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1 Introduction

Supersymmetry (SUSY) is an interesting extension beyond the standard model of parti-

cle physics (SM) from various viewpoints. The SUSY extension of SM has dark matter

candidates and a nice property controlling quantum corrections to the Higgs mass. It

is also known that local SUSY, called supergravity (SUGRA), is the effective theory of

superstring, which is a possible quantum gravity theory. Once we start with SUGRA,

the renormalizability of a theory disappears and we cannot control such terms. Although

such a non-renormalizability may be restored in the UV complete theory, we need to con-

sider higher-order terms in the effective theory. If this is the case, higher-order derivative

interactions would appear as the non-derivative higher-order terms exist.

It has been well known that higher-order derivative interactions may lead to the so-

called Ostrogradski instability (see ref. [1] as a review) because the energy of such a system

cannot be bounded. Therefore, it is important to specify a class of ghost-free higher-

derivative interactions. For non-SUSY scalar-tensor theory, Horndeski found a class of

higher-derivative Lagrangian without ghosts [2] (see also refs. [3, 4]).

In SUSY cases, ghost-free higher-derivative interactions have been studied in various

contexts. The properties of such higher-derivative terms have been studied from theoretical

and phenomenological viewpoints. For vector and real linear superfield, Dirac-Born-Infeld

action was constructed in refs. [5–7]. Their generalizations to SUGRA have also been
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discussed in refs. [8–13]. For a single chiral superfield, some types of ghost-free higher-

derivative terms have been known [14, 15]. Their cosmological applications, especially to

the inflationary universe, have also been discussed in refs. [16–21]. BPS states in supersym-

metric higher derivative chiral models were also studied, such as baby-Skyrmions [22–26]

and various BPS topological solitons in the higher derivative chiral model [24] coupled

with gauge theory [27]. The other examples are low-energy effective action of supersym-

metric QCD [28–31], the Wess-Zumino-Witten (WZW) term in the supersymmetric chiral

Lagrangian [32–38], supersymmetric nonlinear realizations of spontaneously broken global

symmetry [39], the low-energy effective theory on BPS solitons [40], k-field theories [41, 42],

the Faddeev-Skyrme model [43, 44], and (pure) Skyrme model [45]. The low-energy ef-

fecitive action with loop effects has infinite numbers of derivative operators [46–48]. A

ghost free higher derivative theory is also studied recently in the framework of non-local

field theories [49].

In general, higher derivative terms in supersymmetric theories suffer from another

problem specific for supersymmetry, namely the auxiliary field problem: the auxiliary field

F (F-term) of a chiral superfield may propagate because of space-time derivative terms

acting on it, and consequently it cannot be eliminated algebraically. This problem was

seriously recognized [33–37] for the WZW term. As systematically studied in ref. [14], the

models mentioned in the above paragraph are free from this problem (except for that in

ref. [44]). In ref. [50] (see also [51]), a very important model with a single chiral super-

field with higher derivative term was studied, in which the auxiliary field F of the chiral

superfield in fact becomes dynamical. In this model, a ghost chiral superfield is induced

due to the higher derivative term. Because of this model, it is widely believed without any

proof that the above mentioned two problems are related: when an auxiliary field becomes

dynamical, a ghost should be present and the theory is pathological.

In this paper, we present a first counterexample to such a conjecture, i.e. a ghost-free

higher-derivative chiral model with a propagating auxiliary field F .1 We achieve this by

removing a ghost in the higher derivative chiral model in ref. [50]; the ghost is Higgsed away

by a non-dynamical auxiliary vector superfield V associated with a U(1) gauge symmetry.2

As we will show, with appropriate couplings of chiral and gauge superfields, the ghost de-

grees of freedom can be removed thanks to the constraints and gauge degree of freedom.

