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1 Introduction

The type IIB Large Volume Scenario (LVS) for closed string moduli stabilisation [1, 2]

has led to a theoretically well motivated class of phenomenological models of beyond the

Standard Model physics [3–7].

According to the general analysis of [8], LVS supersymmetry breaking AdS minima

exist whenever the compactification manifold is a Calabi-Yau (CY) with negative Euler

number (h1,2 > h1,1) and at least one blow-up mode resolving a point-like singularity.1

Each blow-up mode (together with its axionic partner) is fixed by non-perturbative ef-

fects at a small size of order the inverse string coupling, τs ∼ g−1
s , while the overall

volume is stabilised at exponentially large values, V ∼ e1/gs , by the interplay between

α′3 corrections to the Kähler potential K [10] and non-perturbative contributions to the

superpotential W [11].2

In the presence of Nsmall small blow-up modes, at leading order in an expansion in

inverse powers of the overall volume, there are Nflat = h1,1 − Nsmall − 1 flat directions

left over. In principle these can be lifted via either non-perturbative effects in W or

perturbative corrections to K. However [8] showed that only perturbative contributions

to K can be used since non-perturbative effects are either subdominant if the Nflat moduli

1LVS vacua with positive Euler number might be obtained by allowing some tuning in string loop

corrections to the Kähler potential [9].
2The dilaton and the complex structure moduli are instead fixed by background fluxes as in [12]. For

references to earlier work see the references therein and the reviews [13, 15].
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are larger than the Nsmall blow-up modes, or cannot yield a minimum in a region where

the effective field theory can be trusted if the Nflat moduli are small, i.e. of the same size of

the Nsmall blow-up modes. Hence ref. [8] focused on the case where each of these remaining

Nflat moduli is larger than the Nsmall blow-up modes (but not necessarily as large as the

overall volume), i.e. Nflat = Nlarge − 1, and argued that all the Nflat directions should be

lifted via the inclusion of string loop corrections to the Kähler potential [16, 17] since they

generically introduce a dependence on all Kähler moduli at subleading order and the overall

volume has already been fixed at leading order (hence we do not expect any destabilisation

due to subdominant effects). Some explicit examples where remaining flat directions are

lifted by string loops are given in [8, 17] but, as we discuss later, it is difficult to give a

general argument.

As pointed out in [18], blow-up modes resolving a point-like singularity diagonalise the

volume form, and so the case where Nflat = 0 corresponds to so-called ‘strong Swiss-cheese’

CY manifolds whose volume looks like [19]:

V = τ
3/2
b −

Nsmall
∑

i=1

λiτ
3/2
i . (1.1)

Globally consistent LVS chiral compactifications with branes and fluxes and this type of

CY manifold have been constructed in [20–22].

On the other hand cases with Nflat > 0 involve ‘weak Swiss-cheese’ CY manifolds with

volume [18]:

V = f3/2(τj)−
Nsmall
∑

i=1

λiτ
3/2
i , (1.2)

where f3/2(τj) is a homogeneous function of degree 3/2 in the variables τj , j=1, . . . , Nlarge=

Nflat + 1 = h1,1 − Nsmall. Globally consistent LVS chiral brane models with this type of

CY manifolds have been built in [23]. The simplest examples with Nflat = 1 are K3 or T 4

fibrations over a P
1 base where f3/2(τ1, τ2) =

√
τ1τ2 [18]. These simple ‘weak Swiss-cheese’

CY manifolds have been used both in [24] to develop a promising inflationary scenario called

‘Fibre Inflation’ which predicts a tensor-to-scalar ratio r of order r ≃ 0.006, and in [25] to

obtain anisotropic compactifications with effectively 2 micron-sized extra dimensions and

TeV scale strings.

Following the philosophy of [8], the inflationary potential of Fibre Inflation is generated

by string loop corrections which are naturally smaller than α′3 effects due to the extended

no-scale structure [17]. This is a cancellation of the leading order loop contribution to the

scalar potential which is due to supersymmetry and has two important implications for the

naturalness of the inflationary model: (i) being a leading order flat direction, the inflaton

is naturally lighter than the Hubble scale during inflation, (ii) potentially dangerous higher

dimensional operators do not cause an η-problem since the inflaton enjoys an approximate

non-compact shift symmetry [26, 27]. In fact the no-scale feature of type IIB models ensures

that at tree-level the potential is invariant under rescaling symmetries which correspond

to non-compact shift symmetries for the Kähler moduli. This symmetry is approximate

since it gets broken by string loop effects. Hence inflaton-dependent higher dimensional
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operators get generated but they are suppressed by the symmetry breaking parameter

which turns out to be small since string loops are both gs and V-suppressed with respect

to the tree-level contribution.

Despite these very promising features, the potential of Fibre Inflation is not under full

control since string loop effects in K can be explicitly computed only for simple toroidal

cases [28]. However in order to stabilise the remaining flat direction and develop the infla-

tionary potential, one needs to know just the Kähler moduli dependence of these corrections

which is the simplest to estimate, together with the dependence on the dilaton S (since

〈Re(S)〉 = g−1
s ), in contrast to the dependence on the complex structure moduli U which

is already rather complicated even in the toroidal case. In fact, the S and U -moduli are

fixed at semi-classical level by background fluxes [12], and so, at this level of approxima-

tion, can be considered just as flux-dependent constants. The Kähler moduli dependence

of string 1-loop corrections to K for an arbitrary CY manifold can be estimated by both

generalising the toroidal result [16] and matching to the low-energy Coleman-Weinberg

potential [17]. Moreover, due to the extended no-scale cancellation, 1-loop corrections are

smaller than expected and turn out to be effectively of the same order as 2-loop effects.

Even if perturbation theory is still under control since the expansion parameter is small

(for gs ≪ 1 and V ≫ 1), a full treatment of the inflationary potential should include also

2-loop effects. Even if these have been estimated to have the same inflaton dependence as

the first non-vanishing 1-loop effect [24], and so should not modify the final results of Fibre

Inflation, it is important to look for additional perturbative effects that could stabilise

these flat directions.

These additional terms can arise from higher derivative α′3 corrections to the Kähler

potential [29]. These new F 4 terms depend on all h1,1 Kähler moduli and can be shown to

lift all of them except for the overall volume mode for an arbitrary CY manifold. In [29] a

full minimum has been achieved for positive CY Euler number (h1,2 < h1,1) by fixing the

volume via balancing F 2 against F 4 α′3 effects. However since the minimum is obtained by

comparing two different orders in the superspace derivative expansion, the effective field

theory does not seem to be fully under control, resulting in a gravitino mass of order the

Kaluza-Klein (KK) scale [31].3

In this paper we show how to overcome at the same time both this control issue and

the difficulty of showing explicitly that any flat direction in LVS models can be lifted by

string loops for a generic CY manifold with at least one blow-up mode. This can be done by

including F 4 terms in the LVS scenario where the overall volume mode is stabilised at order

F 2 by balancing α′3 against non-perturbative effects. All the Nflat = Nlarge − 1 remaining

flat directions can then be lifted at subleading F 4 order by the inclusion of the higher

derivative α′3 effects computed in [29]. This demonstrates that the class of phenomenologi-

cally viable LVS models extends well beyond the original framework in which there was only

one large Kähler modulus. Given that string loop corrections to the scalar potential scale

as Vgs ∼ gsW
2
0 V−10/3 whereas higher derivative α′3 effects behave as VF 4 ∼ g

1/2
s W 4

0 V−11/3,

3Given that the higher derivative expansion at O(α′3) involves terms just up to F 8, one might still hope

to keep it under control.
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string loops can be safely neglected only for relatively small values of the internal volume:

V ≪ W 6
0 g

−3/2
s . As a reference example, natural values gs ≃ 0.1 and W0 ≃ 20 would

give V ≪ 109.

