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1 Introduction

In anticipation of new results from the run II of the LHC, supersymmetry (SUSY) as a

framework remains the leading candidate for physics beyond the Standard Model (SM).

However, the discovery of a SM-like Higgs boson with relatively large mass and the lack of

observation of coloured superparticles have spurred considerable interest in SUSY realisa-

tions beyond the Minimal Supersymmetric Standard Model (MSSM). A notable extension

beyond the minimal case is to allow Dirac masses for the gauginos [1–6], in particular

instead of — but possibly in addition to — Majorana ones. Among the reasons for the

growing interest in this scenario are that Dirac gaugino masses relax constraints on squark

masses (through suppressing production) [7–9] and flavour constraints [10–12], and that

they increase the naturalness of the model (because the operators are supersoft [4] and the

SM-like Higgs boson mass is enhanced at tree level [13, 14]).
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Dirac gaugino masses require the addition of two fermionic degrees of freedom (i.e.,

an extra Weyl spinor) for each gaugino. We can then write a mass term that respects a

global chiral symmetry, which in SUSY models is promoted to a global U(1) R-symmetry.

We also require the same number of extra scalar degrees of freedom as fermionic ones;

this implies that after electroweak symmetry breaking (EWSB) we have four new neutral

scalar degrees of freedom compared to the MSSM, which may mix with the neutral scalars

of the Higgs sector. The new states are packaged in an adjoint chiral multiplet for each

gauge group, which should also have couplings to the Higgs scalars, possibly enhancing the

SM-like Higgs boson mass at both tree and loop level.

There is more than one way to construct a Dirac-gaugino extension of the MSSM.

The minimal choice, which we will denote as the Minimal Dirac Gaugino Supersymmetric

Standard Model (MDGSSM), consists in simply adding the adjoint chiral multiplets to the

field content of the MSSM, and allowing for all gauge-invariant terms in the superpoten-

tial and in the soft SUSY-breaking Lagrangian. The reader should note that in recent

works [15–17] the term MDGSSM has also been used to describe a unified scenario where

extra lepton-like states are added to ensure natural gauge-coupling unification, but the

distinction will be irrelevant for this paper.

If we wish to avoid large Majorana masses for the gauginos — and benefit from simpler

SUSY-breaking scenarios [18] — we should avoid R-symmetry breaking in the soft terms,

which also means removing the MSSM-like A-terms; this then naturally embeds into gauge-

mediated scenarios [6, 19–24]. We may retain a Bµ term since it is required for EWSB and

will not generate Majorana masses through renormalisation group evolution. The variant

without a µ term is called /µSSM or µ-less MSSM [5], and can be considered a special

case of this model (note that, as studied in ref. [25], the /µSSM is currently challenged by

electroweak precision measurements).

On the other hand, if we choose to retain the R-symmetry as exact (possibly broken

only by gravitational effects) then one popular construction is the Minimal R-symmetric

Supersymmetric Standard Model, or MRSSM [10]: two additional Higgs-like superfields are

included, which couple in the superpotential to the regular Higgs doublets but obtain no

expectation value. They allow the Higgs fields Hu and Hd to both have zero R-charge and

contribute to EWSB without violating the R-symmetry. An even more minimal realisation

is the MMRSSM [26, 27], where the down-type Higgs Hd and its R-partner are missing, a

sneutrino then playing the role of Hd. Another option to preserve R-symmetry is the super-

symmetric one-Higgs-doublet model [28]: starting from the field content of the MDGSSM,

the singlet adjoint superfield is missing and the down-type Higgs does not develop an

expectation value, therefore the bino is massless up to anomaly-mediation contributions.

The extended Higgs sectors of these theories have an interesting and varied phe-

nomenology. From past experience in the study of the Higgs sector of the MSSM and

of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), we expect the ra-

diative corrections to the Higgs boson masses in Dirac-gaugino models to be crucial to

obtain a reasonable precision and rule in/out scenarios, or assess their naturalness. For the

MSSM, the corrections to the Higgs boson masses have been computed at two loops in the

limit of vanishing external momenta [29–42], and the dominant momentum-dependent two-
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loop corrections [43–45] as well as the dominant three-loop corrections [46–48] have also

been obtained.1 For the NMSSM, beyond the one-loop level only the two-loop corrections

involving the strong gauge coupling together with the top or bottom Yukawa couplings,

usually denoted as O(αtαs) and O(αbαs), have been computed [49, 50]. In contrast, in

other supersymmetric extensions of the SM there have been no explicit calculations of the

Higgs masses beyond one-loop results.

On the other hand, the public tool SARAH [51–56] can, for a generic supersymmetric

model, automatically compute the full one-loop corrections to all particle masses, as well as

the two-loop corrections to the neutral-scalar masses in the limit of vanishing electroweak

gauge couplings and external momenta [57, 58], implementing and extending the general

two-loop results of refs. [59, 60]. Recently, SARAH has made it possible to analyse at the two-

loop level the Higgs sector of several non-minimal extensions of the MSSM, see refs. [61–65].

Of particular relevance for this work, it has allowed for Dirac-gaugino masses since version

3.2 [54], incorporating also the results of ref. [66]. Indeed, SARAH has been used for detailed

phenomenological analyses of the MDGSSM at one loop in ref. [25] and at two loops in

refs. [15, 16]; and also for the MRSSM at one loop in ref. [67] and two loops in refs. [68, 69].

However, while such a numerical tool for generic models fulfils a significant need of the

community, it is also important to have explicit results for specific models, and not just as

a cross-check. In this work we shall compute the leading O(αtαs) corrections to the neutral

Higgs boson masses in both the MDGSSM and MRSSM, relying on the effective-potential

techniques developed in ref. [36] for the MSSM and in ref. [49] for the NMSSM. This has

the following advantages:

• We compute the O(αtαs) corrections in both the DR and on-shell (OS) renormalisa-

tion schemes. The latter turns out to be particularly useful in scenarios with heavy

gluinos — a feature of many Dirac-gaugino models in the literature — where the use

of DR formulae for the two-loop Higgs-mass corrections can lead to large theoretical

uncertainties.

• We have written a simple and fast stand-alone code implementing our results, which

we make available upon request (indeed, a version of the code is already included in

SARAH).

• We use our results to derive simple approximate expressions for the most important

two-loop corrections, applicable in any Dirac gaugino model.

The outline of the paper is as follows. In section 2 we define the important parameters

of our theory. In section 3 we present our results for the general case, the MDGSSM

and the MRSSM, show how we compute the shift to the OS scheme, and give simplified

formulae for the SM-like Higgs boson mass either for a common SUSY-breaking scale or for

a heavy Dirac gluino. In section 4 we give numerical examples of our results, illustrating

1We focused here on genuine two- and three-loop corrections in the MSSM with real parameters, but

significant efforts have also been devoted to Higgs-mass calculations in the presence of CP-violating phases,

and to the computation of higher-order corrections via renormalisation-group techniques.
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the advantages of our approach and also discussing the inherent theoretical uncertainties.

We conclude in section 5. Explicit expressions for the derivatives of the effective potential

are given in an appendix.

2 Definition of the theory

2.1 Adjoint multiplets and the supersoft operator

In order to give gauginos a Dirac mass it is necessary to pair each Weyl fermion of the

vector multiplets with another Weyl fermion χΣ in the adjoint representation of the gauge

group. These adjoint fermions sit inside chiral superfields, which we shall denote collectively

Σa = Σa +
√

2 θχaΣ + . . . , where the lowest-order component Σa is a complex scalar. In

models with softly-broken supersymmetry,2 the Dirac gaugino mass arises only in the

supersoft operator:

Lsupersoft =

∫
d2θ
√

2mD θ
α Wa

α Σa + h.c.

⊃ −mD λ
aχaΣ +

√
2mD ΣaDa + h.c. , (2.1)

where Wa
α = λaα + θαD

a + . . . is the field-strength superfield. Integrating out the auxiliary

field Da leads to mass terms for the adjoint scalars, as well as to trilinear interactions

between the adjoint scalars and the MSSM-like scalars, which we collectively denote as φ:

L ⊃ −(mD Σa +m∗D Σa ∗)2 −
√

2 g (mD Σa +m∗D Σa ∗)φ∗ ta φ , (2.2)

where ta are the generators of the gauge group in the representation appropriate to φ, and

a sum over the gauge indices of φ is understood. Considering all sources of mass terms for

the adjoint scalars,

L ⊃ −(m2
Σ + 2 |mD|2) Σa ∗Σa − 1

2
(BΣ + 2m2

D) Σa Σa − 1

2
(B∗Σ + 2m∗ 2

D ) Σa ∗Σa ∗, (2.3)

where m2
Σ includes in general contributions from both the superpotential and the soft

SUSY-breaking Lagrangian, and BΣ is a soft SUSY-breaking bilinear term. In addition,

mixing with the MSSM-like Higgs scalars may be induced, upon EWSB, by the D-term

interactions in eq. (2.2), as well as by superpotential interactions.

We shall denote the adjoint multiplet for U(1)Y as a singlet S = S +
√

2 θχS + . . . ,

the one for SU(2)L as a triplet Ta = T a +
√

2 θχaT + . . . , and the one for SU(3) as an

octet Oa = Oa +
√

2 θχaO + . . . . In this paper we shall be interested only in the two-loop

corrections to the Higgs masses involving the strong gauge coupling gs, thus the relevant

trilinear couplings in eq. (2.2) will be the ones involving the octet scalar and the squarks.

We shall make the additional restriction that the octet scalar only interacts via the

strong gauge coupling and the above trilinear terms, equivalent to the assumption that it

has no superpotential couplings or soft trilinear couplings other than with itself. This shall

2It has also been suggested, e.g. in ref. [70], that Dirac masses could arise through other operators; we

do not consider them as they potentially correspond to a hard breaking of SUSY.
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simplify the computations, and it is true for almost all variants of Dirac gaugino models

studied so far. To have renormalisable Yukawa couplings between the octet and the MSSM

fields we would need to add new coloured states (such as a vector-like top). However, in

the most general version of the MDGSSM there could also be terms that violate the above

assumption — which have only recently attracted attention [17, 71] — namely couplings

between the singlet and the octet of the form

W ⊃ 1

2
λSO S OaOa, L ⊃ −1

2
TSO S O

aOa + h.c. . (2.4)

The coupling λSO is typically neglected because it violates R-symmetry and leads to Majo-

rana gaugino masses: for example, in the restricted version of the MDGSSM or the /µSSM

the R-symmetry violation is assumed to only occur in the Higgs sector and possibly only

via gravitational effects. On the other hand, there is no symmetry preventing the gener-

ation of TSO, but it is typically difficult for it to obtain a phenomenologically significant

magnitude, hence it has been neglected — see [17] for a full discussion (and for cases when

it could be large). Furthermore, TSO is irrelevant in the decoupling limit (when the singlet

S is heavy) that we shall employ later in our simplified formulae.

With the above assumptions, we can make a rotation of the superfield Oa such that we

can take mD to be real without loss of generality, but we cannot simultaneously require that

the soft SUSY-breaking bilinear BO be real without additionally imposing CP invariance.