Depending on the sign of the quadratic derivative term of the chiral superfield, the model

contains two ghost free branches of the parameter regions. We find that supersymmetry is

spontaneously broken in one branch while it is preserved in the other branches, which are

totally unexpected in the original Lagrangian. The auxiliary field F in the original chiral

superfield is now in the lowest component of another chiral superfield after “unfolding” the

1The propagating auxiliary fields have been discussed in the context of the higher-curvature SUGRA

model [52–56], in which the kinetic term of auxiliary fields in the gravity multiplet exists due to higher-

derivative terms.
2Such auxiliary vector superfields were used to formulate supersymmetric nonlinear sigma models in

terms of gauge theories [57–59]. When V has no kinetic term, its vector component plays a role of an

auxiliary field, and gaugino and auxiliary components behave as Lagrange multiplier fields, which give rise

to constraints on the coupled superfields. Also, we need to fix the gauge degree of freedom.
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higher derivative term to two chiral superfields with second derivative terms. As a conse-

quence, a dynamical auxiliary field allows an unexpected U(1) symmetry and associated

conserved charge, which are not manifest in the original Lagrangian. This can be regarded

as a generalization of the R-symmetry, so we may call it an R’-symmetry.

The remaining part is organized as follows. In section 2, we review a SUSY model with

a higher-derivative term, which produces a ghost mode. We also find that an auxiliary

field of a chiral superfield obtain its kinetic term, which is an additional mode due to a

SUSY higher derivative. We extend the higher-derivative action to that coupled to a gauge

superfield in section 3. We show how the ghost can be removed by such an extension,

and find that, even after eliminating a ghost superfield, the superfield originated from a

dynamical auxiliary field remains in the resultant system. In section 4, we briefly discuss

some features of the resultant system. Finally, we conclude in section 5.

2 SUSY higher-derivative ghost

In this section, we review a model with a higher-derivative term inducing ghost modes. As

an illustration of our new proposal, we will extend the model to that with a gauge superfield

in the next section. Here, let us consider the following higher-derivative Lagrangian,

L =

∫

d4θ
[

ΦΦ+
α

Λ2
D2ΦD

2
Φ
]

(2.1)

where Λ is a real constant of mass dimension one, and α is a dimensionless real parameter.

A chiral superfield Φ is defined as

Φ = φ(y) +
√
2θψ(y) + θθF (y) (2.2)

= φ(x) +
√
2θψ(x) + θθF (x) + iθσmθ∂mφ(x)−

i√
2
θθ∂mψ(x)σ

mθ +
1

4
θθθθ�φ(x),

where ym = xm + iθσmθ. In terms of the component fields, the explicit form of the

Lagrangian is given by

L = −∂µφ∂µφ̄− iψ̄σ̄µ∂µψ + |F |2 + 16α

Λ2

(

−∂µF∂µF̄ − i�ψ̄σ̄µ∂µψ + |�φ|2
)

. (2.3)

This Lagrangian has the U(1)3 symmetry corresponding to the phases of (φ, ψ, F ). The

rotation of overall phase is the U(1) symmetry which commutes with SUSY, whereas the

R-symmetry is the phase rotation with the charges (0, 1, 2). The other U(1) symmetry,

which we call the R’-symmetry, is the phase rotation of F , whose conserved charge is non-

trivial due to the presence of the kinetic term of F . Note that this symmetry exists in

theories without the dynamical F-term field but its conserved charge vanishes on-shell.

With the technique called “unfolding” [50, 51], we can rewrite this Lagrangian into that

without higher-derivative terms as follows: using a Lagrange multiplier chiral superfield

Φ1, the Lagrangian (2.1) can be rewritten as

L =

∫

d4θ
[

ΦΦ+ αΦ2Φ2

]

+

{

Λ

4

∫

d2θΦ1

(

Φ2 −
1

Λ
D

2
Φ

)

+ h.c.

}

, (2.4)
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where Φ2 is a chiral superfield. For later convenience, we have chosen the normalization

of Φ1 so that the overall coefficient of the superpotential becomes Λ/4. The variation

with respect to Φ1 gives the constraint Φ2 = 1
Λ
D

2
Φ, which reproduces the original La-

grangian (2.1). Instead, if we use the following identity,
∫

d2θ D
2
(Φ1Φ) + h.c. =

∫

d4θ
(

−4Φ1Φ+ h.c.
)

(up to total derivative terms), (2.5)

the Lagrangian (2.4) becomes

L =

∫

d4θ
[

ΦΦ+
(

Φ1Φ+ h.c.
)

+ αΦ2Φ2

]

+

{

Λ

4

∫

d2θ (Φ1Φ2) + h.c.

