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bDepartamento de F́ısica Teórica II, Universidad Complutense de Madrid,

Ciudad Universitaria, 28040 Madrid, Spain
cInstitut für Theoretische Physik, Universität Regensburg,

D-93040 Regensburg, Germany

E-mail: mgechevarria@icc.ub.edu, ignazios@fis.ucm.es,

aleksey.vladimirov@gmail.com

Abstract: The transverse momentum dependent parton distribution/fragmentation func-

tions (TMDs) are essential in the factorization of a number of processes like Drell-Yan scat-

tering, vector boson production, semi-inclusive deep inelastic scattering, etc. We provide a

comprehensive study of unpolarized TMDs at next-to-next-to-leading order, which includes

an explicit calculation of these TMDs and an extraction of their matching coefficients onto

their integrated analogues, for all flavor combinations. The obtained matching coefficients

are important for any kind of phenomenology involving TMDs. In the present study each

individual TMD is calculated without any reference to a specific process. We recover the

known results for parton distribution functions and provide new results for the fragmenta-

tion functions. The results for the gluon transverse momentum dependent fragmentation

functions are presented for the first time at one and two loops. We also discuss the structure

of singularities of TMD operators and TMD matrix elements, crossing relations between

TMD parton distribution functions and TMD fragmentation functions, and renormaliza-

tion group equations. In addition, we consider the behavior of the matching coefficients at

threshold and make a conjecture on their structure to all orders in perturbation theory.

Keywords: Perturbative QCD, Renormalization Group, Resummation, Effective field

theories

ArXiv ePrint: 1604.07869

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2016)004

mailto:mgechevarria@icc.ub.edu
mailto:ignazios@fis.ucm.es
mailto:aleksey.vladimirov@gmail.com
http://arxiv.org/abs/1604.07869
http://dx.doi.org/10.1007/JHEP09(2016)004


J
H
E
P
0
9
(
2
0
1
6
)
0
0
4

Contents

1 Introduction 2

2 TMD operators 4

2.1 Definitions of TMD operators 4

2.2 The operator product expansion (OPE) at small bT 8

3 Regularization and structure of the divergences 10

3.1 Explicit form of rapidity renormalization factor 10

3.2 Modified δ-regularization scheme 12

3.3 Calculation of TMDs and their matching coefficients onto integrated functions 14

4 Renormalization Group Equations 15

4.1 Anomalous dimensions of TMD operators 15

4.2 RGEs for matching coefficients 17

5 NLO computation 18

6 NNLO computation 22

7 Expressions for matching coefficients 25

7.1 TMD parton distribution functions 25

7.2 TMD fragmentation functions 27

8 Matching coefficients at threshold 31

9 Conclusions 32

A NLO expressions 34

B NNLO expressions 35

C Results for integrals 36

C.1 Integrals for virtual-real diagrams 36

C.2 Integrals for double-real diagrams 37

D Recursive relations from RGE and anomalous dimensions 38

D.1 Recursive form of RGEs 38

D.2 Anomalous dimensions 39

E Alternative form of matching coefficients 41

– 1 –



J
H
E
P
0
9
(
2
0
1
6
)
0
0
4

1 Introduction

The transverse momentum dependent parton distribution and fragmentation functions

(TMDs) play a central role in our understanding of QCD dynamics in multi-differential

cross sections and spin physics. Recently, factorization theorems for Drell-Yan, Vector

Boson/Higgs Production, Semi-Inclusive Deep Inelastic Scattering (SIDIS) and e+e− →
2 hadrons processes, both for spin-dependent and unpolarized hadrons, has been refor-

mulated in terms of individually well-defined TMDs [1–4], updating the pioneering works

of Collins and Soper [5, 6]. All these processes are fundamental for current high energy

colliders, like the LHC, KEK, SLAC, JLab or RHIC, and future planned facilities, like the

EIC, AFTER@LHC, the LHeC or the ILC.

In this work we focus on unpolarized TMDs, which have received much attention

recently, being the simplest functions and for which the relevant factorization theorems have

been explicitly checked at next-to-leading order (NLO), with various quantum numbers,

by several groups (see e.g. [2, 4, 7–14]). The current status at next-to-next-to-leading

order (NNLO) investigation for the unpolarized TMDs is more involved. Even if previous

calculations at this order exist (see e.g. [15–20]), no calculation of each individual TMD in

the sense of [1–4] at two loops is available.

So, in this work we provide a comprehensive study of TMDs at NNLO based on a

direct calculation of TMD matrix elements at NNLO. In particular, our results provide an

indirect confirmation of the TMD factorization theorem and the related structure of rapid-

ity divergences. In fact we explicitly confirm that the cancellation of rapidity divergences

is realized within one single TMD, and not necessarily in the product of two TMDs, which

is important when studying the non-perturbative parts of these quantities.

The TMD factorization theorem at higher orders in perturbative QCD is not trivial. In

fact, in the calculation one has to deal with several types of divergences (ultra-violet (UV),

rapidity and infra-red (IR)), which have to be regularized and disentangled properly. The

TMD factorization theorem offers a strategy to remove the rapidity divergences in order to

achieve a well-defined TMDs. Recently our group has provided a direct calculation of an

individual TMD at NNLO, namely the unpolarized quark transverse momentum dependent

fragmentation function (TMDFF) [21], and a complete study of the structure of rapidity

divergences at the same order in the soft function [22] (see also [20, 23]). In this work

we complete the calculation of the unpolarized quark TMDFF at NNLO, showing also the

details of it and including new results for the gluon TMD fragmentation function.

On the other hand, we also calculate the unpolarized quark and gluon TMD parton

distribution functions (TMDPDFs). Some properties of the TMDPDFs, like their matching

onto integrated parton distribution functions (PDFs) can be found in previous works [15–

19], where they were obtained by decomposing the product of two TMDs and did not use

the fact that each TMD is per se calculable. In other words, these calculations did not

fully exploit the results of the TMD factorization theorem of [1–4]. We find a complete

agreement between our calculation and the results of [15–19], once the proper combina-

tion of collinear and soft matrix elements is considered, which represents a strong check

and demonstration of the regulator-independence of the matching of each TMD onto its

corresponding integrated counterpart.

– 2 –
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In this work, we slightly go away from the standard formulation of TMD factorization,

which is derived for different processes, towards a universal process-independent definition

of TMDs. With this aim we introduce the process-independent TMD operators, in analogy

with the parton string operators for integrated functions. So, the TMDs are the hadron

matrix elements of these TMD operators. Such a reformulation suggests a new more general

look on TMDs, and reveals common points between various approaches.

The formulation of a universal TMD operator is possible due to the process indepen-

dence of the soft factor, that has been discussed for long time [1–4, 24] and at NNLO has

been explicitly demonstrated in [22]. Unlike the usual composite and light-cone operators,

the TMD operator is more divergent. It contains rapidity divergences together with UV

divergences. Therefore, the proper definition of TMD operator should include not only UV

renormalization constant, but also a mechanism for removing the rapidity divergences. It

is known that the structure of rapidity divergences within the TMDs is similar to the struc-

ture of UV divergences. The similarity is seen already for the soft factor, the logarithm

of which is necessarily linear in rapidity divergences, and hence satisfies a renormalization

group equation (RGE) with respect to rapidity scale. Thus, the rapidity divergences can be

removed analogously to UV divergences by the “rapidity renormalization” factor, which in

fact naturally appears in any formulation of TMD factorization theorem (see e.g. [13, 25]).

The matrix elements of TMD operators are free from operator divergences and can have

only standard IR divergences related to the external states, as checked here at NNLO for

all possible unpolarized TMD operators. Using the expressions for partonic TMD matrix

elements we can extract the matching coefficients of the TMDs onto their correspond-

ing integrated functions (parton distribution functions (PDFs) or fragmentation functions

(FFs)). These coefficients are free from any type of divergences and have a direct impact

on phenomenological analyses. We provide the two-loop coefficients for all unpolarized

TMDs, and this is the main practical result of this paper.

The regularization of rapidity divergences used in this paper is the same as in [21, 22].

We use the so-called δ-regulator, which in practice is just a shift of the residue of the Wilson

lines by an amount δ, to be removed at the end of the calculation. Several technical details

are necessary for the proper implementation of this regulator at higher orders, which are

discussed in the text. For the rest of the divergences we use the standard dimensional

regularization. This particular choice of regulators simplifies significantly the calculation.

For example, one can avoid a direct calculation of pure virtual contributions, which reduces

the number of diagrams to be computed. The soft function presented in [22] is a key element

for the NNLO calculation of all (polarized and unpolarized) TMDs. The present calculation

is a confirmation of the universality of the soft function as it enters at the same footing in

the calculation of both TMDPDFs and TMDFFs.

We report on the structure of the matching coefficients of the TMDs onto their cor-

responding integrated functions, consistently with their RGEs. Also we consider a series

of technical topics which we think are interesting for the expert reader. So, we discuss

the realization of the Gribov-Lipatov correspondence between TMDPDFs and TMDFFs,

due to crossing symmetry. Although the computations for TMDPDFs and TMDFFs have

been done independently, we have used the crossing symmetry at intermediate steps of
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the calculation as a check of our results. Using the obtained results we are also able to

formulate a conjecture about the behavior of the coefficient at threshold at all order in

perturbation theory. This result can be important to study the perturbative series for the

coefficients at N3LO.

The paper is organized as follows. Section 2 provides the definitions of universal TMD

operators, with their renormalization. We also discuss the basic structure of the small-bT
operator product expansion (OPE), and its relation to the matching procedure. In section 3

we discuss the regularization method, the general structure of rapidity divergences as well as

the details of the calculation of TMDs. In section 4, the renormalization group equations for

TMDs are introduced. In section 5 we present in detail the NLO computation of the TMDs

and their matching coefficients. This section serves mainly as a pedagogical demonstration

of all the steps of the computation and the internal structure of TMDs. The technics used

for the NNLO calculation are presented in section 6, while in section 7 we collect all the

expressions for TMD matching coefficients for both TMDPDFs and TMDFFs up to NNLO.

We study the coefficient for large values of the Bjorken variables x, z in section 8. Finally,

in section 9 we conclude. The set of appendices includes several necessary definitions, some

intermediate expressions and side results which were used in the paper.

2 TMD operators

2.1 Definitions of TMD operators

The factorization theorems for transverse-momentum-dependent cross sections are usually

formulated in terms of TMDs. In this work however we follow a different strategy, namely,

we focus our attention on the TMD operators. Such a consideration allows us to have a ho-

mogeneous notation and reveals the similarities between the distribution and fragmentation

functions. It also allows us to formulate statements in a process-independent way.

We define the bare (unrenormalized and rapidity singular) quark, anti-quark and gluon

unpolarized TMDPDF operators as follows:

Obareq (x, bT ) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−
{
T
[
q̄i W̃

T
n

]
a

(
ξ

2

)
|X〉γ+

ij 〈X| T̄
[
W̃ T †
n qj

]
a

(
−ξ

2

)}
,

Obareq̄ (x, bT ) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−
{
T
[
W̃ T †
n qj

]
a

(
ξ

2

)
|X〉γ+

ij 〈X| T̄
[
q̄iW̃

T
n

]
a

(
−ξ

2

)}
,

Obareg (x, bT ) =
1

xp+

∑
X

∫
dξ−

2π
e−ixp

+ξ−
{
T
[
F+µ W̃

T
n

]
a

(
ξ

2

)
|X〉〈X|T̄

[
W̃ T †
n F+µ

]
a

(
−ξ

2

)}
,

(2.1)

where ξ = {0+, ξ−, bT }, n and n̄ are light-cone vectors (n2 = n̄2 = 0, n · n̄ = 2). For a

generic vector v we have v+ = n̄ · v and v− = n · v. The repeated color indices a (a =

1, . . . , Nc for quarks and a = 1, . . . , N2
c −1 for gluons) are summed up. The representations

of the color SU(3) generators inside the Wilson lines are the same as the representation of

the corresponding partons. The Wilson lines W̃ T
n (x) are rooted at the coordinate x and

continue to the light-cone infinity along the vector n, where it is connected by a transverse
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link to the transverse infinity (that is indicated by the superscript T ). The precise definition

of the Wilson lines is given in section 3.

The hadronic matrix elements of the operators defined in eq. (2.1) provide the unsub-

tracted TMDPDFs, as they are defined within the TMD factorization theorems [1–3]:

Φq←N (x, bT ) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−

×〈N |
{
T
[
q̄i W̃

T
n

]
a

(
ξ

2

)
|X〉γ+

ij 〈X|T̄
[
W̃ T †
n qj

]
a

(
−ξ

2

)}
|N〉,

Φq̄←N (x, bT ) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−

×〈N |
{
T
[
W̃ T †
n qj

]
a

(
ξ

2

)
|X〉γ+

ij 〈X|T̄
[
q̄iW̃

T
n

]
a

(
−ξ

2

)}
|N〉,

Φg←N (x, bT ) =
1

xp+

∑
X

∫
dξ−

2π
e−ixp

+ξ−

×〈N |
{
T
[
F+µ W̃

T
n

]
a

(
ξ

2

)
|X〉〈X|T̄

[
W̃ T †
n F+µ

]
a

(
−ξ

2

)}
|N〉, (2.2)

where N is a nucleon/hadron. Here the variable x represents the momentum fraction

carried by a parton from the nucleon (it also explains the TMD labelling rule f ← N).

One can see at the operator level that TMDs are like the integrated parton densities, with

the only difference that parton fields are additionally separated by the space-like distance

bT . The gauge connection between the parton fields follows the path uniquely dictated by

the relevant factorization theorems for the given physical processes.

The definition of the operators for the fragmentation functions follows a similar pattern,

with the main difference that they should be calculated on final rather than initial states.

