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1 Introduction

The study of string spectrum on semisymmetric superspaces [1] have benefitted greatly from

the study of integrability. Integrable structures have been studied in detail on both sides

of the AdS/CFT correspondence over the years and remains one of the most active areas

of research in string theory. The most studied example of the AdS/CFT correspondence

remains the one between spectrum of closed superstrings (supergravity) in AdS5 × S5

background and gauge invariant operators in four dimensional N = 4 Supersymmetric

Yang-Mills (SYM) theory [2] based on the gauge group SU(N). In the string side, the

string dynamics in AdS5 × S5 can be described by a supercoset sigma model and the

integrability of that has been investigated [3] in detail. Similarly the integrability of the

dual SYM theory has also been explored extensively. Of course in the traditional sense of

AdS/CFT, relating all the string states to the dual gauge theory operators appears to be

a very tough job precisely because there are infinite tower of states in the string theory

side. A probable way out is that in the large angular momentum or large R-charge limit

both sides of the duality become more tractable. One of the perks of this limit is that

the anomalous dimension of operators in the SYM theory can be related to the dispersion

relation between conserved charges of spinnings strings in the large charge limit. On the

other hand the dual gauge theory itself can be mapped to a particular type of integrable

spin-chain system [4]. So, using the gauge/gravity duality in general would allow to map

rigidly rotating strings in gravity side to spin chain excitations in the gauge side [5–12].

This fact has generated a lot of interest in study of spinning string solutions in AdS and

AdS-like exact string backgrounds.

Many types of classical string solutions have been studied in this context, lot of it

arising from AdS5×S5 string sigma models, and the dual spin chain excitations have been

mapped. This includes well studied Giant Magnon [13], Folded Strings [14] and Spiky

Strings [15] solutions. On the other side the circular pulsating string solutions [16] have
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been less worked out in this regard. These string solutions are time dependent ones as

opposed to the other ones mentioned before. These solutions are dual to highly excited

states in the dual spin chain picture. General circular pulsating strings in S5 has been

shown to correspond to states built out of the complex scalars in the SO(6) sector of the

dual SYM theory. For example a generic dual operator is made out of the chiral scalars

Φ1,Φ2,Φ3 and has the form Tr (ΦJ1
1 ΦJ2

2 ΦJ3
3 ), where the Ji’s are the R-charges from the SYM

theory (corresponding to the angular momenta along isometry directions of the sphere for

the string configuration). Circular strings in AdS were introduced in [16], and generalized

in [17–22]. There has been a lot of generalisations of these solutions to various exact string

backgrounds having different amounts of supersymmetry preserved, see for example [23–27].

Some one loop correction for such strings have been computed in detail also [28]. Also these

solutions were discussed at length for the presence of a WZW term in the string sigma

model, in the context of string solutions in AdS3×S3 with mixed three-form fluxes [29, 30].

We are concerned here about such circular strings in a one parameter deformation of

AdS5 × S5 background, the sigma model associated to which retains integrability of the

original model. Such string solutions were preliminarily studied in [31].

This novel one parameter deformed sigma model was first constructed in [32], reviving

a few earlier proposals of a class of models put forward by Klimcik [33–35]. This particular

model is completely different from integrable deformations of AdS string sigma models that

have been discussed before, including the TsT deformed scenarios and orbifolds [36–39]. In

this case however, the deformation works by deforming the lie algebra itself by a continu-

ous parameter, which is often referred to as a q-deformation. This replaces the symmetry

algebra of the classical charges by its q-deformed version, which is then incorporated in to

the superstring action for AdS5 × S5 having a real deformation parameter. The currents

associated with the deformed symmetry group element is modified by a linear operator R,

which can be seen to obey the modified classical Yang-Baxter equation (mCYBE). The

amazing fact here is the classical integrability of the original model is preserved even in

the deformed one. One can then read off the metric and NS-NS fields associated with

this deformed structure. This background is often termed κ deformed AdS5 × S5, where

κ ∈ [0,∞) is a parameter related to q. The limit κ → 0 does give back the undeformed

background, but in general the deformed background is highly different from the unde-

formed one in many aspects. At the bosonic level, it breaks the original symmetry group

SO(2, 4)× SO(6) to its Cartan subgroup [U(1)]3 × [U(1)]3. Various consistent truncations

of the full background have been discussed at length in [40]. There has been proposals of

consistent type IIB supergravity solutions for AdS2 × S2 and AdS3 × S3 truncations [41].

