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1 Introduction

One of the most striking features of quantum chromodynamics is the existence of resonances

of mesons and baryons with angular momenta, J , and masses m, lying on approximately

linear Regge trajectories

J ∼ α′m2. (1.1)

This Regge relationship between angular momentum and mass provides a conceptual

link between non-Abelian gauge theory and string theory. As first observed in [1–3], a
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natural way to obtain (1.1) is to consider a rotating rigid string whose ends move at the

speed of light. The mass and angular momentum then satisfy the Regge relation with

α′ =
1

2πT
, (1.2)

where T is the energy per unit length of the string. This simple result is a starting point

for a qualitative model of quark confinement where quark antiquark pairs are connected

by the QCD string. In the context of gauge-gravity duality [4–6], the dual string picture of

Yang-Mills is exact, and the Regge spectrum of operators in field theory may be deduced

from spinning strings in Anti-de Sitter space [7].

In this work, we demonstrate that a relationship analogous to (1.1) holds in N = 2

supersymmetric field theories. Specifically we consider SU(nc+1) Yang-Mills theories with

nc > 1. These models are qualitatively distinct from their confining cousins with less super-

symmetry. The N = 2 theories have a moduli space of vacua and in a generic vacuum the

low-energy physics is described by a Coulomb phase of free u(1) vector multiplets. Particles

in these theories thus carry electric and magnetic charges γ valued in an integral charge

lattice Γ. A complete solution to the spectrum of this theory is therefore an enumeration

of the stable one-particle states in the Hilbert space for each electromagnetic charge γ.

To state our result, we first fix a direction γ̂ in the charge lattice Γ. We examine

particles with charges Λγ̂ where Λ� 1. We find that along this ray the stable particles of

largest angular momentum obey the Regge relation

J ∼ α′(γ̂)m2. (1.3)

In particular, these particles exist for J arbitrarily large. The slope function α′(γ̂) depends

on the direction in the charge lattice γ̂, and acquires its length scale from field expectation

values 〈φ〉 specifying the vacuum of the theory.

In general in quantum field theory, the exact nature of the particle spectrum is difficult

to determine. In our case, we are able to obtain precise information by studying BPS

particles, which preserve some of the underlying supersymmetry of the theory. We model

these BPS configurations as non-relativistic bound states described by quiver quantum

mechanics. In this picture the states saturating the Regge equation (1.3), are physically

described by stable multi-centered configurations of dyons and monopoles and carry a large

angular momentum in the induced electromagnetic fields. We introduce these models in

section 2 following the analysis in [8–12].

In section 3, we investigate the bound state spectrum in non-Abelian gauge theory.

Our perspective is to view the BPS states in general SU(nc+1) gauge theory as composites

of simpler states arising from various SU(2) subgroups. We demonstrate that the quiver

moduli spaces describing classically stable states, are naturally decomposed into cells ac-

cording to how the bound state in question is viewed as a multi-centered configuration of

the distinct species of SU(2) type dyons. The states of largest angular momentum at fixed

electromagnetic charges are then determined by the dimension of this moduli space. Our

main technical result is thus a sharp estimate for the dimension of the moduli space.

One of the interesting complexities of the spectrum of N = 2 field theories is the

phenomenon of wall-crossing. Depending on the expectation value 〈φ〉 a given particle
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may or may not be stable. The dynamics of the gauge theory also depends strongly on 〈φ〉.
For large values of 〈φ〉, the non-Abelian Yang-Mills theory is broken to an Abelian theory

at a high scale and is weakly coupled due to asymptotic freedom. Our result (1.3) holds

in this region of parameter space. By contrast, for small 〈φ〉 the gauge theory is strongly

coupled and there are only a finite number of stable BPS particles [12–16].

The weak coupling region of the SU(nc+1) gauge theory is divided into many chambers

whose detailed spectra are different. We are able to make progress in analyzing the particle

content by working in a strict limit of parameters where there is a clear hierarchy of mass

scales.

To be specific, the conserved infrared charges are nc species of electric charge ei, and

nc species of magnetic charges qi:

γ = (e1, e2, · · · , enc , q1, q2, · · · qnc) ∈ Γ . (1.4)

Each of the basic charges ei and qj has an associated complex mass scale set by the central

charge Z(γ). The ratio of electric to magnetic mass scales is controlled by the effective fine

structure constant which is parametrically small in the regime of interest

|Z(ei)|
|Z(qi)|

∼ g2

4π
� 1 . (1.5)

Meanwhile the relative mass scales for the distinct species of magnetic charge vary in the

weak coupling region causing intricate jumping phenomena in the spectrum. The structure

simplifies in the limit where the central charges are phase ordered as1

arg
(
Z(q1)

)
> arg

(
Z(q2)

)
> · · · > arg

(
Z(qnc)

)
, (1.6)

and there is a parametric separation of scales

|Z(qi)| � |Z(qi+j)| , j > 0 . (1.7)

Alternative assumptions of hierarchies of the magnetic mass scales similarly yield simplifi-

cations in the BPS spectrum.

We work throughout in the limit where the inequalities (1.5) and (1.7) parametrically

obeyed and neglect corrections to these approximations. This is equivalent to working in

a limit where there are parametrically controlled ratios of charges for the particles under

consideration. Thus, for all electric and magnetic charges we assume

ei
qi
� |Z(qi)|
|Z(ei)|

∼ 4π

g2
. (1.8)

And similarly we assume that for j > 0,

qi
qi+j

� |Z(qi+j)|
|Z(qi)|

. (1.9)

1The ordering of the charges is not arbitrary, so this constraint is not trivial. See (3.6) and figure 2 for

a complete explanation.
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The Regge trajectories, and other organizing features in the spectrum that we identify are

correct when the charge restrictions (1.8) and (1.9) are obeyed. When the charges become

large enough to violate these bounds our results may receive corrections.

With these preliminaries, we may now state our conclusions concerning the BPS spec-

trum in this regime of parameters.2

• In the weak coupling region, where the inequality (1.5) is obeyed, all stable BPS

particles have either qi < 0 for all i, qi > 0 for all i, or qi = 0 for all i. The electric

states, with qi = 0 for all i, are perturbatively accessible and give rise to states

with bounded angular momentum. Meanwhile, the magnetically charged states have

angular momentum which is unbounded.

• If further we assume the hierarchies (1.6) and (1.7), then we establish sufficient con-

ditions for there to exist stable BPS states with a given collection of charges {ei, qi}.
Specifically:

– If all magnetic charges are positive, a sufficient condition for stable BPS states

to exist is

dei/qie < bei+1/qi+1c , i = 1, · · · , nc − 1 . (1.10)

– If all magnetic charges are negative, a sufficient condition for stable BPS states

to exist is

bei/|qi|c > dei+1/|qi+1|e , i = 1, · · · , nc − 1 . (1.11)

Where in the above, dxe, and bxc are the ceiling and floor of a real number x.

• For states with all positive magnetic charges satisfying (1.10), or all negative magnetic

charges satisfying (1.11), we demonstrate the following lower bound on the angular

momentum J of BPS particles:3

J ≥ 1

2

( nc−1∑
i=1

(ei+1qi − eiqi+1)−
nc∑
i=1

q2
i

)
+

1

2
. (1.12)

The Regge growth in the angular momentum may be deduced from these results.

Indeed, in any model where the BPS states can be described by quiver quantum mechanics,

there is an a priori upper bound on the angular momentum of BPS particles in terms of

a quadratic function of the charge γ. Thus, under scaling γ → Λγ, the estimate (1.12)

implies that that J scales as Λ2. On the other hand, the BPS bound implies that the

masses m of charged particles scale as Λ, so parametrically (1.3) is obeyed.

There are many questions left unanswered by the analysis in this work. Of particular

note however, is that our results do not shed any light on whether the Regge phenomenon

2We restrict ourselves to the case where all possible electric and magnetic charges are activated, so for

each i, the pair (ei, qi) 6= (0, 0). Other restricted configurations of charges where (ei, qi) = (0, 0) for some i

may be understood inductively by decreasing nc.
3By the angular momentum of a BPS particle, we mean the largest angular momentum in the given

BPS multiplet. In particular, this implies that J ≥ 1/2.
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we observe is connected to an underlying string interpretation. We leave this, as well

as a more thorough exploration of the sub-leading Regge trajectories and details of the

spectrum as possibilities for future research.

2 Toy models

In this section we develop a semiclassical intuition for the validity of the Regge relation (1.3)

in the BPS spectrum of N = 2 field theories. Additionally, we introduce a non-relativistic

quiver quantum mechanics toy model where simple calculations are feasible.

Throughout this section, we take a low-energy point of view on the BPS spectrum of

N = 2 field theories. The BPS states are viewed as heavy dyons which interact through the

long-range Coulomb and scalar interactions mediated by the massless vector multiplets.

2.1 Semiclassical intuition

Consider two particles with electric-magnetic charges given by γ1 and γ2 respectively. Even

if the individual particles do not carry angular momentum, the two particle configuration

will carry angular momentum J in the induced electromagnetic field given by the Dirac

pairing between the two charges

J ∼ 〈γ1, γ2〉 . (2.1)

Thus, if a bound state of these two particles exists, we anticipate that its angular momen-

tum is semiclassically given by a quadratic function of the constituent charges. Due to the

linearity of electromagnetism, this phenomenon is general: given any multi-particle bound

state the induced angular momentum in the electromagnetic fields is always a quadratic

function of the charges of the particles. To deduce Regge behavior, we will argue that the

mass of such a bound state is a linear function of the charges.