The minimum is again AdS but it can be uplifted to dS by using various mechanisms

already proposed in the literature.4 Some of the most popular ways to achieve dS vacua

involve anti-branes [11, 32], T-branes [33] (or hidden matter F-terms [20–22]) and non-

perturbative effects at singularities [9].

Besides moduli stabilisation, a very interesting application of F 4 terms is inflation.

Ref. [34] followed the same philosophy of the Fibre Inflation model developed in [24] and

focused on simple K3 or T 4-fibred CY manifolds with h1,1 = 3, Nsmall = 1, Nlarge = 2

and so Nflat = 1 flat direction which can play the rôle of the inflaton. After showing

that higher derivative terms alone cannot yield a potential which is flat enough to drive

inflation, [34] combined F 4 terms with string loop effects due to the exchange of KK closed

strings between stacks of non-intersecting branes and neglected gs corrections coming from

the exchange of winding modes between intersecting stacks of branes. This can be justified

if the underlying brane set-up does not involve intersecting branes.5 However, the leading

order KK 1-loop correction to the scalar potential vanishes due to extended no-scale [17],

and so the first non-zero contribution scales effectively as 2-loop KK effects whose form is

poorly understood. The final prediction for the cosmological observables reproduces the

result r = 2(f/Mp)
2(ns − 1)2 of generalised Fibre Inflation models with a potential of the

form V = V0 −V1 e
−φ/f [27]. The effective decay constant f can be either equal to the one

of the original Fibre Inflation model, f = fFI =
√
3Mp, or smaller, f = fFI/2, depending

on whether the plateau region of the potential is generated by F 4 or KK loops. Hence the

tensor-to-scalar ratio turns out to be r . 0.006.

On the other hand ref. [35] considered the single modulus case and combined F 2 and

F 4 α′3 contributions with gs effects and different uplifting terms to have enough freedom

to develop a potential for the volume mode which features, together with a dS minimum,

also an inflection point supporting inflation. In this way the volume mode can evolve from

the end of inflaton to its present value, allowing for larger values of the gravitino mass

during inflation.

In this paper, we consider a different cosmological application of F 4 terms which is

under better control and leads to a larger prediction for tensor modes. We focus again

on LVS models where the CY manifold has a simple fibred structure with Nflat = 1 flat

direction which is lifted by the inclusion of both F 4 terms and winding loop corrections.

KK loop effects can be absent by construction if, for example, the compactification does

not include any O3-plane and D3-brane and all O7-planes and D7-branes intersect or are

on top of each other [16]. If instead KK gs effects get generated, being effectively 2-loop

contributions, they can be neglected with respect to 1-loop winding corrections due to the

additional suppression factor g2s ≪ 1 [27]. In this way, we do not have to worry about

poorly understood 2-loop KK corrections.

4An important feature of LVS models is that the negative vacuum energy is parametrically below the

gravitino mass, and so the final phenomenology is not affected at leading order by the specific uplift

mechanism.
5Or more precisely if each intersection locus does not admit non-contractible 1-cycles [16].
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The resulting inflationary model features a plateau followed by a steepening region

similar to Fibre Inflation-like models [24, 34]. However the inflationary dynamics is quali-

tatively different since the plateau is longer and the steepening behaviour at large inflaton

values is milder. Given that horizon exit cannot take place in the plateau region for nat-

ural values of the underlying parameters, the general relation r = 2(f/Mp)
2(ns − 1)2 is

generically not satisfied in this class of models. Given that horizon exit is close to the

steepening region, the final prediction for the tensor-to-scalar ratio is larger, r ≃ 0.01, and

could be tested by forthcoming cosmological observations [36, 37]. Notice that such a large

value of r can never be obtained in Fibre Inflation models since, even if the microscopic

parameters are tuned to have horizon exit close to the region where the potential starts to

raise, the spectral index would become too blue. This is avoided in our model since the

steepening is milder. Given that our model is qualitatively different from Fibre Inflation,

we name it ‘α′-Inflation’ to distinguish it from Fibre Inflation and to stress that α′ effects

play a crucial rôle to develop the inflationary potential (both F 4 O(α′3) and F 2 O(α′4g2s)

effects). Notice however that the flatness of the inflationary potential is again protected

by the same approximate non-compact shift symmetry as in Fibre Inflation-like models.

This paper is organised as follows. In section 2 we show how any remaining flat

direction in the LVS scenario can be lifted by F 4 terms for an arbitrary CY manifold with

at least one blow-up mode. In section 3 we then focus on the particular LVS case with just

one remaining flat direction and present a viable inflationary model that leads to observable

tensors of order r ≃ 0.01 by taking into account F 4 corrections as well as 1-loop winding

string corrections. After presenting our conclusions in section 4, in appendix A we show

that the form of the F 4 terms derived in [29] for a constant superpotential applies also in

LVS models up to volume-suppressed corrections coming from non-perturbative effects in

W that mildly break the underlying no-scale structure.

2 LVS with higher derivative terms

In this section, after a very brief review of the standard LVS scenario, we first introduce

higher derivative α′3 corrections and then show that they can lift any direction which

remains flat at leading order.

2.1 Standard LVS vacua

Let us focus on a weak Swiss-cheese CY manifold X with Nsmall blow-up modes, Nlarge =

h1,1−Nsmall large moduli and volume of the form (1.2). After dilaton and complex structure

moduli stabilisation at semi-classical level by background fluxes, the 4D Kähler potential

K and superpotential W for the Kähler moduli Ti, i = 1, . . . , h1,1(X), in Einstein frame

look like:6

K

M2
p

= −2 ln

(

V +
ξ

2g
3/2
s

)

+ ln
(gs
2

)

+Kc.s.,
W

M3
p

=
1√
4π

(

W0 +

Nsmall
∑

i=1

Ai e
−aiTi

)

,

(2.1)

6See appendix A of [38] for the correct prefactor of W which reproduces the corresponding terms in the

10D supergravity action.
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where V is the Einstein frame volume of X in units of ℓs = 2π
√
α′, ξ = −χζ(3)/2(2π)3

controls the leading order O(α′3) correction (for typical CY manifolds ξ ∼ O(1))7 and:

W0 =
1

ℓ2s

∫

X
G3 ∧ Ω . (2.2)

Setting Mp = eKcs = 1 and considering without loss of generality the case with Nsmall = 1

and real W0 and As, the resulting F-term supergravity scalar potential at leading order is:8

VLVS =
( gs
8π

)

[

8

3
(asAs)

2

√
τse

−2asτs

V − 4asAsW0
τse

−asτs

V2
+

3ξW 2
0

4g
3/2
s V3

]

. (2.3)

Extremising with respect to τs and V we obtain:

V =
W0

asAs
f(τs) e

asτs ,
4

3

√
τsf

2(τs)− 4τsf(τs) +
9

8

ξ

g
3/2
s

= 0 , (2.4)

where (defining ǫs ≡ 1/(4asτs) ≪ 1):

f(τs) =
3

4

√
τs
1− 4ǫs
1− ǫs

≃ 3

4

√
τs

[

1− 3ǫs +O
(

ǫ2s
)]

. (2.5)

Thus the volume is determined essentially by the well known LVS result:

ln

( V
W0

)

≃ as
gs

(

ξ

2

)2/3

. (2.6)

The minimum of the potential is AdS:

〈VLVS〉 =
( gs
8π

) 4W 2
0

3V3

(

4

3

√
τsf

2(τs)− τsf(τs)

)

≃ − 3ξǫs

2g
3/2
s

m2
3/2

V , (2.7)

with V and τs determined by (2.4) and (2.6) and the squared gravitino mass is:

m2
3/2 = eK |W |2 ≃

( gs
8π

) W 2
0

V2
. (2.8)

The mass of the moduli is of order (denoting the axions with ci):

m2
τs ∼ m2

cs ∼ m2
3/2 ≫ m2

V ∼
m2

3/2

V ≫ m2
cV ∼ M2

p e
−abV2/3 ∼ 0 . (2.9)

The potential at the LVS minimum given in (2.7) is negative (since ξ needs to be positive),

though supersymmetry is broken. There are different uplift mechanisms discussed in the

literature to get a dS (or Minkowski) minimum (for more details see [9, 11, 20–22, 32, 33]).

