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1 Introduction

New physics searches at the LHC rely, namely, in the discovery of a new spectrum of

particles with masses much larger than the electroweak scale though it is being seen that

they can be rather elusive. Our present understanding of the laws of physics tells us that

whether these are supersymmetric states or an extended scalar sector, for instance, their

role at the electroweak scale should be weighted by inverse powers of their masses. This is

the main tenet behind our concept and compelling use of effective field theories in particle

physics: we obtain the low-energy theory by integrating out the heavier spectrum in the,

up to now model-dependent, ultraviolet completion of the former. In this way we determine

the marks of the underlying theory at higher scales on the low-energy couplings, i.e. Wilson

coefficients, of the effective field theory (EFT). Upon comparison with the electroweak scale

phenomenology we should be able to obtain information on new physics scenarios. This

framework has pervaded the last fifty years of research in particle physics.

Although the rationale and the procedure has been well developed long ago in the

literature (see for instance [1, 2]), the integration at next-to-leading order in the upper

theory, that is to say at one loop, is undergoing lately an intense debate [3–8] that, as we

put forward in this paper, still allows for simpler alternatives. There are two techniques to

obtain the Wilson coefficients of the EFT. The most employed one amounts to matching the

diagrammatic computation of given Green Functions with light particle external legs in the

full theory, where heavy states can appear in virtual lines, and in the EFT, at energies where

the EFT can describe the dynamics of the light particles as an expansion in inverse powers

of the heavy particle mass scale. Alternatively one can perform the functional integration of
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the heavier states without being concerned with specific Green Functions, and later extract

the local contributions that are relevant for the description of the low-energy dynamics of

the light fields. This last methodology was applied, for example, in refs. [9, 10], to obtain

the non-decoupling effects of a heavy Higgs in the Standard Model (SM). The path integral

formulation has obvious advantages over the matching procedure as, for instance, one does

not need to handle Feynman diagrams nor symmetry factors, and one obtains directly the

whole set of EFT operators together with their matching conditions, i.e. no prior knowledge

about the specifics of the EFT operator structure, symmetries, etc., is required.

One of the issues recently arisen involves the widely used technique to perform the

functional integration set up more than thirty years ago by the works of Aitchison and

Fraser [11–14], Chan [15, 16], Gaillard [17] and Cheyette [18]. As implemented by refs. [3,

4], this technique did not include all the one-loop contributions from the integration, in

particular those where heavy and light field quantum fluctuations appear in the same

loop. This fact was noticed in ref. [5], and fixed later on in refs. [7, 8], by the use of

variants of the functional approach which require additional ingredients in order to subtract

the parts of the heavy-light loops which are already accounted for by the one-loop EFT

contribution. Here we would like to introduce a more direct method to obtain the one-loop

effective theory that builds upon the works of refs. [9, 10], and that uses the technique

of “expansion by regions” [19–21] to read off the one-loop matching coefficients from the

full theory computation, thus bypassing the need of subtracting any infrared contribution.

In short, the determination of the one-loop EFT in the approach we propose reduces

to the calculation of the hard part of the determinant of ∆̃H , where ∆̃H arises from the

diagonalization of the quadratic term in the expansion of the full theory Lagrangian around

the classical field configurations, and the determinant is just the result of the Gaussian

integration over the heavy quantum fluctuations. In this way, the terms that mix light and

heavy spectra inside the loop get disentangled by means of a field transformation in the path

integral that brings the quadratic fluctuation into diagonal form: the part involving only

the light quantum fields remains untouched by the transformation and all heavy particle

effects in the loops are shifted to the modified heavy quadratic form ∆̃H . This provides

a conceptually simple and straightforward technique to obtain all the one-loop local EFT

couplings from an underlying theory that can contain arbitrary interactions between the

heavy and the light degrees of freedom.

The contents of the paper are the following. The general outline of the method is

given in section 2, where we describe the transformation that diagonalizes the quadratic

fluctuation which defines ∆̃H , and then discuss how to extract the contributions from ∆̃H

that are relevant for determining the one-loop EFT. In section 3 we compare our procedure

with those proposed recently by [3, 7] and [4, 8]. The virtues of our method are better seen

through examples: first we consider a simple scalar toy model in section 4, where we can

easily illustrate the advantages of our procedure with respect the conventional matching

approach; then we turn to an extension of the SM with a heavy real scalar triplet, that

has been used as an example in recent papers. We conclude with section 5. Additional

material concerning the general formulae for dimension-six operators, and the expression

of the fluctuation operator in the SM case is provided in the appendices.
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2 The method

We outline in this section the functional method to determine the EFT Lagrangian describ-

ing the dynamics of light particles at energies much smaller than mH , the typical mass of

a heavy particle, or set of particles, that reproduces the full-theory results at the one-loop

level. The application of the method to specific examples is postponed to section 4.

Let us consider a general theory whose field content can be split into heavy (ηH) and

light (ηL) degrees of freedom, that we collect generically in η = (ηH , ηL). For charged

degrees of freedom, the field and its complex conjugate enter as separate components in ηH
and ηL. In order to obtain the one-loop effective action, we split each field component into

a background field configuration, η̂, which satisfy the classical equations of motion (EOM),

and a quantum fluctuation η, i.e. we write η → η̂ + η. Diagrammatically, the background

part corresponds to tree lines in Feynman graphs while lines inside loops arise from the

quantum fields; this means that terms higher than quadratic in the quantum fields yield

vertices that can only appear in diagrams at higher loop orders. Therefore, at the one-loop

level one has to consider only the Lagrangian up to terms quadratic in η:

L = Ltree(η̂) + L(η2) +O
(
η3
)
. (2.1)

The zeroth order term, Ltree, depends only on the classical field configurations and yields

the tree-level effective action. At energies much lower than the mass of the heavy fields,

the background heavy fields η̂H can be eliminated from the tree-level action by using their

EOM. The linear term in the expansion of L around the background fields is, up to a total

derivative, proportional to the EOM evaluated at η = η̂, and thus vanishes. From the

quadratic piece

L(η2) =
1

2
η†

∂2L
∂η∗ ∂η

∣∣∣∣
η=η̂

η ≡ 1

2
η†O η , (2.2)

we identify the fluctuation operator O, with generic form

O =

(
∆H X†LH

XLH ∆L

)
, (2.3)

and which depends only on the classical fields η̂.

The one-loop effective action thus derives from the path integral

eiS = N
∫
DηLDηH exp

[
i

∫
dxL(η2)

]
, (2.4)

which can be obtained by Gaussian integration. Our aim is to compute the one-loop heavy

particle effects in the Green functions of the light fields as an expansion in the heavy

mass scale mH . In terms of Feynman diagrams, the latter corresponds to computing all

one-loop diagrams involving heavy lines and expanding them in 1/mH . The latter can

be formally achieved by doing the functional integration over the fields ηH . However, the

presence of mixing terms among heavy and light quantum fields in L(η2) (equivalently, of
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one-loop diagrams with both heavy and light lines inside the loop), makes it necessary

to first rewrite the fluctuation operator in eq. (2.3) in an equivalent block-diagonal form.

A way of achieving this is by performing shifts (with unit Jacobian determinant) in the

quantum fields, which can be done in different ways. We choose a field transformation

that shifts the information about the mixing terms XLH in the fluctuation operator into

a redefinition of the heavy-particle block ∆H , while leaving ∆L untouched. This has the

advantage that all heavy particle effects in the one-loop effective action are thus obtained

through the computation of the determinant that results from the path integral over the

heavy fields. This shifting procedure was actually used in refs. [9, 10] for integrating out

the Higgs field in the SU(2) gauge theory and in the SM. An alternative shift, which is

implicitly used in ref. [7], will be discussed in section 3.