For generic particles in quantum field theory, there is no a priori reason to expect a

simple relationship between the mass of a particle and its electric and magnetic charges. In

this regard N = 2 supersymmetric quantum field theories are different. In these models,

particles obey a bound relating mass and charge

m ≥ |
∑
i

(Ziγi)| . (2.2)

The complex parameters Zi are central charges and depend on the vacuum of the field

theory as well as ultraviolet parameters like coupling constants and bare masses.

The bound (2.2) is saturated by BPS particles, which persevere some of the supersym-

metry of the underlying quantum field theory. They are the lightest states possible with

given electromagnetic charge. For our purposes, BPS particles are significant because, as

is clear from (2.2), the mass of such states is a linear function of the charges.

We now combine these considerations with our semiclassical estimate of angular mo-

mentum. Suppose that BPS particles exist with parametrically large charges of order Λ.

The mass of such states scales as Λ while the angular momentum scales as Λ2. Thus we

expect Regge behavior

J ∼ α′m2. (2.3)
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Figure 1. The Kronecker quiver with dimension vector (N,M) and k arrows. This model encodes

the interactions of N particles of charge γ1 and M particles of charge γ2.

The slope α′ above depends on the the central charges Zi which set the mass scale for

the problem. It furthermore depends on the charges γi of the particles in question, but is

homogenous under scaling γi → Λγi.

From the previous analysis, we see that if such stable BPS particles exist it is natural

to expect Regge scaling of the angular momentum and mass. For this argument to be valid

it is important that the bound states in question are semiclassical, with parametrically

large charge and radius. Meanwhile, stable non-BPS states, if they exist at all, must lie

above the BPS bound (2.2). Assuming that their angular momentum is still dominated by

the induced electromagnetic field we expect that these states lie below the leading Regge

trajectory.

Despite the plausible argument given in this section, in a variety models, for instance

SU(2) gauge theory with arbitrary matter, the true microscopic description of BPS states

allows for cancellations of angular momentum and the stable BPS states do not in fact

form Regge trajectories [17, 18]. Thus, it is essential to give precise microscopic models

for the BPS states where the issue of stability may be reliably addressed, and the angular

momentum may be reliably computed.

2.2 Quiver quantum mechanics models

We now turn to concrete models realizing the semiclassical considerations of the previous

section. A simple quantitative picture may be developed using the non-relativistic quantum

mechanics that governs the worldline theory of BPS particles. In this section we briefly

review these ideas in the context of a simple toy model. For a more detailed introduction

to these systems see [11, 12].

We consider a system with two basic hypermultiplet BPS states, and take their charges

to be γi, with electromagnetic product k

〈γ1, γ2〉 = k > 0 . (2.4)

These particles interact by long-range forces mediated by the exchange of scalars and

vectors. Due to supersymmetry the interaction Lagrangian for the multi-particle system is

fixed to leading order in the particle velocities. These interactions may be usefully encoded

in a quiver quantum mechanics problem. For the case in question the quiver is shown in

figure 1.

This diagram encodes a non-relativistic gauged quantum mechanics with four super-

charges. Each node is labelled by an integer and denotes a unitary gauge group of the

indicated rank (i.e. U(N) and U(M) in the model shown in figure 1). Meanwhile the arrow

fields are chiral multiplets transforming in bifundamental representations.
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The supersymmetric ground states of this quantum mechanics are BPS bound states of

N particles of charge γ1 and M particles of charge γ2. Thus, their total charge is given by

γ ≡ Nγ1 +Mγ2 . (2.5)

In particular, stable bound states, if they exist, will have masses

m = |NZ1 +MZ2| , (2.6)

where Zi are the central charges of this system.

Depending on the parameters Zi it may or may not be energetically favorable for the

multi-particle system to form bound states. When Z1/Z2 has argument in the lower half

of the complex plane, the only stable states are the basic hypermultiplets with charges γ1

and γ2. Meanwhile, when Z1/Z2 has argument in the upper half of the complex plane, an

intricate spectrum of bound states exist. These bound state spectra come in supermultiplets

which are representations of the algebra su(2)J × su(2)I , specifying the angular momentum

(J) and R-symmetry (I) quantum numbers. As representations, each supermultiplet takes

the form

[(2,1)⊕ (1,2)]⊗R , (2.7)

where R is an irreducible representation of su(2)J×su(2)I . To determine the set of realized

representations, we proceed as follows.

• Compute the classical moduli space Mγ parameterizing supersymmetric ground

states of the quantum mechanics. This moduli space is a Kähler quotient obtained

by taking the vector space of constant configurations for the bifundamental chiral

multiplet fields (indicated graphically by the arrows of the diagram), and quotienting

by the gauge redundancy acting at each node of the diagram.4

One must also impose stability by removing certain loci from the space of field con-

figurations. We describe this procedure in detail in section 3.3.2.

• Quantize the moduli space Mγ by determining its cohomology. As a vector space,

the cohomology of Mγ is equal to a direct sum over all representations R occurring

in (2.7) with the indicated charge γ. SinceMγ is a Kähler manifold, the cohomology

admits a Hodge decomposition with associated Hodge numbers hp,q. The integers p

and q may in turn be interpreted in terms of the angular momentum and R-symmetry

quantum numbers J3 and I3 as

2J3 = p+ q − dimC(Mγ) , 2I3 = p− q . (2.8)

In fact, for the special class of quiver models relevant in this paper, it is known that

all cohomology classes have p = q so that the su(2)R content of all representations

R is trivial [16, 20]. Thus, the Hodge decomposition simply encodes the spin of BPS

particles.

4This is the Higgs branch approach to quantization. For Coulomb branch approaches see [11, 19].
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Form the above discussion, we see that determining the quantum numbers of BPS states is

reduced to a cohomology problem for the moduli spaces Mγ . Mathematically, this is the

study of quiver representation theory [21].

In general, the complete spectrum of bound states of a quiver, including that of figure 1,

is complicated. Aspects of the spectrum of the toy model have been deduced by a variety

of methods including equivariant cohomology [22, 23], wall-crossing formulas [24–27], and

supersymmetric localization [28–32].

However, to study Regge phenomena it suffices to extract the states of largest angular

momentum given fixed charges. This is a simpler task. Indeed, from (2.8) it follows that

the multiplet of maximal angular momentum is associated to the powers of the Kähler

form. The dimension of this representation is related the complex dimension of the moduli

space Mγ as

dim(Rmax) = dimC(Mγ) + 1 . (2.9)

Thus, in our study of Regge trajectories using quiver quantum mechanics, it suffices to

determine the complex dimension of the classical moduli space Mγ for each choice of

charge γ.

In the case of the toy model of figure 1 the complex dimension of the moduli space

is easily computed by counting the number of degrees of freedom in the chiral multiplets

(arrows), and quotienting by the (complexified) gauge redundancy. We find5

dimC(Mγ) = kNM −N2 −M2 + 1 . (2.10)

Note that for k < 3 the dimension above becomes negative for large N and M . This is a

signal that no stable state with such charges exist. Conversely for k ≥ 3 the formula (2.10)

correctly computes the dimension and is parametrically large as N and M become large.

The large charge, and hence mass, of the states extracted for such moduli spaces

suggests that the semiclassical argument for Regge behavior should be accurate. Indeed,

the highest spin BPS particle with the charge γ has

J =
1

2
(kNM −N2 −M2 + 1) , (2.11)

where the offset by 1/2 is due to the tensor product in (2.7).

Comparing to the formula for the mass (2.6) we find that for N and M large we obtain

states with

J =

[
(kNM −N2 −M2)

2|NZ1 +MZ2|2

]
m2 +

1

2
. (2.12)

Note that the coefficient of m2 in the above is a homogeneous function of the integers M

and N specifying the charge γ. Thus, if we fix the direction in the charge lattice and scale

(N,M)→ (ΛN,ΛM) for Λ � 1 we obtain a Regge trajectory with slope function α′ that

depends only on the ratio N/M specifying the direction in the charge lattice

α′ =

[
(kNM −N2 −M2)

2|NZ1 +MZ2|2

]
. (2.13)

5The offset is due to a central GL(1,C) in the gauge group.
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Above and beyond the interest in (2.13) as an exact result in this toy model, our

calculation has broad implications for general N = 2 field theories. Indeed, the toy model

describes the bound states formed by spinless constituents whose electromagnetic charges

form a two-dimensional lattice. It may be embedded in a wide class of models, including

N = 2 Yang-Mills theories with sufficiently large gauge group [27, 33]. In all such examples

we therefore expect to find Regge trajectories in some region of moduli space.

At the technical level, we can understand the occurrence of Regge trajectories in any

theory where the BPS states may be described by a quiver model. In such examples,

the particles of largest angular momentum at fixed charge are determined through the

dimension of the classical moduli space as in (2.9). If this moduli space is non-empty (a

question which depends in detail on stability conditions governed by the central charges

Zi) then its dimension is given by a quadratic function of the charges obtained from the

subtracting from the vector space of bifundamental fields, the dimension of the effective

gauge group.

In practice, the only complication in this logic is that the quiver moduli space may

be subject to additional constraints arising from a superpotential which complicates the

dimension calculation. We confront this problem in the next section.

3 Regge trajectories in super Yang-Mills

In this section we turn to our main problem of interest: the spectrum of SU(nc + 1) Yang-

Mills in the weak coupling region of moduli space. Like the toy problem of the previous

section the bound state BPS spectrum of this theory is governed by a non-relativistic quiver

quantum mechanics.