Formally, one can write

Obare
q (z, bT ) =

1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
W̃ T †
n qj

]
a

(
ξ

2

)
|X, δ

δJ
〉γ+
ij 〈X,

δ

δJ
|T̄
[
q̄i W̃

T
n

]
a

(
−ξ

2

)
|0〉,

Obare
q̄ (z, bT ) =

1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
q̄i W̃

T
n

]
a

(
ξ

2

)
|X, δ

δJ
〉γ+
ij 〈X,

δ

δJ
|T̄
[
W̃ T †
n qj

]
a

(
−ξ

2

)
|0〉,

Obare
g (z, bT ) =

−1

2(1− ε)p+(N2
c − 1)

∑
X

∫
dξ−

2π
e−ip

+ξ−/z (2.3)

×〈0|T
[
W̃ T †
n F+µ

]
a

(
ξ

2

)
|X, δ

δJ
〉〈X, δ

δJ
|T̄
[
F+µ W̃

T
n

]
a

(
−ξ

2

)
|0〉,

where δ/δJ is to be understood as the state generated by the variation of the action with

respect to the source J , which couples to external hadron fields. Then the unsubtracted
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TMDFFs are hadronic matrix elements of these operators:

∆q→N (z, bT ) =
1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
W̃ T †
n qj

]
a

(
ξ

2

)
|X,N〉γ+

ij 〈X,N |T̄
[
q̄i W̃

T
n

]
a

(
−ξ

2

)
|0〉,

∆q̄→N (z, bT ) =
1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
q̄i W̃

T
n

]
a

(
ξ

2

)
|X,N〉γ+

ij 〈X,N |T̄
[
W̃ T †
n qj

]
a

(
−ξ

2

)
|0〉,

∆g→N (z, bT ) =
−1

2(1− ε)p+(N2
c − 1)

∑
X

∫
dξ−

2π
e−ip

+ξ−/z (2.4)

×〈0|T
[
W̃ T †
n F+µ

]
a

(
ξ

2

)∑
X

|X,N〉〈X,N |T̄
[
F+µ W̃

T
n

]
a

(
−ξ

2

)
|0〉,

where again N is a nucleon/hadron. The variable z represents the momentum fraction of

the parton carried into the hadron (it also explains the TMD labelling rule f → N). The

definitions of the quark TMDFFs coincide with the one coming from TMD factorization [1–

3]. To our knowledge, the gluon TMDFFs were first considered in [26]. However here we

find more convenient to define the normalization factor of the gluon TMDFF in analogy

to the normalization of the integrated FFs.Here the normalization of TMDFFs counts the

number of the physical states of a given flavor (being 2(1− ε) the number of physical gluon

polarizations in d = 4 − 2ε dimension). Such normalization allows the crossing relations

discussed below to be fulfilled.

Summarizing the expressions eq. (2.1)–(2.4), the bare TMDs1 are the hadronic matrix

elements of the corresponding bare TMD operator:

Φf←N (x, bT ) = 〈N |Obaref (x, bT )|N〉, (2.5)

∆f→N (z, bT ) = 〈N |†Obare
f (z, bT )|N〉†, (2.6)

where the Hermitian conjugation of the states for TMDFFs indicates that these are final

states to be placed inside the operator.

Unlike the usual composite or light-like operators which contain only UV divergences,

the TMD operators in addition suffer from rapidity divergences. The UV divergences in

the TMDs are removed by the usual renormalization factors. In order to cancel rapidity

divergences one should consider both the zero-bin subtractions and the soft function. Ac-

cording to Soft Collinear Effective Theory (SCET) terminology the “zero-bin” represents

the soft overlap contribution, that should be removed from the collinear matrix element in

order to avoid double counting of soft singularities [27]. The combination of the zero-bin

subtraction with the soft function has a very particular form, which is dictated by the

factorization theorem, and should be included in the definition of the TMD operators as

1The term bare TMD is equal to the common term unsubtracted TMD. Here we use term bare TMD

to emphasize its direct relation to the bare operator.
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a single “rapidity renormalization factor”. Therefore, we introduce the “rapidity renor-

malization factor” R, which completes our definition of the renormalized TMD operator.

We have

Oq,q̄(x, bT , µ, ζ) = Zq(ζ, µ)Rq(ζ, µ)Obareq,q̄ (x, bT ),

Og(x, bT , µ, ζ) = Zg(ζ, µ)Rg(ζ, µ)Obareg (x, bT ), (2.7)

Oq,q̄(z, bT , µ, ζ) = Zq(ζ, µ)Rq(ζ, µ)Obare
q,q̄ (z, bT ),

Og(z, bT , µ, ζ) = Zg(ζ, µ)Rg(ζ, µ)Obare
g (z, bT ), (2.8)

where Zq and Zg are the UV renormalization constants for TMD operators. The scales µ

and ζ are the scales of UV and rapidity subtractions respectively. While the UV renor-

malization factors depend on the UV regularization method and the regularization scale µ,

the “rapidity renormalization factors” also depend on the rapidity regularization method

and the rapidity scale ζ. Moreover, given that the soft function is process independent

(as argued with general arguments in [1–4, 24] and explicitly checked at NNLO in [22]),

the “rapidity renormalization factors” are also process independent. The details of the

definition of the factor R are discussed in section 3.

It is crucial to observe that both UV and rapidity renormalization factors, Z and R

respectively, are the same for TMDPDF and TMDFF operators. That is not accidental,

but the consequence of the fact that both TMDPDF and TMDFF operators have the same

local structure (which makes equal the factors Z) and the same geometry of Wilson lines

(which makes equal the factors R). This significantly simplifies the consideration of the

operators and makes the whole approach more universal. Moreover, from the equality of

renormalization factors follows that the evolution equations for TMDPDF and TMDFF

are the same. The appropriate anomalous dimensions can be extracted from R and Z, see

details in section 4.

The renormalization of rapidity divergences needs some caution, since with some regu-

lators the rapidity divergences can be confused with UV poles. On top of this, the particular

form of zero-bin subtractions included in the factor R, is regulator dependent. Thus, in

order to avoid any possible confusions we fix the exact order on how to deal with these

singular factors: we first remove all rapidity divergences and perform the zero-bin subtrac-

tion, and afterwards multiply by Z’s. Such an order implies that the factor R contains

not only rapidity divergences, but also explicit UV divergences which are also taken into

account in the factor Z. These two strategies lead to different intermediate expressions,

while the final (UV and rapidity divergences-free) expressions are necessarily the same.

Now, given all previous considerations, we define the individual TMDs as

Ff←N (x, bT ;µ, ζ) = 〈N |Of (x, bT ;µ, ζ)|N〉, (2.9)

Df→N (z, bT ;µ, ζ) = 〈N |†Of (z, bT ;µ, ζ)|N〉†. (2.10)

Such a definition implies the following relation between bare and renormalized TMDs:

Ff←N (x, bT ;µ, ζ) = Zf (µ, ζ)Rf (µ, ζ)Φf←N (x, bT ), (2.11)

Df→N (z, bT ;µ, ζ) = Zf (µ, ζ)Rf (µ, ζ)∆f→N (x, bT ), (2.12)

that follows from the TMD factorization theorem.

– 7 –
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Finally we comment that, had we chosen a different order of recombination of singu-

larities, then we would find separate UV-renormalization factors for the soft factor and

the collinear matrix element, which in turn would depend on the parameters of the rapid-

ity regularization. Such a strategy has been recently used in [20], following the “Rapidity

Renormalization Group” introduced in [13, 25], which is built in order to cancel the rapidity

divergences through renormalization factors from the beam and soft factors independently.

In our case, however, the rapidity renormalization factor itself is constructed with the soft

function. Thus, although at the end of the day the same rapidity logarithms are resummed,

the definitions of TMDPDFs and thus the underlying logic is different. In ref. [12, 18, 19]

for TMDPDFs the soft function is hidden in the product of two TMDs.

2.2 The operator product expansion (OPE) at small bT

The TMDs, as a non-perturbative objects, are a highly involved functions. Any information

on their behavior is important for phenomenological applications. Apart from evolution

equations, QCD perturbation theory can also supply the small-bT asymptotic behavior of

the TMDs, and give their matching coefficient onto their integrated collinear counterparts

(see e.g. [1, 2]). Such a matching is interesting because one expects it to provide a good

description of x/z-dependence of TMDs in the whole region of bT , and together with a

suitable ansatz for the non-perturbative contribution at large-bT , provides a reasonable

phenomenological model. Also the matching represents a strong check of the theory and

in this article we explicitly work it out at NNLO, both for quark/gluon distributions and

fragmentation TMDs.

At the operator level the small-bT matching is a statement on the leading term of the

small-bT Operator Product Expansion (OPE). The small-bT OPE is a formal operator rela-

tion, that relates operators with both light-like and space-like field separation to operators

with only light-like field separation. It reads

O(bT ) =
∑
n

Cn(bT , µb)⊗On(µb), (2.13)

where Cn are C-number coefficient functions, the µb is the scale of small-bT singularities

factorization or the OPE matching scale (for simplicity we omit in eq. (2.13) other matching

scales included in the definitions of each one of the pieces of this equation). The operators on

both sides of eq. (2.13) are non-local along the same light-cone direction, but the operators

On are transversely local while O(bT ) is transversely non-local. The operators On are

all possible operators with proper quantum numbers and can be organized for instance

according to a power expansion. As an example, for quark parton distributions, the most

straightforward expansion consists in the set of two-point operators (in principal one should

also include the multi-point operators in the OPE)

On ∼
1

2

∫
dξ−

2π
e−ixp

+ξ−
{
T
[
q̄ W̃ T

n

]
i,a

(
ξ

2

)
γ+
ij

(←→
∂TBT

)n
T̄
[
W̃ T †
n q
]
j,a

(
−ξ

2

)}
|bT=0,

(2.14)

where the dimension of the transverse derivatives,
←→
∂T =

←→
∂ /∂bT (these derivatives acts

at light-like infinity, therefore the gauge field can be omitted in non-singular gauges), is
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compensated by some scale BT . The matching coefficients behave like

Cn(bT , µb) ∼
(
bT
BT

)n
f(ln(b2

Tµ
2
b)), (2.15)

where f is some function.

The unknown scale BT represents some characteristic transverse size interaction inside

the hadron. So for bT � BT it is in practice reasonable to consider only the leading term of

the OPE in eq. (2.13), which gives the matching of the TMDs onto the integrated functions.

The consideration of higher order terms is an interesting and a completely unexplored part

of the TMD approach, which we do not further consider in this work. Note that the OPE

onto the operators of the form in eq. (2.14) may not be the most efficient, see discussion

and alternative small-bT OPE based on Laguerre polynomials in [7, 28].

For the TMDPDFs the leading order small-bT operator (i.e. the operator for the inte-

grated PDF) is just a TMDPDF operator eq. (2.1) at bT = 0, i.e.

Obaref (x) = Obaref (x,0T ), (2.16)

while for FF kinematics one has an extra normalization factor

Obare
f (z) = z2−2εObare

f (z,0T ). (2.17)

Notice that in the equations above we have dropped a subindex 0. In this way the leading

terms of the OPEs at small bT read

Of (x, bT ;µ, ζ) =
∑
f ′

Cf←f ′(x, bT ;µ, ζ, µb)⊗Of ′(x, µb) +O
(
bT
BT

)
,

Of (z, bT ;µ, ζ) =
∑
f ′

Cf→f ′(z, bT ;µ, ζ, µb)⊗
Of ′(z, µb)

z2−2ε
+O

(
bT
BT

)
, (2.18)

where the symbol ⊗ is the Mellin convolution in variable x or z , and f, f ′ enumerate the

various flavors of partons. The running on the scales µ, µb and ζ is independent of the

regularization scheme and it is dictated by the renormalization group equations. Taking

the hadron matrix elements of the operators we obtain the small-bT matching between the

TMDs and their corresponding integrated functions,

Ff←N (x, bT ;µ, ζ) =
∑
f ′

Cf←f ′(x, bT ;µ, ζ, µb)⊗ ff ′←N (x, µb) +O
(
bT
BT

)
,

Df→N (z, bT ;µ, ζ) =
∑
f ′

Cf→f ′(z, bT ;µ, ζ, µb)⊗
df ′→N (z, µb)

z2−2ε
+O

(
bT
BT

)
. (2.19)

The integrated functions (PDFs and FFs) depend only on the Bjorken variables (x for

PDFs and z for FFs) and renormalization scale µ, while all the dependence on the trans-

verse coordinate bT and rapidity scale is contained in the matching coefficient and can be

calculated perturbatively.
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The definition of the integrated PDFs are

fq←N (x) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−

×〈N |
{
T
[
q̄i W̃

T
n

]
a

(
ξ−

2

)
|X〉γ+

ij 〈X|T̄
[
W̃ T †
n qj

]
a

(
−ξ
−

2

)}
|N〉,

fq̄←N (x) =
1

2

∑
X

∫
dξ−

2π
e−ixp

+ξ−

×〈N |
{
T
[
W̃ T †
n qj

]
a

(
ξ−

2

)
|X〉γ+

ij 〈X|T̄
[
q̄iW̃

T
n

]
a

(
−ξ
−

2

)}
|N〉,

fg←N (x) =
1

xp+

∑
X

∫
dξ−

2π
e−ixp

+ξ− (2.20)

×〈N |
{
T
[
F+µ W̃

T
n

]
a

(
ξ−

2

)
|X〉〈X|T̄

[
W̃ T †
n F+µ

]
a

(
−ξ
−

2

)}
|N〉,

and similarly, for integrated FFs

dq→N (z) =
1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
W̃ T †
n qj

]
a

(
ξ−

2

)
|X,N〉γ+

ij 〈X,N |T̄
[
q̄i W̃

T
n

]
a

(
−ξ
−

2

)
|0〉,

dq̄→N (z) =
1

4zNc

∑
X

∫
dξ−

2π
e−ip

+ξ−/z

×〈0|T
[
q̄i W̃

T
n

]
a

(
ξ−

2

)
|X,N〉γ+

ij 〈X,N |T̄
[
W̃ T †
n qj

]
a

(
−ξ
−

2

)
|0〉,

dg→N (z) =
−1

2(1− ε)p+(N2
c − 1)

∑
X

∫
dξ−

2π
e−ip

+ξ−/z (2.21)

×〈0|T
[
W̃ T †
n F+µ

]
a

(
ξ−

2

)∑
X

|X,N〉〈X,N |T̄
[
F+µ W̃

T
n

]
a

(
−ξ
−

2

)
|0〉.

In practice, in order to calculate the matching coefficients we calculate both sides of

eq. (2.18) on some particular states and solve the system for matching coefficients. Since

we are interested only in the leading term of the OPE, i.e. the term without transverse

derivatives, it is enough to consider single parton matrix elements, with p2 = 0. A study

of the matching coefficients for higher-derivative operators can be found in [7, 28].

3 Regularization and structure of the divergences

3.1 Explicit form of rapidity renormalization factor

In the previous section we have defined the factor Rf in a rather abstract way, as a kind

of “rapidity renormalization factor”. In fact, its explicit form is dictated by the TMD

factorization theorem and reads

Rf (ζ, µ) =

√
S(bT )

Zb
, (3.1)
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where S(bT ) is the soft function and Zb denotes the zero-bin contribution, or in other

words the soft overlap of the collinear and soft sectors which appear in the factorization

theorem [1–4, 27]. We now elaborate on this definition.