The octet mass terms are then

L ⊃ −m2
O O

a ∗Oa − 1

2
BO O

aOa − 1

2
B∗O O

a ∗Oa ∗ −m2
D (Oa +Oa ∗)2. (2.5)

If BO is not real, the real and imaginary parts of the octet scalar mix with each other.

Their mass matrix can be diagonalised with a rotation by an angle φO,

Oa =
eiφO√

2
(Oa1 + i Oa2) , φO = −1

2
Arg(BO + 2m2

D) , (2.6)

to obtain the two mass eigenvalues

m2
O1,2

= m2
O + 2m2

D ± |2m2
D +BO| . (2.7)

Then the trilinear couplings of the octet mass eigenstates Oa1,2 to squarks q̃L and q̃R read

L ⊃ −2 gsmD (cosφO O
a
1 − sinφO O

a
2)(q̃∗L t

a q̃L − q̃∗R ta q̃R) , (2.8)

where ta are the generators of the fundamental representation of SU(3). These couplings

lead to new (compared to MSSM and NMSSM) contributions to the two-loop effective

potential involving the octet scalars which will affect the Higgs masses. We remark that,

since in eq. (2.5) the superpotential mass term m2
D affects only the real part of the octet

scalar, the mixing angle φO is suppressed by m2
D in the limit where the latter is much

larger than the soft SUSY-breaking mass terms. In particular,

cosφO ≈ 1 +O(m−4
D ) , sinφO ≈ −

Im(BO)

4m2
D

+O(m−4
D ) . (2.9)

– 5 –
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For the remainder of this paper, we shall restrict our attention to the CP-conserving case.

This is motivated by clarity and simplicity in the calculations, and also physically in that

there are strong constraints upon CP violation, even in the Higgs sector [72–75]. However,

we shall make an exception in allowing a non-zero angle φO, because it is particularly

simple to do so, and its effects are only felt at an order beyond that considered here: it

generates CP-violating phases in the stop mass matrix at two loops, and in the Higgs mass

at three. This is because the couplings in eq. (2.8) are real, and phases only appear in the

octet scalar-gluino-gluino vertex.

2.2 Gluino masses and couplings

In the case of Dirac gauginos, there is mixing between the Weyl fermion of the gauge

multiplet λa and its Dirac partner χaΣ. We shall allow in general both Majorana and Dirac

masses which, in two-component notation, we write as

L ⊃ −1

2
Mλ λ

aλa − 1

2
MΣ χ

a
Σχ

a
Σ −mD λ

aχaΣ + h.c. . (2.10)

As mentioned in the previous section, we can define mD to be real. In general we cannot

remove the phases from both Mλ and MΣ; however, as also mentioned above, we shall not

consider CP violation in the gluino sector, and thus take all three masses to be real. We

then rotate λa and χaΣ to mass eigenstates λa1 and λa2 via a mixing matrix Rij , so that

λa = R11 λ
a
1 +R12 λ

a
2 , χaΣ = R21 λ

a
1 +R22 λ

a
2 . (2.11)

In four-component notation, this leads in general to two Majorana gauginos with different

masses. In case of a pure Dirac mass, however, we obtain two Majorana gauginos with

degenerate masses |mλ1 | = |mλ2 | = |mD|, which can also be combined in a single Dirac

gaugino.

We recall that in the models of interest in this paper there are no Yukawa couplings

of the additional octet superfield, therefore the two gluino mass-eigenstates only couple to

quarks and squarks via their gaugino component λa. In particular, the couplings of each

(four-component) gluino g̃ai are simply related to the couplings of the usual (N)MSSM

gluino by an insertion of the mixing matrix:

L ⊃ −
√

2 gsR1i

[
q̃∗L t

a (g̃ai PL q)− (q PL g̃
a
i ) ta q̃R

]
+ h.c. , (2.12)

where a sum over the SU(3) indices of quarks and squarks is again understood. Conse-

quently, as we shall see below, the gluino contribution to the two-loop effective potential in

Dirac-gaugino models can be trivially recovered from the known results valid in the MSSM

and in the NMSSM.

2.3 Higgs sector

We now consider the Higgs sector of the theory. Dirac gaugino models extend the

(N)MSSM, so we shall assume that we have at least the usual two Higgs doublets Hu

and Hd. To these we must add the adjoint scalars S and T a mentioned above, which mix

– 6 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
5

with the Higgs fields. The couplings of the adjoint scalars, as well as the presence of any

additional fields in the Higgs sector, will, however, depend on the model under considera-

tion. In the following we shall focus on the minimal Dirac-gaugino extension of the MSSM,

the MDGSSM, and on the minimal R-symmetric extension, the MRSSM.

In the MDGSSM there are no additional superfields apart from the adjoint ones, and

the superpotential reads

W = WYukawa +WMDGSSM , (2.13)

WYukawa = Y ij
u UiQj ·Hu − Y ij

d DiQj ·Hd − Y ij
e EiLj ·Hd , (2.14)

WMDGSSM = (µ+ λS S) Hu ·Hd + λT Hd ·Ta σa Hu +WΣ , (2.15)

where σa are Pauli matrices, and the dot-product denotes the antisymmetric contraction

of the SU(2)L indices. In addition to the terms explicitly shown in eqs. (2.14) and (2.15),

the most general renormalisable superpotential contains terms involving only the adjoint

superfields — namely, mass terms for each of them, all trilinear terms allowed by the gauge

symmetries, and a linear term for the singlet — which we denote collectively as WΣ. The

most general soft SUSY-breaking Lagrangian for the MDGSSM contains non-holomorphic

mass terms for all of the scalars, as well as Majorana mass terms for the gauginos, plus

A-type (i.e., trilinear), B-type (i.e., bilinear) and tadpole (i.e., linear) holomorphic terms

for the scalars with the same structure as the terms in the superpotential. With the

assumption, discussed in section 2.1, that we neglect the couplings λSO and TSO defined in

eq. (2.4), the superpotential WΣ and the soft SUSY-breaking terms that involve only the

adjoint fields are not relevant to the calculation of the two-loop O(αtαs) corrections to the

Higgs masses presented in this paper, apart from contributing to the masses and mixing of

the adjoint fields as discussed in sections 2.1 and 2.2 above.

In the case of the MRSSM, we must add two superfields Ru and Rd with the same

gauge quantum numbers as Hd and Hu, respectively, but with different charges under a

conserved R-symmetry. The superpotential reads

W = WYukawa +WMRSSM , (2.16)

WMRSSM = (µd + λSd
S) Rd ·Hd + λTd Hd ·Ta σa Rd

+ (µu + λSu S) Hu ·Ru + λTu Ru ·Ta σa Hu , (2.17)

while all terms involving only the MSSM-like Higgs superfields and/or the adjoint super-

fields, such as those in eq. (2.15), are forbidden by the R-symmetry. The most general

soft SUSY-breaking Lagrangian for the MRSSM contains non-holomorphic mass terms for

all of the scalars, plus all of the holomorphic terms involving only the MSSM-like Higgs

scalars and/or the adjoint scalars (which, as mentioned above, have no equivalent in the

superpotential). In contrast, the R-symmetry forbids Majorana mass terms for the gaug-

inos, and holomorphic terms for the scalars with the same structure as the terms in the

MRSSM superpotential. The requirement that the R-symmetry is conserved also means

that the scalar doublets Ru and Rd do not develop a vacuum expectation value (vev), and

do not mix with either the MSSM-like Higgs scalars or the adjoint scalars.

– 7 –
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3 Two-loop corrections in the effective potential approach

In this section we adapt to the calculation of two-loop corrections to the neutral Higgs

masses in Dirac-gaugino models the effective-potential techniques developed in ref. [36] for

the MSSM and in ref. [49] for the NMSSM. We start by deriving general results valid for

all variants of Dirac-gaugino extensions of the MSSM, then we provide explicit formulae

for the MDGSSM and MRSSM models discussed in section 2.

3.1 General results

The effective potential for the neutral Higgs sector can be decomposed as Veff = V0 + ∆V ,

where ∆V incorporates the radiative corrections. We denote collectively as Φ0
i the complex

neutral scalars whose masses we want to calculate, and split them into vacuum expectation

values vi, real scalars Si and pseudoscalars Pi as

Φ0
i ≡ vi +

1√
2

(Si + i Pi) . (3.1)

Then the mass matrices for the scalar and pseudoscalar fields can be decomposed as

(M2
S)eff
ij = (M2

S)tree
ij + (∆M2

S)ij , (M2
P )eff

ij = (M2
P )tree

ij + (∆M2
P )ij , (3.2)

and the radiative corrections to the mass matrices are

(∆M2
S)ij = − 1√

2

δij
vi

∂∆V

∂Si

∣∣∣∣
min

+
∂2∆V

∂Si∂Sj

∣∣∣∣
min

, (3.3)

(∆M2
P )ij = − 1√

2

δij
vi

∂∆V

∂Si

∣∣∣∣
min

+
∂2∆V

∂Pi∂Pj

∣∣∣∣
min

, (3.4)

where vi, which we assume to be real, denote the vevs of the full radiatively-corrected

potential Veff , and the derivatives are in turn evaluated at the minimum of the potential.

The single-derivative terms in eqs. (3.3) and (3.4) arise when the minimum conditions of

the potential,
∂Veff

∂Si

∣∣∣∣
min

= 0 , (3.5)

are used to remove the soft SUSY-breaking mass for a given field Φ0
i from the tree-level

parts of the mass matrices. It is understood that those terms should be omitted for fields

that do not develop a vev (such as, e.g., the fields Ru,d in the MRSSM).

With a straightforward application of the chain rule for the derivatives of the effective

potential, the mass-matrix corrections in eqs. (3.3) and (3.4) and the minimum conditions

in eq. (3.5) can be computed by exploiting the Higgs-field dependence of the parameters

appearing in ∆V . We restrict for simplicity our calculation to the so-called “gaugeless

limit”, i.e. we neglect all corrections controlled by the electroweak gauge couplings g and

g′. At the two-loop level, we focus on the contributions to ∆V from top/stop loops that

involve the strong interactions. In Dirac-gaugino models, this results in corrections to mass

matrices and minimum conditions that are proportional to αs times various combinations

of the top Yukawa coupling yt with the superpotential couplings of the singlet and triplet

– 8 –
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fields. It is therefore with a slight abuse of notation that we maintain the MSSM-inspired

habit of denoting collectively those corrections as O(αtαs).