The existence of a quiver model describing the BPS states implies that the angular

momentum of a particle with charge γ is bounded above by a quadratic function of γ. Our

aim is therefore to determine sufficient conditions for stable BPS states to exist, and to

determine a lower bound on their angular momentum as a function of γ.

We begin in section 3.1 by specifying this model in detail. In particular, we introduce

the electric and magnetic charges of BPS particles, and identify the weak coupling limit of

parameter space in terms of central charges.

In section 3.2 we specialize to the case of SU(2) and describe the BPS particles in that

theory in the language of quiver representations.

In section 3.3, we build on these results by viewing the general BPS state in SU(nc+1)

Super Yang-Mills, as a multi-centered configuration composed of the SU(2) dyonic con-

stituents. To this end, we prove a number of results concerning the possible collections of

SU(2) dyons which may bind together into stable BPS particles.

Finally, in section 3.4, we obtain our main results for the dimension of quiver moduli

spaces, and establish an estimate for the Regge slope.

3.1 A quiver for SU(nc + 1) super Yang-Mills

On the Coulomb branch of moduli space, the gauge group SU(nc + 1) is broken to U(1)nc

by the expectation value 〈φ〉 of an adjoint scalar field. The charge lattice Γ of the theory

– 9 –
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is rank 2nc and described as follows. Let t denote the Cartan subalgebra of SU(nc + 1). It

is spanned by elements ts for s = 1, · · · , nc + 1 subject to a single constraint

t =

{
β1t1 + β2t2 + · · ·+ βnc+1tnc+1|

∑
s

βs = 0

}
. (3.1)

Similarly the dual space t∗ is spanned by elements t∗s subject to an analogous constraint.

The natural pairing between t∗ and t is

t∗u · tv = δu,v . (3.2)

Electric charges transform as weights of the Lie algebra and hence are valued in t∗, while

magnetic charges are valued in t. We express (electric, magnetic) charges as a pair valued

in (t∗, t).

The BPS spectrum of SU(nc + 1) Yang-Mills theory may be viewed as non-relativistic

bound states of nc species of monopoles and nc species of dyons. Write γmi for the charge of

i-th monopole, γdi for the i-th dyon. In the conventions introduced above these charges are

γmi = (0, ti − ti+1) , (3.3)

γdi = (t∗i − t∗i+1, ti+1 − ti) .

We describe a general particle of charge γ as a bound state by writing

γ =

nc∑
i=1

(Miγmi +Niγdi) , (3.4)

and viewing such a state as a composite of Mi monopoles of type i and Ni dyons of type i.

One may alternatively parameterize the particles in terms of more standard electric

charges ei and magnetic charges qj . These are defined as

qj ≡Mj −Nj , ei ≡ Ni . (3.5)

The charges vectors associated to this parametrization are respectively given by the mono-

pole charge γmi as well as the electric charge vectors γei ≡ (γdi + γmi). Their pairings are

γei · γmj = Cij , (3.6)

where Cij denotes the Cartan matrix of the SU(nc + 1) Lie algebra.

In the following, we use the basis {Mi, Nj} and {ei, qj} interchangeably. We restrict

our attention to bound states with general electromagnetic charges. Thus, we assume that

for each i, we have (ei, qi) 6= (0, 0). Special states, whose charges violate this assumption,

can be understood inductively by examining smaller nc.

The interaction Lagrangian for our system is specified by a quiver quantum mechanics

theory encoded in the Dirac pairing of the associated charges [12, 14]. It is illustrated in

figure 2. It is interesting that the fundamental non-Abelian electric degrees of freedom

namely the W-bosons do not appear as elementary particles in the quiver model. Instead,

the vectors are produced as non-trivial bound states with enormous (negative) binding

– 10 –
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Figure 2. The quiver quantum mechanics problem for bound states of charge γ in SU(nc + 1)

Yang-Mills. The arrows are Ai, Bi, Φi, Ψi and label the bifundamental chiral multiplets in the

model.

energy. The fact that W-bosons, which appear as fundamental fields in the Yang-Mills

Lagrangian, do not play the role of elementary states is one of the most intriguing features

of this approach to the spectrum.

Beyond the gauge interactions implied by the nodes and arrows, this quiver quantum

mechanics has the additional complication of a non-trivial superpotential given by

W =

nc−1∑
i=1

[
Tr(Ai+1ΦiAiΨi)− Tr(Bi+1ΦiBiΨi)

]
. (3.7)

The moduli spaces Mγ of interest are thus subject to the constraint

∂W
∂χ

= 0 , (3.8)

for all chiral multiplet fields χ.

Finally, to full specify the model we must state the central charges of the fundamental

monopolies and dyons. These central charges may be extracted from the solution to the

vector multiplet geometry [34, 35]. They take the form

Zmi = ζi , Zdi = −ζi + iεi . (3.9)

In the weak coupling region of moduli space ζi and εi are approximately real and satisfy

the inequality

|εi| � |ζj | , ∀ i, j . (3.10)

We may readily extract the physical meaning of these parameters and constrains.

From the BPS bound (2.2), we see that the i-th fundamental monopoles and dyons have

mass |ζi| plus small corrections of order εi. Meanwhile, the parameters εi control the

masses of vector W-bosons associated to positive simple roots of the Lie algebra. The

constraint (3.10), then implies that the states of pure electric charge, the W-bosons, are

parametrically light compared to the magnetically charged monopoles and dyons.

This restriction on the central charges dovetails with the traditional description of the

weak coupling region of moduli space. There is a large vacuum expectation value 〈φ〉 for
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the adjoint Higgs field, and the W-bosons acquire mass through the Higgs mechanism

mW ∼ g〈φ〉 . (3.11)

Meanwhile, the states of non-vanishing magnetic charge are viewed as non-perturbative

semiclassical solitons with masses

msol ∼
4π

g
〈φ〉 . (3.12)

The ratio mW /msol is then of order the effective fine-structure constant which is paramet-

rically small at weak coupling.6

In our analysis in the following we will work in an approximation where the electric

charge correction to the central charge is treated as infinitesimal. This approach is valid

provided that the particles in question do not carry sufficiently large electric charge to yield

meaningful corrections to Z. Thus, we assume that for all i,

ei
qi
� |ζi|
|εi|
∼ 4π

g2
. (3.13)

In the formal weak coupling limit, the right-hand-side of the above tends to infinity and

our results become exact. When the effective coupling is small but not infinitesimal, our

results receive corrections for states with sufficiently large electric charges.

Having specified a quiver model, the problem of the BPS spectrum of SU(nc + 1)

super Yang-Mills is now reduced to the study of the moduli spaces Mγ for various choices

of charge γ. We restrict ourselves to the modest goal of determining the leading Regge

trajectory of BPS states and hence aim to compute the dimension of the moduli spaces

Mγ . This problem is complicated for two independent reasons.

• The superpotential equations (3.7)–(3.8) imply that the moduli spaces Mγ are cut

out by an intricate set of equations. Hence computing the dimension of Mγ is not

straightforward. In section 3.3.1 we address this issue by solving the superpotential

constraints.

• Depending on the value of the central charge parameters ζi and εi, strata of the

moduli spaces may appear and disappear and hence states may decay. In fact, it is

known [16] that in the weak coupling region, defined by (3.9)–(3.10) there are many

distinct chambers, and thus many walls of marginal stability where states appear or

disappear. We discuss this issue of stability in section 3.3.2.

3.2 Detailed description of SU(2) states

Our basic point of view on BPS states in general SU(nc+1) gauge theory is to view them as

bound states of states familiar from the BPS spectrum of the SU(2) theory. Thus we begin

with a more detailed description of these states. The relevant quiver is a simplification of

that shown in figure 2.

6To be more precise, the expectation value 〈φ〉 has nc eigenvalues and hence contains many scales. We

discuss constraints on the relative sizes of these scales in section 3.3.2.
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N M
A

B

+3

Figure 3. The quiver for SU(2) SYM with dimension vector (N,M). This model Lagrangian

encodes the interactions of N dyons and M monopoles.

Note that this quiver is a special case of the toy model explored in section 2.2. However,

in the case at hand, the number of bifundamental fields (arrows) is small and as a result the

spectrum does not form Regge trajectories. In fact the highest spin stable states are the

vector bosons. The remaining states are massive hypermultiplets carrying net magnetic

charge ±1. These states are familiar from a soliton analysis in field theory [34, 36, 37], and

may also be recovered by geometric methods from string theory [17, 38, 39].7

In the following, we present the SU(2) spectrum as they appear from a quiver analysis.

Thus, we aim to describe the configuration of chiral multiplets, up to gauge equivalence,

which specifies these moduli spaces.

Mathematically the objects that we present in the following are representations of the

quiver in figure 3, and it is natural to describe them in that language [21]. Thus, the chiral

fields (arrows) are viewed as linear maps between vector spaces supported at the nodes of

the quiver. Gauge transformations act as isomorphisms of these vectors spaces. Finally the

pair (N,M) specifying the dimensions of the vector spaces are referred to as the dimension

vector of the given representation.

Phrased in this language, the remainder of section 3.2 is a complete description of the

indecomposable representations of the quiver of figure 3. All representations may be may

be decomposed into a direct sum of these indecomposable building blocks.

3.2.1 Dimension vector (n, n + 1)

The first possibility is a representation of dimension vector (n, n+1). These objects describe

hypermultiplet dyons. Their electric and magnetic charges are (e, q) = (n, 1).

