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1 Introduction

A fundamental problem in QCD and collider physics is the identification of hierarchical

scales in a system defined by some number of observations made on that system. Generi-

cally, ratios of these scales appear in logarithms at every order of the perturbative expansion

of the cross section, and can become large in the soft or collinear regions of phase space.

To tame these large logarithms and so to improve the convergence of the perturbative

expansion, resummation of the logarithms to all orders is required. This resummation

requires the factorization of the physics that dominates at each scale from one another,

so that one can guarantee that an all-orders description is possible in a particular region

of phase space. This program has seen enormous success with applications to predictions

for deep inelastic scattering (e.g. [1–6]), e+e− (e.g. [7–12]), pp̄ and pp collision experiments

(e.g. [13–20]), and weak decays (e.g. [21–25]), amongst others.

Strictly speaking the picture outlined above for the resummation of large logarithms

is only known to completely capture all logarithms to a given accuracy if all radiation in

an event contributes to the observables. Such observables are referred to as “global” if

all final state particles contribute to their value. Global observables at particle colliders

include thrust [26], angularities [27], or weak boson pT distributions in Drell-Yan produc-

tion [28], for example. However, global observables are only a subset of observables that

are interesting for studying QCD or new physics. Jets, and observables defined on their

constituents, rapidity gaps [29–32], or any observable that is only defined by radiation in a

limited region of the full phase space are referred to as “non-global” [33]. Especially with

the phase space available for high pT jets at the Large Hadron Collider, there has been

substantial effort in defining jet substructure observables [34–36], and with the discovery

of the Higgs boson [37, 38], identifying vector boson fusion events with forward jets is

essential for determining properties of the Higgs. Thus, non-global observables are widely

used and therefore require detailed theoretical understanding.

Unlike global observables, non-global observables are sensitive to both the relevant

scales within the jet or identified phase space region as well as the scale outside the jet.1

While the out-of-jet region is not directly measured, emissions originating from the outside

can contaminate and affect the in-jet region of phase space on which measurements are

performed. Therefore, for an accurate description of the cross section to a given logarithmic

accuracy of a non-global observable, we must resum not only logarithms of ratios of in-jet

scales (global logarithms), but also logarithms of ratios of in-jet to out-of-jet scales. The

latter logarithms are referred to as non-global logarithms (NGLs).

While the existence of NGLs has been known for some time, and NGLs have been well

studied in the literature [3, 33, 39–53], they have proved challenging to understand. The

leading NGLs in the large Nc limit can be resummed by Monte Carlo methods [33, 39] or

the Banfi-Marchesini-Smye (BMS) equation [40], but a systematic understanding of NGLs

to all logarithmic orders is lacking.2 Other effects, such as finite Nc at leading logarithmic

1For compactness, regardless of how the identified phase space region is defined, we will refer to it as

a “jet”.
2While this paper was being finalized, ref. [53] appeared, which presented a novel formalism for the
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order [42, 50] and at fixed-order [46–49, 51, 52] have been studied in detail. A systematic

understanding of NGLs to all orders has so far not been possible because it has not been

shown how to factorize the ratio of in-jet to out-of-jet scales from one another. Therefore,

to understand and resum NGLs to arbitrary accuracy requires proving factorization of in-

jet and out-of-jet scales from one another. In this paper, we will do this and present a

procedure for systematic improvement of the accuracy to which the NGLs are computed.

Rather than understanding NGLs directly, recently it has been emphasized that the

effects of NGLs can be reduced or power-suppressed in some cases [43, 62–64]. To do this,

one can use jet grooming techniques [64–68] that remove soft, wide-angle radiation in the

jet which is (potentially) likely sensitive to out-of-jet scales. While the removal of NGLs

using these grooming techniques is indeed one potential solution to the problem (although

factorization and resummation for groomed observables is currently also not understood to

all orders) here we will attack them directly and work toward their all-orders description.

To understand the problem of NGLs more precisely, consider measuring the mass m

and energy Ejet of a jet and an inclusive observable on the region outside the jet, such as

the out-of-jet energy, Eout. Importantly, note that only soft radiation can be sensitive to

out-of-jet scales by the collinear safety of the jet finding algorithm, as only soft radiation

can cross phase space boundaries. Assuming that soft and collinear physics factorizes, we

introduce a soft function S which encodes the pattern of soft radiation from the dipoles

(pairs of eikonal Wilson lines) in the event. For a global observable, the soft function only

depends on scales set directly by the measurements on the event. However, in this case,

the soft function is sensitive to in-jet and out-of-jet scales [46–48]:

S ≡ S (m,Ejet, Eout) . (1.1)

No measurement has been done on the jet to determine if the emissions setting the mass

come from in the jet or outside the jet, and so it would seem like this soft function cannot

be further factorized. Therefore, without isolating the in-jet and out-of-jet scales in some

way, the NGLs of this system cannot be resummed.

In the case just discussed, the soft function could not be further factorized because

no measurement was done on the jet to isolate the region of phase space where the NGLs

are important. For the jet mass, this region of phase space is the emission of a single soft

gluon from outside the jet into the jet, near the jet boundary. A single gluon is not an

infrared and collinear (IRC) safe quantity, so we should really think of this as a soft subjet

located near the jet boundary.3 Nevertheless, just measuring the jet mass is not sufficient

resummation of NGLs using a non-linear evolution equation for a “color density matrix”, and discussing its

relation to reggeization [54, 55] and the BFKL [56–58] and B-JIMWLK [59–61] equations. Ref. [53] did not,

however, demonstrate resummation of NGLs for a particular observable, nor did it prove a factorization

theorem in which the evolution equation embeds. However, the procedure for incorporating the resummation

for an observable was sketched. In this paper, we demonstrate the factorization for observables, hence

capturing observable dependence, and show how the resummation occurs as a linear renormalization group

evolution. The approach presented here also exhibits connections to reggeization and the BFKL equation,

although we have chosen not to focus on these aspects in this paper.
3Refs. [69, 70] considered the production of a heavy qq̄ from a soft gluon, which identifies a similar region

of phase space.
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to uniquely specify this region of phase space. The resolution to the problem of NGLs is

therefore clear: we must measure sufficiently many observables on the jet so as to isolate

the region of phase space in which the NGLs are important. This is the goal of this paper.

By measuring several observables on a jet we are able to identify the region of phase space

where the NGLs live, refactorize the soft function, and resum the NGLs by renormalization

group evolution of the now-factorized soft function.

1.1 Overview of the paper

Here, we present a detailed overview of the content and reasoning of this paper so that

our logic is not lost to the details of calculation. For simplicity, in this paper we restrict

ourselves to jet production in e+e− collisions, although the approach can be extended to

other situations. Our approach in this paper to accomplishing the resummation of NGLs

is the following. First, we find a jet in an e+e− → hadrons collision event by identifying

the broadening axis [71–73] of the event and including those particles that lie within a cone

of fixed radius R of the broadening axis. For much of the jet’s phase space relevant for

NGLs, this is identical to finding jets with the anti-kT jet algorithm [74] with radius R

and the Winner-Take-All (WTA) recombination scheme [73, 75, 76]. The broadening axis

is insensitive to recoil effects on the jet axis, and so the jet axis aligns with the direction

of the hardest radiation in the jet. This is necessary to eliminate back-reaction on the jet

direction from wide-angle, soft radiation. For the region of phase space outside the jet,

we measure some quantity, which we refer to as B. This measurement sets the scale of

the out-of-jet radiation and we require B � 1 which enforces soft and collinear dynamics

to dominate the out-of-jet region. Additionally, we will assume that the out-of-jet scale is

much lower than the in-jet scale which is the phase space region in which the NGLs are

large and must be resummed.

Within the jet, we want to guarantee that the jet contains a soft subjet approaching the

jet boundary which is sensitive to the out-of-jet scale B. We do this by measuring several

IRC safe n-point energy correlation functions on the jet [77, 78]. In particular, to uniquely

identify a single soft subjet and determine its energy fraction and angle from the hard

jet core, we measure the two- and three-point energy correlation functions e
(α)
2 , e

(β)
2 and

e
(α)
3 , for angular exponents α, β. The measurement of three energy correlation functions

is required to enforce that the soft subjet is not collinear with the hard jet core. The soft

subjet region of this three-dimensional phase space is parametrically defined by [78]

e
(α)
2 ∼ e(β)

2 � 1 , and e
(α)
3 �

(
e

(α)
2

)3
, (1.2)

where we have assumed that α > β. This soft subjet region is an essential component of

the description of the full phase space defined by the energy correlation functions and is

required to make predictions of distributions of jet discrimination observables such as D2,

defined in ref. [78]. The phase space formed from the simultaneous measurement of the two-

and three-point energy correlation functions is described in ref. [78], and we will present

analytic predictions for the full double-differential cross section in a future publication [79].

Identification of the soft subjet region of phase space enables a factorization of the

cross section in this region of phase space by identification of the dominant modes that
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contribute to the particular values of the measured energy correlation functions. Assuming

that B is an additive observable and B � e
(α)
2 , this factorization theorem takes the form

dσ(B;R)

de
(α)
2 de

(β)
2 de

(α)
3

= H(Q2)Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)
Jn

(
e

(α)
3

)
⊗ Jn̄(B)

⊗ Snn̄nsj
(
e

(α)
3 ;B;R

)
⊗ Jnsj

(
e

(α)
3

)
⊗ Snsj n̄sj (e

(α)
3 ;R) , (1.3)

where ⊗ denotes convolutions for any repeated observable. Here H(Q2) and Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)

are hard functions describing the production of the dijet pair and the soft subjet, respec-

tively. The functions Jn
(
e

(α)
3

)
and Jn̄(B) are jet functions describing the dynamics of the

jets along the n and n̄ directions. Snn̄nsj
(
e

(α)
3 ;B;R

)
is the global soft function involving

three Wilson line directions. Finally, the dynamics of the soft subjet is factorized into

the two functions Jnsj
(
e

(α)
3

)
, and Snsj n̄sj (e

(α)
3 ;R), each of which will be discussed in more

detail in section 3. In figure 1(a), we present an illustration of the modes that contribute

in the soft subjet region of phase space. Note that our factorization theorem in the soft

subjet region factorizes the in-jet scales defined by e
(α)
2 and e

(β)
2 from the out-of-jet scale

B, and therefore the NGLs of ratios of the soft subjet energy to the out-of-jet scale B

can be resummed. In the effective field theory language, the additional measurement has

converted one of the soft scales to a hard scale, allowing for the resummation of the NGLs

by standard renormalization group techniques.

By studying the dynamics of the soft subjet in this region of phase space, we are led to

introduce what we term the dressed gluon approximation,4 which captures the resummation

of NGLs due to unresolved emissions associated with the soft subjet.5 In particular, in the

region of phase space with a single soft subjet, we have one-dressed gluon. We demonstrate

that the dressed gluon approximation can be used to calculate the NGLs of a more inclusive

observable by marginalizing over the factorization theorem. Importantly, the one-dressed

gluon approximation can be calculated to arbitrary perturbative accuracy and for any

number of colors, Nc.

While the measurement of e
(α)
2 , e

(β)
2 , e

(α)
3 has allowed us to successfully factorize the

jet scales set by e
(α)
2 and e

(β)
2 from B, because we have not resolved any further emissions

in the jet, there still exist NGLs at the scale of e
(α)
3 . To resum those NGLs requires

resolving two soft subjets located near the jet boundary. To isolate this region of phase

space and resum the NGLs including e
(α)
3 , we can measure the two-, three- and four-point

energy correlation functions, factorize the cross section and renormalize, which produces

the two-dressed gluon approximation. This then pushes the NGLs to the unresolved scale

set by the four-point energy correlation function. The procedure can then be repeated, by

measuring higher-point energy correlation functions to resolve more and more soft subjets

4The term “dressed gluon” is also used in approaches to renormalon resummation (see e.g. [80]). These

approaches, although similar in the spirit of associating additional dynamics with a single gluon, attempt

to describe completely distinct physical phenomena.
5A similar approximation was used in calculation of jets with rapidity gaps [81–84], termed the “out-of-

gap” expansion. The connection of these dressed gluon expansions to physically measurable subprocesses,

as well as their realization as an expansion of the BMS equation and the role of the buffer region was not

addressed in these works.
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Jn̄Jn

jet axis

R

e
(α)
2 ∼ e

(β)
2

e
(α)
3 �

�
e
(α)
2

�3

Jnsj
Snsj n̄sj

Snn̄nsj

B � e
(α)
2

(a) (b)

Figure 1. (a) Illustration of the phase space configuration and dominant modes for a jet containing

a hard core and a soft subjet. Here the gray radiation denotes global soft radiation Snn̄nsj , and

the green radiation denotes collinear radiation along the direction of the energetic jet axes, Jn and

Jn̄. The soft subjet dynamics is described by soft jet modes, Jnsj shown in blue, and boundary

soft modes shown in red, Snsj n̄sj . (b) Schematic of the ladder of factorization theorems defined by

increasingly differential measurements made on the jet. With each additional measurement, the

NGLs are pushed to the soft function at a lower unresolved scale. The S′, and S′′ are schematic,

typically being a product of multiple functions, but depend only on a single scale.

in the jet, resumming the NGLs down to some unresolved scale below which no soft subjets

are identified. We illustrate this increasingly differential factorization theorem ladder for

resumming NGLs in figure 1(b). We discuss the convergence of the reorganization of the

traditional perturbative expansion in terms of the number of dressed gluons, and show

that the contribution from higher numbers of dressed gluons is highly suppressed by the

available phase space volume. We also relate the dressed gluon expansion to an expansion

of the BMS equation. We stress that these factorization theorems can be calculated to any

perturbative accuracy and for arbitrary numbers of colors Nc, allowing for the extension

to the resummation of subleading logarithmic corrections.

To justify that this step-by-step resummation procedure of the NGLs accurately cap-

tures those NGLs known to exist, we compare our dressed gluon approximation of hemi-

sphere jet masses in the large-Nc limit to Monte Carlo resummation, and the fixed-order

expansion of the BMS equation. By only including the one- and two-dressed gluon ap-

proximations, we find agreement with solutions of the BMS equation at the sub-percent

level for phenomenological values of the NGLs. This demonstrates that the one- and two-

dressed gluon approximations capture the dominant contributions to the leading NGLs in

the large-Nc limit, with small corrections due to the presence of NGLs at lower resolution

scales. The dressed gluon approximation is easily incorporated analytically into existing

factorization theorems for multi-jet processes.6 The dressed gluon approximation also pro-

vides analytical understanding of many features of jet physics and NGLs; for example,

6This assumes that the jet definitions in those factorization theorems are robust to soft subjets approach-

ing their boundaries.
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dressed gluons manifest the “buffer region” [39] near the jet boundary in which emissions

are forbidden.

The outline of this paper is as follows. In section 2 we define the soft subjet region of

phase space via measurements of e2 and e3. In section 3, we present the factorization of the

cross section in the soft subjet phase space region within the context of soft-collinear effec-

tive theory, calculating anomalous dimensions and renormalizing the functions appearing

in the cross section. In section 4, we introduce the dressed gluon approximation, which

follows from our factorization theorem in the soft subjet region of phase space. We demon-

strate how the dressed gluon approximation can be used in the calculation of NGLs by

computing the NGLs for the hemisphere invariant mass with both one and two dressed

gluons, and provide a numerical comparison to the BMS equation, and various approxima-

tions found in the literature. We also discuss analytic insights into the dynamics of NGLs

which are realized in the dressed gluon approximation. In section 5, we discuss how our

approach can be extended beyond leading logarithmic accuracy and discuss the necessity

of capturing NGLs arising from collinear splitting along the boundary of phase space. We

conclude in section 6 and discuss directions for further understanding of NGLs and soft

subjet dynamics to all-orders. Calculational details are presented in appendices.

2 Observables and phase space

As discussed in the introduction, our strategy for resumming NGLs is to isolate the region

of jet phase space which is sensitive to both in-jet and out-of-jet scales, using IRC safe

measurements for which we can prove a factorization theorem. We will consider the process

e+e− → hadrons on which we apply a broadening axis cone algorithm.7 For our purposes,

the implementation of this algorithm is to identify the broadening axes in the event, which

can be done in an inclusive fashion by minimizing 2-jettiness [71, 72, 85] with angular

exponent β = 1, draw fixed cones of radius R around the axes, and study the largest

energy jet, defining the out-of-jet region to be the complement of the cone of radius R. We

will often take R = π/2, in which case this divides the event into hemispheres. The choice

of jet algorithm is vital for simplifying the analysis of NGLs; the use of the broadening axes

and geometric cones guarantees the jet axis lies along the direction of the hardest radiation

in the jet with a circular shape. This remains true for the complete set of possible soft

subjets, even when the soft subjet lies near or on the jet boundary. This scheme is largely

equivalent to finding the jets with the anti-kT jet algorithm [74] with the Winner-Take-

All (WTA) recombination scheme [73, 75, 76]. For jets containing soft subjets, the two

algorithms will give identical factorizations at leading power for much of the soft subjet

phase space. However, because it is a sequential recombination algorithm, the boundary

of anti-kT jets will distort in the presence of soft subjets located sufficiently near the

boundary. The power counting of the factorization theorems give a precise definition of

the phase space boundaries between these regimes.