But recently it was reported that instead of the usual supergravity equations of motion,

the background satisfies a particular deformed set of IIB equations [42, 43]. For various

issues concerning the integrable structure of this background, look at [44–54].1

Given the integrable and astounding nature of the deformed background, various rigidly

rotating and pulsating strings have been investigated in detail. In a subspace of the full

background, the giant magnon and spike solutions along with associated finite size cor-

1One can look at [55] and references thereof for an extensive introduction to this aspect.
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rections have been found [44, 56–59]. Since the background suffers from the presence of

a singularity surface in the AdS space, a new coordinate system to handle this has been

developed [59]. The deformed Neumann-Roschatius systems for the spinning strings in this

model has been discussed at length in [60]. The folded GKP like solutions were also found

in [59] and generalised to N-spike strings in [61]. In both of these cases it was shown that

in the ‘long’ string limit, where the strings touch the singularity surface, the expression for

cusp anomalous dimension does not reduce to the one in the κ → 0 limit. Not only clas-

sical string solutions, various minimal surfaces and wilson loops in this background have

been found in [59, 62, 63]. Study of three point correlators of such string states have been

carried out in [64, 65]. Also, more recently quark-antiquark potential in this background

have been computed [66].

In this brief note, we are interested in the circular string solutions in the deformed

background by solving the relevant F string equations of motion. We find the exact solu-

tions in terms of elliptic functions corresponding to the string configurations and discuss

their characteristics. The Bohr-Sommerfeld like quantization for such string states have

been introduced in many places. Here, we mainly focus on the solutions themselves, corre-

sponding to strings moving in (AdS3×S3)κ. We show that the solutions in the two different

S2 subspaces of the deformed three sphere have completely different string configurations,

albeit related by the discrete symmetries of the background itself. We also comment on the

effect of adding an angular momentum to the solution along one of the remaining S1 direc-

tions. We then solve for circular string configurations in (AdS3)κ and define the charges

and the oscillation number N =
∮
p dq to characterise its motion. We subsequently try to

find a ‘long’ string limit of such solution and show that oscillation number has a completely

new expansion in terms of energy, in this limit and can’t be reduced to the known one in

the limit κ → 0, in tune with earlier findings.

The rest of the paper is organised as follows. In section 2, we discuss circular string

solutions on the two different one-parameter deformed S2 obtained by consistent trun-

cations of κ deformed S3. We show that the the two solutions are related by the Z2

transformation, which was the symmetry by which the two S2s were related. We look at

the Bohr-Sommerfeld like quantization and study the motion qualitatively. Section 3 is

devoted to the study of similar solution in the deformed AdS3 part of the geometry. We

study a long string limit of such strings and find a completely new scaling for such long

strings which does not reduce to the usual form of oscillation number for AdS strings in

terms of energy in the next to leading order, though the leading order term reduces to that

of the usual AdS long strings in the κ → 0 limit. In section 4, we concluding with few

comments and some future directives.

2 Circular strings in κ-deformed sphere

2.1 String solutions on deformed two spheres

We start with the total κ deformed AdS3×S3 geometry as outlined in [40], which has the

form of

ds2 = −h(ρ)dt2 + f(ρ)dρ2 + ρ2dψ2 + h̃(r)dϕ2 + f̃(r)dr2 + r2dφ2 , (2.1)
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with

h(ρ) =
1 + ρ2

1− κ2ρ2
, f(ρ) =

1

(1 + ρ2)(1− κ2ρ2)
. (2.2)

The h̃ and f̃ can be found by analytically continuing ρ→ ir. The NS-NS fluxes associated

to this solution does not survive in this consistent truncation of the total deformed AdS5×
S5 background. Starting with a string moving only in R×S3 (ρ = 0) by putting r = cos θ,

we study particular circular string solutions in this deformed geometry. Now the metric on

the deformed sphere becomes,

ds2S3 = −dt2 +
1

1 + κ2 cos2 θ
dθ2 +

sin2 θ

1 + κ2 cos2 θ
dϕ2 + cos2 θ dφ2. (2.3)

We start with the following ansatz for the circular string configuration

t = C0τ, θ = θ(τ), ϕ = mσ, φ = constant . (2.4)