The explicit form of the field transformation that brings O into the desired block-

diagonal form reads

P =

(
I 0

−∆−1
L XLH I

)
, (2.5)

and one immediately obtains

P †OP =

(
∆̃H 0

0 ∆L

)
, (2.6)

with

∆̃H = ∆H −X†LH∆−1
L XLH . (2.7)

The functional integration over the heavy fields ηH can now be carried out easily,

eiS =
(

det ∆̃H

)−c
N
∫
DηL exp

[
i

∫
dx

1

2
η†L∆LηL

]
, (2.8)

with c = 1/2,−1 depending on the bosonic or fermionic nature of the heavy fields. For

simplicity, we assume that all degrees of freedom in the heavy sector are either bosons or

fermions. In the case of mixed statistics, one needs to further diagonalize ∆̃H to decouple

the bosonic and fermionic blocks. The remaining Gaussian integration in eq. (2.8) repro-

duces the one-loop contributions with light particles running inside the loop, and heavy

fields can appear only as tree-level lines through the dependence of ∆L in η̂H . We thus

define the part of the one-loop effective action coming from loops involving heavy fields as

SH = i c ln det ∆̃H . (2.9)

In order to compute the determinant of ∆̃H we use standard techniques developed in the

literature [15, 22]. First it is rewritten as

SH = i cTr ln ∆̃H , (2.10)
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where Tr denotes the full trace of the operator, also in coordinate space. It is convenient

for our purposes to rewrite the functional trace using momentum eigenstates defined in d

dimensions as

SH = i c tr

∫
ddp

(2π)d
〈 p| ln ∆̃H |p〉

= i c tr

∫
ddx

∫
ddp

(2π)d
e−ipx ln

(
∆̃H (x, ∂x)

)
eipx

= i c tr

∫
ddx

∫
ddp

(2π)d
ln
(

∆̃H (x, ∂x + ip)
)

1 .

(2.11)

The derivatives in ∆̃H yields factors of ip upon acting on the exponentials.1 The symbol

tr denotes the trace over internal degrees of freedom only. Since ∆̃H contains the kinetic

term of the heavy fields, in the case of scalar fields it has the generic form

∆̃H = −D̂2 −m2
H − U , (2.12)

with D̂µ denoting the covariant derivative for the heavy fields with background gauge fields.

Performing the shift ∂x → ∂x + ip we find

SH =
i

2
tr

∫
ddx

∫
ddp

(2π)d
ln
(
p2 −m2

H − 2ipD̂ − D̂2 − U (x, ∂x + ip)
)

1 . (2.13)

For fermions, the same formula, eq. (2.13), applies but with an overall minus sign and with

U replaced by

Uferm. = − i
2
σµν

[
D̂µ, D̂ν

]
− i
[
/̂D,Σe

]
+ i
{
/̂D,Σo

}
+ 2mHΣe + Σ (Σe − Σo) . (2.14)

Here Σ ≡ Σe + Σo is defined by ∆̃H = i /̂D −mH − Σ, and Σe (Σo) contains an even (odd)

number of gamma matrices. Finally, we can Taylor expand the logarithm to get

SH = ∓ i
2

∫
ddx

∞∑
n=1

1

n

∫
ddp

(2π)d
tr

{(
2ipD̂ + D̂2 + U (x, ∂x + ip)

p2 −m2
H

)n
1

}
, (2.15)

where we have dropped an irrelevant constant term, and the negative (positive) global sign

corresponds to the integration of boson (fermion) heavy fields.

The effective action eq. (2.15) generates all one-loop amplitudes with at least one

heavy particle propagator in the loop. One-loop diagrams with n heavy propagators are

reproduced from the n-th term in the expansion of eq. (2.15). In addition the diagram can

contain light propagators, that arise upon expanding the term X†LH∆−1
L XLH in ∆̃H using

∆−1
L =

∞∑
n=0

(−1)n
(

∆̃−1
L XL

)n
∆̃−1
L , (2.16)

1Note that ∆̃H can also depend in ∂ᵀ
x. Transpose derivatives are defined from the adjoint operator,

which acts on the function at the left, and can be replaced by −∂x, the difference being a total derivative

term. The identity 1 in eq. (2.11) serves as a reminder that derivatives at the rightmost disappear after

acting on the exponential.
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which corresponds to the Neumann series expansion of ∆−1
L , and we have made the sep-

aration ∆L = ∆̃L + XL, with ∆̃L corresponding to the the fluctuations coming from the

kinetic terms, i.e. ∆̃−1
L is the light field propagator. From the definition of the fluctuation

operator O, eq. (2.3), the terms in ∆̃L are part of the diagonal components of O. At the

practical level, for the calculation of ∆−1
L using eq. (2.16) it is simpler to define ∆̃L directly

as the whole diagonal of O.

Loops with heavy particles receive contributions from the region of hard loop momenta

p ∼ mH , and from the soft momentum region, where the latter is set by the low-energy

scales in the theory, either p ∼ mL or any of the light-particle external momenta, pi � mH .

In dimensional regularization the two contributions can be computed separately by using

the so-called “expansion by regions” [19–21]. In this method the contribution of each region

is obtained by expanding the integrand into a Taylor series with respect to the parameters

that are small there, and then integrating every region over the full d-dimensional space

of the loop momenta. In the hard region, all the low-energy scales are expanded out and

only mH remains in the propagators. The resulting integrand yields local contributions in

the form of a polynomial in the low-energy momenta and masses, with factors of 1/mH

to adjust the dimensions. This part is therefore fully determined by the short-distance

behaviour of the full theory and has to be included into the EFT Lagrangian in order

to match the amplitudes in the full and effective theories. Indeed, the coefficients of the

polynomial terms from the hard contribution of a given (renormalized) amplitude provide

the one-loop matching coefficients of corresponding local terms in the effective theory.

This can be understood easily since the soft part of the amplitude results upon expanding

the vertices and propagators according to p ∼ mL � mH , with p the loop momentum.

This expansion, together with the one-loop terms with light particles that arise from the

Gaussian integral of ∆L in eq. (2.8), yields the same one-loop amplitude as one would

obtain using the Feynman rules of the effective Lagrangian for the light fields obtained

by tree-level matching, equivalently the Feynman rules from Ltree in eq. (2.1) where the

background heavy field η̂H has been eliminated in favour of η̂L using the classical EOM.

Therefore, in the difference of the full-theory and EFT renormalized amplitudes at one-

loop only the hard part of the full-theory amplitude remains, and one can read off the

one-loop matching coefficients directly from the computation of the latter. Let us finally

note that in the conventional matching approach, the same infrared regularization has to

be used in the full and EFT calculations, in order to guarantee that the infrared behaviour

of both theories is identical. This is of course fulfilled in the approach suggested here,

since the one-loop EFT amplitude is defined implicitly by the full theory result. Likewise,

the ultraviolet (UV) divergences of the EFT are determined by UV divergences in the soft

part, that are regulated in d dimensions in our approach. For the renormalization of the

amplitudes, we shall use the MS subtraction scheme.

Translated into the functional approach, the preceding discussion implies that the EFT

Lagrangian at one-loop is then determined as∫
ddxL1loop

EFT = Shard
H , (2.17)
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where Shard
H , containing only the hard part of the loops, can be obtained from the repre-

sentation (2.15) by expanding the integrand in the hard loop-momentum limit, p ∼ mH �
mL, ∂x. In order to identify the relevant terms in this expansion, it is useful to introduce

the counting

pµ, mH ∼ ζ , (2.18)

and determine the order ζ−k, k > 0, of each term in the integrand of eq. (2.15). For a

given order in ζ only a finite number of terms in the expansion contributes because U is

at most O(ζ) and the denominator is O(ζ2).2 For instance, to obtain the dimension-six

effective operators, i.e. those suppressed by 1/m2
H , it is enough to truncate the expansion

up to terms of O
(
ζ−2
)
, which means computing U up to O

(
ζ−4
)

(recall that d4p ∼ ζ4).

Though it was phrased differently, this prescription is effectively equivalent to the one used

in refs. [9, 10] to obtain the non-decoupling effects (i.e. the O(m0
H) terms) introduced by a

SM-like heavy Higgs.