At lowest order, the region of phase space sensitive to both in-jet and out-of-jet scales

consists of a single soft gluon in the jet, located near the jet boundary. A single gluon is

7We thank Jesse Thaler and Daniele Bertolini for discussions about such algorithms.
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not an IRC safe object, and so the natural IRC safe generalization of a soft gluon is a soft

subjet. Therefore, we wish to isolate jets which have a hard core of radiation and a soft

subjet at large angle from the jet core. Because we use a recoil-free jet algorithm, this soft,

wide angle subjet does not displace the jet axis from the hard jet core.

To identify the soft subjet region of the jet’s phase space, we will measure a number of

the n-point energy correlation functions [77, 78] on the jet. The n-point energy correlation

function is an IRC safe observable and is sensitive to n-prong structure in a jet. To identify

the soft subjet region of phase space we will need the two- and three-point energy correlation

functions which we define for e+e− collisions as [77]

e
(β)
2 =

1

E2
J

∑

i<j∈J
EiEj

(
2pi · pj
EiEj

)β/2
, (2.1)

e
(β)
3 =

1

E3
J

∑

i<j<k∈J
EiEjEk

(
2pi · pj
EiEj

2pi · pk
EiEk

2pj · pk
EjEk

)β/2
,

where J represents the jet, Ei and pi are the energy and four momentum of particle i

in the jet J and β is an angular exponent that is required to be greater than 0 for IRC

safety. The four-point and higher energy correlation functions are defined as the natural

generalization. The n-point energy correlation function vanishes in all soft and collinear

limits of an n particle configuration. In the soft or collinear limit, the e
(β)
2 are equivalent

to the (recoil-free) angularities [27, 73, 86, 87] and when measured event-wide in e+e−

collisions, e
(2)
3 is equivalent to the C-parameter [88, 89] computed to O(αs).

The measurements that we perform on these events are as follows. First, we measure

some observable B on the region outside the identified jet J . On the jet J , we measure the

observables e
(α)
2 , e

(β)
2 and e

(α)
3 for angular exponents α, β and we will assume that α > β.

To demand that the dynamics of the jet are dominated by soft and collinear radiation,

we require that e
(α)
2 � 1. A jet with a hard core and a single soft subjet has 2-prong

substructure, and so to identify 2-prong jets we require [78]

e
(α)
3 �

(
e

(α)
2

)3
, (2.2)

which follows straightforwardly from power counting. The measurement of the two- and

three-point energy correlation functions on a jet resolve either 1- or 2-prong substructure,

which is described in detail in ref. [78] and is displayed in figure 2(a). Importantly, the

energy correlation functions provide a parametric separation of the 1- and 2-prong regions

of phase space, defined by the precise scaling relation of eq. (2.2). Due to this parametric

separation, well defined factorization theorems exist in both regions of phase space. To

enforce that the subjet is both soft and at a wide angle from the jet core, we therefore require

e
(α)
2 ∼ e(β)

2 . (2.3)

Combined with the condition e
(α)
2 � 1, this forces zsj � 1 and θsj ∼ R, where R is

the jet radius, which we assume to be an order 1 number. In particular, this additional

measurement allows us to distinguish the case of a soft subjet from the case of two energetic

– 8 –
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�
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(b)

Figure 2. (a) Illustration of the phase space for a jet on which e
(α)
2 and e

(α)
3 have been measured.

Jets with a two-prong structure lie in the lower (red) region of phase space, where e
(α)
3 � (e

(α)
2 )3.

The energy correlation functions parametrically separate the one-prong and two-prong regions of

phase space. (b) Illustration of the phase space for a jet on which both e
(α)
2 and e

(β)
2 have been

measured, with α > β, shown in gray. Jets dominated by soft radiation lie in the upper region of

the phase space, where e
(α)
2 ∼ e

(β)
2 . Jets with two energetic collinear subjets populate the region

e
(α)
2 ∼ e(β)

2

α/β
.

collinear subjets, which has been studied in ref. [90]. The e
(α)
2 , e

(β)
2 phase space is described

in detail in ref. [91] (see also [92]) and displayed in figure 2(b). The two different subjet

configurations, which exist on the boundaries of the allowed phase space defined by e
(α)
2

and e
(α)
3 , are shown in figure 3. Because we have identified a soft subjet and measured

both e
(α)
2 and e

(β)
2 , the energy fraction zsj and angle from the jet core θsj of the soft subjet

are well-defined and IRC safe quantities. Once the soft subjet region of phase space has

been identified using the energy correlation functions, the observables we will consider as

measured on the jet are zsj , θsj and e
(α)
3 . figure 1(a) illustrates the structure of the event

we are studying and the observables that we measure on the in-jet and out-of-jet regions.

3 Effective field theory description and factorization

In this section we present a factorization theorem in the soft subjet region of phase space

described in section 2. We use the formalism of soft-collinear effective theory (SCET) [93–

96], an effective theory of QCD in the soft and collinear limits. Because the factorization

theorem involves many novel features, we will discuss its structure in detail. We begin with

a power counting analysis in section 3.1 to determine the modes required in the low energy

effective theory. The mode structure dictates the functions appearing in the factorization

theorem, which is presented in section 3.2. The novel feature of the factorization theorem

is the presence of modes whose virtuality is set by their angle to the boundary of the jet

and whose resummation is directly tied to the resummation of NGLs.
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e
(β)
2 ∼

�
e
(α)
2

�β/α

e
(α)
3 �

�
e
(α)
2

�3 Collinear Subjets

Jn̄

S

jet axis

R

B � e
(α)
2

(a)

e
(α)
2 ∼ e

(β)
2

e
(α)
3 �

�
e
(α)
2

�3

Jn̄Jn

S

jet axis

R

n̂sj
∆θsj

B � e
(α)
2

Soft Subjet

(b)

Figure 3. The two distinct subjet configurations which exist in the two prong region of phase

space. (a) Two energetic collinear subjets, which has been studied in ref. [90], and populates the

region of phase space e
(β)
2 ∼ (e

(α)
2 )β/α. (b) Wide angle soft subjet, which populates the region of

phase space e
(α)
2 ∼ e(β)

2 .

3.1 Modes of the factorization

The simultaneous measurement of e
(α)
2 , e

(β)
2 , and e

(α)
3 defines a multi-scale structure in

the low energy effective theory required for the complete factorized description of the

soft subjet region of phase space. A proper understanding of the relative scalings of the

modes is essential to specify the structure of the factorization theorem we will present in

eq. (3.10), and to understand the structure of zero bin subtractions [97] needed to remove

overlaps. The scaling of the modes in the low energy effective theory can be determined by

power counting arguments, which have been considered for multi-differential observables

resolving multiple subjets in refs. [78, 98]. We will follow the conventions used in those

papers, writing the scalings of all modes in terms of the physical observables, instead of the

traditional λ, as we find this to be more transparent. Typically, the modes of a factorization

theorem are set by the observables measured. We will find in addition that the existence

of the jet boundary itself will play a vital role in determining all the modes required for

the complete factorized description.

Because we only measure the observable B in the out-of-jet region, its mode structure

is simple and so we will discuss it first. Importantly, we require that B is an additive

observable, like the energy correlation functions, angularities, mass, etc., so that the fac-

torization theorem is of a universal form. We assume that the out-of-jet region has order-1

angular size and B � 1 and so the measured value of B is dominated by collinear and

global soft modes. Given a momentum p, we will adopt the following notation for its

components expressed in light-cone coordinates defined by the directions a and ā:

(p+, p−, p⊥)aā ≡ (a · p, ā · p, p⊥) . (3.1)

As an example, if we assume that B measures the out-of-jet broadening, the scaling of the
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collinear and soft modes is

pc ∼ Q
(
1, B2, B

)
nn̄

, (3.2)

ps ∼ QB (1, 1, 1)nn̄ ,

where Q is a proxy for the energy in the out-of-jet region and is of the same order as the

total scattering energy in the event. n is the direction of the jet of interest, while n̄ is the

direction of the jet that contributes to the measured value of B.

Now, we turn to the in-jet modes that contribute to the measurement of the energy

correlation functions. As shown schematically in figure 3, in the soft subjet region of phase

space, we assign the power counting θsj ∼ R ∼ 1, where θsj is the angle between the

jet axis and the soft subjet direction. In this region of phase space, the two-point energy

correlation functions are dominated by soft, wide angle radiation and so we have

e
(α)
2 ∼ e(β)

2 ∼ zsj , (3.3)

where zsj is the energy fraction of the soft subjet. As there is no parametric difference

between e
(α)
2 and e

(β)
2 , these observables are redundant from a power-counting perspective

and in the following, we will express the scaling of all modes in terms of e
(α)
2 . Continuing,

the additional measurement of e
(α)
3 on the jet resolves the hard collinear structure of the

jet core, the structure of the soft subjet, and global soft radiation from the hard dipoles

present in the event.8 We will denote the angular size of the hard core by θc, the angular

size of the soft subjet by θcs and the energy fraction of the global soft radiation by zs.

Therefore, the parametric scaling of e
(α)
3 in the soft subjet region of phase space is set by

these three contributions:

e
(α)
3 ∼ zsj(θαc + zsjθ

α
cs + zs) . (3.4)

This implies that only the soft subjet modes are directly sensitive to both the e
(α)
2 and e

(α)
3

measurements.

From the contributions to e
(α)
3 in eq. (3.4), we are then able to define the momentum

scaling of each contributing mode via the measured values of e
(α)
2 and e

(α)
3 . In the notation

of eq. (3.1), the momentum of the hard collinear and global soft radiation scales like

pc ∼ EJ



(
e

(α)
3

e
(α)
2

)2/α

, 1 ,

(
e

(α)
3

e
(α)
2

)1/α


nn̄

, (3.5)

ps ∼ EJ
e

(α)
3

e
(α)
2

(1, 1, 1)nn̄ ,

where EJ is the energy of the jet and n and n̄ are the light-like directions of the jet of

interest and the other jet in the event, respectively. The soft subjet mode’s momentum

8Unlike the SCET+ factorization of ref. [90], which considered a jet with collinear subjets, a soft wide-

angle subjet does not add an additional collinear-soft mode. In the SCET+ case, global soft radiation

cannot resolve the hard collinear splitting, which therefore requires an additional mode to describe the

dipole radiation of the subjets.
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scales like

psj ∼ EJ e(α)
2





 e

(α)
3(

e
(α)
2

)2




2/α

, 1,


 e

(α)
3(

e
(α)
2

)2




1/α


nsj n̄sj

, (3.6)

in the light-cone coordinates defined by the direction of the soft subjet, nsj . These are

the complete set of modes defined by the scales set by the measurements of e
(α)
2 , e

(β)
2 , and

e
(α)
3 alone.

If these measurements were global, that is, sensitive to all radiation in the event,

this would be the complete enumeration of the modes that contribute to the measured

observables. However, because the energy correlation functions are only measured on the

jet, the boundary of the jet plays an important role in defining the relevant modes as well.

In particular, since we are considering the case where the out-of-jet scale is much less than

the in-jet scale, namely B � e
(α)
2 ,9 for the modes in the soft subjet, the angle between

the soft subjet axis and the jet boundary ∆θsj ≡ R − θsj places additional constraints on

the soft subjet dynamics, much like an additional measurement would. In the region of

phase space in which the NGLs are parametrically large, and should be resummed, this

must be taken into account. In section 5 we will briefly discuss the case when the NGLs

are not parametrically large, and how this factorization theorem is modified. We therefore

expect that ∆θsj defines a relevant scale in the effective theory, and should be included in

the power counting analysis. We must consider the possibility of a mode whose angular

scale with respect to the soft subjet axis is not set by the measurement of the two- and

three-point energy correlation functions, but rather by the jet boundary itself. This mode

does not contribute to the two-point energy correlation functions e
(α)
2 , e

(β)
2 and its energy

is set by e
(α)
3 . This therefore defines an additional soft mode which is localized around the

soft subjet’s direction and constrained by the jet boundary. We therefore refer to this new

mode as a boundary soft mode.

The presence of this mode is absolutely necessary for understanding NGLs. Impor-

tantly, within the fat jet, it is the only mode that contributes to the cross section singular

logarithmic terms of the form

ln

(
1

∆θsj

)
� 1 . (3.7)

The necessity of this mode, justified here by power counting, also appears from explicit

calculation of the functions appearing in the factorization theorem in eq. (3.10). Logarithms

of ∆θsj can also arise from global soft radiation in the out of jet region (see appendix B.5),

and so the boundary soft mode will be required for renormalization group consistency of

the factorization theorem. It is critical for the NGL resummation that the two different

factorized functions at different energy scales are both sensitive to the jet boundary.

The scaling of the momentum of the boundary soft mode is determined by consid-

ering its contribution to e
(α)
3 , given that its angular scale is set by ∆θsj . The dominant

9Formally we take the scaling B ∼ e
(α)
3

e
(α)
2

, i.e., B is at the global soft scale.
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contribution to e
(α)
3 from the boundary soft modes is

e
(α)
3

∣∣∣
bs
∼ zsj zbs (∆θsj)

α , (3.8)

where the energy fraction of the boundary soft radiation is zbs. Therefore the boundary

soft mode’s momentum components scale like

pbs ∼ EJ
e

(α)
3

e
(α)
2 (∆θsj)

α

(
(∆θsj)

2 , 1,∆θsj

)
nsj n̄sj

,

written in the light-cone coordinates defined by the soft subjet axis. For consistency of the

factorization, we must enforce that the soft subjet modes cannot resolve the jet boundary

and that the boundary soft modes are localized near the jet boundary. That is, the angular

size of the soft subjet modes must be parametrically smaller than that of the boundary

soft modes:

(∆θsj)
α � (θcs)

α ∼ e
(α)
3(

e
(α)
2

)2 , and ∆θsj � 1 . (3.9)

Therefore, the factorization theorem applies in a region of the phase space where the soft

subjet is becoming pinched against the boundary of the jet, but lies far enough away that

the modes of the soft subjet do not touch the boundary.10

3.2 The factorization theorem for a soft subjet

We will prove the following factorization theorem for the production of a soft subjet:

dσ(B;R)

de
(α)
2 de

(β)
2 de

(α)
3

= H(Q2)Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)
Jn

(
e

(α)
3

)
⊗ Jn̄(B)

⊗ Snn̄nsj
(
e

(α)
3 ;B;R

)
⊗ Jnsj

(
e

(α)
3

)
⊗ Snsj n̄sj (e

(α)
3 ;R) , (3.10)

valid under the assumptions on the phase space described in section 3.1. Here convolutions

are implicit in any variable that is twice repeated, and we have explicitly indicated the

dependence on the jet boundaries with the jet radius R. The operator definitions of the

functions are given in appendix A, but the physical origin of each function is straightforward

to understand, with each function describing the dynamics of one of the modes described

in section 3.1. A brief description of the functions appearing in eq. (3.10) is as follows:

• H(Q2) is the hard function for the production of a dijet event at an e+e− collider.

• Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)
is the hard function describing the production of the soft subjet from

the initial qq̄ dipole, and describes dynamics at the scale set by e
(α)
2 , e

(β)
2 .

10For the anti-kT jet algorithm, if the modes of the soft subjet resolve the jet boundary (so ∆θsj ∼
θcs), this will in general result in distortions of the jet boundary due to clustering effects. In a strict

cone algorithm, as we use here, this boundary-collinear regime is still factorizable, and is relevant for the

resummation of subleading NGLs, as will be discussed in section 5.
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• Jn
(
e

(α)
3

)
is a jet function at the scale e

(α)
3 describing the hard collinear modes of the

identified jet.

• Jn̄(B) is a jet function describing the collinear modes of the out-of-jet region of the

event.

• Snn̄nsj
(
e

(α)
3 ;B;R

)
is the global soft function, involving three Wilson line directions,

n, n̄, nsj .

• Jnsj
(
e

(α)
3

)
is a jet function describing the dynamics of the soft subjet modes, which

carry the bulk of the energy in the soft subjet.

• Snsj n̄sj (e
(α)
3 ;R) is a soft function describing the dynamics of the boundary soft modes.

It depends only on two Wilson line directions nsj , n̄sj .