We use the usual Polyakov action for the F string,

S = −

√
λ̂

4π

∫
dσdτ [

√
−γγαβgMN∂αX

M∂βX
N ] , (2.5)

where λ̂ = λ(1 + κ2) is the modified ’t Hooft coupling for the deformed model and γαβ is

the worldsheet metric. Variation of the action with respect to XM gives us the following

equations of motion

2∂α(ηαβ∂βX
NgKN )− ηαβ∂αXM∂βX

N∂KgMN = 0 , (2.6)

and variation with respect to the metric gives the two Virasoro constraints,

gMN (∂τX
M∂τX

N + ∂σX
M∂σX

N ) = 0 , (2.7)

gMN (∂τX
M∂σX

N ) = 0 . (2.8)

We use the conformal gauge (i.e.
√
−γγαβ = ηαβ) with ηττ = −1, ησσ = 1 and ητσ=ηστ =0)

to solve the equations of motion. One can explicitly check from the string equations of

motion that the above configuration is completely consistent with the virasoro constraints

with particular choice of integration constants and indeed signifies a circular string moving

in the R × S2
ϕ subspace of the total (R × S3)κ. The equations of motion from the sigma

model for the above string leads to

θ̇2

1 + κ2 cos2 θ
+

m2 sin2 θ

1 + κ2 cos2 θ
= E2 (2.9)

Here the E is the energy rescaled by the modified sigma model coupling constant
√
λ̂.

Remembering T̂ = T
√

1 + κ2, it could be written in the form,

E =
E√

λ
√

1 + κ2
=

E0√
1 + κ2

. (2.10)
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Where E is simply the conserved Noether charge associated to shift in t. Now this new

scaling of charges adds further subtleties to the limits we would impose on the solutions

here. We will discuss them at length at various parts of this note. Remember here that the

κ = 0 expression (E0) is usually called the ‘semiclassical’ value of the conserved charge in

the large ‘t Hooft coupling limit. But inclusion of the κ dependent factor in the coupling

itself makes it an object to be explored cautiously. But as a starter we can see that E < E0,
since κ ∈ [0,∞)

To solve the above equation of motion, we substitute x = sin θ and put the equation

in the following form

ẋ2 = (m2 + E2κ2)(x2 −R+)(x2 −R−) , (2.11)

where the two roots are given by the following,

R− =
E2(1 + κ2)

m2 + E2κ2
, R+ = 1. (2.12)

With this, the solution of the string motion can be put in the form of a Jacobi Sn function,2

namely

xϕ = sin θϕ =
√
R− sn

(√
m2 + E2κ2

√
R+τ |

R−
R+

)
. (2.13)

Now the condition on the solution to have an oscillating nature can be found from the real

periodicity condition on the Jacobi function in the form

0 <
E2(1 + κ2)

m2 + E2κ2
< 1. (2.14)

This leads obviously to the condition

E2 < m2 (2.15)

Which can be seen to reduce exactly to the condition of oscillating solution mentioned

in [28] for κ = 0 limit, i.e. E20 < m2, with m ∈ Z, which explicitly means that strings in the

two-sphere can only have the ‘small’ string limit. Here the presence of the κ adds special

limits to this condition also. The rescaled energy is of course bound from above by the

said inequality. But the inequality can be seen to be valid for all values of κ provided the

original energy E0 is small. This will be crucial in the later discussions.

Now we move on to the other consistent truncation of the deformed R× S3, which we

will call S2
φ. The metric in this case is given by the following

ds2 = −dt2 +
1

1 + κ2 cos2 θ
dθ2 + cos2 θ dφ2. (2.16)

Taking an ansatz similar as before,

t = C1τ, θ = θ(τ), φ = mσ , (2.17)

2In our notation, sn(z|m) is the solution of the equation P ′(z)2 = (1− P 2(z))(1−mP 2(z)).
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we arrive at the following equation of motion for θ

θ̇2

1 + κ2 cos2 θ
+m2 cos2 θ = E2 , (2.18)

where E is defined as before. This equation is little more involved than the last one. To

solve this, we again put cos θ = x and write the above equation in the form

ẋ2 = m2κ2(x2 −R1)(x
2 −R2)(x

2 −R3). (2.19)

Here we have the roots in the form,

R1 = − 1

κ2
, R2 =

E2

m2
, R3 = 1. (2.20)

Integrating the equation of motion is a little trickier, the direct integration leads to the

expression,

τ =
1√

m2 + E2κ2
F

[
sin−1

√
(m2 + E2κ2)x2

E2(1 + κ2x2)
,

(1 + κ2)E2

m2 + E2κ2

]
. (2.21)

After a little algebra, we can extract the follwing solution easily in the form of a Jacobi

sd3 function

cot θφ =

√
E2

m2 + E2κ2
sd

(√
m2 + E2κ2 τ | E

2(1 + κ2)

m2 + E2κ2

)
, (2.22)

where we have used the well known identity concerning Jacobi functions

dn2(u| X 2) + X 2 sn2(u| X 2) = 1. (2.23)

The other cause of writing the solution in this way will be clear as we go along. One can

note that the condition for having an oscillatory solution remains the same as for the string

moving in the other two sphere as we have discussed.