Finally we recall that, although the covariance of the expansion in eq. (2.15) is not

manifest, the symmetry of the functional trace guarantees that the final result can be

rearranged such that all the covariant derivatives appear in commutators [16, 23]. As a

result, one can always rearrange the expansion of eq. (2.15) in a manifestly covariant way

in terms of traces containing powers of U , field-strength tensors and covariant derivatives

acting on them. As noted in refs. [17, 22, 23], this rearrangement can be easily performed

when U does not depend on derivatives, as it is the case when only heavy particles enter

in the loop.3 However, for the case where U = U (x, ∂x + ip), as it happens in general in

theories with heavy-light loops, the situation is more involved and the techniques developed

in refs. [17, 22, 23] cannot be directly applied. In this more general case it is convenient

to separate U into momentum-dependent and momentum-independent pieces, i.e. U =

UH(x)+ULH (x, ∂x + ip) which, at the diagrammatic level, corresponds to a separation into

pure heavy loops and heavy-light loops. This separation presents two major advantages:

first, the power counting for UH and ULH is generically different, with UH at most O (ζ) and

ULH at most O
(
ζ0
)
, both for bosons and fermions, which allows for a different truncation

of the series in eq. (2.15) for the terms involving only pure heavy contributions and those

involving at least one power of ULH . Second, universal expansions of eq. (2.15) in a

manifestly covariant form for U = UH(x) have been derived in the literature up to O
(
ζ−2
)
,

i.e. for the case of dimension-six operators [3, 22, 24, 25], that we reproduce in eq. (A.2).

The evaluation of the remaining piece, corresponding to terms containing at least one power

of ULH can be done explicitly from eq. (2.17).

2The part of the operator U coming from ∆H arises from interaction terms with at least three fields.

If all three fields are bosons, the dimension-4 operator may contain a dimensionful parameter ∼ ζ or a

derivative, giving rise to a term in U of O(ζ). If two of the fields are fermions the operator is already of

dimension 4 and then Σ ∼ ζ0, which yields a contribution in U of O(ζ) upon application of eq. (2.14).

Contributions from X†LH∆−1
L XLH , in the following referred as heavy-light, appear from the product of two

interaction terms and a light-field propagator and hence they generate terms in U of O(ζ0).
3With the exception of theories with massive vector fields and derivative couplings among two heavy

and one light fields.
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Let us end the section by summarizing the steps required to obtain the one-loop match-

ing coefficients in our method:

1. We collect all field degrees of freedom in L, light and heavy, in a field multiplet

η = (ηH , ηL), where ηi and (ηi)
∗ must be written as separate components for charged

fields. We split the fields into classical and quantum part, i.e η → η̂+ η, and identify

the fluctuation operator O from the second order variation of L with respect to η∗

and η evaluated at the classical field configuration, see eqs. (2.2) and (2.3),

Oij =
∂2L

∂η∗i ∂ηj

∣∣∣∣
η=η̂

. (2.19)

2. We then consider U(x, ∂x), given in eqs. (2.12) and (2.14), with ∆̃H defined in eq. (2.7)

in terms of the components of O. Derivatives in U must be shifted as ∂x → ∂x + ip.

The computation of U requires the inversion of ∆L: a general expression for the

latter is provided in eq. (2.16). The operator U(x, ∂x + ip) has to be expanded up to

a given order in ζ, with the counting given by p,mH ∼ ζ � mL, ∂x. For deriving the

dimension-six EFT operators, the expansion of U must be taken up to O
(
ζ−4
)
.

3. The final step consists on the evaluation of the traces of U(x, ∂x + ip) in eq. (2.15)

up to the desired order — O
(
ζ−2
)

for the computation of the one-loop dimension-six

effective Lagrangian –. For this computation it is convenient to make the separation

U(x, ∂x + ip) = UH(x) + ULH (x, ∂x + ip) and apply the standard formulas for the

traces of UH(x), see eq. (A.2). The remaining contributions consist in terms involving

at least one power of ULH (x, ∂x + ip): a general formula for the case of dimension-six

operators can be found in eq. (A.3). Their computation only requires trivial integrals

of the form:∫
ddp

(2π)d
pµ1 . . . pµ2k

(p2)α
(
p2 −m2

H

)β =
(−1)α+β+k i

(4π)
d
2

Γ
(
d
2 + k − α

)
Γ
(
−d

2 − k + α+ β
)

Γ(β) Γ
(
d
2 + k

)
× gµ1...µ2k

2k
md+2k−2α−2β
H , (2.20)

where gµ1...µ2k is the totally symmetric tensor with 2k indices constructed from

gµν tensors.

Terms containing open covariant derivatives, i.e. derivatives acting only at the right-

most of the traces, should be kept throughout the computation and will either vanish

or combine in commutators, yielding gauge-invariant terms with field strength ten-

sors. A discussion about such terms can be found in appendix A.

3 Comparison with previous approaches

In ref. [7], a procedure to obtain the one-loop matching coefficients also using functional

integration has been proposed. We wish to highlight here the differences of that method,

in the following referred as HLM, with respect to the one presented in this manuscript.
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The first difference is how ref. [7] disentangles contributions from heavy-light loops

from the rest. In the HLM method the determinant of the fluctuation operator O which

defines the complete one-loop action S is split using an identity (see their appendix B) that

is formally equivalent in our language to performing a field transformation of the form

PHLM =

(
I −∆−1

H X†LH

0 I

)
, (3.1)

that block-diagonalizes the fluctuation operator as:

P †HLMOPHLM =

(
∆H 0

0 ∆̃L

)
, (3.2)

where now

∆̃L = ∆L −XLH∆−1
H X†LH . (3.3)

The functional determinant is then separated in the HLM framework into two terms: the

determinant of ∆H , that corresponds to the loops with only heavy particles, and the

determinant of ∆̃L, containing both the loops with only light propagators and those with

mixed heavy and light propagators. The former contributes directly to UH , and provides

part of the one-loop matching conditions (namely those denoted as “heavy” in ref. [7]),

upon using the universal formula valid for U not depending in derivatives, eq. (A.2), up

to a given order in the expansion in 1/mH . On the other hand, to obtain the matching

conditions that arise from ∆̃L (called “mixed” contributions in the HLM terminology), one

has to subtract those contributions already contained in the one-loop terms from the EFT

theory matched at tree-level. To perform that subtraction without computing both the

determinant of ∆̃L and that of the quadratic fluctuation of Ltree
EFT, HLM argues that one

has to subtract to the heavy propagators that appear in the computation of det ∆̃L the

expansion of the heavy propagator to a given order in the limit mH → ∞. According to

HLM, the subtracted piece builds up the terms (“local counterparts”) that match the loops

from Ltree
EFT. These “local counterparts” have to be identified for each order in the EFT, and

then dropped prior to the evaluation of the functional traces. This prescription resembles

the one used in ref. [25] to obtain the one-loop effective Lagrangian from integrating out a

heavy scalar singlet added to the SM.

While we do not doubt the validity of the HLM method, which the authors of

ref. [7] have shown through specific examples, we believe the framework presented in this

manuscript brings some important simplifications. Let us note first that in the method of

ref. [7], contributions from heavy-light loops are incorporated into det ∆̃L, which results

from the functional integration over the light fields. If the light sector contains both bosonic

and fermonic degrees of freedom that interact with the heavy sector (as it is the case in

most extensions of the SM), a further diagonalization of ∆̃L into bosonic and fermionic

blocks is required in order to perform the Gaussian integral over the light fields. That step

is avoided in our approach, where we shift all heavy particle effects into ∆̃H and we only

– 9 –
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need to perform the path integral over the heavy fields. Secondly, our method provides

a closed formula (up to trivial integrations which depend on the structure of ULH) valid

for any given model, from which the matching conditions of all EFT operators of a given

dimension are obtained. In this sense it is more systematic than the subtraction prescrip-

tion of the HLM method, which requires some prior identification of the subtraction terms

for the heavy particle propagators in the model of interest. Furthermore, in the HLM

procedure the light particle mass in the light field propagators is not expanded out in the

computation of the functional traces, and intermediate results are therefore more involved.