Cn Cn+1

B

A //// (3.14)

There is a unique indecomposable representation of this type for each n ≥ 0. We may

characterize it by introducing a basis for the two vector spaces in question and specifying

the behavior of the linear maps in this basis. Thus, let v1, · · · , vn specify a basis at the

source node and w1, · · · , wn+1 denote a basis of vectors at the sink node. The maps A and

B are given by

A(vi) = wi , B(vi) = wi+1 . (3.15)

Alternatively, we may characterize this representation in a basis independent fashion by

noting that the maps A and B have the property that there is no nontrivial subspace

Ck ⊂ Cn on which A and B agree.

We denote this representation in the following by In.

7For the connection between the geometric techniques and the quiver quantum mechanics studied here,

see [18].
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3.2.2 Dimension vector (n, n− 1)

The second type of indecomposable Kronecker representation has dimension vector (n, n−
1). These objects describe hypermultiplet dyons. Their electric and magnetic charges are

(e, q) = (n,−1).

Cn Cn−1

B

A //// (3.16)

Up to isomorphism there is a unique indecomposable representation of this type for each

n ≥ 1.

We again characterize the representation in a basis. Let v1, · · · , vn specify a basis at

the source node and w1, · · · , wn−1 denote a basis of vectors at the sink node. The maps A

and B are given by

A(vi) =

{
wi i ≤ n− 1

0 i = n
, B(vi) =

{
0 i = 1

wi−1 i > 1
. (3.17)

We denote this representation in the following by Sn.

3.2.3 Dimension vector (n, n)

The final type of indecomposable Kronecker representation has dimension vector (n, n).

Their electric and magnetic charges are (e, q) = (n, 0). For n = 1 they physically de-

scribe the vector W-boson. For n > 1 these states are only marginally stable and do not

correspond to single particle states in the spectrum.

Cn Cn
B

A //// (3.18)

Up to isomorphism, these representations are labelled by an element λ ∈ P1. The fact that

the representation is non-rigid means that the associated particles carry spin in accordance

with (2.9).

We again characterize these representations in a basis. Let v1, · · · , vn specify a basis

at the source node and w1, · · · , wn denote a basis of vectors at the sink node. The map B

is then the identity matrix, while the map A is a single Jordan block with eigenvalue λ

A =


λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · λ

 , B =


1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

0 0 0 · · · 1

 . (3.19)

We denote this representation in the following by Vn.
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3.3 SU(nc + 1) states from binding SU(2) dyons

We now address the BPS spectrum of SU(nc + 1) governed by the general quiver represen-

tations appearing in figure 2. Our strategy is to examine how such quiver representations

decompose along the various SU(2) subquivers visible in figure 2. We then analyze the

superpotential and stability constraints on how these constituents may bind together.

Our first step is to ignore the maps Φi and Ψk. When that is done, the quiver splits

into nc disconnected two-node quivers. Each of these two-node quivers is identical to that

illustrated in figure 3, which governs the spectrum of SU(2) SYM. Therefore our detailed

discussion of the SU(2) quiver representations in section 3.2 may be brought to bear on

the general SU(nc + 1) states.

Consider the i-th quiver shown below.

CNi CMi

Bi

Ai //// (3.20)

Denote by Ki the representation above.

According to the analysis of the section 3.2, the representation Ki may be split into

a direct sum. Thus, introduce natural numbers niα, `
i
β , and piγ indexing the representation

appearing in the summation. We have

Ki =

( si⊕
α=1

Iniα

)
⊕
( ti⊕
β=1

S`iβ

)
⊕
( ui⊕
γ=1

Vpiγ

)
. (3.21)

Explicitly, this implies that the maps Ai and Bi are block diagonal, where each block

appears as in section 3.2.

Physically speaking, the decomposition (3.21) means that the representation Ki de-

scribes a multi-particle configuration of dyons with positive magnetic charge of type i,

indexed by niα, dyons with negative magnetic charge of type i, indexed by `iβ , and W-

bosons of type i, indexed by piγ . The maps Φj and Ψk will bind together these constituents

of Ki for neighboring values of i. Thus, our physical picture of an SU(nc + 1) BPS particle

is a multi-centered configuration of dyonic states, where each center is a stable dyon or

W-boson of various SU(2) subgroups.

3.3.1 Superpotential constraints on dyon binding: part I

Next, we reintroduce the maps Φj and Ψk, which providing the binding between the repre-

sentations described above. Their properties are constrained by the superpotential (3.7).

Consider the portion of figure 2 illustrated below.

CNi CMi

Bi

Ai Φi

CNi+1 CMi+1

Bi+1

Ai+1//// // //// . (3.22)

The superpotential equation ∂W/∂Ψi = 0, yields the following constraint on the map Φi

Ai+1 ◦ Φi ◦Ai = Bi+1 ◦ Φi ◦Bi . (3.23)
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Similarly, by varying W with respect to Φi we obtain the relation

Ai ◦Ψi ◦Ai+1 = Bi ◦Ψi ◦Bi+1 , (3.24)

which constrains the following segment of figure 2

CNi+1 CMi+1

Bi+1

Ai+1 Ψi

CNi CMi

Bi

Ai// // // //// . (3.25)

The equations (3.23) and (3.24) are the key constraints which we must solve in order to

determine the dimension of the moduli space and hence the leading Regge trajectory. The

remaining superpotential constraints arising from varying the maps Ai and Bi are studied

in section 3.3.3.

At the i-th quiver we have specified the behavior of the maps Ai and Bi through the

decomposition (3.21), and the detailed description of the representations In, S`, and Vp.
Therefore, we may solve the constraints (3.23) and (3.24) on the maps Φi and Ψi by simply

evaluating on the preferred basis vectors of section 3.2. We carry out this procedure in

detail in appendix A. The results are summarized below.

• Evaluated on each of the summands of (3.21), the binding maps Φi and Ψi+1 are semi-

decreasing with respect to magnetic charge. Specifically this means the following.

– The map Φi restricted to a summand Sniα (negative magnetic charge) can only

have non-vanishing image inside representations S`i+1
β

. The image of Sniα in-

side the representations I`i+1
γ

, (positive magnetic charge) and V`i+1
δ

(vanishing

magnetic charge) is necessarily zero.

– The map Φi restricted to a summand Vniα (zero magnetic charge) can only have

non-vanishing image inside representations S`i+1
β

, and V`i+1
γ

. The image of Vniγ
inside the representations I`i+1

γ
, (positive magnetic charge) is necessarily zero.

Identical restrictions hold for the maps Ψj .

• The number of complex parameters in a map Φi or Ψj from Sn to S` is n − `. In

particular, the map must vanish if ` ≥ n. Moreover if the map is nonzero, then it is

surjective.

• The number of complex parameters in a map Φi or Ψj from In to I` is ` − n. In

particular, the map must vanish if n ≥ `. Moreover if the map is nonzero, then it is

injective.

As we argue in the following subsection, these superpotential constraints dramatically

constrain the possible stable BPS particles.
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3.3.2 Enforcing stability

In order to complete our task of evaluating the dimension of classical moduli space, we must

at last confront the question of stability. Consider a collection of dyons and W-bosons of

various SU(2) subgroups bound together by the gluing maps Φi and Ψk. When does the

corresponding quiver representation describe a stable single-particle state?

In general in the context quiver models of BPS states, there is a complete representation

theoretic criterion to address this question [9, 40]. Given a quiver with specified ranks Di

of gauge groups at the nodes and central charges Zi we say that the central charge of the

associated quiver representation R is

Z(R) ≡
∑
i

DiZi . (3.26)

The condition of stability that we now impose, constrains the central charge Z(R) compared

to central charges of candidate decay channels of particles obtained by quantization of R.

Specifically, we define a subrepresentation S of R to be a representation of the given

quiver where the vector spaces at the nodes for S are subspaces of those associated to R,

and the arrow maps of S are defined by restriction from those of R. The subrepresentation

S is potential decay mode of particles associated to R.

Every representation R has two trivial subrepresentations: the zero representation,

which assigns the zero vector space to each node, and the identity subrepresentation, which

is simply R itself. We say that R is stable, as a representation, if for all non-trivial

subrepresentations the following constraint on the phases of the central charges is obeyed

arg
(
Z(S)

)
< arg

(
Z(R)

)
. (3.27)

It is the moduli space of stable quiver representations, as defined by (3.27), whose quanti-

zation yields the BPS spectrum. Thus, our task now is to enforce stability, in addition to

the superpotential constraints of the previous section, and to extract the dimension of the

stable moduli space.

To apply the above considerations to our analysis of BPS states in SU(nc + 1) SYM,

we must understand the geometry of the central charges (3.9) in more detail. The complex

Z plane is shown in figure 4. Note in particular, that rays are phase ordered according to

their magnetic charge. That is, recalling the definition of the magnetic charge qi of (3.5),

we have

qi(R1) < qi(R2) =⇒ arg
(
Z(R1)

)
> arg

(
Z(R2)

)
. (3.28)

The phase ordering of representations according to their magnetic charge combines

naturally with the superpotential constraints solved in section 3.3.1 and yields severe re-

strictions on combinations of SU(2) dyons which may be glued together to form stable

bound states in SU(nc + 1) SYM.