As detailed in refs. [36, 49], if we neglect the electroweak contributions to the stop

mass matrix the parameters in the top/stop sector depend on the neutral Higgs fields only

through two combinations, which we denote as X ≡ |X| eiϕ and X̃ ≡ |X̃| eiϕ̃. They enter

the stop mass matrix as

M2
stop =

(
m2
Q + |X|2 X̃∗

X̃ m2
U + |X|2

)
, (3.6)

where m2
Q and m2

U are the soft SUSY-breaking mass terms for the stops. While X = ytH
0
u

both in the (N)MSSM and in Dirac-gaugino models, the precise form of X̃ depends on the

model under consideration and will be discussed later. For the time being, we only assume

that X̃ is real at the minimum of the potential, to prevent CP-violating contributions to

the Higgs mass matrices. The top/stop O(αs) contribution to ∆V can then be expressed

in terms of five field-dependent parameters, which can be chosen as follows. The squared

top and stop masses

m2
t = |X|2, m2

t̃1,2
=

1

2

[(
m2
Q +m2

U + 2 |X|2
)
±
√

(m2
Q −m2

U )2 + 4 |X̃|2
]
, (3.7)

a mixing angle θ̄t̃, with 0 ≤ θ̄t̃ ≤ π/2, which diagonalises the stop mass matrix after the

stop fields have been redefined to make it real and symmetric

sin 2 θ̄t̃ =
2 |X̃|

m2
t̃1
−m2

t̃2

, (3.8)

and a combination of the phases of X and X̃ that we can choose as

cos(ϕ− ϕ̃) =
Re(X̃) Re(X) + Im(X̃) Im(X)

|X̃| |X|
. (3.9)

Finally, the gluino masses mg̃i and the octet masses m2
Oi

do not depend on the Higgs

background, since we neglect the singlet-octet couplings λSO and TSO. In the following we

will also refer to θt, with −π/2 < θt < π/2, i.e. the usual field-independent mixing angle

that diagonalises the stop mass matrix at the minimum of the scalar potential.

We find general expressions for the top/stop contributions to the minimum condi-

tions of the effective potential and to the corrections to the scalar and pseudoscalar mass

matrices:

∂∆V

∂Si

∣∣∣∣
min

= s2θt

∂X̃

∂Si
F +

√
2 ytmt δi2G , (3.10)

(∆M2
S)ij =

(
s2θt

∂2X̃

∂Si∂Sj
+

2

m2
t̃1
−m2

t̃2

∂X̃

∂Si

∂X̃

∂Sj
− s2θt√

2

δij
vi

∂X̃

∂Sj

)
F

+ 2 y2
t m

2
t δi2δj2 F1 +

√
2mt yt s2θt

(
δi2

∂X̃

∂Sj
+ δj2

∂X̃

∂Si

)
F2 + s2

2θt

∂X̃

∂Si

∂X̃

∂Sj
F3 ,

(3.11)
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(∆M2
P )ij =

(
1

m2
t̃1
−m2

t̃2

∂2|X̃|2

∂Pi∂Pj
− s2θt√

2

δij
vi

∂X̃

∂Sj

)
F

+

(
δi2
v2

X̃ +
√

2 i
∂X̃

∂Pi

)(
δj2
v2

X̃ +
√

2 i
∂X̃

∂Pj

)
tanβ Fϕ , (3.12)

where all quantities are understood as evaluated at the minimum of the potential, no

summation is implied over repeated indices, the fields are ordered as (Φ0
1 ,Φ

0
2 , . . .) =

(H0
d , H

0
u , . . .), and again the terms involving δij/vi should be omitted if Φ0

i does not de-

velop a vev. The angle β is defined as in the MSSM by tan β = v2/v1. Here and thereafter

we also adopt the shortcuts cφ ≡ cosφ and sφ ≡ sinφ for a generic angle φ. The functions

F,G, F1, F2, F3 and Fϕ entering eqs. (3.10)–(3.12) are combinations of the derivatives of

∆V . Explicit expressions for most of those functions can be found e.g. in ref. [49], but we

display all of them here for completeness:

F =
∂∆V

∂m2
t̃1

− ∂∆V

∂m2
t̃2

−
4 c2

2θt

m2
t̃1
−m2

t̃2

∂∆V

∂c2
2θ̄t

, (3.13)

G =
∂∆V

∂m2
t

+
∂∆V

∂m2
t̃1

+
∂∆V

∂m2
t̃2

, (3.14)

F1 =
∂ 2∆V

(∂m2
t )

2
+

∂ 2∆V

(∂m2
t̃1

)2
+

∂ 2∆V

(∂m2
t̃2

)2
+ 2

∂ 2∆V

∂m2
t∂m

2
t̃1

+ 2
∂ 2∆V

∂m2
t∂m

2
t̃2

+ 2
∂ 2∆V

∂m2
t̃1
∂m2

t̃2

, (3.15)

F2 =
∂ 2∆V

(∂m2
t̃1

)2
− ∂ 2∆V

(∂m2
t̃2

)2
+

∂ 2∆V

∂m2
t∂m

2
t̃1

− ∂ 2∆V

∂m2
t∂m

2
t̃2

−
4 c2

2θt

m2
t̃1
−m2

t̃2

(
∂ 2∆V

∂c2
2θ̄t
∂m2

t

+
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃1

+
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃2

)
, (3.16)

F3 =
∂ 2∆V

(∂m2
t̃1

)2
+

∂ 2∆V

(∂m2
t̃2

)2
− 2

∂ 2∆V

∂m2
t̃1
∂m2

t̃2

− 2

m2
t̃1
−m2

t̃2

(
∂∆V

∂m2
t̃1

− ∂∆V

∂m2
t̃2

)
+

16 c2
2θt

(m2
t̃1
−m2

t̃2
)2

(
c2

2θt

∂ 2∆V

(∂c2
2θ̄t

)2
+ 2

∂∆V

∂c2
2θ̄t

)
−

8 c2
2θt

m2
t̃1
−m2

t̃2

(
∂ 2∆V

∂c2
2θ̄t
∂m2

t̃1

− ∂ 2∆V

∂c2
2θ̄t
∂m2

t̃2

)
,

(3.17)

Fϕ = − 2 zt cotβ

s2
2θt

(m2
t̃1
−m2

t̃2
)2

∂∆V

∂cϕt−ϕ̃t

, (3.18)

where we defined zt ≡ sign(X̃|min).

3.2 Two-loop top/stop contributions to the effective potential

For the computation of the two-loop O(αtαs) corrections to the Higgs mass matrices in

models with Dirac gauginos we need the explicit expression for the top/stop O(αs) contri-

bution to ∆V , expressed in terms of the field-dependent parameters defined in the previous

section. In addition to the contributions of diagrams involving gluons, gluinos or the D-

term-induced quartic stop couplings, which are in common with the (N)MSSM and can be

found in ref. [36], ∆V receives a contribution from the diagram shown in figure 1, involving

stops and octet scalars.
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Oi

t̃j

t̃k

Figure 1. Novel two-loop contribution to the effective potential involving stops and octet scalars.

We assume that the gaugino masses are real so that the diagonalising matrix Rij is

real and R2
1i is positive, but allow mg̃i to be negative. Since R2

11 + R2
12 = 1, we can

simply write the top/stop O(αs) contribution to the two-loop effective potential (in units

of αsCFNc /(4π)3, where CF = 4/3 and Nc = 3 are colour factors) as

∆V αs =

2∑
i=1

R2
1i ∆V αs

MSSM + ∆V αs
octet , (3.19)

where ∆V αs
MSSM is the analogous contribution in the (N)MSSM,

∆V αs
MSSM = 2 J(m2

t ,m
2
t )− 4m2

t I(m2
t ,m

2
t , 0)

+

{
2m2

t̃1
I(m2

t̃1
,m2

t̃1
, 0) + 2L(m2

t̃1
,m2

g̃i ,m
2
t )− 4mtmg̃i s2θ̄ cϕ−ϕ̃ I(m2

t̃1
,m2

g̃i ,m
2
t )

+
1

2
(1 + c2

2θ̄) J(m2
t̃1
,m2

t̃1
) +

s2
2θ̄

2
J(m2

t̃1
,m2

t̃2
) +

[
mt̃1
↔ mt̃2

, s2θ̄ → −s2θ̄

]}
,

(3.20)

while ∆V αs
octet is the additionalO(αs) contribution of the two-loop diagram shown in figure 1,

involving stops and octet scalars. The latter can be decomposed as

∆V αs
octet ≡ m2

D(c2
φO

∆VO1 + s2
φO

∆VO2) , (3.21)

with

∆VOi = −2 c2
2θ̄t

[
I(m2

t̃1
,m2

t̃1
,m2

Oi
) + I(m2

t̃2
,m2

t̃2
,m2

Oi
)
]
− 4 s2

2θ̄t
I(m2

t̃1
,m2

t̃2
,m2

Oi
) . (3.22)

The two-loop integrals J(x, y), I(x, y, z) and L(x, y, z) entering eqs. (3.20) and (3.22) are

defined, e.g., in eqs. (D1)–(D3) of ref. [49], and were first introduced in ref. [76]. Explicit

expressions for the derivatives of ∆V αs , valid for all Dirac-gaugino models considered in

this paper, are provided in appendix A.

We remark that, by using the “minimally subtracted” two-loop integrals of ref. [76],

we are implicitly assuming a DR renormalisation for the parameters entering the tree-level

and one-loop parts of the effective potential. Consequently, our results for the two-loop

top/stop contributions to mass matrices and minimum conditions also assume that the

corresponding tree-level and one-loop parts are expressed in terms of DR-renormalised

parameters. We will describe in section 3.5 how our two-loop formulae should be modified
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if the top/stop parameters entering the one-loop part of the corrections are expressed in

a different renormalisation scheme. For what concerns the parameters entering the tree-

level mass matrices for scalars and pseudoscalars — whose specific form depends on the

Dirac-gaugino model under consideration — they can be taken directly as DR-renormalised

inputs at some reference scale Q, at least in the absence of any experimental information on

an extended Higgs sector. Exceptions are given by the electroweak gauge couplings and by

the combination of doublet vevs v ≡ (v2
1 +v2

2)1/2, which in general should be extracted from

experimentally known observables such as, e.g., the muon decay constant and the gauge-

boson masses. As was pointed out for the NMSSM in ref. [50], the extraction of the DR

parameter v(Q) involves two-loop corrections whose effects on the scalar and pseudoscalar

mass matrices are formally of the same order as some of the O(αtαs) corrections computed

in this paper.3 However, a two-loop determination of v(Q) goes beyond the scope of our

calculation, as it requires two-loop contributions to the gauge-boson self-energies which

cannot be obtained with effective-potential methods. Besides, ref. [50] showed that, at

least in the NMSSM scenarios considered in that paper, the O(αtαs) effects on the scalar

masses arising from the two-loop corrections to v are quite small, typically of the order of

a hundred MeV.