In particular, non-analytic terms in the light masses can appear in intermediate steps of

the calculation, and cancellations of such terms between different contributions have to

occur to get the infrared-finite matching coefficients at one loop. Given the amount of

algebra involved in the computation of the functional traces, automation is a prerequisite

for integrating out heavy particles in any realistic model. In our method, such automation

is straightforward (and indeed has been used for the heavy real scalar triplet example given

in section 4). From the description of ref. [7], it seems to us that is harder to implement

the HLM method into an automated code that does not require some manual intervention.

An alternative framework to obtain the one-loop effective Lagrangian through func-

tional integration, that shares many similarities with that of HLM, has been suggested in

ref. [8]. The authors of ref. [8] have also introduced a subtraction procedure that involves

the truncation of the heavy particle propagator. Their result for the dimension-6 effective

Lagrangian in the case that the heavy-light quadratic fluctuation is derivative-independent

has been written in terms of traces of manifestly gauge-invariant operators depending on

the quadratic fluctuation U(x), times coefficients where the EFT contributions have been

subtracted. Examples on the calculation of such subtracted coefficients, which depend on

the ultraviolet model, are provided in this reference. The approach is however limited, as

stated by the authors, by the fact that it cannot be applied to cases where the heavy-light

interactions contain derivative terms. That is the case, for instance, in extensions of the

SM where the heavy fields have interactions with the SM gauge bosons (see the exam-

ple we provide in subsection 4.2). Let us also note that the general formula provided in

the framework of ref. [8] is written in terms of the components of the original fluctuation

operator where no diagonalization to separate heavy- and light-field blocks has been per-

formed. This implies that its application to models with mixed statistics in the part of the

light sector that interacts with the heavy one, and even to models where the heavy and

light degrees of freedom have different statistics, must require additional steps that are not

discussed in ref. [8].

4 Examples

In this section we perform two practical applications of the framework that we have de-

veloped above. The first one is a scalar toy model simple enough to allow a comparison

of our method with the standard matching procedure. Through this example we can also

illustrate explicitly that matching coefficients arise from the hard region of the one-loop

amplitudes in the full theory. The second example corresponds to a more realistic case

where one integrates out a heavy real scalar triplet that has been added to the SM.
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4.1 Scalar toy model

Let us consider a model with two real scalar fields, ϕ with mass m and φ with mass M ,

whose interactions are described by the Lagrangian

L(ϕ, φ) =
1

2

(
∂µφ∂

µφ−M2 φ2
)

+
1

2

(
∂µϕ∂

µϕ−m2 ϕ2
)
− κ

4!
ϕ4 − λ

3!
ϕ3 φ . (4.1)

Assuming M � m we wish to determine the effective field theory resulting from integrating

out the φ field: LEFT(ϕ̂). We perform the calculation up to and including 1/M2-suppressed

operators in the EFT. Within this model this implies that we have to consider up to

six-point Green functions. This same model has also been considered in ref. [7].

At tree level we solve for the equation of motion of the φ field and we obtain

φ̂ = − λ

6M2
ϕ̂3 +O(M−4) , (4.2)

that, upon substituting in eq. (4.1), gives the tree-level effective Lagrangian

Ltree
EFT =

1

2

(
∂µϕ̂ ∂

µϕ̂−m2 ϕ̂2
)
− κ

4!
ϕ̂4 +

λ2

72M2
ϕ̂6 . (4.3)

To proceed at one loop we use the background field method as explained in section 2:

φ→ φ̂+ φ and ϕ→ ϕ̂+ ϕ. We have η = (φ, ϕ)ᵀ and we consider the same counting as in

eq. (2.18): pµ,M ∼ ζ. The fluctuation operator in eq. (2.3) is given by

∆H = −∂2 −M2 ,

∆L = −∂2 −m2 − κ

2
ϕ̂2 − λ ϕ̂ φ̂ ,

XLH = −λ
2
ϕ̂2 ,

(4.4)

that only depends on the classical field configurations. In order to construct ∆̃H(x, ∂x+ ip)

in eq. (2.7) we need to determine ∆−1
L (x, ∂x + ip) up to, and including, terms of order ζ−4:

∆L(x, ∂x + ip) = p2 −m2 − 2i pµ ∂
µ − ∂2 − κ

2
ϕ̂2 − λ ϕ̂ φ̂ ,

∆−1
L (x, ∂x + ip) =

1

p2

(
1 +

m2

p2

)
+

1

p4

(
2i pµ∂

µ + ∂2 +
κ

2
ϕ̂2
)
− 4

pµpν
p6

∂µ∂ν +O(ζ−5) .

(4.5)

Using this result we get U(x, ∂x + ip) from eq. (2.12)

U(x, ∂x + ip) =
λ2

4
ϕ̂2

[
1

p2

(
1 +

m2

p2

)
+

1

p4

(
2i pµ∂

µ + ∂2 +
κ

2
ϕ̂2
)
− 4

pµpν
p6

∂µ∂ν
]
ϕ̂2

+O(ζ−5) . (4.6)

Inserting this operator in eq. (2.15), we notice that at the order we are considering only

the n = 1 term contributes, with

L1loop
EFT = − i

2

∫
ddp

(2π)d
U(x, ∂x + ip)

p2 −M2
. (4.7)

– 11 –



J
H
E
P
0
9
(
2
0
1
6
)
1
5
6

The momentum integration can be readily performed: in the MS regularization scheme

with µ = M we finally obtain

L1loop
EFT =

λ2

16(16π2)

[
2

(
1 +

m2

M2

)
ϕ̂4 − 1

M2
ϕ̂2∂2ϕ̂2 +

κ

M2
ϕ̂6

]
. (4.8)

Let us recover now this result through the usual matching procedure between the

full theory L(ϕ, φ) in eq. (4.1) and the effective theory without the heavy scalar field φ.

Our goal is to further clarify the discussion given in section 2 on the hard origin of the

matching coefficients of the effective theory by considering this purely academic case. In

order to make contact with the result obtained in eq. (4.8) using the functional approach,

we perform the matching off-shell and we use the MS regularization scheme with µ = M .

We do not consider in the matching procedure one-loop diagrams with only light fields,

since they are present in both the full-theory and the effective theory amplitudes and,

accordingly, cancel out in the matching.

For the model under discussion there is no contribution to the two- and three-point

Green functions involving heavy particles in the loop. The diagrams contributing to the

matching of the four-point Green function are given by

� =
i

16π2
λ2

[
3 + 3

m2

M2
+
s+ t+ u

2M2

] ∣∣∣∣∣
hard

+
i

16π2
λ2

[
−3

m2

M2
+ 3

m2

M2
ln

(
m2

M2

)] ∣∣∣∣∣
soft

+O(M−4),

� =
i

16π2
λ2

[
−2

m2

M2
+ 2

m2

M2
ln

(
m2

M2

)] ∣∣∣∣∣
soft

+O(M−4),

(4.9)

where we have explicitly separated the contributions from the hard and soft loop-

momentum regions. Note that a non-analytic term in m can only arise from the soft

region, since in the hard region the light mass and the external momenta are expanded

out from the propagators. For the corresponding EFT computation we need the effective

Lagrangian matched at one-loop:

LEFT = Ltree
EFT +

α

4!
ϕ̂4 +

β

4!M2
ϕ̂2∂2ϕ̂2 +

γ

6!M2
ϕ̂6 , (4.10)

which now includes the dimension-6 operator with four light fields, and the one-loop match-

ing coefficient for the 4- and 6-light field operators already present in Ltree
EFT. The EFT
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contributions to the four-point Green function read

� =
i

16π2
λ2

[
−5

m2

M2
+ 5

m2

M2
ln

(
m2

M2

)]
+O(M−4) ,

� = i α − i
β

3M2
(s+ t+ u) .

