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1 Introduction

Conformal higher spin (CHS) theory [1–7] is a remarkable example of a formally consistent

(gauge-invariant, though higher-derivative and thus non-unitary) higher spin model that

has a local action with a flat-space vacuum and one dimensionless coupling constant.

It is naturally associated with another consistent higher spin theory, i.e. 2-derivative

massless higher spin theory in AdS space of one dimension higher. Starting with a free

complex scalar equation in 4 dimensions1 ∂2ϕ = 0 one gets an infinite tower of conserved

traceless totally symmetric higher spin currents Js = ϕ∗Jsϕ , Js ∼ ∂s+. . ., s = 1, 2, . . . ,∞
that generalize the spin 0 primary operator J0 = ϕ∗ϕ. The conserved charges generate an

infinite dimensional symmetry algebra of the free scalar equation [8, 9] that is associated to

a collection of conformal Killing tensors. The CHS theory may be viewed as a gauge theory

of this higher spin global symmetry. A closely related approach is based on interpreting

1In this paper we shall concentrate on the d = 4 case but most of our discussion may be generalised to

even d > 4.
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CHS fields as “sources” for the currents Js that then inherit the linearised gauge invariances

δhµ1...µs = ∂(µ1
εµ2...µs) + η(µ1µ2

αµ3...µs) which generalise the usual reparametrisations and

Weyl symmetry of the conformal gravity. Starting with free U(N) complex scalar CFT,

adding source terms hsJs to the free action ∂ϕ∗∂ϕ and integrating over ϕ one finds for the

generating functional of correlators of the currents Js

Γ[h] = N log det

(
∂2 +

∑
s

hs Js
)
, Js ∼ ∂s . (1.1)

From the vectorial AdS/CFT point of view [10] the 4d currents Js are dual to massless

higher spins in AdS5 and the generating functional Γ[h] should then be equal to the on-shell

value of the AdS action with hs being the boundary values of the higher spin fields in AdS.

One can then obtain a local gauge-invariant action for the CHS fields hs by identifying

it with the logarithmically UV divergent part of the “induced” action (1.1) [3–5]

S[h]∼ log det

(
∂2 +

∑
s

hs Js
)∣∣∣

log Λ
(1.2)

∼ 1

g2

∑
s

∫
d4x
(
hs∂

2shs+∂
s1+s2+s3−2hs1hs2hs3 +∂s1+s2+s3+s4−4hs1hs2hs3hs4 + . . .

)
.

Here we introduced an arbitrary dimensionless coupling constant g and indicated symboli-

cally the overall powers of derivatives in the kinetic and interaction terms that follow from

dimensional analysis. Indeed, as the 4d scalar ϕ has mass dimension 1, the current Js has

dimension 2 + s and thus the corresponding source field hs must have the “shadow”-field

dimension ∆s = 2 − s (i.e. 1 for vector field, 0 for conformal graviton, etc.). This then

determines the derivative structure of (1.2).2 In particular, the presence of 2s derivatives

in the kinetic term in (1.2) is consistent with both the above linearised gauge invariance

δhs = ∂εs−1 + η2αs−2 and the locality of the action.3

In addition to the linearised gauge symmetry and the standard conformal symmetry the

CHS action should be invariant under the full infinite dimensional CHS symmetry [4] whose

global part is the symmetry of free scalar 4d Laplace equation. This large symmetry should

provide strong constraints on the corresponding classical and quantum theory. For example,

for fixed spectrum of the CHS fields the action (1.2) should be essentially unique (modulo

field redefinitions)4 and thus renormalizable. In view of the conformal symmetry being

gauged here it should actually be UV finite, provided the theory is quantum-consistent,

i.e. there are no conformal and higher symmetry anomalies. An indication of a hidden

simplicity of the CHS theory is the vanishing of the regularised total number of its degrees

2The fact that the powers of derivatives are directly correlated with the values of the spins in the vertex

(which is a consequence of the underlying conformal invariance) is an important simplifying feature of this

theory compared to the AdS higher spin theory and a hypothetic 2-derivative massless higher spin theory

in flat space that both contain a dimensional parameter.
3The kinetic term should contain the transverse traceless spin s projector Πs that is given by products

of s factors of Πµ
ν = δµν − ∂µ∂ν

∂2
and thus Πs∂

2s is local.
4Starting instead from a free scalar CFT with a free spinor or free Maxwell vector CFT one gets a

different spectrum of conserved currents and thus a different “induced” CHS theory.
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of freedom, or, equivalently, the triviality of the free (one-loop) partition function in flat

space [11]. This partition function vanishes also on 4-sphere implying the vanishing of the

Weyl anomaly a-coefficient [12, 13] (which is also in agreement with a triviality of the 1-loop

correction to the massless HS partition function as required by the AdS/CFT [14]).5 Similar

vanishing was also found (under some natural assumptions) for the 1-loop Weyl anomaly

c-coefficient [11, 13–15]. As the Weyl symmetry is one of the CHS gauge symmetries, the

same anomaly cancellation may apply also to all algebraic CHS gauge symmetries.

The global part of the CHS symmetry should also strongly constrain other “observ-

ables”, e.g., the analog of the S-matrix involving exchanges of the CHS fields. Indeed,

it was found in [16] that starting with a free external scalar field coupled (via the above

current
∫
d4x hsJs interaction) to free CHS fields with the action

∫
d4x

∑
s hs Πs ∂

2shs and

computing the 4-scalar tree level scattering due to the exchange of the tower of CHS fields

one finds that while the individual spin s exchange contributions are non-trivial, their sum

over all s = 0, 1, 2, . . . vanishes. This vanishing can be understood [16] as a consequence

of the CHS global symmetry of the coupled theory (in particular, the “hypertranslations”

δϕ = εµ1...µs∂µ1 . . . ∂µsϕ and scale invariance).

The aim of the present paper is to show that this triviality of the 4-particle scattering

amplitude is found also when the external scalars are replaced by the CHS fields themselves

with cubic and quartic interactions given by (1.2). We shall consider few particular exam-

ples of the CHS 4-particle scattering amplitudes (4-vector, 4-graviton, etc.) and find that

after summation over all exchanged conformal higher spins the total amplitude vanishes.

This cancellation is rather non-trivial and like in the external scalar amplitude case [16]

should again be a consequence of the underlying higher spin global symmetry of the theory

(and should thus be a manifestation of a “generalised” Coleman-Mandula theorem). This

suggests that the full “S-matrix” of the CHS theory should be trivial.6

To be able to compute scattering amplitudes of CHS states one needs first to determine

the precise structure of vertices in the “induced” action (1.2). For that one needs to find the

logarithmically divergent (or 1
ε pole in dimensional regularisation) terms in the one-loop

scalar loop diagrams with the two, three or four current Js insertions. We shall choose the

external hs legs to be in the transverse traceless gauge.7 Having found the relevant terms in

the action (1.2) we will define the 4-particle scattering S-matrix as the amputated tree-level

Green’s function (i.e. the sum of the exchange term and contact vertex >−−−−< + ><)

contracted with particular on-shell asymptotic states. For s = 1 vector the asymptotic

states are the standard helicity ±1 states, while in the s > 1 case with the free equation

(in TT gauge) ∂2shs = 0 describing total of s(s+1) dynamical degrees of freedom one may

choose a special solution corresponding, e.g., to the standard massless helicity ±s field.8

5The definition of the sum over spins requires a particular prescription that should be consistent with

the underlying symmetries [11, 15].
6As we are dealing with a non-unitary higher derivative theory containing an infinite number of fields

some assumptions of the standard Coleman-Mandula theorem may not directly apply. In particular, the

definition of the scattering matrix for higher-derivative fields requires clarification, see below.
7This avoids, in particular, the explicit discussion of field redefinitions eliminating the traces.
8For example, in the case of the Weyl graviton one can always solve the linearised Bach equations by

imposing the linearised Einstein equations. One may also consider other special choices of solutions of ∂4

equations as asymptotic states.
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Before turning to the discussion of higher spin terms in (1.2) let us first recall the

structure of the non-linear terms for the low (s = 0, 1, 2,) spins only. Instead of starting

with the scalar action involving only the linear coupling to the background fields h0, h1, h2

(which here we assume to be subject to TT condition and drop total derivatives)

L = −∂µϕ∗∂µϕ+
∑
s

hsϕ
∗Jsϕ = ∂µϕ

∗∂µϕ+h0ϕ
∗ϕ+ihµϕ∗∂µϕ+

1

2
hµν∂µϕ

∗∂νϕ+ . . . (1.3)

let us start with the standard manifestly (U(1), reparametrization and Weyl) covariant

coupling of a complex scalar field to the background metric gµν = ηµν + h′µν , vector field

h′µ and a scalar h′0, i.e.

I =

∫
d4x
√
g

[
− gµνDµϕ

∗Dνϕ+

(
h′0 −

1

6
R

)
ϕ∗ϕ

]
, Dµϕ = ∂µϕ+

i

2
h′µϕ . (1.4)

The log UV divergent part of the resulting scalar determinant (cf. (1.1)) is given by the

standard covariant Seeley coefficient expression (we ignore unimportant overall constant

related to coupling g in (1.2))9

S[h′0, h
′
1, h
′
2] =

∫
d4x
√
g

(
h′20 −

1

24
F ′2µν +

1

60
C2
µνλρ

)
, (1.5)

where F ′µν = ∂µh
′
ν − ∂νh′µ and C is the Weyl tensor for gµν . Since the fields h′s in (1.4) are

related to hs in (1.3) by a local non-linear redefinition

h′0 = h0 +
1

4
hµh

µ +
1

96
(∂λhµν∂

λhµν + 2hµν�h
µν + 2∂λhµν∂

µhλν) + . . . , (1.6)

h′µ = hµ +
1

2
hµνh

ν +
1

4
hµνh

νλhλ + . . . , h′µν =
1

2
hµν +

1

4
hµλh

λ
ν −

1

16
ηµνh

λρhλρ + . . . ,

expanding (1.5) we may thus read off the cubic and quartic couplings of the original

h0, hµ, hµν fields in (1.2). In particular, using (1.6) we find that the scalar-vector sector

of (1.5) takes the form

S[h0, h1] =

∫
d4x

[(
h0 +

1

4
hµh

µ

)2

− 1

24
F 2
µν

]
. (1.7)

Thus the simplest cubic and quartic vertices are 011 and 1111. We also conclude, in

particular, that the contribution of the h0 exchange to the 4-vector scattering amplitude

cancels against the 4-vector contact vertex. As there is no 3-vector coupling, the full

4-vector tree-level amplitude should thus be given by the sum of all exchanges of CHS

fields with s ≥ 2 and happens to vanish as we will find in section 3. Similarly, the 112

vertex is related to the one in the Maxwell-Weyl theory, the 222 and 2222 vertices are

related to those in the Weyl theory, etc. Thus the contribution to the 4-graviton amplitude

computed from the s = 0, 2 exchanges and the 2222 vertex should be the same as the

9Note that this action may be interpreted as the bosonic sector of N = 1 conformal supergravity action

with h′0 playing the role of the auxiliary field.
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4-graviton amplitude in pure Weyl theory (that happens to vanish). The contributions of

all s > 2 CHS exchanges vanishes separately as we shall demonstrate in section 5.

