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1 Overview and motivation

1.1 Chiral anomaly and magnetoconductivity

The various implications of quantum anomalies [1]–[3] on relativistic hydrodynamic sys-

tems [4] has been an active area of research for the past couple of decades1 [5]–[7]. The

fact that is well understood by now is that the presence of anomalies always induce trans-

port processes in a relativistic hydrodynamic system without any effects of dissipation

and thereby they do not contribute to the local entropy production with in the system

itself [8]–[25]. Keeping the spirit of this intriguing fact, it is noteworthy to mention that

the physics of (chiral) anomalies has attained renewed attention for the past one decade

in the context of relativistic heavy ion collisions where during the early non equilibrium

stages of the collision one might have an imbalance between the number of left handed and

right handed quarks [26]–[28]. This phenomena leads to so called axial anomalies which

trigger an electric current in the presence of an external magnetic field [26]–[28].

1As an example one might consider the hydrodynamic description of hot chiral QCD with two flavor d.o.f

at temperatures much higher than the QCD transition temperature. In the absence of external magnetic

field, both the isospin as well as the axial isospin currents are conserved. On the other hand, when an exter-

nal magnetic field is switched on, the corresponding constitutive equations receive anomalous contributions

and thereby the axial (isospin) current is no more conserved [7]. However, such a non conservation due to

anomaly requires both the electric field as well as the magnetic field along the same direction.
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Chiral anomalies in (3 + 1) dimensions lead to anomalous transports of two types

at the level of the first order dissipative hydrodynamics. The first one is known as the

chiral magnetic conductivity, which is the transport associated with electrical conductivity

parallel to the direction of the magnetic filed. The other (anomalous) transport associated

with chiral anomalies is known as the chiral vortical conductivity [29]–[30] which is the

transport associated with the induced current sourced due to the vortices present in the

fluid [29]–[30]. Keeping these facts in mind, one could in principle express the constitutive

relations corresponding to a U(1) charged anomalous fluid in the Landau frame as2 [31],

Tµν = (ǫ+ p)uµuν + pgµν − ηPµαP νβ(∇αuβ +∇βuα)−
(

ζ − 2

3
η

)

Pµν(∇.u)

Jµ = ̺uµ + σE

(

Eµ − TPµν∇ν

(µ

T

))

+ σBB
µ + σV ω

µ (1.1)

where, Pµν = gµν + uµuν is the usual projection operator and σB and σV are respectively

the chiral magnetic and chiral vortical conductivities.

In [31], the authors had shown that these two transports could in principle be fixed

almost uniquely within the theory itself by demanding the positive definiteness of the local

entropy current. However, it was shown later on that depending on the temperature of the

system one could still add various other terms to these anomalous transport coefficients

as undetermined integration constants [32]. Keeping the spirit of our current discussion,

it is noteworthy to mention that the computation of the anomalous transports directly by

using the Kubo formula has been initiated recently [33]–[34] where the analysis has been

extended in order to incorporate the effects of mixed gauge-gravitational anomalies in four

dimensions [35]–[40]. At this stage it is noteworthy to mention that the Kubo formulae for

anomalous transports are in fact quite different from that of the usual Kubo formulae for

dissipative transports. In order to evaluate anomalous transports using Kubo formulae, one

first needs to take the zero frequency limit and then the zero momentum limit. Whereas

on the other hand, in case of dissipative transports it works the other way around [33].

The effects of mixed gauge-gravitational anomalies in four dimensions appear in a

strange manner. The reason for this rests on the fact that although these effects are higher

order in derivatives, still they show up as a purely temperature dependent effect at the

first order level in the derivative expansion. However, at this stage it is customary to note

the following fact: in case of pure chiral anomalies, using the notion of positive definiteness

of the local entropy production one could in principle fix the corresponding transports

associated with it. On the other hand, no such analogous method has been developed yet

in order to fix the transports associated with mixed gauge-gravitational anomalies.

2At this stage it is noteworthy to mention that considering a most general approach, one could in

principle construct anomalous hydrodynamics with n number of anomalous charges (̺(n)). However,

physically the most interesting situation arises when we consider the case with n = 2 U(1) charges. In

that case one needs to define an axial vector current (Jµ
5 ) and the vector current (Jµ) where the later

one is guaranteed to be conserved by means of the Bardeen counter term. For the purpose of our present

computations, we would however stick to the n = 1 case where the U(1) current that we consider plays

the analogous role of the axial vector current [19].

– 2 –
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One of the intriguing features of chiral anomalies in (3 + 1) dimensions is the exis-

tence of the longitudinal magnetoconductivity along the direction of the external magnetic

field [41]–[46]. In other words, in the presence of chiral anomalies, there appear to be addi-

tional contributions to the longitudinal DC electrical conductivity along the direction of the

background magnetic field. This additional contribution strongly enhances the value of the

DC electrical conductivity from its usual value. The existence of negative magnetoresistiv-

ity in Weyl metals has been investigated extensively in [42]. This analysis eventually hints

towards an experimental realization of axial anomalies under a solid state set up. In their

analysis [42], the authors claim that although the negative magnetoresistivity is concerned

with the triangle anomaly, still it takes place at the classical level where one could ignore the

electron mean free path compared to the magnetic length scale of the theory. In the follow-

ing we summarize various characteristic features of longitudinal magnetoconductivity [45]:

• In the context of relativistic (z = 1) hydrodynamics, this effect is solely generated by

the chiral anomaly itself, which therefore disappears in the absence of the anomaly.

• The contributions coming from various dissipative effects (for example, the energy

relaxation, the charge relaxation and the momentum relaxation) present in the system

play crucial role in order to generate a finite longitudinal DC magnetoconductivity

within the system.