The factorization theorem of eq. (3.10) therefore achieves a complete factorization of the

modes presented in section 3.1. As discussed in section 2, in the soft subjet region of phase

space, we can relate the variables e
(α)
2 , e

(β)
2 to the physically more transparent zsj , θsj

variables with a simple Jacobian factor, giving the factorization theorem

dσ(B;R)

dzsj dθsj de
(α)
3

= H(Q2)Hsj
nn̄

(
zsj , θsj

)
Jn

(
e

(α)
3

)
⊗ Jn̄(B)

⊗ Snn̄nsj
(
e

(α)
3 ;B;R

)
⊗ Jnsj

(
e

(α)
3

)
⊗ Snsj n̄sj (e

(α)
3 ;R) . (3.11)

The calculation to one-loop of various objects in this factorization theorem is presented in

appendix B.

We now describe how the factorization theorem of eq. (3.10) arises in a multi-stage

matching onto the effective theory involving the modes of section 3.1.11 This multi-stage

matching procedure is shown schematically in figure 4. In the first step, QCD is matched

onto an SCET theory at the hard scale of the e+e− event by matching the electroweak cur-

rents of both theories [100–102]. This theory is then evolved down to the soft scales defined

by e
(α)
2 ∼ e(β)

2 , where these soft modes can be decoupled via the BPS field redefinition [96]

from the collinear modes. The soft scale associated with this measurement is e
(α)
2 ∼ zsj ,

so the soft subjet is not resolved, and is simply described as part of the soft function. At

this stage we have the usual SCET factorization formula for dijet production:

dσ(B;R)

de
(α)
2 de

(β)
2 de

(α)
3

∼ H(Q2)Jn(e
(α)
2 , e

(β)
2 , e

(α)
3 )⊗ Jn̄(B)⊗ Snn̄(e

(α)
2 , e

(β)
2 , e

(α)
3 ;B) , (3.12)

where we have decoupled the collinear modes in the jet functions from the soft radiation

at this scale using a BPS field redefinition. We have not yet performed the full multipole

expansion required to separate all infrared scales [103, 104], since from the power-counting

11In the case that zsj � B, such a multi-stage matching is not necessary and one can construct the

factorization theorem along the lines of refs. [85, 87]. However, here we pursue the multi-stage matching

since it will be necessary in a forthcoming publication [99] dealing with the factorization of soft subjets

when zsj � B.
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Figure 4. A schematic of the multi-stage matching procedure used to prove the factorization

theorem of eq. (3.10) for the soft subjet region of phase space. As discussed in the text, the

matching proceeds in three stages: matching to SCET, refactorizing the soft function to describe

the soft jet production, and factorizing the boundary soft mode. The canonical scales of the modes

in the final factorization theorem are shown on the right, ordered in virtuality. Here we have chosen

an angular exponent α = 2 for concreteness.

arguments given above we have not included enough modes to separate all scales. Hence

we let all modes resolved at this scale contribute to the jet measurements.

As we lower the scale below e
(α)
2 , we resolve the soft subjet, and therefore we must

further expand the soft function. However, since the collinear dynamics of the jets along

the axes n and n̄ are at the scale e
(α)
3 and B, respectively, and they have been decoupled

from the soft radiation, their scales can simply be lowered without any matching.12 This

should be contrasted with the factorization theorem of ref. [90] for the case of two collinear

subjets, where additional matching must be performed in the jet function. In our case, an

additional matching step must instead be performed in the soft function, corresponding to

the known fact that the NGLs appear in the soft function. At the scale e
(α)
2 , we expand

the soft function and match onto a hard function Hsj
nn̄ describing the production of a soft

subjet, a jet function J̃ describing the dynamics of the soft subjet, and a global soft function

involving three Wilson lines. This refactorization is shown schematically as the transition

from the first to the second column in figure 4. This is analogous to the construction of

12At this stage, the collinear modes cannot contribute to e
(α)
2 , e

(β)
2 anymore, except via their overall

direction.
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the PDFs in SCET, see ref. [96]. The factorization theorem then becomes

dσ(B;R)

de
(α)
2 de

(β)
2 de

(α)
3

= H(Q2)Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)
Jn(e

(α)
3 )⊗ Jn̄(B)

⊗ Snn̄nsj
(
e

(α)
3 ;B;R

)
⊗ J̃nsj

(
e

(α)
3

)
. (3.13)

In the final step of the matching, we lower to the scale set by the measurement of e
(α)
3 . At

this scale we probe the dynamics of the soft subjet, and must perform a final factorization

of J̃ into a function describing the boundary soft modes and a function describing the soft

subjet modes:

J̃nsj

(
e

(α)
3

)
= Jnsj

(
e

(α)
3

)
⊗ Snsj n̄sj (e

(α)
3 ;R) . (3.14)

The boundary soft modes can be BPS decoupled from the soft subjet modes, thus resulting

in the final form of the factorization theorem in eq. (3.10). The virtualities of all the modes

present in the final factorization theorem are listed in figure 4 for the specific case of α = 2.

The final factorization of the soft subjet function in eq. (3.14) is essential to resum all

logarithms. In particular, the soft subjet modes, described by Jnsj

(
e

(α)
3

)
, are not sensitive

to the jet boundary, as should be expected for a collinear mode, whereas the boundary soft

modes are sensitive to the jet boundary. Therefore, Snsj n̄sj (e
(α)
3 ;R) will have a logarithmic

dependence on the angular distance of the soft subjet to the boundary ∆θsj , diverging

as the soft subjet approaches the boundary. The same logarithmic dependence of the

boundary angle is found in the näıve global soft function Snn̄nsj

(
e

(α)
3 ;B;R

)
both in the in-

jet and out-of-jet regions of phase space. To avoid double counting, one must subtract the

contribution of the boundary soft region of phase space from the global soft function (this

subtraction is implemented in the effective theory via a zero bin subtraction [97]), which in

turn removes the logarithmic dependence on ∆θsj from the global soft contribution to the

identified jet. However, this dependence on ∆θsj will exist in the boundary softs and the

global soft radiation in the out-of-jet region. This will be important for the resummation

of the NGLs associated with the soft subjet production by running from the boundary soft

scale down to the out-of-jet scale.

In summary, we have presented a factorization theorem describing the region of phase

space in which a soft subjet is identified within a jet. By performing multiple measurements

to isolate a specific region of phase space, we were able to refactorize the multi-scale soft

function. Effectively, the additional measurement converted soft scales to hard scales, so

that logarithms associated with these ratios of scales can be resummed by standard renor-

malization group evolution, hence achieving the resummation of NGLs in this particular

region of phase space. While this factorization theorem is interesting in its own right for

studying the dynamics of the soft subjet, as relevant for example for the factorized descrip-

tion of jet substructure variables, we will not pursue this direction further in this paper,

leaving it to a future publication [79]. Instead, in this paper we will focus on using the

factorization theorem in this region of phase space to understand properties of NGLs, and

applying this understanding to the resummation of NGLs for more inclusive observables.
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4 Dressed gluon approximation

In the previous section, we have shown how multiple measurements can be used to isolate

a region of phase space involving a single soft subjet, and we presented a factorization

theorem, eqs. (3.10) and (3.11), in the framework of SCET describing this region of phase

space. By making multiple measurements, we are able to refactorize the soft function

allowing for the resummation NGLs of e
(α)
2 /B in this particular region of phase space.

In this section, we discuss how the resummation of the NGLs in the soft subjet region

of phase space allows us to understand more general properties of NGLs. We propose

a reorganization of the perturbative expansion for calculating NGLs of more inclusive

observables. We call this the dressed gluon approximation, which we define in section 4.1.

We then explicitly demonstrate how the dressed gluon approximation can be used in a

calculation, by calculating the one- and two-dressed gluon contribution to the NGLs for

the hemisphere jet mass in section 4.2. In this section, we also develop an understanding for

the emission of a soft subjet off of N eikonal lines, and present a conjectured factorization

theorem. In section 4.3 we compare our dressed gluon approximations to both resummed

and fixed-order solutions of the BMS equation, which captures the leading NGLs in the

large Nc limit. Using the properties of the dressed gluon approximation, in section 4.4 we

discuss some insights into features of NGLs, and compare the expansion in the number of

dressed gluons to other expansions of the BMS equation.

4.1 Putting the pants on a gluon one leg at a time

The dressed gluon approximation originates from the observation that the factorization

theorem for the soft subjet resums a set of higher order corrections to the matrix element

for the production of a single soft gluon from the nn̄ dipole. The matrix element for gluon

emission from the dipole is given by the hard function, Hsj
nn̄(zsj , θsj), in the factorization

theorem of eq. (3.11). These corrections include, however, more than just the threshold

virtual corrections of the soft gluon current, as they also contain an arbitrary number of

soft gluon emissions in the out-of-jet region. Therefore, these are precisely the corrections

associated with the NGLs.

However, our factorization theorem is multi-differential, and so to determine the NGLs

for a more inclusive measurement requires marginalizing or integrating over observables

that are not included in the measurement. This integration can potentially be problematic

from the point of view of our factorization theorem. We have only resummed NGLs down

to the scale set by e
(α)
3 , but for an inclusive measurement we must integrate over all regions

of phase space, including scales lower than e
(α)
3 , beyond which no jet structure is resolved.

This would seem to indicate a loss of formal accuracy, as there may be large logarithms

the factorization theorem is ignorant to that should be resummed. Indeed, traditional

strict logarithm counting is breaking down in this case, as there would be terms scaling

like αs ln ∼ 1 that are not resummed by our factorization theorem.

The resolution of this is the realization that resummation of NGLs in our factorization

theorem down to the scale e
(α)
3 exponentially suppresses the phase space for emissions at

scales lower than e
(α)
3 . This feature of the expansion in the number of dressed gluons
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will be discussed in detail in section 4.4.3, after we have shown that the dressed gluon

approximation gives rise to the buffer region [39] in section 4.4.1. Therefore, while a formal

logarithmic accuracy of the resummation of NGLs may not necessarily be guaranteed,

effects from emissions at unresolved scales are suppressed by their allowed phase space. We

refer to the resummation of a soft subjet according to the factorization theorem of eq. (3.11)

as the dressed gluon approximation.13 Resummation in the factorization theorem dresses

the soft subjet at a scale defined by e
(α)
2 by an arbitrary number of soft emissions down to

a scale set by e
(α)
3 . By the structure of the factorization theorem, the one-dressed gluon

approximation is guaranteed to include the correct NGL at O(α2
s), and resums a tower

of NGLs at higher orders in αs. The accuracy of this approximation is controlled by the

volume of allowed phase space for emissions at scales lower than e
(α)
3 , so the one-dressed

gluon approximation does not fully include, for example, the NGL at O(α3
s). To fully

describe this NGL, we must include the two-dressed gluon approximation, by resolving

emissions down to a lower scale in the factorization theorem with further measurements.

This then correctly describes the NGL at O(α3
s), and resums a tower of NGLs to higher

orders in αs. One can continue the procedure, adding more and more dressed gluons to

obtain an arbitrarily accurate description of the NGLs. However, as we will demonstrate,

the phase space suppression accompanied by an increased number of dressed gluons causes

the dressed gluon expansion to converge rapidly, so that for phenomenologically relevant

values of the NGLs, only one or two dressed gluons are required for an accurate description.

We will explicitly consider up to two dressed gluons in this paper.

We will first present a detailed explanation of the one-dressed gluon approximation

and its construction from the factorization theorem of eq. (3.11), before discussing the

extension to multiple dressed gluons. Because we are interested in the NGLs for more

inclusive jet measurements, we must integrate over the unresolved scale set by e
(β)
3 . We

will do this by Laplace transforming the multi-differential cross section for the soft subjet

phase space region as:

dσ
(
ẽ

(α)
3 , B;R

)

dzsj dθsj
=

∫ ∞

0
de

(α)
3 e−ẽ

(α)
3 e

(α)
3

dσ(B;R)

dzsj dθsj de
(α)
3

. (4.1)

The cross section fully inclusive over e
(α)
3 is then found by the limit ẽ

(α)
3 → 0. This limit

gives a prediction for a single soft gluon matrix element, with all possible low energy

unresolved configurations produced by its subsequent splittings.

The limit ẽ
(α)
3 → 0 of the cross section defined in eq. (4.1) is formally singular at

any fixed-order and is only regulated when resummed to all-orders. In particular, the

fixed-order anomalous dimensions present in the factorized form of eq. (4.1) are singular

as ẽ
(α)
3 → 0, which makes their interpretation challenging. However, by reorganizing the

functions present in the factorization theorem into in-jet and out-of-jet contributions, all

dependence on the observable ẽ
(α)
3 can be controlled and finite anomalous dimensions can

be identified in the limit ẽ
(α)
3 → 0. Specifically, we rewrite the factorization theorem in the

13We hope that this nomenclature explains the unusual title of this section.
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suggestive form:

dσ
(
ẽ

(α)
3 , B;R

)

dzsj dθsj
=
[
H(Q2)Jn

(
ẽ

(α)
3

)
Jn̄(B)Snn̄(ẽ

(α)
3 ;B;R)

]
(4.2)

×


Hsj

nn̄ (zsj , θsj) J̃nsj
(
ẽ

(α)
3

)S(in)
nn̄nsj

(
ẽ

(α)
3 ;R

)

S
(in)
nn̄

(
ẽ

(α)
3 ;R

)




S

(out+NG)
nn̄nsj

(
ẽ

(α)
3 ;B;R

)

S
(out+NG)
nn̄ (B;R)


 ,

where we have refactorized the global soft function along the lines of refs. [46, 47], separat-

ing out the global logarithms of ẽ
(α)
3 and B that are resummable within the factorization

theorem. All convolutions are implicit. The (in) and (out) labels denote the in-jet and

out-of-jet phase space regions, and (NG) denotes the non-global contributions. For com-

pactness, we have used the notation of eq. (3.14), where J̃nsj is the unfactorized soft subjet

function, which contains both the boundary soft and jet modes of the soft subjet.

Using the renormalization group equation that resums the global logarithms of ẽ
(α)
3

and B, we define the refactorized global soft function via:

Snn̄nsj
(
ẽ

(α)
3 ;B;R;µ

)
= S

(in)
nn̄nsj

(
ẽ

(α)
3 ;R;µ

)
S

(NG)
nn̄nsj

(
ẽ

(α)
3 ;B;R

)
S

(out)
nn̄nsj

(
B;R;µ

)
, (4.3)

where we have included explicit dependence on the renormalization scale µ. Because µ

corresponds to the scale for resummation of global logarithms, it does not appear in the

non-global component of the soft function, S
(NG)
nn̄nsj . We also use the shorthand notation

S
(out+NG)
nn̄nsj for the product of the out-of-jet and non-global soft functions. In eq. (4.2),

we have removed any global contribution to B from the initial nn̄ dipole by the appro-

priate global part of the soft function Snn̄(ẽ
(α)
3 ;B;R). This soft function has a similar

factorization:

Snn̄(ẽ
(α)
3 ;B;R;µ) = S

(in)
nn̄

(
ẽ

(α)
3 ;R;µ

)
S

(NG)
nn̄

(
ẽ

(α)
3 ;B;R

)
S

(out)
nn̄

(
B;R;µ

)
, (4.4)

where we have explicitly included dependence on the renormalization scale µ. The first

factor in eq. (4.2),

H(Q2)Jn
(
ẽ

(α)
3

)
Jn̄(B)Snn̄(ẽ

(α)
3 ;B;R)

has the important property of itself being renormalization group invariant [87] for arbitrary

jet radius R, assuming that R is smaller than the angle between the n and n̄ directions.

This fact has deep consequences. We now introduce the two functions that define the

dressed gluon’s factorization theorem:

Wnn̄(zsj , θsj ;R) = lim
ẽ
(α)
3 →0

Hsj
nn̄ (zsj , θsj) J̃nsj

(
ẽ

(α)
3

)S(in)
nn̄nsj

(
ẽ

(α)
3 ;R

)

S
(in)
nn̄

(
ẽ

(α)
3 ;R

) ,

Gnn̄nsj (B;R) = lim
ẽ
(α)
3 →0

S
(out+NG)
nn̄nsj

(
ẽ

(α)
3 ;B;R

)

S
(out+NG)
nn̄ (B;R)

, (4.5)

which are the second and third factors, respectively, in square brackets in eq. (4.2). By the

renormalization group invariance of the total cross section and the first factor of eq. (4.2),
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the product Wnn̄Gnn̄nsj must also be renormalization group invariant. That is, these

functions have the renormalization group equations:

µ
d

dµ
lnWnn̄(zsj , θsj ;R) = −γD , (4.6)

µ
d

dµ
lnGnn̄nsj (B;R) = γD ,

where γD is the anomalous dimension, which is given to one-loop in appendix B.7. The

resummed dressed gluon with one-loop anomalous dimensions is

Wnn̄(zsj , θsj ;R;µ)Gnn̄nsj (B;R;µ) (4.7)

= Wnn̄(zsj , θsj ;R;µ)Gnn̄nsj (B;R;µi)

(
1− tan2 θsj

2

tan2 R
2

)αsCA
π

ln µ
µi

,

where the scale at which Gnn̄nsj is evaluated has been set to µi. Taking the tree-level

matrix-elements then gives:

Wnn̄(zsj , θsj ;R;µ)Gnn̄nsj (B;R;µ) =
αsCF
4π2zsj

2

sin2 θsj

(
1− tan2 θsj

2

tan2 R
2

)αsCA
π

ln µ
µi

. (4.8)

Note that the dressed gluon’s matrix element vanishes as it approaches the jet boundary,

where θsj → R. Therefore, emissions are suppressed near the jet boundary corresponding

to the buffer region identified in Monte Carlo simulations of NGLs [39].