This paper is organised as follows. In section 2 we shall present the results for some

cubic CHS vertices (relevant for the computation of spin 1 and spin 2 scattering amplitudes

below) from the UV singular parts of the scalar loop integrals, with some details relegated

to appendix A. In section 3 we shall compute the 4-vector scattering amplitude and demon-

strate that after summing over all CHS exchanges it vanishes. We shall then observe in

section 4 that the conformal higher spin exchange amplitudes should have the same general

structure as the partial wave amplitudes in the representation of [17]. In section 5 we shall

find that the scattering amplitudes 22 → 22 and 11→ 22 involving conformal gravitons do

have this expected structure and they also vanish once one sums up all intermediate CHS

exchanges. Some concluding remarks will be made in section 6. In appendix B we shall

independently verify the vanishing of the 11→ 11 amplitude at special kinematics (back-

ward scattering) and find that this vanishing appears to generalise to the case of jj → jj

scattering with all j = 1, 2, 3, . . . supporting our conjecture that the full 4-particle S-matrix

in CHS theory should be trivial. In appendix C we shall give the general derivation of the

expression for the CHS spin s exchange contribution to the 11 → 11 amplitude.

2 Vertices in induced conformal higher spin action

To be able to compute the CHS scattering amplitudes we should first determine the relevant

cubic and quartic terms in the “induced” action (1.2). We shall use the following notation

for totally symmetric tensors: Jµ(s) ≡ Jµ1...µs and also ∂µ(s) ≡ ∂µ1 . . . ∂µs . Our starting

point will be the complex scalar Lagrangian in external CHS background (see, e.g., [5, 16]

and refs. there)

L = −∂µϕ∗ ∂µϕ+
∞∑
s=0

Jµ(s) h
µ(s) , (2.1)

Jµ(s)(x) =
is 2s s!

(2s)!

s∑
k=0

(
s

k

)( s+k−1
2

s

)
G

(k)
µ(s) , (2.2)

G
(k)
µ(s) =

[
(∂ − ∂′)µ(k)(∂ + ∂′)µ(s−k)ϕ(x)ϕ∗(x′)

]
x=x′

, (2.3)

where the low-spin currents Jµ(s) are

J = ϕϕ∗, Jµ =
i

2
(ϕ∗∂µϕ− ϕ∂µϕ∗),

Jµν =
1

6

[
∂µϕ∂νϕ

∗ + ∂νϕ∂µϕ
∗ − 1

2
(ϕ∗∂µ∂νϕ + ϕ∂µ∂νϕ

∗)

]
.

(2.4)

The vertices in the CHS action (1.2) may be thought of as originating from the coinciding-

point limits of the current correlators in the free scalar CFT 〈Js1(x1) . . . Jsn(xn)〉
∣∣
xi→x

and

can be found in coordinate space using, e.g., differential regularization [18]. Here we shall

use momentum space representation and dimensional regularisation (d = 4− ε) and define

– 5 –
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the classical CHS action S[h] as in (1.2), i.e. as the UV pole part of the one-loop scalar ϕ

effective action:

Γ[h] =
1

(4π)2 ε
S[h] + finite . (2.5)

In general, the CHS action should contain an arbitrary dimensionless constant g as in (1.2)

that will then appear as g2 factor in the resulting 4-particle tree-level amplitude; in what

follows we shall ignore this universal overall factor, i.e. set g = 1.

We shall also assume that the background fields hs ≡ hµ(s) in (2.1) are transverse

and traceless (TT) as this will be sufficient for the subsequent computation of the on-shell

scattering amplitudes.10 Note that in this case we may integrate by parts to write the

interaction terms as hµJµ → ihµϕ∗∂µϕ, hµνJµν → 1
2h

µν∂µϕ
∗∂νϕ or −1

2h
µνϕ∗∂µ∂νϕ, etc.

In general, for TT fields the hs(p
′ − p)ϕ∗(−p′)ϕ(p) vertex in momentum representation

reduces simply to

Vµ(s)(p) =
1

s!
pµ1 · · · pµs , (2.6)

where p is momentum of the ϕ leg. We can then compute the UV singular part of the

scalar loop diagram with two Vµ(s) insertions

k

k+p

h(p) h(-p)
(2.7)

We then find that the kinetic term in the CHS action (restricted to TT fields) is given by11

S2[h] =
∑

s=0,1,2,...

1

2s (2s+ 1)!

∫
d4xhµ(s) �

s hµ(s) . (2.8)

To determine the cubic hs1hs2hs3 couplings in the CHS action (1.2) we are to compute the

UV singular part of the one-loop scalar diagram with three (spin s1, s2 and s3) current

vertex (2.6) insertions

h(p1)

k

k+p1

k+p1+p2

h(p2)

h(-p1-p2)

(2.9)

10In contrast to usual massless Fronsdal HS fields (where one can only fix transverse or de Donder gauge

off shell) for the conformal higher spin fields the gauge symmetry involves both the differential and the

algebraic symmetry allowing one to fix TT gauge, and this leads to substantial simplifications.
11The relative normalisations of the first s = 0, 1, 2 terms here are the same as in (1.5), (1.6): note that

h′µν = gµν−ηµν in the manifestly covariant action (1.4) is given by h′µν = 1
2
hµν + . . . in terms of hµν in (2.1)

so that C2
µνλρ → 2R2

µν + . . .→ 1
2
h′µν�2h′µν → 1

8
hµν�2hµν .

– 6 –
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As each spin s vertex involves s derivatives, the parity invariance implies that the resulting

interaction is non-zero only if s1 + s2 + s3 = even. One can also show (using that hs is

subject to the TT condition and dimensional analysis) that 0-0-s interaction vanishes for

all s, i.e. S3[h0, h0, hs] = 0.

For s1 = s2 = 1 the interaction 1-1-s is non-zero only if s is even. Written in coordinate

space the corresponding cubic interaction in the CHS action (1.2) (restricted again to TT

fields) is found to be (see appendix A)12

S3[h1, h1, hs] =
(−1)s/2

(s+ 2)!

∫
d4x

[
∂ρ(s)hµh

µhρ(s) − 2hµ ∂
µ ∂ρ(s−1) hν h

νρ(s−1) (2.10)

−∂λ∂ρ(s−2)hµ∂λhνhµνρ(s−2) −
s

2
∂ρ(s−2)�hµhνhµνρ(s−2) −

s

2
∂ρ(s−2)hµ�hνhµνρ(s−2)

]
.

This vertex has total of s derivatives in agreement with the general structure of the CHS

action (1.2). In particular,

S3[h1, h1, h0] =
1

2

∫
d4xhµh

µh0 (2.11)

is in agreement with (1.5), (1.7). We may also compute the 4-vector quartic vertex from

the UV pole part of the diagram

µ ν

ρσ

(2.12)

getting, in agreement with (1.7),

S4[h1, h1, h1, h1] =
1

16

∫
d4x(hµh

µ)2 . (2.13)

The vector-vector-graviton coupling in (2.10)

S3[h1, h1, h2] =
1

24

∫
d4x
[
∂ρhµ ∂σh

µhρσ − 2∂ρhµ ∂
µ hν h

νρ + ∂ρh
µ∂ρhνhµν + 2hµ�hνhµν

]
(2.14)

is equivalent (for TT fields) to the standard graviton-Maxwell coupling in (1.5) provided

one takes into account the redefinitions in (1.6).

Similar expressions are found when the vector vertices in (2.9) are replaced by the

graviton ones, i.e. for the case of s1 = s2 = 2, s3 = s interaction term (see appendix A).

With p1, p2 being spin 2 momenta the resulting 2-2-s interaction vertex contains s+2 pow-

ers of momentum and reads Vµ1µ2,ν1ν2,ρ(s) = Vµ1µ2,ν1ν2,ρ(s)(p1, p2) + Vµ1µ2,ν1ν2,ρ(s)(p2, p1),

12The last two terms involving �hµ, i.e. proportional to the vector field equation of motion can be, in

principle, redefined away.

– 7 –
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where13

Vµ1µ2,ν1ν2,ρ(s)(p1, p2) =
1

8 (s+ 4)!

[
−

∑
µ 6=µ′,ν 6=ν′

ηµν p2µ′ p1ν′ (p1)ρ(s)

+ 2
∑
µ 6=µ′

p2µ′ p1ν1 p1ν2 ηµρ1p1ρ2 . . . p1ρs − 2
∑
ν 6=ν′

p1ν′ p2µ1 p2µ2 ηνρ1p1ρ2 . . . p1ρs

]

− p1 · p2

16 (s+ 4)!

{
2(ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1) (p1)ρ(s)

− 4( p1ν1ηµ1ν2ηµ2ρ1 − p2µ1ηµ2ν1ην2ρ1 + sym µ1,2, ν1,2) p1ρ2 · · · p1ρs

+

[
6 (ηµ1ρ1ηµ2ρ2 + ηµ1ρ2ηµ2ρ1) p1ν1 p1ν2 + 6 (ην1ρ1ην2ρ2 + ην1ρ2ην2ρ1) p2µ1 p2µ2

−
∑

µ 6=µ′,ν 6=ν′
4 (ηµρ1ηνρ2 + ηµρ2ηνρ1) p2µ′ p1ν′

]
p1ρ3 · · · p1ρs

}

+
(p1 · p2)2

8 (s+ 4)!

{ ∑
µ 6=µ′,ν 6=ν′

(ηµρ1ηνρ2ηµ′ν′ + ηµρ2ηνρ1ηµ′ν′) p1ρ3 · · · p1ρs

− (p1ν1 ηµ1ρ1ηµ2ρ2ην2ρ3 − p2µ1 ηµ2ρ1ην1ρ2ην2ρ3 + sym ρ1,2,3) p1ρ4 · · · p1ρs

}

− (p1 · p2)3

32 (s+ 4)!
(ηµ1ρ1ηµ2ρ2ην1ρ3ην2ρ4 + sym ρ1,2,3,4) p1ρ5 · · · p1ρs ,

(2.15)

where sym stands for adding terms ensuring symmetry in (µ1, µ2), (ν1, ν2) and (ρ1, . . . , ρs).

In particular, choosing s = 0 we find that the 2-2-0 coupling term in the CHS action can

be written as

S3[h0, h2, h2] =
1

48

∫
d4x h0

(
∂ρhµν∂

ρhµν + 2∂ρhµν∂
µhρν

)
. (2.16)

One can trace the origin of this term to h′20 term in (1.5) and the redefinition (1.6) (in partic-

ular, it corresponds to cross-term h0R with R in (1.4) expanded to quadratic order in h′µν).

The 1-0-s vertex multiplying hµ(p1), h0(p2) and hρ(s)(−p1 − p2) is non-zero when s is

odd and is found to be (where symmetrisation in ρi is assumed)

Vµ,ρ(s) =
2

(s+ 1)!
ηµρ1 pρ2 · · · pρs . (2.17)

Here p stands for either p1 or p2 ((2.17) is symmetric under p1 → p2 as the fields are

assumed to be TT and s is odd). Similarly, the 2-0-s vertex (non-vanishing for s=even) is

13Here we drop terms proportional to equations of motion for spin 2 states as we will be using this vertex

to compute 2-2-2-2 scattering amplitude. Note, however, that for spin 2 exchange one is to use the 2-2-2

vertex that is symmetric in the three spin 2 legs with no on-shell condition assumed.
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given by

Vµ1µ2,ρ(s) =
1

(s+ 2)!