These string solutions can be shown to inherit the symmetries of the deformed back-

ground. As explained in the [40] we can remember that the different two spheres S2
ϕ and

S2
φ are related to each other by the discrete Z2 transformations

ϕ→ φ ; cos θ →

√
sin2 θ

1 + κ2 cos2 θ
. (2.24)

While the first one of these is actually trivial, one can explicitly check that the second

transformation is completely valid for our circular string solutions (2.13) and (2.22), again

implementing identities involving elliptic Jacobi functions. One might recall that in [56]

the same mapping was shown to exist for giant magnon solutions on the two 2-spheres.

3In our notation, sd(z|m) is the solution of P ′′(z) + P (z)[2m(1−m)P 2(z)− 2m+ 1] = 0.
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2.2 Semiclassical quantization

For doing a sommerfeld like quantization of the strings discussed in the last section, we

first start with the s2ϕ. Again, the adiabatic invariant associated to both the spheres is

given simply by,

N =
1

2π

∮
Πθ dθ , (2.25)

where we again define the semiclassical value of the adiabatic invariant scaled by the new

coupling constant
√
λ̂, but it can be shown to behave exactly like the original oscillation

number (at κ = 0, which we can call N0) for finite values of κ. It is crucial to remember

that for consistent results, we can’t let the value of κ to be very large, as we also know that

for that limit the nature of the geometry changes altogether. Also Πθ is the momentum

associated to θ. Now we can put,

Πθ =
θ̇

1 + κ2 cos2 θ
. (2.26)

Now using this, the θ equation of motion can be written as

Π2
θ + Vϕ(θ) = 0. (2.27)

This may be interpreted as an equation for a particle moving in a potential Vϕ(θ) with,

Vϕ(θ) = − E2

1 + κ2 cos2 θ
+

m2 sin2 θ

(1 + κ2 cos2 θ)2
. (2.28)

A closer look at the potential will reveal that it has a maximum at π
2 with a value (m2−E2).

So, at the level of the potential, there are two cases, one for which E2
m2 < 1 so that there

is a turning point and θ is limited to a maximum value. The other case is simply E2
m2 > 1,

where there is no turning point and the string oscillates all the way from equator to the

pole of this deformed sphere. For our case, as we have demonstrated from the solution

itself, the first case is physically acceptable. The turning point in this case simply lies at

R− =
E2(1 + κ2)

m2 + E2κ2
. (2.29)

So we can expect as κ increases the turning point also acquires a greater value, herebey

making the potential steeper. As the κ → ∞, the value saturates around 1, and as we

remember the oscillatory behaviour of the solution is lost completely. The potential has

been plotted for completeness in figure 1.

We can use the value of θ̇ from the relevant equation of motion and write the integral

for the oscillation number using cos θ = z

Nϕ =
2

π

∫
dz

1 + κ2 − κ2z2

√
E2(1 + κ2 − κ2z2)−m2z2

(1− z2)
. (2.30)

Instead of directly dealing with the integral, one tries to find the derivative w.r.t. m and

evaluate the integral. With a little manipulation, we can write the derivative in the form

∂Nϕ
∂m

=
2m

πκ2
√
m2 + E2κ2

[
K

(
E2(1 + κ2)

E2κ2 +m2

)
−Π

(
E2κ2

E2κ2 +m2
,

(1 + κ2)E2

E2κ2 +m2

)]
(2.31)
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Now we know that the condition on energy from the solution is E2 < m2, that means

we have to take small energy limit of the string. But since κ ∈ [0,∞), the order of limits

is very subtle here. To explain, let us start from the simplest possible limit where E → 0,

but κ is finite, so that Eκ is small. We put Eκ = α and write the above expression in this

limit as

∂Nϕ
∂m

=
2m

πκ2
√
m2 + α2

[
K

(
α2

α2 +m2

)
−Π

(
α2

α2 +m2
,

α2

α2 +m2

)]
(2.32)

Now the problem boils down to taking α→ 0 limit for the above expression. We recall the

series expressions of the elliptic integrals around arguments zero,

K(z) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
zn , (2.33)

Π(z, z) =
π

2

∞∑
n=0

[
(2n+ 1)((2n)!)2

42n(n!)4

]
zn . (2.34)

Using these expansions and integrating over m, we can write simply,

Nϕ =
1

κ2

√
α2 +m2

∞∑
n=0

An

(
α2

α2 +m2

)n
, (2.35)

where

An =
21−4nn((2n)!)2

(2n− 1)(n!)4
. (2.36)

But one could clearly see that since we take α → 0 and of course we have An → 0 as

n→∞, the series is bound to converge automatically, although it generates no additional

constraints.