4.2 Calculating with a dressed gluon

From the suggestive form of eq. (4.2), we are able to define a generic procedure for in-

corporating non-global effects into the resummation of an arbitrary additive observable

measured on a jet or other restricted phase space region.14 As a concrete example, we will

use the dressed gluon approximation, with one and two dressed gluons, to include non-

global effects in the factorization theorem for the hemisphere mass observables in e+e−

collisions. This will be sufficient to clearly illustrate how the procedure can be extended to

an arbitrary number of dressed gluons, and for an arbitrary additive observable. We will

denote the mass of the left (right) hemisphere as mL (mR), and consider the cumulative

cross section defined as

S(mL,mR) =
1

σ0

∫ mL

0
dm′L

∫ mR

0
dm′R

d2σ

dm′L dm
′
R

, (4.9)

where σ0 is the Born cross section and

d2σ

dm′L dm
′
R

14Additivity of the energy correlation functions and the out-of-jet observable B was necessary for the

original form of the factorization theorem and its rewriting in eq. (4.2). However, we strongly suspect that

the resummation of NGLs for non-additive observables, such as the fractional jet multiplicity [105] defined

with the jets-without-jets algorithm [75], can be accomplished by extending the methods discussed here.

We thank Jesse Thaler for discussions on this point.
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is the double differential cross section of the hemisphere masses. Non-global effects only

appear in the soft function, so, in this section, we will demonstrate how to include the one-

and two-dressed gluon approximations into the soft function for hemisphere mass measure-

ments, with the generalization to other non-global measurements being straightforward.

We emphasize that the use of the dressed gluon will depend on the relation between

mL and mR. It is therefore important to clarify the notation used in describing the soft

subjet factorization theorem compared with that used for the left-right hemisphere mass

distribution. When we presented the soft subjet factorization theorem, we referred to an

in-jet region, in which we were multi-differential, and an out-of-jet region, in which a single

observable B was measured. Importantly, as discussed in section 3.1, the factorization

theorem presented is valid in the case that the out-of-jet scale is lower than the in-jet

scale.15 To make the correspondence with the left-right hemisphere mass distribution,

we must make an assumption for the relation between mL and mR. For the case of the

hemisphere masses considered here, this is somewhat of a trivial point since the distinction

is just a matter of relabeling; however, for general geometries it is important. In this

section, we will therefore write explicit expressions for the case mL > mR, and simply

indicate with R ↔ L the opposite case. For mL > mR, the measurement mR corresponds

to the out-of-jet measurement B in the soft subjet factorization theorem, as it sets the lower

scale. The multi-differential measurement is then made in the left hemisphere, which in

the dressed gluon approximation, will give rise to a dressed gluon which will be integrated

over the phase space in the left hemisphere. We will use somewhat interchangeably the

notation left (right) and in (out) depending on the context, with the hope that this does

not cause confusion.

4.2.1 A single dressed gluon

We begin with the simplest case of one-dressed gluon. It is important to note that one

cannot just simply replace the standard fixed-order calculation for the dressed gluon, since

the presence of the resummation of the dressed gluon would change the renormalization

of the global divergences. These we do not want to change, since in the hemisphere mass

factorization theorem these divergences are tied to the resummation of the large global log-

arithms. The domain of consistency of our soft subjet factorization automatically imposes

this constraint: we must only dress the gluon when it is energetic enough. Therefore, we

only dress the gluon in the left hemisphere if mL > mR; otherwise, we dress the gluon in

the right hemisphere.

At one-loop, the cumulative soft function is therefore dressed as:

S
(1)
nn̄ (mL,mR)

∣∣
dressed

= 2CF g
2µ2ε

∫
[ddp]+

n · n̄
(n · p)(p · n̄)

Θ(mL − n · p)Θ(n̄ · p− n · p)

×



Θ(mR − n · p) + Θ(n · p−mR)

(
1− n · p

n̄ · p

)αsCA
π

ln n·p
mR





+ {R↔ L, n↔ n̄} , (4.10)

15A factorization theorem for the opposite case will be presented in a future publication [99].
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where d = 4 − 2ε, µ is the scale in dimensional regularization, and [ddp]+ is the Lorentz-

invariant phase space for an on-shell, positive energy gluon. To connect with the expression

as written in eq. (4.8), note that

n · p
n̄ · p = tan2 θsj

2
. (4.11)

The Θ-functions enforce the phase space constraints and, in particular, only turn the

dressing factor on if the mass in a hemisphere is not set by the identified gluon emission

in that hemisphere. The purely global contributions to the mass can be separated out by

simple rearrangement:

Θ(mR − n · p) + Θ(n · p−mR)

(
1− n · p

n̄ · p

)αsCA
π

ln n·p
mR

= 1 + Θ(n · p−mR)



(

1− n · p
n̄ · p

)αsCA
π

ln n·p
mR − 1


 . (4.12)

The global contribution, corresponding to the “1” in eq. (4.12), has been studied in great

detail in the literature, so for our purposes here, we will ignore it. Further, because there

are no divergences associated with the dressed gluon, we can work in strict d = 4. Then,

the one-dressed gluon contribution is

S
(1,NG)
nn̄ (mL,mR) = Θ(mL −mR)

αsCF
π

×
∫ mL

mR

d(n · p)
n · p

∫ ∞

n·p

d(n̄ · p)
n̄ · p



(

1− n · p
n̄ · p

)αsCA
π

ln n·p
mR − 1




+ {R↔ L, n↔ n̄} . (4.13)

The “NG” notation in the superscript denotes that we are only considering the non-global

contribution to the soft function as captured by the one-dressed gluon.

The integrals can be evaluated and one finds

S
(1,NG)
nn̄ (mL,mR) = Θ(mL −mR)

{
− αsCF

π
γE ln

(
mL

mR

)

− CF
CA

ln Γ

[
1 +

αsCA
π

ln

(
mL

mR

)]}

+ {R↔ L} , (4.14)

where γE is the Euler-Mascheroni constant and Γ[x] is the Euler Gamma function. Ex-

panding to the first few orders, we find

S
(1,NG)
nn̄ (mL,mR) = Θ(mL −mR)

{
−π

2

12

CF
CA

L2 +
ζ(3)

3

CF
CA

L3 +O(α4
s)

}

+ {R↔ L} , (4.15)
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where ζ(3) = 1.202 . . . is the Riemann ζ-function and we have used

L =
αs
π
CA ln

(
mL

mR

)
. (4.16)

The α2
s term is correct, while higher order terms are in general not, but this is expected

for reasons discussed earlier as the dressed gluon approximation is not an expansion with a

fixed logarithmic counting. In particular, the term at α3
s differs by a factor of 2 from the true

result in the large-Nc limit, where CF → Nc/2 [51]. Nevertheless, the two-dressed gluon

approximation will fully capture this term, and produce a more accurate approximation

for terms at even higher orders. We will shortly discuss in more detail the organization of

the perturbative expansion in terms of dressed gluons.

In this section we have focused on extracting only the NGLs for the hemisphere mass

distribution; however, it should be clear from the presentation that the dressed gluon ap-

proximation can be used to perform a complete calculation also including global logarithms.

In particular, the expansion in dressed gluons reorganizes the perturbative expansion in

terms of ordinary gluons in the low scale matrix element. The global resummation factor

U(µf , µi) multiplies the perturbative expansion in dressed gluons. Explicitly, if we have

calculated to the `th loop order, then formally we have

Snn̄(mL,mR;µf ) = U(µf , µi)
∑̀

i=0

[
S

(i)
nn̄(mL,mR;µi)− ciLi + DGi

]
. (4.17)

We have subtracted all the fixed order NGLs ciL
i that are included in the i dressed gluons,

denoted by DGi. This is apparent from the factor “1” appearing in eq. (4.12), which was

ignored in this section, and will be further seen in subtractions necessary to extract the

non-global contribution from the two-dressed gluon approximation in section 4.2.4.

4.2.2 Generalization to N eikonal lines

In this section we generalize the construction of the dressed gluon approximation from

the emission of a soft subjet from two eikonal lines in the n, n̄ directions, to the case of

the emission of a soft subjet from N eikonal lines. This construction is necessary to go

beyond the one-dressed gluon approximation. Since the leading NGLs arise in the strongly-

ordered limit, we are interested in studying multiple strongly-ordered soft subjets, which

will become the multiple dressed gluons. In the strongly-ordered limit, the factorization

theorem can be obtained by performing a sequence of matchings, where at each stage, all

more energetic subjets can be treated as eikonal lines, and all less energetic subjets are

unresolved. This is shown schematically in figure 6 for the case of two strongly-ordered

subjets, which will be discussed in detail in section 4.2.4 where we consider the calculation

of the two-dressed gluon contribution to the NGLs for the hemisphere jet mass. Because

we can perform this sequence of matchings, to generalize the dressed gluon approximation

it suffices to understand how to add a soft subjet to N eikonal lines.

When we considered the factorization for a single soft subjet in section 3, we empha-

sized that the soft subjet region of phase space can be isolated in an IRC safe manner by a
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multi-differential measurement of the energy correlation functions. This construction can

be generalized to isolating m soft subjets by measuring the energy correlation functions

e
(α)
2 , · · · , e(α)

m+2. The explicit condition on the phase space in terms of the energy correlation

functions is not of particular interest, but has been discussed for isolating three prong struc-

ture in [98]. We therefore simply assume that sufficiently many IRC safe measurements

have been made to isolate the desired region of phase space.

We now consider the addition of a soft subjet to N eikonal lines. We first discuss the

organization of color before describing the anomalous dimension of the generalized dressed

gluon. All color matrices encoding the color entanglement of the eikonal lines resides in the

hard matching coefficient describing the soft subjet production from the initial N eikonal

lines. To understand this organization of color, we start with an N (sub)jet factorization

theorem in the region of phase space that has been isolated by a sufficiently differential

measurement. This defines the initial hard matching coefficient HN and soft function SN .

To understand how to add the soft subjet to this factorization theorem, we consider

the diagrams that can contribute to the matching coefficient describing the soft subjet

production off of the N eikonal lines. Only diagrams which are fully color connected16

that contain the real soft gluon that will form the soft subjet will contribute [106–108].

The disconnected diagrams will not be color entangled with the soft subjet evolution,

and are reproduced by a soft function containing only the original N eikonal lines with

the appropriate measurement constraints. Thus we are lead to conjecture the following

factorization theorem that describes the addition of a soft subjet:

Soft Subjet Factorization Conjecture

dσ(BN )

dzsj dΩsj deres
=

∑

{i,...,k}⊂{1,...,N}

tr
[
HN ·H(i...k)AB

sj trsj
[
SABi...knsj (eres;BN )⊗ S−1

i...k(eres;BN )
]

⊗ SN (eres;BN )
]
⊗ J̃sj ⊗N`=1 J` .

(4.18)

Here eres is the observable that sets the unresolved infrared scale and the BN are all the

possible out-of-jet measurements. Explicit dependence on the jet radius and the arguments

of the jet functions have been suppressed. The Si...k denotes a soft function with eikonal

lines i . . . k. Note that for compactness, we have written the soft subjet jet function fol-

lowing the notation of eq. (3.14), and have not explicitly written it as factorized into jet

and boundary soft modes, although this factorization must be performed for a completely

factorized description of the soft subjet dynamics. The notation trsj denotes that we are to

trace over all the color indicies of the eikonal lines i, . . . , k. The adjoint indices AB are tied

to the soft subjet’s Wilson line, and contracts with the T color matrices of the matching

coefficient H
(i...k)
sj AB . The form of the factorization at the level of cut diagrams is given in

figure 5.

16Fully connected soft diagrams generalize the notion of webs in the two-eikonal line soft function. Webs

can always be given a topological condition on the diagram of two-eikonal particle irreducible. These are

the diagrams that appear naturally in the logarithm of the soft function.
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1
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j

HN

HSJ

nsj Sijnsj

Sij

1

2

N

i

j

HSJ

nsj

HN

Figure 5. The diagrammatic structure of the cut diagrams of the soft jet production in the

factorization equation (4.18). For concreteness, we have taken the soft jet to be created off of the

i, j eikonal lines of the parent N -jet factorization. The color matrices of each function are to be

inserted at the indicated regions along the eikonal lines. Thus a T matrix of the soft jet production

is inserted between the hard function HN and any global soft radiation. Note that the new soft jet

eikonal line enters only into the color multipole function of the i, j lines.

The key feature of eq. (4.18) is the appearance of a new soft function, which we refer

to as the color multipole function :

trsj

[
SABi...knsj (eres;BN )⊗ S−1

i...k(eres;BN )
]
, (4.19)

which encodes that the soft subjet modifies the color structure of only the eikonal lines

that participated in its production. The subtraction removes overlap of the soft subjet

soft function with the original N eikonal line soft function. Effectively, the eikonal line

introduced by the soft subjet is only sensitive to the color multipole involved in its creation.

The soft subjet production matching coefficients are determined by the finite part of:

∑

{i,...,k}⊂{1,...,N}

H
(i...k)AB
sj = 〈0|T{S1 . . .SN}|sjA〉〈sjB|T̄{S1 . . .SN}|0〉

∣∣∣
finite

, (4.20)

This matrix element selects all connected diagrams with a single soft jet state crossing the

cut, while all disconnected diagrams cancel between the time-ordered and anti-time ordered

products. Thus it is directly related to the logarithm of the diagrammatic expansion of a

soft function. In appendix C, we will use this conjecture for the factorization theorem to

explicitly write the factorization theorem for two soft subjet production.
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There is substantial evidence for this factorization theorem. First, it preserves the

renormalization group structure of the parent factorization theorem: there is a precise

cancellation in the anomalous dimensions of the N -jet hard function and the N -jet soft

function. Were we to introduce a soft eikonal line into the global soft function, this would

violate the cancellation. In effect, we would not be able to factorize the soft jet production

matching coefficient from the underlying hard process. The underlying N -hard jets have

been fixed by the measurements imposed, and cannot be modified by subsequent infrared

evolution. Second, the factorization formula is consistent with the known expression for

the matrix elements for two soft partons, as given in ref. [109], which will be discussed in

detail below. Third, the generation of the hard matching coefficient for soft jet production

can be considered as a differential operator acting on the soft function of parent eikonal

lines that generate the soft subjet. Since the soft function is known to exponentiate only

a strict subset of the diagrams involved in its calculation, this naturally leads to the hard

matching given in eq. (4.20).

From this factorization theorem, we can then define generalized dressed gluon factors

W and G as

W(i...k)(zsj ,Ωsj) = lim
ẽres→0

H
(i...k)AB
sj (zsj ,Ωsj)

× trsj
[
SABi...knsj (ẽres)⊗ S−1

i...k(ẽres)
](in)

J̃sj(ẽres, R) ,

Gi...k(BN ) = lim
ẽres→0

trsj
[
Si...knsj (ẽres;BN ) · S−1

i...k(ẽres;BN )
](out+NG)

. (4.21)

As with the one-dressed gluon, we Laplace transform eres so that the limit ẽres → 0 of its

Laplace conjugate results in being fully inclusive over eres. These W functions depend on

the global color structure of the N eikonal lines in the system, but importantly is indepen-

dent of the out-of-jet scales BN . Similar to the factorization of the global soft function in

eq. (4.3), in-jet and out-of-jet scales are split into different soft functions in the refactoriza-

tion of the color multipole function. The G function depends on the directions of the lines

participating in the soft subjet product. As was the case with the factorization theorem

for one soft subjet, for hemisphere jets, the product of each W and G are renormalization

group invariant. The structure of W can be expressed in a color multipole expansion as

W(i...k)(zsj ,Ωsj) = Ti · · ·TkWi...k(zsj ,Ωsj) , (4.22)

where Wij(zsj ,Ωsj) describes the emission of the dressed gluon from a color dipole,

Wijk(zsj ,Ωsj) describes the connected emission of the dressed gluon from three Wilson

lines, etc.