}

=

∫

d4θ
[

|Φ+ Φ1|2 − Φ1Φ1 + αΦ2Φ2

]

+

{

Λ

4

∫

d2θ(Φ1Φ2) + h.c.

}

=

∫

d4θ
[

Φ̃Φ̃− Φ1Φ1 + αΦ2Φ2

]

+

{

Λ

4

∫

d2θ(Φ1Φ2) + h.c.

}

, (2.6)

where

Φ̃ ≡ Φ+ Φ1. (2.7)

From eq. (2.6), we find that Φ1 has a negative definite kinetic coefficient, that is, Φ1 is a

ghost superfield. Depending on the sign of α, Φ2 is either a ghost or regular superfield.

Let us focus on Φ2. In our discussion above, Φ2 came from D
2
Φ, whose lowest com-

ponent is FΦ. Indeed, the component expression of the second term in the action (2.1) is

given by
∫

d4θ
(

D2ΦD
2
Φ
)

= 16
(

F�F +�φ�φ− i�ψ σn∂nψ
)

. (2.8)

Thus, we can identify Φ2 as the “dynamical” F-component due to the SUSY higher-

derivative contribution. It is important to note again that the presence of the higher-

derivative term here is problematic since at least one ghost mode appears, irrespective of

the value of α.

3 Removing ghost and dynamical F-term

3.1 Gauged model

In this section, we discuss a possible modification of the higher-derivative system. A gauge

symmetry is an important notion to remove some degree of freedom. We consider the

case that the chiral superfield Φ is gauged under a U(1) symmetry. We introduce a gauge

superfield V for the U(1) gauge symmetry under which the superfields Φ and V transform as

Φ → Φe−2iΛ, (3.1)

V → V + i(Λ− Λ), (3.2)

where Λ is a gauge parameter chiral superfield. The component expression of V in Wess-

Zumino gauge is

V = −θσmθvm(x) + iθθθλ(x)− iθθθλ(x) +
1

2
θθθθD(x). (3.3)

– 4 –
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The U(1) invariant extension of the Lagrangian (2.1) is given by

L′ =

∫

d4θ

[

Φe2V Φ+
α

Λ2

(

D2(Φe2V )
)

e−2V
(

D
2
(Φe2V )

)

+ 2CV

]

, (3.4)

where we have introduced a possible Fayet-Iliopoulos (FI) parameter C. The higher-

derivative superfield D
2
(Φe2V ) is a chiral superfield, whose component is given by

D
2
(Φe2V )=4

[

−F (y)+
√
2θ
(

iσµDµψ(y)−
√
2λφ

)

−θθ
(

�φ(y)+D(y)φ(y)−
√
2iλ(y)ψ(y)

)]

,

(3.5)

where the covariant derivatives are Dµψ = ∂µψ − ivµψ, and �φ = DµDµφ. Rescaling

V → gV and taking the limit of g → 0, we obtain the component of D
2
Φ.

3.2 Component expression

First, we illustrate how the ghost mode in the Lagrangian (2.1) can be removed by the

extension (3.4). For simplicity, we focus on the bosonic part of the Lagrangian (3.4), which

is given by

L′|B = −DµφD
µφ+ |F |2+D

(

|φ|2+C
)

+
16α

Λ2

[

−DµFD
µF+|�φ+Dφ|2−D|F |2

]

, (3.6)

where we have used the component expression of V in the Wess-Zumino gauge (3.3),

DµF = ∂µF + iAµF and �φ = DµDµφ. To extract the ghost mode, we use the following

trick: the Lagrangian (3.6) can be rewritten as

L′|B = −DµφD
µφ+ |F |2 +D

(

|φ|2 + C
)

+
16α

Λ2

[

−DµFD
µF −D|F |2

]

− Λ2

16α
|φ1|2 +

[

φ1(�φ+Dφ) + h.c.
]

, (3.7)

where φ1 is a scalar field with the same U(1) charge as φ. It can be easily shown that the

variation of φ1 reproduces the Lagrangian (3.6). Here, we perform partial integration for

the terms on the second line, which gives

L′|B = −DµφD
µφ−

{

Dµφ1D
µφ+ h.c.