The soft function is defined as a vacuum expectation value of a certain configuration

of Wilson lines, which depends on the process under investigation. For example, for SIDIS

it reads

S̃(bT ) =
Trc
Nc
〈0| T

[
ST †n S̃Tn̄

]
(0+, 0−, bT )T̄

[
S̃T †n̄ STn

]
(0) |0〉 . (3.2)

The Wilson lines are defined as usual

STn = TnSn , S̃Tn̄ = T̃nS̃n̄ , (3.3)

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n ·A(x+ sn)

]
,

Tn̄(x) = P exp

[
ig

∫ 0

−∞
dτ ~l⊥ · ~A⊥(0+,∞−, ~x⊥ +~l⊥τ)

]
,

S̃n̄(x) = P exp

[
−ig

∫ ∞
0

ds n̄ ·A(x+ n̄s)

]
,

T̃n(x) = P exp

[
−ig

∫ ∞
0

dτ ~l⊥ · ~A⊥(∞+, 0−, ~x⊥ +~l⊥τ)

]
.

The transverse gauge links Tn are essential for singular gauges, like the light-cone gauge

n · A = 0 (or n̄ · A = 0), see details in refs. [29–31]. In covariant gauges the transverse

links are needed only to preserve the gauge invariance, but in practice do not add any

contribution. Note that collinear Wilson lines W T
n (x) used in TMD operators eq. (2.1)–

(2.4) are defined in the same way as soft Wilson lines STn (x). However, we distinguish them

since they behave differently under regularization.

The zero-bin (or overlap region) subtraction is a subtle issue. In fact, the explicit

definition of this subtraction significantly depends on the rapidity regularization used (see

e.g. discussion in [3]). Thus, for a given regularization scheme it might be even impossible

to define the zero-bin as a well-formed matrix element. Nonetheless, for any regularization

scheme it has a very particular calculable expression. With a conveniently chosen rapidity

regularization, the zero-bin subtractions are related to a particular combination of the soft

factors. Using the modified δ-regularization, which is discussed in detail in the next section,

the zero-bin subtraction is literally equal to the SF: Zb = S(bT ). We should mention that

this is not a trivial statement, and in fact, the modified δ-regularization scheme has been

adapted such that this relation holds. In particular, it implies a different regularized form

for collinear Wilson lines Wn(n̄)(x) and for soft Wilson lines Sn(n̄)(x).

So, concluding, in the modified δ-regularization that is used in this work, the expression

for the rapidity renormalization factor is

Rf (ζ, µ)

∣∣∣∣
δ-reg.

=
1√

S(bT ; ζ)
. (3.4)

The relation eq. (3.4) was first checked explicitly at NNLO in [21, 22], and also confirmed

for various kinematics in this work. We notice that due to the process independence of soft
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function [1–4, 24], the factor Rf is also process independent. The origin of rapidity scale ζ

is explained in the next section.

Let us also make a connection to the formulation of TMDs by Collins in [1]. In the

JCC approach the rapidity divergences are handled by tilting the Wilson lines off-the-light-

cone. Then the contribution of the overlapping regions and soft factors can be recombined

into individual TMDs by the proper combination of different SFs with a partially removed

regulator. This combination gives the factor Rf in our notation,

Rf (ζ, µ)

∣∣∣∣
JCC

=

√
S̃(yn, yc)

S̃(yc, yn̄)S̃(yn, yn̄)
. (3.5)

The following logical steps remain the same as with the δ-regulator.

3.2 Modified δ-regularization scheme

The original δ-regularization proposed in [2] consists in a simple infinitesimal shift of the

i0-prescriptions in eikonal propagators. However, such a rude approach appears to be

not sufficient at NNLO for several reasons, e.g., the fact that at this order the zero-bin

and the soft function are not equal. Therefore, in [21, 22] the δ-regularization scheme was

conveniently modified to overcome this issue. The modified δ-regularization is implemented

at the operator level, and constructed in such a way that it explicitly preserves the non-

Abelian exponentiation and the equality of zero-bin and the SF. The implementation of

the regularization at the operator level grants many benefits in the analysis of the all-order

structure of rapidity divergences, and allows to prove such statements as the linearity of

the logarithm of the soft function in lnδ. The detailed discussion on the properties of

the modified δ-regularization can be found in [22]. Here we limit ourselves to present the

definitions and make the essential comments.

The modified δ-regularization scheme has to be defined at the operator level, and

consists in modifying the definition of Wilson lines. So the soft Wilson lines entering the

soft function in eq. (3.2) are changed according to

S̃n̄(0) = P exp

[
−ig

∫ ∞
0

dσA+(σn̄)

]
→ P exp

[
−ig

∫ ∞
0

dσA+(σn̄)e−δ
+σ

]
,

Sn(0) = P exp

[
ig

∫ 0

−∞
dσA−(σn)

]
→ P exp

[
ig

∫ 0

−∞
dσA−(σn)e+δ−σ

]
, (3.6)

where δ± → +0. At the level of Feynman diagrams in momentum space, the modified

expressions for the eikonal propagators are written as (e.g. absorption of gluons by a Wilson

line [∞+, 0])

1

(k+
1 − i0)(k+

2 − i0) . . . (k+
n − i0)

→ 1

(k+
1 − iδ+)(k+

2 − 2iδ+) . . . (k+
n − niδ+)

, (3.7)

where the gluons are ordered from infinity to zero (i.e. kn is the gluon closest to zero).

As a consequence of the rescaling invariance of the Wilson lines (that is now explicitly

broken by the parameters δ±), the expressions for diagrams in the soft function depend on

– 12 –
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a single variable 2δ+δ−/(n · n̄) = δ+δ−. The ordering of poles in the eikonal propagators,

eq. (3.7), is crucial for the perturbative exponentiation with usual properties, such as non-

abelian exponentiation theorem for color-factors [32, 33] or logarithmical counting [34].

As a matter of fact, within the modified δ-regularization, only diagrams with non-Abelian

color prefactor (web diagrams) arise in the exponent. Therefore, the expression for the soft

function can be written in the form

S̃(bT ) = exp
[
asCF

(
S[1] + asS

[2] + . . .
)]

, (3.8)

where as = g2/(4π)2 is the strong coupling and CF is the Casimir of the fundamental

representation of gauge group
(
CF = (N2

c − 1)/Nc for SU(Nc)
)
.

The collinear Wilson lines appearing in the definition of the operators, eq. (2.1)–(2.3),

should be regularized in a slightly different way in order to accomplish eq. (3.4). This is

achieved by rescaling the δ-regulator with the Bjorken variables as

Wn(0) = P exp

[
ig

∫ 0

−∞
dσA−(σn)

]
→ P exp

[
ig

∫ 0

−∞
dσA−(σn)e+δ−xσ

]
, (3.9)

in the case of the Wilson lines appearing in TMDPDFs, eq. (2.1), and as

Wn(0) = P exp

[
ig

∫ 0

−∞
dσA−(σn)

]
→ P exp

[
ig

∫ 0

−∞
dσA−(σn)e+(δ−/z)σ

]
, (3.10)

in the case of the Wilson lines appearing in TMDFFs, eq. (2.3). This rescaling is not

necessary at NLO, where the contribution of the soft function is multiplied by δ(1−x) (see

details in section 5), but it is necessary at NNLO and higher orders.

The δ-regularized Wilson line violates the usual rules of gauge transformations. This

violation is power-suppressed in δ. Therefore, throughout the calculation the δ should

be considered an infinitesimal parameter, in order to avoid potential gauge-violating con-

tributions. In most part of the calculation this is straightforward, however, the linearly

divergent subgraphs should be carefully considered. A detailed discussion of this point, as

well as other potential issues, can be found in [22].

The parameter ζ that appears in the factor Rf is a scale that arises due to the splitting

of the soft function among the two TMDs. In the calculation of the SF, one ends up with

a function that depends on ln(µ2/(δ+δ−)). However, here the lnδ+ and lnδ− represent

the rapidity divergences related to different TMDs in the TMD factorization theorem.

Therefore, one separates these logarithms introducing an extra scale ζ. In general one has

(see e.g. [3, 22] for more details)

S

(
bT ; ln

(
µ2

δ+δ−

))
= S1/2

(
bT ; ln

(
µ2

(δ+/p+)2ζ+

))
S1/2

(
bT ; ln

(
µ2

(δ−/p−)2ζ−

))
(3.11)

where ζ+ζ− = (p+p−)2 = Q4, with Q2 being the relevant hard scale of the considered

process. In the calculation of a single TMD (say the TMD oriented along the vector n),

this operation can be effectively replaced by the substitution

δ− = δ+ ζ

(p+)2
. (3.12)

Here and in the following we omit the subscripts ± for the variable ζ.
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3.3 Calculation of TMDs and their matching coefficients onto integrated func-

tions

In order to calculate the leading matching coefficients of the OPE, we perform the calcu-

lation of TMD distributions on parton targets. Since at NNLO all possible flavor channels

arise, we need to consider the following TMDs:

Fq←q,q̄,q′(x, bT , µ, ζ) = Z−1
2 (µ)Zq(ζ, µ)Rq(ζ, µ)Φq←q,q̄,q′(x, bT ),

Fq←g(x, bT , µ, ζ) = Z−1
3 (µ)Zq(ζ, µ)Rq(ζ, µ)Φq←g(x, bT ),

Fg←q(x, bT , µ, ζ) = Z−1
2 (µ)Zg(ζ, µ)Rg(ζ, µ)Φg←q(x, bT ),

Fg←g(x, bT , µ, ζ) = Z−1
3 (µ)Zg(ζ, µ)Rg(ζ, µ)Φg←g(x, bT ),

Dq→q,q̄,q′(x, bT , µ, ζ) = Z−1
2 (µ)Zq(ζ, µ)Rq(ζ, µ)∆q→q,q̄,q′(x, bT ),

Dq→g(x, bT , µ, ζ) = Z−1
3 (µ)Zq(ζ, µ)Rq(ζ, µ)∆q→g(x, bT ),

Dg→q(x, bT , µ, ζ) = Z−1
2 (µ)Zg(ζ, µ)Rg(ζ, µ)∆g→q(x, bT ),

Dg→g(x, bT , µ, ζ) = Z−1
3 (µ)Zg(ζ, µ)Rg(ζ, µ)∆g→g(x, bT ), (3.13)

where Z2 and Z3 are the wave function renormalization constant for quarks and gluons,

respectively. During the calculation of the partonic matrix elements it is sufficient to put

the momentum of the target parton at p2 = 0. This condition is realized with pT = 0

in the momentum of target partons and restricting the light-cone momentum component

p− = 0. Therefore, the momentum of the target parton is p = [p+, 0,0T ].

In the following, we denote by a superscript in square brackets the coefficient of the

pertrubative expansions at a given order, e.g. for the partonic TMDFF

Df→f ′(z, bT , p;µ, ζ) =

∞∑
n=0

ansD
[n]
f→f ′(z, bT , p;µ, ζ) . (3.14)

The LO pertubative expansion of TMDs coincides with the unsubtracted matrix element,

e.g. for quark-to-quark TMDFF,

D[0]
q→q = ∆[0]

q→q. (3.15)

At NLO one finds

D[1]
q→q = ∆[1]

q→q −
S[1]∆

[0]
q→q

2
+
(
Z [1]
q − Z

[1]
2

)
∆[0]
q→q. (3.16)

The second term cancels the rapidity-divergent part from the unsubtracted expression,

such that the TMD is finite when δ → 0. The last term cancels the UV divergences. After

these subtractions the result remains singular for ε → 0 due to the collinear divergences

that are part of the parton integrated FF. At NNLO the structure is richer

D[2]
q→q = ∆[2]

q→q −
S[1]∆

[1]
q→q

2
+

3S[1]S[1]∆
[0]
q→q

8
− S[2]∆

[0]
q→q

2

+
(
Z

[1]
D − Z

[1]
2

)(
∆[1]
q→q −

S[1]∆
[0]
q→q

2

)
(3.17)

+
(
Z

[2]
D − Z

[2]
2 − Z

[1]
2 Z

[1]
D + Z

[1]
2 Z

[1]
2

)
∆[0]
q→q. (3.18)
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All rapidity divergences arise and are canceled in the first line of eq. (3.18), while in the

second line we have just UV renormalization constants. In the case of TMDPDFs the

perturbative expansion is the same (with the trivial substitution ∆i → Φi).

Finally, we calculate the matching of the TMDs onto their corresponding integrated

functions. At LO the matching coefficients are trivially

C
[0]
f←f ′ = δff ′δ(x̄), C[0]

f→f ′ = δff ′δ(z̄) , (3.19)

where x̄ = 1− x, and z̄ = 1− z. Comparing the matrix element at NLO we obtain

C
[1]
f←f ′ = F

[1]
f←f ′ − f

[1]
f←f ′ , C[1]

f→f ′ = D
[1]
f→f ′ −

d
[1]
f→f ′

z2−2ε
. (3.20)

At NNLO we have

C
[2]
f←f ′ = F

[2]
f←f ′ −

∑
r

C
[1]
f←r ⊗ f

[1]
r←f ′ − f

[2]
f←f ′ ,

C[2]
f→f ′ = D

[2]
f→f ′ −

∑
r

C[1]
f→r ⊗

d
[1]
r→f ′

z2−2ε
−
d

[2]
f→f ′

z2−2ε
. (3.21)

Notice the factor z2−2ε in the case of TMDFF, which comes from the operator definition

in eq. (2.17).

The matching procedure in eqs. (3.20)–(3.21) ensures the cancellation of the IR di-

vergences in the matching coefficients. In our regularization scheme these divergences are

regularized by dimensional regularization. That is why it is particularly important to know

the ε dependence in eqs. (3.20)–(3.21) at all orders in ε: one can immediately realize that

the linear term in ε of the coefficient C [1] in combination with the single pole of f [1] con-

tributes to the finite part of C [2]. Also, the coefficient z−2ε gives a non-trivial contribution

when combined with the poles of d[1,2].

4 Renormalization Group Equations

4.1 Anomalous dimensions of TMD operators

The renormalization group equations (RGEs) fix the scale dependence of the matching

coefficients of the TMDs onto integrated functions, and follow from the very definition of

the OPE, i.e. eq. (2.19). Differentiating both sides of eq. (2.18) with respect to the scales

we obtain the RGEs for the matching coefficients in terms of the anomalous dimensions of

TMD operators and integrated operators. The anomalous dimension of TMD operators is

defined as

µ2 d

dµ2
Of (x, bT ) =

1

2
γf (µ, ζ)Of (x, bT ), µ2 d

dµ2
Of (z, bT ) =

1

2
γf (µ, ζ)Of (z, bT ). (4.1)

Both the TMDPDF and TMDFF operators have the same anomalous dimension, as a result

of the universality of the hard interactions [1–3]. The anomalous dimension γf comes solely

from the renormalization factor Zf . Using the standard RGE technique we obtain

γq(µ, ζ) = 2 ÂD (Z2 − Zq) , γg(µ, ζ) = 2 ÂD (Z3 − Zg) , (4.2)
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where ÂD represents the operator which extracts the anomalous dimension from the coun-

terterm (i.e. it gives the coefficient of the first pole in ε with n! prefactor, being n the order

of the perturbative expansion). The prefactor 2 arises from the normalization of anomalous

dimension eq. (4.1).