Indeed, consider the representations Ki of equation (3.20) and their associated direct

sum decompositions (3.21). From each Ki we may extract the portion of the summand
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q>0q<0 q=0

Figure 4. The central charge configuration at weak coupling. The upper half of the complex

Z-plane is shown and rays indicate possible central charges of representations of the i-th SU(2)

subquiver. The representations are phase ordered according to their magnetic charge qi. Red rays

have qi < 0 and have large argument. Blue rays have qi > 0 and have small argument. Electric

states with qi = 0 are shown as green rays and have small absolute value.

with qi < 0, that is the direct sum over all representations of type Sniα

Wi ≡
( ti⊕
α=1

S`iα

)
. (3.29)

Clearly, Wi is a subrepresentation of the i-th two-node subquiver. Moreover, as a conse-

quence of the superpotential constraints, the gluing maps Φj and Ψk have the property that

Φi

(
Sink(Wi)

)
⊂ Source(Wi+1) , and Ψi

(
Sink(Wi+1)

)
⊂ Source(Wi) . (3.30)

We conclude that the union over i of the Wi forms a subrepresentation of the full candidate

quiver representation of figure 2. Hence we must impose the stability condition (3.27).

However, the Wi consist only of representations with negative magnetic charge for each

of the i species. If any Ki contains a component with qi ≥ 0 then the subrepresentation

we have just constructed will destabilize the moduli space. Therefore, the only consistant

possibility is that subrepresentation in question is trivial: either it is the entire object

illustrated in figure 2, or it is the empty subrepresentation with vanishing vector spaces.

In the case where the subrepresentation constructed above is empty, we proceed anal-

ogously using the components of Ki with vanishing magnetic charge and construct another

subrepresentation which may destabilize our configuration.

In this way we conclude that stable quiver representations of figure 2 come in three

broad types.

1. Positive magnetic charge.

Each representation Ki has components containing only qi > 0

Ki =
si⊕
α=1

I`iα . (3.31)

2. Vanishing magnetic charge.

Each representation Ki has components containing only qi = 0

Ki =

ui⊕
γ=1

V`iγ . (3.32)
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3. Negative magnetic charge.

Each representation Ki has components containing only qi < 0

Ki =
ti⊕
β=1

S`iβ . (3.33)

In particular, BPS states whose magnetic charges violate these constraints do not exist in

the region of parameter space as defined by (3.10).

In the weak coupling region of interest, electric states (with all qi vanishing) are para-

metrically light compared to particles with nontrivial magnetic charges. In particular,

the electric objects are accessible via a perturbative Lagrangian analysis. Their spectrum

consists of an SU(nc + 1) adjoint of vector multiplets. The multiplets associated to roots

of the algebra are W-bosons and acquire mass through the Higgs mechanism, while the

vectors associated to the Cartan subalgebra are massless on the Coulomb branch. As

demonstrated in [12, 33], these results may be recovered using the more abstract quiver

techniques employed here.

We deduce in particular that the class of electric representations yields states with

bounded spin. Meanwhile, as we will subsequently demonstrate, the representations of

total positive and negative electric charge yield towers of particles with unbounded spin.

We may further constrain the bound states of total positive and negative magnetic

charge via a refined stability analysis. To do so, we must be more specific about the

values of the central charges. So far we have focused on any of the two-node SU(2) quivers

and demanded that they are in a weak coupling regime of their central charges illustrated

in figure 4. However, we have made no specification of the relative properties of the

central charges for the different species of dyons and monopoles. Thus, let us recall our

parametrization of the central charges

Zmi = −ζi + iεi , Zdi = ζi + iεi . (3.34)

We now make a specification on the complex parameters ζi which specify the masses of

magnetic charges. Specifically, we assume that they are phase ordered

arg(ζ1) > arg(ζ2) > · · · > arg(ζnc) , (3.35)

and moreover we work in a limit of parameters where there is a hierarchy of mass scales

|ζ1| � |ζ2| � · · · � |ζnc | . (3.36)

Alternative orderings of the scales and phases provide similar simplifications in the spec-

trum.

The utility of the above restriction is that, in assessing stability using the defini-

tion (3.27), the contribution to the central charge is dominated first by the magnetic charge

q1, then by the magnetic charge q2, and so on. However, this line of logic may be violated
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if the magnetic charges become large enough to violate the hierarchy (3.36). Thus, our

analysis in the following will be restricted to charges obeying the constraint

qj
qi
� |ζi|
|ζj |

, j > i . (3.37)

In the formal limit where the ratios on the right-hand-side of the above tend to infinity,

our approximation becomes exact.8

3.3.3 Superpotential constraints on dyon binding: part II

We now complete our analysis of the superpotential constraints by examining the equations

derived from varying W of (3.7) with respect to Ai and Bi.

We obtain the following constraints

Ψi ◦Ai+1 ◦ Φi + Φi−1 ◦Ai−1 ◦Ψi−1 = 0 , (3.38)

Ψi ◦Bi+1 ◦ Φi + Φi−1 ◦Bi−1 ◦Ψi−1 = 0 ,

where in the above, we use the convention that maps appearing with subscripts outside

the allowed range implied by figure 2 are defined to be zero.

We claim that the equations (3.38), combined with stability constraints (3.35)–(3.36)

imply the following simplification:

• In all stable representations of total positive magnetic charge, or total negative mag-

netic charge, the maps Ψi vanish for all i.9

It is simple to demonstrate this claim. Begin with the representation K1 and consider

its image under the map Φ1. As a consequence of the detailed form of the representations

described in section 3.2, the linear maps A2, B2 have the property that the direct sum of

their image spans the entire vector space supported at their target node in the quiver.

From the equations (3.38), we then deduce that Ψ1 annihilates the image of Φ1 inside K2.

Proceeding inductively, we similarly demonstrate that Ψi+1 annihilates the ith sequen-

tial image Φi ◦ Φi−1 · · · ◦ Φ1(K1). Thus, we construct a subrepresentation S

S = K1 → Φ1(K1)→ Φ2 ◦ Φ1(K1)→ · · · → Φnc−1 ◦ · · · ◦ Φ2 ◦ Φ1(K1) . (3.39)

By construction, S contains all of the representation K1. It follows that if we denote by

R the entire quiver representation, then we can find non-negative integers ρi such that the

central charges of R and S obey

Z(R) = Z(S) + sgn(q)

nc∑
i=2

ρiζi + electric terms , (3.40)

where in the above sgn(q) = 1 on the representations of total positive magnetic charge

and sgn(q) = −1 on the representations of total negative magnetic charge. But now

8This approximation is similar to that used in [16, 41] to study framed BPS states.
9The symmetry between Φ and Ψ is broken by the choice of central charges (3.35)–(3.36).
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from (3.35)–(3.36), we deduce that if S is not equal to R, that is if the ρi are non-zero,

then the stability condition (3.27) is violated. We conclude that S = R and hence all maps

Ψi are in fact zero.

Thus, the general quiver representation illustrated in figure 2 is reduced to the repre-

sentation illustrated below.

CN1 CM1

B1

A1 Φ1

CN2 CM2

B2

A2 Φ2 Φnc−1
· · · CNnc CMnc

Bnc

Anc//// // //// // // //// (3.41)

Where in the above, the maps Φi are further restricted by the analysis of section 3.3.1.

3.4 Dimension formulas for quiver moduli

In this section we conclude our analysis by providing a cell decomposition of the moduli

spaces of magnetically charged states. Each cell corresponds to a way of viewing the BPS

state as a multi-centered configuration of SU(2) dyons. We compute the dimension of these

cells and provide a complete criterion to determine which cells lie in the stable moduli space.

In section 3.4.3 we investigate the resulting dimension formulas for states with small

magnetic charges, and determine exact formulas for angular momenta. In particular, we

see that such states already have unbounded angular momentum.

Finally, in section 3.4.4 we use our dimension formulas to obtain a simple lower bound

on the Regge slope.

3.4.1 Bound states of dyons with positive magnetic charge

We consider first the class of representations with positive magnetic charge (3.31). We

rewrite the representation Ki of i-th two-node quiver. Inserting the magnetic charge qi > 0,

and the electric charge ei, this takes the form

Cei Cei+qi
Bi

Ai //// . (3.42)

Now enforce the direct sum decomposition (3.31) of Ki. Using the fact that each repre-

sentation In has dimension vector (n, n+ 1), we see that the direct sum decomposition of

Ki must involve exactly qi summands.

Said differently, there is a partition of the electric charge ei into qi non-negative integral

parts. We indicate the partition by its multiplicities. Thus, define λi(s) as the multiplicity

with which the integer s occurs

ei∑
s=0

λi(s) = qi ,

ei∑
s=0

sλi(s) = ei . (3.43)

The partition λi specifies the direct sum decomposition of Ki as

Ki =

( λi(0)⊕
α=1

I0

)
⊕
( λi(1)⊕

α=1

I1

)
⊕ · · · ⊕

( λi(ei)⊕
α=1

Iei
)
. (3.44)
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In other words, fixing the magnetic charge qi and a partition λi specifies a qi-centered

configuration of dyons in the i-th SU(2) subquiver.