}

− 16α

Λ2
DµFD

µF

+D
[

|φ|2 +
{

φφ1 + h.c.
}

+
16α

Λ2
|F |2 + C

]

+ |F |2 − Λ2

16α
|φ1|2. (3.8)

We find that the determinant of the kinetic coefficient matrix of φ and φ1 is negative as

with the case of the ungauged model. However, we also find that D appears only linearly,

and its E.O.M. gives a constraint on the scalar fields. In addition, we have the U(1)

gauge symmetry which implies that there is a redundancy in the description of our model.

Therefore, we can remove one complex scalar from the system by solving the constraint from

D, and eliminating the auxiliary vector field Aµ. As we will see below, such a procedure can

be simplified by using the superfield formalism. In the next subsection, we show by solving

the E.O.M for the auxiliary vector superfield that the apparent ghost can be eliminated by

the gauge symmetry.

– 5 –
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3.3 Superfield calculation

3.3.1 The first model

In this subsection, we show that the ghost mode can be gauged away by eliminating the

auxiliary vector superfield. As with the case of the original model (2.4), we introduce chiral

superfields Φ1 and Φ2. In this case, they should have U(1) charges so that they transform

Φ1 →Φ1e
−2iΛ, (3.9)

Φ2 →Φ2e
2iΛ. (3.10)

Using these superfields, we can construct the gauged version of the Lagrangian (2.4),

L =

∫

d4θ
[

Φe2V Φ+ αΦ2e
−2V Φ2 + 2CV

]

+

[

Λ

4

∫

d2θΦ1

{

Φ2 −
1

Λ
D

2
(

Φe2V
)

}

+ h.c.

]

=

∫

d4θ
[

Φ̃e2V Φ̃−Φ1e
2V Φ1+αΦ2e

−2V Φ2+2CV
]

+

{

Λ

4

∫

d2θ (Φ1Φ2)+h.c.

}

, (3.11)

where Φ̃ ≡ Φ + Φ1 is the same as that in eq. (2.6). Note that this field redefinition is

consistent with the U(1) symmetry since Φ and Φ1 have the same U(1) charges.

The variation with respect to V yields a constraint equation,

Φ̃e2V Φ̃− Φ1e
2V Φ1 − αΦ2e

−2V Φ2 + C = 0. (3.12)

Note that we need to fix the U(1)C gauge redundancy, by which we can set one of the

superfields as a constant. From the lowest component of this superfield equation in Wess-

Zumino gauge, we obtain the following constraint on scalar fields:

|φ̃|2 − |φ1|2 − α|φ2|2 + C = 0. (3.13)

For the consistency of this equation, at least one of the scalar field have to be nonzero.

When φ1 is nonzero, it is convenient to define the following gauge invariant superfields

X =
Φ̃

Φ1

, Y = Φ1Φ2. (3.14)

Similarly, when φ̃ or φ1 is nonzero, we can define gauge invariant superfields which are

related to (X,Y ) by a field redefinition. For the moment, we assume that Φ1 is nonzero.

Let us discuss solutions for eq. (3.12). The formal solutions of eq. (3.12) are given by

e2V ≡ G± =
1

2|Φ1|2
C ± f

1− |X|2 , (3.15)

where we have defined the function f as

f =
√

C2 − 4α|Y |2(1− |X|2). (3.16)

Substituting into the Kähler potential, we obtain

K = Φ̃e2V Φ̃− Φ1e
2V Φ1 + αΦ2e

−2V Φ2 + 2CV

= ∓f + C log
C ± f

1− |X|2 − C log 2|Φ1|2. (3.17)

– 6 –
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Note that the last term is unphysical since it can be eliminated by a Kähler transformation.

Since the Kähler potential is written in terms of |X|2 and |Y |2, it has a U(1)2 holomorphic

isometry which remains after gauging one U(1) symmetry among the U(1)3 symmetry of

the ungauged action (2.3).