The flow with respect to the rapidity parameter follows from the factor R, and it is

also the same for both types of operators, due to the universality of the soft interactions

(see discussion in [22], also in [25]),

ζ
d

dζ
Of (x, bT ) = −Df (µ, bT )Of (x, bT ), ζ

d

dζ
Of (z, bT ) = −Df (µ, bT )Of (z, bT ). (4.3)

The representation independence of non-Abelian exponentiation implies the so-called

Casimir scaling of anomalous dimension D, see [22]:

Dq

Dg
=
CF
CA

=
N2
c − 1

2N2
c

. (4.4)

It is worth to mention that RGEs for TMD operators, in contrast to RGEs for integrated

operators, do not mix the operators of different flavors. The rapidity anomalous dimension

Df can be extracted solely from the prefactor Rf [22] as

Df (µ, ζ) = −
dlnRf
dlnζ

∣∣∣
f.p

= −1

2

dlnRf
dlnδ+

∣∣∣
f.p
, (4.5)

where f.p. denotes the extraction of the finite part, i.e. neglecting the poles in ε. The

singular part of the factor R is related to the renormalization factor as follows:

dlnRf
dlnζ

∣∣∣
s.p.

=
dlnZf
dlnµ2

, (4.6)

where s.p. denotes the extraction of the singular part, i.e. the poles in ε.

Note that these relations are independent of the regularization procedure, i.e. they

hold for any rapidity regularization scheme. In the modified δ-regularization the explicit

expressions for the soft function (and hence for the factor Rf ) are presented in appendices A

and B. All relations in this subsection are explicitly checked at NLO and NNLO, and the

resulting anomalous dimensions, which are collected in appendix D.2, coincide with the

known values.

The consistency of the differential equations (4.1)–(4.3) implies that the cross-

derivatives of the anomalous dimension are equal to each other ([22, 25]),

µ2 d

dµ2

(
−Df (µ2, bT )

)
= ζ

d

dζ

(
γf (µ, ζ)

2

)
= −Γfcusp

2
. (4.7)

The first terms of the perturbative expansion of the cusp anomalous dimension Γfcusp can

be found in appendix D.2. From eq. (4.7) one finds that the anomalous dimension γ is

γf = Γfcusplζ − γfV , (4.8)
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where we introduce the notation

LX ≡ ln

(
X2b2

T

4e−2γE

)
, lX ≡ ln

(
µ2

X

)
, λλλδ ≡ ln

(
δ+

p+

)
. (4.9)

At the level of the renormalization factors this relation allows one to unambiguously fix

the logarithmic part of the factor Rf , by means of the relation2

d2lnRf
dlnµ2 dlnζ

∣∣∣∣∣
f.p

= ÂD

[
Zf

(
dlnRf
dlnζ

)
s.p

]
= −Γfcusp

2
. (4.10)

4.2 RGEs for matching coefficients

The RGEs for the matching coefficients can be obtained by deriving both sides of eq. (2.18).

The only extra information which is needed is the evolution of the light-cone operator. That

is given by DGLAP3 equations

µ2 d

dµ2
Of (x) =

∑
f ′

Pf←f ′(x)Of ′(x), µ2 d

dµ2
Of (z) =

∑
f ′

Pf→f ′(z)⊗Of ′(z), (4.11)

where P and P are the DGLAP kernels for the PDF and FF respectively. The leading-order

expressions are collected in appendix D.2, while NLO expression can be found in [35, 36].

Considering the derivative with respect to ζ we obtain the ζ-scaling for the matching

coefficients (µb = µ)

ζ
d

dζ
Cf←f ′(x, bT ;µ, ζ) = −Df (µ, bT )Cf←f ′(x, bT ;µ, ζ),

ζ
d

dζ
Cf→f ′(z, bT ;µ, ζ) = −Df (µ, bT )Cf→f ′(z, bT ;µ, ζ). (4.12)

The solutions of these differential equations are

Cf←f ′(x, bT ;µ, ζ) = exp
(
−Df (µ, bT )L√ζ

)
Ĉf←f ′(x,Lµ)

Cf→f ′(x, bT ;µ, ζ) = exp
(
−Df (µ, bT )L√ζ

)
Ĉf→f ′(z,Lµ). (4.13)

This defines the reduced matching coefficients Ĉ and Ĉ, and their RGEs are

µ2 d

dµ2
Ĉf←f ′(x,Lµ) =

∑
r

Ĉf←r(x,Lµ)⊗Kf
r←f ′(x,Lµ),

µ2 d

dµ2
Ĉf→f ′(z,Lµ) =

∑
r

Ĉf→r(z,Lµ)⊗Kf
r→f ′(z,Lµ) , (4.14)

where the kernels K and K are

Kf
r←f ′(x,Lµ) =

δrf ′

2

(
ΓfcuspLµ − γfV

)
− Pr←f ′(x),

Kf
r→f ′(z,Lµ) =

δrf ′

2

(
ΓfcuspLµ − γfV

)
−

Pr→f ′(z)

z2
. (4.15)

2A similar one can be found in [13, 25].
3DGLAP is an acronym for Dokshitzer, Gribov, Lipatov, Altarelli, Parisi.
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Figure 1. Diagrams contributing to soft factor at NLO S[1]. The complex conjugated diagrams

should be added

Using these equations one can find the expression for the logarithmical part of the

matching coefficients at any given order, in terms of the anomalous dimensions and the

finite part of the coefficient at one order lower. It is convenient to introduce the notation

for the n-th perturbative order:

Ĉ
[n]
f←f ′(x,Lµ) =

2n∑
k=0

C
(n;k)
f←f ′(x)Lkµ, Ĉ[n]

f→f ′(x,Lµ) =

2n∑
k=0

C(n;k)
f→f ′(z)Lkµ. (4.16)

The expressions for the anomalous dimensions, the recursive solution of the RGEs and

the explicit expressions for the coefficients C and C are given in appendix D. The known

anomalous dimensions and DGLAP kernels allow to fix the logarithmic dependent pieces

of the coefficients. As a result only the coefficients C
(n;0)
f←f ′ and C(n;0)

f→f ′ are necessary to

reconstruct their full expressions.

5 NLO computation

The calculation of TMDs at NNLO is a complex task. Technically it is convenient and

safe to split it in several steps, and perform intermediate checks. In order to illustrate the

procedure and also for pedagogical reasons, in this section we present the NLO calculation

of TMDs and their matching coefficients, with attention to some important details. Here

and below Feynman gauge is used for the calculations.

The Feynman diagrams for the bare TMDFFs at NLO are drawn in figure 2. The

bare TMDPDFs are given by the same diagrams, but interpreting the external lines as

the initial states and the momentum p as incoming. For the final/initial gluons we choose

the polarization plane perpendicular to pµ and nµ. Thus, the possible diagrams with

final/initial gluons radiated by the Wilson lines are zero, and are not shown in figure 2.

The only physical Lorentz-invariant scale present in the calculation is b2
T , because

the target parton is massless, p2 = 0, and has no transverse components. The scale b2
T

appears only in the diagrams with left and right parts connected by gluon/quark exchange.

Therefore, the pure virtual diagrams (i.e. diagrams without any cut propagator) are zero.4

4It is not the case for the soft factor, where one has the Lorentz-invariant scale δ+δ− in addition to

b2T , and thus the virtual diagrams are proportional to (δ+δ−)ε. However, these contributions completely

cancel at all orders in perturbation theory by analogous contributions from diagrams with real quark/gluon

exchanges, see proof in [22].
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Figure 2. All non-zero diagrams contributing to fragmentation function matrix elements at NLO.

The external lines represent the final states. The star on the diagram indicate that complex con-

jugated diagram should be added. The TMD PDF at NLO is given by the same diagrams with all

spinor arrows pointing opposite direction.

The only piece of the virtual diagrams which is relevant for our purposes, is the UV-

divergent part, that enters the operator renormalization constants Zq and Zg. The pure

virtual diagrams are independent of the kinematics and the operator, which implies that

the renormalization constants Zq and Zg are the same for PDF and FF operators and

independent of z and x. At NLO, the pure virtual diagrams are diagrams A in figure 2

(for quark-to-quark and gluon-to-gluon sectors), as well as diagram A for the soft factor in

figure 1. Calculating the ultaviolet limit of the virtual diagrams we obtain

Z [1]
q = −CF

(
2

ε2
+

4 + 2lζ
ε

)
, Z [1]

g = −CA
(

2

ε2
+

2 + 2lζ
ε

)
. (5.1)

Here it is important to preserve the previously defined order of subtraction of divergences

(see footnote 2). So, according to our definition we first recombine the rapidity divergences

and then the UV-divergences.

Diagrams B and C in figure 2 provide the quark-to-quark matrix elements,

Φ[1]
q←q(x, δ) = 2CFΓ(−ε)BBBε

(
x̄(1− ε) +

2xx̄

x̄2 + x2δ2

)
,

∆[1]
q→q(z, δ) = 2CFΓ(−ε)B

BBε

z2

(
z̄(1− ε) +

2zz̄

z̄2 + δ2

)
, (5.2)

where BBB = b2
T /4. We have similar expressions for the other flavor channels. One can see

that the expressions in eq. (5.2) are connected by the relation

∆[1]
q→q(z, δ) =

−1

z
Φ[1]
q←q

(
z−1, δ

)
. (5.3)
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The validity of this relation to all orders in perturbation theory can be proven in a diagram-

by-diagram basis, comparing the expressions in both kinematics. In fact, if we do not

remove any regulator, the TMDPDFs and the TMDFFs are related to each other by the

crossing symmetry x ↔ z−1. This is the generalization of the well-known Gribov-Lipatov

relation between PDF and FF for the TMD operators. We have

∆f→f ′(z, δ) =
−1

z
Nf,f ′Φf←f ′

(
z−1, δ

)
, (5.4)

where the factor N arises from the difference of the operator normalization. Comparing

the operator definitions we find

Nq,q = Ng,g = 1, Nq,g = −(1− ε)CF
Tr
, Ng,q =

−1

(1− ε)
Tr
CF

. (5.5)

Before combining the collinear and soft matrix element, we develop our results in

the limit δ → 0. This step allows to pass from the analytical functions eq. (5.2) to the

distributions, where the singularity at z, x→ 1 is regularized. Within δ-regularization this

step can be done using

Φ(x, δ) = (Φ(x, 0))+ + δ(x̄)

∫ 1

0
dy Φ(y, δ) +O(δ), (5.6)

when the functions are regular at x, z → 0. In the case that the functions are singular at

x, z → 0 (i.e. TMDFF and gluon distributions) we extract an extra factor of z as

∆(z, δ) =
1

z
(z∆(z, 0))+ + δ(z̄)

∫ 1

0
dy y∆(y, δ) +O(δ). (5.7)

The powers of δ are irrelevant for our calculation and are dropped. In the limit δ → 0 the

expressions in eq. (5.2) are

Φ[1]
q←q = 2CFΓ(−ε)BBBε

((
2x

1− x
+ x̄(1− ε)

)
+

+ δ(x̄)

(
−3

2
− ε

2
− 2λλλδ

))
,

∆[1]
q→q = 2CFΓ(−ε)B

BBε

z2

((
2z

1− z
+ z̄(1− ε)

)
+

+ δ(z̄)

(
−3

2
− ε

2
− 2λλλδ

))
. (5.8)

Let us make a comment on the small-δ expansion in eqs. (5.6)–(5.7). This operation

breaks the analytical properties of the calculated functions in the complex plane of x, z.

Therefore, at this stage of the calculation, one brakes the crossing relation between PDF

and FF kinematics in eq. (5.4). Indeed, the distributions in eq. (5.8) are not analytical

functions of x and z and can not be analytically continued to each other straightforwardly.

That could be done using some regularization method, e.g. by restoring the δ-regularization

parameter. This is a simple exercise at NLO but becomes involved at higher orders, see

e.g. corresponding analysis for DGLAP kernels in [37]. In practice it results simpler to

calculate the TMDPDFs and the TMDFFs independently, without using this analytical

continuation property.

In order to complete the calculation of the TMDs we have to include the contribution

of the soft factor, which is computed at NLO and NNLO in [22]. At NLO the soft function
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is given by the diagrams shown in figure 1. The expression for these diagrams, by means

of the substitution in eq. (3.12) is

S[1] = −4CKBBB
εΓ(−ε)

(
L√ζ + 2λλλδ − ψ(−ε)− γE

)
, (5.9)

where the color prefactor depends on the representation of Wilson line: CK = CF (CA)

when a quark (gluon) is the initiating parton.

Combining eq. (5.8) and eq. (5.9) one can immediately check the exact cancellation

of the rapidity singularities in the limit δ → 0 (represented by λλλδ) between unsubtracted

TMDs and the soft factor.

Expanding in ε and combining together all the pieces of the TMD matrix element

according to eq. (3.16), we obtain

F [1]
q←q = CF

[(
−2

ε
pqq(x)− 2Lµpqq(x) + 2x̄

)
+

+δ(x̄)

(
−L2

µ + 2Lµlζ + 3Lµ + 1− π2

6

)
+O(ε)

]
,

D[1]
q→q =

CF
z2

[(
−2

ε
pqq(z)− 2Lµpqq(z) + 2z̄

)
+

+δ(z̄)

(
−L2

µ + 2Lµlζ + 3Lµ + 1− π2

6

)
+O(ε)

]
, (5.10)

where pqq(x) = (1 + x2)/(1− x). This is the final expression for the TMD partonic matrix

elements. They are free from the rapidity and UV divergences, as predicted by the TMD

factorization theorem [1, 3, 4]. The final expressions for unsubtracted TMD at NLO for all

other flavor channels are similar and are collected in the appendix A.