Notice that the potential (2.3) depends on just the overall volume mode V and any

possible small blow-up mode present in the compactification. Hence at this order of ap-

proximation, Nflat = h1,1 −Nsmall − 1 directions will remain flat.

7Genuinely N = 1 α′3 corrections from orientifold planes shift the value of ξ without however changing

its sign for h1,2 ≫ h1,1 [39].
8We ignore the D-term potential as well as the F-term contribution of matter fields.
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2.2 Higher derivative corrections

The discussion so far has only included the leadingO(α′3) correction to the Kähler potential

worked out in [10] and given in (2.1) by the term proportional to ξ. This correction is at

order F 2 and, together with non-perturbative effects in W , can stabilise the volume and

all small Kähler moduli, leaving however several flat directions in spaces with more than

one large modulus. There are two known types of subdominant corrections which may be

included to stabilise these flat directions: higher derivative O(α′3) terms and string loop

effects. We now briefly review α′3 F 4 corrections and discuss string loops in section 2.4.

The effective ten-dimensional action of type IIB is corrected by (α′)3 eight-derivative

terms. In particular, this includes the well-known R4-term [14] that leads upon KK-

reduction to the ξ-correction to the Kähler potential which was worked out in [10]. Simi-

larly, this term sources four-derivative terms for the Kähler moduli which were computed

in [29]. In this reference, these terms were then matched to a particular supersymmetric

higher-derivative operator. Thereby, supersymmetry demands the existence of F 4-type

corrections to the scalar potential.9 The final form of these F 4-corrections reads:

VF 4 = −
( gs
8π

)2 λ|W0|4

g
3/2
s V4

Πiti , (2.10)

where the ti denote the volumes of 2-cycles and the Πi are topological integers defined as:

Πm =

∫

X
c2 ∧ D̂m , (2.11)

where c2 is the second Chern class and D̂m form a basis of harmonic 2-forms in terms of

which the Kähler form can be expanded as J = tiD̂i. Furthermore, λ is a combinatorial

number which could not be determined in [29]. Note that Πiti ≥ 0, and so in a Kähler

cone basis where ti ≥ 0 individually for all i = 1, · · · , h1,1, all the Πi are also non-negative.

Two comments regarding eq. (2.10) are in order. Firstly, because the matching in [29]

was performed only for a single higher-derivative operator, and not the most general combi-

nation of mutually non-equivalent supersymmetric higher-derivative operators, the overall

prefactor λ is undetermined. One may naively estimate it to be of the same order as the

combinatorial prefactor of the ξ-correction appearing in the Kähler potential and, hence, to

be of the order 10−2 to 10−3. Secondly, eq. (2.10) was determined using the leading order

no-scale property which is valid when W = W0 in (2.1). However, since we want to include

non-perturbative corrections to the superpotential in our analysis, the derivation of [29]

has to be revisited in order to estimate the effect of additional F 4 corrections associated

to these non-perturbative contributions. We perform this computation in appendix A.

The result is that for a Swiss-Cheese CY manifold whose small moduli are integrated out

following the LVS construction of the previous section, eq. (2.10) still holds up to further

volume-suppressed corrections and λ becomes a function of these small cycles. Since the

precise functional form of λ cannot be determined, we continue to treat it is a constant

and use the aforementioned estimate.
9By means of the no-scale property it can be shown that these are the only higher-derivative corrections

to the scalar potential that can occur at this order [30].
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2.3 Lifting flat directions via F
4 terms

In this section we show that the higher derivative corrections given in (2.10) can lift any

remaining flat direction in the LVS scenario for an arbitrary CY manifold whose volume

in terms of the 2-cycle moduli looks like:

V =
1

6

Nlarge
∑

i,j,k=1

kijktitjtk −
1

6

Nsmall
∑

s=1

kssst
3
s , (2.12)

where the intersection numbers are defined as:

kijk =

∫

X
D̂i ∧ D̂j ∧ D̂k , (2.13)

and the small blow-up modes, being exceptional divisors, are characterised by the Kähler

cone conditions ts < 0 ∀ s = 1, · · · , Nsmall. Non-perturbative corrections and F 2 α′3 effects

fix both V and all ts’s but not the remaining Nflat = Nlarge − 1 directions.

Let us now show that higher derivative terms can lift all these remaining flat directions.

The total potential is the sum of the LVS potential (2.3), the F 4 term (2.10) and an

additional contribution for dS uplift:

V = VLVS(V , ts) + VF 4(ti, ts) + Vup(V) with Vup(V) =
κ

Vα
, (2.14)

where 0 < α < 3 and κ is a positive model-dependent coefficient which is generically a

function of the dilaton and the complex structure moduli. Notice that we highlighted

the dependence on the 2-cycle, instead of the 4-cycle, moduli since the F 4 term is given

explicitly as a function of the 2-cycle moduli and for a generic CY it is not possible to

invert the relation τi =
1
2kijktjtk.

Given that the LVS potential scales as VLVS ∼ O(V−3) while the ts-dependent part

of the F 4 potential scales as O(V−4), for V ≫ 1 we can safely ignore the ts-dependent

piece in (2.10) and start by integrating out the small blow-up modes using the first re-

lation in (2.4). We obtain (neglecting O(ǫ2s) corrections and defining ξ̂ ≡ ξ g
−3/2
s and

λ̂ ≡ 34λ g
−3/2
s ):

V =
( gs
8π

) 3W 2
0

2V3

(

ξ̂

2
− τs(V)3/2

)

−
( gs
8π

)2 λ̂W 4
0

V4

Nlarge
∑

i=1

Πiti +
κ

Vα
, (2.15)

where from (2.4) we have that:

τs(V) ≃
1

as
ln

( V
W0

)

. (2.16)

Writing VLVS(V) + Vup(V) = V̂ (V), we minimise with respect to the ti’s by imposing:

∂V

∂ti
=

∂V̂

∂V τi +
∂VF 4

∂ti
= 0 . (2.17)

– 8 –



J
H
E
P
0
9
(
2
0
1
6
)
0
2
6

where (defining c ≡ gs/(8π)):

∂V̂

∂V = −9cW 2
0

2V4

(

ξ̂

2
− τs(V)3/2 (1− 2ǫs)

)

− ακ

Vα+1
, (2.18)

and:
∂VF 4

∂ti
=

c2λ̂W 4
0

V4

(

Πktk
V 4τi −Πi

)

. (2.19)

Using the fact that 3V = tiτi, (2.17) gives:

0 = ti
∂V

∂ti
= 3V ∂V̂

∂V + ti
∂VF 4

∂ti
, (2.20)

which from (2.19) implies:

∂V̂

∂V = −c2λ̂W 4
0

3V5

(

Πktk
V 4tiτi −Πiti

)

= −11c2λ̂W 4
0

3V5
Πktk . (2.21)

Thus (2.17) becomes:

Πktk
V 4τi −Πi =

11

3

Πktk
V τi ⇔ τi =

3V
Πktk

Πi . (2.22)

The solution determines Nflat = Nlarge− 1 moduli in terms of any one of them (say τ∗) and

is then given by (recall that all Πi’s are positive):

τα =
Πα

Π∗
τ∗(V) ∀α = 1, · · · , Nflat = Nlarge − 1 , (2.23)

where all the remaining flat directions are fixed in terms of the overall volume mode since

after (2.23) is imposed, we have:

τ∗(V) = h(kijk,Πi)V2/3 , (2.24)

where h is a function of the intersection numbers kijk and the topological quantities Πi.