• Moreover, in [45], considering the zero charge density limit, the authors had computed

the anomalous contribution to the DC electrical conductivity under a holographic set

up. These computations eventually correspond to longitudinal magnetoconductivity

in a strongly coupled system. From their analysis, one could easily notice that the

anomalous contribution to the conductivity goes as, ∼ T−2 and is proportional to

the square of the external magnetic field.

1.2 Hydrodynamics at a Lifshitz fixed point

For the past few years, the hydrodynamic description of quantum critical systems with

Lifshitz scaling symmetry [47]–[52] has been an active area of research due to its several

remarkable features among which the most significant one is the description of strange

metals near the quantum criticality where the usual Landau Fermi liquid theory does not

hold good. Quantum critical points are believed to be the best candidates in order to

describe several physical properties of heavy Fermion compounds including the high Tc

superconductors. The hydrodynamic description of Lifshitz like fixed points exists under

certain limiting conditions namely, when the length scale (lT ∼ T−1/z) associated with

thermal fluctuations is quite small compared to that of the correlation length (ξ ≫ lT ) of

the theory. This hydrodynamic sector also covers part of the superconducting dome where

the symmetry is broken spontaneously.

Lifshitz fixed points are always special in the sense that Lifshitz symmetry algebra

does not include the generators of the Lorentz boost symmetry which eventually results

in a number of additional transports in the hydrodynamic description of the theory. This

– 3 –
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point could be further elaborated as follows. We know that the divergence of the Noether

current (Mµνλ) associated with Lorentz invariance could be formally expressed as,

∂µMµνλ = T νλ − T λν . (1.2)

It is therefore quite evident from the above equation (1.2), that if the corresponding current

associated with Lorentz transformations is not conserved then the stress tensor need not

necessarily have to be symmetric namely, T νλ 6= T λν .

The role of parity breaking transports (in (3+1) dimensions) on the hydrodynamic sec-

tor of the Lifshitz like fixed points has been explored very recently in [52]. There the authors

study the effect of chiral anomalies on the hydrodynamic transports in the presence of the

broken Lorentz boost invariance. From the experimental point of view such a theoretical at-

tempt is important due to the fact that most of the strange metal phenomena are observed

either in magnetic materials or in the presence of the external magnetic field. In there anal-

ysis, the authors have found that apart from having the usual parity odd transports namely,

the chiral magnetic conductivity as well the chiral vortical conductivity one encounters ad-

ditional (non)dissipative transports (due to the broken Lorentz symmetry) which could be

uniquely fixed by demanding the positivity of the local entropy production [52].

1.3 Our goal

Keeping the spirit of the discussions made so far, the purpose of the present article is to

carry out an explicit analytic computation of the magnetoconductivity associated with Lif-

shitz like fixed points under the framework of the so called linear response theory. From the

experimental point of view, some of the crucial theoretical predictions of our analysis should

be testable in various solid state set up (particularly in strange metal systems3) in the near

future. In our analysis, we are particularly interested to explore the following issues.

• The primary concern of our analysis would be to explore the Lifshitz sector (we call

it as ΘL) of the longitudinal DC electrical conductivity (σDC) and in particular how

the effects of chiral anomalies enter into this sector.

• The second motivation of our analysis would be to study the effects of relaxation time

in this sector and in particular the behavior of ΘL in the low frequency (w) limit i.e,

whether there exists any pole in the limit w → 0.

• Finally, our aim would be to sketch a holographic set up in order to evaluate the

entity ΘL under certain specific assumptions namely, in the limit of the zero charge

density (̺) and at high temperatures (T ). This formulation would eventually provide

us with some basic characteristic features (like the scaling of ΘL with temperature)

of ΘL at strong coupling.

The organization of the paper is the following. In section 2, we review the parity odd

Lifshitz hydrodynamics in (3 + 1) dimensions. In section 3, we compute the magnetocon-

ductivity for Lifshitz like fixed points in (3 + 1) dimensions. In section 4, we provide a

3As for example, one could list certain ferromagnetic materials like, MnSi, ZrZn2, unconventional

cuprate superconductors and iron pnictides, electronic nematics like Sr3Ru2O7 etc. [53]–[54].

– 4 –
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holographic platform in order to evaluate the Lifshitz contribution (ΘL) at strong coupling.

Finally, we conclude in section 5.

2 Lifshitz hydrodynamics

2.1 Uncharged fluid

We start our analysis with the formal introduction to the basic characteristic features

of Lifshitz hydrodynamics in general in d + 1 dimensions [47]. Hydrodynamic systems

with Lifshitz scale invariance differ significantly from that of the usual (Lorent invariant)

relativistic hydrodynamic systems due to the presence of the new transport coefficients

allowed by the lack of (Lorentz) boost invariance. Due to the presence of the rotational

invariance, these additional transports could be attributed starting from the first order

dissipative level in the constitutive relation of the stress tensor namely [47],

Tµν = ǫuµuν + pPµν +Π
(µν)
S +Π

[µν]
A + (uµΠ

[νσ]
A + uνΠ

[µσ]
A )uσ (2.1)

where, ǫ and p are respectively the energy and the pressure density and Pµν = ηµν+uµuν is

the so called projection operator.4 Note that here Π
(µν)
S and Π

[µν]
A are respectively the sym-

metric as well as the antisymmetric combination of the dissipative terms at the level of the

first order derivative expansion whose details will be fixed going into certain specific frame

of reference as well as by imposing constraints due to the second law of thermodynamics.