[
− (ηµ1ρ1 p1µ2 + ηµ2ρ1p1µ1) p1 ρ2 . . . p1 ρs

− 1

2
p1 · p2 (ηµ1ρ1ηµ2ρ2 + ηµ2ρ2ηµ1ρ1) p1 ρ3 . . . p1 ρs

]
.

(2.18)

In the case of 1-2-s vertex (with s=odd) appearing multiplied by the TT fields hµ1µ2(p1),

hν(p2), hρ(s)(−p1 − p2) we get

Vµ1µ2,ν,ρ(s)(p1, p2) =
1

(s+ 3)!

{
(ηµ1νp2µ2 + ηµ2νp2µ1)p1ρ(s)

+ (−ηµ1ρ1p2µ2p1ν − ηµ2ρ1p2µ1p1ν + 2ηνρ1p2µ1p2µ2) p1ρ2 . . . p1ρs

− (p1 · p2)
[
(ηµ1νηµ2ρ1 + ηµ1ρ1ηµ2ν) p1ρ2 . . . p1ρs

+
(

(ηµ1ρ1ηνρ2 + ηµ1ρ2ηνρ1) p2µ2 − (ηµ1ρ1ηµ2ρ2 + ηµ2ρ1ηµ1ρ2) p1ν

+ (ηµ2ρ1ηνρ2 + ηµ2ρ2ηνρ1) p2µ1

)
p1ρ3 . . . p1ρs

]
+

1

3
(p1 · p2)2(ηµ1ρ1ηµ2ρ2ηνρ3 + sym ρ1,2,3) p1ρ3 . . . p1ρs

}
.

(2.19)

3 Scattering in CHS theory: 4-vector amplitude

We can now use the interaction terms in the CHS action found in the previous section

to compute some tree-level scattering amplitudes. As the scalar h0 is non-propagating,

i.e. has zero on-shell value we will not discuss analogs of scattering amplitudes with h0 on

external legs.

The vector h1 has the standard Maxwell kinetic term, so the definition of the corre-

sponding 4-vector scattering amplitude is standard (the same as in the case of the external

scalar scattering in [16]): we consider physical helicity ±1 photon states on external lines

and include all exchanges with two 1-1-s vertices (2.8) connected by TT propagator for

even-spin s CHS field. The contribution of the h0 exchange due to 011 vertex (2.11) ex-

actly cancels against the contact 4-vector vertex (2.13) as follows from (1.7) so it remains

to consider only the exchanges with s = 2, 4, 6, . . . fields on internal lines.

Before proceeding with spin 1 scattering let us note for the future discussion in sections

4 and 5 that as the CHS fields with s > 1 in (1.2) have higher-derivative kinetic terms,

the notion of S-matrix for s > 1 external lines requires special definition. Given the free

spin s > 1 CHS equation in TT gauge �shs = 0 one can always choose a special solution

hs = h
(0)
s satisfying �h(0)

s = 0. This equation has further on-shell gauge invariance allowing

one to reduce the number of independent solutions to just 2 of a standard 2-derivative

massless particle. In what follows we shall always consider only these special “physical”

helicity ±s modes as the asymptotic states in the definition of the CHS S-matrix.14 Thus

14Ideally, one would like to start with a formulation of the CHS theory in terms of the set of fields with

ordinary (2-derivative) kinetic terms that exists at the quadratic level [19, 20]. Unfortunately, an existence

of such local action at the interacting level is an open question for s > 2.
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the asymptotic states will always be massless on-shell particles with p2 = 0 while the

internal spin s′ propagator will be 1
p2s′ times the TT projector.15

3.1 4-vector exchange amplitude

Let us start with the 4-vector scattering amplitude and first set up the notation we will

use. We shall consider the scattering process

p1

p2

p3

p4

=
1

2 4

3 1

2 4

3 1

2 4

3
(3.1)

with (λ1, p1), (λ2, p2)→ (λ3, p3), (λ4, p4), i.e. assume two momenta and helicities as incom-

ing and two as outcoming with λi = ±1 and p2
i = 0. In the c.o.m. frame, we have for the

momenta and polarisation vectors16

p1 = (ω, 0, 0, ω), ε1(p1) = − 1√
2
λ1 (0, 1, i λ1, 0)

p2 = (ω, 0, 0,−ω), ε2(p2) = − 1√
2
λ2 (0,−1, i λ2, 0)

p3 = (ω, ω sin θ, 0, ω cos θ), [ε3(p3)]∗ = − 1√
2
λ3 (0, cos θ,−i λ3,− sin θ)

p4 = (ω,−ω sin θ, 0,−ω cos θ), [ε4(p4)]∗ = − 1√
2
λ4 (0,− cos θ,−i λ4, sin θ)

(3.2)

and the Mandelstam variables are

s = −(p1 + p2)2 = 4ω2, t = −(p1 − p3)2 = −2ω2 (1− cos θ),

u = −(p1 − p4)2 = −2ω2 (1 + cos θ) , s + t + u = 0 . (3.3)

The exchange diagrams involve two 11s vertices corresponding to h1(p)h1(q)hs(−p − q)
from (2.8)17

Vα,β,ρ(s)(p, q) =
1

(s+ 2)!

{
ηαβ

[
1

2
(p)ρ(s) +

1

2
(q)ρ(s)

]
− 1

2
ηαρ1pβpρ2 . . . pρs +

1

2
ηβρ1qαpρ2 . . . pρs −

1

2
ηβρ1qαqρ2 . . . qρs +

1

2
ηαρ1pβqρ2 . . . qρs

− 1

2
ηαρ1ηβρ2 pρ3 . . . pρs p · q −

1

2
ηαρ1ηβρ2 qρ3 . . . qρs p · q

}
.

(3.4)

Here hs is assumed to be in TT gauge with the corresponding propagator (cf. (2.8))

D
α(s)
β(s)(p) =

2s−1(2s+ 1)!

(p2)s
Πα1···αs
β1···βs (p), (3.5)

15The condition p2 = 0 for the external lines will help to simplify the expressions for the required cubic

CHS vertices.
16The helicity ±1 polarisation vector for an initial state with p = (ω, ω sin θ, 0, ω cos θ) is ε

(±)
µ (p) =

∓ 1√
2
(0, cos θ,±i,− sin θ). If the state is final, the polarisation vector is (ε

(±)
µ (p))∗ (see, e.g., [21, 22]).

17Here we use that p2 = q2 = 0 for the external vector lines; p = p1, q = p2 in s-channel, etc.
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where the TT projector Π
α(s)
β(s) is built out of products of Πα

β = δαβ −
pα pβ
p2 , e.g.,18

Πα1α2
β1β2

= Πα1

(β1
Πα2

β2) −
1

3
Πα1α2Πβ1β2 , (3.6)

Πα1α2α3α4
β1β2β3β4

= Π
(α1

(β1
Pα2
β2
Pα3
β3

Π
α4)
β4) −

6

7
P (α1α2Π(β1β2

Πα3
β3

Π
α4)
β4) +

3

35
Π(α1α2Πα3α4)Π(β1β2

Πβ3β4) ,

etc.

The resulting s, t, u-channel amplitudes are are given by19

A
(s)
s = 2 V(p1, p2) ·D(p1 + p2) · 2 V(p3, p4) · ε1 ε2 ε

∗
3 ε
∗
4,

A
(s)
t = 2 V(p1, p3) ·D(p1 − p3) · 2 V(p2, p4) · ε1 ε2 ε

∗
3 ε
∗
4,

A
(s)
u = 2 V(p1, p4) ·D(p1 − p4) · 2 V(p2, p3) · ε1 ε2 ε

∗
3 ε
∗
4 .

(3.7)

Evaluating these amplitudes for various helicity choices we find that all amplitudes where

helicity is not conserved vanish20 and for the helicity-conserving cases ±± → ±± or its

crossing-related ±∓ → ±∓ we get21

±±→±± : A
(s)
s = 0, A

(s)
t = cs

(
s

t

)s
Ps

(
t

s

)
, A

(s)
u = cs

(
s

u

)s
Ps

(
u

s

)
,

±∓→±∓ : A
(s)
s = cs

(
u

s

)s
Ps

(
s

u

)
, A

(s)
t = cs

(
u

t

)s
Ps

(
t

u

)
, A

(s)
u = 0 . (3.8)

Like in the external scalar scattering case [16] the scale invariance of the CHS theory and

the fact that h1 has canonical dimension 1 implies that the d = 4 amplitude depends only

on ratios of the Mandelstam variables. We have isolated powers of these ratios containing

the internal spin s CHS propagator factor in each channel (i.e. t−s in t-channel, etc.). The

remaining momentum dependence is given by the even degree s − 2 polynomials Ps(x)

whose normalisation is fixed by the condition P2 = 1 and Ps>2(−1) = 1

P2(x) = 1, P4(x) = 28 + 42x+ 15x2,

P6(x) = 495 + 1320x+ 1260x2 + 504x3 + 70x4,

P8(x) = 8008 + 30030x+ 45045x2 + 34320x3 + 13860x4 + 2772x5 + 210x6,

P10(x) = 125970 + 604656x+ 1225224x2 + 1361360x3 + 900900x4 + 360360x5

+ 84084x6 + 10296x7 + 495x8 .

(3.9)

18In general (cf. (C.3))

Π
ν(s)

µ(s) =

[ s
2

]∑
l=0

as,l M
ν(s−2l)

µ(s−2l) N
ν(2l)

µ(2l) , as,l =
(−1)ls! Γ(s− l + 1

2
)

22l(s− 2l)! l! Γ(s+ 1
2
)

where M
ν(p)

µ(p) = Π
(ν1
µ1 . . .Π

νp)
µp and N

ν(2q)

µ(2q) = Π(µ1µ2
. . .Πµq−1µq) Π(ν1ν2 . . .Πνq−1νq).

19The factors of 2 in the vertices are due to the symmetry of the external lines: for a Lagrangian term

Φn = n! Φn

n!
, the standard Feynman rules imply the coefficient n!.

20In standard terminology that means that only MHV amplitudes are non-zero. The same will be true

for all amplitudes discussed below.
21The vanishing of the s-channel exchange for the same helicity process may be related to the fact that

helicity is conserved in the 3-point vertices where one has only the ±∓ combination (same happens for

gravitational interactions, cf. [23]).
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The overall numerical coefficients cs then are

c2 =
5

12
, c4 =

1

20
, c6 =

13

840
, c8 =

17

2520
, c10 =

7

1980
. (3.10)

The expressions (3.9), (3.10) were found by direct computations for s = 2, . . . , 10 but admit

a natural generalisation to any s. The polynomials Ps(x) may be expressed in terms of

Jacobi polynomials P
(a,b)
n (x) as (s = 2, 4, 6, . . . )

Ps(x) = xs−2 P
(4,0)
s−2

(
x+ 2

x

)
, (3.11)

while the simplest interpolating ansatz for cs is

cs =
2 (2 s+ 1)

(s− 1) s (s+ 1) (s+ 2)
. (3.12)

We shall provide the general derivation of (3.11), (3.12) in appendix C.

Let us mention also some useful alternative forms of the polynomials Ps in (3.11)

Ps(x) =
s−2∑
j=0

(−1)j
(
s− 2

j

)(
2s− j
s+ 2

)
(1 + x)s−2−j xj

=

(
2s

s+ 2

)
(1 + x)s−2

2F1

(
2− s, 2− s,−2s,

x

x+ 1

)
=

x2 s+1

(s− 2)!