The volume mode is fixed by (2.21) which can be written using (2.22) and (2.24) as:

∂V̂

∂V = −11c2λ̂W 4
0Π∗

hV14/3
. (2.25)

The effective field theory is under control when F 4 contributions are subdominant with

respect to F 2 terms, i.e. when V̂ ≫ VF 4 . In this regime, (2.25) gives rise just to a small

shift of the minimum for the volume obtained just by setting at leading order V̂V = 0. The

solution to (2.25) is:

ξ̂

2
= τs(V)3/2 (1− 2ǫs)−

2ακ

9cW 2
0

V3−α +
22cλ̂W 2

0Π∗
9V2/3

≃ τs(V)3/2 −
2ακ

9cW 2
0

V3−α for V ≫ 1 . (2.26)
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Substituting this result into the total potential (2.15) together with (2.22), a vanishing

vacuum energy requires (up to O(ǫ2s) corrections):

〈V 〉 = −3cW 2
0

V3
ǫsτs(V)3/2 +

2c2λ̂W 4
0Π∗

3hV11/3
+

κ(3− α)

3Vα
= 0 . (2.27)

Notice that 0 < α < 3 in order to be able to cancel the negative leading order contribution.

Substituting in (2.26) the value of κ obtained from (2.27), we find:

ξ̂

2
= τs(V)3/2

(

1− 6 ǫs
3− α

+O
(

ǫ2s
)

)

+ 2cλ̂W 2
0

Π∗
hV2/3

(

1 +
2

3(3− α)

)

≃ τs(V)3/2 , (2.28)

implying that ξ̂ > 0 regardless of the uplifting mechanism.10

Let us now show that this is indeed a minimum by looking at the Hessian (for Aij≡ ∂τi
∂tj

):

∂2V

∂ti∂tj
=

∂2V̂

∂V2
τiτj +

∂V̂

∂V Aij +
∂2VF 4

∂ti∂tj
, (2.29)

where (up to O(ǫ2s) corrections):

∂2V̂

∂V2
=

18cW 2
0

V5

(

ξ̂

2
− τs(V)3/2 (1− 7ǫs)

)

+
α(α+ 1)κ

Vα+2
, (2.30)

and:
∂2VF 4

∂ti∂tj
=

4c2λ̂W 4
0

V5

[

Πktk

(

Aij −
5

V τiτj

)

+ (Πiτj +Πjτi)

]

. (2.31)

Using (2.22) and (2.23), the second derivative of VF 4 with respect to the ti’s becomes:

∂2VF 4

∂ti∂tj
=

4c2λ̂W 4
0Π∗

hV17/3
(3VAij − 13τiτj) . (2.32)

Plugging this result back in (2.29) together with (2.25) we find:

∂2V

∂ti∂tj
=

∂2V̂

∂V2
τiτj +

c2λ̂W 4
0Π∗

hV17/3
(VAij − 52τiτj) . (2.33)

Recalling (see for example [16, 17]) that at leading order K−1
ij = 4 (τiτj − VAij), we end

up with:
∂2V

∂ti∂tj
= c1 τiτj + c2K

−1
ij , (2.34)

where:

c1 =
∂2V̂

∂V2
− 51c2λ̂W 4

0Π∗
hV17/3

and c2 = −c2λ̂W 4
0Π∗

hV17/3
. (2.35)

10Notice however that in cases where α is very close to 3, the term in (2.28) proportional to ǫs could dom-

inate giving solutions for ξ̂ < 0. For example in dS vacua from hidden matter F-terms α = 8/3 [20–22, 33],

implying that ξ̂ < 0 requires ǫs > 1/18, or equivalently asτs < 4.5, which in turn implies V < 90W0. This

is clearly a tuned situation where the expansion in ǫs is not fully under control and V cannot be very large.
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For λ̂ = 0, c2 = 0 while the coefficient c1 is clearly positive since the leading order LVS

dynamics gives a minimum for the volume direction. Thus the Hessian at leading order is

just given by the matrix Mij ≡ τiτj which is semi-positive definite with one positive and

Nflat vanishing eigenvalues since Det (M − xI) = (−1)NlargexNflat

(

x−∑Nlarge

i=1 τ2i

)

. This

clearly signals the presence of Nflat directions which can be lifted at subleading order when

λ̂ 6= 0. In this case the coefficient c1 just gets slightly shifted regardless of the sign of λ̂

since its expression at the minimum (2.28) reads:

c1 =
cW 2

0

V5

[

9(10− α)ǫsτs(V)3/2 − (7− 2α)
cλ̂W 2

0Π∗
hV2/3

]

≃ 9(10− α)cW 2
0

ǫsτs(V)3/2
V5

> 0 ,

where we took the limit V ≫ 1. On the other hand, given that the inverse Kähler metric

is positive definite, we need to require λ̂ < 0 in order to have c2 > 0 and obtain a global

minimum. Notice that, depending on the sign of λ̂, one can have either a global minimum

(for λ̂ < 0) or a saddle point with Nflat tachyonic directions (for λ̂ > 0). We have therefore

shown that for λ̂ < 0 the Hessian is positive definite and all the remaining flat directions

can be lifted by the F 4 terms which develop a stable global minimum for an arbitrary CY

manifold with at least one blow-up mode.

Notice that the stabilisation of the Nflat flat directions is qualitatively similar to the

results of [29] while the volume is fixed differently. In fact, the F 4 terms can fix in general

all Kähler moduli except for the breathing mode. The volume has to be fixed by different

dynamics. In [29] the volume was fixed by balancing F 2 against F 4 corrections due to

the absence of non-perturbative effects, while here we are fixing the volume at F 2 order

and the F 4 effects give rise just to a small shift of the volume mode. Therefore in our

approach the superspace derivative expansion is under control and the gravitino mass is

suppressed with respect to the Kaluza-Klein scale [31]. The fact that the stabilisation of

the large moduli ‘orthogonal’ to V is just due to F 4 terms can be clearly seen by trading

the variables ti for (tα,V) where α = 1, · · · , Nflat so that:

∂V

∂tα
=

∂VF 4

∂tα
− τα

τ∗

∂VF 4

∂t∗
=

c2λ̂W 4
0

V4

(

Π∗
τα
τ∗

−Πα

)

= 0 , (2.36)

and
∂V

∂V =
∂V̂

∂V +
1

τ∗

∂VF 4

∂t∗
=

∂V̂

∂V +
c2λ̂W 4

0

V4τ∗

(

Πktk
V 4τ∗ −Π∗

)

= 0 . (2.37)

The solution to (2.36) is given by (2.23) showing that the F 4 potential is responsible for

lifting the Nflat = Nlarge−1 flat directions. On the other hand, (2.37) is equivalent to (2.25)

since substituting (2.23) and (2.24) in (2.37) and using 3V = tiτi, we end up with:

∂V̂

∂V = −c2λ̂W 4
0Π∗

V4τ∗

[

4

V (tατα + t∗τ∗)− 1

]

= −11
c2λ̂W 4

0Π∗
hV14/3

. (2.38)

In our case V̂ has a minimum at leading order by balancing non-perturbative against F 2

α′3 effects. On the other hand, in the absence of non-perturbative effects, as can be seen
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from (2.18) by setting τs = 0, V̂ has just a maximum since:

∂V̂

∂V = −9cW 2
0

2V4

ξ̂

2
− ακ

Vα+1
= 0 ⇔ cW 2

0

V4

ξ̂

2
= −2

9

ακ

Vα+1
, (2.39)

and for κ > 0 and 0 < α < 3:

∂2V̂

∂V2
=

18cW 2
0

V5

ξ̂

2
+

α(α+ 1)κ

Vα+2
= − ακ

Vα+2
(3− α) < 0 . (2.40)

In order to have a stable minimum, the F 4 term in (2.38) has to become dominant and

compete with the F 2 contribution. Given that, as we have seen above, we need λ̂ > 0

to have a positive definite Hessian (the condition c1 > 0 in (2.35) is independent on

the presence of non-perturbative effects), (2.38) implies that ∂V̂ /∂V has to be positive,

requiring ξ̂ < 0 [29] contrary to our case where we need ξ̂ > 0.