In our analysis, we restrict ourselves to Landau frames namely, Tµνuν = −ǫuµ. This

eventually constrains the form of dissipative terms in the constitutive relation (2.1). For

example, the symmetric part of the dissipation must satisfy the condition Π
(µν)
S uν = 0. On

the other hand, the anti symmetric part takes the form, Π
[µν]
A = u[µV

ν]
A = 1

2

(

uµV ν
A − uνV µ

A

)

such that V ν
Auν = 0. Keeping these facts in mind, the energy momentum tensor of an

uncharged (Lifshitz) fluid in the Landau frame takes the following form [52],

Tµν = ǫuµuν + pPµν +Π
(µν)
S + uµV ν

A . (2.2)

2.2 Charged fluid

In order to define charged fluids with Lifshitz scaling symmetry, one needs to consider an

additional constitutive relation for the U(1) charged current namely [52],

Jµ = ̺uµ + Γµ (2.3)

where Γµ is the full first order dissipative correction to the charge current that contains all

the terms at the level of the first order in the derivative expansion.5 Following our previous

arguments, in the Landau frame we are supposed to impose certain constraints over the

4Here uµ is the four velocity such that uµuµ = −1.
5In principle Γµ contains the full set of dissipative corrections due to both parity even as well as parity

odd terms in the constitutive relation at the level of the first order derivative expansion. However in this

section we only consider contributions coming from the parity even sector which we denote as Γµ

P . The

parity odd sector will be included in the next section.
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dissipative corrections to the charge current, namely Γµuµ = 0, which thereby determines

the charge density as, ̺ = −Jµuµ.

Before we proceed further, it is important to have some discussions on the scaling

dimensions of various thermodynamic entities and/or physical parameters in a theory with

Lifshitz scaling symmetry. For a theory with the Lifshitz scale invariance,

t → λzt, xi → λxi, i = 1, . . . , d (2.4)

the temperature (T ) as well the chemical potential (µ) scales as, [T ] = [µ] = z. The speed

of light on the other hand is considered to be a quantity with non zero scaling dimensions

namely,6 [c] = z − 1. The scaling dimensions corresponding to the rest of the parameters

of the theory turn out to be,

[uµ] = 0, [ǫ] = [p] = z + d, [̺] = d. (2.5)

Like in the uncharged case, in the constitutive relations corresponding to a charged

viscous fluid one can in principle add all possible terms that come up with derivatives of

the fluid velocity (uµ), temperature (T ), chemical potential (µ) and the gauge field (Aµ).

Not all of these terms are physically relevant and they turn out to be highly constrained

due to the second law of thermodynamics which could be expressed mathematically in its

local form as,

∂µj
µ
s ≥ 0 (2.6)

where,

jµs = suµ − µ

T
Γµ (2.7)

is the so called entropy current where s is the canonical entropy density that obeys the

Euler relation,

ǫ+ p = Ts+ µ̺ (2.8)

as well as the first law,

δǫ = Tδs+ µδ̺. (2.9)

After some straightforward calculations, the most general (parity even) viscous terms al-

lowed by the second law of thermodynamics could be formally expressed as [52],

Tµν = ǫuµuν + pPµν − ηPµαP νβ

(

∂αuβ + ∂βuα − 2

d
Pαβ(∂.u)

)

− ζPµν(∂.u)

−α1u
µaν − 2α2u

µEν + 2α2Tu
µP νσ∂σ

(µ

T

)

(2.10)

Jµ = ̺uµ + 2α3a
µ + σEE

µ − σETP
µσ∂σ

(µ

T

)

(2.11)

6In particular, for field theories at a Lifshitz fixed point (z ≥ 2), the Lorentz invariance is explicitly

broken near the UV scale of the theory and as a result the speed of light at that scale may turn up

to infinity. This leads to the modification of the so called dispersion relation at short distances namely,

vg ∼ z
(

q

M

)z−1
, where, q is the spatial momentum and M is the mass of the scalar particle such that,

q ≫ M near the UV scale of the theory [55]. For such theories, however, the Lorentz invariance could be

restored back at large distances where one could (approximately) set the speed of light equal to unity.

– 6 –
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where, Eµ = Fµνuν is the external electric field strength and aµ = uσ∂σu
µ is the accel-

eration. Finally, it is the positivity of the entropy current that essentially imposes the

following constraints on the transport coefficients namely [52],

η ≥ 0, ζ ≥ 0, σE ≥ 0, σEα1 ≥ (α2 + α3)
2. (2.12)

2.3 Parity odd transport

We now restrict ourselves to 3 + 1 dimensions and extend the above formalism by con-

sidering the parity odd transports that one could possibly add (at the level of the first

order derivative expansion) to the constitutive relations of the stress tensor (Tµν) as well

as the charge current (Jµ). These parity odd transports have their origin into the chiral

anomalies associated with Weyl fermions in (3 + 1) dimensions namely [31],

∂µJ
µ = cEµB

µ. (2.13)

The resulting parity odd terms that one might add to the stress tensor (Tµν) as well

as the charge current (Jµ) could be formally expressed as [52],

Tµν
/P

= −Tβωu
µων − TβBu

µBν

Γµ
/P
= σV ω

µ + σBB
µ. (2.14)

Note that here ωµ and Bµ are respectively the vorticity and the external magnetic field

strength that could be formally expressed as [31],

ωµ =
1

2
εµνρσuν∂ρuσ, Bµ =

1

2
εµνρσuνFρσ. (2.15)

The corresponding entropy current could be readily expressed as,

jµs = suµ − µ

T
Γµ +DV ω

µ +DBB
µ (2.16)

where the last two terms on the r.h.s. of (2.16) are imposed by hand in order to ensure the

positivity of the entropy current [31]. From (2.16), it is in fact quite trivial to compute the

divergence of the local entropy current which for the present case turns out to be [52],