A possible modification to the conjecture is that soft subjet soft functions do not

themselves form a color singlet as postulated above in the formulation of the color multipole

function, so that

H
(i...k)AB
sj · SABi...knsj (eres;BN )⊗ S−1

i...k(eres;BN ) (4.23)

is a generic color tensor over the color indices of the eikonal lines i . . . k. This color tensor

must then be inserted between the contractions of the soft and hard functions HN and SN ,
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following the T matrix conventions of ref. [109] (since effectively it can be expressed as a

sum over such color matrices). For soft functions with 2 or 3 Wilson lines, as considered

in this paper, the function can always be written as a color singlet, consistent with the

conjectured form discussed above.

4.2.3 Anomalous dimension for dressed gluons with N eikonal lines

To dress the resolved gluon requires renormalization of the generalized W and G func-

tions, as defined in eq. (4.21). At one-loop, the anomalous dimension of these objects can

be determined by the one and two soft gluon emission matrix elements from an arbitrary

N -point squared amplitude. This can be determined directly from the factorization equa-

tion (4.18), or from ref. [109].17 In the notation of ref. [109], for soft gluons with momenta

q1, q2 these squared amplitudes are

∣∣A(q1, p
a1
1 , . . . , p

aN
N )
∣∣2 =

(
4παsµ

2ε
) N∑

i,j=1

Sij(q1)|A(ij)(pa1
1 , . . . , p

aN
N )|2 , (4.24)

∣∣A(q1, q2, p
a1
1 , . . . , p

aN
N )
∣∣2 =

(
4παsµ

2ε
)2
{

1

2

N∑

i,j=1

N∑

k,l=1

Sij(q1)Skl(q2)
∣∣∣A(ij)(kl)(pa1

1 , . . . , p
aN
N )
∣∣∣
2

− CA
N∑

i,j=1

Sij(q1, q2)
∣∣∣A(ij)(pa1

1 , . . . , p
aN
N )
∣∣∣
2
}
,

(4.25)

respectively, where the indices in parentheses denote the dipole from which the soft gluon

has been emitted and pi and ai are the momenta and color of particle i. While the

factorization above is valid for arbitrary soft gluon emissions, in the strongly-ordered limit,

the soft gluon emission factors are

Sij(q) =
pi · pj

(pi · q)(q · pj)
, (4.26)

S
(s-o)
ij (q1, q2) =

pi · pj
(pi · q1)(q1 · q2)(q2 · pj)

+
pi · pj

(pi · q2)(q2 · q1)(q1 · pj)
− pi · pj

(pi · q1)(q1 · pj)
pi · pj

(pi · q2)(q2 · pj)
,

where (s-o) denotes strongly-ordered.

To continue, we assume that at least one of the eikonal lines lives in the jet whose

substructure we wish to probe. Then, eq. (4.24) has the interpretation as the tree-level

hard matching coefficient for the soft subjet while eq. (4.25) describes the real emission

contribution from the soft subjet. This emission can be either in the jet, where it contributes

at the resolution scale of the jet eres, or it is outside the jet, where it contributes to the

out-of-jet measurements BN . The soft real emission in the jet at the resolution scale could

be either global soft, boundary soft, or radiation from other soft modes formed by having

17These give equivalent results: the first term of eq. (4.25) arises from the global soft function, while the

second is generated by the color multipole function.
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multiple eikonal lines in the jet. To determine the anomalous dimension of the W and G

functions, and therefore to dress the gluon, we are only interested in emissions from the

soft subjet that leave the jet.

The anomalous dimensions of W and G are determined solely by the term in eq. (4.25)

that is explicitly proportional to CA. Contributions from this term can entangle in- and out-

of-jet scales, corresponding to sensitivity to non-global structure. By contrast, the emissions

from first term of eq. (4.25) are color disconnected and therefore can only contribute to

the global structure of either the in- or out-of-jet regions. These observations allow us to

rewrite the CA term for emission of a strongly-ordered soft gluon with momentum q from

the soft subjet in the direction nsj as

− CA
N∑

i,j=1

S
(s-o)
ij (nsj , q)

∣∣∣A(ij)(pa1
1 , . . . , p

aN
N )
∣∣∣
2

(4.27)

=
N∑

i,j=1

[
Sij(nsj)

∣∣∣A(ij)(pa1
1 , . . . , p

aN
N )
∣∣∣
2
]

× CA
(

pi · pj
(pi · q)(q · pj)

− nsj · pj
(nsj · q)(q · pj)

− pi · nsj
(pi · q)(q · nsj)

)

We immediately recognize the factor in square brackets as the hard function for the soft

gluon created from the eikonal line i, j. Therefore, to one-loop, the anomalous dimension

of the generalized dressed gluon is

γDijnsj = −αsCA
π

∫

out

dΩq

4π

S
(s-o)
ij (nsj , q)

Sij(nsj)

=
αsCA
π

∫

out

dΩq

4π

[
pi · pj

(pi · q)(q · pj)
− nsj · pj

(nsj · q)(q · pj)
− pi · nsj

(pi · q)(q · nsj)

]
, (4.28)

where q = (1, q̂) and q̂ is a unit vector in the direction of the emission from the soft subjet

and “out” means that the angular integral is only evaluated in the out-of-jet region.

The coefficient of the dressed gluon anomalous dimension is given the by the gluon color

Casimir, CA, multiplied by the O(αs) cusp anomalous dimension [110–112], Γ0
cusp(αs) =

αs/π. We conjecture that to all orders in perturbation theory the coefficient of the dressed

gluon anomalous dimension is given by CA Γcusp. While this may seem unmotivated from

the above calculation, it appears naturally from the factorization theorem for the soft

subjet in eq. (3.10). Recall that the dynamics of the soft subjet which are sensitive to

the non-global structure is described by the boundary soft mode. Because it is soft, the

boundary soft mode sees the soft subjet as eikonalized and because it is collinear-soft,

only sees the eikonal likes nsj and n̄sj . Thus it is natural that the anomalous dimension

associated with the dressed gluon should be given by the cusp anomalous dimension.18

For hemisphere jets, the renormalization group evolution of the W and G functions is

straightforward to determine. Recall that we can expressed the W function in a basis of

18See also refs. [113–116] for similar arguments for the appearance of the cusp anomalous dimension in

other contexts.
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color multipoles as

W(i...k)(zsj ,Ωsj) = Ti · · ·TkWi...k(zsj ,Ωsj) + . . . (4.29)

where the . . . denotes higher multipoles. The tree-level matrix element for the dipole

factor is

W
(tree)
ij (zsj ,Ωsj) =

αs
4π2zsj

pi · pj
(pi · nsj)(nsj · pj)

, (4.30)

where zsj is the energy fraction of the soft subjet and nsj is a lightlike vector along the

direction of the soft subjet. The renormalization group evolution of W(ij) is

µ
d

dµ
W(ij)(zsj ,Ωsj) = −γDijnsj W(ij)(zsj ,Ωsj) , (4.31)

which, to one-loop, the anomalous dimension is given by eq. (4.28). At one- and two-loop

order, only dipoles contribute to the evolution of the soft subjet [109, 117–119], and so only

the evolution of W(ij)(zsj ,Ωsj) is necessary to resum logarithms associated with dressing

a gluon through next-to-leading logarithmic accuracy.

For reasons which will become clear when we discuss the relation of the dressed gluon

to the BMS equation, we will use the following notation for the exponentiated anomalous

dimension with fixed coupling

Uijnsj (L) = exp

[
L
γDijnsjπ

αsCA

]
, (4.32)

where the normalization is chosen to correspond to the definition of the logarithm appearing

in eq. (4.16).

4.2.4 Two dressed gluons

We now continue and present the two-dressed gluon approximation as applied to the hemi-

sphere jet mass. This discussion will be limited to leading logarithmic accuracy for the

two-dressed gluon, but the extension to higher logarithmic orders can be accomplished

straightforwardly by calculating the objects in the appropriate factorization theorem to

higher perturbative orders. Unlike the one-dressed gluon, for which we presented explicit

calculations, in this section we will only present the form of the integrand for the non-

global component of the soft function for hemisphere jet masses which comes from the

two-dressed gluon approximation. Numerical comparison of the two-dressed gluon to the

BMS equation will be presented in section 4.3.

As with the identification of the one soft subjet region of phase space, we perform a

series of measurements on the jet to identify two soft subjets and a hard core of radiation.

As discussed in ref. [98], this three-prong region of phase space can be isolated by measuring

e
(α)
2 , e

(α)
3 , and e

(α)
4 on the jet and demanding parametric relations between them. As

the precise relationships are not vital to the two-dressed gluon calculation, we do not

present them. To ensure that the soft subjets are well-separated, we can measure an

additional three-point energy correlation function, e
(β)
3 , and demand that e

(α)
3 ∼ e

(β)
3 .
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L�

L

(b)

Figure 6. (a) Schematic depiction of the region of phase space defined by two strongly-ordered soft

subjets, which gives rise to the two-dressed gluon approximation. (b) Illustration of the resolved

subjets as a function of the resolution scale, as implemented by the matching procedure in this

region of phase space.

These measurements fully isolate the two soft subjet region, and further measurements

can be performed to determine the subjet energy fractions and relative angles. The two

soft subjet region of the cross section can then be factorized into appropriate hard, jet

and soft functions describing the various modes that contribute to the various observables.

As in the case of a single soft subjet, we must assume that we are in a region of phase

space where B � e
(α)
3 , so that the NGLs are parametrically large. The precise structure of

this factorization theorem, while potentially interesting for particular applications, is not

relevant for the dressed gluon approximation and will not be presented here. As with the

one-dressed gluon, to obtain the description of the two-dressed gluon from the factorization

theorem, we associate functions in the factorization theorem and integrate over unresolved

scales. Fig. 6(a) illustrates the two soft subjet region of phase space, where we assume that

the energy of the subjets is strongly-ordered.

Once we have isolated two strongly-ordered soft subjets, we can then connect to the

two-dressed gluon approximation by a sequence of matchings between different effective

theories. This is illustrated in figure 6(b), where we assume the subjets have momenta p

and q with p� q, and the procedure is similar in spirit to that proposed for describing the

parton shower in SCET [120–122]. At the lowest scale, the softest subjet with momenta q is

produced from the np or n̄p dipoles. This emission is dressed by the anomalous dimension

of the dressed gluon, eq. (4.28), integrated up to the scale of the harder subjet, L′ (where

the strongly-ordered limit breaks down). Once integrated to the scale of the harder subjet

with momentum p, the procedure is repeated, with this subjet dressed by the anomalous

dimension of the dressed gluon, and integrated up to the scale L, corresponding to the

highest soft subjet scale.

To illustrate this procedure, we will first apply it to the one-dressed gluon, and show

that it reproduces the calculation from section 4.2.1. Using the exponentiated anomalous

dimension from eq. (4.32) for dressing the gluon, the soft function for a dressed gluon in
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the left hemisphere is

S
(1)
nn̄ (L)

∣∣
dressed

=

∫ L

−∞
dL′

∫

left

dΩp

4π

{
Θ(−L′)Hnn̄(p) + Θ(L′)Hnn̄(p)Unn̄p(L

′)
}
, (4.33)

where, for example, Θ(L′) is satisfied only if the energy of the gluon is sufficiently large.

Here, Hnn̄(p) is the eikonal matrix element for the emission of a soft gluon from Wilson

lines in the n and n̄ directions. The gluon with momentum p is only dressed, that is,

multiplied by the exponentiated dressing anomalous dimension Unn̄p(L
′), if its energy is

sufficiently large. Re-associating the Θ-functions, we find

S
(1)
nn̄ (L)

∣∣
dressed

=

∫ L

−∞
dL′

∫

left

dΩp

4π

{
Hnn̄(p) + Θ(L′)Hnn̄(p)

(
Unn̄p(L

′)− 1
)}

. (4.34)

We now immediately recognize the first term in eq. (4.34) as the global hemisphere soft

function, and therefore, the second term is the non-global soft function for the one-dressed

gluon:

S
(1,NG)
nn̄ (L) =

∫ L

0
dL′

∫

left

dΩp

4π
Hnn̄(p)

(
Unn̄p(L

′)− 1
)
. (4.35)

One can verify that eq. (4.35) agrees with the analytic expression for the non-global soft

function for the one-dressed gluon in eq. (4.14).

Now, we apply the same procedure to determine the two-dressed gluon contribution,

in the strongly-ordered and large Nc limit. The two-dressed gluon soft function is

S
(2)
nn̄ (L) =

∫ L

−∞
dL′

∫ L′

−∞
dL′′

∫

left

dΩq

4π

∫

left

dΩp

4π

{
Θ(−L′)Θ(−L′′)Hnn̄(p) [Hnp(q) +Hn̄p(q)]

+ Θ(L′)Θ(−L′′)Hnn̄(p)Unn̄p(L
′) [Hnp(q) +Hn̄p(q)]

+ Θ(L′)Θ(L′′)Hnn̄(p)Unn̄p(L
′)
[
Hnp(q)Unpq(L

′′) +Hn̄p(q)Un̄pq(L
′′)
]}

,

(4.36)

where we assume that p� q. Again, to isolate the non-global contribution, we re-associate

the Θ-functions which yields

S
(2)
nn̄ (L) =

∫ L

−∞
dL′

∫ L′

−∞
dL′′

∫

left

dΩq

4π

∫

left

dΩp

4π

{
Hnn̄(p) [Hnp(q) +Hn̄p(q)] (4.37)

+ Θ(L′)
[
Hnn̄(p)

(
Unn̄p(L

′)− 1
)

[Hnp(q) +Hn̄p(q)]

+ Θ(L′′)Hnn̄(p)Hnn̄(q)
(
Unn̄q(L

′′)− 1
) ]

+ Θ(L′)Θ(L′′)
[
Hnn̄(p)Unn̄p(L

′)

×
[
Hnp(q)

(
Unpq(L

′′)− 1
)

+Hn̄p(q)
(
Un̄pq(L

′′)− 1
)]

−Hnn̄(p)Hnn̄(q)
(
Unn̄q(L

′′)− 1
) ]}

.

The strongly-ordered global hemisphere soft function for two gluons is immediately iden-

tified as the first line of eq. (4.37). The second line is the strongly-ordered non-global soft
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function for the one-dressed gluon, with either gluon p or gluon q dressed. Because of

the subtractions in this term, when dressed gluon p is collinear with n, its contribution

vanishes, and similar for the contribution when dressed gluon q is collinear to n. The last

line in eq. (4.37) is the strongly-ordered non-global soft function for the two-dressed gluon:

S
(2,NG)
nn̄ (L) =

∫ L

0
dL′

∫ L′

0
dL′′

∫

left

dΩq

4π

∫

left

dΩp

4π
(4.38)

×
{
Hnn̄(p)Unn̄p(L

′)
[
Hnp(q)

(
Unpq(L

′′)− 1
)

+Hn̄p(q)
(
Un̄pq(L

′′)− 1
)]

−Hnn̄(p)Hnn̄(q)
(
Unn̄q(L

′′)− 1
)}

.

The subtractions that appear in the expression above from re-associating the phase space

constraints from dressing are necessary from the effective theory perspective to force the

non-global soft function to be restricted to the two-dressed gluon phase space region. These

remove appropriate collinear limits of the two resolved gluons in the soft function, acting

as zero bin subtractions in the effective theory [97].

The form of the one- and two-dressed gluon calculations suggest that the all-orders

non-global soft function calculated in terms of dressed gluons takes a form motivated by

non-abelian exponentiation of the soft function [106, 123, 124]. We conjecture that the full

non-global soft function can be written schematically as

S
(NG)
nn̄ (L) = 1 +

∞∑

i=1

C̃i S
(i,NG)
nn̄ (L) , (4.39)

where C̃i represents an appropriate color factor. A detailed study of this conjecture is,

however, beyond the scope of this paper.

4.3 Numerical comparison to the BMS equation

In this section we compare our dressed gluon approximations with different calculations

of the leading, large-Nc NGLs for the hemisphere jet mass. We will compare to both

fixed-order and resummed distributions for the NGLs. In the large-Nc limit, the leading

fixed-order NGLs were calculated in ref. [51] to 5 loops by explicit iteration of the BMS

equation. The expansion is

S
(NG)
nn̄ = 1− π2

24
L2 +

ζ(3)

12
L3 +

π4

34560
L4 +

(
−π

2ζ(3)

360
+

17ζ(5)

480

)
L5 +O(L6) , (4.40)

where we recall that

L =
αs
π
Nc ln

(
mL

mR

)
.

Leading logarithmic resummation of NGLs in the large-Nc limit can be achieved by a

numerical or Monte Carlo solution to the BMS equation. Dasgupta and Salam (DS) [33]

proposed the following fit to their Monte Carlo result:

S
(NG)
nn̄ = exp

[
−π

2

24
L2 1 + 0.180625L2

1 + 0.325472L1.33

]
. (4.41)
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Figure 7. Comparison of the one-dressed gluon approximation to the 2- and 3-loop fixed order

results for the non-global piece of the hemisphere mass soft function, the Dasgupta-Salam fit for

the leading logarithmic resummation of the NGLs from a Monte Carlo, and our implementation of

the DS Monte Carlo.