The other limit that can be taken is E → 0 and κ → ∞, but α is finite. In this case

the asymptotic expressions of elliptic integrals won’t work, so we move on to the other

extreme case. It is simply E → 0 and κ →∞, but α→∞. In this limit α2

α2+m2 → 1. Here

the expression of
∂Nϕ

∂m becomes indeterminate since the prefactor is 0, while the elliptic

integrals run to complex infinity. This is consistent with our previous observation that for

large κ our solutions actually do not oscillate, i.e we can physically discard this limit. We

will then stick to the first case as we have talked about earlier.

We can expand the expression for
∂Nϕ

∂m for small E and integrate over m to find the

expression of the oscillation number Nϕ. This expression can then be inverted to find the

energy of the string in terms of

E =
√

2mNϕ

[
1 +

(−1 + κ2)Nϕ
8m

−
(5 + 6κ2 + 5κ4)N 2

ϕ

128m2
+O(N 3

ϕ)

]
(2.37)

Let us now move to the string moving in the other sphere, the S2
φ. In this case also

the θ equation of motion can be written in the form

Π2
θ + Vφ(θ) = 0. (2.38)

– 8 –
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Figure 1. The potentials corresponding to (2.28) and (2.39) are plotted here w.r.t. θ for different

values of κ. One can easily see that as for the first one,Vφ(θ), becomes steeper as we increase the

value of κ. For the other case the potentials are more flattened as we increase κ. For both the cases

the maxima occurs at the same exact place as the undeformed potential. Both cases provide evidence

that for larger κ, the oscillatory solutions die out. For both of the figures E = 0.1 and m = 2.

In this case the effective potential has a form

Vφ(θ) =
m2 cos2 θ − E2

1 + κ2 cos2 θ
. (2.39)

Which is, as expected, completely different that the Vϕ(θ). This has a maximum value

at θ = 0 which is simply m2−E2
1+κ2 . Again for this case also the presence of the condition

E2
m2 < 1 ensures that there is one turning point for the potential. It can be seen from the

figure 1 that as we increase the value of κ here, the maximum of the potential is reduced

increasingly, and at κ →∞ the oscillatory motion is simply stopped.

In this case, the oscillation number can be given by

Nφ =
1

2π

∫ √
E2 −m2 cos2 θ

1 + κ2 cos2 θ
dθ. (2.40)

Following the procedure as outlined earlier, we could write again,

∂Nφ
∂m

=
−2

π
√
m2 + E2κ2

[
mK

(
E2(κ2 + 1)

m2 + E2κ2

)
+
E2 −m2

m
Π

(
E2

m2
,
E2(κ2 + 1)

m2 + E2κ2

)]
(2.41)

As in the last case the only plausible situation for expansion is the case where E is small

and κ is finite. In this approximation we could expand the above expression and integrate

over m to find

Nφ =
E2

2m
− E

4(−1 + κ2)

8m3
+
E6(3− 2κ2 + 3κ4)

128m3
+O(E8) , (2.42)

which leads to the same expression of energy as in the above case. This is expected for the

problem as however the two spheres are not equivalent, both of them reduce to the usual

two sphere when we put the deformation parameter to be zero. As in both the cases we

can put κ = 0 and the expression matches with the one discussed in [28].
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2.3 Circular strings in (R × S3)κ: adding angular momentum

We now start discussing about circular strings propagating in the total three sphere, which

would be more interesting. One of the peculiar phenomenon associated is that now the di-

rection of the extra angular momenta will matter since the two 2-spheres are not equivalent

to each other, but of course they could be related by discrete symmetries of the spacetime.

For this reason these solutions demand some closer inspection.