An important property of (3.44) is its automorphism group: the group of complexi-

fied gauge transformations at the nodes which stabilize the direct sum decomposition in

question. This is given by

Aut(Ki) =
∏
s

Gl
(
λi(s),C

)
. (3.45)

It has complex dimension

dim
(

Aut(Ki)
)

=

ei∑
s=0

λi(s)
2. (3.46)

Now introduce the maps Φj connecting the distinct Ki. The Φj satisfying the required

superpotential constraints are constructed explicitly in appendix A. In particular they

have a known number of parameters as discussed in section 3.3.1. Thus, we may now

compute the dimension of the moduli space of representations (3.41) where each Ki has

decomposition specified by the partition λi. To do so, we simply sum over the parameters

in the Φi and quotient by the automorphism group (3.45). Denoting by ∆q>0{λi} the

resulting dimension we find

∆q>0({λ1, · · ·λnc}) =

nc−1∑
i=1

ei+1∑
r=0

r∑
s=0

(r − s)λi+1(r)λi(s)−
nc∑
i=1

ei∑
s=0

λi(s)
2 + 1 , (3.47)

where in the above, the offset by 1 is due to an overall central GL(1,C) in the automorphism

group (3.45).

To proceed further, we must clarify the geometric meaning of the partitions λi intro-

duced above. Let γ+ denote the total charge as specified by the collection {ei, qi} (the

superscript + denotes that this is a state of total positive magnetic charge). The mod-

uli space of total charge γ+ has cells described by the nc partitions λi. The cells are

glued together to form the total moduli space. Each cell has dimension given by the for-

mula (3.47). Strictly speaking, this is correct only if ∆q>0 is positive. If the dimension

computed by ∆q>0 is negative, then the automorphism group (3.45) does not act freely,

and the dimension of the cell is zero.

The physical meaning of the decomposition of the moduli space into cells labelled by

partitions is that a bound state of total charge γ+ may be described as a multi-centered

configuration of SU(2) dyons in a variety of ways each determined by the given nc-tuple of

partitions.

Not all nc-tuples of partitions give rise to cells in the stable moduli space. Indeed,

according to the analysis above equation (3.39), we must assume that the sequential images

of K1 via Φi generate the entire representation. This means that for each element n in the

partition of ei+1, there exists an element m in the partition of ei with n > m. We denote

the set of partitions obeying this constraint as C+. Any nc-tuple of partitions which gives

rise to a cell in the stable moduli space must lie in C+. Representations whose associated

partitions lie in C+ have strong connectivity properties as illustrated in figure 5.
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Figure 5. An example of the connectivity properties on representations implied by stability for

the case nc = 3, with charges (e1, q1) = (7, 2), (e2, q2) = (13, 3), and (e3, q3) = (7, 1). The elements

of the partition of e1 are blue, the elements of the partition of e2 are red, and the elements of the

partition of e3 are purple. The maps Φ1 and Φ2 are indicated by arrows. In (a), the collection of

partitions is unstable because the element 3 of the partition of e2 is not in the image of any element

of the partition of e1. In (b), a tuple of partitions with the same charges which lies in C+.

While this connectivity constraint is necessary, it is not in fact sufficient to ensure that

a given nc-tuple of partitions yields a cell in the stable moduli space. Those tuples that

must additionally be removed are such that the image of a dyon in say Ki does not bind

(via the map Φi) to a sufficiently large fraction of the dyons in Ki+1. To be specific, we

may consider potentially destabilizing subrepresentations given by taking a collection of

any `1 of the dyon representations appearing in K1, with 1 ≤ `1 < q1, and examining their

sequential images under the maps Φi as in (3.39). Denote the initial collection (a subset of

K1) by In1 , · · · In`1 . The nα are parts of the partition of e1 (not to be confused with the

multiplicities of these parts as given by λ1).

Each Inα above maps via Φ1 to those dyonic representations in K2 which have larger

electric charge. Let `2 denote the total number of dyonic subrepresenations of K2 which

lie in the image of Φ1 restricted to the subset In1 , · · · In`1 . In terms of the partition λ2 of

e2 the quantity `2 may be defined as follows:

`2 = #elements

( `1⋃
α=1

{s ∈ partition of e2 | s > nα}
)
. (3.48)

Similarly we define `i+1 by considering the number of dyon subrepresentations of Ki+1

which lie in the image of Φi◦Φi−1 · · ·◦Φ1 restricted to our initial collection of `1 summands

of K1. Each of the `i are readily defined from the data of the tuple of partitions {λ1, · · ·λnc}
as with `2 above.

As a simple example with nc = 3, suppose that (e1, q1) = (8, 3), (e2, q2) = (16, 5), and

(e3, q3) = (26, 2) with associated partitions {1, 2, 5}, {1, 1, 3, 4, 7}, and {1, 25}. If the initial

`1 = 2 with the chosen parts given by n1 = 1, and n2 = 2, then `2 = 3, and `3 = 1.

The sequential images of the original collection of `1 dyonic subrepresentation of K1

give rise to a subrepresentation S as in (3.39) which may potentially violate the stability
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constraint (3.27). To ensure that it does not, we must demand

q2

q1
≤ `2
`1
. (3.49)

If the inequality (3.49) is strict, for all possible choices of `1 initial components of K1, then

the representation is stable and the partition contributes to the moduli space Mγ+ . If the

inequality (3.49) is an equality, then we must demand further that

q3

q1
≤ `3
`1
. (3.50)

Again if the inequality is strict, then the representation is stable and the partition con-

tributes to the moduli space. In the case where it is saturated we must examine the next

ratio `4/`1 and so on.

To state the complete stability requirement on the nc-tuple of partitions {λi}, we

introduce subsets υ+
i of partitions defined as

υ+
i =

{
{λ1, · · · , λnc} | for any initial subset of size `1 (3.51)

q2

q1
=
`2
`1
,
q3

q1
=
`3
`1
, · · · , qi−1

q1
=
`i−1

`1
,
qi
q1
<
`i
`1

}
∩ C+.

Each of the sets υ+
i , for i > 1, contains nc-tuples of partitions satisfying the stability

constraint. The complete list of all partitions in the stable moduli space Mγ+ is then the

union

Υ+ =

nc⋃
i=2

υ+
i . (3.52)

A tuple of partitions {λi} defines a cell in the stable moduli space if and only if it lies in

the set Υ+.

We may now conclude with a complete formula for the dimension of the moduli space

M+
γ . To compute this dimension, we must find those cells of top dimension which maxi-

mize (3.47). Thus, we have the result

dim(Mγ+) = max
{λi}∈Υ+

[
∆q>0({λ1, · · ·λnc})

]
. (3.53)

3.4.2 Bound states of dyons with negative magnetic charge

A completely parallel analysis holds for the representations with total negative magnetic

charge. At the i-th two node quiver, the representation Ki is of the form

Cei Cei−|qi|
Bi

Ai //// . (3.54)

The direct sum decomposition of the above is again determined by a partition of ei
into |qi| parts. A slight difference from the analysis in section 3.4.1 is that now each part

must be strictly positive. Hence again letting λi denote the multiplicities, we write

ei∑
s=1

λi(s) = |qi| ,
ei∑
s=1

sλi(s) = ei . (3.55)
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The partition λi specifies the direct sum decomposition of Ki as

Ki =

( λi(1)⊕
α=1

S1

)
⊕
( λi(2)⊕

α=1

S2

)
⊕ · · · ⊕

( λi(ei)⊕
α=1

Sei
)
. (3.56)

We now introduce the maps Φj and by counting their parameters and subtracting

automorphisms, we again deduce the dimension of the cell in moduli space associated to

the tuple of partitions {λi}. Denoting this dimension by ∆q<0, we have

∆q<0({λ1, · · ·λnc}) =

nc−1∑
i=1

ei∑
r=0

r∑
s=0

(r − s)λi(r)λi+1(s)−
nc∑
i=1

ei∑
s=0

λi(s)
2 + 1 , (3.57)

Each tuple of partitions yields a potential cell in the moduli space Mγ− of charge γ−

(the superscript − denotes that this is a state of total negative magnetic charge). However,

to enforce stability partitions which do not permit sufficient binding of the dyons must be

removed.

First, we define a connected locus C− to be those nc-tuples of partitions that have the

property that for each part n of the partition of ei+1, there exists a part m of the partition

of ei with m > n. Every nc-tuple of partitions which yields a cell in the stable moduli

space Mγ− must lie in C−.

Next we introduce subsets υ−i of partitions defined as

υ−i =

{
{λ1, · · · , λnc} | for any initial subset of size `1 (3.58)

|q2|
|q1|

=
`2
`1
,
|q3|
|q1|

=
`3
`1
, · · · , |qi−1|

|q1|
=
`i−1

`1
,
|qi|
|q1|

<
`i
`1

}
∩ C−.

The complete set of all nc-tuples of partitions that correspond to cells in the stable

moduli space is given by

Υ− =

nc⋃
i=2

υ−i . (3.59)

Finally, the dimension of the stable moduli space Mγ− is then given by extracting the

dimension of the top cell

dim(Mγ−) = max
{λi}∈Υ−

[
∆q<0({λ1, · · ·λnc})

]
. (3.60)

3.4.3 States with small magnetic charges

The formulas (3.53)–(3.60) are the final results for the exact dimension of moduli space.

In general, these dimensions are complicated arithmetic functions of the charges {ei, qi}
describing the bound state particle. Physically speaking, this means that the multi-centered

configuration of dyons which maximizes the angular momentum depends in detail on the

total charge in question.

To understand the results, it is instructive to evaluate the dimension formulas in simple

examples involving small charges.
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Total positive magnetic charges: (q1, q2, · · · , qnc−1, qnc) = (1, 1, · · · , 1, qnc).

Consider the special of positive magnetic charge bound states where the qi are restricted as

(q1, q2, · · · , qnc−1, qnc) = (1, 1, · · · , 1, qnc) . (3.61)

The partitions (not the multiplicities λi) are then simply

{e1} , {e2} , · · · {enc−1} , {x1, x2, · · · , xqnc} , (3.62)

where the sum of the xi is enc .