We have written our own implementation of the DS Monte Carlo algorithm and will include

it in the comparisons.

We begin in figure 7 where we compare the one-dressed gluon approximation to the

fixed-order and resummed results listed above. In the comparison, we include the 2- and 3-

loop fixed-order expansions, the DS fit, and our Monte Carlo output. As expected, because

it reproduces the full 2-loop result, the one-dressed gluon agrees with the 2-loop expansion

at small values of L. As discussed earlier, the one-dressed gluon does not include the full

3-loop result and so the 3-loop expansion is a better approximation of the full resummed

result out to about L = 1. Nevertheless, the one-dressed gluon is accurate to better than

5% of the resummed distribution out to L = 1.5, corresponding to a ratio of several hundred

between the hemisphere jet masses. A distinction between the resummed distribution and

the one-dressed gluon is that the one-dressed gluon diverges at sufficiently large L. This

behavior will be present at any fixed order in the dressed gluon expansion, and therefore

does not produce the physical large L distribution. However, such large L values where the

dressed gluon diverges are well beyond the range of phenomenological applications. Fig. 7

also shows the output of our Monte Carlo, which agrees to within 1% with the DS fit out

to L = 2.

Improved accuracy can be obtained by including the two-dressed gluon approximation

which we show in figure 8. As with the one-dressed gluon, we compare with the DS fit and

our implementation of the Monte Carlo, but now we compare with the 3- and 4-loop fixed-

order expansions. The inclusion of the two-dressed gluon approximation fully accounts

for the 3-loop fixed order result, and so nicely agrees out to about L = 1. Perhaps more

interesting is that the two-dressed gluon approximation agrees with the Monte Carlo to

better than 5% out to L = 1.5, and slowly diverges from the DS fit beyond there. This

slow divergence at large L values, especially as compared to fixed-order expansions, may

suggest that the dressed gluon approximation is a convergent expansion. We also compare
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Figure 8. Comparison of the two-dressed gluon approximation to the 3- and 4-loop fixed order

results for the non-global piece of the hemisphere mass soft function, the Dasgupta-Salam fit for

the leading logarithmic resummation of the NGLs, and our implementation of the DS Monte Carlo.

to the output of our Monte Carlo, which begins to diverge from the DS fit near L = 2.5,

where finite cutoff effects or finite statistics are important.

In addition to the numerical comparisons presented in figures. 7 and 8, we could di-

rectly compare the 5-loop result in eq. (4.40) to the fixed-order expansion of the dressed

gluons. However, such a comparison would potentially be misleading and obscure many

important features for the following reasons.19 As mentioned in ref. [51], the fixed order

expansion of the leading non-global logarithms appears to be an asymptotic series. This

is in contrast to leading global logarithms, which, for observables like the jet mass, can

be resummed into an exponential. In the case of global logarithms, because the series

expansion of the exponential function has infinite radius of convergence, comparing to its

fixed-order expansion is meaningful. As one calculates to higher and higher orders, one

exactly builds up the exponentiated form for the leading global logarithms. However, if the

fixed-order expansion of non-global logarithms is indeed asymptotic, then this is precisely

the wrong way to organize it. The behavior of the one- and two-dressed gluons, on the

other hand, suggests that the dressed gluon expansion is convergent. If this is the case,

then there is no sense in which the fixed-order expansion builds up the dressed gluon ap-

proximation. Additionally, as we will show in section 4.4.1, the dressed gluons manifest

emergent phenomena of non-global logarithms that are not present at any fixed order.

To emphasize this point, in figure 9 we compare the one-dressed gluon approximation to

matching the one-dressed gluon to the 3-, 4-, or 5-loop fixed-order NGLs from eq. (4.40).

While matching to the fixed-order NGLs does improve the accuracy of the one-dressed

gluon at small L, it does so at the cost of greatly decreasing the accuracy at higher L

values. Even when matched to the 5-loop fixed-order NGLs, the one-dressed gluon with no

matching is more accurate over a wider range of L values. This is concrete evidence that the

fixed-order expansion of the NGLs is not the correct way to organize their expansion. The

19Nevertheless, for completeness we will do this comparison later.
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Figure 9. Comparison of the one-dressed gluon approximation, matched to the 3-, 4- or 5-loop

fixed-order non-global piece of the hemisphere mass soft function, the Dasgupta-Salam fit for the

leading logarithmic resummation of the NGLs, and our implementation of the DS Monte Carlo.

L1 L2 L3 L4

One-Dressed 0 −π2

24
ζ(3)

6 − π4

720

Two-Dressed 0 0 − ζ(3)
12

π4

480(1± 0.05)

Sum 0 −π2

24
ζ(3)
12

π4

1440(1± 0.2)

Exact 0 −π2

24
ζ(3)
12

π4

34560

Table 1. Coefficients of the NGLs as calculated from the one- and two-dressed gluon approxima-

tions through L4. The sum of the one- and two-dressed gluon approximation is compared to the

exact fixed order result from eq. (4.40).

dressed gluon resums a highly non-trivial subset of the NGLs to produce an approximation

to the full result that is accurate over a wide dynamic range.

For completeness, in table 1, we compare the numerical coefficients of the NGLs as

found from the dressed gluon approximation to the exact fixed-order results, through L4.

For both the one-dressed gluon and the fixed-order results, the coefficients are known ana-

lytically, while for the two-dressed gluon, we have determined the coefficients numerically

by Monte Carlo integration of eq. (4.38). Correspondingly, the uncertainty in the exact

value of the L4 coefficient for the two-dressed gluon is included in the table. As discussed

earlier, the one-dressed gluon gets the L2 term correct exactly, but not higher order terms

in the expansion. When the two-dressed gluon contribution is included, the dressed gluon

approximation exactly reproduces the correct coefficient at order L3. The coefficient at

order L4 is numerically small, which is manifest as a large cancellation between the one-

and two-dressed gluons. However, to fully reproduce this term requires the three-dressed

gluon, which we do not compute here. Nevertheless, the absolute value of the three-dressed

gluon contribution must be significantly smaller than that from the one- and two-dressed

gluons at this order. Again, the fixed-order expansion may be asymptotic and so this com-
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parison should be taken cautiously, but because corrections due to higher-order dressed

gluons to the fixed-order NGLs seem to decrease in magnitude, this is further evidence

that the dressed gluon expansion converges.

4.4 Insights into features of NGLs and the BMS equation

In addition to the accurate description of NGLs, the dressed gluon approximation also

provides a physical picture for the effects of a phase space boundary. In this section

we discuss some features of NGLs and methods of expansion of the BMS equation, for

which the dressed gluon approximation provides insight. From these examples, we are able

to more precisely define the formal expansion of the dressed gluon approximation as an

expansion in the unresolved phase space volume, which we discuss in section 4.4.3.

4.4.1 Buffer region

In ref. [39] a scenario for the possible underlying dynamics for NGLs was proposed, which

identified a “buffer region” near the phase space boundaries where emissions are suppressed.

Consider some phase space region Ω in which an energy veto is applied. Ref. [39] proposed

that the mechanism for suppressing radiation emitted into Ω was due to a buffer region

around the boundary of Ω which itself contained little radiation. A particularly interesting

consequence of this proposal is the approximate geometry independence of the NGLs, as

the buffer region smoothes the detailed shape of the boundary of Ω.

In ref. [39] an evolution equation for the width of the buffer region as a function of the

in-Ω and out-of-Ω scales was proposed based on some simple assumptions. The solution

they found was

ηbuffer ' (L− L′)
〈
δη

δL

〉
, (4.42)

where ηbuffer is the width of the buffer region in pseudorapidity, L and L′ are logarithms

of two scales in Ω, and
〈 δη
δL

〉
acts as an average speed of the evolution of the border of the

buffer region in η, assumed to be independent of L and postulated to be proportional to

CA. A Monte Carlo study was performed, which provided some qualitative support for the

buffer mechanism; nevertheless, the exact linear relation of eq. (4.42) was not observed.

However, it was not clear if this was due to L dependence of
〈 δη
δL

〉
for some unknown

dynamics or simply because the system had not reached its asymptotic behavior.

The existence and properties of such a buffer region can be addressed by studying

the soft jet region of phase space, as it describes the dynamics of a single gluon which

itself radiates more gluons. The boundary soft function, its anomalous dimension, and its

manifestation in the dressed gluon approximation provide strong support for the buffer

mechanism. The buffer region is manifest in the one-dressed gluon approximation through

the tree-level matrix-element

Wnn̄(zsj , θsj ;R;µ)Gnn̄nsj (B;R;µ) =
αsCF
4π2zsj

2

sin2 θsj

(
1− tan2 θsj

2

tan2 R
2

)αsCA
π

ln µ
µi

, (4.43)
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Figure 10. (a) A schematic depiction of the buffer region of ref. [39] which arises analytically in

the dressed gluon approximation. As the out-of-jet scale is lowered (or correspondingly the in-jet

scale is raised), the buffer region grows. (b) The width of the buffer region ηbuffer in pseudorapidity

as a function of L, which exhibits linear growth. The width of the buffer region is only plotted for

values of L for which the one-dressed gluon approximation provides a valid approximation to the

NGL dynamics.

which vanishes as the dressed gluon approaches the boundary of the jet. A schematic

depiction of the buffer region for our geometrical setup is shown in figure 10(a).

As a proxy for the width of the buffer region as defined by the one-dressed gluon

approximation, we consider the half maximum of the suppression factor in eq. (4.43). That

is, we define the width of the buffer region ηbuffer for hemisphere jet masses via

1

2
=
(
1− e−2ηbuffer

)L
. (4.44)

The width of the buffer region ηbuffer is plotted in figure 10(b) for the range of L over which

the one-dressed gluon approximation is valid. It appears to rapidly asymptote to linear

growth as a function of L, which continues throughout the range of validity of the one-

dressed gluon approximation. While these values of L are smaller than those considered

in ref. [39], and so it is possible that different dynamics are involved, we believe that the

dressed gluon approximation provides support for the buffer region. At higher values of L,

additional dressed gluons are required to accurately describe NGLs, which is beyond the

scope of this paper.

4.4.2 Expansions of the BMS equation

In this section we relate our dressed gluon approximation with the BMS equation [40],

and comment on various expansions proposed in the literature. The BMS equation for the

purely non-global piece of the hemisphere mass distribution, gab(L), is given by

∂Lgab(L) =

∫

left

dΩj

4π
Wj
ab [Uabj(L)gaj(L)gjb(L)− gab(L)] , (4.45)
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with the boundary condition gab(0) = 1. For simplicity, in this section we will follow closely

the notation in the BMS literature, in particular ref. [51]. We will use the left/right instead

of in/out labeling, and we define

Wj
ab =

1− cos(θab)

[1− cos(θaj)][1− cos(θjb)]
=

na · nb
(na · nj)(nj · nb)

, (4.46)

and

Uabj(L) = exp

[
L

∫

right

dΩ1

4π
(W1

ab −W1
aj −W1

jb)

]
. (4.47)

Note that eq. (4.47) is the exponentiated dressed gluon anomalous dimension from

eq. (4.32). The evolution equation resums all leading NGLs in the large Nc limit. As

it is a non-linear equation, solving it exactly analytically is challenging, and so several

expansions have been proposed to systematically approximate it.

One expansion that we presented in eq. (4.40) is the fixed-order expansion to 5-loops

from ref. [51]. While this expansion provides insight at small values of NGLs, it exhibits

poor convergence and may only be an asymptotic series for L > 1. Another approximation

used in the literature [40, 51] is to rewrite the BMS equation in the form

∂Lgab(L) =

∫

left

dΩj

4π
gab(L)Wj

ab [Uabj(L)− 1]+

∫

left

dΩj

4π
Wj
abUabj(L) [gaj(L)gjb(L)− gab(L)] .

(4.48)

The second term does not contribute to three loops, and the first term gives a linear

evolution equation which is straightforward to solve. Specializing to the case where a, b =

n, n̄ and performing the integrals, this linear equation becomes

∂Lgnn̄ = −1

2

(
γE +

Γ′(1 + L)

Γ(1 + L)

)
gnn̄ . (4.49)

While the linear equation is easily solved in closed form, it has no particular region of

validity and a numerical comparison to the solution to the BMS equation demonstrates

that it is a poor approximation above L ∼ 0.5.

The dressed gluon approximation, by contrast to either of these other expansions, is

not an expansion in the coupling, but rather in the number of resolved soft subjets. It is

therefore interesting to ask how the dressed gluon approximation manifests as an expansion

of the BMS equation. We expand the non-global function gab(L) as

gab(L) = 1 + g̃
(1)
ab (L) + g̃

(2)
ab (L) + · · · . (4.50)

We will relate g̃
(1)
ab (L) to the one-dressed gluon, g̃

(2)
ab (L) to the two-dressed gluon, and

so forth.

Inserting this expansion into the BMS equation, the differential equation for the one-

dressed gluon function g̃
(1)
ab (L) is then

∂Lg̃
(1)
ab (L) =

∫

left

dΩj

4π
Wj
ab [Uabj(L)− 1] = −1

2

(
γE +

Γ′(1 + L)

Γ(1 + L)

)
, (4.51)
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which is equivalent to the one-dressed gluon result calculated in eq. (4.14). This truncation

is also very similar to the linearized equation, eq. (4.49). However, unlike eq. (4.49), the

one-dressed gluon is not itself exponentiated. It is interesting that this simple approxima-

tion to the BMS equation, which is a valid expansion independent of its interpretation in

terms of dressed gluons, to our knowledge has not been well-studied in the literature. The

approximation of eq. (4.51) is also significantly more accurate than the linearized BMS

approximation, eq. (4.49).

While we have shown that this expansion reproduces the one-dressed gluon, it is in-

teresting to compare the interpretation of the subtraction term in the BMS equation and

the dressed gluon approximation. Note that the −1 subtraction appears explicitly in both

the dressed gluon integrand of eq. (4.13), and in the above expansion of the BMS equation

eq. (4.51), where it arises from the subtraction term −gab(L) in the full BMS equation,

eq. (4.45). In the derivation of the BMS equation presented in ref. [40], this term was

included as a virtual subtraction by unitarity. While this is indeed the unique subtraction

which renders the BMS evolution equation infrared finite, it does not necessarily corre-

spond to virtual corrections from our point of view since jets can genuinely be collinear.

On the other hand, in the effective field theory approach the origin of this subtraction is

clear: it arises from restricting the effective field theory description of the soft subjet region

to its regime of validity, similar to a zero bin subtraction [97].20 Indeed, in the effective

field theory approach, because we have completely factorized the dynamics describing the

soft jet, the real and virtual infrared divergences cancel separately within each function in

the factorization theorem of eq. (3.10).

The two-dressed gluon is found by inserting eq. (4.50) in to the BMS equation and

expanding to higher order. The differential equation for g̃
(2)
ab (L) is

∂L′ g̃
(2)
ab (L′) =

∫ L′

0
dL′′

∫

left

dΩq

4π

∫

left

dΩp

4π
(4.52)

×
{
Wp
abUabp(L

′)
[
Wq
ap

(
Uapq(L

′′)− 1
)

+Wq
bp

(
Ubpq(L

′′)− 1
)]

−Wp
abW

q
ab

(
Uabq(L

′′)− 1
)}

,

which upon integrating, is exactly the equation for the two-dressed gluon in eq. (4.38) with

a, b = n, n̄. One can work to higher orders in the dressed gluon expansion and build up

the full solution to the BMS equation.

4.4.3 Perturbative expansion vs. dressed gluon expansion

We conclude this section by discussing the distinction between a fixed-order expansion of

the BMS equation and the dressed gluon expansion, defined in eq. (4.50). We argue that

the dressed gluon approximation is the correct way to organize the perturbative expansion

of NGLs, as supported by the convergence and accuracy of the dressed gluon approximation

demonstrated in section 4.3.
20Indeed, this subtraction can be implemented as a subtraction that removes overlap with the SCET+

factorization of ref. [90] of two collinear subjets (see also forthcoming [79]). This is consistent with the fact

that to have the correct sum of factorized bare matrix elements, a zero-bin is required [125].
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The dressed gluon approximation is not an expansion in the coupling or traditional

logarithmic counting, but in the number of resolved soft subjets in a jet as defined by the

soft subjet factorization theorem. An arbitrary number of unresolved gluons are emitted

from the soft subjets so that the dressed gluon approximation includes terms to all orders

in the coupling, yet for a fixed number of dressed gluons, it does not fully capture the

complete logarithmic series to any formal accuracy using a traditional logarithmic count-

ing. There are always contributions at the same logarithmic accuracy which arise from a

higher number of dressed gluons that are ignored. As discussed in the study of the buffer

region, the anomalous dimension of the soft subjet/dressed gluon suppresses emissions near

the boundary of the jet, as well as suppressing the region of phase space when multiple

resolved soft subjets approach one another. The interpretation of this is that higher-order

dressed gluons have a significantly reduced phase space volume in which they can live.