(4.11)

We see that the soft components of the full-theory amplitude match the one-loop diagram in

the effective theory, and the matching coefficients of the ϕ4 operators get thus determined

by the hard part of the one-loop full-theory amplitude:

α =
3

16π2
λ2

(
1 +

m2

M2

)
, β = − 3

16π2

λ2

2
. (4.12)

in agreement with the result for the ϕ4 terms in eq. (4.8).

The next contribution to the one-loop effective theory comes from the six-point Green

function. The full theory provides two diagrams for the matching:

� =
i

16π2
45
κλ2

M2

∣∣∣∣∣
hard

+
i

16π2
45
κλ2

M2
ln

(
m2

M2

) ∣∣∣∣∣
soft

+O(M−4),

� =
i

16π2
30
κλ2

M2
ln

(
m2

M2

) ∣∣∣∣∣
soft

+O(M−4),

(4.13)

where once more we have explicitly separated the hard and soft contributions from each

diagram. The six-point effective theory amplitude gives

� =
i

16π2
75
κλ2

M2
ln

(
m2

M2

)
+O(M−4) ,

� = i
γ

M2
.

(4.14)

Again, we note that the soft terms of the full theory are reproduced by the one-loop diagram

in the effective theory. The local contribution is determined by the hard part of the full

theory amplitude and thus reads

γ =
45

16π2
κλ2 , (4.15)

that matches the result found in eq. (4.8) for the ϕ̂6 term.
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4.2 Heavy real scalar triplet extension

As a second example, we consider an extension of the SM with an extra scalar sector com-

prised by a triplet of heavy scalars with zero hypercharge, Φa, a = 1, 2, 3, which interacts

with the light Higgs doublet [26]. A triplet of scalars are ubiquitous in many extensions

of the SM since the seminal article by Gelmini and Roncadelli [27]. However, we are not

interested here in the phenomenology of the model but in how to implement our procedure

in order to integrate out, at one loop, the extra scalar sector of the theory, assumed it is

much heavier than the rest of the spectrum. Partial results for the dimension-6 operators

involving the light Higgs doublet that are generated from this model have been provided

in the functional approaches of refs. [7, 8].

The Lagrangian of the model is given by

L = LSM +
1

2
DµΦaDµΦa − 1

2
M2ΦaΦa − λΦ

4
(ΦaΦa)2 + κ

(
φ†τaφ

)
Φa − η

(
φ†φ

)
ΦaΦa ,

(4.16)

Here φ is the SM Higgs doublet and the covariant derivative acting on the triplet is defined

as DµΦa ≡ Dac
µ Φc =

(
∂µ δ

ac + gεabcW b
µ

)
Φc. Within the background field method we split

the fields into their classical (with hat) and quantum components: Φa → Φ̂a+Φa, φ→ φ̂+φ

and W a
µ → Ŵ a

µ + W a
µ . Given as an expansion in inverse powers of its mass, the classical

field of the scalar triplet reads

Φ̂a =
κ

M2

(
φ̂†τaφ̂

)
− κ

M4

[
D̂2 + 2η

(
φ̂†φ̂

)](
φ̂†τaφ̂

)
+O

( κ

M6

)
. (4.17)

Following the procedure described in the section 2 we divide the fields into heavy and light,

respectively, as ηH = Φa and ηL = {φ, φ∗,W a
µ}. The fluctuation matrix is readily obtained

from eqs. (2.2) and (2.3),

∆H = ∆ab
ΦΦ ,

X†LH =
((
Xa
φ∗Φ

)† (
Xa
φ∗Φ

)ᵀ (
Xν da
WΦ

)ᵀ)
,

∆L =


∆φ∗φ X†φφ

(
Xν d
Wφ

)†
Xφφ ∆ᵀ

φ∗φ

(
Xν d
Wφ

)ᵀ
Xµ c
Wφ

(
Xµ c
Wφ

)∗
∆µν cd
W

 ,

(4.18)

with

∆µν ab
W =

(
∆µν ab
W

)
SM

+ g2 gµν ε
acmεbdm Φ̂cΦ̂d,

∆φ∗φ = (∆φ∗φ)SM + κ τaΦ̂a − η Φ̂aΦ̂a,

∆ab
ΦΦ = − D̂2

ab + δab

[
−M2 − λΦΦ̂cΦ̂c − 2η

(
φ̂†φ̂

)]
− 2λΦΦ̂aΦ̂b ,

Xµab
WΦ = gεabc

(
D̂µΦ̂c

)
+ gεacd Φ̂cD̂µdb,

Xa
φ∗Φ =κ τa φ̂− 2η φ̂ Φ̂a,

(4.19)
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and the rest of fluctuations in ∆L involving only the light fields are contained in the

quadratic piece of the SM Lagrangian, which we provide in eqs. (B.5) and (B.7). The

quadratic term containing all fluctuations related to the heavy triplet is given by our

formula (2.7),

∆̃ΦΦ = ∆ΦΦ −X†LH∆−1
L XLH . (4.20)

The expansion in inverse powers of the heavy mass of the triplet requires a counting anal-

ogous to the one in eq. (2.18), i.e. pµ ∼ ζ and M ∼ ζ. For the counting of the dimensionful

parameter κ we choose κ ∼ ζ and then, from eq. (4.17) we have Φ̂a ∼ ζ−1. As we are

interested in dimension-six effective operators we can neglect contributions O
(
ζ−5
)

and

smaller. This is because in eq. (2.15) the propagator in the heavy particle provides an

extra power ζ−2. Hence we only need the numerator up to O(ζ−4).

For practical reasons we choose to work in the Landau gauge for the quantum fluctua-

tions, i.e. the renormalizable gauge with ξW = 0 in eqs. (B.8) and (B.11). The computation

is much simpler in this gauge because the inverse of the propagators are transverse. Rear-

ranging the expression in eq. (4.20), we can write

∆̃ab
ΦΦ = ∆ab

ΦΦ −
[(
Xa
φ∗Φ

)†
∆
−1
φ∗φX

b
φ∗Φ +

(
Xa
φ∗Φ

)ᵀ
XφφX

b
φ∗Φ + c.c.

]
−
(
X
µ ca
WΦ

)ᵀ (
∆µν cd
W

)−1
X
ν db
WΦ + O

(
ζ−5
)
,

(4.21)

where c.c. is short for complex conjugation and we have used the following definitions:

∆
−1
φ∗φ = ∆−1

φ∗φ + ∆−1
φ∗φX

†
φφ

(
∆−1
φ∗φ

)ᵀ
Xφφ∆−1

φ∗φ ,

Xφφ = −
(

∆−1
φ∗φ

)ᵀ
Xφφ ∆−1

φ∗φ ,

X
µab
WΦ = Xµab

WΦ −
(
Xµa
Wφ∆−1

φ∗φX
b
φ∗Φ + c.c.

)
.

(4.22)

To proceed we now come back to eq. (2.15) (with negative sign), with mH = M and

U = −D̂2−M2− ∆̃ΦΦ. Remember that the hat on the covariant derivatives indicates that

only the classical field configuration for the gauge bosons is involved. Then by computing

eq. (4.21) up to O(ζ−4) one can obtain the one-loop effective theory that derives from the

model specified in eq. (4.16) upon integrating out the triplet of heavy scalars.