(
d

dx

)s−2 (1 + x)s−2

xs+3
=

s∑
j=2

1

(j − 2)! (j + 2)!

(s+ j)!

(s− j)!
xs−j (3.13)

=
1

24
(s− 1) s (s+ 1) (s+ 2)xs−2

2F1

(
2− s, s+ 3, 5;−1

x

)
.

For comparison, in the case of the external massless scalar scattering (coupled to CHS fields

as in (2.1), (2.2) or (2.6)) the s-channel ϕϕ∗ → ϕϕ∗ amplitude was given [16] in terms of

the Legendre polynomial Ps = P
(0,0)
s

A
(s)
sϕϕ∗→ϕϕ∗ =

(
s+

1

2

)
P (0,0)
s (−1− 2x) , x =

t

s
. (3.14)

One can also consider the “mixed” scattering amplitude ϕϕ∗ → 11 of two external confor-

mal scalars into two vectors due to exchange of the tower of CHS fields.22 In this case the

s-channel even spin s exchange amplitude is given by (cf. (3.7))

A
(s)
sϕϕ∗→11 = Vϕϕ∗s(p1, p2) ·D(s)(p1 + p2) · 2 V(p3, p4) · ε∗3 ε∗4, (3.15)

where Vϕϕ∗s is the vertex in (2.6) and V is the 11s vertex as in (3.4), (3.7). The resulting

±± amplitudes vanish while the helicity-preserving ±∓ ones may be written as (cf. (3.8))

A
(s)
sϕϕ∗→±1∓1 = ks

t u

s2
Qs

(
t

s

)
, (3.16)

22Here we are assuming that one adds the action (1.3) of one conformal scalar coupled to CHS fields to

the CHS action (1.2) and then studies the S-matrix of the resulting theory.
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where we ignore the overall minus sign and assume that numerical coefficients are defined

by normalising the order s − 2 polynomial Qs as Qs(−1) = 1. Explicitly, one finds Q2 =

1, Q4 = 1
3 (3 + 14x + 14x2), . . . and k1 = 5

2 , k4 = 9
2 , . . .. On the basis of s = 2, . . . , 10

examples can guess the general s expressions as

Qs(x) =
2

s (s− 1)
P

(2,2)
s−2 (−1− 2x) , ks = s+

1

2
, (3.17)

where P
(2,2)
s−2 is again the Jacobi polynomial (cf. (3.11), (3.12), (3.14)).

3.2 Summing over spins

As we already mentioned above, the s = 0 exchange contribution cancels against the one

of the 1111 vertex (2.13). Thus to get the total amplitude it remains to sum over all spin

s = 2, 4, . . . exchanges. Let us consider, e.g., the ±± → ±± case in (3.8) (the discussion of

the ±∓ → ±∓ case is similar) where the sum over channels is

±± → ±± : A(s) = cs

[(
s

t

)s
Ps

(
t

s

)
+

(
s

u

)s
Ps

(
u

s

)]
. (3.18)

Since u = −s− t this may be written as a function of one variable x ≡ t
s as

A(s) = σs(x) + σs(−1− x), σs(x) ≡ cs x−s Ps(x) . (3.19)

We may compute the sum over s by introducing first an extra regularisation parameter z

and defining

σ(x) ≡ lim
z→1

σ(x; z) , σ(x; z) ≡
∞∑

s=2,4,6,...

σs(x) zs−2 . (3.20)

Let us first omit the overall coefficient cs in σs and consider the formal sum over all (even

and odd) s = 2, 3, 4, . . .

K(x; z) ≡
∞∑
s=2

x−s Ps(x) zs−2 . (3.21)

This can be written in a closed form using the generating function for the Jacobi polyno-

mials P
(4,0)
s−2 [24] as

K(x; z) =
16

x2

[√
z2 − 2z(x+ 2)

x
+ 1

]−1[√
z2 − 2z(x+ 2)

x
+ 1− z + 1

]−4

. (3.22)

Then using the fact that cs in (3.12) admits the following representation

cs =
1

s+ 2
− 1

s+ 1
+

1

s− 1
− 1

s
, (3.23)

we can compute σ(x; z) by multiplying (3.22) by a suitable power of z, integrating, and

then dividing by another appropriate power of z. Finally, the sum over spins may be

restricted to even s only by simply taking one half of the sum of the expressions with z
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and with −z. While the resulting expression is quite cumbersome, its z → 1 limit turns

out to be finite and simple

σ(x) = x(x+ 1) log
x+ 1

x
− x− 1

2
. (3.24)

As it is easy to check, this function satisfies the relation σ(x) = −σ(−1− x) implying that

the total summed-over-spins amplitude vanishes:

A(x) =
∞∑

s=2,4,6,...

A(s)(x) = σ(x) + σ(−1− x) = 0 . (3.25)

Here we formally assumed that σ(x) is defined for any x using analytic continuation. In

fact, this function is real for x ∈ [−∞,−1] ∪ [0,∞] while the argument of the amplitude

in (3.19) is x = t
s = −1

2 (1 − cos θ) ∈ [−1, 0]. In the latter “physical” interval one finds

again that A(x + i 0) = 0 for any sign of the infinitesimal imaginary part. In appendix B

we provide an independent check of the vanishing of the amplitude (3.25) at the special

kinematical point u = 0 or x = −1 (or, equivalently, at x = 0).

Another clarification is that in the above discussion we have excluded the special

points x = 0,−1 where the amplitude may have delta-function singularities as in the

external scalar amplitude case [16]. Indeed, as was shown in [16], the sum of the Legendre

polynomials in (3.14) is given by
∑∞

s=0(s+ 1
2)Ps(x) = δ(x−1), so the total amplitude given

by the sum of the s- and t-channels is ∼ δ(us ) + δ(ut ) which vanishes for real momenta.

Similar cancellation happens here as well as we show in appendix B.

4 General structure of CHS exchange amplitudes

To generalise the above vector scattering results to higher s > 1 spin scattering case it

is useful first to discuss the structure of the CHS 4-particle amplitudes expected on the

basis of Lorentz and scale invariance. It turns out that the appearance of the special

Jacobi polynomials in (3.11), (3.14) and (3.17) is not accidental and may be related to the

partial wave expansion of the λ1, λ2 → λ3, λ4 transition amplitude discussed by Jacob and

Wick [17] (see also [25, 26]).

Considering the c.o.m. frame and using the completeness of states relation one can

represent generic scattering amplitude as a sum over on-shell states of a massive particle

with mass=
√
s and spin J [17]

A{λi}(s, θ) = R{λi}(θ)
∑
J≥M

(
J +

1

2

)
F

(J)
{λi}(s) P

(|λ−µ|,|λ+µ|)
J−M (cos θ) , (4.1)

λ = λ1 − λ2, µ = λ3 − λ4, M = max(|λ|, |µ|) , (4.2)

R{λi}(θ) =

(
cos

θ

2

)|λ+µ|(
sin

θ

2

)|λ−µ|
=

(
− u

s

) 1
2
|λ+µ|(

− t

s

) 1
2
|λ−µ|

. (4.3)

Here {λi} = (λ1, λ2;λ3, λ4), cos θ = 1 + 2 t
s and P

(a,b)
k is the Jacobi polynomial. The latter

originates from the expression for the spherical d-function (N = min(|λ|, |µ|))

dJλµ(θ) =

√
(J +M)!(J −M)!

(J +N)!(J −N)!
R{λi}(θ) P

(|λ−µ|,|λ+µ|)
J−M (cos θ) . (4.4)
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We assume that the scattering particles are massless. If the theory is scale-invariant (has

no dimensional parameters) the dependence of the coefficient functions F
(J)
{λi} on s should

be controlled only by dimensions ∆i of the scattering fields,

F
(J)
{λi}(s) = F

(J)
{λi} s

∆ , ∆ ≡ 1

2

(
4−

4∑
i=1

∆i

)
. (4.5)

Here F
(J)
{λi} are some numerical coefficients encoding dynamical information about a partic-

ular theory. For example, ∆ = 0 for scattering of dimension 1 massless scalars or vectors

in 4d. In the case of CHS scattering with asymptotic states chosen, as discussed in the pre-

vious section, to be the standard massless spin |λi| particles the representation (4.1), (4.5)

should again apply with ∆ = 1
2(
∑

i |λi| − 4) (the CHS field dimensions are ∆i = 2− |λi|).
Our key observation is that in the present context of conformal higher spin theory

the spin J contribution in (4.1) should have the same structure as the contribution of an

intermediate CHS field exchange with s = J in s-channel. This should be a kinematical

consequence of the fact that a massive (m2 = s) intermediate spin J state in (4.1) may

be described by a totally symmetric field φµ1...µJ satisfying (−� +m2)φµ1...µJ = 0 as well

as the tracelessness and transversality conditions (leaving only 2J + 1 states as physical

degrees of freedom). At the same time, the CHS scattering is also mediated by the TT

field exchange with the propagator in (3.5). The only formal difference is in the overall

s-dependence that appears in F but in the CHS scattering case the latter is controlled by

the scale invariance leading to (4.5).

This formal interpretation of the spin J term in (4.1) as the CHS spin s = J exchange

amplitude should directly apply only to the s-channel exchange: this is due to the selection

of s variable as the c.o.m. frame mass parameter in (4.1) and thus as the variable that

should appear in the propagator of the corresponding exchanged CHS field. The total CHS

amplitude given by the sum over all channels as in (3.1), (3.18) will also have the general

form (4.1) when expanded in the Jacobi polynomials but the J = s identification of the

particular term in the sum with the contribution of the CHS exchange will be valid only in

a particular channel (in s-channel or after renaming the kinematic variables and helicities

also in t- and u-channels, see below).