This has important consequences for how the formal expansion of the dressed gluon should

be addressed.

In a fixed logarithmic counting, one implicitly counts the phase space for soft gluons

as O(1), and so it does not affect the parametric scaling of the logarithms or the manner in

which they should be counted.21 This is appropriate when resolved emissions do not affect

the allowed phase space volume for further emissions in the system; however, this is not

the case with NGLs, as is nicely illustrated with the one-dressed gluon and its buffer region

shown in figure 10. To take the phase space suppression into account in the logarithmic

counting, we write the expansion in the schematic form

S(NG) ∼ L2(1−∆η(1)) + αsL(1−∆η(1))

+ L3(1−∆η(2)) + αsL
2(1−∆η(2)) + α2

sL(1−∆η(2))

+ L4(1−∆η(3)) + αsL
3(1−∆η(3)) + α2

sL
2(1−∆η(3)) + α3

sL(1−∆η(3))

+ · · · , (4.53)

where the ∆η(i) correspond to the phase space suppression from the buffer region with i

dressed gluons, with ∆η(i+1) > ∆η(i). The ∆η(i) are treated as negligible in a traditional

logarithmic counting, but will be important for NGLs.

For small L, the buffer region is small, and therefore the ∆η(i) can be formally ne-

glected. In this case, higher powers of L are suppressed and we expect that the resumma-

tion of subleading terms, like αsL
n, will be as important as the leading logarithms. For

L ∼ 1, the buffer region is also O(1), and so the available phase space for resolved gluons

is suppressed. With traditional logarithmic counting, L ∼ 1, and the entire first column

of eq. (4.53) must be resummed, as done by the BMS equation. However, including the

21Historically, the vast majority of global observables that were studied, like thrust [26], C-parameter [88,

89, 126], heavy jet mass [127], broadening [128–130], etc., define scales for which soft emissions are at

lower, or at least the same, virtuality as collinear emissions. Thus the traditional logarithmic counting

αs ln ∼ 1 accurately captures the dominant singular structure. However, there are phenomenologically-

relevant examples of observables for which collinear emissions have lower virtuality than soft emissions;

for example, recoil-free angularities with angular exponent β < 1 [73]. For these observables the näıve

logarithmic counting must also be modified, instead taking (αs/β) ln ∼ 1, otherwise perturbative predictions

will be extended well beyond their range of applicability.
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power counting of the volume of phase space, higher order logarithmic terms are increas-

ingly suppressed by the allowed phase space, a fact which should be taken into account

in the organization of the perturbative expansion. Consistent incorporation of logarithmic

and phase space counting is accomplished by the dressed gluon approximation through the

resummation of the unresolved emissions associated with the dressed gluon. This explains

why even the one-dressed gluon approximation exhibits such good convergence even to

L ∼ 1. As L increases beyond 1, there is a competition between the higher powers of L

and the phase space suppression, and so convergence of the expansion at large L requires

including greater numbers of dressed gluons. However, since the total phase space volume

is finite and the buffer region becomes large at large L, we expect that the expansion in

the number of dressed gluons will rapidly converge.

These dynamics are not incorporated in a fixed-order expansion in which there is no

distinction between the counting of resolved and unresolved gluons. Indeed, the fixed-order

expansion does not seem to uniformly converge to the leading logarithmic resummation,

suggesting it is an asymptotic series. A possible cause of the asymptotic nature of the

series could be the perturbative expansion of the factor

Uabj(L) = exp

[
L

∫

right

dΩ1

4π
(W1

ab −W1
aj −W1

jb)

]
. (4.54)

In the dressed gluon approximation, this arises from renormalization group evolution of

the generalized dressed gluon anomalous dimension of eq. (4.28). Traditional logarithmic

counting assumes that the integrand appearing in the exponential is O(1) in all regions of

phase space, which is not true. Maintaining this factor, as the dressed gluon does, appears

to be vital for convergence of the expansion to arbitrary L values.

5 Resummation of NGLs to higher accuracy

The resummation of NGLs has thus far been restricted to leading logarithmic accuracy,

where it is described by the BMS equation. We have described how the leading NGLs

can be captured, and systematically calculated, by a sequence of factorization theorems

producing the dressed gluon approximation. In this section we discuss how our approach

can be extended beyond leading logarithmic accuracy.

5.1 Subleading soft corrections

We begin by briefly discussing the NGLs that can be calculated and understood using

the soft subjet factorization theorem and the corresponding dressed gluon approximation.

Working within the soft approximation, there are three ways in which the accuracy of the

dressed gluon approximation can be improved: by including a greater number of dressed

gluons, by calculating the anomalous dimensions and matching for the dressing to higher

orders, or including soft dijets, whose energies are not strongly ordered. Because we have

established a factorization theorem for soft subjets, and a set of observables that factor-

ize in all regions of phase space, all improvements are well defined and in principle are

straightforward to implement. However, the various types of improvements will affect the
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distributions in different ways, correspond to different expansions, and be relevant in differ-

ent regions of phase space. As discussed in section 4.4.3 the expansion to higher orders in

the dressed gluon approximation is an expansion in the allowed phase space volume, while

the expansion to higher orders in the dressed gluon anomalous dimensions and matching

corresponds to a more familiar logarithmic expansion of the factorization theorem.

At large values of L, the most important corrections will be those from including an

increasing number of dressed gluons at leading-logarithmic accuracy. However, calculating

higher dressed gluons is of limited phenomenological interest, as this simply resums a more

complete set of leading NGLs, and the two-dressed gluon approximation is already accurate

at the percent-level for a wide dynamic range. Further, we argued that the dynamics of the

buffer region and its phase space suppression modifies the näıve logarithmic counting, and

therefore we expect convergence and high accuracy of the dressed gluon approximation to

large values of L even for a limited number of dressed gluons.

On the other hand, for L . 1, we expect the most important corrections from the

resummation of subleading NGLs are captured by calculating the dressed gluon anomalous

dimensions to higher order, and capturing effects that are simply beyond the strongly-

ordered soft approximation. This is evident from the numerical comparison of the one-

dressed gluon approximation to the leading logarithmic resummation of the NGLs, which

agree at the percent level for L . 1.

5.2 Going beyond the soft approximation

Subleading corrections to the leading logarithmic resummation are most important at small

L. As L becomes increasingly small, the out-of-jet scale B approaches the soft jet scale,

e
(α)
2 . Recall from section 3.1 that an important part of the factorization theorem in the

soft subjet region of phase space was the inclusion of the boundary soft mode, which

appeared due to the fact that B � e
(α)
2 effectively implemented a measurement on the

soft jet emissions. This required a refactorization of the dynamics of the soft jet into soft

jet modes, which do not resolve the boundary of the jet, and boundary soft modes, which

are lower energy but do resolve the boundary. In the case that B . e
(α)
2 this argument

is no longer valid, the dynamics of the soft jet should no longer be refactorized in this

manner, and instead one should have a soft jet function which itself is sensitive to the

jet boundary. Therefore, in this region of phase space, collinear splittings from the soft

subjet are sensitive to the boundary of the jet. The contributions to subleading NGLs

from such splittings is apparent from a detailed study of the fixed order calculation at two

loops [46, 48]. This region of phase space is schematically illustrated in figure 11.

While the NGLs arising in this region of phase space are formally subleading by tradi-

tional logarithmic counting, they may nevertheless be as important or even more important

than the multiple dressed gluon effects of the leading NGLs. Furthermore, in the soft subjet

factorization theorem, logarithms of the ratios of the in-jet to out-of-jet scale are resummed.

In the collinear region of phase space, however, this ratio is order 1, and instead one must

resum logarithms of the angle between the subjet axis and the jet boundary. Contributions

from this region of phase space could therefore be important phenomenologically, and are

also important for achieving a greater understanding of the dynamics of the buffer region.
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Figure 11. Schematic depiction of the region of phase space relevant when B . e
(α)
2 , but the rela-

tion is not parametric. In this region of phase space a soft subjet is pressed up against the boundary

of the jet, and subleading NGLs arise from collinear splittings which cross the jet boundary.

The approach to the resummation of NGLs presented in this paper, namely isolating a

region of phase space, providing a factorized description of the dynamics, and resuming

the NGLs by renormalization group evolution, can again be applied to understand this

region of phase space. A factorization theorem describing this resummation, and allowing

for the resummation of subleading logarithms arising from collinear splittings, along with

a numerical study of their relevance will be presented in a forthcoming paper [131].

5.3 Ingredients for subleading NGLs

Given these considerations, we summarize the needed ingredients for resumming the sub-

leading NGLs:

• One real emission with a virtual correction, and two real emissions in the color mul-

tipole function of a single dressed gluon.

• The matching of a single dressed gluon to two-loops. This requires the two loop soft

gluon current, calculated in refs. [132, 133].

• Soft dijet matching in the not strongly-ordered regime, with a single real emission in

their color multipole function.

• Incorporation of the subleading collinear effects at the jet boundary matched to the

wide angle soft emissions.

Each of these contributions form indepedent physical processes, and due to the dynamics of

the buffer region modifying the logarithmic counting, may not all contribute equally to sub-

leading NGLs. Since the resummation of subleading NGLs has not yet been accomplished,

it would be extremely interesting to determine if such a resummation has phenomenological

implications.
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6 Conclusions

In this paper we have presented a novel approach to the resummation of NGLs. By per-

forming a multi-differential measurement on a jet, we are able to identify a phase space

region involving a soft subjet, in which the NGLs can be factorized and resummed down

to an unresolved infrared scale. Resummation is accomplished by renormalization group

evolution in the factorization theorem and anomalous dimensions can be calculated to any

perturbative accuracy.

An understanding of the dynamics of the NGLs from the factorization theorem in the

soft subjet region of phase space led us to introduce the dressed gluon approximation.

We demonstrated how the dressed gluon approximation can be used to calculate NGLs by

explicitly calculating the NGLs for the hemisphere jet mass distribution in the one- and

two-dressed gluon approximations. These computations were compared with numerical

solutions to the BMS equation, and expansions of it. The dressed gluon approximation

exhibited excellent convergence over phenomenological values of L, and provided consid-

erably better convergence than other expansions, including the fixed-order perturbative

result. Indeed, the dressed gluon approximation does not correspond to a fixed L count-

ing, but rather a novel expansion in the number of resolved gluons, which can be thought

of as a perturbative expansion in distinct factorization theorems. We showed how this

expansion at leading logarithmic accuracy can be obtained from the BMS equation. The

dressed gluon approximation also gives an analytic realization of the buffer region, a pro-

posed underlying description of the dynamics involved in the physics of NGLs. Futhermore,

we have also discussed how our approach of isolating regions of phase space with multi-

differential measurements to resum NGLs can be extended systematically beyond leading

logarithmic accuracy.

We have also realized the BMS equation through a sequence of effective theories that

produce the dressed gluon approximation. Part of this was due to the organization of the

infrared degrees of freedom into the modes of soft-collinear effective theory. Repeating

the soft subjet factorization decorates the original factorization theorem with new terms

whose renormalization group invariance is independent of the parent factorization theorem’s

renormalization group structure.22 Thus each term corresponding to a different number of

dressed gluons in the dressed gluon approximation is realized as a renormalization group

invariant object, using the SCET modes. This helps to illuminate why the derivation of the

BMS equation has resisted a renormalization group derivation within the SCET framework.

It would be interesting to see if one could formulate a different effective theory that gave the

BMS equation directly as a renormalization group equation. A potential starting point may

be reorganizing the infrared degrees of freedom using the so-called group space variables

of [134] used to derive and solve the B-JIMWLK hierarchy [59–61, 135–137] (see also [138]).

The relationship between the the B-JIMWLK hierarchy and the BMS equation has been

widely studied [42, 50, 53, 70, 139, 140] and has been used to calculate leading NGLs with

full color dependence. Nevertheless, it is difficult to see how one would incorporate the

22This is not suprising from a measurement point of view. One is implicitly imposing additional mea-

surements on the same events whose distribution the parent factorization theorem describes.
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collinear degrees of freedom in such an approach, as well as the observable dependence of

the global renormalization group that is the hallmark of soft-collinear factorization.

Our analysis in this paper has been limited to leading logarithmic accuracy to illustrate

our approach to the resummation of non-global logarithms. In addition to addressing

the contributions to subleading non-global logarithms and calculation of the necessary

objects as discussed in section 5, there are several open questions that one would want

to understand to further validate the picture that we have constructed here. We have

provided a qualitative understanding of the importance of phase space suppression and

the buffer region to the convergence of the dressed gluon expansion. An all-orders in

the dressed gluon expansion understanding of the buffer region, extending our discussion

in section 4.4.1, could lead to an explicit proof that the dressed gluons is a convergent

expansion. Even without an explicit proof of convergence, an understanding of the large L

properties of dressed gluons would be desirable. If it can be explicitly shown that at large

L, dressed gluons are produced in a stochastic process, for example, this would suggest a

particular form for the exponentiated non-global soft function.

Understanding the factorization and all orders resummation properties of non-global

observables is essential for connecting with many phenomenologically relevant jet observ-

ables. In this paper we have presented a first step towards this goal by presenting an

effective field theory understanding of NGLs, and their relation to the soft substructure

of jets. Since this paper presents the first step in understanding the soft substructure of

jets, we conclude by discussing several important applications where we believe that our

factorization theorem and understanding of the soft subjet region can be fruitfully applied.

0 → 1 jet bin transition for electroweak boson production. Jet binning plays

an important role in many LHC analyses, for example H → WW . In this example, the

experimental sensitivity is highest in the exclusive zero- and one-jet bins due to the large

tt̄ background. There has been considerable study of the resummation for the exclusive

zero-jet bin [19, 141–146], as well as for the exclusive one- [147, 148] , and even two-jet

bin [149]. However, in these cases a factorization theorem only exists in the case that the

jets are at the hard scale. An important open problem is how to describe the transition

from the zero-jet to one-jet region, where the jet has small pT . Attempts at understanding

this region by combining information from different jet bins has been discussed in ref. [150].

To understand the zero-jet to one-jet transition requires understanding the factoriza-

tion theorem in the regime that a soft (sub)jet is formed. Our soft subjet factorization

theorem provides a description of the dynamics in this region of phase space, and therefore

can be used to study the transition.

Soft subjet region for jet substructure observables. Another important application

of our factorization theorem for the soft subjet region of phase space is towards the an-

alytic understanding of jet substructure observables which resolve a two-prong structure,

as required for boosted W/Z/H tagging. A complete description of the relevant phase

space requires factorization theorems for one-prong jets, jets with hard, collinear subjets

(described by the SCET+ effective theory [90]), and jets with a hard core and a soft subjet,

as presented here. While the focus of this paper has been of those aspects of the soft sub-

jet factorization theorem as relevant for understanding NGLs, our factorization theorem
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provides a complete description of the dynamics in the soft subjet region of phase space.

It can therefore be incorporated into a complete study of the phase space for two-prong

jets. An analytic calculation for the substructure observable D2 [78] combining the factor-

ization theorems in each relevant region of phase space will be presented in a forthcoming

publication [79].

Improving Monte Carlo generators. Monte Carlo generators play a vital role in the

accurate and realistic description of QCD processes at colliders. The soft subjet factor-

ization theorem may have consequences for developing Monte Carlos that are accurate to

beyond leading logarithmic accuracy. With the one-prong and collinear subjet regions, the

soft subjet region completes the description of the e
(α)
2 , e

(α)
3 phase space [131], which com-

pletely characterizes a 1→ 2 splitting. A possible implementation of a Monte Carlo parton

shower would be to first randomly choose a point in the e
(α)
2 , e

(α)
3 phase space plane. At this

phase space point, the emission is weighted with a probability determined by a generalized

Sudakov factor, which in the soft region of phase space is a dressing at the scale set by

e
(α)
2 by emissions at the scale e

(α)
3 . Such a Monte Carlo would then accurately describe

the complete phase space for a 1 → 2 splitting. These techniques and way of thinking

could be extended to a description of the multi-differential phase space of the set of energy

correlation functions {e(α)
2 , e

(α)
3 , . . . , e

(α)
n+1} which completely characterize a 1→ n splitting.