∂µj
µ
s = ∆P +∆/P (2.17)

where,

∆P = − 1

T
π
(µν)
S ∂µuν −

1

T
V µ
Aaµ +

1

T
Γµ
P

(

Eµ − TPµ
ν∂ν

(µ

T

))

(2.18)

is the contribution of the parity even sector to the entropy current and,

∆/P = − 1

T
V µ

A,/P
aµ+

1

T
Γµ

/P

(

Eµ − TPµ
ν∂ν

(µ

T

))

− cµ

T
EµB

µ+∂µ(DV ω
µ)+∂µ(DBB

µ) (2.19)

is the contribution that comes from the parity odd sector.7

7For details see [52].
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As reported by the authors in [52], the positivity of the entropy current could be en-

sured iff the parity odd terms cancel among themselves. This cancellation could be realized

on-shell i.e; by using the ideal hydrodynamic equations. This also fixes the acceleration

as [52],

aµ =
̺

ǫ+ p
Eµ − 1

ǫ+ p
Pµν∂νp. (2.20)

Finally, by computing ∂µj
µ
s from (2.17) and demanding the positivity of the entropy

current one essentially ends up with the following set of solutions corresponding to the par-

ity odd transports in 3+1 dimensions in the presence of the Lifshitz scale invariance8 [52],

βω = 4γBµT, βB = 0

σB = c

(

µ− ̺µ2

2(ǫ+ p)

)

− ̺T 2

ǫ+ p
γB

σV = c

(

µ2 − 2̺µ3

3(ǫ+ p)

)

+ 2γBT
2

(

1− µ̺

ǫ+ p

)

− 2γω
̺T 3

ǫ+ p
. (2.21)

Combining all these pieces of information together, the complete set of constitutive

relations (upto the first order in the derivative expansion) for a charged anomalous fluid

at its Lifshitz fixed point could be formally expressed as,9

Tµν = ǫuµuν + pPµν − ηPµαP νβ

(

∂αuβ + ∂βuα − 2

3
Pαβ(∂.u)

)

− ζPµν(∂.u)

−α1u
µaν − 2α2u

µEν + 2α2Tu
µP νσ∂σ

(µ

T

)

− 4γBµT
2uµων (2.22)

Jµ = ̺uµ + 2α3a
µ + σEE

µ − σETP
µσ∂σ

(µ

T

)

+ σV ω
µ + σBB

µ. (2.23)

Eqs. (2.22) and (2.23) together with (2.20) is precisely the starting point of our analysis.

3 Conductivity at Lifshitz fixed point

With the above set up in hand, the purpose of the present section is to carry out an explicit

computation for the anomalous longitudinal DC conductivity [45] along the direction of

the external magnetic field in the presence of the Lifshitz scaling symmetry. We start our

analysis with the following assumptions that in the hydrodynamic limit one can generally

claim T ≥ µ, E ≪ T 2 and |cB| ≪ T 2 so that it is sufficient to consider terms upto leading

order in the derivative expansion and ignore all the higher order terms.

To start with we consider our system to be in equilibrium in the so called grand

canonical ensemble which is characterized by the Euler relation (2.8) together with the

following identity,

dp = sdT + ̺dµ (3.1)

whose density matrix could be characterized in terms of two physical parameters namely,

the temperature (T ) and the chemical potential (µ) along with a specific choice for the

8The enthusiastic reader should consult [52] for the details of the derivation.
9By demanding the CPT invariance we would finally set, γω = 0 [52].

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
5

velocity vector field namely, uµ = (1, 0, 0, 0). Moreover, we assume that initially there is

a background magnetic field (B) along the z direction and there is no background electric

field (Eµ = F tµ = 0) to start with. Under such circumstances different components of the

stress tensor as well as the U(1) current could be formally expressed as,

T tt = ǫ(µ, T ), T ti = 0, T ii = p(µ, T ), J t = ̺(µ, T ), Jz = σBB. (3.2)

We now perturb our system by turning on an external electric field δEµ and we focus

particularly on the longitudinal component of the electric field (δEz) since this is the only

component that is responsible for the anomalous contribution in the DC conductivity. In

the following we enumerate all possible perturbations in the system upto linear order in

the fluctuations,

δEz = δF tz, δEx = δF tx +Bδuy, δEy = δF ty −Bδux

µ(t,x) = µ+ δµ(t,x), T (t,x) = T + δT (t,x), uµ(t,x) = (1, δui(t,x)). (3.3)

With the above perturbations (3.3) in hand, it is in fact quite straightforward to show

that the following relations are true upto leading order in the fluctuations,

δT tt = δǫ

δT ti = (ǫ+ p)δui −
(

α1̺

ǫ+ p
+ 2α2

)

δEi + δij
[

α1

ǫ+ p
∂jδp+ 2α2T∂j

(

δ
µ

T

)

]

− 2γBµT
2εtijk∂jδuk

δT it = (ǫ+ p)δui

δT ij = δijδp− ηδikδjm
(

∂kδum + ∂mδuk − 2

3
δkm∂pδup

)

− ζδij∂kδuk = δT ji

δJ t = δ̺+
1

2
σBBδuz

δJx = ̺δux +

(

σE + 2α3
̺

ǫ+ p

)

δEx − 2α3

ǫ+ p
∂xδp− σET∂x

(

δ
µ

T

)

+ σV ∂[yδuz]

δJy = ̺δuy +

(

σE + 2α3
̺

ǫ+ p

)

δEy − 2α3

ǫ+ p
∂yδp− σET∂y

(

δ
µ

T

)

+ σV ∂[zδux]

δJz = ̺δuz +

(

σE + 2α3
̺

ǫ+ p

)

δEz − 2α3

ǫ+ p
∂zδp− σET∂z

(

δ
µ

T

)

+ σV ∂[xδuy] + δσBB. (3.4)

Note that the result δT ti 6= δT it essentially reflects the fact that we are working with the

Lifshitz isometry group where the Lorentz boost invariance is explicitly broken.