Another remark is that this identification of the J-term in (4.1) with the higher spin

exchange does not apply to the case of the 2-derivative massless higher spin scattering in

flat space discussed in [27]. The reason is that the massless spin s propagator (taken, e.g., in

the de Donder gauge) is not traceless-transverse and thus the massless higher spin particle

exchange can not be directly identified with a massive spin J on-shell state contribution in

the sum in (4.1).23

Let us now see how the previously discussed cases of the external scalar and vector

scattering (3.8), (3.14), (3.16) via the CHS exchange may be related to (4.1). In the case

23Indeed, the scattering amplitude for four massless scalars exchanging the tower of massless higher

spins was given in [27] by the sum of the Chebyshev polynomials rather than the Legendre polynomials

appearing (3.14) in the case of the conformal higher spin exchange in [16]. Interestingly, there is still a

formal relation between 4-scalar scattering via massless higher spin exchange in d + 1 dimensions and via

conformal higher spin exchange in d dimensions suggesting possible AdS/CFT connection.
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of the ϕϕ∗ → ϕϕ∗ scattering we have λi = 0, λ = µ = 0, M = 0, and thus should expect,

according to (4.1), (4.5), to find the s-channel spin J contribution to be

A
(J)
s 0,0;0,0(s, cos θ) =

(
J +

1

2

)
F

(J)
0,0;0,0 P

(0,0)
J (cos θ) . (4.6)

Comparing this with the s-channel result (3.14) of the direct computation using that cos θ =

1 + 2 t
s we conclude that the two expression indeed match provided s = J and

F
(s)
0,0;0,0 = 1 . (4.7)

For ϕϕ∗ → ±∓ in (3.15), (3.16) we have λ = λ1 = λ2 = 0, λ3 = −λ4 = ±1, µ = M = ±2,

and thus from (4.1), (4.5) should get

A
(J)
s 0,0;±1,∓1(s, cos θ) =

(
J +

1

2

)
F

(J)
0,0;±1,∓1

u t

s2
P

(2,2)
J−2 (cos θ) . (4.8)

Comparing this with (3.16), (3.17) we find perfect match provided s is identified with J

(which should be taken to be even) and24

F
(s)
0,0;±∓ =

2

s (s− 1)
. (4.9)

In the case of ±1±1 → ±1±1 scattering in (3.8) we have the two contributions of the t-

and u- channels that are to be analysed separately. For example, considering the t-channel

exchange to be able to compare it to (4.1) we should first re-interpret it as an s-channel

exchange by relabelling the states and Mandelstam variables. Explicitly, the t-channel

scattering of original “X”-particles may be interpreted as s-channel scattering of effective

“Y”-particles, i.e. X1 + X3 → X4 + X2 is equivalent to Y1 + Y2 → Y3 + Y4. For the Y-

particles we then have λ1 = −λ2 = ±1, λ3 = −λ4 = ±1, λ = µ = 2, M = 2 and thus

from (4.1), (4.5) we should get

A
(J)
s±1,∓1;∓1,±1 =

(
J +

1

2

)
F

(J)
±1,∓1;∓1,±1

u2
Y

s2
Y

P
(0,4)
J−2 (cos θY ), cos θY = −1− 2

uY
sY

. (4.10)

The Y-kinematics becomes the X-kinematics after sY → t, tY → u, uY → s. Thus for the

t-channel exchange of the X-particles we should get

A
(J)
t±1,±1;±1,±1(t, cos θ) =

(
J +

1

2

)
F

(J)
±1,±1;±1,±1

s2

t2
P

(0,4)
J−2

(
−1− 2

s

t

)
. (4.11)

This matches the t-channel result in (3.8), (3.11), (3.12) with J = s since(
s

t

)s(t

s

)s−2

P
(4,0)
s−2

(
1 + 2

s

t

)
=

s2

t2
P

(0,4)
s−2

(
− 1− 2

s

t

)
, (4.12)

24Note that the restriction that J = s should be even does not follow from (4.1) and is an extra dynamical

property of CHS theory (parity invariance of the original scalar theory (2.1) implying the absence 1-1-s

vertices with odd s). For even s the polynomial P
(2,2)
s−2 (x) is even.
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provided also we choose

F
(s)
±1,±1;±1,±1 =

cs

s+ 1
2

=
4

(s− 1) s (s+ 1) (s+ 2)
. (4.13)

Guided by the above three examples (4.7), (4.9) and (4.13) we may conjecture the general

dependence of F
(J)
{λi} in (4.5) on J = s in the case of CHS exchange amplitudes to be25

F
(s)
{λi} = kλ,µ

(s−M)!

(s+N)!
, N = min(|λ|, |µ|), M = max(|λ|, |µ|) . (4.14)

Then for kλ,µ = 1 we indeed get F
(s)
{0} as in (3.11), F

(s)
0,0;±∓ as in (4.9) and F

(s)
{±1} as in (4.13)

(where one should, as explained above, use λ = µ = 2 to match the t-channel result). It

turns out that this ansatz (4.14) applies also in all other cases discussed below.

5 Scattering amplitudes with conformal gravitons

Let us now turn to the discussion of conformal graviton scattering due to the exchange of

the CHS fields. The relevant 2-2-s interaction vertex was given in (2.15). As discussed

in section 3, we shall be scattering only the “physical” massless spin 2 component of the

conformal spin 2 field, attaching the corresponding asymptotic states to the amputated

Green’s functions.26

5.1 22 → 22 scattering

Let us first discuss what we should expect to get for the structure of the 22→22 even spin

s ≥ 4 exchange on general symmetry grounds. We shall assume that as in the 4-vector case

25One reason why this choice may be special is the following property of the Jacobi polynomials:

(λ+ µ)! (s−M)!
(s+N)!

P
(|λ−µ|,λ+µ)
s−M (−1) = 1 where λ and µ should be integer and s −M should be even integer.

This implies the s-independence of the backward scattering amplitude in the direct channel.
26Let us note also that using the standard formulation of the CHS action (1.2) one may also study the

scattering of other “ghost”-like modes described by the higher-derivative CHS equations. In general, the

6 dynamical degrees of freedom of the Weyl graviton way be described by the collection of the standard

massless spin 2 field, massless vector, and massless spin 2 ghost field states (for a discussion of solutions of

linearised Weyl gravity equations reproducing the dynamical degrees of freedom count [28–30] see [31] and

also appendix C in [19]). Explicitly, choosing the TT gauge (hmm = 0, ∂mhmn = 0) we get the free conformal

graviton equation as �2hmn = 0 which is solved by hmn = h
(1)
mn +h

(2)
mn = (amn + bmnukx

k)eip·x + c.c. where

p2 = 0, u2 = −1, u · p 6= 0 , amm = bmm = 0. Here h
(1)
mn represents the massless spin 2 and spin 1 modes and

h
(2)
mn the ghost-like spin 2 mode (which grows in time and leads to negative energy contributions). Using the

Lorentz symmetry and the residual gauge freedom one may choose [31]: pm = (p, 0, 0, p), um = (1, 0, 0, 0) ,

a11 + a22 = b11 + b22 = 0 , am3 = bm3 = bm0 = 0 and then the 2+2+2 dynamical d.o.f. are described

by the helicity ±2 tensor (a11 ± ia12)eip·x, helicity ±1 vector (a01 ± ia02)eip·x and helicity ±2 ghost tensor

(b11 ± ib12)x0eip·x. The spin 1 and ghost spin 2 become parts of massive spin 2 ghost if one adds the R

term to Weyl action to get a diagonal mode decomposition. At the level of the flat-space partition function

of Weyl graviton the above 2+2+2 split corresponds to the following decomposition [1]:

Z2 =

[
(det ∆1)3

(det ∆2)2

]1/2

=

[
det ∆1⊥

det ∆2⊥

]1/2[
det ∆0⊥

det ∆2⊥

]1/2

=

[
det ∆1⊥

det ∆2⊥

]1/2[
det ∆0⊥

det ∆1⊥

]1/2[
det ∆1⊥

det ∆2⊥

]1/2

Here ∆s are 2-derivative Laplacians defined on traceless rank s symmetric fields.

– 17 –



J
H
E
P
0
9
(
2
0
1
6
)
0
3
4

the non-vanishing scattering amplitudes should be similar to (3.8) (where now ± will stand

for ±2 helicities of the external massless graviton state). Thus for the ++ → ++ amplitude

we should have the contributions from the t- and u- channels.27 Then repeating the analysis

that in the vector case lead to (4.11) we conclude that for the t-channel exchange of CHS

spin J states we should expect from (4.1), (4.5) to find for J ≥ 4

A
(J)
t±2,±2;±2,±2(t, cos θ) =

(
J +

1

2

)
F

(J)
±2,±2;±2,±2 t

2 s4

t4
P

(0,8)
J−4

(
−1− 2

s

t

)
. (5.1)

Here t2 factor reflects the fact that the conformal graviton has dimension 0 (cf. (4.5)). The

total amplitude due to spin s = J exchange should then be as in (3.18) (cf. (3.11))

±2± 2→ ±2± 2 : A(s) = cs s
2

[(
s

t

)s−2

Ps

(
t

s

)
+

(
s

u

)s−2

Ps

(
u

s

)]
, (5.2)

Ps(x) = xs−2 P
(8,0)
s−4

(
x+ 2

x

)
. (5.3)

If we also assume the validity of the conjecture (4.14) for the coefficients F
(J)
{λi} then we

may expect also to get

cs = k
2s+ 1

(s− 3)(s− 2)(s− 1)s(s+ 1)(s+ 2)(s+ 3)(s+ 4)
, (5.4)

where k is some s-independent numerical factor.

Remarkably, the direct computation based on the CHS action and carried out for

several even28 values of s ≥ 4 confirms the above expressions (5.2), (5.4) and fixes k

in (5.4) to be

k =
9

8
. (5.5)

Similar result is found for the ±2∓2→ ±2∓2 exchange (cf. (3.8)). The general derivation

of (5.2)–(5.5) may be given using the same formalism as described for the 11 → 11 case in

appendix C.

We can now sum the amplitude (5.2) over all even s = 4, 6, . . . using the same method

as in the vector scattering case (3.19)–(3.24):

∞∑
s=4,6,...

A(s)(x) = s2
[
σ(x) + σ(−1− x)

]
, x ≡ t

s
, (5.6)

σ(x) = lim
z→1

∞∑
s=4,6,...

cs x
2−s Ps(x) zs−4 . (5.7)

27We again assume two incoming and two outgoing momenta; choosing all momenta as incoming this

becomes the MHV + +−− amplitude.
28Recall that the 2-2s vertex (2.15) vanishes for odd s.
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After a rather involved computation using the generating function for the Jacobi polyno-

mials in (5.3) we found that29

σ(x) =
1

4320

[
60 (x+ 1)3 x3 log

x+ 1

x
− 60x5 − 150x4 − 110x3 − 15x2 + 3x− 1

]
. (5.8)

One can then check that the combination of the σ functions appearing in (5.6) vanishes as

in the vector exchange case (3.25)

σ(x) + σ(−1− x) = 0 , (5.9)

i.e. the t- and u-channel contributions summed over s = 4, 6, . . . cancel against each other.

To find the total 22→ 22 amplitude one is still to add (i) the contributions of the low-

spin s < 4 CHS exchanges (i.e. the exchange mediated by the non-propagating spin 0 field

h0 and the exchange of the spin 2 conformal graviton itself) and also (ii) the contribution

of the 2222 contact vertex that is found from the UV singular part of the diagram (2.12)

with four spin 2 current insertions (with vertices in (2.6) as the external legs are assumed

to be TT). We found the following expressions for the spin 0 exchanges with the cubic

vertex in (2.16):

±2± 2→ ±2± 2 : A
(0)
s =

s2

4608
, A

(0)
t =

t2 u4

512 s4
, A

(0)
u =

t4 u2

512 s4
,

±2∓ 2→ ±2∓ 2 : A
(0)
s = 0, A

(0)
t =

t2 u4

512 s4
, A

(0)
u =

(s + 3t)2 u4

4608 s4
.

(5.10)

The spin 2 exchanges (with the 2-2-2 vertices as in (2.15)) are

±2± 2→ ±2± 2 : A
(2)
s =

s2 + 6 s t + 6 t2

23040
,

A
(2)
t =

u2(2 s4 − 10 s3 t + 33 s2 t2 − 24 s t3 + 3 t4)

7680 s4
,

A
(2)
u =

t2 (2 s4 − 10 s3 u + 33 s2 u2 − 24 s u3 + 3u4)

7680 s4
, (5.11)

±2∓ 2→ ±2∓ 2 : A
(2)
s = 0, A

(2)
t =

u4 (2 s2 + 2 s t + 3 t2)

7680 s4
,

A
(2)
u =

u4 (10 s2 + 18 s u + 9u2)

23040 s4
.