3.3 Mass corrections in the MDGSSM

The MDGSSM contains a singlet S and an SU(2) triplet T a which mix with the usual

Higgs fields Hd and Hu. In this model, the stop mixing term X̃ defined in eq. (3.6) reads

X̃ = yt(AtH
0
u − µH0 ∗

d − λS S∗H0 ∗
d − λT T 0 ∗H0 ∗

d ) , (3.23)

where At is the soft SUSY-breaking trilinear interaction term for Higgs and stops. We

order the neutral components of the fields as Φ0
i = (H0

d , H
0
u, S, T

0) and expand them as

in eq. (3.1). For the minimum conditions of the effective potential, eq. (3.10) gives

∂∆V

∂S1

∣∣∣∣
min

= −yt
µ̃√
2
s2θt F , (3.24)

∂∆V

∂S2

∣∣∣∣
min

=
√

2 ytmtG+ yt
At√

2
s2θt F , (3.25)

∂∆V

∂S3

∣∣∣∣
min

= −yt
λS v1√

2
s2θt F , (3.26)

∂∆V

∂S4

∣∣∣∣
min

= −yt
λT v1√

2
s2θt F , (3.27)

3These additional O(αtαs) effects arise from terms in the tree-level mass matrices in which v appears in

combination with the singlet or triplet superpotential couplings. In contrast, in the MSSM all occurrences

of v in the tree-level mass matrices are multiplied by the electroweak gauge couplings, thus they are not

relevant in the gaugeless limit.
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where we defined µ̃ ≡ µ+λS v3 +λT v4. For the corrections to the mass matrices of scalars

and pseudoscalars, eqs. (3.11) and (3.12) give

(∆M2
S)11 =

1

2
y2
t µ̃

2 s2
2θt F3 +

y2
t At µ̃ tanβ

m2
t̃1
−m2

t̃2

F , (3.28)

(∆M2
S)12 = − y2

t mt µ̃ s2θt F2 −
1

2
y2
t At µ̃ s

2
2θt F3 −

y2
t At µ̃

m2
t̃1
−m2

t̃2

F , (3.29)

(∆M2
S)22 = 2 y2

t m
2
t F1 + 2 y2

t mtAt s2θt F2 +
1

2
y2
t A

2
t s

2
2θt F3 +

y2
tAt µ̃ cotβ

m2
t̃1
−m2

t̃2

F , (3.30)

(∆M2
S)13 =

1

2
yt λSmt µ̃ cotβ s2

2θt F3 −
yt λSmt (At − 2 µ̃ cotβ)

m2
t̃1
−m2

t̃2

F , (3.31)

(∆M2
S)23 = − yt λSm2

t cotβ s2θt F2 −
1

2
yt λS Atmt cotβ s2

2θt F3 −
yt λSmtAt cotβ

m2
t̃1
−m2

t̃2

F ,

(3.32)

(∆M2
S)33 =

1

2
λ2
Sm

2
t cot2 β s2

2θt F3 +
λSm

2
t cotβ

(
At + (λS v3 − µ̃) cotβ

)
v3 (m2

t̃1
−m2

t̃2
)

F , (3.33)

(∆M2
S)14 =

1

2
yt λT mt µ̃ cotβ s2

2θt F3 −
yt λT mt (At − 2 µ̃ cotβ)

m2
t̃1
−m2

t̃2

F , (3.34)

(∆M2
S)24 = − yt λT m2

t cotβ s2θt F2 −
1

2
yt λT Atmt cotβ s2

2θt F3 −
yt λT mtAt cotβ

m2
t̃1
−m2

t̃2

F ,

(3.35)

(∆M2
S)34 =

1

2
λS λT m

2
t cot2 β s2

2θt F3 +
λS λT m

2
t cot2 β

m2
t̃1
−m2

t̃2

F , (3.36)

(∆M2
S)44 =

1

2
λ2
T m

2
t cot2 β s2

2θt F3 +
λT m

2
t cotβ

(
At + (λT v4 − µ̃) cotβ

)
v4 (m2

t̃1
−m2

t̃2
)

F , (3.37)

(∆M2
P )11 =

y2
t At µ̃ tanβ

m2
t̃1
−m2

t̃2

F + y2
t µ̃

2 tanβ Fϕ , (3.38)

(∆M2
P )12 =

y2
t At µ̃

m2
t̃1
−m2

t̃2

F + y2
t µ̃

2 Fϕ , (3.39)

(∆M2
P )22 =

y2
t At µ̃ cotβ

m2
t̃1
−m2

t̃2

F + y2
t µ̃

2 cotβ Fϕ , (3.40)

(∆M2
P )13 =

yt λSmtAt
m2
t̃1
−m2

t̃2

F + yt λSmt µ̃ Fϕ , (3.41)

(∆M2
P )23 =

yt λSmtAt cotβ

m2
t̃1
−m2

t̃2

F + yt λSmt µ̃ cotβ Fϕ , (3.42)

(∆M2
P )33 =

λSm
2
t cotβ

(
At + (λS v3 − µ̃) cotβ

)
v3 (m2

t̃1
−m2

t̃2
)

F + λ2
Sm

2
t cotβ Fϕ , (3.43)

(∆M2
P )14 =

yt λT mtAt
m2
t̃1
−m2

t̃2

F + yt λT mt µ̃ Fϕ , (3.44)
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(∆M2
P )24 =

yt λT mtAt cotβ

m2
t̃1
−m2

t̃2

F + yt λT mt µ̃ cotβ Fϕ , (3.45)

(∆M2
P )34 =

λS λT m
2
t cot2 β

m2
t̃1
−m2

t̃2

F + λS λT m
2
t cotβ Fϕ , (3.46)

(∆M2
P )44 =

λT m
2
t cotβ

(
At + (λT v4 − µ̃) cotβ

)
v4 (m2

t̃1
−m2

t̃2
)

F + λ2
T m

2
t cotβ Fϕ . (3.47)

3.4 Mass corrections in the MRSSM

The MRSSM is defined to be R-symmetric, and has fields Ru, Rd which pair with the Higgs

fields without themselves developing vevs. In this model the gluino mass terms are purely

Dirac, therefore, in our conventions, R2
11 = R2

12 = 1/2 and mg̃1 = −mg̃2 = mD. The

trilinear Higgs-stop coupling At is forbidden, and the term X̃ defined in eq. (3.6) reads

X̃ = −yt (µu + λSu S
∗ + λTu T

0 ∗)R0 ∗
u , (3.48)

and vanishes at the minimum of the scalar potential, hence the stops do not mix. More-

over, the term proportional to cϕ−ϕ̃ in the second line of eq. (3.20) cancels out in the

sum over the gluino masses. As a consequence, the radiative corrections induced by

top/stop loops are remarkably simple. Ordering the neutral components of the fields as

Φ0
i = (H0

d , H
0
u, S, T

0, R0
d, R

0
u), we find that the only non-vanishing contributions to the

minimum conditions of the potential and to the Higgs mass matrices are

∂∆V

∂S2

∣∣∣∣
min

=
√

2 ytmtG , (3.49)

(∆M2
S)22 = 2 y2

t m
2
t F1 , (3.50)

(∆M2
S)66 = (∆M2

P )66 =
y2
t µ̃

2
u

m2
t̃1
−m2

t̃2

F , (3.51)

where we defined µ̃u ≡ µu + λSu v3 + λTu v4.

3.5 On-shell parameters in the top/stop sector

The results presented so far for the two-loop corrections to the neutral Higgs masses in

models with Dirac gauginos were obtained under the assumption that the parameters

entering the tree-level and one-loop parts of the mass matrices are renormalised in the DR

scheme. While this choice allows for a straightforward implementation of our results in

automated calculations such as the one of SARAH, it is well known that, in the DR scheme,

the Higgs-mass calculation can be plagued by unphysically large contributions if there is a

hierarchy between the masses of the particles running in the loops [36]. In particular, the

contributions of two-loop diagrams involving stops and gluinos include terms proportional

to m2
g̃i
/m2

t̃j
, which can become very large in scenarios with gluinos much heavier than the

stops. Since this kind of hierarchy can occur naturally (i.e., without excessive fine tuning

in the squark masses) in scenarios with Dirac gluino masses [4], it is useful to re-express

the one-loop part of the corrections to the Higgs masses in terms of OS-renormalised
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top/stop parameters. In that case, the terms proportional to m2
g̃i

in the two-loop part of

the corrections cancel out against analogous contributions induced by the OS counterterms,

leaving only a milder logarithmic dependence of the Higgs masses on the gluino masses.

Since we are focusing on the O(αtαs) corrections to the Higgs masses, we need to

provide an OS prescription only for parameters in the top/stop sector that are subject to

O(αs) corrections, i.e. mt, m
2
t̃1

, m2
t̃2

and θt. In models that allow for a trilinear Higgs-stop

coupling At — such as the MDGSSM, see eq. (3.23) — its counterterm can be derived

from those of the other four parameters via the relation (m2
t̃1
−m2

t̃2
) sin 2θt = 2 X̃|min (in

general, the stop mixing X̃|min contains other terms in addition to mtAt, but they are

exempt from O(αs) corrections). Finally, since the vevs vi are not renormalised at O(αs),

the top Yukawa coupling yt receives the same relative correction as the top mass. Defining

xDR
k = xOS

k + δxk for each parameter xk ≡ (mt, m
2
t̃1
, m2

t̃2
, θt, At), the DR–OS shifts of top

and stop masses and mixing are given in terms of the finite parts (here denoted by a hat)

of the top and stop self-energies

δmt = Σ̂t(mt) , δm2
t̃i

= Π̂ii(m
2
t̃i

) (i = 1, 2) , δθt =
1

2

Π̂12(m2
t̃1

) + Π̂12(m2
t̃2

)

m2
t̃1
−m2

t̃2

,

(3.52)

and the shift for the trilinear coupling reads

δAt =

(
δm2

t̃1
− δm2

t̃2

m2
t̃1
−m2

t̃2

− δmt

mt
+ 2 cot 2θt δθt

)
X̃
∣∣
min

. (3.53)

As in the case of the two-loop effective potential in eq. (3.19), the DR–OS shifts δxk can

be cast as

δxk =

2∑
i=1

R2
1i (δxMSSM

k )i + δxoctet
k , (3.54)

where (δxMSSM
k )i are obtained, with the trivial replacement mg̃ → mg̃i , from the MSSM

shifts given in appendix B of ref. [36], whereas δxoctet
k are novel contributions involving

the octet scalar. In particular, δmoctet
t = 0, and the remaining shifts can be obtained by

combining as in eqs. (3.52) and (3.53) the octet contributions to the finite parts of the stop

self-energies:

Π̂11(m2
t̃1

)octet =
g2
s m

2
D

4π2
CF c

2
φO

[
c2

2θt B̂0(m2
t̃1
,m2

t̃1
,m2

O1
) + s2

2θt B̂0(m2
t̃1
,m2

t̃2
,m2

O1
)
]

+ (cφO → sφO , mO1 → mO2) , (3.55)

Π̂22(m2
t̃2

)octet =
g2
s m

2
D

4π2
CF c

2
φO

[
c2

2θt B̂0(m2
t̃2
,m2

t̃2
,m2

O1
) + s2

2θt B̂0(m2
t̃2
,m2

t̃1
,m2

O1
)
]

+ (cφO → sφO , mO1 → mO2) , (3.56)

Π̂12(p2)octet = −
g2
s m

2
D

4π2
CF c

2
φO
c2θt s2θt

[
B̂0(p2,m2

t̃1
,m2

O1
)− B̂0(p2,m2

t̃2
,m2

O1
)
]

+ (cφO → sφO , mO1 → mO2) , (3.57)

where B̂0(p2,m2
1,m

2
2) is the finite part of the Passarino-Veltman function.
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The change in renormalisation scheme for the top/stop parameters entering the one-

loop (1`) part of the corrections to the Higgs mass matrices induces a shift in the two-loop

