of the terms carrying field strengths

We start with a simple check: all terms in ]-"WM and G,, pm from the supersymmetric
variation of the fermionic terms in the Lagrangian should cancel against the corresponding
contributions from variation of the kinetic and topological terms. The relevant contribution
on the fermionic side are

) (—2 e)’(A'y”’y’jwﬁ FQA 77;1) — 2 e)ZA'y“VGI F,{;A DMP{}
= —is“”p)ZAfypel F;AVMA (GVWM — fML’CVIC-FWE)
5 (2P Dypl) — 2eMP) D, D,] €
— 2P YMy; <Q~WM - fMLKV/chf) Ple’
+e"? Fru™M (Vmdhle! — dIV el (C.1)

where we have used the commutator of two external covariant derivative (2.57). On the
bosonic side, all terms with field strength come from the variation of kinetic and topologi-

cal terms
0L — 5“”’)&(5)/\4 SAM + 5””'05;%)/\4 ABym
1~ 1 . _ i
— etP (2 G m + 9 fMNKV/c}"wN> (—aVM e’ + 2i F,IqAVMAEI'VMXA)

e Fu™ (Ve ! = &Vant,) + Fu™ g™V (e inv,") (C2)
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with the exception of an extra contribution from the improved Einstein-Hilbert term

1) (—eea“eb”fwM wM“b) — —eea“eb”]:w,M 6wMab
= —eeler Fu™ <5ep[“VMepb] + ep[“VMdepb]>
= —eea“eb”fwM (eg[aefb] YV m (eJ&ef))

= —ieg" Fu MV (€979)) (C.3)
that cancels the last term of (C.2). Together, all terms with field strengths vanish.

C.2 Cancellation of the V,,/D,xe terms

From the variation of the vector fields in the bosonic Lagrangian (we have now dropped
all terms with field strengths), we have the following contribution

5L — +ej" M AB,p — € faunVici"N 6 4,M — e Ty 54,M
— e faun® Vic VN pPHE) VML et + 2ie T VMY it
= —ie VMg VaPPATIEE A e = 2ie VM0 pPHATY e

T M I AT
+ 2ie JH VAL, X e (C4)
On the fermionic side, the relevant contributions to this sector are

0 (—2 e;ZAv“’y”z/J{L F,I4A Pf) — —41i e)ZA'y“'y"VM (’yue‘]) F,I4A' PAYM,;
i ex MV e’ TPV (C.5)
) (—Qi e )ZAV“DMXA> — 8ie XA’)/#/DMVMGIVMAFQA-
—2ie )ZAVMVMGIP;?VM JKI‘Z{AK
—die AV e PAYM T (C.6)
6 (~8eVMAT] 1B, iV () — 8ieVMAT! VD!
= —BieVMuI VD, (C.7)
6 (~2e VM T AV ) — =20 e VM T AV (R T P
= 2ie VM[JFQJAKXAVM ('y“eKP/fl)
—die VM Tl AV (P . (C8)

Using the commutator

1
VMUT! [V, D) el = 1 VMUT! R Yave”

3 1
— VMV mPut e+ TV VPt (C9)
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all of the above terms simply reduce to

— —4ie)ZA7“7”VM(’yM)eJ FI PAVMU —dieVMpT

AAXAVM( )€JP;L4

= 2ie VM (Vg™ )PP T X e’

— 2 e VMATY R ™ XA vave + 2ie T VML 5y

1 ~ .
= 4’1/€VMAF2A <RMI/#V + 5 J“M) XAFYMEI

=0,

(C.10)

where we have used (2.62) in the last equality.

C.3 Cancellation of the V);D,1e terms

Similarly, we collect the vector field contributions in the bosonic Lagrangian

5L — +ej" M AB, pm — € faunViejt N §AM — e JH p 6A,M
— 2ePHAVM (=40, Vel + 2V (" €') + e epg” V m(E'in o))
—8e VN, yM; fMN’CV]C'P#ATZJ{LEJ — 4ej“MVMIJ1/;FILeJ
= —8eVM PRIV el — 4eVM AV M (9" P! + 26 PVM 4N M (P, i €l
+25“’\pVMA77 AV (gow ), iy !

—4e T RVMAV M PHE Y e?

4ej”MVM1J1/_)lIA€J , (C.11)

together with the relevant contributions from the fermionic Lagragian

5(2ie’y“”p1/;£2)uw£) — Sie’y“VpVMIJLZlI,D (Vm(ie?) + i Vage”)

—4ier" PP P AT VM B(V i (ie”) + i Ve
—166VM1J1P,{’YWDVVM€ +8eti V"V me’ P, VM
+8i65“”pVMIﬂZID (VM(%)GJ)

—4iee™ PPl py,e PLAT VM | (C.12)

5(—2ex iyl Tl P — 4eVM (DY) 4P, BV e i ]

MAA

5(8eVM 1, N piyT) —

—4eVM A (TITH) P, PPl e
+4eVMA(TIT) A PP PPV e’ (C.13)
—8iee" PV M 111,V pmy,pDye’

+16eVM 50, 4V pDye’

—8iee" PV M 10, Dy (V prype”)
+8i€8“”pVMIﬂZuIDu(VM%)eJ

16VM i, TP Dye (C.14)
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3(=8iet V(v XN VM) — 4eVMA(DIT) 4]V (3" P, P)
= 46VMA(PIFJ)AB¢£VM (’}/‘u’yl/)EJPVB
+46VMA(FIFJ)ABQE{[W”VMEJPVB
+4€VMA(FIFJ)ABIZJ{LVM€J'P“B

+4e VM A (DT ) apdlny e’V PP . (C.15)

Upon using the commutator

1
VM VD! = ZVMIJ Romtp™ Yave”
1

1
2 VMV P A — T VM P A, (C6)

4

this reduces to
— —SeVMU@EﬁeJ(RMVW + %j“/vt)
+8i€€ypUVMIJ&;IL’YUGJRMVKngH
—8ie€””UVM1J1,Z£’YU€JRMWUQW
—8’L'€€”V'DVMIJ¢£([D/M VM]%)EJ
_ o, (C.17)

where we have used the Schouten identity

Eupggﬁu(@zﬁ%/e(]n/\/lpna - &i’YMEJRMpNU + 1[’1{7/)6]7?'/\/1#/{0) = EupUJJz{'YpGJRMm{ugnu )
~0. (C.18)

This completes the results obtained in section 4 and proves the invariance of the extended
Lagrangian (4.14) under supersymmetry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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