We finally mention that the Nflat = Nlarge − 1 moduli fixed by F 4 effects turn out to

be lighter than the volume mode since they acquire a mass of order:

m2
τα ∼ m2

V

(

m3/2

MKK

)2

≪ m2
V ∼

m2
3/2

V α = 1, · · · , Nflat , (2.41)

where the KK scale is of order MKK ∼ MpV−2/3. Due to their shift symmetry, all the

axionic partners of the moduli τα are massless at this order of approximation and develop

a tiny mass only via exponentially small non-perturbative corrections.

2.4 String loops

So far our analysis has included only non-perturbative corrections and α′3 effects at order

F 2 and F 4. Other relevant perturbative contributions to the Kähler potential come from

open string 1-loop corrections [28].11 Their form for arbitrary CY three-folds has been

argued to lead to corrections to the Kähler potential of the form (in Einstein frame) [16]:

KKK

gs = gs
∑

i

Ci t
⊥
i

V and KW

gs =
∑

i

Di

V t∩i
, (2.42)

where the sum in KKK
gs is over all stacks of non-intersecting branes with t⊥i = aijtj begin

the 2-cycle transverse to the branes, while the sum in KW
gs is over all stacks of intersecting

branes with t∩i = bijtj being the 2-cycle where the branes intersect. The first correction

in (2.42) is of order α′2g2s and comes from KK modes exchanged between D-branes, while

the second type is of order α′4g2s and comes from winding modes associated with intersecting

D-branes. Ci and Di are unknown functions of the complex structure moduli which are set

as constants solving the minimisation conditions at O(1/V2). The leading order winding

1-loop correction to the potential is [17]:

V W

gs = −2
( gs
8π

) W 2
0

V2
KW

gs . (2.43)

11Ref. [28] computed 1-loop contributions from N = 2 sectors in toroidal orientifolds. For recent progress

on computing contributions also from N = 1 sectors see [40, 41].
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On the other hand, the leading O(α′2g2s) correction coming from KKK
gs vanishes — a phe-

nomenon dubbed ‘extended no-scale’ in [17]. The first non-vanishing KK contribution then

turns out to be of order α′4g4s and can be obtained by expanding KKK
gs to second order in

computing the potential and reads [17]:

V KK

gs = g2s

( gs
8π

) W 2
0

V2

∑

ij

CiCjKij , (2.44)

where Kij is the tree-level Kähler metric. Given that this contribution arises at O(α′4g4s)

(in string frame and up to the overall prefactor c = gs/(8π)), it is effectively of 2-loop

order. Hence it can compete with 2-loop effects that contribute to linear order in KKK
gs .

These have been estimated to behave qualitatively as (2.44) [24] but a full control of the

effective field theory would require more knowledge of these effects.

Considering the isotropic limit where all the Kähler moduli are of the same size and

using the fact that at leading order 4Kij =
1
V

(

titj
2V −A−1

ij

)

[16, 17], winding and KK loop

corrections scale as:

V W

gs ∼ gs
W 2

0

V10/3
and V KK

gs ∼ g3s
W 2

0

V10/3
. (2.45)

Thus in the regime where perturbation theory is under control, i.e. where gs ≪ 1, KK

corrections are subdominant with respect to winding ones. Notice however that this need

not be the case for anisotropic configurations since the exact moduli dependence of V W
gs and

V KK
gs is different (see [24, 25] for two examples). On the other hand, the higher derivative

α′3 correction (2.10) behaves as:

VF 4 ∼ g1/2s

W 4
0

V11/3
∼ g−1/2

s

W 2
0

V1/3
V W

gs , (2.46)

and so in the isotropic limit, α′3 F 4 terms dominate over string loop corrections if:

V ≪ g−3/2
s W 6

0 . (2.47)

This condition sets an upper bound on the volume mode which is very sensitive to the

values of the string coupling and the flux superpotential. Just as a reference example, if

gs = 0.1 we obtain V ≪ 1013 for W0 = 90, V ≪ 109 for W0 = 20, V ≪ 106 for W0 = 6 and

V ≪ 103 forW0 = 2. If the underlying parameters satisfy the bound (2.47), loop corrections

can be neglected and the analysis we performed in the previous section is under control.

Notice moreover that 1-loop effects can also be absent by construction. In fact, there are

no winding effects in the absence of intersections between different stacks of branes, or

if the intersection locus does not contain non-contractible 1-cycles. In addition, KK loop

corrections are not present in compactifications without D3-branes and O3-planes, and

where all D7-branes and O7-planes intersect each other (or are on top of each other) [16].

Let us finally stress that gs corrections in general depend on all Kähler moduli, and

so, as pointed out in [8], they are also expected to lift all the remaining flat directions in

LVS models where they dominate over F 4 terms since the microscopic parameters do not
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satisfy the bound (2.47). However the moduli dependence of string loop effects is difficult

to analyse in general for an arbitrary CY manifold while the moduli dependence in (2.10)

is extremely simple. This is the reason why we focused on cases where higher derivatives

are the leading sources for the stabilisation of the LVS flat directions.

3 α
′ Inflation

Being a leading order flat direction, each of the Nflat = Nlarge−1 moduli is a very promising

inflaton candidate since its mass is naturally lighter than the Hubble scale during inflation.

The flatness of the inflaton potential is also protected by an approximate non-compact

rescaling shift symmetry which is due to the no-scale property of type IIB models [26].

This inflationary framework has produced two interesting models: Fibre Inflation where

the inflationary potential is generated by winding and KK gs effects [8], and the model

of [34] where the inflationary dynamics is determined by F 4 terms and KK string loop

corrections. This kind of models have been generalised in [27] which pointed out that they

are all characterised by the prediction r = 2(f/Mp)
2(ns − 1)2, where horizon exit takes

place in a plateau region and the exact value of the effective decay constant f depends on

the nature of the effects which develop the inflationary potential.

In this paper we focused so far on the rôle that higher derivative α′3 terms can play

in moduli stabilisation. However [34] has shown that F 4 terms alone cannot give rise

to a viable inflationary model. We shall therefore include both higher derivative O(α′3)

contributions and O(α′4g2s) winding loop corrections to the Kähler potential,12 and show

that these two effects can support inflation with enough efoldings to solve the flatness

and horizon problems and a the scalar spectral index which is compatible with present

observational bounds. The largest predicted value for the tensor-to-scalar ratio, r ≃ 0.01,

turns out instead to be at the edge of detectability [36, 37].

3.1 Inflationary potential

Let us focus on LVS models with 2 large moduli, and so with Nflat = 1 flat direction which

is lifted by the interplay of F 4 terms and winding loop corrections. Similarly to [8], we

consider a simple K3 or T 4-fibred CY three-fold whose volume form looks like [18]:

V = λ1t1t
2
2 + λst

3
s , (3.1)

where τ1 = λ1t
2
2 is the size of the K3 or T 4 fibre while t1 = τ2/

(

2
√
λ1τ1

)

is the volume of

the P
1 base (ts < 0 is an exceptional divisor which supports non-perturbative effects). As

we have seen in the previous section, KK loop contributions are effectively 2-loop effects

because of the extended no-scale cancellation, and so they can be neglected with respect

to 1-loop winding effects due to the suppression factor g2s ≪ 1. The effective field theory is

therefore more under control since we do not have to include poorly understood 2-loop KK

contributions. Let us also point out that KK gs effects might also be absent by construction

12Notice that tree-level bulk α′4 effects are expected to be absent [42] due to the vanishing of the five-loop

beta-function [43].
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if there are no O3-planes and D3-branes and all O7-planes and D7-branes intersect (or are

on top of) each other [16].

Given that α′ corrections (both F 4 O(α′3) terms and F 2 O(α′4g2s) winding loop effects)

are crucial to generate the inflationary potential of our model, we name it ‘α′-Inflation’.