Here, we will only discuss the ansatz for the case where the string pulsates in S2
ϕ with

the extra angular momentum along φ. The ansatz in this case will have the form,

t = c0τ, θ = θ(τ), ϕ = mσ, φ = ωτ. (2.43)

The equations of motion for θ has the following form

θ̇2 = (1 + κ2 cos2 θ)(E2 − J 2

cos2 θ
)−m2 sin2 θ , (2.44)

where the conserved charge E corresponds to shift in t and the angular momentum J is

defined as

J = cos2 θ φ̇ (2.45)

The equation for θ again looks like that of a particle in a potential oscillating between

(1 + κ2)(E2 − J 2) at θ = 0 to 0 at θ = π/2. With the substitution of sin θ = x we can

rewrite the equation of motion in the form

ẋ2 = (m2 + E2κ2)(x2 −R+)(x2 −R−) (2.46)

Where the roots in the above equation can be given by,

R± =
m2 + E2 − J 2κ2 + 2E2κ2 ±

√
(m2 − E2)2 + J 4κ4 + 2J 2(2m2 + (m2 + E2)κ2)

2(m2 + E2κ2)
(2.47)

To solve the above equation, we demand the boundary condition x(0) = 0 and the final

solution can be written in the form,

sin θ(τ) =
√
R− sn

(√
m2 + E2κ2

√
R+τ |

R−
R+

)
. (2.48)

The condition for this to be a proper oscillating and periodic string solution reads

0 <
R−
R+

< 1 (2.49)

This boils down to the algebraic condition

(m2 − E2)2 + J 4κ4 + 2J 2(2m2 + (m2 + E2)κ2) > 0 (2.50)

The above condition simply puts a bound on the conserved charges on the solution.

Also there is another condition that makes the roots R± positive and it has a simple

expression

(1 + κ2)(E2 − J 2)(m2 + E2κ2) > 0 (2.51)

– 10 –
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Figure 2. The potentials corresponding to (2.55) is plotted here w.r.t. θ for different values of J .

The values of other parameteres (E ,m,κ) = (100, 2, 2) here. Notice that the potential blows up at π
2 .

It can be seen that the original condition on the pulsating string E2 ≥ J 2 stays when we put

κ = 0. This puts an upper bound on the value of angular momentum that can be switched

on in this case. We can also integrate to get a closed form for the φ to concentrate on the

dynamics with the angular momentum. We can write using the two above equations that

dφ

dθ
=

J
cos θ

√
m2 + E2κ2

√
(sin2 θ −R+)(sin2 θ −R−)

. (2.52)

This can be integrated to find the expression for φ in terms of standard elliptic integral

forms,

φ = − J√
m2 + E2κ2

√
R+

Π

(
R−, sin−1

(
1√
R−

sin θ(τ)

)
,
R−
R+

)
(2.53)

Now we can see that there is only one adiabatic invariant available here expect for the

extra angular momentum, which is the action variable associated to θ. We can write that

in the following way

Iθ =

√
λ̂

2π

∮
dθ

√
(1 + κ2 cos2 θ)(E2 − J 2

cos2 θ
)−m2 sin2 θ (2.54)

To make contact with string theory, we are interested in the large energy region of the

solution and find out the corrections to the classical energy. But with the new results,

the calculations for expansion of charges appears very tricky as another paramter J has

appeared in the equations of motion and the order of limits issue has to be taken care of.

For the sake of completeness we can write the relevant effective potential in this case,

V(θ) = −
(E2 − J 2

cos2 θ
)

(1 + κ2 cos2 θ)
+

m2 sin2 θ

(1 + κ2 cos2 θ)2
. (2.55)

The unique property of the potential is that it straightaway diverges at θ = π
2 . We have

plotted the potential for different values of J in figure 2. One can easily see that the

– 11 –
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particle here oscillates from −E2−J 2

1+κ2 at θ = 0 to ∞ at θ = π
2 . Since there is the constraint

E2 ≥ J 2 at place, the minima of the potential is always negative.

3 Circular strings in (AdS3)κ

3.1 Solution of the string equations

In this section we discuss circular string solutions in (AdS3)κ and talk about the various

characteristics of it. The deformed AdS is very unique in the regard that there is a radial

singularity surface present in the background which appears in the scalar curvature too.