The contributions of the 4-derivative 2222 contact vertex which is the s = 2 analog of (2.13)

are found to be

±2± 2→ ±2± 2 : A(cont) = −s6 − s5 t + 26 s4 t2 + 63 s3 t3 + 54 s2 t4 + 27 s t5 + 9 t6

1920 s4
,

±2∓ 2→ ±2∓ 2 : A(cont) = −u4 (s2 + 3 s t + 9 t2)

1920 s4
. (5.12)

29Let us note a similarity in the structure of (5.6) and (3.24). This suggests that for higher spin jj→ jj scat-

tering one may be able to guess the expression for σ(x) and then check that the coefficients in its expansion

in a suitable set of Jacobi polynomials reproduces the cs prefactor. Similar ideas have been exploited in [32].
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Remarkably, the sum of these three contributions vanishes for each of the helicity choices:

[A
(0)
s +A

(0)
t +A

(0)
u ] + [A

(2)
s +A

(2)
t ] +A

(2)
u +A(cont) = 0 . (5.13)

Note that this result is equivalent to the vanishing of the 4-graviton scattering amplitude in

the non-linear C2 Weyl gravity theory. Indeed, the linear scalar - CHS coupling action (1.3)

is equivalent to the covariant conformal scalar action (1.4) by a local field redefinition (1.6).

As the latter action directly leads to the Weyl tensor squared action as the “induced”

one (1.5), and as the field redefinitions of h0 and h2 in the spin ≤ 2 part of the CHS action

induced from (1.3), (2.1) should not change the graviton S-matrix, the latter should be

same as in the Weyl theory. In more detail, adding the exchange of the non-propagating h0

field produces (as it follows from (2.16)) an extra 4-derivative 2222 contact vertex contri-

bution. The remaining local redefinition of hµν in (1.6) may alter the 222 vertices by terms

proportional to the linearised equations of motion (�2hTT
µν = 0) and also change the quartic

2222 vertex, but it cannot change the resulting on-shell 4-graviton scattering amplitude.

The vanishing of the tree-level 4-graviton amplitude in Weyl theory can be deduced

also from the expressions in [33] for the massless graviton scattering in L = aR + bC2

theory by taking the limit a→ 0 in the final expression for the 4-graviton amplitude. The

propagator here is symbolically 1
ap2+bp4 [34] (reducing to the Weyl graviton propagator for

a → 0 or to the Einstein propagator for b → 0) so as long as the asymptotic states are

chosen to be massless helicity ±2 gravitons the resulting amplitude interpolates smoothly

between the standard Einstein 4-graviton one and zero in the Weyl theory.30

Remarkably, as we have just seen, the vanishing of tree-level 4-graviton amplitude in

Weyl theory generalises to the full CHS theory: the results (5.6), (5.9) and (5.13) combined

together imply that like the 11→11 amplitude in (3.25) (and also the external conformal

scalar amplitude [16]) the total 22→22 conformal graviton scattering amplitude in the CHS

theory vanishes after all intermediate exchange contributions are added together.

5.2 11 → 22 scattering

One may also consider some “mixed” 4-particle amplitudes involving both vectors and

conformal gravitons. The amplitudes with odd number of vectors vanish identically so

one is to consider only 11→ 22 case. Here the two a priori non-trivial helicity choices are

±1∓ 1→ ±2∓ 2 and ±1± 1→ ±2∓ 2.

Let us first briefly mention also the expressions for the “mixed” amplitude where

two external conformal scalars ϕ in (2.1) scatter into two conformal gravitons. As in

30Let us also mention that the conformal graviton amplitudes in flat space were computed in [35] starting

with the twistor string theory of [36]. The latter should be related to “non-minimal” conformal supergravity

containing extra dimension 0 scalar coupling to Weyl squared term, φ�2φ + (1 + k φ + . . .)C2 + . . .. The

tree-level 4-graviton amplitude in such theory is given by the sum of the 4-graviton amplitude in Weyl

theory and the scalar exchange ∼ k2C2�−2C2. The non-zero result for the 4-graviton amplitude found

in [35] appears to be given just by this scalar exchange, i.e. is consistent with the vanishing of the graviton

amplitude in pure Weyl theory. Similar result was found in [37, 38] by taking the flat limit of the conformal

graviton scattering amplitude in dS space which is the same as the Einstein gravity one [39] times the

cosmological constant factor.
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the ϕϕ∗ → 11 case (3.15) the non-vanishing helicity-preserving amplitude ϕϕ∗ → ±2 ∓ 2

receives contributions from even spin s ≥ 4 exchanges that should have the general structure

consistent again with J = s term in (4.1), (4.5):

A
(s)
s 0,0;±2,∓2 =

(
s+

1

2

)
F

(s)
0,0;±2,∓2 s

(
u t

s2

)2

P
(4,4)
s−4

(
− 1− 2

t

s

)
. (5.14)

The explicit computation for cs =
(
s+ 1

2

)
F

(s)
0,0;±2,∓2 gives again the result consistent with

the ansatz (4.14) (here λ = 0, µ = 4, M = 4, N = 0)

cs =

(
s+

1

2

)
F

(s)
0,0;±2,∓2 = −3

4

2s+ 1

(s− 3)(s− 2)(s− 1)s
. (5.15)

To get the full amplitude one is to add also the contributions of the s = 0, 2 exchanges.

Turning to the ±1 ∓ 1 → ±2 ∓ 2 amplitude, we find that the non-vanishing helicity-

preserving even s ≥ 4 exchange amplitude in the s-channel has again the form as predicted

by (4.1), (4.5)

A
(s)
s ±1,∓1;±2,∓2 = cs s

t u3

s4
P

(6,2)
s−4

(
−1− 2

t

s

)
, (5.16)

cs =

(
s+

1

2

)
F

(s)
±1,±1;±2,∓2 =

3

2

2s+ 1

(s−3)(s−2)(s−1)s(s+1)(s+2)
, (5.17)

where λ = 2, µ = 4,M = 4, N = 2 so the expression for cs is again consistent with (4.14).

In the t-channel one finds (after an appropriate relabelling of helicities and kinematic

variables) that for odd s ≥ 331

A
(s)
s ±1,∓1;±2,∓2 = c′s s

u3

st2
P

(6,0)
s−4

(
−1− 2

s

t

)
, (5.18)

c′s =
2s+ 1

(s− 2)(s− 1)s(s+ 1)(s+ 2)(s+ 3)
. (5.19)

The u-channel contribution is zero. The total s- plus t-channel contribution to the ampli-

tude from these higher spin exchanges is then

As>2 =
u3

s2
Ā

(
t

s

)
, Ā(x) = xS(x) + x−2 T (x−1) , (5.20)

S(x) ≡
∞∑

s=4,6,8,...

cs P
(6,2)
s−4 (−1− 2x) , T (x) ≡

∞∑
s=3,5,7,...

c′s P
(6,0)
s−4 (−1− 2x) . (5.21)

The explicit evaluation of S(x) and T (x) for −1 < x < 0 gives

S(x) = −x
3 + 5x2 + 13x− 3

96(x+ 1)5
− x log(−x)

8(x+ 1)6
,

T (x) = −(x− 1)(x2 + 8x+ 1)

96(x+ 1)5
− x2 log(−x)

8(x+ 1)6
,

(5.22)

31Here we took into account that for odd spin the momentum space propagator has an extra factor

(−1)s = −1, cf. (2.8).
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so that Ā = − 1
96 (x+1) . The resulting contribution of all higher s > 2 spin exchanges to the

total amplitude is thus

As>2 = − 1

96

u3

s2

1
t
s + 1

=
1

96

u2

s
. (5.23)

We are still to add possible contributions of low-spin s = 0, 1, 2 exchanges and contact 1122

vertex. The h0 exchange is trivial as the 110 vertex (2.11) vanishes for the ±1,∓1 helicity

choice. The h2 exchange is also found to vanish. The h1 exchange gives the following

non-zero contributions in the t- and u-channels

± 1∓ 1→ ±2∓ 2 : A
(1)
t =

u3 (2s + t)

192 s3
, A

(1)
u =

t u2 (s− t)

192 s3
. (5.24)

The 1122 contact term can be found by computing the UV singular part of the scalar loop

diagram with two spin 1 and two spin 2 current insertions

µ

ν

ρ1ρ2

σ1σ2

1

2

3

4

Ι1 = 

µ

νρ1ρ2

σ1σ2
1

23

4

Ι2 = (5.25)

and then replacing the legs with physical polarisations.32 We get I1 = 1
20

t u3

s3 , I2 = − 1
60

t u3

s3 .

Including combinatorics factors the total contribution is (−1) 1
(2!)4 2(2I1 + I2), i.e.

± 1∓ 1→ ±2∓ 2 : A(cont) = − 1

96

tu3

s3
. (5.26)

The total amplitude given by the sum of the contributions of the higher-spin ex-

changes (5.23), spin 1 exchange (5.24) and the 4-point contact vertex (5.26) is found to

vanish

± 1∓ 1→ ±2∓ 2 : As>2 +
[
A

(1)
t +A

(1)
u

]
+A(cont) = 0 . (5.27)

Let us now consider the second non-trivial helicity amplitude ±1 ± 1 → ±2 ± 2. Here

we find that the s-channel amplitude vanishes while the higher odd s ≥ 3 spin exchange

contributions in t- and u-channels have the form consistent with the general expecta-

tions (4.1), (4.5), (4.14)

±1± 1→±2±2 : A
(s)
t =cs

s3

t2
P

(0,6)
s−3

(
−1− 2

s

t

)
, A

(s)
u = cs

s3

u2
P

(0,6)
s−3

(
−1− 2

s

u

)
,

cs=− 2s+ 1

(s−2)(s−1)s(s+1)(s+2)(s+3)
, s=3, 5, 7, . . . . (5.28)

The sum over all odd spin s ≥ 3 exchanges can be done by observing that P
(0,6)
s−3 (−1−2x) =

P
(6,0)
s−3 (1 + 2x) and that cs in (5.28) is minus c′s in (5.19). One can then use the expression

32Here the diagrams with the opposite loop orientation give equal contributions.

– 22 –



J
H
E
P
0
9
(
2
0
1
6
)
0
3
4

for T (x) in (5.21), (5.22) to find that the sum of t- and u-channel amplitudes in (5.28)

vanishes as a consequence of (x = s
t)

x2 T (−1− x) +

(
x

1 + x

)2

T

(
− 1

1 + x

)
= 0 . (5.29)

For the non-vanishing low-spin exchange and the 1122 contact term contributions here we

get

±1± 1→ ±2± 2 : A
(0)
s = − s

128
, A

(1)
t =

u2 (s2 − 6 s t + 2t2)

128 s3
,

A
(1)
u =

t2 (s2−6 s u+2u2)

128 s3
, A(cont) = −t u (t2+3 t u+u2)

32 s3
. (5.30)

They separately sum up to zero

A
(0)
s + [A

(1)
t +A

(1)
t ] +A(cont) = 0 , (5.31)

so the total ±1± 1→ ±2± 2 amplitude is again zero.

We conclude that like the 11→11 and 22→22 amplitudes, the 11→22 amplitudes also

vanish. It is thus natural to conjecture that all higher spin amplitudes in the CHS theory

should also vanish. In appendix B we provide a check of this conjecture by demonstrating

that the exchange amplitude for the scattering of four spin j CHS particles constructed

using the general relations in (4.1), (4.5), (4.14) vanishes at the special kinematical point

u = 0 (i.e. for backward scattering).