In eq. (5.10) one recognizes the ε-pole, which is part the corresponding integrated

functions. In order to complete the matching between the TMDs and integrated functions

we need to calculate the matrix elements of the integrated operators. The diagrams con-

tributing to these matrix elements are all zero, due to the absence of a Lorentz-invariant

scale. Therefore, the only non-zero term is the UV renormalization factor, which can be

deduced from the DGLAP kernel. So, for quark-to-quark channel we have

f [1]
q←q =

−2CF
ε

(
1 + x2

1− x

)
+

, d[1]
q→q =

−2CF
ε

(
1 + z2

1− z

)
+

. (5.11)

The matching prescription of eq. (3.20) allows to derive the coefficients where ε-poles are

exactly cancelled. The final matching coefficients for TMDPDFs at LO are

C [0]
q←q = δ(1− x), C [0]

g←g = δ(1− x),

and the rest are zero. At NLO we find

C [1]
q←q = CF

[
−2Lµpqq(x) + 2x̄+ δ(x̄)

(
−L2

µ + 2Lµlζ −
π2

6

)]
,

C [1]
q←g = Tr (−2Lµpgq(x) + 4xx̄) ,
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C [1]
g←q = CF (−2Lµpqg(x) + 2x) ,

C [1]
g←g = CA

[
−4Lµpgg(x) + δ(x̄)

(
−L2

µ + 2Lµlζ −
π2

6

)]
,

C
[1]
q←q′ = 0 , (5.12)

where the definitions of functions p(x) are given in appendix A, eq. (A.1). Hereafter we

follow the notation/convention of [35, 36], so that the piece of the coefficients divergent at

x, z → 1 should be understood as “plus”-distribution. The expression for C
[1]
q←q has been

already obtained in many articles (see e.g. [2, 7, 8, 12–19, 38]), the expression for C
[1]
q←g is

also well-known [7, 8, 17, 19] (note that there is a misprint in [19]), and the expression for

C
[1]
g←q and C

[1]
g←g have been obtained in [17, 19].

The matching coefficients for TMDFFs at LO are

C[0]
q←q = δ(1− z), C[0]

g←g = δ(1− z),

and the rest are zero. At NLO we find

z2C[1]
q→q = CF

[
−2pqq(z) (Lµ − 2lnz) + 2z̄ + δ(z̄)

(
−L2

µ + 2Lµlζ −
π2

6

)]
,

z2C[1]
q→g = CF (−2pgq(z) (Lµ − 2lnz) + 2z) ,

z2C[1]
g→q = Tr (−2pqg(z) (Lµ − 2lnz) + 4zz̄) ,

z2C[1]
g→g = CA

[
−4(Lµ − 2lnz)pgg(z) + δ(z̄)

(
−L2

µ + 2Lµlζ −
π2

6

)]
.

z2C[1]
q→q′ = 0 . (5.13)

The functions p(z) are related to the one-loop DGLAP kernels and are defined in eq. (A.1).

The coefficient Cq→q has been calculated in [4, 8], and Cq→g agrees with the one calculated

in [8]. The coefficients C[1]
g→q and C[1]

g→g are presented here for the first time.

One can see that the expression for the matching coefficients for TMDFFs have an

extra ln(z) in comparison to TMDPDFs. This contribution comes from the difference in

the normalization factor z−2ε, see eq. (2.17). This logarithm is the main source of difference

between the TMDFF and TMDPDF matching coefficients. At higher orders the effects of

the z−2ε normalization factor are more involved.

6 NNLO computation

The diagrams that contribute to the unsubtracted TMD matrix elements can be generi-

cally classified in pure-virtual diagrams (i.e. diagrams with no cut propagator), virtual-real

diagrams (i.e. diagrams with one single cut propagator) and double-real diagrams (i.e.

diagrams with two single cut propagators). Alike NLO case, pure-virtual diagrams are

zero due to absence of a Lorentz-invariant scale. Virtual-real and double-real diagrams
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are proportional to BBB2ε. In total, there are about 50 virtual-real diagrams and about 90

double-real diagrams.

The generic expression for virtual-real diagrams is (for TMDFF kinematics)

diagVR =

∫
ddkddl

(2π)2d

δ
(
z̄
zp

+ − k+
)
ei(kb)TDiscD(k) f(k, l, p) F (n, δ/z)

[(l + p)2]a1 [(k + p)2]a2 [(k + l + p)2]a3 [(k + l)2]a4 [l2]a5
, (6.1)

where for brevity we drop the i0-prescription of propagators. The function F contains all

“plus”-components of the momenta and the parameter δ, while the function f contains

only scalar products of momenta. The discontinuity of the propagator is

DiscD(k) = (2π)δ(k2)θ(k−). (6.2)

The generic form of a double-real diagram in the same notation takes the form

diagRR =

∫
ddkddl

(2π)2d

δ
(
z̄
zp

+−k+−l+
)
ei(kb)T ei(lb)TDiscD(k) DiscD(l) f(k, l, p) F (n, δ/z)

[(l + p)2]a1 [(k + p)2]a2 [(k + l + p)2]a3 [(k + l)2]a4
.

(6.3)

The functions f can be re-expressed via the propagators, and so the diagrams can be split

into several integrals with
∑

i ai = 3 for virtual-real diagrams and
∑

i ai = 2 for double-real

diagrams. In order to decouple the functions F from the scalar loop integrals we introduce

the auxiliary unity factor

1 =

∫ ∞
−∞

dω p+δ(ωp+ − l+). (6.4)

With the help of this trick the dependance of functions F on k+ and l+ can be re-written as

a function of z and ω, and all numerators simplify. The integration over the loop-momenta

is straightforward and all non-zero integrals appearing in the calculation are presented in

appendix C.

In this way, we are left with a set of one-dimensional integrals over ω. The evaluation

of these integrals is technically the most difficult part of the calculation. Most part of

these integrals are evaluated in terms of Γ-functions and their derivatives, while several

are expressed through hypergeometric functions (and one integral in g → g and g → q

channels that has been expressed via Appell function F1). All diagrams are calculated in

d = 4− 2ε dimensions.

During the evaluation of the integrals we have used that we need only their asymptotic

behavior at δ → 0. In order to find the small-δ limit we expand the eikonal propagators in

Mellin-Barnes contour integral around δ = 0. Then we calculate the integrals over ω, and

close the contour over the closest to zero poles. If an integral has a singularity at z → 1

it should be regularized by means of a “plus”-distribution (see eqs. (5.6)–(5.7). The final

expression for a diagram takes the generic form

diag. = BBB2ε

(
f1(z, ε) +

(
δ+

p+

)ε
f2(z, ε) +

(
δ+

p+

)−ε
f3(z, ε) + λλλδf4(z, ε) + λλλ2

δf5(z, ε)

)
.

(6.5)

It is important to mention that the functions f2 and f3 exactly cancel in the sum of

all diagrams, which we have checked explicitly. The unsubtracted TMDPDFs can be

calculated in the same manner.
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Due to the symmetry of the operators, the expressions for TMDPDFs and TMDFFs

satisfy the crossing relation eq. (5.4) in a diagram-by-diagram basis. However, since we

consider only the leading contribution at δ → 0, the diagram-by-diagram crossing is vio-

lated, due to the fact that IR singularities and rapidity singularities get different phases

during the procedure of analytical continuation. In the sum of diagrams all terms f2,3 can-

cel, and one can check the crossing relation in eq. (5.4) without any special tricks. Since we

calculated TMDPDFs and TMDFFs independently, such a relation grants a very strong

check for our results (however we have not compared the δ-contribution for q → q and

g → g channels, for the reasons explained earlier).

Having the expressions for the unsubtracted TMDs, we multiply them by the rapidity

and UV renormalization factors. At NNLO this procedure is given by eq. (3.18). The

expressions for the factor Z [1] and soft factor S[1] are given in previous section. The

NNLO expression for the soft factor has been obtained in [22] and is given in eq. (B.1).

At this stage we also perform the expansion in ε of the expressions. To perform the

renormalization procedure in eq. (3.18) we have to calculate the operator renormalization

constants at NNLO Z
[2]
q and Z

[2]
q . They are given by the UV-part of pure-virtual diagrams.

In our calculation we have not calculated these constants explicitly, but found them by

demanding the cancellation of UV poles. We obtain the following expressions:

Z [2]
q =

2C2
F

ε4
+
CF
2ε3

(8CF (2 + lζ) + 11CA − 4TrNf ) +
CF
ε2

[
2CF (4 + 4lζ + l2ζ)

+CA

(
25

9
+
π2

6
+

11

3
lζ

)
− TrNf

(
8

9
+

4

3
lζ

)]
+
CF
ε

[
CF
(
π2 − 12ζ3

)
(6.6)

+CA

(
−355

27
− 11π2

12
+ 13ζ3 +

(
−67

9
+
π2

3

)
lζ

)
+ TrNf

(
92

27
+
π2

3
+

20

9
lζ

)]
,

Z [2]
g =

2C2
A

ε4
+
CA
2ε3

(CA(19 + 8lζ)− 4TrNf ) +
CA
ε2

[
CA

(
55

36
+
π2

6
+

23

3
lζ + 2l2ζ

)
+TrNf

(
1

9
− 4

3
lζ

)]
+
CA
ε

[
CA

(
−2147

216
+

11π2

36
+ ζ3 +

(
−67

9
+
π2

3

)
lζ

)
+TrNf

(
121

54
− π2

9
+

20

9
lζ

)]
. (6.7)

As was discussed in section 4.1, most part of the UV counterterm should be related to the

factor R and to the known anomalous dimensions.

Finally, we perform the matching procedure as in eq. (3.21). The integrated matrix

elements are zero due to the absence of a Lorentz-invariant scale and are given solely by

their UV renormalization counterterm. They can be deduced from the DGLAP kernels,

and given by

f
[2]
f←f ′ =

1

2ε2

(∑
r

P
(1)
f←r ⊗ P

(1)
r←f ′ + β(1)P

(1)
f←f ′

)
−
P

(2)
f←f ′

2ε
, (6.8)

d
[2]
f→f ′ =

1

2ε2

(∑
r

P(1)
f→r ⊗ P(1)

r→f ′ + β(1)P(1)
f→f ′

)
−

P(2)
f→f ′

2ε
. (6.9)

The obtained matching coefficients are free from any kind of divergences. The results of

the calculation are presented in next section.
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7 Expressions for matching coefficients

In this section we present the expressions for the finite part of the small-bT matching

coefficients. The logarithmic part can be restored by using the RGEs and is explicitly given

in appendix D.1. For completeness we present LO, NLO and NNLO finite parts together.

7.1 TMD parton distribution functions

The LO matching coefficients are

C(0,0)
q←q (x) = C(0,0)

g←g (x) = δ(1− x), (7.1)

and all other flavor configurations are zero at leading order.

The NLO matching coefficients are

C(1,0)
q←q (x) = CF

(
2x̄− δ(x̄)

π2

6

)
,

C(1,0)
q←g (x) = 4Trxx̄,

C(1,0)
g←q (x) = 2CFx ,

C(1,0)
g←g (x) = −CAδ(x̄)

π2

6
,

C
(1,0)
q←q′(x) = C

(1,0)
q←q̄ (x) = 0. (7.2)

Here, the coefficient C
(1,0)
q←q′(x) is the coefficient with all possible mixing flavor channels.

Thus q′ can be any quark or anti-quark, even of the same flavor as q. In other words,

the matching coefficient for, say, u ← u is given by the sum Cq←q + Cq←q′ , as well as the

matching coefficient for u← ū is given by Cq←q̄ + Cq←q′ .

The NNLO matching coefficients are

C(2,0)
q←q (x) = C2

F

{
pqq(x)

[
− 20Li3(x) + 4Li3(x̄)− 12lnxLi2(x̄)− 4lnx̄Li2(x̄)− 10ln2xlnx̄

+ 2ln2x̄lnx+
3

2
ln2x+ (8 + 2π2)lnx+ 20ζ3

]
+ 8x̄Li2(x̄) +

1 + x

3
ln3x

− 4x̄lnx lnx̄+
7x+ 3

2
ln2x−2xlnx̄+2(1−12x)lnx−x̄

(
22 +

π2

3

)
+
π4

72
δ(x̄)

}
+ CFCA

{
pqq(x)

[
8Li3(x)− 4Li3(x̄) + 4lnx̄Li2(x̄)− 4lnxLi2(x)− ln3x

3

− 11

6
ln2x− 76

9
lnx+ 6ζ3 −

404

27

]
− 4x̄Li2(x̄)− 2xln2x+ 2xlnx̄

+ (10x+ 2)lnx+
44− π2

3
x̄+ δ(x̄)

(
1214

81
− 67π2

36
− 77

9
ζ3 +

π4

18

)}
+ CFTrNf

{
pqq(x)

[
2

3
ln2x+

20

9
lnx+

112

27

]
− 4

3
x̄

+ δ(x̄)

(
−328

81
+

5π2

9
+

28

9
ζ3

)}
, (7.3)
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C(2,0)
q←g (x) = CATr

{
pqg(x)

[
4Li3(x̄)− 8Li3(x)− 4lnx̄Li2(x̄)− 4lnxLi2(x̄)

− 4lnx̄ln2x+
2

3
ln3x̄− 6ζ3

]
+ pqg(−x)

[
4Li3

(
1

1 + x

)
− 4Li3

(
x

1 + x

)
+ 2Li3(x2)− 2lnxLi2(x2) + 2ln2xln(1 + x)− 2lnxln2(1 + x) +

2π2

3
lnx− 2ζ3

]
− 4x(1 + x)Li2(1− x2)− 8(2− 3x+ 9x2 − 14x3)

3x
Li2(x̄)− 4xx̄

(
ln2x̄− π2

6

)
+

2

3
(1 + 2x)ln3x−

(
1− 4x+

44

3
x2

)
ln2x+ 2x(3− 4x)lnx̄

+
8

3

(
7

2
− 5x− π2x+

34

3
x2

)
lnx+

344

27x
− 70

3
+

86

3
x− 596

27
x2

}
+ CFTr

{
pqg(x)

[
− 4Li3(x̄)− 4Li3(x) + 2 (lnx̄− lnx)

(
Li2(x̄)− Li2(x) +

π2

6

)
− 2

3
ln3x̄+ 32ζ3

]
+ xx̄

[
4ln2x̄− 8lnxlnx̄− 4π2

3
lnx− 2π2

]
− 1− 2x+ 4x2

3
ln3x+

(
1

2
+ 6x− 4x2

)
ln2x+

(
8 +

2π2

3
+ 15x− 8x2

)
lnx

− 2x(3− 4x)lnx̄− 13 + 75x− 72x2

}
, (7.4)

C(2,0)
g←q (x) = CFCA

{
pgq(x)

[
− 12Li3(x) + 8lnxLi2(x)− 2

3
ln3x̄+ 2ln2x lnx̄

+ 2lnx ln2x̄− 11

3
ln2x̄+ 26ζ3

]
+ pgq(−x)

[
4Li3

(
1

1 + x

)
− 4Li3

(
x

1 + x

)
+ 2Li3(x2)− 2lnxLi2(x2) +

152

9
lnx̄+ 2ln2x ln(1 + x)− 2lnx ln2(1 + x)− 2ζ3

]
− 2xLi2(1− x2) +

4(22− 24 + 9x− 4x2)