We do not intend here to provide the complete result of the generated dimension-

six operators. As a simple example and for illustrative purposes, we provide details on

the computation of the heavy-light contributions arising from the quantum fluctuations

of the electroweak gauge bosons. The latter provide the matching contributions to the

dimension-six operators with Higgs fields and no field strength tensors proportional to g2,

which were not obtained with the functional approach in ref. [8] due to the presence of

“open” covariant derivatives. The computation of such contributions was also absent in

the approach of ref. [7]. The relevant term in U(x, ∂x + ip) for this calculation is[(
X
µ ca
WΦ

)ᵀ (
∆µν cd
W

)−1
X
ν db
WΦ

]
(x, ∂x + ip) . (4.23)
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The first operator in eq. (4.23) simply reads

X
µab
WΦ (x, ∂x + ip) = −ig εabc Φ̂cpµ +

κ

p2
ig εabc

(
φ̂†τ cφ̂

)
pµ

+ gεabc
(
D̂µΦ̂c

)
+ gεacd Φ̂cD̂µdb − 1

p2
gκ

{
− i

2

[(
D̂µφ̂

)†
τaτ b φ̂

]
+
i

2

(
φ̂†τaτ bD̂µφ̂

)
+
i

2

(
φ̂†τaτdφ̂

)
D̂db
µ + c.c.

}
+O

(
ζ−2
)

= g εabc
(
D̂µΦ̂c

)
− gκ

p2
i δab

(
φ̂†
↔

D̂µφ̂
)
− g p

2 −M2

p2
εacd Φ̂d

(
D̂cb
µ + ipµ δ

cb
)

+O
(
ζ−2
)
, (4.24)

where, in the last line, we used the EOM for the heavy triplet, eq. (4.17), and we defined

the hermitian derivative terms(
φ†
↔
Dµφ

)
≡
(
φ†Dµφ

)
−
[
(Dµφ)† φ

]
, (4.25)

with the covariant derivative acting on the Higgs field as specified in eq. (B.2). The

contributions from the heavy triplet to the fluctuation ∆W , see eq. (4.19), do not affect

the computation of ∆−1
W (x, ∂x + ip) at leading order, and we can take the expression given

in eq. (B.11) (with ξW = 0) for the latter. As a result we obtain[(
X
µ ca
WΦ

)ᵀ (
∆µν cd
W

)−1
X
ν db
WΦ

]
(x, ∂x + ip)

= g2

[
−g

µν

p2
+
pµpν

p4

] [
δab

(
D̂µΦ̂c

)(
D̂νΦ̂c

)
−
(
D̂µΦ̂a

)(
D̂νΦ̂b

)
− δab

κ2

p4

(
φ̂†
↔

D̂µφ̂

)(
φ̂†
↔

D̂ν φ̂

)]
+O

(
ζ−5
)
, (4.26)

and we dropped the terms proportional to (p2 −M2) since they yield a null contribution

in the momentum integration, as explained below.

Only the first term of the series in eq. (2.15) contributes in this case:

L1loop
EFT

∣∣∣
W

= − i
2

∫
ddp

(2π)d

[ (
X
µ ca
WΦ

)ᵀ (
∆µν cd
W

)−1
X
ν da
WΦ

]
(x, ∂x + ip)

p2 −M2
. (4.27)

From eq. (4.27) it is clear that terms proportional to (p2−M2) yield scaleless terms that are

set to zero in dimensional regularization, which justifies having dropped them in eq. (4.26).

After evaluating the integral in the MS regularization scheme, using the heavy triplet EOMs

and rearranging the result through partial integration we finally get for µ = M

L1loop
EFT

∣∣∣
W

=
1

16π2

g2κ2

M4

[
−25

16

(
φ̂†φ̂

)
∂2
(
φ̂†φ̂

)
+

5

4

[(
φ̂†φ̂

)(
φ̂†D̂2φ̂

)
+ h.c.

]
− 5

4

∣∣∣φ̂†D̂µφ̂
∣∣∣2] .

(4.28)
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In order to compare this result with previous calculations done in the literature, we focus

on the heavy triplet contributions to QφD =
∣∣φ†Dµφ

∣∣2. From the result in eq. (4.28) we

find for its one-loop matching coefficient

CφD(µ = M)
∣∣∣
O(g2)

= − 1

16π2

κ2

M4

5

4
g2 , (4.29)

which agrees with the result given in ref. [5] for the term proportional to g2. The remaining

contributions to CφD(µ = M) have also been calculated with our method. However their

computation is lengthy and does not provide any new insight on the method. The final

result reads

CφD(µ = M) =
κ2

M4

[
−2 +

1

16π2

(
5
κ2

M2
− 5

4
g2 + 16η − 3λ− 20λΦ

)]
. (4.30)

In eq. (4.30) we have also included the term arising from the redefinition of φ that absorbs

the one-loop contribution to the kinetic term, φ →
(
1 − 3κ2/64π2M2

)
φ. This result is in

agreement with the one provided in ref. [5] once we account for the different convention in

the definition of λ: our λ equals 2λ in that reference.

5 Conclusions

The search for new physics in the next run at LHC stays as a powerful motivation for a

systematic scrutiny of the possible extensions of the SM. The present status that engages

both collider and precision physics has, on the theoretical side, a robust tool in the con-

struction, treatment and phenomenology of effective field theories that are the remains of

ultraviolet completions of the SM upon integration of heavy spectra.

Though, traditionally, there are two essential procedures to construct those effective

field theories, namely functional methods and matching schemes, the latter have become

the most frequently used. Recently there has been a rediscovery of the functional methods,

initiated by the work of Henning et al. [3]. The latter work started a discussion regarding

the treatment of the terms that mix heavy and light quantum fluctuations, that was finally

clarified but which, in our opinion, was already settled in the past literature on the sub-

ject. In this article we have addressed this issue and we have provided a framework that

further clarifies the treatment of the heavy-light contributions and simplifies the technical

modus operandi.

The procedure amounts to a particular diagonalization of the quadratic form in the

path integral of the full theory that leaves untouched the part that entails the light fields.

In this way we can integrate, at one loop, contributions with only heavy fields inside the

loop and contributions with mixed components of heavy and light fields, with a single

computation and following the conventional method employed to carry out the first ones

only. We have also showed that in the resulting determinant containing the heavy particle

effects only the hard components are needed to derive the one-loop matching coefficients

of the effective theory. Within dimensional regularization these hard contributions are

obtained by expanding out the low-energy scales with respect the hard loop momentum
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which has to be considered of the same order as the mass of the heavy particle. In this way,

our determination of the EFT local terms that reproduce the heavy-particle effects does

not require the subtraction of any one-loop contributions from the EFT, as opposed to the

conventional (diagrammatic) matching approach or to the recently proposed methods that

use functional techniques. We have included two examples in section 4: a scalar toy model,

that nicely illustrates the simplicity of our approach as compared to the diagrammatic

approach, and a heavy real scalar triplet extension of the SM, which shows that our method

can be applied also to more realistic cases.
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A General expressions for dimension-six operators

In this appendix we workout L1loop
EFT for the case of dimension-six operators. Following the

guidelines in section 2, we make the separation U(x, ∂x + ip) = UH(x) + ULH(x, ∂x + ip)

and expand eq. (2.15) up to O(ζ−2). The Lagrangian L1loop
EFT then consists of two pieces:

L1loop
EFT = L1loop

EFT

∣∣∣
H

+ L1loop
EFT

∣∣∣
LH

. (A.1)

The first term comes from contributions involving UH(x) only and, since UH(x) is mo-

mentum independent, it can be obtained from the universal formula provided in the liter-

ature [3, 22, 24, 25] (see also [4] for the case when several scales are involved) which, for

completeness, we reproduce here:

L1loop
EFT

∣∣∣
H

=
cs

16π2

{
m2
H

(
1 + ln

µ2

m2
H

)
tr {UH}

+

[
1

2
ln

µ2

m2
H

tr
{
U2
H

}
+

1

12
ln

µ2

m2
H

tr
{
F̂µνF̂

µν
}]

+
1

m2
H

[
− 1

6
tr
{
U3
H

}
+

1

12
tr
{

(D̂µUH)2
}
− 1

12
tr
{
UH F̂

µνF̂µν

}
+

1

60
tr
{

(D̂µF̂
µν)2

}
− 1

90
tr
{
F̂µνF̂νρF̂

ρ
µ

}]
+

1

m4
H

[
1

24
tr
{
U4
H

}
− 1

12
tr
{
UH(D̂µUH)2

}
+

1

60
tr
{
F̂µν(D̂µUH)(D̂νUH)