Setting without loss of generality λ1 = 1 and using (2.43), 1-loop winding corrections take

the form:

Vgs = −
( gs
8π

) BW 2
0

V3√τ1
, (3.2)

where B is a tunable flux-dependent coefficient. On the other hand, from (2.10) higher

derivative α′3 effects behave as (for λ = −|λ| and positive Π1 and Π2):

VF 4 =
( gs
8π

)2 |λ|W 4
0

g
3/2
s V4

(

Π1
V
τ1

+Π2
√
τ1

)

. (3.3)

Notice that we traded τ2 for V and we neglected τs-dependent contributions since both the

overall volume mode and the small blow-up mode τs are fixed at leading order by non-

perturbative and α′3 F 2 corrections. The total inflationary potential therefore becomes:

V = Vgs + VF 4 =
( gs
8π

) W 2
0

V3

[

C1

τ1
− B√

τ1
+ C2

√
τ1
V

]

, (3.4)

where:

C1 =
( gs
8π

) |λ|W 2
0Π1

g
3/2
s

> 0 and C2 =
( gs
8π

) |λ|W 2
0Π2

g
3/2
s

> 0 . (3.5)

Assuming that the third term in (3.4) is suppressed with respect to the first two (as we

will show later), the minimum is at (for B > 0):

〈τ1〉 =
4C2

1

B2
. (3.6)

Let us now consider the canonically normalised inflaton φ and shift it from its minimum,

φ = 〈φ〉+ φ̂, obtaining [8]:

τ1 = eκφ ⇒ τ1 = 〈τ1〉 eκφ̂ for κ =
2√
3
. (3.7)

Substituting this result in (3.4) we end up with:

V =
3m2

φ

2

(

1−R+ e−κφ̂ − 2 e−κφ̂/2 +Reκφ̂/2
)

. (3.8)

Here we have added the uplifted LVS terms which need to be tuned (by adjusting back-

ground fluxes) to have a Minkowski vacuum after including string loop and F 4 terms. Also

the inflaton mass at the minimum is given by:

m2
φ =

( gs
8π

) W 2
0

V3

2C1

3〈τ1〉
and R ≡ 8C2C

2
1

B3V =
Π2

Π1

〈τ1〉3/2
V . (3.9)

In order to have a viable inflationary model we need to require R ≪ 1 since otherwise

the positive exponential term would destroy the flatness of the inflaton potential. This
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implies that we need a hierarchy between the topological numbers Π2 ≪ Π1 together with

〈τ1〉 ≪ V2/3. From (3.8) we can clearly see that the Hubble scale during inflation H2 = V/3

is set by the inflaton mass at the minimum. Moving the inflaton away from the minimum,

its mass becomes exponentially suppressed with respect to H (for R ≪ 1), and so the

potential (3.8) becomes flat enough to drive inflation.

3.2 Cosmological observables

Starting from the inflationary potential (3.8), the slow-roll parameters become:

ǫ =
1

2

(

V ′

V

)2

=

(

2e
− φ̂√

3 − 2e
− 2φ̂√

3 +Re
φ̂√
3

)2

6

(

1−R+ e
− 2φ̂√

3 − 2e
− φ̂√

3 +Re
φ̂√
3

)2 , (3.10)

and:

η =
V ′′

V
=

4e
− 2φ̂√

3 − 2e
− φ̂√

3 +Re
φ̂√
3

3

(

1−R+ e
− 2φ̂√

3 − 2e
− φ̂√

3 +Re
φ̂√
3

) . (3.11)

The slow-roll parameter η vanishes at the two inflection points φ̂
(1)
ip ≃

√
3 ln 2 ≃ 1.2 where

the two negative exponentials compete with each other, and φ̂
(2)
ip = 1

2 φ̂
(1)
ip −

√
3
2 lnR ≫ φ̂

(1)
ip

for R ≪ 1 where the positive exponential becomes comparable in size with e−κφ̂/2. The

slow-roll parameter ǫ at φ̂
(1)
ip becomes ǫ

(1)
ip ≃ 2/3, signaling that inflation ends close to the

first inflection point. In fact, ǫ ≃ 1 around φ̂end = 1, independently of the microscopic

parameters since the term proportional to R can be neglected in the vicinity of the min-

imum. As in [24], there is an inflationary plateau to the right of the first inflection point

and inflation takes place for field values in the window φ̂
(1)
ip < φ̂ < φ

(2)
ip since the spectral

index is always too blue for φ̂ > φ
(2)
ip .

The number of efoldings between the point of horizon exit φ̂∗ and the end of inflation

is then computed as:

Ne =

∫ φ̂∗

1

1
√

2ǫ(φ̂)
dφ̂ . (3.12)

The amplitude of the density perturbations at horizon exit has to match the observed

value, requiring:

ACOBE =

(

V 3/2

V ′

)2
∣

∣

∣

∣

∣

∣

φ̂∗

= 2.7 · 10−7 . (3.13)

The main cosmological observables we are interested in are the spectral index ns and the

tensor-to-scalar ratio r which have to be evaluated at horizon exit as:

ns = 1 + 2η∗ − 6ǫ∗ and r = 16ǫ∗ . (3.14)
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In the region close to horizon exit at large φ̂, the term in the potential proportional to e−κφ̂

is negligible with respect to the other contributions, and so the slow-roll parameters (3.10)

and (3.11) simplify to:

ǫ ≃ 1

6

(

2e
− φ̂√

3 +Re
φ̂√
3

)2

and η ≃ −1

3

(

2e
− φ̂√

3 −Re
φ̂√
3

)

, (3.15)

giving the relation:

ǫ ≃ 3

2
η2 +

4

3
R , (3.16)

which for η ≪ 1 implies:

ns ≃ 1 + 2η − 8R and r ≃ 6 (ns − 1)2 +
64

3
R . (3.17)

For R → 0 these predictions reproduce the ones of Fibre Inflation [24]. However for

R = b η2, with b ∼ O(1), the prediction for r changes substantially since we obtain:

ns ≃ 1 + 2η and r ≃
(

6 +
16

3
b

)

(ns − 1)2 . (3.18)

Given that the prediction for ns is not changed, values of R close to η2 can increase the

prediction for the tensor-to-scalar ratio with respect to the one of Fibre Inflation without

modifying the value of spectral index. We shall present below some choices of underlying

parameters which reproduce this situation. However we first stress that in order to trust

our single-field approximation, we need to require that the mass of volume mode is larger

than the Hubble scale during inflation H2 = V/3. The volume mode mass scales as:

m2
V =

d

ln (V/W0)
Vα′ , (3.19)

where Vα′ is the leading order α′3 contribution in the LVS potential (2.3) and the exact value

of the prefactor d depends on the uplifting mechanism. Without uplifting d = 27/4 [44]

whereas for dS vacua from hidden matter F-terms d = 3/4 and for dS from non-perturbative

effects at singularities d = 9/2 [45]. This corresponds to imposing at horizon exit:

R ≡ H2

m2
V

∣

∣

∣

∣

φ̂

=
ln (V/W0)

3c

V

Vα′

∣

∣

∣

∣

φ̂

≃
m2

φ

Vα′
=

8C1g
3/2
s

9ξ〈τ1〉
≪ 1 . (3.20)

Finally the α′ expansion can be trusted if the ξ-dependent piece in the Kähler potential (2.1)

is subleading with respect to the tree-level term, and so if:

ǫξ ≡
ξ

2g
3/2
s V

≪ 1 . (3.21)

Let us now present two illustrative choices of the underlying parameters which satisfy these

requirements and lead to inflation with around 50–60 efoldings:
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1. This parameter choice is characterised by Π2 = 0, implying C2 = R = 0, and so it

reproduces the same predictions as Fibre Inflation [24]. The other parameters are

(λ is expected to be between 10−2 and 10−3):

gs = 0.1 W0 = 10 ξ = 1 B = 5.248 Π1 = 100 λ = 0.01 V = 103 , (3.22)

giving C1 = 12.58 and:

〈τ1〉 = 23 〈τ2〉 = 417 Ne = 56.5 φ̂∗ = 6.5 ns = 0.966 r = 0.006 , (3.23)

together with:

R = 0.015 and ǫξ = 0.016 . (3.24)

2. We now consider the case with R 6= 0, finding a prediction which is qualitatively

different from the one of Fibre Inflation. We choose:

gs = 0.1 W0 = 10 ξ = 1 B = 3.4 Π1 = 26 Π2 = 1 λ = 0.01 V = 103 ,

(3.25)

giving C1 = 3.27, C2 = 0.13, R = 2.74 · 10−4 and:

〈τ1〉 = 3.7 〈τ2〉 = 1039 Ne = 50 φ̂∗ = 6.425 ns = 0.972 r = 0.01 , (3.26)

together with:

R = 0.025 and ǫξ = 0.016 . (3.27)

Notice that larger values of 〈τ1〉 require larger values of Π1 since for Π1 = 100 we

would have the same results as above apart fromW0 = 8.94 and B = 6.67 which imply

C1 = 10, C2 = 0.1, 〈τ1〉 = 9.1, 〈τ2〉 = 662.4 and R = 0.046. Notice finally that larger

values of R would give a spectral index which is too blue (for example for R = 5 ·10−4

we would have Ne = 50 at φ̂∗ = 6.53 where ns = 0.98 and r = 0.012) whereas smaller

values of R would correspond to more unnatural choices of the underlying parameters.

In fact, since Π2 ≥ 1 we realise from (3.9) that a smaller value of R can be obtained

either for larger, and so more tuned, values of Π1, or for larger values of the volume

V . We do not consider smaller values of 〈τ1〉 since we want to remain in the regime

of trustability of the effective field theory. However in order to reduce R by 1 order

of magnitude to get back to the prediction of the previous case, i.e. r ≃ 0.006, the

volume has also to be increased by 1 order of magnitude. At fixed λ, this implies

that both W0 and B have to be increased as W0 → 5.62W0 and B → 31.62B in order

to keep fixed both V0 to match the COBE normalisation and 〈τ1〉 in order not to

obtain too small values. However B turns out to be more tuned since the previous

value B = 6.67 would shift to B = 211. If λ is decreased to λ = 0.001, we need

W0 → 10W0 and B → 10B which would still give larger values of B.

The form of the inflationary potential for different values of the small parameter R is

plotted in figure 1.
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Figure 1. Plot of the inflationary potential for R = 2.74 · 10−4 (red line), R = 2.74 · 10−5 (green

line) and R = 0 (blue line).

Due to the large value of r, the inflationary scale is very high:

M4
inf = V (φ̂) =

r

0.12

(

1.94 · 1016GeV
)4 ≃

(

1.04 · 1016GeV
)4

for r ≃ 0.01 . (3.28)

In order to trust our effective field theory we need to impose that Minf is below the KK

scale MKK. The string scale in terms of the 4D Planck scale is:

Ms = 2πℓ−1
s =

g
1/4
s

√
π√

V
Mp . (3.29)

Hence the KK scale is given by (using that the volume in string frame Vs is related to the

volume in Einstein frame as Vs = g
−3/2
s V):

MKK =
Ms

V1/6
s

=
√
π

Mp

V2/3
, (3.30)

and so M4
KK ≪ M4

s if Vs ≫ 1 or V ≫ g
−3/2
s , and from (3.28) (without fixing r) we have

M4
inf ≪ M4

KK if V ≪ 1390 r−3/8. Combining these two bounds we find that (see [46, 47] for

similar results):

M4
inf ≪ M4

KK ≪ M4
s ⇔ g−3/2

s ≪ V ≪ 1390 r−3/8 . (3.31)

For gs = 0.1 we find V ≫ 30. If we then set V ≃ 103 we find r ≪ 2.4, showing that our pre-

diction r ≃ 0.01 is still in the regime where we can trust the effective field theory. However,

for V ≃ 104 we find r ≪ 0.005 which is incompatible with our previous prediction for the

tensor-to-scalar ratio. The KK scale in the example above with R = 2.74 · 10−4 turns out

to be MKK ≃ 4.35 · 1016GeV, and so (Minf/MKK)
4 ≃ 0.003. Moreover also the energy den-

sity which stabilises the volume mode is below the KK scale since Vα′ (Mp/MKK)
4 ≃ 0.095.

From this analysis, it follows that r ≃ 0.01 is probably the largest possible value of r that

allows a marginal control over the effective field theory.
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Figure 2. Comparison between Fibre Inflation (blue line) and α′ Inflation (red line) for R =

2.74 · 10−4. The vertical line indicates the point of horizon exit for α′ Inflation. The potential for

Fibre Inflation is too steep to support enough efoldings of inflation.

3.3 Comparison with Fibre Inflation

Let us finally compare our model with Fibre Inflation whose potential has a similar be-

haviour to the one of (3.8) since it reads [24]:

VFI = V0

(

1 +
1

3
e−2κφ̂ − 4

3
e−κφ̂/2 +Reκφ̂

)

with R ≪ 1 . (3.32)

Clearly both potentials feature a plateau followed by a steepening region. However, given

that in Fibre Inflation the positive exponential has a larger coefficient, the potential of α′

Inflation has a longer plateau for the same value of R. The comparison between the two

different potentials for R = 2.74 · 10−4 is shown in figure 2. The vertical line corresponds

to horizon exit at φ̂∗ = 6.425 that gives Ne ≃ 50 for α′ Inflation. At this point in field

space the slow-roll conditions in Fibre Inflation are violated. In fact, its potential is too

steep to support enough efoldings of inflation.

If R is reduced by one order of magnitude, the two potentials give in practice the same

prediction, as can be seen from figure 3. Notice that in α′ Inflation it is more natural to

have horizon exit close to the steepening region where the predictions for the two main

cosmological observables are ns ≃ 0.97 and r ≃ 0.01. In fact, in the case with R = 2.74·10−4

horizon exit at φ̂∗ = 6.425 is close to the inflection point at φ̂ip = 7.68 where the negative

exponential becomes comparable to the positive one. On the other hand in Fibre Inflation

the steepening is stronger, and so horizon exit has to take place deep inside the plateau

region otherwise the spectral index would become too blue.

4 Conclusions

In this paper we have shown explicitly the existence of generalised LVS vacua for arbitrary

CY manifolds with at least one local blow-up mode. The new key-ingredient is the inclusion

of higher dimensional α′3 corrections recently computed in [29]. At leading order in an
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Figure 3. Comparison between Fibre Inflation (blue line) and α′ Inflation (red line) for R =

2.74 · 10−5. The vertical line indicates the point of horizon exit for both Fibre and α′ Inflation.

expansion in inverse powers of the internal volume V , α′3 F 2 effects compete with non-

perturbative corrections to W to fix V and all Nsmall small blow-up mode. Each of the

Nflat = h1,1 −Nsmall − 1 remaining flat directions can be shown to be lifted in general by

α′3 F 4 terms if these have the correct sign.

When the superspace derivative expansion is under control, i.e. when F 4 effects are

subdominant with respect to F 2 terms which is equivalent to require m3/2 ≪ MKK [31],

these flat directions are lifted at subleading order, and so the corresponding moduli are

naturally lighter than all the other modes. This crucial feature makes all of them promising

inflaton candidates.

Hence in the second part of this paper we focused on cosmological applications for

cases where Nflat = 1. We developed a new inflationary model, which we named ‘α′

Inflation’, where O(α′3) F 4 terms compete with O(α′4g2s) F
2 loop corrections coming from

the exchange of winding modes between intersecting stacks of branes. The inflationary

potential is characterised by an exponentially flat plateau followed by a steepening region.

The flatness of the inflationary potential is protected against dangerous higher dimensional

operators by a non-compact shift symmetry inherited from the no-scale structure which is

broken only beyond tree-level [26, 27].