(2`) part of the corrections:

δ(∆M2
S,P )2`

ij =
∑
k

δxk
∂

∂xk
(∆M2

S,P )1`
ij . (3.58)

Analogous expressions hold for the shifts in the two-loop part of the minimum conditions

of the effective potential. The one-loop corrections entering the equation above can be

obtained by inserting in eqs. (3.10)–(3.12) the one-loop expressions for the functions F , G,

F1,2,3 and Fϕ. In units of Nc/(16π2), these read:

F 1` = m2
t̃1

(
ln
m2
t̃1

Q2
− 1

)
−m2

t̃2

(
ln
m2
t̃2

Q2
− 1

)
,

G1` = m2
t̃1

(
ln
m2
t̃1

Q2
− 1

)
+m2

t̃2

(
ln
m2
t̃2

Q2
− 1

)
− 2m2

t

(
ln
m2
t

Q2
− 1

)
,

F 1`
1 = ln

m2
t̃1
m2
t̃2

m4
t

, F 1`
2 = ln

m2
t̃1

m2
t̃2

, F 1`
3 =

(
2−

m2
t̃1

+m2
t̃2

m2
t̃1
−m2

t̃2

ln
m2
t̃1

m2
t̃2

)
, F 1`

ϕ = 0 ,

(3.59)

where Q is the renormalisation scale at which the parameters entering the tree-level and

one-loop parts of the mass matrices are expressed. As mentioned above, the DR–OS shifts

derived in eq. (3.58) cancel the power-like dependence of the two-loop corrections on the

gluino masses.

3.6 Obtaining the O(αbαs) corrections

Our DR computation of the O(αtαs) corrections allows us to obtain also the two-loop

O(αbαs) corrections induced by the bottom/sbottom sector, which can be relevant for large

values of tan β. To this purpose, the substitutions t → b, u → d, ∂∆V/∂S1 ↔ ∂∆V/∂S2,

(∆M2
S,P )11 ↔ (∆M2

S,P )22, (∆M2
S,P )1k ↔ (∆M2

S,P )2k (with k > 2) and tan β ↔ cotβ

must be performed in the formulae of sections 3.3 and 3.4. In the case of the bot-

tom/sbottom corrections, however, passing from the DR scheme to the OS scheme would

involve additional complications, as explained in ref. [38].

3.7 Simplified formulae

Having computed the general expressions for the two-loop corrections to the neutral Higgs

masses in models with Dirac gauginos, it is now interesting to provide some approximate

results for the dominant corrections to the mass of a SM-like Higgs. We focus on the case

of a purely-Dirac mass term for the gluinos, which — as mentioned earlier — implies that

we can set R2
11 = R2

12 = 1/2 and mg̃1 = −mg̃2 = mg̃, with mg̃ ≡ mD. We also restrict

ourselves to the decoupling limit in which all neutral states except a combination of H0
d

and H0
u are heavy, so that

H0
d ≈

(
v +

h√
2

)
cosβ + . . . , H0

u ≈
(
v +

h√
2

)
sinβ + . . . , (3.60)
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where v ≈ 174 GeV, and all other fields have negligible mixing with the lightest scalar h,

which is SM-like. We can then approximate the correction to the squared mass m2
h as

∆m2
h ≈ cos2 β (∆M2

S)11 + sin2 β (∆M2
S)22 + sin 2β (∆M2

S)12 . (3.61)

Finally, we assume that the superpotential couplings of the adjoint fields (e.g., the couplings

λS and λT in the MDGSSM) are subdominant with respect to the top Yukawa coupling,

so that we can focus on the two-loop corrections proportional to αsm
4
t /v

2.

With these restrictions, we shall give useful formulae valid for a phenomenologically

interesting subspace of all extant Dirac gaugino models; while in the following we refer to

simplified MDGSSM and MRSSM scenarios, this merely reflects whether stop mixing is

allowed.

3.7.1 Common SUSY-breaking scale

We first consider a simplified MDGSSM scenario in which the soft SUSY-breaking masses

for the two stops and the Dirac mass of the gluinos are large and degenerate, i.e. mQ =

mU = mg̃ = MS with MS � mt. Expanding our result4 for the top/stop contributions to

∆m2
h at the leading order in mt/MS , we can decompose it as

∆m2
h ≈

3m4
t

4π2v2

[
ln
M2
S

m2
t

+ X̂2
t −

X̂4
t

12

]
+ (∆m2

h)“MSSM”
2` + c2

φO
(∆m2

h)O1
2` + s2

φO
(∆m2

h)O2
2` ,

(3.62)

where X̂t ≡ Xt/MS , in which Xt = At − µ̃ cotβ is the left-right mixing term in the stop

mass matrix with µ̃ defined as in section 3.3. The first term in ∆m2
h is the dominant

1-loop contribution from diagrams with top quarks or stop squarks, which is the same as

in the MSSM. The second term is the O(αtαs) contribution from two-loop, MSSM-like

diagrams involving gluons, gluinos or a four-stop interaction. Under the assumption that

the parameters mt, MS and At entering the one-loop part of the correction are renormalised

in the DR scheme at the scale Q, it reads

(∆m2
h)“MSSM”

2` =
αsm

4
t

2π3v2

{
ln2 M

2
S

m2
t

−2 ln2 M
2
S

Q2
+2 ln2 m

2
t

Q2
+ln

M2
S

m2
t

−1+X̂2
t

[
1−2 ln

M2
S

Q2

]
−X̂

4
t

12

}
.

(3.63)

We remark that this correction differs from the usual one in the MSSM, see e.g. eq. (21) of

ref. [34], due to the absence of terms involving odd powers of X̂t. Indeed, those terms are

actually proportional to the gluino masses, and in the considered scenario they cancel out

of the sum over the gluino mass eigenstates, because mg̃1 = −mg̃2 . If the parameters mt,

MS and At are renormalised in the OS scheme as described in section 3.5, the correction

reads instead

(∆m2
h)“MSSM”

2` = −3αsm
4
t

2π3v2

{
ln2 M

2
S

m2
t

+
[
2 + X̂2

t

]
ln
M2
S

m2
t

+
X̂4
t

4

}
. (3.64)

4We have verified that, for MS = 1 TeV and for |X̂t| up to the “maximal mixing” value of
√

6, the

predictions for mh obtained with the simplified formulae of this section agree at the per-mil level with

the unexpanded result. For larger MS the accuracy of our approximation improves, and for |X̂t| >
√

6 it

degrades.

– 17 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
5

Note that the explicit dependence on the renormalisation scale Q drops out. Again, this

correction differs from the usual one in the MSSM, see e.g. the first line in eq. (20) of

ref. [35], due to the absence of a term linear in X̂t.

Finally, the last two terms on the right-hand side of eq. (3.62) represent the O(αtαs)

contributions of two-loop diagrams with stops and octet scalars, which are specific to

models with Dirac gluinos. In the DR scheme they read

(∆m2
h)Oi

2` = −αsm
4
t

π3v2

{
1− ln

M2
S

Q2
+ f(xi)− X̂2

t

[
1− ln

m2
Oi

Q2
+ 2xi f(xi)

]
+
X̂4
t

6

[
1 + 3xi (1 + lnxi)− ln

m2
Oi

Q2
+ 6x2

i f(xi)

]}
, (3.65)

where xi ≡M2
S/m

2
Oi

, and the function f(x) is defined as

f(x) =
1

1− 4x

[
lnx+ xφ

(
1

4x

)]
, (3.66)

φ(z) being the function defined in eq. (45) of ref. [37]. Special limits of the function in

eq. (3.66) above are f(1/4) = −2 (1 + ln 4)/3 and f(1) ≈ −0.781302. In the OS scheme the

octet-scalar contributions receive — at the leading order in mt/MS — the shift

δ(∆m2
h)Oi

2` =
αsm

4
t

π3v2

{
Bi −

(
X̂2
t −

X̂4
t

6

)[
3Bi + 2 ln

m2
Oi

Q2
− 2

]}
, (3.67)

where Bi ≡ B̂0(M2
S ,M

2
S ,m

2
Oi

) = − ln(m2
Oi
/Q2) + g(M2

S/m
2
Oi

), with the function g(x) de-

fined as

g(x) =

{
2−

(
1− 1

2x

)
lnx− 1

x

√
4x− 1 arctan

√
4x− 1 (x > 1/4)

2−
(
1− 1

2x

)
lnx+ 1

x

√
1− 4x arctanh

√
1− 4x (x < 1/4) .

(3.68)

Again, it can be easily checked that the explicit dependence on Q cancels out in the sum

of eqs. (3.65) and (3.67).

3.7.2 MRSSM with heavy Dirac gluino

The second simplified scenario we consider is the R-symmetric model of section 3.4, in the

limit of heavy Dirac gluino, i.e. mg̃ � mt̃i
. This is a phenomenologically interesting limit

because Dirac gaugino masses are “supersoft”, i.e. they can be substantially larger than

the squark masses without spoiling the naturalness of the model [4].

In the MRSSM the left and right stops do not mix, hence we set θt = 0 in our formulae,

but we allow for the possibility of different stop masses mt̃1
and mt̃2

. In the decoupling

limit of the Higgs sector, where we neglect the mixing with the heavy neutral states, the

correction to the SM-like Higgs mass reduces to ∆m2
h ≈ sin2 β (∆M2

S)22. In analogy to

eq. (3.62), the correction can in turn be decomposed in a dominant one-loop part, a two-

loop, MSSM-like O(αtαs) contribution and two-loop octet-scalar contributions:

∆m2
h ≈

3m4
t

8π2v2
ln
m2
t̃1
m2
t̃2

m4
t

+ (∆m2
h)“MSSM”

2` + c2
φO

(∆m2
h)O1

2` + s2
φO

(∆m2
h)O2

2` . (3.69)
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Assuming that the top and stop masses in the one-loop part of the correction are DR-

renormalised parameters at the scale Q, and expanding our results in inverse powers of m2
g̃,

the contribution of two-loop, MSSM-like diagrams involving gluons, gluinos or a four-stop

coupling reads

(∆m2
h)“MSSM”

2` =
αsm

4
t

4π3v2

{
2m2

g̃

m2
t̃1

(
1− ln

m2
g̃

Q2

)
+

2π2

3
− 2− 6 ln

m2
g̃

m2
t̃1

+ 2 ln
m2
t

Q2

+
2m2

t

m2
t̃1

(
1− ln

m2
g̃

Q2

)
+ ln2

m2
g̃

m2
t

+ ln2
m2
g̃

m2
t̃1

+ 2 ln2 m
2
t

Q2
− 2 ln2

m2
t̃1

Q2

+
2m2

t

m2
g̃

[
2π2

3

(
2 +

m2
t̃1

m2
t

)
− 2−

(
8 +

m2
t

m2
t̃1

)
ln
m2
g̃

m2
t

− 4 ln
m2
g̃

m2
t̃1

−
m2
t̃1

m2
t

(
2+6 ln

m2
g̃

m2
t̃1

+ln
m2
g̃

m2
t

)
+2

(
2+

m2
t̃1

m2
t

)
ln
m2
g̃

m2
t̃1

ln
m2
g̃

m2
t

]
+O(m−4

g̃ )

}
+
[
m2
t̃1
−→ m2

t̃2

]
, (3.70)

where the last term in square brackets represents the addition of terms obtained from the

previous ones by replacing m2
t̃1

with m2
t̃2

. From eq. (3.70) above it is clear that, in the DR

scheme, the two-loop top-stop-gluino contributions to the SM-like Higgs mass can become

unphysically large when mg̃ � mt̃i
, due to the presence of terms enhanced by m2

g̃/m
2
t̃i

.