Before we proceed further a few important remarks are in order. First of all, one

should note that a Lifshitz fixed point is manifestly translation invariant. In other words,

the Lifshitz symmetry algebra includes the generators of time translation (Pt = ∂t) as well

as spatial translations (Pi = ∂i) that satisfy the following subalgebra with the dilatation

generator (D),

[D,Pt] = zPt, [D,Pi] = Pi. (3.5)

This eventually implies that in the vicinity of the Lifshitz like fixed points one might

encounter with situations like infinite DC conductivity (due to the lack of momentum dis-

sipation) that one generally encounters in the context of usual relativistic hydrodynamics

– 9 –
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due to the conservation of the linear momentum. The reason for this is that for a transna-

tionally invariant system with finite charge density, the charge carriers could be accelerated

upto infinite momentum in the presence of an external electric field [45]. Such a situation

could however be avoided once we include the effect of dissipation in the theory namely [45],

∂µδT
µt = δF tzJz +

1

τe
δTµtuµ

∂µδT
µi = ̺δF ti + F iµδJµ +

1

τm
δTµiuµ

∂µδJ
µ = cδEµBµ +

1

τc
δJµuµ (3.6)

where, τe, τm and τc are respectively the energy relaxation time, momentum relaxation

time and the charge relaxation time. In general for systems with spatial anisotropy the

value of τm should in principle be different along different spatial directions. However, for

Lifshitz like fixed points we do not really need to worry about it as Lifshitz fixed points

are manifestly rotationally invariant. Our next task would be to substitute (3.4) into (3.6)

and restrict ourselves upto leading order in the fluctuations which finally yields,
(

∂t +
1

τe

)

δǫ+ ∂i [(ǫ+ p)δui]− σBBδEz = 0

(

∂t +
1

τm

)

(

(ǫ+ p)δux − Ξx − 4γBµT
2∂[yδuz]

)

+ ∂xδp− η

(

∂2
kδux +

1

3
∂x∂kδuk

)

− ζ∂x∂kδuk

= ̺δF tx +BδJy
(

∂t +
1

τm

)

(

(ǫ+ p)δuy − Ξy − 4γBµT
2∂[zδux]

)

+ ∂yδp− η

(

∂2
kδuy +

1

3
∂y∂kδuk

)

− ζ∂y∂kδuk

= ̺δF ty −BδJx
(

∂t +
1

τm

)

(

(ǫ+ p)δuz − Ξz − 4γBµT
2∂[xδuy]

)

+ ∂zδp− η

(

∂2
kδuz +

1

3
∂z∂kδuk

)

− ζ∂z∂kδuk

= ̺δEz
(

∂t +
1

τc

)(

δ̺+
1

2
σBBδuz

)

+ ∂iΥi + ∂zδσBB = cBδEz

(3.7)

where each of the individual coefficients could be formally expressed as (i = x, y, z),

Ξi =

(

α1̺

ǫ+ p
+ 2α2

)

δEi −
(

α1

ǫ+ p
∂iδp+ 2α2T∂i

(

δ
µ

T

)

)

=

(

α1̺

ǫ+ p
+ 2α2

)

δEi −
(

α1̺

ǫ+ p
+ 2α2

)

∂iδµi + . . .

Υi = ̺δui +

(

σE + 2α3
̺

ǫ+ p

)

δEi −
2α3

ǫ+ p
∂iδp− σET∂i

(

δ
µ

T

)

+
σV
2
εijk∂jδuk

=

(

σE + 2α3
̺

ǫ+ p

)

δEi −
(

σE + 2α3
̺

ǫ+ p

)

∂iδµi + . . . (3.8)

Before we proceed further, it is important to note that in the parity even sector the coeffi-

cients associated with δEi as well as −∂iδµi are indeed the same. The only difference that

– 10 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
5

appears is in the parity odd sector, namely in the coefficients associated with δEz which

are vividly distinct in the last equation of (3.7). In other words, in the absence of anomaly,

there would not have been any mismatch between the coefficients associated with δEi and

−∂iδµi.

Performing first the Fourier transform for the fluctuations and thereby taking the zero

limit for the spatial momentum (k → 0) at the end we finally arrive at the following set of

equations,

weδǫ− iσBBδEz = 0

wm

[

(ǫ+ p)δux −
(

α1̺

ǫ+ p
+ 2α2

)

δEx

]

− i̺δF tx − iB

[

̺δuy +

(

σE + 2α3
̺

ǫ+ p

)

δEy

]

= 0

wm

[

(ǫ+ p)δuy −
(

α1̺

ǫ+ p
+ 2α2

)

δEy

]

− i̺δF ty + iB

[

̺δux +

(

σE + 2α3
̺

ǫ+ p

)

δEx

]

= 0

wm

[

(ǫ+ p)δuz −
(

α1̺

ǫ+ p
+ 2α2

)

δEz

]

− i̺δEz = 0

wc

(

δ̺+
1

2
σBBδuz

)

−icBδEz = 0(3.9)

where the individual frequencies could be formally expressed as,

we = w+
i

τe
, wm = w+

i

τm
, wc = w+

i

τc
. (3.10)

Before we proceed further, it is important to note down the following variations namely,