The Kähler metric for X and Y is given by

Kij̄ =

(

KXX KXY

KY X KY Y

)

= ±α
f

(

H± − |Y |2 −XY
−XY 1− |X|2

)

, (3.18)

where the function H± is given by

H± =
1

4α

(

C ± f

1− |X|2
)2

. (3.19)

To find out the condition for the positive definiteness of the Kähler metric, let us consider

the following pair of linearly independent vectors

ξ =
∂

∂Y
, ξ′ = (1− |X|2) ∂

∂X
+XY

∂

∂Y
. (3.20)

Since they are mutually orthogonal, the Kähler metric is positive definite if both of the

following norms of the vectors are positive:

Kij̄ξ
iξ̄j̄ = ±α

f
(1− |X|2), Kij̄ξ

′iξ̄′j̄ =
C ± f

2
. (3.21)

In addition, the solution for the auxiliary vector superfield eq. (3.15) also has to be

positive, i.e.

G± = ± αf

|Φ1|2
Kij̄ξ

′iξ̄′j̄

Kij̄ξ
iξ̄j

> 0. (3.22)

These conditions are satisfied if and only if we choose G+ and the following conditions are

satisfied:

α > 0, C > 0, |X|2 < 1, |Y |2 ≤ C2

4α

1

1− |X|2 . (3.23)

The kinetic coefficients are positive around the region satisfying the conditions. In the

discussion above, we have assumed that Φ1 is nonzero. If Φ1 = 0, the condition (3.23) is

not satisfied Φ1 ≈ 0 corresponds to the region X ≈ ∞. Therefore, Φ1 has to be nonzero in

the physically consistent situation.

Let us discuss a particular region satisfying the conditions realizing a stable system. We

focus on the field region aroundX ≃ Y ≃ 0 (Φ̃ ≃ Φ2 ≃ 0), where the Kähler potential (3.17)

is approximately given by

K ≃ C|X|2 + α

C
|Y |2. (3.24)

Thus, both of superfields are not ghost-like, and the instability is completely removed.

However, one needs also to check whether the resultant action is compatible with the

conditions. In particular, the remaining superfields have a superpotential term, which

gives rise to a scalar potential. In the following, we show two concrete regions satisfying

the conditions and also consistent with the vacuum determined by the scalar potential.

– 7 –
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Let us make a comment on the geometry of our model. The resultant target space M

is a certain fiber bundle over a hyperbolic space,

M ≃ D ⋉
SU(1, 1)

U(1)
(3.25)

where F⋉B denotes a fiber bundle over a base B with a fiber F . The base is parameterized

by X, while the fiber D is a disk parameterized by Y having a range determined by X in

eq. (3.23).

3.3.2 The second model

It is worth noting that the case with α < 0, C < 0 has the same structure as the case with

α > 0, C > 0 if we exchange Φ̃ ↔ Φ1 and flip the sign of the Kähler potential K → −K.

Therefore, for α < 0, C < 0, the Kähler metric is positive definite, i.e. the model is ghost-

free. Since we have flipped the sign of the Kähler potential, the corresponding Lagrangian

has to have the negative kinetic term for Φ

L′′ =

∫

d4θ

[

−Φe2V Φ+
α̃

Λ2

(

D2(Φe2V )
)

e−2V
(

D
2
(Φe2V )

)

+ 2C̃V

]

, (3.26)

where α̃ = −α > 0 and C̃ = −C > 0. This Lagrangian is similar to that in eq. (3.4), but

the signs of the first terms are opposite to each other. This is not difficult to understand

by the following reason: from the procedure in section 2, we find that Φ̃ and Φ1 always

have the opposite sign. The one with a negative sign is regarded as the ghost mode. In the

case with (3.26), we can identify Φ̃ as the ghost, and remove it by our mechanism. The

effective Kähler metric around X̃ ≡ Φ1/Φ̃ ≃ 0, Ỹ ≡ Φ̃Φ2 ≃ 0 is given by

K ≃ C̃|X̃|2 + α̃

C̃
|Ỹ |2. (3.27)

This system clearly has no ghost modes, as is the case with α > 0, C > 0 discussed

above. Although it seems that there is no difference between these cases, the system has a

completely different vacuum structure because of the difference of the superpotentials, as

will be discussed in the next section.