The stability constraints, that the collection of partitions lie in Υ+ of (3.52), are simple

to evaluate. They imply merely that the representation does not split into a direct sum.

In other words, each element of (i + 1)-th partition, must lie in the image of all elements

of the i-th partition. Whence, the partition of enc is constrained to satisfy

enc−1 < xi , ∀ i , (3.63)

and hence stable bound states with these charges can exist if and only if

e1 < e2 < · · · < enc−1 , and (1 + qnc)enc−1 ≤ enc . (3.64)

If further we assume that
qnc(qnc + 1)

2
+ qncenc−1 ≤ ec , (3.65)

then the elements xi of the partition of ec may taken to be distinct. In that case, any

partitions which satisfy (3.63) with the xi all distinct maximize the cell dimension function

∆q>0 of equation (3.47). We deduce that

dim(Mγ+) =

nc−2∑
i=1

(ei+1 − ei) +

qnc∑
j=1

(xj − enc−1)− (nc − 1)− qnc + 1 ,

= enc − (qnc − 1)enc−1 − e1 − qnc − (nc − 2) , (3.66)

≥ qnc(qnc − 1)

2
+
[
enc−1 − (e1 + nc − 2)

]
,

where in the last step, we used the charge inequalities (3.64)–(3.65) to illustrate that

dim(Mγ+) is non-negative.

Since the angular momentum is controlled by the dimension of moduli space as in (2.9),

we now readily determine that the state of maximal angular momentum with these electric

and magnetic charges has

J =
1

2

(
enc − (qnc − 1)enc−1 − e1 − qnc − (nc − 2)

)
. (3.67)

In particular, by increasing the electric charges, we make states whose angular momentum

is arbitrarily large. Meanwhile, we may also estimate the mass of these states. Indeed,

in the approximation of interest the dominant contribution to the mass comes from the

rest energy of the dyon with q1 = 1. Thus, these states have mass m ∼ |ζ1| plus small

corrections. A cartoon of these states is illustrated in figure 6.

One may similarly obtain exact formulas for the angular momentum of BPS states

where the magnetic charges satisfy the property that if qi > 1, then qi−1 = qi+1 = 1.
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Figure 6. A cartoon of the bound states with nc = 3 and (q1, q2, q3) = (1, 1, 7). The central blue

object is the heavy dyon carrying a single unit of q1 charge. The red object is the dyon with q2 = 1.

This object is parametrically lighter than the central dyon. Finally, we have various purple dyons

carrying charge q3 = 1. These are parametrically lighter than red dyon that they orbit.

3.4.4 Semiclassical estimate of the Regge slope

For larger magnetic charges it is cumbersome to evaluate (3.47)–(3.57) to obtain exact

results for the dimension of moduli space. Nevertheless, we may obtain a simple estimate

which enables us to demonstrate Regge growth in the angular momentum of the BPS states

at weak coupling.

We examine again the cell dimension formulas (3.47)–(3.57):

∆q>0({λ1, · · ·λnc}) =

nc−1∑
i=1

ei+1∑
r=0

r∑
s=0

(r − s)λi+1(r)λi(s)−
nc∑
i=1

ei∑
s=0

λi(s)
2 + 1 ,

∆q<0({λ1, · · ·λnc}) =

nc−1∑
i=1

ei∑
r=0

r∑
s=0

(r − s)λi(r)λi+1(s)−
nc∑
i=1

ei∑
s=0

λi(s)
2 + 1 . (3.68)

If a tuple of partitions {λ1, · · ·λnc} lies in Υ+ or Υ−, then as described in section 3.4.1–

3.4.2, it contributes a cell to the stable moduli space whose dimensions are computed by

the above formulas.

To obtain an estimate on the dimension of moduli space, we must first determine a

simple class of nc-tuples of partitions which always lie in the stable moduli space. From

the definitions of the sets Υ±, it is straightforward to deduce the following.

• For representations with total positive magnetic charge, the nc-tuples of partitions

where each element of the (i+ 1)-th partition is strictly greater than each element of

the i-th partition, always lie in the stable set Υ+.

• For representations with total negative magnetic charge, the nc-tuples of partitions

where each element of the (i+ 1)-th partition is strictly less than each element of the

i-th partition, always lie in the stable set Υ−.

For reasons which shall become clear momentarily, we refer to a tuple of partitions satisfying

either of the above properties as regular.

It is significant that the condition of being regular behaves well under scaling. If {λi}
is a tuple of partitions associated to charge {ei, qi}, and the tuple {λi} is regular, then
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there exist tuples of partitions associated to charges {Λei,Λqi}, for Λ > 1 which are also

regular.

Moreover it is also easy to determine sufficient conditions on charges {ei, qi} for regular

tuples of partitions to exist. Denote by dxe, and bxc, the ceiling and floor of a real number

x. Then we have:

• For representations with all positive magnetic charges, a sufficient condition for reg-

ular tuples of partitions to exist is

dei/qie < bei+1/qi+1c , i = 1, · · · , nc − 1 . (3.69)

• For representations with all negative magnetic charges, a sufficient condition for reg-

ular tuples of partitions to exist is

bei/|qi|c > dei+1/|qi+1|e , i = 1, · · · , nc − 1 . (3.70)

The robust stability properties of regular tuples of partitions enable us to use them to

investigate the stable moduli space Mγ± for large charges.

In addition to the stability properties outlined above, the significance of the regularity

property for a tuple of partitions, is that the dimension formulas (3.68) simplify dramati-

cally. Indeed on any regular tuple of partitions we have

∆
q
>
<0

({λ1, · · ·λnc}) =

nc−1∑
i=1

(ei+1qi − eiqi+1)−
nc∑
i=1

ei∑
s=0

λi(s)
2 + 1 . (3.71)

In particular, the only difference between positive and negative magnetic charges is whether

qi are positive or negative in the above.

The simplified form of ∆ given in (3.71) has an elementary physical interpretation. The

quadratic form on the charges appearing in (3.71) is the sum of the symplectic products of

each of the Ki, the dyons in each SU(2) subgroup. Indeed, letting γKi denote the charge

vector for Ki, and using the pairing (3.6) we have

nc−1∑
i=1

(ei+1qi − eiqi+1) = 〈γK1 , γK2〉+ 〈γK2 , γK3〉+ · · ·+ 〈γKnc−1 , γKnc 〉 . (3.72)

This is the naive semiclassical contribution to the angular momentum discussed in sec-

tion 2.1. Each group of dyons Ki binds to its neighbor Ki+1 and in so doing sources an

angular momentum proportional to the Dirac pairing 〈γKi , γKi+1〉.
Meanwhile, the negative contribution in (3.71) associated to multiplicity in the par-

titions can be understood as a quantum correction to the semiclassical intuition, which

arises due to the quantum statistics of the identical constituents making up the Ki.

In summary, regular tuples of partitions yield cells in the quiver moduli spaces Mγ±

with readily understandable dimensions. What our detailed analysis of stability conditions

has yielded is thus sufficient conditions for such bound states to exist.
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To estimate the dimension of moduli space, we must now determine the importance of

the multiplicity subtractions in (3.71). Consider a pair (ei, qi). In order for there to admit

a partition of ei into qi parts without any repeated entry, one must have (for large qi)

ei >
1

2
q2
i . (3.73)

Significantly, the above is inhomogeneous under rescaling (ei, qi) → (Λei,Λqi). It follows

that, if we examine any direction in the charge lattice γ̂, then sufficiently far our along the

ray Λγ̂, the multiplicity term in (3.71) yields an important correction to the dimension of

the associated cell.

We can easily take these considerations into account and produce a lower bound on

the dimension of moduli space. The largest subtraction that can occur as a result of

multiplicity is when all terms in the partition are equal in which case the multiplicity

subtractions evaluate to simply
∑

i q
2
i . Combining this with the fact that the semiclassical

partitions provide a lower bound on possible cell dimensions, we obtain

dim(Mγ) ≥
nc−1∑
i=1

(ei+1qi − eiqi+1)−
nc∑
i=1

q2
i + 1 . (3.74)

To summarize our conclusions.

• If qi > 0 for all i, and dei/qie < bei+1/qi+1c for i = 1, · · · , nc − 1, then, in the

weak coupling region of moduli space, there exist stable BPS particles with the given

charges {ei, qi}.

• If qi < 0 for all i, and bei/|qi|c > dei+1/|qi+1|e for i = 1, · · · , nc − 1, then, in the

weak coupling region of moduli space, there exist stable BPS particles with the given

charges {ei, qi}.