This non-decoupling behaviour of the corrections to the Higgs mass in the DR scheme has

already been discussed in the context of the MSSM in ref. [36]. Indeed, the correction in

eq. (3.70) corresponds to the one obtained by setting µ = At = 0 in the MSSM result. The

terms enhanced by m2
g̃/m

2
t̃i

can be removed by expressing the top and stop masses in the

one-loop part of the correction as OS parameters. After including the resulting shifts in

the two-loop correction, we find

(∆m2
h)“MSSM”

2` =
αsm

4
t

4π3v2

{
2π2

3
− 1− 6 ln

m2
g̃

m2
t

− 3 ln2
m2
t̃1

m2
t

+ 2 ln2
m2
g̃

m2
t̃1

+
m2
t

m2
g̃

[
4π2

3

(
2 +

m2
t̃1

m2
t

)
− 20

3
−

14m2
t̃1

3m2
t

+
28

3
ln
m2
t̃1

m2
t

+
2m2

t̃1

m2
t

(
6 + ln

m2
t̃1

m2
t

+ ln
m2
t̃2

m2
t

)
ln
m2
t̃1

m2
t

+
m2
t̃2

m2
t

ln
m2
t̃1

m2
t̃2

− 2

(
12 +

6m2
t̃1

m2
t

+ 4 ln
m2
t̃1

m2
t

+
3m2

t̃1
+m2

t̃2

m2
t

ln
m2
t̃1

m2
t

)
ln
m2
g̃

m2
t

+ 4

(
2 +

m2
t̃1

m2
t

)
ln2

m2
g̃

m2
t

]
+O(m−4

g̃ )

}
+
[
m2
t̃1
←→ m2

t̃2

]
,

(3.71)

where the last term in square brackets represents the addition of terms obtained from the

previous ones by swapping m2
t̃1

and m2
t̃2

. By taking the limit mt̃1
= mt̃2

= mt̃ in the

equation above we recover eq. (42) of ref. [36].
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In the MRSSM, the contributions to ∆m2
h arising from two-loop diagrams with stops

and octet scalars allow for fairly compact expressions. If the stop masses in the one-loop

part of the correction are renormalised in the DR scheme, those contributions read

(∆m2
h)Oi

2` = − αsm
4
t

2π3v2

m2
g̃

m2
t̃1

{
1− ln

m2
t̃1

Q2
+ f

(m2
t̃1

m2
Oi

)}
+
[
m2
t̃1
−→ m2

t̃2

]
, (3.72)

where f(x) is the function defined in eq. (3.66). For OS stop masses, the octet-scalar

contributions to ∆m2
h read instead

(∆m2
h)Oi

2` = − αsm
4
t

2π3v2

m2
g̃

m2
t̃1

{
1− ln

m2
t̃1

m2
Oi

+ f

(m2
t̃1

m2
Oi

)
− g
(m2

t̃1

m2
Oi

)}
+
[
m2
t̃1
−→ m2

t̃2

]
, (3.73)

where g(x) is the function defined in eq. (3.68). It would appear from eqs. (3.72) and (3.73)

above that, independently of the renormalisation scheme adopted for the stop masses, the

octet-scalar contributions to ∆m2
h are enhanced by a factor m2

g̃. This is due to the fact that

the trilinear squark-octet interaction, see eq. (2.8), is proportional to the Dirac mass term

mD — i.e., to mg̃. However, as discussed in section 2.1, one of the mass eigenvalues for

the octet scalars — to fix the notation, let us assume it is m2
O1

— does in turn grow with

the gluino mass, namely m2
O1
≈ 4m2

D when m2
D becomes much larger than the soft SUSY-

breaking mass terms for the octet scalars. Expanding the corresponding contribution to

∆m2
h in inverse powers of m2

O1
we find, in the DR scheme,

(∆m2
h)O1

2` = −αsm
4
t

4π3v2

m2
g̃

m2
O1

{
2
m2
O1

m2
t̃1

(
1− ln

m2
O1

Q2

)
+

2π2

3
+ 8 ln

m2
t̃1

m2
O1

+ 2 ln2
m2
t̃1

m2
O1

+
4m2

t̃1

m2
O1

[
π2 − 2 + 10 ln

m2
t̃1

m2
O1

+ 3 ln2
m2
t̃1

m2
O1

]
+O(m−4

O1
)

}
+
[
m2
t̃1
−→ m2

t̃2

]
, (3.74)

which does indeed contain potentially large terms enhanced by the ratio m2
g̃/m

2
t̃i

. Note that

those terms cancel only partially the corresponding terms in the MSSM-like contribution

— see the first term in the curly brackets of eq. (3.70) — leaving residues proportional to

m2
g̃/m

2
t̃i

ln(m2
O1
/m2

g̃). On the other hand, in the OS scheme we find

(∆m2
h)O1

2` = −αsm
4
t

4π3v2

m2
g̃

m2
O1

{
2π2

3
− 1 + 6 ln

m2
t̃1

m2
O1

+ 2 ln2
m2
t̃1

m2
O1

+
4m2

t̃1

m2
O1

[
π2 − 17

6
+ 9 ln

m2
t̃1

m2
O1

+ 3 ln2
m2
t̃1

m2
O1

]
+O(m−4

O1
)

}
+
[
m2
t̃1
−→ m2

t̃2

]
. (3.75)

Thus, we see that in the OS scheme the contribution to ∆m2
h from two-loop diagrams

involving the heaviest octet scalar O1 does not grow unphysically large when m2
g̃ increases,

because the ratio m2
g̃/m

2
O1

tends to 1/4. In contrast, for the contribution of the lightest

– 20 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
5

octet scalar O2, whose squared mass does not grow with m2
g̃, the unexpanded formulae in

eqs. (3.72) and (3.73) should always be used. However, in the total correction to m2
h —

see eq. (3.69) — the m2
g̃ enhancement of (∆m2

h)O2
2` is compensated for by the factor s2

φO
,

which, as discussed in section 2.1, is in fact suppressed by m−4
g̃ in the heavy-gluino limit.

In summary, we find that, in the MRSSM with heavy Dirac gluino, neither of the octet

scalars can induce unphysically large contributions to ∆m2
h, as long as the stop masses in

the one-loop part of the correction are renormalised in the OS scheme.

4 Numerical examples

In this section we discuss the numerical impact of the two-loop O(αtαs) corrections to the

Higgs boson masses whose computation was described in the previous section. As we did

for the simplified formulae of section 3.7, we focus on “decoupling” scenarios in which the

lightest neutral scalar is SM-like and the superpotential couplings λS,T are subdominant

with respect to the top Yukawa coupling. Our purpose here is to elucidate the dependence

of the corrections to the SM-like Higgs boson mass mh on relevant parameters such as the

stop masses and mixing and the gluino masses, rather than provide accurate predictions for

all Higgs boson masses in realistic scenarios. We therefore approximate the one-loop part of

the corrections with the dominant top/stop contributions at vanishing external momentum,

obtained by combining the formulae for the Higgs mass matrices given for MDGSSM and

MRSSM in sections 3.3 and 3.4, respectively, with the one-loop functions given in eq. (3.59).

We recall that a computation of the Higgs boson masses in models with Dirac gauginos

could also be obtained in an automated way by means of the package SARAH [51–56]. That

would include the full one-loop corrections [54] and the two-loop corrections computed in

the gaugeless limit at vanishing external momentum [57, 58]. However, the computation

implemented in SARAH employs the DR renormalisation scheme, and does not easily lend

itself to an adaptation to the OS scheme which, as discussed in section 3.7.2, can be more

appropriate in scenarios with heavy gluinos.

The SM parameters entering our computation of the Higgs boson masses, which we

take from ref. [77], are the Z boson mass mZ = 91.1876 GeV, the Fermi constant GF =

1.16637 × 10−5 GeV−2 (from which we extract v = (2
√

2GF )−1/2 ≈ 174 GeV), the pole

top-quark mass mt = 173.21 GeV and the strong gauge coupling of the SM in the MS

renormalisation scheme, αs(mZ) = 0.1185. Concerning the SUSY parameters entering

the scalar mass matrix at tree-level, we set λS = λT = 0 and push the parameters that

determine the heavy-scalar masses to multi-TeV values, so that (m2
h)tree ≈ m2

Z cos2 2β. We

also set tan β = 10, so that the tree-level mass of the SM-like Higgs boson is almost maximal

but the corrections from diagrams involving sbottom squarks, which we neglect, are not

particularly enhanced. For the parameters in the stop mass matrices we take degenerate

soft SUSY-breaking masses mQ = mU = MS , we neglect D-term-induced electroweak

contributions and we treat the whole left-right mixing term Xt = At − µ cotβ as a single

input. Finally, for what concerns the parameters that determine the gluino and octet-

scalar masses we focus again on the case of purely-Dirac gluinos, with mg̃1 = −mg̃2 = mg̃

and R2
11 = R2

12 = 1/2. We also take a vanishing soft SUSY-breaking bilinear BO, so that
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Figure 2. Mass of the SM-like Higgs boson as a function of (Xt/MS)OS, for tan β = 10, MS =

1.5 TeV and mg̃ = mO = 2 TeV. The dashed curve represents the MSSM result, whereas the solid

(dotted) curve represents the MDGSSM result with (without) the octet-scalar contributions.

φO = 0 and only the CP-even octet scalar O1, with mass m2
O1

= m2
O + 4m2

g̃, participates

in the O(αtαs) corrections to the Higgs masses.