4 Behaviour of dynamical F-term superfield and SUSY

breaking/preserving vacua

In this section, we consider the structure of the vacuum in our model.

4.1 The first model: SUSY breaking vacuum

In the previous section, we have seen that there is no ghost mode if the conditions (3.23)

are satisfied. In this case, the superpotential is linear in the chiral superfield Y = Φ1Φ2

W =
Λ

4
Y. (4.1)

– 8 –
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Therefore, the supersymmetry is spontaneously broken due to the nonzero values of the

F-terms of Y and the F-term scalar potential

F Y = −Λ

4
, V =

CΛ2

16α
. (4.2)

It is worth noting that Φ2 plays a role of a SUSY breaking field as the Polonyi model.

This means that the “dynamical F-term” superfield Φ2 breaks SUSY spontaneously, and

the order of SUSY breaking is determined by the FI parameter C and the cut-off Λ.

Here, let us make a comment on SUSY breaking in different supermultiplets with higher

derivative term. It is known that a complex linear superfield with its higher-derivative

term is dual to a chiral and nilpotent-chiral superfield [60–62] (see also refs. [63, 64]). The

nilpotent-chiral superfield also spontaneously breaks SUSY, as Φ2 in our case. The relation

between the higher-derivative extension of complex linear and chiral superfield discussed

here is quite interesting. To the best of our knowledge, our model gives the first example

of such SUSY breaking by a higher derivative term in chiral multiplets. We will investigate

extensions of this SUSY breaking mechanism elsewhere.

4.2 The second model: SUSY preserving vacuum

On the other hand, in the model (3.26), the structure of the superpotential is essentially

different. In terms of X̃ ≡ Φ1/Φ̃ and Ỹ ≡ Φ̃Φ2 the superpotential is given by

W =
Λ

4
X̃Ỹ . (4.3)

The F-term of X̃ and Ỹ are

F
X̃

= − Λ

4C̃
Ỹ , (4.4)

F
Ỹ
= −ΛC̃

4α̃
X̃. (4.5)

Since the scalar potential becomes

V ∼ Λ2

16α̃

(

C̃|X̃|2 + α̃

C̃
|Ỹ |2

)

, (4.6)

the vacuum X̃ = Ỹ = 0 (Φ1 = Φ2 = 0) is stable and the F-terms do not have vac-

uum expectation values. Therefore, with the Lagrangian (3.26), SUSY is preserved at the

vacuum.

It is quite interesting that we can realize both SUSY preserving or breaking vacuum

from the almost the same systems (3.4) and (3.26). In the case (3.4), the higher-derivative

term induces the ghost, and after removing it, we obtain the SUSY breaking vacuum with

a cosmological constant, as shown in eq. (4.2). On the other hand, when we start with

a ghost-like superfield with its higher-derivative term (3.26), we finally obtain the model

with a SUSY preserving vacuum. We will investigate this feature in more detail elsewhere.

Note that SUSY breaking in our model is different from that in SUSY ghost condensa-

tion [14], in which the violation of time translation invariance occurs. In our model, SUSY

is broken in a Lorentz invariant manner.

– 9 –
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5 Summary and discussion

In this paper, we have proposed a new mechanism to construct ghost-free higher-derivative

models within global SUSY. The important notion is a non-dynamical gauge superfield,

which “eats” the ghost mode in the system. We have illustrated our mechanism with an

example shown in section 2, which has a ghost superfield. As shown in section 3, the

ghost mode can be removed thanks to the non-dynamical gauge superfield. It has been

shown that, independently of the sign of a kinetic term of Φ, the higher-derivative system

has one normal and one ghost mode, and we can remove a ghost superfield in the both

cases. Interestingly enough, however, the resultant systems after removing a ghost are

completely different from each other as discussed in section 4. In particular, the vacuum

structures are different: one gives a SUSY breaking vacuum, and the other gives a SUSY

preserving vacuum. The former is the first example of SUSY breaking induced by a higher

derivative term in chiral superfields. One of the most interesting features is that because

of the higher derivative term including space-time derivative on the F-term in the original

chiral superfield Φ, the F-term becomes dynamical and resides in the lowest component of

the chiral superfield Φ2.