3x
Li2(x̄)− 2(2 + x)

3
ln3x

− 4xlnxlnx̄+

(
12 + 3x+

8x2

3

)
ln2x+ 2xln2x̄+

608 + 66x

9
lnx̄

− 498− 12x+ 176x2

9
lnx− 4(790− 791x+ 268x2 − 152x3)

27x
− 2π2

3
x

}
+ C2

F

{
pgq(x)

[2

3
ln3x̄+ 3ln2x̄+ 16lnx̄

]
− 2xln2x̄− 6xlnx̄+

2− x
3

ln3x

− 4 + 3x

2
ln2x+ 5(x− 3)lnx+ 10− x

}
+ CFTrNf

{
pgq(x)

(
4

3
ln2x̄+

40

9
lnx̄+

224

27

)
− 8x

3
lnx̄− 40x

9

}
, (7.5)

C(2,0)
g←g (x) = C2

A

{
pgg(x)

[
− 24Li3(x) + 16lnxLi2(x) + 4ln2x lnx̄+ 4lnx ln2x̄− 2

3
ln3x

+ 52ζ3 −
808

27

]
+ pgg(−x)

[
8Li3

(
1

1 + x

)
− 8Li3

(
x

1 + x

)
+ 4Li3(x2)
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− 4lnxLi2(x2) + 4lnxln2(1 + x)− 4lnxln2(1 + x)− 2

3
ln3x− 4ζ3

]
+

8

3
x̄

(
11

x
− 1 + 11x

)
Li2(x̄)− 8

3
(1 + x)ln3x+

44x2 − 11x+ 25

3
ln2x

+
2x

3
lnx̄− 536x2 + 149x+ 701

9
lnx+

844x3 − 744x2 + 696x− 784

9x

+ δ(x̄)

(
1214

81
− 67π2

36
− 77

9
ζ3 +

5π4

72

)}
+ CATrNf

{
224

27
pgg(x) +

4

3
(x+ 1)ln2x− 4

3
xlnx̄+

4

9
(10x+ 13)lnx− 8x̄

+
−332x3 + 260

27x
+ δ(x̄)

(
−328

81
+

5π2

9
+

28

9
ζ3

)}
+ CFTrNf

{
4

3
(1 + x)ln3x+ 2(3 + x)ln2x+ 24(1 + x)lnx

+ 64x̄+
8

3

(
x2 − 1

x

)}
, (7.6)

C
(2,0)
q←q′(x) = TrCF

{
− 8

3

x̄

x
(2− x+ 2x2)Li2(x̄) +

2

3
(1 + x)ln3x−

(
1 + x+

8x2

3

)
ln2x

+
4

9

(
21− 30x+ 32x2

)
lnx+

2

27

x̄

x
(172− 143x+ 136x2)

}
, (7.7)

C
(2,0)
q←q̄ (x) =

(
C2
F −

CFCA
2

){
pqq(−x)

[
8Li3

(
1

1 + x

)
− 8Li3

(
x

1 + x

)
+ 4Li3(x2)

− 4lnxLi2(x2) + 4ln2xln(1 + x)− 4lnxln2(1 + x)− 2

3
ln3x− 4ζ3

]
+ 4(1 + x)Li2(1− x2)− 16Li2(x̄) + (22x+ 6)lnx+ 30x̄

}
. (7.8)

These matching coefficients were first calculated in [15–17] by a direct calculation

of a cross-section, and in an SCET framework in [19, 20]. Our results agree with these

previous calculations once the proper combination of collinear and soft matrix elements is

considered.

7.2 TMD fragmentation functions

The LO matching coefficients are

C(0,0)
q→q (z) = C(0,0)

g→g(z) = δ(1− z), (7.9)

the rest flavor configurations are zero at LO.

The NLO matching coefficients are

z2C(1,0)
q→q (z) = CF

(
2z̄ + 4pqq(z)lnz − δ(z̄)

π2

6

)
,

z2C(1,0)
q→g (z) = CF (2z + 4pgq(z)lnz) ,
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z2C(1,0)
g→q (z) = Tr (4zz̄ + 4pqg(z)lnz)

z2C(1,0)
g→g(z) = CA

(
8pgg(z)lnz − π2

6
δ(z̄)

)
,

C(1,0)
q→q′(z) = C(1,0)

q→q̄ (z) = 0. (7.10)

Here, the coefficient C(1,0)
q→q′(z) is the coefficient with all the possible mixing flavor channels.

Thus q′ can be any quark or anti-quark, even of the same flavor as q. In other words,

the mathcing coefficient for, say, u → u is given by the sum Cq→q + Cq→q′ , as well as the

matching coefficient for u→ ū is given by Cq→q̄+Cq→q′ . The common factor z2 is extracted

for convenience. Note that this factor is then not included in the needed plus-distributions.

The NNLO matching coefficients are

z2C(2,0)
q→q (z) = C2

F

{
pqq(z)

[
40Li3(z)− 4Li3(z̄) + 4lnz̄Li2(z̄)− 16lnzLi2(z)− 40

3
ln3z

+ 18ln2zlnz̄ − 2ln2z̄lnz +
15

2
ln2z −

(
8 +

4

3
π2

)
lnz − 40ζ3

]
+ z̄

[
24Li2(z) + 28lnzlnz̄ + 10− 13

3
π2

]
+

11

3
(1 + z)ln3z − 59− 9z

2
ln2z

+ 2lnz̄ + (46z − 38)lnz +
π4

72
δ(z̄)

}
+ CFCA

{
pqq(z)

[
4Li3(z̄) + 12Li3(z)− 4lnz̄Li2(z̄)− 8lnzLi2(z) + 3ln3z

− 4lnz̄ln2z − 11

6
ln2z +

(
70

3
− 2π2

)
lnz + 2ζ3 −

404

27

]
+ 4z̄Li2(z̄)

+ 2(4 + z)ln2z − 2lnz̄ +
116− 74z

3
lnz +

44− π2

3
z̄

+ δ(z̄)

(
1214

81
− 67π2

36
− 77

9
ζ3 +

13π4

18

)}
+ CFTrNf

{
pqq(z)

[
2

3
ln2z − 20

3
lnz +

112

27

]
− 16

3
z̄lnz − 4

3
z̄

+ δ(z̄)

(
−328

81
+

5π2

9
+

28

9
ζ3

)}
, (7.11)

z2C(2,0)
q→g (z) = C2

F

{
pgq(z)

[
4Li3(z̄) + 32Li3(z) + 4lnz̄Li2(z)− 32lnzLi2(z)− 8lnz̄ln2z

+ 8ln2z̄lnz − 2

3
ln3z̄ +

4π2

3
lnz̄ + (24− 6π2)lnz − 4ζ3

]
+

11

3
(2− z)ln3z −

(z
2

+ 4
)

ln2z + 2zln2z̄ + 8zlnz̄lnz

+ (25− 37z)lnz + 2lnz̄ + (33− 3π2)z − 38

}
+ CFCA

{
pgq(−z)

[
4Li3

(
1

1 + z

)
− 4Li3

(
z

1 + z

)
− 2Li3(z2)

− 2lnzLi2(z2)− 2lnzln2(1 + z)− 6ln2zln(1 + z) + 2ζ3

]
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+ pgq(z)

[
20Li3(z)− 4Li3(z̄)− 4lnz̄Li2(z) +

2

3
ln3z̄ − 10ln2z̄lnz

+ 22ln2zlnz̄ − 4π2

3
lnz̄ +

8π2

3
lnz − 34ζ3

]
− 32lnzLi2(z)− 2zLi2(1− z2)

− 8

3

(
11

z
− 12 +

15z

2
− 2z2

)
Li2(z̄)− 2

3

(
40

z
+ 22 + 31z

)
ln3z − 2zln2z̄

− 4zlnzlnz̄ − 4

3

(
53

z
− 24 +

9z

4
− 6z2

)
ln2z

+
2

3

(
18

z
+ 245 + 49z +

88z2

3

)
lnz − 2lnz̄ +

7π2

3
z

+
4

3

(
782

9z
− 31− 77z

2
− 170z2

9

)}
, (7.12)

z2C(2,0)
g→q (z) = TrCF

{
pqg(z)

[
32Li3(z) +

2

3
ln3z̄ − 6ln2z̄lnz + 18ln2zlnz̄ + 3ln2z̄

− 18lnz̄lnz + 16lnz̄ − 2π2lnz̄ +
2π2

3
lnz − 3π2 − 32ζ3

]
+ zz̄

[
32Li2(z)− 4ln2z̄ + 24lnzlnz̄ − 4lnz̄ − 4π2

3

]
− 11

3
(1− 2z + 4z2)ln3z

−
(

7

2
+ 26z − 34z2

)
ln2z − (8− 73z + 76z2)lnz + 63− 101z + 56z2

}
+ TrCA

{
pqg(−z)

[
4Li3

(
1

1 + z

)
− 4Li3

(
z

1 + z

)
− 2Li3(z2)

− 2lnzLi2(z2)− 6ln2zln(1 + z)− 2lnzln2(1 + z) + 2ζ3

]
+ pqg(z)

[
20Li3(z)− 16lnzLi2(z)− 2

3
ln3z̄ + 4ln2z̄lnz − 4ln2zlnz̄

− 11

3
ln2z̄ + 14lnzlnz̄ − 152

9
lnz̄ + 2π2lnz̄ − 4π2lnz − 6ζ3 +

19π2

3

]
− 4z(1 + z)Li2(1− z2) + 4zz̄

[
ln2z̄ +

5

3
lnz̄

]
+ 32zlnzLi2(z)

+
8(2− 3z + 15z2 − 8z3)

3z
Li2(z̄) +

2(11 + 62z)

3
ln3z

+
2(16− 22z + 35z2 − 59z3)

3z
ln2z + 8lnzlnz̄

+
2(24− 165z − 699z2 + 38z3)

9z
lnz − 8π2

3

− 2(148 + 1223z − 139z2 − 774z3)

27z

}
+ T 2

rNf

{
4

3
pqg(z)

[
ln2z + ln2z̄ − 6lnz̄lnz − 10lnz +

10

3
lnz̄ − π2 +

56

9

]
− 16

3
zz̄

[
lnz + lnz̄ +

2

3

]}
, (7.13)
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z2C(2,0)
g→g(z) = C2

A

{
pgg(−z)

[
8Li3

(
1

1 + z

)
− 8Li3

(
z

1 + z

)
− 4Li3(z2) + 8lnzLi2(z)

− 8lnzLi2(−z) + 6ln3z − 12ln2zln(1 + z)− 4lnzln2(1 + z) + 4ζ3

]
+ pgg(z)

[
104Li3(z)− 48lnzLi2(z)− 62

3
ln3z + 28lnz̄ln2z − 4ln2z̄lnz

+
44

3
ln2z +

268

9
lnz − 20π2

3
lnz − 808

27
− 76ζ3

]
+

8

3
z̄

(
1− 11

z
−11z

)
Li2(z̄)

− 88

3
(1 + z)ln3z +

44z3 − 173z2 + 103z − 264

3z
ln2z

+
1340z3 + 397z2 + 1927z + 268

9z
lnz − 2

3
lnz̄

+
4(−1064z3 + 450z2 − 414z + 1019)

27z

+ δ(z̄)

(
1214

81
− 67π2

36
− 77

9
ζ3 +

53π4

72

)}
+ CATrNf

{
pgg(z)

[
− 16

3
ln2z − 80

9
lnz +

224

27

]
− 20

3
(1 + z)ln2z +

4

3
lnz̄

+
4(26z3 − 5z2 + 25z − 26)

9z
lnz +

4(−65z3 + 54z2 − 54z + 83)

27z

+ δ(z̄)

(
−328

81
+

5π2

9
+

28

9
ζ3

)}
+ CFTrNf

{
44

3
(1 + z)ln3z +

2(16z3 + 15z2 + 21z + 16)

3z
ln2z

− 8(82z3 + 81z2 + 135z − 6)

9z
lnz +

8(301z3+108z2 − 270z − 139)

27z

}
, (7.14)

z2C(2,0)
q→q′(z) = TrCF

{
8

3

z̄

z
(2−z+2z2)Li2(z̄)+

22

3
(1+z)ln3z−

(
−32

3z
+11+11z+8z2

)
ln2z

− 4

9z
(−12 + 174z + 51z2 + 32z3)lnz − 2

3

(
148

9z
+ 79− 47z − 436

9
z2

)}
,

(7.15)

z2C(2,0)
q→q̄ (z) =

(
C2
F −

CFCA
2

){
pqq(−z)

[
8Li3

(
1

1 + z

)
− 8Li3

(
z

1 + z

)
− 4Li3(z2)

+ 16lnzLi2(z)−4lnzLi2(z2)−4lnzln2(1 + z)−12ln2zln(1+z)+6ln3z+4ζ3

]
+ 4(1 + z)Li2(1− z2)− 16zLi2(z̄) + 8(2 + z)ln2z + (38− 10z)lnz + 30z̄

}
.

(7.16)

The results for the quark sector were first presented by us in [21].5 The mixed flavor and

gluon contributions are presented here for the first time. Moreover, to the best of our

knowledge, the NLO expressions for gluon TMDFF are also presented for the first time.

5Concerning the results for C(2,0)
q→q we have found a typo in our previous publication [21]. While we are

going to provide a correction for it, we show here the final correct result.
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8 Matching coefficients at threshold

Using our NNLO results for TMDs we observe that it is possible to find a recurrence in

the behavior of the matching coefficients for x, z → 1.

In order to establish the idea, we recall that the matching coefficients for processes

where collinear factorization applies, behave as aks(ln x̄)2k−1/x̄ [41, 42]. These corrections

are dominant for x, z → 1 and have to be resummed for phenomenological applications

(threshold resummation). In the case of TMDs, by analyzing the structure of divergences

one may expect the leading behavior to be at most like aks(ln x̄)k−1/x̄. In fact, in the

case of TMDs the singular behavior at x, z → 1 should also be universal, due to the

universality of the soft function. This statement can be seen in the following way: in the

regime x, z → 1 the real soft gluon exchanges in Feynman diagrams are dominant, and

are the source of the rapidity divergences in TMD operators. The rapidity divergences are

removed by the Rf factors which are universal for both PDF and FF kinematics. Thus,

the leading x, z → 1 behavior of TMDs should be the same. At the same time, the leading

asymptotic term of the integrated functions is independent of the kinematics and goes like

∼ Γcusp/(1 − x)+ [43], so that we expect the behavior of the matching coefficients to be

also universal in the threshold limit.