δǫ(µ, T ) = g1δµ+ g2δT

δ̺(µ, T ) = h1δµ+ h2δT. (3.11)

By means of the above set of identities (3.11), our next task would be to solve the

fluctuations namely δuz, δµ and δT in terms the variations of the electric field strength

which finally yields,

δuz =
i̺δEz

wm(ǫ+ p)
+

(

α1̺

ǫ+ p
+ 2α2

)

δEz

(ǫ+ p)
(3.12)

δµ =
BδEz

(g2h1 − g1h2)

(

− ih2σB

we

− iσBg2̺

2wm(ǫ+ p)
+

icg2
wc

)

−
(

α1̺

ǫ+ p
+ 2α2

)

BσBg2δEz

2(ǫ+ p)(g2h1 − g1h2)

δT =
BδEz

(g2h1 − g1h2)

(

ih1σB

we

+
iσBg1̺

2wm(ǫ+ p)
− icg1

wc

)

+

(

α1̺

ǫ+ p
+ 2α2

)

BσBg1δEz

2(ǫ+ p)(g2h1 − g1h2)
.

Before we proceed further, the reader should be able to figure out the basic differences

between the set of solutions (3.12) obtained at a Lifshitz fixed point to that with the earlier

observations made in the context of usual relativistic hydrodynamics [45]. From (3.12), it

is in fact quite trivial to note that corresponding to each of the individual fluctuations we

always have an extra contribution whose origin could be understood as the lack of boost

invariance at a Lifshitz fixed point . Therefore the above set of solutions (3.12) might be

regarded as a special class of solutions those are valid particularly in the context of Lifshitz

hydrodynamics.
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Finally, substituting (3.12) into the last equation of (3.4) and thereby considering the

k → 0 limit we note the following,

δJz = ̺δuz +

(

σE + 2α3
̺

ǫ+ p

)

δEz +BΦ(µ)δµ+BΦ(T )δT

≡ σDCδEz (3.13)

where each of the individual coefficients could be formally expressed as,

Φ(µ) = c− h1(cµ
2 − 2γBT

2) + 2cµ̺

2(ǫ+ p)
+

̺(g1 + ̺)(cµ2 − 2γBT
2)

2(ǫ+ p)2

Φ(T ) = −(cµ2 − 2γBT
2)h2 − 4γBT̺

2(ǫ+ p)
+

̺(cµ2 − 2γBT
2)(g2 + s)

2(ǫ+ p)2
. (3.14)

Here σDC is the anomalous DC conductivity at a Lifshitz fixed point that could be formally

expressed as,

σDC = σE +Θ+ΘL (3.15)

where, Θ is the usual contribution to the anomalous DC conductivity corresponding to

z = 1 fixed point [45]. On the other hand, ΘL is the non trivial contribution to the

conductivity that appears solely due to the Lifshitz scaling symmetry. In this sense (3.15)

is the generalization of the earlier observations [45] corresponding to Lifshitz like fixed

points. The details of these coefficients could be formally expressed as,

Θ =
i̺2

wm(ǫ+ p)
+

B2Φ(µ)

(g2h1 − g1h2)

(

− ih2σB
we

− iσBg2̺

2wm(ǫ+ p)
+

icg2
wc

)

+
B2Φ(T )

(g2h1 − g1h2)

(

ih1σB
we

+
iσBg1̺

2wm(ǫ+ p)
− icg1

wc

)

(3.16)

ΘL =

(

α1̺

ǫ+p
+2α2

)

(

̺

ǫ+p
− B2Φ(µ)σBg2
2(ǫ+p)(g2h1−g1h2)

+
B2Φ(T )σBg1

2(ǫ+p)(g2h1−g1h2)

)

+
2α3̺

ǫ+p
. (3.17)

Eq. (3.15) along with eqs. (3.16) and (3.17) provides a complete description for the

anomalous conductivity corresponding to Lifshitz like fixed points. In the following we

systematically enumerate a number of interesting observations one by one.

• In the limit B, c, γB → 0, the conductivity along the longitudinal direction turns out

to be,

σDC = σE +
i̺2

wm(ǫ+ p)
+

(

α1̺

ǫ+ p
+ 2α2 + 2α3

)

̺

ǫ+ p
. (3.18)

As usual the first two terms on the R.H.S. of (3.18) corresponds to the usual con-

tribution to the anomalous conductivity in the absence of the background magnetic

field (B) [45]. The last term on the R.H.S. of (3.18) is the contribution that solely

arises because of the Lifshitz scaling symmetry. The source for the first two terms

are hidden in the constitutive relation for the stress tensor (Tµν) while the third term

has its origin in the acceleration piece appearing in the constitutive relation of the

U(1) current (Jµ).

– 12 –



J
H
E
P
0
9
(
2
0
1
5
)
1
4
5

• One could make various important observations by looking at the expression for ΘL

quite carefully.10 The first observation that one should be able to make is that clearly

there seems to be a precise contribution of the anomaly sector on the charge current

which is always coupled to the background magnetic field (B). The most amazing

fact about the Lifshitz contribution to the longitudinal DC conductivity (σDC) is that

unlike the z = 1 case, even in the absence of the anomaly (c = 0), we have a precise

contribution to σDC sourced by the external magnetic field (B) whose strength is

determined by the coefficient γB which is the parity odd transport associated with

the axial vector (ωµ) in the constitutive relation for the stress tensor (2.22). One

could separate out this parity odd contribution to the magnetoconductivity as,

ΘL =

(

α1̺

ǫ+ p
+ 2α2

)

B2̺T 4γ2B
2(ǫ+ p)3(g2h1 − g1h2)

(

g2h1 − g1h2 −
̺(g2̺− g1s)

ǫ+ p
− 2g1̺

T

)

.