6 Concluding remarks

In this paper we provided evidence that tree-level 4-particle scattering amplitudes for

(massless modes of) conformal higher spin fields vanish after summing over all intermediate

CHS exchanges. The amplitudes vanish due to cancellation between the summed up con-

tributions of different scattering channels. This is an indication that this cancellation may

be a consequence of the underlying higher spin symmetry which is an infinite dimensional

extension of the usual conformal symmetry.

Indeed, the CHS theory inherits the global higher spin symmetry of the free scalar

theory (which is also a symmetry of the dual massless higher spin theory in AdS5). This

symmetry acts on the scalar ϕ and the source fields hs in the coupled action (2.1) and thus

becomes the symmetry of the local UV part of the induced action [4, 5].33

As was shown in [16], the vanishing of the conformal scalar 4-point amplitude in the

coupled scalar — CHS theory can be understood as a consequence of a particular subset of

transformations of the higher spin algebra — the hypertranslations δϕ = εµ(k)∂µ(k)ϕ and

the rescalings. Similar reasoning should apply also in the case of the scattering amplitudes

with CHS fields on external lines considered in the present paper. The transformation

of the CHS fields hs under the differential part of the gauge symmetry is symbolically

33It also acts on the correlation functions of currents Js at separated points and, vice versa, requiring it

to be a symmetry of these correlation functions implies that they should correspond to a free CFT [40–43].
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δh = ∂ε + ε∂h, i.e. like the usual diffeomorphisms it contains an inhomogeneous and

homogeneous parts with the latter mixing different spins. The global part of the algebra

corresponds to ε being chosen as conformal Killing tensors. For example, for constant ε

δh0 =
∑
k

εµ(k)∂µ(k)h0 , δhρ =
∑
k

[
ερµ(k)∂µ(k)h0 + εµ(k)∂µ(k)h

ρ
]
, (6.1)

δhρσ =
∑
k

[
ερσµ(k)∂µ(k)h0 + 2εµ(k)(ρ∂µ(k)h

σ) + εµ(k)∂µ(k)h
ρσ
]
, . . . (6.2)

These transformations relate Green’s functions with different types of legs h0, h1, h2, . . ..

In the case of the S-matrix where the non-propagating field h0 does not appear on external

lines the transformation of h1 under hypertranslations will be the same as of the conformal

scalar in [16] so that choosing εµ1...µk = yµ1 . . . yµk where yµ is an arbitrary constant vector

we may then repeat the argument of [16] for the vanishing of the corresponding scatter-

ing amplitude. Similar arguments should also apply to amplitudes involving conformal

gravitons.

As the same higher spin algebra controls also the massless higher spin theory in AdS5 [9]

(of which the CHS theory is an effective 4d “shadow” or corresponds to the alternative

choice of the boundary conditions for higher spin fields [12]) it would be interesting to know

if there is an AdS related argument for the vanishing of the CHS S-matrix. One may also

start with the CHS theory defined on AdS4 or dS4 and try to generalise the arguments

of [38, 39] to argue that the corresponding S-matrix for massless higher spin modes of the

CHS fields should be the same as in the corresponding massless higher spin theory. Taking

the flat limit (i.e. the cosmological constant to zero) may then lead to the conclusion that

the S-matrix of the resulting hypothetical massless higher spin theory in flat space should

also be trivial.
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A Vertices in CHS action from scalar loop integrals

Here we shall provide some details of computation of UV singular parts of the complex

scalar loop diagrams with few higher spin current insertions (2.1) leading to the expressions

for CHS vertices given in section 2. For the computation of Feynman integrals we shall use

the standard relations∫
ddk

(2π)d
(k2)a

(k2 +M2)b
=

Γ(b− a− d/2)Γ(a+ d/2)

(4π)d/2Γ(b)Γ(d/2)
(M2)d/2+a−b , (A.1)

1

A1 . . . An
= (n− 1)!

∫
[0,1]n

dnx
δ(x1 + · · ·+ xn − 1)

(x1A1 + · · ·+ xnAn)n
. (A.2)
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The expression for the scalar loop diagram in (2.7) with two current operator or vertex (2.6)

insertions has the following general structure∫
ddk

(2π)d
N(k, p)

k2 (k + p)2
=

∫ 1

0
dx

∫
ddk

(2π)d
N(k, p)

[(k + x p)2 + x(1− x) p2]2

=

∫ 1

0
dx

∫
ddk

(2π)d
N(k − x p, p)
(k2 +M2)2

, M2 = x(1− x) p2.

(A.3)

When contracted with two TT fields hs the numerator in (A.3) takes the following form

Nµ(s)ν(s)(k − px, p)→
1

(s!)2
kµ1kν1 . . . kµskνs →

1

(s!)2

1

2s(s+ 1)
(k2)s ηµ1ν1 · · · ηµsνs . (A.4)

Then integrating over k and extracting the coefficient of the 1
ε pole term we find

S2[hs] =
(−1)s

2s Γ(2s+ 2)

∫
d4p

(2π)4
hµ(s)(p)(p

2)s hµ(s)(−p) , (A.5)

which becomes (2.8) when written in coordinate representation.

The cubic vertex for three CHS fields is determined by the diagram in (2.9). For the

1-1-s vertex multiplied by hµ(p1)hν(p2)hρ(s)(−p1 − p2) in the CHS action we get34

Vµ,ν,ρ(s)(p1, p2) =
1

2!

1

s!

∫
ddk

(2π)d
kµ(k + p1)ν(k + p1 + p2)ρ(s)

k2(k + p1)2(k + p1 + p2)2
. (A.6)

There is also another diagram with the scalar U(1) charge flowing in the opposite direction

giving Ṽµ,ν,rho(s)(p1, p2) = Vν,µ,ρ(s)(p2, p1); their sum

Vµ,ν,ρ(s)(p1, p2) = Vµ,ν,ρ(s)(p1, p2) + Vν,µ,ρ(s)(p2, p1) (A.7)

ensures the symmetry under hµ(p1) ↔ hν(p2). To compute the pole part of this integral

we use Feynman parametrisation (and shifts of k) and assume that the external legs are

contracted with TT fields (i.e. terms with p1µ, p2ν , (p1 + p2)ρ(s) can be dropped). Then

Vµ,ν,ρ(s) =
1

2 s!

∫
ddk

(2π)d
kµkρ(s)(k + p1)ν

k2(k + p1)2(k + p1 + p2)2

=
1

s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
kµkρ(s)(k + p1)ν

[(k + xp1 + y(p1 + p2))2 +M2]3
(A.8)

→ 1

s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
(k − yp2)µ(k − xp1)ρ(s)(k + (1− x− y)p1)ν

(k2 +M2)3
,

M2 = x(1− x)p2
1 + y(1− y)(p1 + p2)2 − 2xyp1 · (p1 + p2) . (A.9)

Separating terms of different order in k in the numerator, integrating over k and then over

x, y we find for the pole part

Vµ,ν,ρ(s)(p1, p2) =
1

2(s+ 2)!

{
ηµν(p1)ρ(s) − ηµρ1p1νp1ρ2 . . . p1ρs + ηνρ1p2µp1ρ2 . . . p1ρs

−ηµρ1ηνρ2 p1ρ3 . . . p1ρs

[
p1 · p2 +

s

2
(p2

1 + p2
2)

]}
. (A.10)

34Here only the UV pole part is to be kept: for simplicity, here and below we shall use use the same

notation V for the full integral and the coefficient of its pole part, i.e. V → 1
(4π)2ε

V+finite.
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The full cubic 1-1-s vertex is then given by (3.4) or (2.10) in coordinate representation.

The quartic 1111 vertex (2.13) is found from the pole part of the diagram in (2.12)

1

4!
× 6× 3!

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

∫
ddk

(2π)d
kµkνkρkσ

(k2 +M2)4

→ 1

16π2ε

1

48
(ηµνηρσ + ηµρηνσ + ηµσηνρ).

(A.11)

To find the 2-2-s vertex which is multiplied by the TT fields hµ1µ2(p1)hν1ν2(p2)hρ(s) in the

CHS action we are to find again the singular part of the diagram (2.9) with the vertices (2.6)

leading to the integral (where we are allowed to drop TT-trivial terms proportional to

p1µ1 , p1µ2 , etc.)

Vµ1µ2,ν1ν2,ρ(s) =
1

2!

1

(2!)2

1

s!

∫
ddk

(2π)d
kµ1kµ2(k + p1)ν1(k + p1)ν2(k + p1 + p2)ρ(s)

k2(k + p1)2(k + p1 + p2)2

→ 1

4 s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
kµ1kµ2kρ(s)(k + p1)ν1(k + p1)ν2

[(k + xp1 + y(p1 + p2))2 +M2]3

→ 1

4 s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
Nµ1µ2,ν1ν2,ρ(s)(p1, p2, k;x, y)

(k2 +M2)3
,

(A.12)

where M2 is the same as in (A.9) and

Nµ1µ2,ν1ν2,ρ(s) = (k− yp2)µ1(k− yp2)µ2(k−xp1)ρ(s)[k+ (1−x− y)p1]ν1 [k+ (1−x− y)p1]ν2

Non-trivial UV divergent pole contributions may come from the terms in N which are of

order k2, k4, k6, k8 (integrals of higher powers of k will lead to contractions between ρ indices

that can be discarded due to TT condition). As a result, we find the vertex given in (2.15).

Let us also discuss some vertices involving the non-propagating spin 0 field h0. One

can show that 0-0-s interaction is absent if hs is subject to TT condition. 1-0-s vertex is

given by the pole part of the integral (here p = p2 and M2 is as in (A.9))

Vµ,ρ(s) =
4

s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
(k − yp)µ(k + xp)ρ(s)

(k2 +M2)3
. (A.13)

It is non-vanishing for odd s and reduces to (2.17). In the case of 2-0-s vertex we get two

diagrams (2.9) with opposite loop direction and the sum of the corresponding integrals can

be put into the form

Vµ1µ2,ρ(s) =
1

s!

∫
ddk

(2π)d
kµ1kµ2kρ(s)

k2(k + p1)2(k + p1 + p2)2

→ 2

s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
kµ1kµ2kρ(s)

[(k + xp1 + y(p1 + p2))2 +M2]3

→ 2

s!

∫ 1

0
dx

∫ 1−x

0
dy

∫
ddk

(2π)d
(k − yp)µ1(k − yp)µ2(k + xp)ρ(s)

(k2 +M2)3
,

(A.14)

where M2 is as in (A.9). The pole part of this integral is given by (2.18). The computation

of the 1-2-s vertex is similar, leading to the expression in (2.19).
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B Vanishing of 4-particle amplitude at special kinematics

B.1 11 → 11 scattering

As a check of the vanishing of the summed over spins 11 → 11 scattering amplitude

discussed in section 3.2 here we independently demonstrate this at the special kinematics

point u = 0 or s = −t corresponding to θ = π or backward scattering. The total ++→ ++

amplitude obtained by summing (3.18) over all even spins s = 2, 4, . . . for s = −t may be

written as

∞∑
s=2,4,...