The remaining question is the physical meaning of the a propagating F-term field F .

As mentioned, the F-term is now in the lowest component of the chiral superfield Φ2,

and so the structures of the SUSY multiplets are completely different from the original

multiplets in the absence of the higher derivative term (α = 0). One of consequences of the

propagating F-term is, as shown in this paper, the existence of the U(1) conserved charge

associated with the phase of F . It should be important to study more consequences for

instance the structure of SUSY algebra and so on. The physical meaning of the SUSY

breaking vacuum is unclear.

We have illustrated our mechanism of eliminating a ghost and introducing a dynamical

auxiliary field in the simplest example. One of straightforward extensions is multiple chiral

superfields. When the superderivative D2 acts on n chiral superfields, there will be at most

n ghost fields. Therefore, we need at least U(1)n gauging. With this regards, a higher

derivative CP 1 model in ref. [44] contains two chiral superfields and only one U(1) gauge

field. Consequently only one of two ghosts would be removed but the rest would remain,

and so the theory is pathological. Another possible extension is a non-Abelian extension.

For instance, if the original Lagrangian contains anN byN matrix chiral superfield, a “non-

Abelian” (matrix) ghost superfield appears. This could be removed by U(N) gauging. It

is desired to construct a general framework by classifying how many ghosts non-gauged

theories have, and which gauging (U(1), U(N) or other gauge groups) can remove those

ghosts. In other words, it would be very important to construct “generalized Nambu-

Goldstone theorem” including ghosts and “generalized Higgs mechanism.”

In the language of the Kähler geometry, eliminating vector superfield is known as

the Kähler quotient. Usually this has been studied very well for positive norm metrics.

Generalizing the Kähler quotient to include negative norm metrics should be a key point

to understand the whole theory geometrically.

Our vector superfield is a non-dynamical and auxiliary field behaving as a Lagrange

multiplier. If we add a kinetic term of the vector superfield, a gauge field absorbing a

– 10 –
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ghost will have a tachyonic mass, so still having the instability (our case can be understood

as sending away such the tachyonic mass to infinity). The auxiliary field formulation of

nonlinear sigma models in lower (1+1 or 2+1) dimensions often results in a kinetic term of

the gauge field by the quantum effect, as can be explicitly shown in the large-N limit. If it

was the same for our model in lower dimensions, there would be the quantum mechanically

induced instability which is absent at the tree level. It is very interesting to study whether

the instability exists or not in the quantization of dimensionally reduced model (or even

the 3+1 dimensional theory as a cut-off theory).

In the formulation of (supersymmetric) CPn model in terms of an auxiliary U(1)

gauge field (vector superfield), a vortex (flux tube) carrying the U(1) gauge magnetic field

is nothing but a CPn sigma model lump (instanton). Whether our model admits such a

lump and its stability (if it exists) are an interesting question.

As a non-dynamical gauge superfield and a propagating F-term regard, it is worth men-

tioning the similarity between our mechanism and a compensator in conformal SUGRA.

In conformal SUGRA, we usually introduce a ghost-like superfield called a compen-

sator [65, 66]. The compensator is removed by the conformal gauge degrees of freedom,

and finally the system does not have any ghost-like mode. The gauge fields of conformal

symmetries are non-propagating as the gauge superfield in our mechanism. From this view-

point, the ghost mode in our model is similar to the compensator, and the non-dynamical

gauge superfield to the conformal gauge fields. In addition, the propagating auxiliary fields

have been discussed in the context of the higher-curvature SUGRA model [52–56], where

auxiliary fields in the gravity multiplet obtain the kinetic term due to higher-derivative

terms of the gravity multiplet. Therefore, the presence of dynamical auxiliary fields may

not be problematic.

Finally, the coupling of our model to SUGRA should be interesting for applications to

cosmology such as inflationary models.
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