(3.19)

At this stage it is noteworthy to mention that for the z = 1 case, the effect of

the external magnetic field (B) to the longitudinal conductivity (σDC) is always

coupled with the anomaly (c) itself [45]. On the other hand, as we have just seen,

in the Lifshitz scenario the anomaly (c) is not the only candidate that contributes to

the conductivity via external magnetic field (B). All these observations eventually

suggest that for Lifshitz like systems, even in the absence of the anomaly, one could

in principle have a finite change in the chemical potential (δµ) or in the temperature

(δT ) associated with the external magnetic field.

• Like in the sector Θ, one could also divide various contributions appearing in the

Lifshitz sector ΘL mostly into three pieces. The first term is the usual contribution

that appears due to the acceleration (δuz) of the charged particles in the presence

of an external electric filed (δEz). The second and the third pieces are precisely

the contributions that appear due to the change in the chemical potential (δµ) as

well as the temperature (δT ) of the system while switching on the external electric

field (δEz). These last two effects are precisely the Lifshitz sector of the anomalous

contributions to the longitudinal current (δJz).

• The significant difference that appears in the Lifshitz sector (ΘL) of the anomalous

conductivity is that unlike the previously explored [45] sector Θ, the Lifshitz sector

(ΘL) does not explicitly depend on the frequency (w) and it does not contain any

pole in w. Therefore this piece is always finite at all frequencies. In other words, from

Lifshitz sector one can always have a finite contribution to the longitudinal conductiv-

ity irrespective of any frequency. Moreover, it also does not contain any information

about the relaxation times present in the system and therefore is completely blind to

any effects of dissipation present in the system.

• Finally, we would like to mention about the last piece of information available above

in (3.17) namely, 2α3̺
ǫ+p which could be thought of as an effect arising due to the

10In this paper we are not interested in the piece Θ as it has been already discussed extensively in [45].
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acceleration of the charged particles in the system. We identify this effect as the

consequence of the acceleration term present in the constitutive relation of the charge

current (2.23).

4 A note on holographic derivation

The purpose of this section is to make an outline of the possible set up that will be required

in order to carry out an explicit holographic computation for the physical entity ΘL in the

probe limit. With these calculations in hand, we shall atleast have some prescription in

order to evaluate the actual value of the anomalous contribution of the Lifshitz sector

to the longitudinal DC conductivity. The computation that we carry out in this section

eventually assumes the following facts:

• The gauge fields (Aµ) are considered to be in the probe limit, i.e, they do not back

react on the background geometry.

• The charge density (̺) of the system is considered to be extremely small compared

to the neutral d.o.f of the system. On the other hand, the temperature (T ) of our

system turns out to be extremely high so that the following limits hold true namely,
∂̺
∂T ≪ 1, |cB| ≪ T 2 and µ/T ≪ 1. With these assumptions in mind, the approximate

expression for ΘL turns out to be,

ΘL ≈ α2B
2σBγB
s2

(

g1h2

g2h1
− 1

)

. (4.1)

Our job would be to evaluate the above entity (4.1) using the techniques of

Gauge/gravity duality.

4.1 The gravity set up

The gravity set up for our present calculation in the bulk essentially consists of asymptot-

ically (uncharged) Lifshitz black hole solutions in (4 + 1) dimensions. As observed in [56],

the effective action for Lifshitz like black brane solutions could be formally expressed as,

S =
1

16πG5

∫

d5x
√−g

(

R− 2Λ− 1

2
∂µφ∂

µφ− 1

4
eλφFµνFµν

)

(4.2)

where, φ is the mass less scalar field, F is the filed strength tensor corresponding to an

abelian one form (Aµ) and Λ is the negative cosmological constant.

The resulting Lifshitz black brane solution that naturally emerges as a solution of (4.2)

could be formally expressed as [57],

ds2 = L2

(

−r2zf(r)dt2 +
dr2

r2f(r)
+ r2dx2

)

f(r) = 1− rz+3
0

rz+3
, φ(r) ∼ log r, Frt ∼ Lrz+2

Λ = −(z + 3)(z + 2)

2L2
. (4.3)
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Before we proceed further, it is customary to note down the following important facts.

First of all, here r0 denotes the location of the horizon of the black brane. Whereas, on

the other hand, the boundary of the space time is located at r → ∞. Finally, the Hawking

temperature (T ), entropy density (s) as well as the energy density (ǫ) for such space time

configuration turn out to be,

T =
(z + 3)rz0

4π
, s =

L3r30
4G5

, ǫ =
3L3rz+3

0

16πG5
. (4.4)

4.2 Calculation of ΘL

To start with, we define a new variable,

u =
r0
r

(4.5)

in terms of which the solution (4.3) turns out to be,

ds2 = L2

(

−
(r0
u

)2z
f(u)dt2 +

du2

u2f(u)
+
(r0
u

)2
dx2

)

f(u) = 1− uz+3. (4.6)

Note that in this coordinate system, the horizon of the Lifshitz black brane is located at

u = 1, whereas on the other hand, the boundary is located at u = 0.