At two loops, the leading singular behavior at x, z → 1 should be the same for gluons

and quarks (up to a trivial change in the color factor), since it is produced solely by the

convolutions of one-loop soft subgraphs, which are the same for quarks and gluons. Indeed

for TMDs Ff←f and Df→f we observe from our results that

F
[2]
f←f = C2

K

(
32L2

µ +
8π2

3

)(
ln(1− x)

1− x

)
+

+ . . . , (8.1)

D
[2]
f→f = C2

K

(
32L2

µ +
8π2

3

)(
ln(1− z)

1− z

)
+

+ . . . ,

where dots denote the less dominant contributions and collinear poles. The sub-leading

contribution, proportional to 1/(1−x)+ or 1/(1−z)+, is different for gluons and for quarks

and depends on lζ , as expected.

We observe that the difference between the gluon and quark channels, as well as the

dependence on ζ, disappear after the matching procedure. In fact, we obtain a simple

expression for the leading term at x, z → 1:

C
[2]
f←f = 16C2

KL2
µ

(
ln(1− x)

1− x

)
+

− 2CK
(1− x)+

(
2CKL3

µ + d(2,2)L2
µ +

(
d(2,1) − CK

π2

3

)
Lµ + d(2,0)

)
+ . . . ,

C[2]
f→f = 16C2

KL2
µ

(
ln(1− z)

1− z

)
+

(8.2)

− 2CK
(1− z)+

(
2CKL3

µ + d(2,2)L2
µ +

(
d(2,1) − CK

π2

3

)
Lµ + d(2,0)

)
+ . . . ,

where the dots denote the contributions with δ-functions and the non-singular terms at

x, z → 1. The values of d(2,i) can be found in appendix D.2.
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In eq. (8.2), the µ-scale dependent terms follow from the RGE, while the coefficient for

the finite part is peculiar, because it is directly connected to the perturbative expansion

of the Df function, which governs the evolution of the TMDs. If one then extrapolates

a similar behavior to an arbitrary loop order, we can make a conjecture for the leading

term at x, z,→ 1 for the finite part of the TMD matching coefficients, based on one- and

two-loop calculations:

C
(n,0)
f←f =

−2CK
(1− x)+

d(n,0) + . . . ,

C(n,0)
f→f =

−2CK
(1− z)+

d(n,0) + . . . . (8.3)

The terms proportional to Lkµ can be deduced from the general formulas of appendix D.1 in

the threshold limit. Notice that according to this conjecture, and using the recent result for

d(3,0) obtained in [40], one can give an estimate of these coefficients at threshold at N3LO.

As a final remark, we notice that, since the soft function enters the polarized TMDs

on the same footing as unpolarized TMDs, a similar result can be obtained for all of them.

9 Conclusions

In this paper we present a comprehensive study of the unpolarized TMDs at NNLO. To

make it as general as possible, we have introduced the TMD operators, such that TMDs are

matrix elements of these operators. We find that the understanding of the TMDs benefits

from such a language, as provided by the present work. In fact, in these terms, it is

possible to introduce a common formalism to describe the universality of soft interactions,

the parallelism between the renormalization of UV divergences and rapidity divergences in

the TMDs, and their matching onto integrated functions. In addition, the consideration of

any TMD can be performed without an explicit reference to any given process.

The TMD operators are involved objects, which contain both rapidity divergences

as well as UV divergences, and thus are different from usual light-cone operators. The

rapidity divergences can be absorbed by “rapidity renormalization factors”, alike the usual

UV divergences. The explicit form of “rapidity renormalization factors” is obtained from

the factorization theorems for semi-inclusive DIS, Drell-Yan and e+e− → 2 hadrons [1–4].

It is important to note that the “rapidity renormalization factors” are the same for all

kind of TMD processes, for distribution and fragmentation kinematics and that, together

with the UV renomalization, they give direct access to the RGE for TMD operators. That

completes the analogy with UV renomalization and it allows to construct a universal TMD

operator.

One of the main outcomes of the paper are the matching coefficients of all the unpolar-

ized TMDs onto their integrated analogues. According to the operator language they are

the Wilson coefficients for the leading term in the small-bT operator product expansion, as

explained in the text.

The calculation of TMD matrix elements needs a rapidity regulator in addition to

a UV regulator. For that we have used the (modified) δ-regularization [21], in which the
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form for the “rapidity renormalization factor” is especially simple. The presented matching

coefficients for the TMDPDFs agree with the results of [18–20], once the proper combination

of collinear and soft matrix elements is considered. Here, instead, we have provided a

method that realizes the cancellation of rapidity divergences within a single TMD, and we

have checked this fact explicitly at NNLO. The results for quark TMDFF were partially

presented in [21], while here we provide the complete results, which include also the gluon

TMDFFs, that were unknown. All these matching coefficients are necessary for accurate

phenomenological studies, and allow to consider exclusive and inclusive processes on the

same level of theoretical accuracy.

The performed calculation has a complex structure which involves the calculation of

TMD matrix elements, integrated matrix elements, TMD soft factor and TMD renormal-

ization constants at NNLO. Some of these ingredients are already known at NNLO. So,

the TMD soft factor has been presented by our group in [22] and the integrated matrix

elements can be related to DGLAP kernels in our regularization scheme. The TMD ma-

trix elements and TMD renormalization constants have been computed at NNLO in this

work for the first time with the δ regulator. During the calculation of TMD matrix ele-

ments we have used many checks, which include: a check of logarithmic parts by RGEs,

an independent extraction of anomalous dimensions and a check of the crossing relations

between TMDPDF and TMDFF. The regularization method described and implemented

here, together with the results for the master integrals, can be useful also for the study of

polarized TMDs.

In addition, we have studied the limit of large x,z and found that the behavior of

the matching coefficients is universal for all unpolarized TMDs. It is naturally controlled

by the anomalous dimension Df , which allows us to make an all order conjecture on the

leading contribution at large x, z.

The obtained matching coefficients are necessary in order to pursue phenomenological

studies at N3LL accuracy. Some recent developments towards this goal can be found

in [23]. There, although using a different regulator for rapidity divergences [40], the authors

have assumed the structure of rapidity divergences which has been explicitly checked in

the present work. Together with the large-x conjecture presented in this work, it opens

the door to a very precise estimate of these perturbatively calculable contributions. The

phenomenological applications of these results will be exploited in future works. We expect

all these efforts to be necessary in order to have a unified picture of Drell-Yan, semi-inclusive

DIS and e+e− → 2 hadrons.

Note added: while this article was under submission G. Lustermans, W. J. Waalewijn

and L. Zeune [45] confirmed the threshold behavior of the coefficient obtained in section 8.

Acknowledgments

M.G.E. is supported by the Spanish MECD under the Juan de la Cierva program and

grant FPA2013-46570-C2-1-P. I.S. is supported by the Spanish MECD grant FPA2014-

53375-C2-2-P.

– 33 –



J
H
E
P
0
9
(
2
0
1
6
)
0
0
4

A NLO expressions

For the calculation of the matching coefficients at NNLO, one needs the exact (all-orders

in ε) expressions for the NLO matching coefficients. For the details of their calculation see

section 5. Here we collect all necessary results at NLO. We use the following notation for

some common functions:

pqq(x) =
1 + x2

1− x
, pqg(x) = 1− 2xx̄ ,

pgq(x) =
1 + x̄2

x
, pgg(x) =

(1− xx̄)2

x(1− x)
. (A.1)

To denote logarithms throughout the article we use

LX ≡ ln

(
X2b2

T

4e−2γE

)
, lX ≡ ln

(
µ2

X

)
, λλλδ ≡ ln

(
δ+

p+

)
. (A.2)

The unsubtracted TMDPDFs are

Φ[1]
q←q = 2CFBBB

εΓ(−ε) (pqq(x)− εx̄− 2δ(x̄)λλλδ) ,

Φ[1]
q←g = 2TrBBB

εΓ(−ε)pqg(x)− ε
1− ε

,

Φ[1]
g←q = 2CFBBB

εΓ(−ε)(pgq(x)− εx),

Φ[1]
g←g = 4CABBB

εΓ(−ε) (pgg(x)− δ(x̄)λλλδ) , (A.3)

where BBB = b2
T /4. The singularities at x → 1 are understood as “plus”-distribution. The

unsubtracted TMDFFs are

z2∆[1]
q→q = 2CFBBB

εΓ(−ε) (pqq(z)− εz̄ − 2δ(z̄)λλλδ) ,

z2∆[1]
q→g = 2CF 2BBBεΓ(−ε)(pgq(z)− εz),

z2∆[1]
g→q = 2TrBBB

εΓ(−ε)pqg(z)− ε
1− ε

,

z2∆[1]
g→g = 4CABBB

εΓ(−ε) (pgg(z)− δ(x̄)λλλδ) . (A.4)

The matrix elements of the integrated functions are given solely by their UV countert-

erms. For the PDF kinematics they are

f [1]
q←q =

−2CF
ε

(
pqq(x) +

3

2
δ(x̄)

)
,

f [1]
g←q =

−2Tr
ε

pqg(x),

f [1]
q←g =

−2CF
ε

pgq(x),

f [1]
g←g =

−1

ε

(
4CApgg(x) +

(
11

3
CA −

4

3
TrNf

)
δ(x̄)

)
. (A.5)
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For the FF kinematics we have

d[1]
q→q =

−2CF
ε

(
pqq(z) +

3

2
δ(z̄)

)
,

d[1]
q→g =

−2CF
ε

pgq(z),

d[1]
g→q =

−2Tr
ε

pqg(z),

d[1]
g→g =

−1

ε

(
4CApgg(z) +

(
11

3
CA −

4

3
TrNf

)
δ(z̄)

)
. (A.6)

The expression for the NLO soft factor is

S[1] = −4CKBBB
εΓ(−ε)

(
L√ζ + 2λλλδ − ψ(−ε)− γE

)
, (A.7)

where CK = CF (CA) for quark (gluon) case.

For the completeness of exposition we also present the renormalization constants

for fields

Z
[1]
2 = −1

ε
CF , Z

[1]
3 =

1

ε

(
5

3
CA −

4

3
TrNf

)
. (A.8)

B NNLO expressions

In this appendix we present all side expression used for NNLO calculation.

The soft factor at NNLO has been calculated in [22]. We present the NNLO contribu-

tion to the exponent eq. (3.8). The ε-expansion of NNLO soft factor reads

S[2] = CK

[
d(2,2)

(
3

ε3
+

2lδ
ε2

+
π2

6ε
+

4

3
L3
µ − 2L2

µlδ +
2π2

3
Lµ +

14

3
ζ3

)
− d(2,1)

(
1

2ε2
+

lδ
ε
− L2

µ + 2Lµlδ −
π2

4

)
− d(2,0)

(
1

ε
+ 2lδ

)
+ CA

(
π2

3
+ 4 ln2

)(
1

ε2
+

2Lµ
ε

+ 2L2
µ +

π2

6

)
+ CA (8 ln2− 9ζ3)

(
1

ε
+ 2Lµ

)
+

656

81
TRNf

+ CA

(
−2428

81
+16 ln2− 7π4

18
−28 ln2 ζ3+

4

3
π2ln22− 4

3
ln42− 32Li4

(
1

2

))
+O(ε)

]
,

(B.1)

where CK = CF (CA) for quark (gluon) soft-factor. Here, the logarithm lδ is ln
(
µ2/|δ+δ−|

)
,

while after substitution eq. (3.12) it reads

lδ = ln

(
µ2

(δ+/p+)2ζ

)
= lζ − 2λλλδ. (B.2)

The constants d(n,k) are given in section D.2.
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The NNLO TMD operator constants are calculated in section 6 and reads

Z [2]
q =

2C2
F

ε4
+
CF
2ε3

(8CF (2 + lζ) + 11CA − 4TrNf ) +
CF
ε2

[
2CF (4 + 4lζ + l2ζ)

+CA

(
25

9
+
π2

6
+

11

3
lζ

)
− TrNf

(
8

9
+

4

3
lζ

)]
+
CF
ε

[
CF
(
π2 − 12ζ3

)
(B.3)

+CA

(
−355

27
− 11π2

12
+ 13ζ3 +

(
−67

9
+
π2

3

)
lζ

)
+ TrNf

(
92

27
+
π2

3
+

20

9
lζ

)]
,

Z [2]
g =

2C2
A

ε4
+
CA
2ε3

(CA(19 + 8lζ)− 4TrNf ) +
CA
ε2

[
CA

(
55

36
+
π2

6
+

23

3
lζ + 2l2ζ

)
+TrNf

(
1

9
− 4

3
lζ

)]
+
CA
ε

[
CA

(
−2147

216
+

11π2

36
+ ζ3 +

(
−67

9
+
π2

3

)
lζ

)
+TrNf

(
121

54
− π2

9
+

20

9
lζ

)]
. (B.4)

The NNLO field renormalization constants are [39]

Z
[2]
2 =

CF
ε2

(
CF
2

+ CA

)
+
CF
ε

(
3

4
CF −

17

4
CA + TrNf

)
,

Z
[2]
3 =

CA
ε2

(
−25

12
CA +

5

3
TrNf

)
+

1

ε

(
23

8
C2
A −

5

2
CATrNf − 2CFTrNf

)
. (B.5)

C Results for integrals

In this appendix we present the loop integrals that are used to calculate the TMD PDF

and TMD FF at NNLO. The parameter ω is introduced to in order to resolve the k+ and

l+ dependance as explained in section 6.

C.1 Integrals for virtual-real diagrams

The scalar integrals for the virtual-real diagrams has generally the form

FFF
abcde = −(2π)

∫
ddkddl

(2π)2d

p+δ(ωp+ + l+)δ
(
z̄
zp

+ − k+
)
ei(kb)T δ(k2)θ(k−)

[(l + p)2]a[(k + p)2]b[(k + l + p)2]c[(k + l)2]d[(l2)]e
. (C.1)

The corresponding integral in PDF kinematics reads

FPDF
abcde = −(2π)

∫
ddkddl

(2π)2d

p+δ(ωp+ + l+)δ (x̄p+ + k+) e−i(kb)T δ(k2)θ(−k−)

[(l + p)2]a[(k + p)2]b[(k + l + p)2]c[(k + l)2]d[(l2)]e
. (C.2)

For our observable only integral with sum of indices equal to 3 contribute.

The momentum p has no transverse component and p2 = 0. Due to it, the integral

with decoupled virtual loop are zero. For example:

F02001 = F02100 = F11001 = F11100 = F12000 = F01110 = F02010 = F02100 = F01011 = 0.