So in general the (AdS)κ has both positive and negative curvature regions depending on

values of κ. We will see how this singularity will affect the circular string solutions. Let

us first start with the relevant metric, which we can get from (2.1) by putting ρ→ cosh ρ

and putting the sphere coordinates to be constants,

ds2 = − cosh2 ρ

1− κ2 sinh2 ρ
dt2 +

1

1− κ2 sinh2 ρ
dρ2 + sinh2 ρ dψ2 . (3.1)

We will use the standard circular string ansatz in this case

t = t(τ), ρ = ρ(τ), ψ = mσ (3.2)

The equation of motion for ρ has the following form

ρ̇2 =
E2

cosh2 ρ
(1− κ2 sinh2 ρ)2 −m2 sinh2 ρ(1− κ2 sinh2 ρ) . (3.3)

We can check that the equations of motion exactly matches with the Virasoro constraints

for proper choice of integration constants. Here the conserved charge E is defined as

E =
E√
λ̂

=
cosh2 ρ

1− κ2 sinh2 ρ
ṫ . (3.4)

The above equation of motion for ρ can be easily written in the form,

ρ̇2 =
m2(1− κ2 sinh2 ρ)(sinh2 ρ+0 − sinh2 ρ)(sinh2 ρ− sinh2 ρ−0 )

cosh2 ρ
, (3.5)

where the roots are

sinh2 ρ±0 =
−(m2 + E2κ2)±

√
(m2 + E2κ2)2 + 4E2m2

2m2
. (3.6)

We can easily see here that for the mentioned roots,

sinh2 ρ−0 < 0; sinh2 ρ+0 > 0 , (3.7)

and the condition that sinh2 ρ±0 ∈ R is automatically satisfied. But there is another condi-

tion to be respected here for consistent string propagation, i.e.

ρ̇2 ≥ 0 (3.8)
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Due to this we can easily see that the string can only go up to a particular value of ρ and

would not be able to cross any further. This particular value is given by

ρ = sinh−1
1

κ
, (3.9)

which is the same radial position where the so called ‘singularity surface’ associated with

the deformed metric is present. So it is quite clear that just like folded or other kinds of

strings, the circular string will also reach upto this surface and no further. The way to avoid

this problem has been to suggest that the singularity surface acts as an ad-hoc boundary

for the deformed space and introduce the tortoise like coordinate transformation, [59]

cosh ρ√
1− κ2 sinh2 ρ

= coshχ. (3.10)

With this coordinate transformation we can actually map the coordinates ρ ∈ [0, sinh−1 1
κ )

to χ ∈ [0,∞). This is the same as saying that the unphysical region is simply not contained

in the coordinate system used here. Now, the metric reads

ds2 = − cosh2 χ dt2 +
1

1 + κ2 cosh2 χ
dχ2 +

sinh2 χ

1 + κ2 cosh2 χ
dψ2 (3.11)

We can change the ansatz to include the new radial coordinate having the same functional

dependence

χ = χ(τ). (3.12)

The conserved charge can now be written as

E = cosh2 χ ṫ . (3.13)

In this changed coordinate system we can write the equation of motion for χ in the following

form

χ̇2 =
E2

cosh2 χ
(1 + κ2 cosh2 χ)−m2 sinh2 χ (3.14)

By putting sinhχ = x we get

ẋ2 = m2(x2 −R−)(R+ − x2) (3.15)

Where the roots of the equation are

R± =
(E2κ2 −m2)±

√
(E2κ2 −m2)2 + 4m2E2(1 + κ2)

2m2
. (3.16)

The solution for this string configuration has the form

x = sinhχ(τ) =

√
−R−R+

R+ −R−
sd

(
m
√
R+ −R−τ |

R+

R+ −R−

)
. (3.17)

The condition for having a oscillating solution is given by the periodicity condition on the

Jacobi function, i.e.

0 <
R+

R+ −R−
< 1. (3.18)
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This is also supplemented by the fact that both of the roots have to be real with R+ > 0

and R− < 0, which are automatically taken care of as we have discussed. The above

condition then translates to

(E2κ2 −m2)−
√

(E2κ2 −m2)2 + 4m2E2(1 + κ2) < 0, (3.19)

Which is also taken care of by the condition R− < 0. Now as usual, for various values of

κ the oscillating nature of the solution will change. Since for obvious reasons we would be

interested to find out the large κ characteristics of the solution. It can be shown in this

limit, for any value of the energy E ,

R+

R+ −R−
= 1− m2

E2κ2
+O

(
1

E4κ4

)
. (3.20)

So it is clear that in the limit κ → ∞ the modulus of the oscillatory solution actually

proceeds to touch 1 and the oscillatory behaviour of the string is lost in this limit. We can

also argue this from a physical viewpoint as the large κ limit means that the ‘singularity

surface’ gradually coincides with the centre of the spacetime, i.e. χ = 0 and the nature of

the spacetime itself changes.