For natural values of the underlying parameters horizon exit for Ne ∼ 50–60 occurs in a

region where the steepening effect is not negligible, and so the model predicts a large tensor-

to-scalar ratio of order r ≃ 0.01 together with a spectral index ns ≃ 0.97 in agreement

with present data. Future cosmological observations will soon test the predictions of our

model [36, 37]. The inflationary scale is of order Minf ≃ 1.04 · 1016GeV while the KK

scale is slightly higher, MKK ≃ 4.35 · 1016GeV, showing that the effective field theory is

marginally under control since (Minf/MKK)
4 ≃ 0.003 and the ratio between the mass of the

volume mode and the Hubble scale is (H/mV)
2 ≃ 0.025. This shows also that r ≃ 0.01 is

probably the largest possible prediction for r which is compatible with a trustable effective

field theory. Due to the high scale of the moduli potential, the gravitino mass also turns out

to be very high, m3/2 ∼ 1015GeV, leading to soft terms much higher than the TeV scale.
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Sequestering supersymmetry breaking from the visible sector [7] might help to suppress

the soft terms from the gravitino mass but these would still be very far from low energy.

Comparing our model with Fibre Inflation [24], the potential of α′ Inflation has a very

similar shape but with a milder raising behaviour at large field values. Hence horizon exit

can take place close to the steepening region, enhancing the tensor-to-scalar ratio without

obtaining a spectral index which is too blue.

An interesting future line of work involves the construction of global models of α′

Inflation in concrete CY manifolds with explicit brane set-up and choice of fluxes. Moreover

it would be interesting to investigate how reheating takes place after the end of inflation

along the lines of [45, 48–50].
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A Corrections to F
4 terms

In the analysis of [29] the F 4 term was determined assuming that the α′0 order Kähler

potential and superpotential are given by a no-scale model. In the LVS situation the

superpotential is corrected by a volume-suppressed term which, in turn, mildly breaks the

no-scale structure. In this appendix we demonstrate that the form of the F 4 term (2.10)

holds also in the LVS (almost no-scale) situation up to volume suppressed corrections and

a τs-dependent shift of the overall numerical prefactor λ appearing in (2.10). This shift is

of no further consequence here but should be included in a full numerical analysis, once

the precise form of the F 4 term is known.

Here we present two arguments. Firstly, we give a general argument based on the form

of the F-terms. Afterwards we investigate the possible corrections more closely for explicit

choices of the coupling tensor Tı̄̄kl.

Let us consider two indexes i = 1, · · · , Nlarge where i runs over all large moduli and

s = 1, · · · , Nsmall with s running over all small moduli with Nlarge + Nsmall = h1,1. For

simplicity of notation we will just consider Nsmall = 1. Given that in LVS ∂iW = 0 and

∂sW = W0 V−1f(τs), and using the fact that eK/2 ≃ V−1, the Kähler moduli F-terms for

a weak Swiss cheese CY with volume (2.12) take the form:

F s ≃ W0

V

(

8

3

√
τsf(τs)− 2τs

)

≃ − 3τs
2 lnV

W0

V , (A.1)

and:

F i ≃ W0

V

(

4τiτs
V f(τs)− 2τi

)

≃ −2τi
W0

V
(

1 +O(V−1)
)

. (A.2)
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It was shown in [29] that quite generally τiτjτkτlTij̄kl̄ is a constant. Thus we have also in

this almost no-scale case (up to volume suppressed terms):

Tij̄kl̄F
iF̄ j̄F kF̄ l̄ ∼ W 4

0

V4
, Tij̄ks̄F

iF̄ j̄F kF̄ s̄ ∼ W 4
0

V4 lnV , Tij̄ss̄F
iF̄ j̄ |F s|2 ∼ W 4

0

V4(lnV)2 ,

Tis̄ss̄F
iF̄ s̄|F s|2 ∼ W 4

0

V4(lnV)3 , Tss̄ss̄|F s|4 ∼ W 4
0

V4(lnV)4 . (A.3)

Let us now investigate the possible form of the F 4 term more precisely for explicit choices

of the coupling tensor using the tools of appendix C of [29]. After factorising the overall

volume dependence of the F-terms, the quantity Z that we wish to study is:

Tij̄kl̄F
iF̄ j̄F kF̄ l̄ = e2KZ ∼ Z

V4
with Z = T kl̄ij̄DkWDlWDīW̄Dj̄W̄ . (A.4)

In [29] it was demonstrated for an exhaustive list of examples that Z is a pure number.

We now perform an explicit analysis of Z also in the almost no-scale LVS case. At order

α′3 the tensor structure of Tkl̄ij̄ is defined with respect to the geometry determined by the

α′0 order Kähler potential and superpotential and was not calculated in [29]. However, it

was argued to be built entirely from indexed quantities.13 The simplest allowed forms for

Tijk̄l̄ are:

Kik̄Kjl̄ +Kil̄Kjk̄ KiKjKk̄Kl̄ KiKk̄Kjl̄ + symmetrised

Rijk̄l̄ Rik̄Rjl̄ +Ril̄Rjk̄ Rik̄Kjl̄ + symmetrised

Rik̄KjKl̄ + symmetrised Kj∇l̄Rik̄ + symmetrised ∇j∇l̄Rik̄ + symmetrised

(A.5)

where the symmetrisation is such that:

Tijk̄l̄ = Tjik̄l̄ = Tijl̄k̄ , (A.6)

and Rijk̄l̄, Rik̄ denote components of the Riemann and Ricci tensor and ∇j the covariant

derivative. To understand the form of Z we expand as in (A.1):

DsW = ∂sWnp +Ks(W0 +Wnp) ≃ ∂sWnp +W0Ks . (A.7)

The second contribution is the pure no-scale piece of the F-term while the first is the new

contribution associated with the presence of the non-perturbative superpotential. In an

expansion in powers of Wnp we find at leading order corrections of the type:

T sjk̄l̄KjKk̄Kl̄∂sWnp . (A.8)

From [29] we know that for any tensor from the list in (A.5) we have that:

T ijk̄l̄KiKjKk̄ ∼ −τl . (A.9)

13The possible indexed quantities involve derivatives of the Kähler potential and contractions thereof

with the inverse Kähler metric.

– 23 –



J
H
E
P
0
9
(
2
0
1
6
)
0
2
6

In turn, we deduce:

T sjk̄l̄KjKk̄Kl̄∂sWnp ∼ τse
−asτs ≃ 1

V , (A.10)

and hence these corrections are subleading in the volume. Furthermore, we have contribu-

tions with two powers of Wnp which read:

T sjs̄l̄KjKl̄∂s̄W̄np∂sWnp . (A.11)

Using the formulae from appendix C of [29] we computed T ijk̄l̄KjKl̄ for the tensors in (A.5).

While for many examples (A.11) is again a volume suppressed correction, there exist also

choices of Tijk̄l̄ such that (A.11) is a τs dependent function. For example we find:

Rss̄∂s̄W̄np∂sWnp ≃ V2k
2
sss

t2s
e−2asτs (A.12)

which via (2.4) is a constant in the LVS minimum. For the remaining corrections which

involve contractions with three or four powers of Wnp the situation is the same. Again,

the simplest choices of Tijk̄l̄ induce only volume-suppressed corrections while the more

complicated ones, e.g. involving the curvature, can again yield τs dependent functions.

Let us make a final remark. The no-scale structure not only greatly simplifies the F 4

term but also leads to cancellations of additional higher-derivative corrections to the scalar

potential [30]. In particular, there may exist additional terms in V involving the complex

auxiliary M of old minimal supergravity which vanish identically for the no-scale case.

Such corrections induced by superspace higher-derivative operators were more generally

discussed in [30]. When a non-perturbative superpotential is present, these terms will

yield new α′3 corrections. These can be inferred in the same way as in [29] and, hence, are

rather similar to the F 4 terms in (A.3). Since:

M̄ = −KsF
s − 3Wnpe

K/2 ∼ V−2 , (A.13)

such terms lead to corrections of O(V−5) to the scalar potential and hence do not affect

the conclusions of this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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