4.1 An example in the MDGSSM

In figure 2 we illustrate some differences between the O(αtαs) corrections to the SM-like

Higgs boson mass in the MDGSSM and in the MSSM. We plot mh as a function of the ratio

Xt/MS , setting MS = 1.5 TeV and mg̃ = mO = 2 TeV and adopting the OS renormalisation

scheme for the parameters mt, MS and Xt. We employ the renormalisation-group equations

of the SM to evolve the coupling αs from the input scale mZ to the scale MS , then we

convert it to the DR-renormalised coupling of the considered SUSY model, which we denote

as α̂s(MS), by including the appropriate threshold corrections (in this step, we assume

that all soft SUSY-breaking squark masses are equal to MS). The solid (black) and dashed

(red) curves in figure 2 represent the SM-like Higgs boson mass in the MDGSSM and

in the MSSM, respectively. The comparison between the two curves highlights the fact

that, in contrast with the case of the MSSM, in the MDGSSM with purely-Dirac gluinos

the O(αtαs) corrections to mh are symmetric with respect to a change of sign in Xt. As

mentioned in section 3.7.1, this stems from cancellations between terms proportional to odd

powers of the gluino masses. In the points where mh is maximal, which in the OS calculation

happens for |Xt/MS | ≈ 2, the difference between the MDGSSM and MSSM predictions

for mh is about 1 or 2 GeV, depending on the sign of Xt. Finally, the dotted (blue) curve

in figure 2 represents the prediction for mh obtained in the MDGSSM by omitting the

contributions of two-loop diagrams involving the octet scalars. The comparison between

the solid and dotted curves shows that, in the considered point of the parameter space,

the effect on mh of the octet-scalar contributions is positive but rather small, of the order

of a few hundred MeV. Varying the parameters MS , mg̃ and mO by factors of order two
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Figure 3. Different determinations of the SM-like Higgs boson mass in the MDGSSM as a func-

tion of (Xt/MS)OS, for the same choices of parameters as in figure 2. The solid curve represents

the original OS calculation; the dotted curve represents the DR calculation; the dashed and dot-

dashed curves were obtained using α̂s(mt) and αs(mt), respectively, in the OS calculation instead

of α̂s(MS).

around the values used in figure 2, we find that this is a typical size for the octet-scalar

contributions to mh in the OS scheme.

A discussion of the theoretical uncertainty of our calculation is now in order. In our

numerical examples we are not implementing the full one-loop corrections to the Higgs

boson masses, nor the two-loop corrections beyond O(αtαs) that are available in SARAH, in

order to focus purely on the O(αtαs) corrections. Therefore the only sources of uncertainty

that we can meaningfully estimate are the uncomputed effects of O(αtα
2
s), i.e. those arising

from genuine three-loop diagrams with four strong-interaction vertices and from SUSY-

QCD renormalisation effects of the parameters entering the one- and two-loop corrections.

A common procedure for estimating those effects consists in comparing the results of the

O(αtαs) calculation of mh in the OS scheme with the results obtained by i) converting

the OS input parameters — i.e., the top mass and the stop masses and mixing — to the

DR scheme by means of O(αs) shifts, and ii) computing mh using these DR parameters

in both the one-loop and two-loop corrections, with the appropriate DR formulae for the

O(αtαs) corrections. The two sources of O(αtα
2
s) discrepancies in such a comparison are the

omission of terms quadratic in δxk in the expansion of the one-loop part of the corrections,

eq. (3.58), and the different definition of the top and stop parameters entering the two-loop

part of the corrections. In figure 3 we illustrate the renormalisation-scheme dependence of

the O(αtαs) determination of mh, in the same MDGSSM scenario as in figure 2. The solid

(black) curve represents the results of the original OS calculation, whereas the dotted (blue)

curve represents the results of the DR calculation described above (note that both curves

are plotted as functions of the ratio of OS parameters Xt/MS). The comparison between

the solid and dotted curves would suggest a rather small impact of the uncomputed O(αtα
2
s)

corrections, of the order of one GeV or even less (at least for the considered scenario).

– 23 –



J
H
E
P
0
9
(
2
0
1
6
)
0
4
5

Besides the top mass and the stop masses and mixing, there are a few more parameters

entering theO(αtαs) corrections to the Higgs boson masses whose O(αs) definition amounts

to a three-loop O(αtα
2
s) effect, namely the gluino and octet-scalar masses and the strong

gauge coupling itself. Concerning the masses, in an OS calculation it seems natural to

interpret them as pole ones. For αs, on the other hand, there is no obvious “on-shell”

definition available, and different choices of scheme, scale and even underlying theory —

while all formally equivalent at O(αtαs) for the Higgs-mass calculation — can lead to

significant variations in the numerical results. As mentioned earlier, the solid curve in

figure 3 was obtained with top/stop parameters in the OS scheme, but with αs defined

as the DR-renormalised coupling of the MDGSSM at the stop-mass scale, i.e. α̂s(MS).

However, since both stop squarks and top quarks enter the relevant two-loop diagrams, it

would not seem unreasonable to evaluate the strong gauge coupling at the top-mass scale

either. The dashed (red) and dot-dashed (green) curves in figure 3 represent the predictions

for mh obtained with top/stop parameters still in the OS scheme, but with αs defined as the

DR-renormalised coupling of the MDGSSM at the top-mass scale, α̂s(mt), and as the MS-

renormalised coupling of the SM at the same scale, αs(mt), respectively. The comparison of

these two curves with the solid curve shows that a variation in the definition of the coupling

αs entering the two-loop corrections provides a less-optimistic estimate of the uncertainty

associated to the O(αtα
2
s) corrections compared with the scheme variation of the top/stop

parameters. In particular, for the considered scenario the use of αs(mt) would induce a

negative variation with respect to the results obtained with α̂s(MS) of about 4 GeV for

Xt ≈ 0 and about 7 GeV for |Xt/MS | ≈ 2. In contrast, the use of α̂s(mt) would induce a

positive variation of about 1 GeV for Xt ≈ 0 and about 2 GeV for |Xt/MS | ≈ 2, i.e. more

modest than the previous one but still larger than the one induced by a scheme change in

the top/stop parameters. While remaining agnostic about the true size (and sign) of the

three-loop O(αtα
2
s) corrections, we take this as a cautionary tale against putting too much

stock in any single estimate of the theoretical uncertainty of a fixed-order calculation of

mh in scenarios with TeV-scale superparticles.

4.2 An example in the MRSSM

In our second numerical example we consider the MRSSM, and illustrate the dependence

of the SM-like Higgs boson mass on the gluino mass. In ref. [68] it was pointed out that,

for multi-TeV values of mg̃, the contribution of two-loop diagrams involving octet scalars

can increase the prediction for mh by more than 10 GeV. We will show that such large

effects are related to the non-decoupling behaviour of the DR calculation of mh that we

discussed in section 3.7.2, and that the octet-scalar contributions are much more modest

in an OS calculation.

The upper (blue) and lower (red) solid curves in figure 4 represent the SM-like Higgs

boson mass obtained from the DR calculation as a function of mg̃, with and without the

octet-scalar contributions, respectively. We set mO = 2 TeV and MS = 1 TeV. The latter is

interpreted as a DR-renormalised soft SUSY-breaking parameter evaluated at a scale equal

to MS itself, which means that each point in the solid curves corresponds to a different

value of the physical stop masses. Both curves show a marked dependence on mg̃, and
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MS = 1 TeV and mO = 2 TeV. The meaning of the different curves is explained in the text.

the comparison between them shows that, for the highest value of mg̃ considered in the

plot, the effect on mh of the two-loop octet-scalar contributions does indeed grow to about

9 GeV. However, as can be seen in the explicit formulae for the two-loop corrections in

the DR scheme of eqs. (3.70) and (3.74), this marked dependence of both the gluino and

octet-scalar contributions on mg̃ is induced by terms enhanced by the ratio m2
g̃/M

2
S . When

that ratio becomes large, which in Dirac-gaugino models can occur naturally, the size of

the two-loop O(αtαs) corrections to mh can grow up to a point where the accuracy of

the perturbative expansion is called into question. To visualise this aspect, we perform

a change of renormalisation scheme for the top and stop masses that mirrors the one

represented by the dotted curve in figure 3. The upper (blue) and lower (red) dashed curves

in figure 4 represent the values of mh obtained with and without octet-scalar contributions,

respectively, after converting the DR stop masses into the physical ones and using the latter,

together with the physical top mass, in both the one-loop and two-loop corrections, with

the appropriate OS formulae for the O(αtαs) corrections. For our choice of the DR input

parameterMS(MS) = 1 TeV, we find that the physical stop masses range between 1072 GeV

and 1392 GeV for the values of mg̃ shown in the plot. If the octet-scalar contributions to

the O(αs) stop self-energies are omitted, the stop masses range instead between 1049 GeV

and 346 GeV, i.e. they become smaller for increasing mg̃ (indeed, in this case mg̃ cannot

be pushed to values much larger than those shown in the plot without rendering the stop

masses tachyonic). The comparison between the solid and dashed curves shows that the

scheme dependence of the O(αtαs) calculation of mh becomes increasingly worse at large

values of mg̃, especially in the lower curves where the octet-scalar contributions are omitted.

Finally, the (black) dotted and dot-dashed curves in figure 4 represent the predictions for

mh obtained directly from the OS calculation with and without octet-scalar contributions,

respectively. In this case the input MS = 1 TeV is interpreted as an OS-renormalised

parameter, meaning that the physical stop masses correspond to (M2
S+m2

t )
1/2 ≈ 1015 GeV
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for all points in the curves. We stress that direct comparisons between these two curves and

the solid (and dashed) ones would not be appropriate, because they refer to different points

of the MRSSM parameter space. However, the dotted and dot-dashed curves show that,

when the physical stop masses are taken as input, the prediction for mh in the MRSSM

depends only mildly on the value of mg̃, and the effect of the octet-scalar contributions is

below one GeV. This is explained by the fact that, as discussed in section 3.7.2, in the

OS scheme there are no terms enhanced by m2
g̃/M

2
S in either the gluino or the octet-scalar

contributions to the O(αtαs) corrections.

Before concluding, we note that there are extreme situations in which a DR calculation

of mh is not workable at all, and a conversion to the OS scheme such as the one represented

by the dashed lines in figure 4 is necessary. In the so-called supersoft scenario, all soft

SUSY-breaking masses vanish, and sizeable sfermion masses — proportional to the Dirac-

gaugino masses — are induced only by radiative corrections. Such a scenario can be

realised e.g. in the MRSSM by setting mO = 0 and MS = 0, where the latter is interpreted

as a DR-renormalised parameter. At the scale where this condition is imposed, the DR

stop masses coincide with the top mass, with the result that, in the DR calculation, the

one-loop correction in the first term of eq. (3.69) vanishes, while the two-loop corrections

in eqs. (3.70) and (3.74) contain terms enhanced by m2
g̃/m

2
t (concerning the octet-scalar

contributions, we recall that mO1 = 2mg̃ in this scenario). Since the Dirac-gluino mass

needs to be in the multi-TeV range to generate realistic values for the physical stop masses,

the non-decoupling terms in the two-loop corrections can become unphysically large. This

is illustrated by the solid (red) curve in figure 5, which represents the SM-like Higgs boson

mass obtained with the DR calculation as a function of the gluino mass (here we fix the
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renormalisation scale as Q = mt and use αs(mt) in the two-loop corrections). It appears

that the DR prediction for mh becomes essentially proportional to mg̃, and quickly grows to

nonsensical values as the latter increases. In contrast, the dashed (blue) curve is obtained

with the same procedure as the dashed curves in figure 4, i.e. by computing the physical stop

masses at O(αs) as a function of mg̃ and using them in conjunction with the appropriate

OS formulae for the O(αtαs) corrections to mh. In our example the stop masses range

between 302 GeV and 1272 GeV, while the SM-like Higgs boson mass shows only a mild

dependence on mg̃ and remains confined to values well below the observed one.