Integrals with negative index can be rewritten using identity

(k + l + p)2 + l2 = (p+ l)2 + (p+ k)2 + (k + l)2.
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The only non-zero integrals with positive indices are

FFF
01101 =

−i(−1)−ε

p+(4π)d
Γ(−2ε)

ε

( z̄
z

)ε
BBB2ε zθ(0 < ωz < 1)

(zω(1− zω))ε
,

FPDF
01101 =

i

p+(4π)d
Γ(−2ε)

ε
x̄εBBB2ε θ(0 < ω/x < 1)/x

(ω/x(1− ω/x))ε
, (C.3)

FFF
10101 =

−i(−1)−ε

p+(4π)d
Γ(−2ε)

( z̄
z

)ε
BBB2ε

∫
[dx]

δ
(
ω − x1 − x2

z

)
(x2x3)1+ε

,

FPDF
10101 =

i

p+(4π)d
Γ(−2ε)x̄εBBB2ε

∫
[dx]

δ (ω − x1 − xx2)

(x2x3)1+ε
, (C.4)

where [dx] = δ(1−x1−x2−x3)dx1dx2dx3. We leave the integral over Feynman parameters

in F10101, since it is convenient first over ω with the help of δ-function. There are two

another integrals that appear in calculation and can be reduced to the previous cases

F00111 (ω) = F10101

(
p+ + k+

p+
− ω

)
,

FFF
021(−1)1 = − (zω + z̄ (1− 2zω))FFF

01101,

FPDF
021(−1)1 = −

(ω
x
− x̄

x

(
1− 2

ω

x

))
FPDF

01101. (C.5)

C.2 Integrals for double-real diagrams

The scalar integrals for the double-real diagrams have generally the form

Fabcd = (2π)2

∫
dd−1kdd−1l

(2π)2d

ei(kb)T ei(lk)T δ(k2)θ(k−)δ(l2)θ(l−)

[(l + p)2]a[(k + p)2]b[(k + l + p)2]c[(k + l)2]d
. (C.6)

The components k+ and l+ must be integrated with the help of δ-functions as explained

in section 6 and do not participate in the loop-integration (that is indicated by d − 1-

dimensional integral). Integrating over minus components using on-mass-shell δ-functions

we arrive to standard euclidian loop integral over transverse momentum. The theta function

on the minus-components implies the k+, l+ > 0 in the result of integration.

In our calculation only the integral with sum of indices equal to 2 participate. Here is

the list of non-zero integrals

F0110 =
−1

(4π)d
BBB2εΓ(−2ε)

ε

1

k+ + p+

(
l+p+(k+ + p+ + l+)

k+(k+ + p+)2

)ε
× 2F1

(
−ε,−2ε, 1− ε; −k

+(k+ + p+ + l+)

p+l+

)
,

F1010 =
−1

(4π)d
BBB2εΓ(−2ε)

ε

1

l+ + p+

(
k+p+(k+ + p+ + l+)

l+(l+ + p+)2

)ε
× 2F1

(
−ε,−2ε, 1− ε; −l

+(k+ + p+ + l+)

p+k+

)
,

F1100 =
1

(4π)d
BBB2εΓ

2(−ε)
p+

,
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F0020 =
1

(4π)d
BBB2ε Γ(−2ε)

k+ + l+ + p+

(
(k+ + l+)2(k+ + l+ + p+)

k+l+p+

)ε
,

F1001 =
1

(4π)d
BBB2εΓ

2(−ε)
l+

(
k+ + l+

l+

)2ε

,

F0101 =
1

(4π)d
BBB2εΓ

2(−ε)
k+

(
k+ + l+

k+

)2ε

, (C.7)

where BBB = b2
T /4. The integrals with negative indices can be obtained from the ones

presented here, by differentiation with respect to k+ or l+.

D Recursive relations from RGE and anomalous dimensions

In this appendix we collect all the expressions necessary for the application of the RGEs,

as well as the explicit expressions for the logarithmical part of the matching coefficients.

D.1 Recursive form of RGEs

The derivation of RGEs is given in section 4. The ζ-dependence of the matching coefficients

can be explicitly solved by eq. (4.13). The µ-dependence is then given by the RGEs in

eq. (4.14). For practical purposes it is convenient to rewrite the RGE application in a

recursive form. We use the notation of eq. (4.16). Then the equation of the logarithmic

dependent part of the TMDPDF matching coefficient reads

(k + 1)C
(n;k+1)
f←f ′ =

n∑
r=1

[
Γf(r)

2
C

(n−r;k−1)
f←f ′ (D.1)

+

(
(n− r)β(r) −

γ
f(r)
V

2

)
C

(n−r;k)
f←f ′ − C

(n−r;k)
f←h ⊗ P (r)

h←f ′(x)

]
.

The same logarithmic part of the TMDFF matching coefficient reads

(k + 1)C(n;k+1)
f→f ′ =

n∑
r=1

[
Γf(r)

2
C(n−r;k−1)
f→f ′ (D.2)

+

(
(n− r)β(r) −

γ
f(r)
V

2

)
C(n−r;k)
f→f ′ − C(n−r;m)

f→h ⊗

P(r)
h→f ′(z)

z2

].
Solving eq. (D.1)–(D.2) at NLO we obtain

C
(1;2)
f←f ′ = δff ′δ(x̄)

Γf(1)

4
, C

(1;1)
f←f ′ = −δff ′δ(x̄)

γ
f(1)
V

2
− P (1)

f←f ′(x) . (D.3)

At NNLO we finally have

C
(2;4)
f←f ′ = δff ′δ(x̄)

(
Γf(1)

)2
32

,

C
(2;3)
f←f ′ = δff ′δ(x̄)

Γf(1)

4

(
β(1)

3
−
γ
f(1)
V

2

)
−

Γf(1)P
(1)
f←f ′(x)

4
,
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C
(2;2)
f←f ′ = δff ′δ(x̄)

(
Γf(2)

4
−
γ
f(1)
V β(1)

4
+

(γ
f(1)
V )2

8

)

+P
(1)
f←f ′

γ
f(1)
V − β(1)

2
+ C

(1;0)
f←f ′

Γf(1)

4
+

1

2

∑
r

P
(1)
f←r ⊗ P

(1)
r←f ′ ,

C
(2;1)
f←f ′ = −δff ′δ(x̄)

γ
f(2)
V

2
− P (2)

f←f ′ + C
(1;0)
f→f ′

(
β(1) −

γ
f(1)
V

2

)
−
∑
r

C
(1;0)
f←r ⊗ P

(1)
r←f ′ . (D.4)

The expressions for TMDFF matching coefficients can be obtained from these ones by

changing the directions of the arrows and replacing DGLAP kernels as P → P/z2. Explicit

expression for these equations can be found in a supplementary file.6

D.2 Anomalous dimensions

For the calculation at NNLO one needs the following anomalous dimensions:

• the QCD β-function, β(αs) = dαs/dlnµ, with β = −2αs
∑∞

n=1 β
(n)
(
αs
4π

)n
β(1) =

11

3
CA −

4

3
TrNf ≡ b0 ,

β(2) =
34

3
C2
A −

20

3
CATrNf − 4CFTrNf ,

β(3) =
2857

54
C3
A +

(
2C2

F −
205

9
CFCA −

1415

27
C2
A

)
TrNf

+

(
44

9
CF +

158

27
CA

)
T 2
rN

2
f ,

β(4) =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
Nf

+

(
50065

162
+

6472

81
ζ3

)
N2
f +

1093

729
N3
f , (D.5)

• the cusp anomalous dimension

Γqcusp = 4CFΓ, Γgcusp = 4CAΓ,

Γ(1) = 1, Γ(2) =

(
67

9
− π2

3

)
CA −

20

9
TrNf .

Γ(3) = C2
A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATrNf

(
−418

27
+

40π2

27
− 56

3
ζ3

)
+ CFTrNf

(
−55

3
+ 16ζ3

)
− 16

27
T 2
rN

2
f (D.6)

• the anomalous dimension γV

γ
q(1)
V = − 6CF ,

6See the Mathematica notebook attached to the arXiv preprint arXiv:1604.07869.
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γ
q(2)
V = C2

F

(
−3 + 4π2 − 48ζ3

)
+ CFCA

(
−961

27
− 11π2

3
+ 52ζ3

)
+ CFTrNf

(
260

27
+

4π2

3

)
,

γ
q(3)
V = C3

F

(
−29− 6π2 − 16π4

5
− 136ζ3 +

32π2

3
ζ3 + 480ζ5

)
+ C2

FCA

(
−151

2
+

410π2

9
+

494π4

135
− 1688

3
ζ3 −

16π2

3
ζ3 − 240ζ5

)
+ CFC

2
A

(
−139345

1458
− 7163π2

243
− 83π4

45
+

7052

9
ζ3 −

88π2

9
ζ3 − 272ζ5

)
+ C2

FTrNf

(
5906

27
− 52π2

9
− 56π4

27
+

1024

9
ζ3

)
+ CFCATrNf

(
−34636

729
+

5188π2

243
+

44π4

45
− 3856

27
ζ3

)
+ CFT

2
rN

2
f

(
19336

729
− 80π2

27
− 64

27
ζ3

)
, (D.7)

γ
g(1)
V = − 22

3
CA +

8

3
TrNf ,

γ
g(2)
V = C2

A

(
−1384

27
+

11π2

9
+ 4ζ3

)
+ CATrNf

(
512

27
− 4π2

9

)
+ 8CFTrNf .

γ
g(3)
V = 2C3

A

(
−97186

729
+

6109

486
π2 − 319

270
π4 +

122

3
ζ3 −

20

9
π2ζ3 − 16ζ5

)
+ 2C2

ATrNf

(
30715

729
− 1198

243
π2 +

82

135
π4 +

712

27
ζ3

)
+ 2CACFTrNf

(
2434

27
− 2

3
π2 − 8

45
π4 − 304

9
ζ3

)
− 4C2

FTrNf

+ 2CAT
2
rN

2
f

(
−538

729
+

40

81
π2 − 224

27
ζ3

)
− 88

9
CFT

2
rN

2
f (D.8)

• It is convenient to write the expression for the function D as an expansion:

Df (µ, bT ) = Cf
∞∑
n=1

ans

n∑
k=0

Lkµd
(n,k), (D.9)

where Cf = CF for quarks and Cf = CA for gluons, and

d(1,1) = 2Γ(1), d(1,0) = 0,

d(2,2) = Γ(1)β(1), d(2,1) = 2Γ(2),

d(2,0) = CA

(
404

27
− 14ζ3

)
− 112

27
TrNf .

d(3,3) =
2

3
Γ(1)(β(1))2, d(3,2) = 2Γ(2)β(1) + Γ(1)β(2) ,

d(3,1) = 2β(1)d(2,0) + 2Γ(3),
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d(3,0) =
−1

2
C2
A

(
−176

3
ζ3ζ2 +

6392ζ2

81
+

12328ζ3

27
+

154ζ4

3
− 192ζ5 −

297029

729

)
−CATrNf

(
−824ζ2

81
− 904ζ3

27
+

20ζ4

3
+

62626

729

)
−2T 2

rN
2
f

(
−32ζ3

9
− 1856

729

)
− CFTrNf

(
−304ζ3

9
− 16ζ4 +

1711

27

)
.

The result for d(3,0) has been recently computed in [23]. The rest of d(3,i) can be

found also in [44].

The DGLAP kernels at LO read

P (1)
q←q(x) = CF (2pqq(x) + 3δ(x̄)) , P(1)

q→q(z) = CF (2pqq(z) + 3δ(z̄)) ,

P (1)
q←g(x) = 2Trpqg(x), P(1)

g→q(z) = 2CF pqg(z),

P (1)
g←q(x) = 2CF pgq(x), P(1)

q→g(z) = 2Trpqg(z),

P (1)
g←g(x) = 4CApgg(x) + β(1)δ(x̄), P(1)

g→g(z) = 4CApgg(z) + β(1)δ(z̄). (D.10)

The NLO kernels for PDF kinematic can be found in [35], for FF kinematic in [36].

E Alternative form of matching coefficients

For practical purposes, it is convenient to write the matching coefficients as overall “plus”-

distributions. In this appendix we rewrite the expressions for the matching coefficients in

such a form. Only the flavor-diagonal coefficients need to be rewritten in this way, since

the non-diagonal channels are integrable at z, x→ 1.

The NLO expressions read

C(1,0)
q←q (x) =

(
C(1,0)
q←q (x)

)
+

+ δ(x̄)CF

(
1− π2

6

)
,

C(1,0)
g←g (x) =

1

x

(
xC(1,0)

g←g (x)
)

+
− δ(x̄)CA

π2

6
,

C(1,0)
q→q (z) =

1

z2

(
z2C(1,0)

q→q (z)
)

+
+ δ(z̄)CF

(
6− 3

2
π2

)
,

C(1,0)
g→g(z) =

1

z3

(
z3C(1,0)

g→g(z)
)

+
+ δ(z̄)CA

(
65

18
− 3

2
π2

)
, (E.1)

where the matching coefficients for TMDPDF and TMDFF case on the r.h.s. are taken

from eq. (7.2) and eq. (7.10) respectively. Obviously, only regular parts of the matching

coefficients on the r.h.s. contribute, since (δ(z̄))+ = 0.

The NNLO expressions are

C(2,0)
q←q (x) =

(
C(2,0)
q←q (x)

)
+

+ δ(x̄)CF

[
CF

(
203

8
− 25π2

6
− 12ζ3 +

157π4

360

)
(E.2)

+CA

(
7277

324
+

175π2

108
− 278

9
ζ3 −

7π4

30

)
+ TrNf

(
−1565

162
− 5π2

27
+

52

9
ζ3

)]
,
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C(2,0)
g←g (x) =

1

x

(
xC(2,0)

g←g (x)
)

+
+ δ(x̄)

[
C2
A

(
16855

324
− 113π2

36
− 407

9
ζ3 +

53π4

360

)
+CATrNf

(
−577

81
+

5π2

9
+

28

9
ζ3

)
+ CFTrNf

85

81

]
, (E.3)

C(2,0)
q→q (z) =

1

z2

(
z2C(2,0)

q→q (z)
)

+
+ δ(z̄)CF

[
CF

(
−213

8
− 5π2 − 12ζ3 +

397π4

360

)
(E.4)

+CA

(
6353

81
− 443π2

36
− 278

9
ζ3+

91π4

90

)
+TrNf

(
−2717

162
+

25π2

9
+

52

9
ζ3

)]
,

C(2,0)
g→g(z) =

1

z3

(
z3C(2,0)

g→g(z)
)

+
+ δ(z̄)

[
C2
A

(
43− 430π2

27
− 605

9
ζ3 +

59π4

24

)
(E.5)

+CATrNf

(
38

81
+

55π2

27
− 68

9
ζ3

)
+ CFTrNf

674

81

]
.
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