}
+

1

120
tr
{

(D̂2UH)2
}

+
1

40
tr
{
U2
H F̂µνF̂

µν
}

+
1

60
tr
{

(UH F̂µν)2
}]
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+
1

m6
H

[
− 1

60
tr
{
U5
H

}
+

1

20
tr
{
U2
H(D̂µUH)2

}
+

1

30
tr
{

(UHD̂µUH)2
}]

+
1

m8
H

1

120
tr
{
U6
H

}
+O

(
ζ−3
)
, (A.2)

where cs = 1/2,−1/2 depending, respectively, on the bosonic or fermionic nature of the

heavy fields. Here Fµν ≡ [Dµ, Dν ] and the momentum integrals are regulated in d dimen-

sions, with the divergences subtracted in the MS scheme. The second term in eq. (A.1) is

built from pieces containing at least one power of ULH . Given that UH is at most O(ζ)

and ULH at most O(ζ0) in our power counting, the series in eq. (2.15) has to be expanded

up to n = 5 for the contributions to dimension-six operators

L1loop
EFT

∣∣∣
LH

= −ics
∫

ddp

(2π)d

{
1

p2 −m2
H

trs {U}+
1

2

1(
p2 −m2

H

)2 trs

{
U2
}

+
1

3

1(
p2 −m2

H

)3 [trs

{
U3
}

+ trs

{
UD̂2U

}
+ 2ipµ trs

{
UD̂µU

}]
+

1

4

1(
p2 −m2

H

)4 [trs

{
U4
}

+ 2ipµ trs

{
U2D̂µU

}
+ 2ipµ trs

{
UD̂µU

2
}

+ trs

{
U2D̂2U

}
+ trs

{
UD̂2U2

}
− 4 pµpν trs

{
UD̂µD̂νU

}
+2ipµ trs

{
UD̂2D̂µU

}
+ 2ipµ trs

{
UD̂µD̂

2U
}

+trs

{
U(D̂2)2 U

}]
+

1

5

1(
p2 −m2

H

)5 [trs

{
U5
}

+ 2ipµ trs

{
U3D̂µU

}
+ 2ipµ trs

{
U2D̂µU

2
}

+2ipµ trs

{
UD̂µU

3
}
− 4pµpν trs

{
U2D̂µD̂νU

}
−4pµpν trs

{
UD̂µUD̂νU

}
− 4pµpν trs

{
UD̂µD̂νU

2
}

−8i pµpνpρ trs

{
UD̂µD̂νD̂ρU

}]}
+ LFEFT +O

(
ζ−3
)
. (A.3)

We have introduced a subtracted trace which is defined as

trs {f(U,Dµ)} ≡ tr {f(U,Dµ)− f(UH , Dµ)−Θf} , (A.4)

where f is an arbitrary function of U and covariant derivatives, and Θf generically denotes

all the terms with covariant derivatives at the rightmost of the trace (i.e. open covariant

derivative terms) contained in the original trace. The terms involving only UH that are

subtracted from the trace were already included in eq. (A.2) while all open derivative terms

from the different traces are collected in LFEFT. The latter combine into gauge invariant

pieces with field-strength tensors, although the manner in which this occurs is not easily

seen and involves the contribution from different orders in the expansion.
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With the purpose of illustration, we compute LFEFT that results from the integration

of the real scalar triplet extension of the SM presented in subsection 4.2. In this case,

gauge invariance of the final result guarantees that the leading order contribution to LFEFT

should contain at least four covariant derivatives, as terms with two covariant derivatives

cannot be contracted to yield a gauge invariant term. As it is clear from eq. (2.15), traces

with j derivatives and a number k of U operators have a power suppression of O
(
ζ4−j−2k

)
(we recall that ddp ∼ ζ4). The expansion of the operator ULH can yield in addition `

covariant derivatives, and each of these receives a further suppression of ζ−1 because they

are accompanied with a light-field propagator, see eq. (A.6). Since ULH is at most O(ζ0)

we then find that, in general, terms with k insertions of UHL and a total number of j + `

derivatives have a power counting of at most O(ζ4−j−`−2k). As a result, the only gauge

invariant object involving ULH and four derivatives that one can construct at O(ζ−2)

includes only one power of ULH (i.e. j + ` = 4 and k = 1). Moreover, since ULH has to

be evaluated at leading order, the only relevant piece from ULH for the computation of

LFEFT reads

UFLH = X
(1) †
LH ∆−1

L

∣∣
η̂=0

X
(1)
LH . (A.5)

Here X
(1)
LH is defined as the part of XLH that is O (ζ), and we remind that η̂ stands for the

classical field configurations. Using the expressions in eqs. (4.18) and (4.19) we have

UFLH(x, ∂x + ip) ⊂ κ2

p2

4∑
m=0

[
φ̂†τa

(
2ipD̂ + D̂2

p2

)m
τ bφ̂

+ φ̂ᵀ(τa)ᵀ

(
2ipD̂∗ + D̂∗ 2

p2

)m
(τ b)∗φ̂∗

]
, (A.6)

where the covariant derivatives have to be expanded by applying the identities

Dµτ
aφ = τa (Dµφ) + τ cφDca

µ ,

D∗µ (τa)∗φ∗ = (τa)∗ (Dµφ)∗ + (τ c)∗φ∗Dca
µ ,

(A.7)

with Dµ denoting the Higgs field covariant derivative, see eq. (B.2), and with Dca
µ as defined

in section 2. For the computation of LFEFT up to O
(
ζ−2
)

we need to isolate the terms in

eq. (2.15) with up to four open covariant derivatives and just one power of UFLH . These are

given by

LFEFT ⊂ −
i

2

∫
ddp

(2π)d
1

p2 −M2

4∑
n=0

n∑
k=0

1

n+ 1

× tr


(

2ipD̂ + D̂2

p2 −M2

)n−k
UFLH(x, ∂x + ip)

(
2ipD̂ + D̂2

p2 −M2

)k ,

(A.8)
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and using the cyclic property of the trace we get4

LFEFT ⊂ −
i

2

∫
ddp

(2π)d
1

p2 −M2

4∑
n=0

tr

{
UFLH(x, ∂x + ip)

(
2ipD̂ + D̂2

p2 −M2

)n}
. (A.9)

Finally, keeping only terms with up to four covariant derivatives, performing the momentum

integration (see eq. (2.20)) and evaluating the SU(2) trace we arrive at the final result

LFEFT =
1

16π2

κ2

M4

[
− g2

3

(
φ̂†φ̂

)
Ŵµν a Ŵ a

µν + g
(
φ̂† i

↔

D̂a
µ φ̂
)(
D̂ν Ŵ

µν
)a

− gg′

2

(
φ̂†τaφ̂

)
Ŵ a
µνB̂

µν

]
,

(A.10)

with the field-strength tensors defined in eq. (B.3) and(
φ† i

↔
Da
µφ
)

= i
(
φ† τaDµφ

)
− i
[
(Dµφ)† τaφ

]
. (A.11)

B The fluctuation operator of the SM

In this appendix we provide the fluctuation operator for the SM Lagrangian. The SM

Lagrangian in compact notation is given by

LSM = − 1

4
GαµνG

µν α − 1

4
W a
µνW

µν a − 1

4
BµνB

µν + (Dµφ)†Dµφ−m2
φ

(
φ†φ

)
− λ

2

(
φ†φ

)2

+ ψ i /Dψ − ψ
(
φ̃ yu PuPR + φ yd PdPR + h.c.

)
ψ + LGF + Lghost . (B.1)

Here, ψ = q, `, Pu (Pd) project into the up (down) sector, yu,d is a Yukawa matrix for up

(down) fields, LGF and Lghost are the gauge-fixing and ghost Lagrangians, respectively, and

the covariant derivatives are defined as

/Dψ =
(
/∂µ − igc /G

α
TαPq − ig /W

a
T aPL − ig′ /BYψ

)
ψ,

Dµφ =

(
∂µ − igW a

µT
a − 1

2
ig′Bµ

)
φ .