5 Conclusions

Supersymmetric models with Dirac gaugino masses have attracted considerable attention in

the past few years, because they are subject to looser experimental constraints and require

less fine-tuning than the MSSM. Besides the extended gaugino sector, such models feature

additional colourless scalars which mix with the usual Higgs doublets of the MSSM, as well

as additional coloured scalars in the octet representation of SU(3) which contribute to the

Higgs boson masses at the two-loop level. In this paper we presented a computation of the

dominant two-loop corrections to the Higgs boson masses in Dirac-gaugino models, relying

on effective-potential techniques that had previously been applied to the MSSM [36] and to

the NMSSM [49]. We obtained analytic formulae for the O(αtαs) corrections to the scalar

and pseudoscalar Higgs mass matrices valid for arbitrary choices of parameters in the squark

and gaugino sectors, both in the DR and in the OS renormalisation schemes, which we make

available upon request as a fortran code. We also presented compact approximate formulae

for the dominant corrections to the mass of the SM-like Higgs boson, valid under a number

of simplifying assumptions for the SUSY parameters. Finally, we studied the numerical

impact of the newly-computed corrections on the predictions for the SM-like Higgs boson

mass in some representative scenarios. In particular, we elucidated the differences between

the predictions for mh in the MSSM and those in its Dirac-gaugino extensions; we discussed

the theoretical uncertainty of our predictions stemming from uncomputed higher-order

corrections; we stressed that a judicious choice of renormalisation scheme is required to

obtain reliable predictions in scenarios where the gluinos are much heavier than the squarks,

which can occur naturally in Dirac-gaugino models. If our community’s hopes are fulfilled

and the run II of the LHC brings on a wealth of new discoveries, our results will contribute

to their accurate interpretation in the framework of a well-motivated SUSY extension of

the SM.
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A Derivatives of the two-loop effective potential

We present here the derivatives of the two-loop effective potential used to calculate the

Higgs masses in section 3. We recall that the effective potential and its derivatives are

expressed in units of αsCFNc/(4π)3. The derivatives of the first term in eq. (3.19) can

be trivially obtained by multiplying the formulae in appendix C of ref. [49] by R2
1i and

summing over the two gluino masses mg̃i , hence we do not repeat them here. The only

exception is the single derivative of ∆V αs
MSSM with respect to m2

t , which was not needed in

ref. [49]. Adapted to the Dirac-gaugino case, it reads

∂∆V αs

∂m2
t

=

2∑
i=1

R2
1i

∂∆Vg̃i
∂m2

t

, (A.1)

with

∂∆Vg̃i
∂m2

t

= 2m2
t

(
3−4 ln

m2
t

Q2
+3 ln2 m

2
t

Q2

)
+2

[
m2
t ln

m2
g̃i

m2
t

+m2
t̃1

(
2−ln

m2
t

Q2
−ln

m2
g̃i

Q2

)]
ln
m2
t̃1

Q2

+

[
2(m2

t̃1
−m2

t )−
mg̃im

2
t̃1
s2θt

mt

]
ln
m2
t

Q2
ln
m2
g̃i

Q2
−2m2

g̃i

(
3−2 ln

m2
g̃i

Q2

)
−m2

t̃1

(
4− 5mg̃is2θt

mt

)
−mg̃is2θt

mt

[
(3m2

t−m2
g̃i) ln

m2
g̃i

m2
t

+m2
t̃1

(
4−ln

m2
t

Q2
−ln

m2
g̃i

Q2

)]
ln
m2
t̃1

Q2

+2

[
m2
g̃i

m2
t

(m2
g̃i−m

2
t−m2

t̃1
)−∆g̃i

m2
t

+
mg̃is2θt

mt

(
m2
t−m2

g̃i−m
2
t̃1

+
∆g̃i

2m2
t

)]
Φ(m2

t̃1
,m2

g̃i ,m
2
t )

+
[
m2
t̃1
→ m2

t̃2
, s2θt→ −s2θt

]
, (A.2)

where Q is the renormalisation scale, the function Φ(x, y, z) is defined in appendix D of

ref. [49], and we used the shortcut

∆g̃i ≡ (m2
g̃i −m

2
t −m2

t̃1
)2 − 4m2

tm
2
t̃1
. (A.3)

The derivatives of the octet-scalar contribution ∆VOi , computed at the minimum of the

potential, are

∂∆VOi

∂c2
2θ̄t

= −2
[
I(m2

t̃1
,m2

t̃1
,m2

Oi
) + I(m2

t̃2
,m2

t̃2
,m2

Oi
)− 2I(m2

t̃1
,m2

t̃2
,m2

Oi
)
]
, (A.4)

∂∆VOi

∂m2
t̃1

= 2

(
ln
m2
t̃1

Q2
− 1

)2

+ 2 s2
2θt ln

m2
Oi

m2
t̃1

ln
m2
t̃1

m2
t̃2

− 2

[
c22θtΦ(m2

t̃1
,m2

t̃1
,m2

Oi
) + s2

2θt

m2
Oi
−m2

t̃1
+m2

t̃2

m2
Oi

Φ(m2
t̃1
,m2

t̃2
,m2

Oi
)

]
, (A.5)
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∂2∆VOi

(∂m2
t̃1

)2
= −

4 s2
2θt

m2
t̃1

+
4 c22θt

m2
Oi
− 4m2

t̃1

[
m2
Oi

m2
t̃1

(
ln
m2
Oi

Q2
− 1

)
− 4

(
ln
m2
t̃1

Q2
− 1

)
− Φ(m2

t̃1
,m2

t̃1
,m2

Oi
)

]

+
4 s2

2θt

∆Oi

[
m2
Oi

m2
t̃1

(m2
Oi
−m2

t̃1
−m2

t̃2
) ln

m2
Oi

Q2
− (m2

Oi
−m2

t̃1
+m2

t̃2
) ln
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−
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t̃2

m2
t̃1

(m2
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t̃1
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) ln
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Q2
− 2m2

t̃2
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t̃1
,m2

t̃2
,m2

Oi
)

]
, (A.6)

∂2∆VOi

∂m2
t̃1
∂c2

2θ̄t

= −2

[
ln
m2
Oi

m2
t̃1

ln
m2
t̃1

m2
t̃2

+ Φ(m2
t̃1
,m2

t̃1
,m2

Oi
)−

m2
Oi
−m2

t̃1
+m2

t̃2

m2
Oi

Φ(m2
t̃1
,m2

t̃2
,m2

Oi
)

]
,

(A.7)

∂2∆VOi

∂m2
t̃1
∂m2

t̃2

=
4 s2

2θt

∆Oi

[
m2
Oi

ln
m4
Oi

m2
t̃1
m2
t̃2

− (m2
t̃1
−m2

t̃2
) ln

m2
t̃1

m2
t̃2

− (m2
Oi
−m2

t̃1
−m2

t̃2
)Φ(m2

t̃1
,m2

t̃2
,m2

Oi
)

]
,

(A.8)

where we used the shortcut

∆Oi ≡ (m2
Oi
−m2

t̃1
−m2

t̃2
)2 − 4m2

t̃1
m2
t̃2
. (A.9)

The derivatives of ∆VOi that involve m2
t̃2

can be trivially obtained from the ones in

eqs. (A.5)–(A.7) by means of the replacement m2
t̃1
↔ m2

t̃2
, while the derivatives with respect

to all other combinations of field-dependent parameters vanish.
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MRSSM with a light scalar, JHEP 03 (2016) 007 [arXiv:1511.09334] [INSPIRE].

[70] S.P. Martin, Nonstandard supersymmetry breaking and Dirac gaugino masses without

supersoftness, Phys. Rev. D 92 (2015) 035004 [arXiv:1506.02105] [INSPIRE].

[71] T. Cohen, G.D. Kribs, A.E. Nelson and B. Ostdiek, 750 GeV diphotons from supersymmetry

with Dirac gauginos, Phys. Rev. D 94 (2016) 015031 [arXiv:1605.04308] [INSPIRE].

[72] T. Ibrahim and P. Nath, The neutron and the electron electric dipole moment in N = 1

supergravity unification, Phys. Rev. D 57 (1998) 478 [Erratum ibid. D 58 (1998) 019901]

[Erratum ibid. D 60 (1999) 079903] [Erratum ibid. D 60 (1999) 119901] [hep-ph/9708456]

[INSPIRE].

[73] T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating

phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301

[Erratum ibid. D 60 (1999) 099902] [hep-ph/9807501] [INSPIRE].

[74] S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories,

Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].

[75] M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics,

Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

[76] C. Ford, I. Jack and D.R.T. Jones, The standard model effective potential at two loops,

Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551] [hep-ph/0111190]

[INSPIRE].

[77] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics,

Chin. Phys. C 38 (2014) 090001 [INSPIRE].

– 33 –

http://dx.doi.org/10.1016/j.physletb.2016.04.034
http://arxiv.org/abs/1511.01904
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01904
http://arxiv.org/abs/1604.05335
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.05335
http://dx.doi.org/10.1007/JHEP01(2013)066
http://arxiv.org/abs/1206.6697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6697
http://dx.doi.org/10.1007/JHEP12(2014)124
http://arxiv.org/abs/1410.4791
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4791
http://dx.doi.org/10.1155/2015/760729
http://arxiv.org/abs/1504.05386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.05386
http://dx.doi.org/10.1007/JHEP03(2016)007
http://arxiv.org/abs/1511.09334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09334
http://dx.doi.org/10.1103/PhysRevD.92.035004
http://arxiv.org/abs/1506.02105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02105
http://dx.doi.org/10.1103/PhysRevD.94.015031
http://arxiv.org/abs/1605.04308
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.04308
http://dx.doi.org/10.1103/PhysRevD.57.478
http://arxiv.org/abs/hep-ph/9708456
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9708456
http://dx.doi.org/10.1103/PhysRevD.58.111301
http://arxiv.org/abs/hep-ph/9807501
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807501
http://dx.doi.org/10.1016/S0550-3213(01)00233-4
http://arxiv.org/abs/hep-ph/0103320
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0103320
http://dx.doi.org/10.1016/j.aop.2005.04.002
http://arxiv.org/abs/hep-ph/0504231
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504231
http://dx.doi.org/10.1016/0550-3213(92)90165-8
http://arxiv.org/abs/hep-ph/0111190
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0111190
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+%22Chin.Phys.,C38,090001%22

	Introduction
	Definition of the theory
	Adjoint multiplets and the supersoft operator
	Gluino masses and couplings
	Higgs sector

	Two-loop corrections in the effective potential approach
	General results
	Two-loop top/stop contributions to the effective potential
	Mass corrections in the MDGSSM
	Mass corrections in the MRSSM
	On-shell parameters in the top/stop sector
	Obtaining the O(alpha(b) alpha(s)) corrections
	Simplified formulae
	Common SUSY-breaking scale
	MRSSM with heavy Dirac gluino


	Numerical examples
	An example in the MDGSSM
	An example in the MRSSM

	Conclusions
	Derivatives of the two-loop effective potential