A(s)
∣∣∣
u→0

= a+ lim
γ→∞

f(γ) , a =

∞∑
s=2,4,...

cs , f(γ) =

∞∑
s=2,4,...

cs γ
s Ps(0) , (B.1)

where the first term comes from the t-channel and the second from the u-channel contri-

bution (where we already set u = 0 in the argument of Ps). Here we defined γ ≡ s
u → ∞

and used that according to (3.11) Ps(−1) = 1. From (3.12) we have

a =

∞∑
s=2,4,...

2 s+ 1

2 (s− 1) s (s+ 1) (s+ 2)
=

1

8
. (B.2)

From (3.11) and (3.12) we get

cs Ps(0) =
Γ(2s+ 2)

2
[
Γ(s+ 3)

]2 , (B.3)

and then find that

f(γ) = − 1

48 γ2

[
6γ2

4F3

(
3

4
, 1, 1,

5

4
;

3

2
, 2, 2; 16γ2

)
+ 160γ4

3F2

(
3

2
,

7

4
,

9

4
;

5

2
,

5

2
; 16γ2

)
−3
√

2

√√
1− 16γ2 + 1 + 6

(
γ − 1√

1− 4γ
+

1√
4γ + 1

)
γ + 6

]
. (B.4)

For small γ we get the expansion f(γ) = 5γ2

48 + 7γ4

20 + 429γ6

224 + . . . which is convergent for

|γ| < 1
4 . Using the analytic continuation, we may extend f(γ) beyond this convergence

disk and evaluate it at γ →∞, getting

lim
γ→∞

f(γ) = −1

8
. (B.5)

As a result, we conclude that the u→ 0 limits of the t-channel (B.2) and u-channel (B.5)

contributions indeed cancel against each other just as was found for general kinematics

in (3.25).

B.2 j j → j j scattering

To check our conjecture that all 4-point CHS amplitudes should vanish we may (i) first make

a guess for the CHS spin j 4-point exchange amplitude generalising the expressions for the

11→11 and 22→22 amplitudes explicitly computed in (3.18), (3.11) and (5.2), (5.3) being

– 27 –



J
H
E
P
0
9
(
2
0
1
6
)
0
3
4

guided by the expected structure of spin J ≥ 2j exchange amplitude in (4.1), (4.5), (4.14)

and (ii) then check its vanishing at a special kinematical point.35

Then the total amplitude is expected to be given as in (3.19), (3.25) and (5.6), (5.9)

by the sum of the t-channel and u-channel exchanges of even spin s CHS states

A = s2j−2
[
σ(x) + σ(−1− x)

]
, x =

t

s
, (B.6)

σ(x) =
2

x2

∞∑
J=2j,2j+2,...

(
J +

1

2

)
(J − 2j)!

(J + 2j)!
P

(4j,0)
J−2j

(
x+ 2

x

)

=
2

x2

∞∑
s=0,2,4,...

(
s+ 2j +

1

2

)
s!

(s+ 4j)!
P (4j,0)
s

(
x+ 2

x

)
. (B.7)

Let us now show the vanishing of the sum σ(x) + σ(−1 − x) at u = 0 or x = t
s = −1, i.e.

σ(0) = −σ(−1). This is equivalent also to proving the vanishing of this sum at x = 0.36

Using that P
(4j,0)
s (−1) = 1 we get37

σ(−1) =
∞∑

s=0,2,4,...

(2s+ 4j + 1)
s!

(s+ 4j)!

=
√
π 2−4j

[
(4j + 1) 3F̃2

[
1
2 1 1

2j + 1
2 2j + 1

; 1

]
+ 2 3F̃2

[
3
2 2 2

2j + 3
2 2j + 2

; 1

]]
=

1

4 (2j− 1)2 Γ(4j− 2)
.

(B.8)

To compute σ(0) we note that for x → 0 the leading term in the expansion of the Jacobi

polynomial is

P (4j,0)
s

(
x+ 2

x

)∣∣∣∣
x→0

=
1

xs
4s+2j

√
π

(s+ 2j)!

s!

Γ(s+ 2j + 1
2)

Γ(s+ 4j + 1)
+ · · · . (B.9)

Plugging this into (B.7) and taking the x→ 0 limit we get

σ(0) = lim
x→0

[
1

Γ(4j)
x−2

5F4

[
1 j + 1

4 j + 1
2 j + 3

4 j + 1

2j + 1
2 2j + 1

2 2j + 1 2j + 1
;

16

x2

]
(B.10)

+
42j+3Γ(2j + 5

2)Γ(2j + 3)
√
π Γ(4j + 3)

x−4
5F4

[
2 j + 5

4 j + 3
2 j + 7

4 j + 2

2j + 3
2 2j + 3

2 2j + 2 2j + 2
;

16

x2

]]
35We shall assume that as in the j = 1 and j = 2 cases (see section 3.2 and (5.13)) the sum of the low-spin

J < 2j exchanges and contact jjjj contribution vanishes separately.
36Notice that it is not possible to check numerically the vanishing of the amplitude A in (B.6) at a generic

value of the kinematical variable x. This is because the series in (B.7) converges for x ≤ −1 and a test

of the condition A = 0 requires the analytical continuation of the series definition of σ(x). The explicit

summation over the spin s leads to the result which has an expected non-trivial analytical structure with

branch points at x = 0, 1, see, for instance, (3.24) and (5.8).
37Here pF̃q

[
a1...an
b1....bm

; z
]

= 1
Γ(b1)...Γ(bm) pFq

[
a1...an
b1....bm

; z
]

is the regularised hypergeometric function. We use

the compact notation pFq
[
a1...an
b1....bm

; z
]
≡ pFq(a1, . . . , an; b1, . . . , bm; z) for the generalised hypergeometric

function.
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This x → 0 limit exists and can be explicitly evaluated for j = 1, 2, 3, . . .. One finds that

the resulting value of (B.10) is minus that of (B.8),38 i.e. σ(0) = −σ(−1). Thus the total

amplitude (B.6) vanishes at u = 0 (or t = 0).

C Derivation of the general form of the 11→11 spin s exchange ampli-

tude

Our starting point is the 1-1-s vertex in (3.4), (A.10) that may be written as

Vµ,ν,ρ(s)(p, q) =
1

(s+ 2)!
qρ3 . . . qρs V̂ µ,ν,ρ1ρ2(p, q) ,

V̂ µ,ν,ρ1ρ2(p, q) = ηµνqρ1qρ2−ηρ1µqνqρ2 +ηρ1νpµqρ2−
[
p · q+

s

2
(p2+q2)

]
ηµρ1ηνρ2 , (C.1)

where symmetrisation over ρ1, . . . , ρs is assumed. Let us contract the ρi indices with an

auxiliary vector uρ, i.e. define

V µ,ν(p, q, u) =
1

2(s+ 2)!
(q · u)s−2V̂ µ,ν(p, q, u) , (C.2)

V̂ µ,ν(p, q, u) = ηµν(q · u)2 − (uµqν − uνpµ) q · u+−
[
p · q +

s

2
(p2 + q2)

]
uµuν .

The TT projector in the CHS propagator (3.5) acting on monomials of u may be written as

Π(s)(∂u1 , ∂u2 , k) =
1

(s!)2

[s/2]∑
l=0

bs,l Y
l

1Y
l

2X
s−2l , as,l = (−1)l

s! Γ(s− l + 1
2)

22ll! (s− 2l)! Γ(s+ 1
2)
,

X = ∂u1 · ∂u2 −
(∂u1 · k)(∂u2 · k)

k2
, Yi = ∂2

ui −
(∂ui · k)(∂ui · k)

k2
. (C.3)

To compute the exchange amplitude, e.g., in the case of +− → +− scattering in s-channel

(cf. (3.8)) we need to contract two vertices with CHS propagator, i.e. compute

Π(s)(∂u1 , ∂u2 , p1 + p2)V µ1,µ2(p1, p2, u1)V ν1,ν2(p3, p4, u2)

∣∣∣∣
ui=0

. (C.4)

Using (C.4) the s dependence is determined by

Π
(s)
2 ≡ [s(s− 1)]2 Π(s)(∂u1 , ∂u2 , p1 + p2) (p2 · u1)s−2(p4 · u2)s−2

∣∣∣∣
ui=0

. (C.5)

Here the subscript denotes that this is a differential operator of order 2 in ∂u1 and ∂u2 .

Let us introduce:

W1 = p4 · ∂u1 +
1

2
(p1 + p2) · ∂u1 , W2 = p2 · ∂u2 −

1

2
(p1 + p2) · ∂u2 ,

Z1 = 2p2 · ∂u1 − (p1 + p2) · ∂u1 , Z2 = 2p4 · ∂u2 + (p1 + p2) · ∂u2 , (C.6)

38It should be possible to prove this fact analytically given the simplicity of the result in (B.8).
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so that we get[
X, (u1 · p2)(u2 · p4)

]
= t̃ + (p2 · u1)W2 + (p4 · u2)W1 ,[

Y1, (u1 · p2)2
]

= s̃ + (p2 · u1)Z1 ,
[
Y2, (p4 · u2)2

]
= s̃ + (p4 · u2)Z2 (C.7)[

Z1, (p2 · u1)
]

= s̃ ,
[
Z2, (p4 · u2)

]
= s̃ ,

[
W1, (p2 · u1)

]
= t̃ ,

[
W2, (p4 · u2)

]
= t̃

where s̃ ≡ − s
4 and t̃ ≡ 1

2

(
t + s

2

)
. Then we may commute Y l

1Y
l

2X
s−2l with

(p2 ·u1)s−2(p4 ·u2)s−2 and the result will be composed of the operators Y1, Y2, X,W1,W2, Z1

and Z2. A generating function determining the combinatoric coefficient is

P(s) =
∞∑
j=0

(t1t2)j Π
(s)
j =

[ s
2

]∑
l=0

as,l t̃
s−2l

s̃2l
[
1 + t̃

−1
(t1W1 + t2W2 + t1t2X)

]s−2l

×
[
1 + s̃−1(t1Z1 + t21Y1)

]l[
1 + s̃−1(t2Z2 + t22Y2)

]l
. (C.8)

Using this to compute (C.5) and thus (C.4) we may get an expression for the amplitude

in terms of a hypergeometric function of the kinematic variables. Adding the s-channel

propagator s−s factor in (3.5) the result for the +− → +− exchange amplitude in the

s-channel may be written as

A
(s)
s +,−;+,− = cs x

−2 P
(4,0)
s−2

(
x+ 2

x

)
, cs = 2(2s+ 1)

(s− 2)!

(s+ 2)!
, x =

s

u
, (C.9)

in agreement with (3.11), (3.12).

Similar derivation may be given for the spin s exchange contribution to the 22 → 22

amplitude. Here we use that the 2-2-s vertex (2.15) may be written as

Vµ1µ2,ν1ν2,ρ(s)(p, q) =
1

8(s+ 4)!
qρ5 . . . qρs V̂ µ1µ2,ν1ν2,ρ(4)(p, q) , (C.10)

or, when contracted with uρ,

Vµ1µ2,ν1ν2,ρ(s)(p, q, u) =
1

8(s+ 4)!
(q · u)s−4V̂ µ1µ2,ν1ν2,ρ(4)(p, q, u) . (C.11)

Here we need to find the Π
(s)
4 analog of Π

(s)
2 in (C.5) and it can be readily obtained

from (C.8). The final result matches the expressions in (5.2)–(5.5).
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