In order to describe the boundary (Lifshitz) hydrodynamics of a charged anomalous

fluid in (3 + 1) dimensions in the small charge density (̺ ≪ TL) limit we consider the

Maxwell Chern-Simons (CS) action,

S =

∫

d5x
√−g

(

−1

4
F
2 +

κ

3

εµνρσλ√−g
AµFνρFσλ

)

(4.7)

as a probe over the neutral background (4.6). Furthermore, from now on we set L =

16πG5 = 1 for the rest of our analysis. The resulting equation of motion turns out to be,

∇σF
σλ +

κ√−g
ελαβγδFαβFγδ = 0. (4.8)

In order to solve (4.8), we choose the following ansatz for the gauge field namely,

Aµ = (ϕ(u), 0, 0,Bx,Az(u)). (4.9)

Substituting the above ansatz (4.9) into (4.8), we arrive at the following set of equa-

tions,11

ϕ′′(u) +
(z − 2)

u
ϕ′(u) +

8κB

r3−z
0 uz−2

A
′

z = 0

A
′′

z +

(

f ′(u)

f(u)
− z

u

)

A
′

z +
8κBuz

rz+3
0 f(u)

ϕ′(u) = 0. (4.10)

11We have set εtxyzu = 1.
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The above set of equations (4.10) could be formally re expressed as,

(

8κB

r3−z
0

Az + uz−2ϕ′(u)

)

′

= 0

f(u)

uz
A
′

z +
8κB

rz+3
0

ϕ(u) = 0 (4.11)

subjected to the fact that ϕ(1) = f(1) = 0. Combining the above two equations in (4.11)

we finally obtain,

ϕ′′(u) +
(z − 2)

u
ϕ′(u)− 64κ2B2u2

r60(1− uz+3)
ϕ(u) = 0. (4.12)

The above differential equation (4.12) in general is quite difficult to solve for some generic

values of the dynamic critical exponent (z). Therefore in order to solve (4.12) analytically

we choose, z = 2 Lifshitz fixed point for the present case of study. With this choice, the

corresponding near boundary solution (u → 0) turns out to be,

ϕ(u) =

√
π

4
√
2Γ
(

3
4

) −
4u
(

4
√
2
√
π
√
B
√
κ
)

r
3/2
0 Γ

(

1
4

)

+O(u2). (4.13)

The chemical potential (µ) for the boundary field theory turns out to be,

µ = ϕ(0) =

√
π

4
√
2Γ
(

3
4

) . (4.14)

On the other hand, the charge density (̺) for the boundary field theory turns out to be,

̺ =
4
(

4
√
2
√
π
√
B
√
κ
)

r
3/2
0 Γ

(

1
4

)

. (4.15)

Using (4.4), (4.14) and (4.15) we finally obtain,

ΘL ≈ 2600α2B
2γB

21/4(4π)3T 3

(

59/4
√
BκγB

π7/4Γ(1/4)
− c

√
π

Γ(3/4)

)

. (4.16)

Note that even if c = 0, we still have a precise contribution to the longitudinal DC con-

ductivity (σDC) via this additional parity odd transport γB.

Following the original approach developed in [8], our final goal is to provide the Kubo

formulae corresponding to two of the transport coefficients namely, α2 and γB. In order to

do that, we consider the simplest situation namely we go to the rest frame of the fluid such

that uµ = (1, 0, 0, 0). Moreover, we turn on the vector potential only along the y direction

and at the same time the metric fluctuation with only non vanishing component hty such

that all of these fluctuations depend only along the z spatial direction. Considering all

these facts we note that upto leading order in the fluctuations,

T tx = 2γBµT
2∂zhty
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T ty = −phty − α1∂thty + 2α2∂tAy. (4.17)

Finally, putting the above relations (4.17) into the momentum space and differentiating

with respect to the sources we note down the Kubo formulae in the Landau frame as,

γB = lim
k→0

1

2ikµT 2
〈T txT ty〉

α2 = − lim
w→0

1

2iw
〈T tyJy〉. (4.18)

Note that in the Kubo formula of γB one needs to take the zero momentum (k → 0)

limit followed by a zero frequency (w → 0) limit which is quite reminiscent to that of the

Kubo formula for anomalous transports [8]. This similarity stems from the fact that both

of these transports are associated with the parity odd contributions to the constitutive

relations (2.22) and (2.23). On the other hand, α2 is the usual dissipative transport which

is also reflected in its Kubo formula (4.18).

We conclude our analysis with the following comments. First of all, it is interesting

to note from (4.16) is that ΘL is finally determined in terms of only two of the Lifshitz

transports namely, α2 and γB. The other two transports (α1 and α3) are not quite relevant

in the low charge density limit. Secondly, and most importantly, we note that the leading

behavior of ΘL goes with temperature as ∼ T−5, which therefore suggests that the anoma-

lous contribution to the charge current is highly suppressed in the high temperature limit.

Contrary to the previous observations corresponding to the z = 1 case (where the anoma-

lous contribution to the conductivity scales as ∼ T−2 [45]), this observation is in fact quite

non trivial in the sense that for the Lifshitz sector the suppression of the conductivity with

respect to the temperature is much more faster than its cousin in the relativistic sector.

5 Summary and final remarks

In this paper, based on the framework of linear response theory, we perform an analytic

computation for the longitudinal DC conductivity associated with Lifshitz like fixed points

in the presence of chiral anomalies in (3 + 1) dimensions. The key findings of our analysis

could be summarized as follows:

• Apart from having the usual contributions coming from the chiral anomaly (c), in

our analysis we discover an additional (parity odd) contribution to the magnetocon-

ductivity whose origin could be traced back into the lack of Lorentz boost invariance

at a Lifshitz fixed point.

• The Lifshitz sector (ΘL) of the DC conductivity does not contain any information

regarding the various relaxation times present in the system. It is also independent

of the frequency (w) and therefore finite as w → 0.

• Finally, in our analysis we device the appropriate holographic set up in order to

compute ΘL at strong coupling and low charge density limit. From our analysis we

note that with the increase in temperature, ΘL decreases more rapidly compared to

its relativistic (z = 1) cousins.
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