• In either of the two cases described above, we have a lower bound on the angular

momentum

J ≥ 1

2

( nc−1∑
i=1

(ei+1qi − eiqi+1)−
nc∑
i=1

q2
i

)
+

1

2
. (3.75)

Since the angular momentum in our estimate scales quadratically with charges, we

immediately determine that the BPS spectrum shows Regge behavior. Indeed expressing

the angular momentum as

J ≥
(∑nc−1

i=1 (ei+1qi − eiqi+1)−
∑nc

i=1 q
2
i

)
2|q1ζ1 + q2ζ2 + · · ·+ qncζnc |2

m2 +
1

2
, (3.76)

We read an estimate for the slope as

α′ ≥
[(∑nc−1

i=1 (ei+1qi − eiqi+1)−
∑nc

i=1 q
2
i

)
2|q1ζ1 + q2ζ2 + · · ·+ qncζnc |2

]
. (3.77)

In particular, the the above bound for the slope, depends only on the direction γ̂ in the

charge lattice, as anticipated.
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We may perform one simple consistency check on our result. The bare parameters in

the Lagrangian defining the SU(nc + 1) SYM theory, may be packaged into the complex

strong coupling scale Λ. A redefinition Λ → e2πiΛ leaves the theory invariant, but causes

a monodromy in the definitions of charges

ei → ei + qi , qi → qi . (3.78)

Thus, the weak-coupling spectrum, and in particular our angular momentum bound, must

be invariant under this transformation. Happily, it is.
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A Gluing constraints

In this section we solve the superpotential constraints, that appearing by varying (3.7)

with respect to Φi or Ψj . These results are instrumental in obtaining the conclusions of

section 3.3.1. Throughout, we make frequent use of section 3.2 which provides a detailed

description of the maps Ai and Bi. We refer to the remaining map (Φ or Ψ) as φ, the gluing

map. Our aim is to derive the number of complex parameters in gluing maps between the

various possible SU(2) representations.

A.1 Gluing (n + 1, n) to (` + 1, `)

Consider the representation illustrated below.

Cn+1 Cn
B1

A1 φ
C`+1 C`

B2

A2//// // //// (A.1)

At each to the two Kronecker subquivers we may introduce preferred bases

span{v1, v2, · · · , vn+1} = Cn, span{w1, w2, · · · , wn} = Cn, (A.2)

span{x1, x2, · · · , x`+1} = Cm, span{y1, y2, · · · , y`} = C`.

The linear maps may be put in simple form as

A1(vi) =

{
wi i ≤ n
0 i = n+ 1

, B1(vi) =

{
0 i = 1

wi−1 i > 1
. (A.3)

And

A2(xi) =

{
yi i ≤ `
0 i = `+ 1

, B2(xi) =

{
0 i = 1

yi−1 i > 1
. (A.4)
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Now consider the behavior of the map φ. Introduce matrix notation as

φ(wj) =
`+1∑
s=1

φs,jxs , j ≤ n . (A.5)

The complex parameters φs,j must be chosen to solve the constraint

A2 ◦ φ ◦A1 = B2 ◦ φ ◦B1 . (A.6)

Evaluated on the vector vi this yields

∑̀
s=1

φs,iys =

`+1∑
s=2

φs,i−1ys−1 , 1 < i ≤ n , (A.7)

as well as

0 =

`+1∑
s=2

φs,nys−1 , 0 =
∑̀
s=1

φs,1ys . (A.8)

Matching coefficients, we see that this amounts to

φs+1,n = 0 , φs,1 = 0 , φs,i = φs+1,i−1 , ∀ s ≤ ` , and 2 ≤ i ≤ n . (A.9)

We readily solve these equations to deduce the number of parameters in the map φ. For

instance if n = 5, and ` = 3 we have

φ =

0 0 α β γ

0 α β γ 0

α β γ 0 0

 , (A.10)

Where α, β, γ are arbitrary complex parameters. In general we conclude the following.

Proposition 1. The number of parameters for gluing (n + 1, n) to (` + 1, `) is n − `. In

particular, the gluing map must vanish if n ≤ `. Moreover, if the map φ is non-zero then

it is surjective.

A.2 Gluing (n + 1, n) to (`, `)

Next consider representations of the form illustrated below.

Cn+1 Cn
B1

A1 φ
C` C`

B2

A2//// // //// (A.11)

At each to the two Kronecker subquivers we may introduce preferred bases

span{v1, v2, · · · , vn+1} = Cn, span{w1, w2, · · · , wn} = Cn, (A.12)

span{x1, x2, · · · , x`} = Cm, span{y1, y2, · · · , y`} = C`.

The maps A1 and B1 take the form

A1(vi) =

{
wi i ≤ n
0 i = n+ 1

, B1(vi) =

{
0 i = 1

wi−1 i > 1
, (A.13)
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while A2 and B2 are

A2(xi) =

{
λyi i = 1

λyi + yi−1 i > 1
, B1(xi) = yi . (A.14)

We now consider φ. Introduce matrix notation as

φ(wj) =
∑̀
s=1

φs,jxs , j ≤ n . (A.15)

The parameters φs,j must be chosen to solve

A2 ◦ φ ◦A1 = B2 ◦ φ ◦B1 . (A.16)

Evaluated on our preferred bases this becomes

λφs,i + φs+1,i = φs,i−1 , 1 < i ≤ n and 1 ≤ s < ` . (A.17)

As well as

φs,n = 0 , 1 ≤ s ≤ ` , λφ`,i = φ`,i−1 , 1 < i ≤ n . (A.18)

These constraints may only be satisfied if all φs,i vanish. Thus we conclude

Proposition 2. The representation (n+ 1, n) cannot be glued to the representation (`, `).

A.3 Gluing (n + 1, n) to (`, ` + 1)

Next we examine representations of the form

Cn+1 Cn
B1

A1 φ
C` C`+1

B2

A2//// // //// (A.19)

As before we introduce bases

span{v1, v2, · · · , vn+1} = Cn+1, span{w1, w2, · · · , wn} = Cn, (A.20)

span{x1, x2, · · · , x`} = C`, span{y1, y2, · · · , y`+1} = C`+1.

The maps A1 and B1 take the form

A1(vi) =

{
wi i ≤ n
0 i = n+ 1

, B1(vi) =

{
0 i = 1

wi−1 i > 1
, (A.21)

while A2 and B2 are given by

A2(xi) = yi, B2(xi) = yi+1 . (A.22)

The gluing map φ is defined by its matrix elements

φ(wj) =
∑̀
s=1

φs,jxs , j ≤ n . (A.23)
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It is constrained by requiring

A2 ◦ φ ◦A1 = B2 ◦ φ ◦B1 . (A.24)

In terms of the matrix elements of φ, this amounts to

φs,n = 0 , φs,1 = 0 , ∀ s . (A.25)

As well as

φ1,i = 0 , φ`,i−1 = 0 , φs,i = φs−1,i−1 , 1 < i < n+ 1 , and 1 < s < `+ 1 .

(A.26)

The only solution to these constraints has the entire map φ vanishing. Thus we conclude

Proposition 3. The representation (n+1, n) cannot be glued to the representation (`, `+1).

A.4 Gluing (n, n) to (`, ` + 1)

Next consider the representation illustrated below

Cn Cn
B1

A1 φ
C` C`+1

B2

A2//// // //// (A.27)

We introduce bases as

span{v1, v2, · · · , vn} = Cn, span{w1, w2, · · · , wn} = Cn, (A.28)

span{x1, x2, · · · , x`} = C`, span{y1, y2, · · · , y`+1} = C`+1.

The maps A1 and B1 take the form

A1(vi) =

{
λwi i = 1

λwi + wi−1 i > 1
, B1(vi) = wi . (A.29)

while A2 and B2 are given by

A2(xi) = yi , B2(xi) = yi+1 . (A.30)

The map φ is defined by its matrix elements

φ(wj) =
∑̀
s=1

φs,jxs , j ≤ n . (A.31)

We must choose φs,j to satisfy the constraint

A2 ◦ φ ◦A1 = B2 ◦ φ ◦B1 . (A.32)

Evaluating on our bases above this constraint amounts to

φs,1 = 0 , ∀ s , φ`,i = 0 , ∀ i . (A.33)

And

φs−1,i = λφs,i + φs,i−1 , 2 ≤ i ≤ n , and 2 ≤ s ≤ ` . (A.34)

The only solution to these constraints has all matrix elements φs,i vanishing. Thus we

conclude:

Proposition 4. The representation (n, n) cannot be glued to the representation (`, `+ 1).
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A.5 Gluing (n, n + 1) to (`, ` + 1)

Consider the representation illustrated below.

Cn Cn+1

B1

A1 φ
C` C`+1

B2

A2//// // //// (A.35)

At each to the two Kronecker subquivers we may introduce preferred bases

span{v1, v2, · · · , vn} = Cn, span{w1, w2, · · · , wn+1} = Cn+1, (A.36)

span{x1, x2, · · · , x`} = C`, span{y1, y2, · · · , y`+1} = C`+1.

The linear maps are again simple

A1(vi) = wi , B1(vi) = wi+1 , A2(xi) = yi , B2(xi) = yi+1 . (A.37)

Now consider the behavior of the map φ. Introduce matrix notation as

φ(wj) =
∑̀
s=1

φs,jxs , j ≤ n+ 1 . (A.38)

The complex parameters φs,j must be chosen to solve the constraint

A2 ◦ φ ◦A1 = B2 ◦ φ ◦B1 . (A.39)

Evaluated on the vector vi this yields

∑̀
s=1

φs,iys =
∑̀
s=1

φs,i+1ys+1 , ∀ i ≤ n . (A.40)

Matching coefficients of the basis vectors we deduce that the above amounts to

φ1,i = 0 , φ`,i+1 = 0 , φs,i = φs−1,i+1 , ∀ i ≤ n , and 2 ≤ s ≤ ` . (A.41)

We readily solve these constraints, and deduce the number of parameters in the map φ.

For instance with n = 2 and ` = 5 the matrix for φ takes the form

φ =


0 0 α

0 α β

α β γ

β γ 0

γ 0 0

 . (A.42)

In general we conclude the following.

Proposition 5. The number of parameters for gluing (n, n + 1) to (`, ` + 1) is ` − n.

In particular, the gluing map must vanish if ` ≤ n. If the map φ is non-zero then it is

injective.
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