3.2 Semiclassical quantization and ‘long’ string solution

Let us now start with the quantization of the strings discussed in the last section. We note

that the momenta associated to the coordinate χ has an expression

Πχ =
χ̇

1 + κ2 cosh2 χ
, (3.21)

so that the χ equation of motion can be written in the ‘particle in a potential’ form

Π2
χ + V (χ) = 0. (3.22)

Where the effective potential has the form

V (χ) = − E2

cosh2 χ(1 + κ2 cosh2 χ)
+

m2 sinh2 χ

(1 + κ2 cosh2 χ)2
. (3.23)

Since the AdS circular string can have both small and large energy limits the characteristics

of this potential are bound to be different in different limits. The position of the maxima

for this potential also varies depending on the value of κ. We plot the potential for different

values of the parameters in figure 3.

Now, with a bit of algebra, we write the oscillation number in the form

N =
2

π

∫ χm

0

dχ

1 + κ2 cosh2 χ

√
E2

cosh2 χ
(1 + κ2 cosh2 χ)−m2 sinh2 χ . (3.24)

We must remember here that N can be thought of as the deformed version of the total

oscillator number, which has to be even for the closed string sector. We will take care of
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Figure 3. The potential V (χ) has been plotted from (3.23) for different values of κ and E . In (a),

the energy is small (E = 0.5) and κ is also small. In (b) both ε and κ are large (E = 103). One

should notice the stark difference in the form of the potentials at extreme ends of the parameter

space. For both cases we have taken m = 2.

the integral for the oscillation number as we have done earlier, i.e. by taking the derivative

w.r.t. m and putting sinhχ = z, which leads to the following integral,

∂N
∂m

= − 2

π

∫ √R+

0

z2

(1 + κ2 + κ2z2)
√

(R+ − z2)(z2 −R−)
, (3.25)

where the roots have been presented as in the last section. This integral results in the

combination of elliptic integrals of the form

∂N
∂m

= − 2

π

1√
−R− κ2

[
K

(
R+

R−

)
−Π

(
− R+κ2

1 + κ2
,
R+

R−

)]
. (3.26)

The above expression can be expanded in the limit of large E (and finite κ) and integrated

over m to get the expression for the oscillation number in terms of other parameters. In

this case it has the most unusual form,

N = N0(E ,κ) +
m2

πκ3E
log
[a1m
κE

]
+O

(
1

E3

)
, (3.27)

Which is a completely new scaling for such long strings and does not reduce to the

usual form of oscillation number for AdS strings. The constant a1 = 0.1516. The N0 is the

integration constant here which is nothing but the m = 0 integral of N . This limit only

just corresponds to a massless geodesic in this background which reaches from χ = 0 to

χ =∞. The integral has a form,

N0 =
2E
π

∫ ∞
0

dχ

coshχ
√

1 + κ2 cosh2 χ
=

2E
π

tan−1
1

κ
. (3.28)

It is worth noticing that the usual leading term for circular long strings in undeformed AdS

can actually be recovered by putting κ = 0. However the scaling behaviour like 1
E log

[
1
E
]

remains very mysterious.
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4 Conclusion

In this short note, we have discussed various circular string configurations in the one

parameter (or κ) deformed AdS3 × S3 background. The background is unique and very

interesting by itself, and as expected the string solutions from the string sigma model action

gives various insights into the structure of the background. We have discussed various string

solutions in the two-spheres belonging to S3. After finding the exact solutions in terms of

Jacobi functions we have proven that the solutions would obey the same discrete symmetries

of the total background. We also have discussed about the same string solutions in the

AdS part. A remarkable speciality of this background is a presence of a singularity surface

where curvature invariants blow up. To keep our spacetime timelike, we have performed

a coordinate transformation and discussed strings that go up to this surface, which might

act like an ad-hoc boundary. But since the deformation is independent of the coordinates,

we arrive at a energy expansion for a novel ‘long’ strings, which is new and does not

reduce to the undeformed result even if we take κ → 0. The explanation of such kind of

leading order behaviour is not entirely clear to us. The nature and validity of this special

scaling remains to be checked in detail. The other issue that one can perform from here

is to use the deformed Neumann-Rosochatius integrable system for the deformed setup as

described in [60], and try to find out more general circular and elliptic solutions following

the algorithm. But due to very complicated nature of the integrals of motion, this appears

to be a daunting task. We hope to address this question in a future publication.
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