(B.2)

In eq. (B.2), T a = τa/2 and Tα = λα/2 with τa and λα the Pauli and the Gell-Mann

matrices, respectively, Pq denotes a projector into the quark sector, and the hypercharge

reads Yψ = YψL
PL + Y u

ψR
PuPR + Y d

ψR
PdPR. Accordingly, the field strength tensors are

given by

Gαµν = ∂µG
α
ν − ∂νGαµ + gfαβγG

β
µG

γ
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ.
(B.3)

4The use of the cyclic property when derivative terms are involved is only justified for the functional

trace, that we denoted in this article as Tr. However, as noted in refs. [16, 22], in the evaluation of the

functional determinant, which is a gauge invariant object, the trace over internal degrees of freedom ‘tr’

can be recast into the full trace through the use of the identity (we recall that S =
∫
ddxL)

Tr{f(x̂)} =

∫
ddx tr{〈x|f(x̂)|x〉} =

∫
ddx tr{f(x)} δd(0) ,

and then reverted to a trace over internal degrees of freedom after the application of the cyclic property.
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Following the same procedure as in section 2, we separate the fields into background,

η̂, and quantum field configurations, η, and expand the SM Lagrangian to second order in

the quantum fluctuation:

LSM = Ltree
SM (η̂) + L(η2)

SM +O
(
η3
)
, (B.4)

where Ltree
SM is the tree-level SM effective Lagrangian, and L(η2)

SM is computed using eq. (2.2):

L(η2)
SM =

1

2

(
φ† φᵀ Aa ᵀµ ψ ψᵀ

)


∆φ∗φ X†φφ

(
Xν b
Aφ

)†
X ψ̄φ −Xᵀ

ψ̄φ∗

Xφφ ∆ᵀ
φ∗φ

(
Xν b
Aφ

)ᵀ
X ψ̄φ∗ −Xᵀ

ψ̄φ

Xµa
Aφ

(
Xµa
Aφ

)∗
∆µν ab
A X

µa

ψ̄A −
(
Xµa

ψ̄A

)ᵀ
Xψ̄φ Xψ̄φ∗ Xν b

ψ̄A
∆ψ̄ψ 0

−Xᵀ
ψ̄φ∗ −X

ᵀ
ψ̄φ −

(
X

ν b
ψ̄A

)ᵀ
0 −∆ᵀ

ψ̄ψ





φ

φ∗

Abν

ψ

ψ
ᵀ


+ L(η2)

ghost,

(B.5)

with Aaµ =
(
Gαµ W a

µ Bµ
)ᵀ

denoting the gauge fields and

∆µν ab
A =


∆µν αβ
G 0 0

0 ∆µν ab
W ∆µν a

BW

0 ∆µν a
BW ∆µν

B

 , Xµa
Aφ =


0

Xµa
Wφ

Xµ
Bφ

 , X
µa

ψ̄A =


X
µα

ψ̄G

X
µa

ψ̄W

X
µ

ψ̄B

 , (B.6)

where, generically, X = X†γ0. The pieces in the quadratic fluctuation are defined as

∆φ∗φ =− D̂2 −m2
φ − λ

(
φ̂†φ̂

)
− λφ̂φ̂†,

∆µν αβ
G = δαβ

[
gµνD̂2 +

1− ξG
ξG

D̂µD̂ν

]
− gcεαβγĜµν γ ,

∆µν ab
W = δab

{
gµν

[
D̂2 +

1

2
g2
(
φ̂†φ̂

)]
+

1− ξW
ξW

D̂µD̂ν

}
− gεabcŴµν c,

∆µν
B = gµν

[
∂2 +

1

2
g′ 2
(
φ̂†φ̂

)]
+

1− ξB
ξB

∂µ∂ν ,

∆µν a
BW =

1

2
gg′gµν

(
φ̂†τaφ̂

)
,

∆ψ̄ψ = i /̂D −
(
iτ2 φ̂

∗ yu Pu + φ̂ yd Pd + h.c.
)
,

Xφφ =− λ φ̂∗φ̂† ,

Xµa
Wφ =

1

2
ig

[
φ̂†τaD̂µ −

(
D̂µφ̂

)†
τa
]
,

Xµ
Bφ =

1

2
ig′
[
φ̂†D̂µ −

(
D̂µφ̂

)†]
,

Xµα

ψ̄G
=

1

2
gc λ

αPq γ
µψ̂ ,

Xµa

ψ̄W
=

1

2
g τa γµPLψ̂ ,
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Xµ

ψ̄B
= g′γµYψ ψ̂ ,

Xψ̄φ = −
←
P uPLy

†
u ψ̂

t iτ2 − yd PdPR ψ̂ ,

Xψ̄φ∗ = − iτ2 yuPuPRψ̂ −
←
P dPLy

†
dψ̂

t . (B.7)

The superscript t in the fermion fields denotes transposition in isospin space. Additionally,

we have fixed the gauge of the quantum fields using the background field gauge, which

ensures that the theory remains invariant under gauge transformations of the background

fields. This choice corresponds to the following gauge-fixing Lagrangian:

LGF =− 1

2ξG

(
D̂µG

µα
)2
− 1

2ξW

(
D̂µW

µa
)2
− 1

2ξB
(∂µB

µ)2 . (B.8)

Finally we also provide the expansion for the inverse operators ∆X (x, ∂x + ip)−1, with

X = {φ∗φ, B, W}, when pµ ∼ ζ. We have:

∆φ∗φ (x, ∂x + ip) = p2 −m2
φ − 2ipD̂ − D̂2 − λ

(
φ̂†φ̂

)
− λφ̂φ̂† ,

∆µν ab
W (x, ∂x + ip) = δab

[
−gµνp2 − 1− ξW

ξW
pµpν

]
+O (ζ) ,

∆µν
B (x, ∂x + ip) = −gµνp2 − 1− ξB

ξB
pµpν +O (ζ) .

(B.9)

from where, and defining

Ω = D̂2 + λ
(
φ̂†φ̂

)
+ λ φ̂φ̂† , (B.10)

it is straightforward to get

∆φ∗φ (x, ∂x + ip)−1 =
1

p2

(
1 +

m2
φ

p2
+
m4
φ

p4

)
+ 2i

pµ
p4

(
1 + 2

m2
φ

p2

)
D̂µ

+
1

p4

(
1 + 2

m2
φ

p2

)
Ω − 4

pµpν
p6

(
1 + 3

m2
φ

p2

)
D̂µD̂ν

+ 2i
pµ
p6

{
D̂µ Ω + Ω D̂µ

}
+

1

p6
Ω2

− 8i
pµpνpρ
p8

D̂µD̂νD̂ρ + 16
pµpνpρpσ

p10
D̂µD̂νD̂ρD̂σ

− 4
pµpν
p8

{
D̂µD̂ν Ω + Ω D̂µD̂ν + D̂µ Ω D̂ν

}
+O

(
ζ−7
)
,

∆µν
B (x, ∂x + ip)−1 = −g

µν

p2
+ (1− ξB)

pµpν

p4
+O

(
ζ−3
)
,

∆µν ab
W (x, ∂x + ip)−1 = δab

[
−g

µν

p2
+ (1− ξW )

pµpν

p4

]
+O

(
ζ−3
)
,

(B.11)

and analogously for ∆µν αβ
G (x, ∂x + ip)−1. The inverse operator [∆∗φ∗φ (x, ∂x + ip)]−1

can be obtained from ∆φ∗φ (x, ∂x + ip)−1 by making the substitution D̂µ → D̂∗µ while

[∆ᵀ
φ∗φ (x, ∂x + ip)]−1 and [∆∗φ∗φ (x, ∂x + ip)]−1 share the same expression, up to a total

derivative term.
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