By randomly choosing a point in the multi-dimensional phase space and implementing the

appropriate resummation for that region of phase space, one could envision a fully differ-

ential parton shower, accurate to the logarithmic accuracy of the factorization theorems in

all regions of phase space.
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A Definitions of factorized functions for soft subjet production

In this appendix we give operator definitions in the formalism of SCET for all functions

appearing in the soft subjet factorization theorem presented in section 3,

dσ(B;R)

de
(α)
2 de

(β)
2 de

(α)
3

= H(Q2)Hsj
nn̄

(
e

(α)
2 , e

(β)
2

)
Jn

(
e

(α)
3

)
⊗ Jn̄(B)

⊗ Snn̄nsj
(
e

(α)
3 ;B;R

)
⊗ Jnsj

(
e

(α)
3

)
⊗ Snsj n̄sj (e

(α)
3 ;R) , (A.1)
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whose structure we have recalled for convenience. The one-loop calculation of these func-

tions will be given in appendix B along with their anomalous dimensions. We will only

give results for the case that the soft subjet is produced by a gluon, off of the initial qq̄

pair in e+e− annihilation. Other partonic configurations are straightforward, and obey the

same type of factorization, but their hard production coefficient is not enhanced by the

soft singularity 1/zsj .

The operator definitions in this section are given in terms of the collinear gauge invari-

ant quark and gluon SCET fields [93, 94], which we denote Bµ⊥nsj , χn, as well as (lightlike)

Wilson lines, Sq. The Wilson lines extend from the origin to infinity along the direction of

their specifying vector, q. Explicitly

Sq = P exp

(
ig

∫ ∞

0
ds q ·A(x+ sq)

)
(A.2)

where P denotes path ordering, and A is the appropriate gauge field, and the color repre-

sentation has been suppressed. Since we only consider the case of e+e−, all Wilson lines are

outgoing. The soft Wilson lines carry the color representation of their parent collinear sec-

tors, that is, adjoint representation for gluons and fundamental representation for quarks.

Since we have no more than three Wilson lines in a soft function, the soft functions can

always be written as color-singlet traces. In the more general case, the soft function is a

color matrix, which must be traced against the hard functions, H(Q2) and Hsj appearing

in the factorization theorem ( see e.g. refs. [87, 151] for more details). We will also use the

large label momentum operator Pµ [93] in the function definitions, which extracts the large

component of the momentum for a particle in a given sector. We denote by Q the center

of mass energy of the e+e− collisions, so that Q/2 is the energy deposited in a hemisphere,

and QSJ � Q is the large component of the soft jet momentum.

The functions appearing in the soft subjet factorization theorem of eq. (3.10) have the

following SCET operator definitions:

• Soft Subjet Jet Function:

Jnsj

(
e

(β)
3

)
=

(2π)3

CA
tr〈0|Bµ⊥nsj (0)ΘO(B)δ(QSJ − n̄sj · P)

× δ(2)(~P⊥SJ )δ
(
e

(β)
3 −ΘFJe

(β)
3

∣∣
SJ

)
B⊥nsjµ(0)|0〉 (A.3)

• Jet Function:

Jn

(
e

(β)
3

)
=

(2π)3

CF
tr〈0| n̄/

2
χn(0)ΘO(B)δ(Q− n̄ · P)

× δ(2)(~P⊥)δ
(
e

(β)
3 −ΘFJe

(β)
3

∣∣
HJ

)
χ̄n(0)|0〉 (A.4)

• Boundary Soft Function:

Snsj n̄sj

(
e

(β)
3 ;R

)
=

1

CA
tr〈0|T{SnsjSn̄sj}ΘO(B)

× δ
(
e

(β)
3 −ΘFJe

(β)
3

∣∣
BS

)
T̄{SnsjSn̄sj}|0〉 (A.5)
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• Soft Subjet Soft Function:

Snsj n n̄

(
e

(β)
3 , B;R

)
= tr〈0|T{SnsjSnSn̄}ΘO(B)

× δ
(
e

(β)
3 −ΘFJe

(β)
3

∣∣
S

)
T̄{SnsjSnSn̄}|0〉 (A.6)

The definitions of these functions include measurement operators, which when acting

on the final state, return the value of a given observable. The operator e
(β)
3 measures the

contribution to e
(β)
3 from final states, and must be appropriately expanded following the

power counting of the sector on which it acts. The operators ΘFJ , and ΘO constrain the

measured radiation to be in the jet or out of the jet, respectively, and will be defined shortly.

The action of the measurement function e
(β)
3 on a arbitrary state for each of the

factorized sectors contributing to the three-point energy correlation function measurement

is given by

e
(β)
3

∣∣
SJ

∣∣∣Xsj

〉
=

∑

ki,kj∈Xsj

NSJ
n̄sj · ki
Q

n̄sj · kj
Q

(
ki · kj

n̄sj · kin̄sj · kj

)β
2
∣∣∣Xsj

〉
, (A.7)

e
(β)
3

∣∣
HJ

∣∣∣Xhj

〉
=

∑

ki,kj∈Xhj

NHJ
n̄ · ki
Q

n̄ · kj
Q

(
ki · kj

n̄ · kin̄ · kj

)β
2
∣∣∣Xhj

〉
, (A.8)

e
(β)
3

∣∣
BS

∣∣∣Xbs

〉
=
∑

k∈Xbs

NBS
n̄sj · k
Q

(
nsj · k
n̄sj · k

)β
2
∣∣∣Xbs

〉
, (A.9)

e
(β)
3

∣∣
S

∣∣∣Xs

〉
=
∑

k∈Xs

NS
k0

Q

(
nsj · k
k0

n · k
k0

)β
2
∣∣∣Xs

〉
, (A.10)

where, for simplicity, we have extracted the normalization factors

NSJ = 2−3+βQhj
Q

(n · nsj)β , NHJ = 2−3+βQsj
Q

(n · nsj)β , (A.11)

NBS = 2−1+β
2NS(n · nsj)β/2 , NS =

QhjQsj
4Q2

(n · nsj)β/2 , (A.12)

Qhj = n̄ · phj , Qsj = n̄sj · psj . (A.13)

Qhj and Qsj are the large light-cone momentum components for the hard jet and the soft

subjet, respectively. These expressions follow from properly expanding the definition of

the energy correlation function measurements in the power counting of each of the sectors.

Note that on the jet sectors, the three-point correlation measurement becomes an effective

two-point correlation measurement, since the two-point energy correlation function is set

by the initial splitting of the subjet.

The in-jet restriction, ΘFJ , is given by

ΘFJ(k) = Θ

(
tan2 R

2
− n · k
n̄ · k

)
. (A.14)
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The jet restriction must also be expanded following the power counting of the given sector.

We will see that this is actually quite subtle for the soft subjet modes, since the angle

between the soft subjet axis and the boundary of the jet has a non-trivial power counting.

In particular, the expansion of ΘFJ(k) is different for the soft subjet jet and boundary

soft modes, and will demonstrate the necessity of performing the complete factorization

of the soft subjet dynamics into jet and boundary soft modes. The explicit expansions

in each sector’s power counting will be given in appendix B, when we consider the one-

loop calculation of the functions appearing in the factorization theorem. Finally, since we

are considering the case where the out-of-jet scale B is much less than the in-jet scale,

the operator

ΘO(B)

must also be included in the definition of the soft subjet functions. This operators vetoes

out-of-jet radiation above the scale B. The explicit expression for ΘO(B) expanded in the

power counting of each of the factorized sectors will be given in the one-loop calculations

of appendix B.

B One-loop calculations of soft subjet functions

In this appendix we present the one-loop calculation of all the functions appearing in the

soft subjet factorization theorem of section 3.2, whose operator definitions are given in

appendix A. As discussed when defining the soft subjet functions appendix A, we will

only give results for the case that the soft subjet is produced by a gluon, although it is

straightforward to extend the calculation to other partonic configurations. Throughout

this section, we will make use of the convenient shorthand notation

[ddk]+ =
ddk

(2π)d
2πΘ(k0)δ(k2), (B.1)

for the integration measure of an on-shell, massless, final-state parton. For the jet and

soft functions, we only give the final expressions in the Laplace space of e
(α)
3 , where they

satisfy a multiplicative renormalization group evolution. This allows for a straightforward

comparison of the anomalous dimensions.

B.1 Hard matching for dijet production

The hard matching coefficient, H(Q2), is the well known hard function for the production

of a qq̄ pair in e+e− annihilation. It is defined by

H(Q2, µ) = |C(Q2, µ)|2 , (B.2)

where C(Q2, µ) is the Wilson coefficient obtained from matching the full theory QCD

current ψ̄γµψ onto the SCET dijet operator χ̄nγ
µ
⊥χn̄. This Wilson coefficient is well known

(see e.g. [4, 87, 90, 152] ), and is given at one-loop by

C(Q2, µ) = 1 +
αs(µ)CF

4π

(
− log2

[−Q2

µ2

]
+ 3 log

[−Q2

µ2

]
− 8 +

π2

6

)
. (B.3)

The branch cut in the logarithms must be taken as −Q2 → −Q2 − iε.
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B.2 Hard matching for soft jet production

The hard matching coefficient Hsj(zsj , θsj) is determined by the finite parts of the soft

matrix element for a single soft state

Hsj(zsj , nsj) = tr〈0|T{SnSn̄}|sj〉〈sj|T̄{SnSn̄}|0〉fin . (B.4)

The virtual corrections of the effective theory cancel the IR divergences of this matrix

element, giving a finite matching coefficient. This matrix element can be calculated from

the square of the soft gluon current [153, 154], which is known to two loop order [132, 133].

Here, for simplicity, we restrict ourselves to one-loop accuracy. The tree level and one-loop

hard matching coefficients for the soft subjet production are given by

H
sj(tree)
nn̄ (zsj , nsj) =

αsCF
4π2zsj

n · n̄
n · nsj nsj · n̄

, (B.5)

H
sj(1)
nn̄ (zsj , nsj) = H

sj(tree)
nn̄ (zsj , nsj)

(
αsCA
π

)[
−1

4
ln2

(
2µ2n̄ · n

Q2
sjn · nsj nsj · n̄

)
+

5π2

24

]
.

(B.6)

The results of [154] can be used to determine the soft-jet production matching from an

arbitrary number of hard jets at one loop.

B.3 Jet function

In this section we calculate the jet function for the energetic subjet along the n direction.

The one-loop expression for the näıve (before zero bin subtraction) jet function is

J (1)
n (QJ , e

(β)
3 ) = µ2εCi g

2

∫
[ddk1]+

∫
[ddk2]+(2π)d−1δd−2(~k1⊥sj + ~k2⊥sj )

×ΘJ

(
e

(β)
3 , B,R,QJ , k1, k2

)QJ Pqg
(
n̄·k1
QJ

, n̄·k2
QJ

)

2k1 · k2
. (B.7)

Here we have chosen to calculate the jet function by integrating against the splitting func-

tion [155]. Since we have assumed the partonic configuration in which the soft subjet is a

gluon jet, the jet in the n direction is assumed to be described by a collinear quark field.

For the splitting functions we use the (slightly unconventional) notation

〈Pqg(z1, z2)〉 =

[
1 + z2

1

z2
− εz2

]
, (B.8)

〈Pgg(z1, z2)〉 = 2

[
z1

z2
+
z2

z1
+ z1z2

]
, (B.9)

〈Pqq̄(z1, z2)〉 =

[
1− 2z1z2

1− ε

]
, (B.10)

where the 〈〉 denote that the splitting functions are spin averaged.
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The jet algorithm and measurement constraint are given by

ΘJ

(
e

(β)
3 , B,R, k1, k2

)
= Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
Θ

(
tan2 R

2
− n · k2

n̄ · k2

)

× δ(QJ − n̄ · k1 − n̄ · k2)δ

(
e

(β)
3 −NHJ

n̄ · k1

Q

n̄ · k2

Q

(
k1 · k2

n̄ · k1n̄ · k2

)β
2

)

+ δ(e
(β)
3 )Θ

(
n · k1

n̄ · k1
− tan2 R

2

)
Θ

(
tan2 R

2
− n · k2

n̄ · k2

)
Θ

(
B − 1

2
n̄ · k1

)
δ (QJ − n̄ · k2)

+ δ(e
(β)
3 )Θ

(
n · k2

n̄ · k2
− tan2 R

2

)
Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
Θ

(
B − 1

2
n̄ · k2

)
δ (QJ − n̄ · k1) ,

(B.11)

where we have used the expression for the action of the e
(β)
3 measurement on a hard jet

state from eq. (A.7).

In the power counting of the n collinear sector, the second two terms vanish upon

performing the multipole expansion on the jet function constraint. The first term simpli-

fies since

Θ

(
tan2 R

2
− n · ki
n̄ · ki

)
→ 1, (B.12)

for any particle i in the n collinear sector. The phase space for the two partons in the jet

with these constraints imposed is then given by

(2π)d−1

∫
[ddk1]+

∫
[ddk2]+δ

d−2(~k1⊥ + ~k2⊥)δ(QJ − n̄ · k1 − n̄ · k2)

=
2π

1
2
−εQJ

(2π)3−2ε Γ(1
2 − ε)

∫ 1

0

dZ

Z(1− Z)

∫ π

0
dφ sin−2εφ , (B.13)

where Z defines the large momentum fractions of the partons as

n̄ · k1 = QJZ , n̄ · k2 = QJ(1− Z) , (B.14)

and the angle φ is defined by

k⊥ · n⊥ = cosφ|k⊥||n⊥| . (B.15)

Substituting this into the expression for the jet function gives

J (1)
n (QJ , e

(β)
3 ) = µ2εCF g

2 2π
1
2
−εQJ

(2π)3−2ε Γ(1
2 − ε)

∫ 1

0

dZ

Z(1− Z)

∫ π

0
dφ sin−2εφ

QJ Pqg

(
n̄·k1
QJ

, n̄·k2
QJ

)

2k1 · k2

× δ
(
e

(β)
3 −NHJ

n̄ · k1

Q

n̄ · k2

Q

(
k1 · k2

n̄ · k1n̄ · k2

)β
2

)
. (B.16)
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Performing the integrals as an expansion in ε and transforming to Laplace space, we find

J (1, div)
n (QJ , e

(β)
3 ) =

αsCF
2π

[ −β
(1− β)ε2

+
3

2ε
− 2

(1− β)ε
log
(
H
(
ẽ

(β)
3

))]
, (B.17)

J (1, fin)
n (QJ , e

(β)
3 ) =

αsCF
2π

[−9π2β2 + 78β2 + 16π2β − 150β − 4π2 + 72

12(β − 1)β
(B.18)

+
3

β
log
(
H
(
ẽ

(β)
3

))
+

2

β(β − 1)
log2

(
H
(
ẽ

(β)
3

))]
+O(ε) ,

where ẽ
(β)
3 is the Laplace conjugate of e

(β)
3 , and we have explicitly separated the finite and

divergent pieces. The argument of the logarithms is given by

H
(
ẽ

(β)
3

)
= 2−

β
2 eγE

(
µ

Q

)β
NHJ ẽ

(β)
3 . (B.19)

Note that all zero bins for the jet function vanish.

B.4 Soft subjet jet function

In this section we calculate the jet function for the soft subjet itself. Since the soft subjet

is near the boundary of the jet, we will see that we must carefully treat the jet boundary

constraint, emphasizing the role of the boundary soft mode. The one-loop expression for

the näıve (before zero bin subtraction) jet function is

J (1)
nsj (QSJ , e

(β)
3 ) = µ2ε g2

∫
[ddk1]+

∫
[ddk2]+(2π)d−1 (B.20)

× δd−2(~k1⊥sj + ~k2⊥sj )ΘJ

(
e

(β)
3 , B,R,QSJ , k1, k2

)

×
QSJ

[
CAPgg

(
n̄sj ·k1

QSJ
,
n̄sj ·k2

QSJ

)
+ nfTF Pqq̄

(
n̄sj ·k1

QSJ
,
n̄sj ·k2

QSJ

)]

2k1 · k2
,

where nf denotes the number of light flavors, and TF = 1/2 specifies our normalization

convention for the SU(3) algebra. Here we have taken the soft subjet to be a gluon jet, and

have again chosen to calculate the jet function by integrating over the splitting functions,

where the arguments of the splitting function denote the energy fraction of the two partons,

as defined in eq. (B.8). The jet algorithm and measurement constraint are given by

ΘJ

(
e

(β)
3 , B,R, k1, k2

)
= Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
Θ

(
tan2 R

2
− n · k2

n̄ · k2

)

× δ(QSJ − n̄sj · k1 − n̄sj · k2)δ

(
e

(β)
3 −NSJ

n̄sj · k1

Q

n̄sj · k2

Q

(
k1 · k2

n̄sj · k1n̄sj · k2

)β
2

)

+ δ(e
(β)
3 )Θ

(
n · k1

n̄ · k1
− tan2 R

2

)
Θ

(
tan2 R

2
−n · k2

n̄ · k2

)
Θ

(
B − 1

2
n̄sj · k1

)
δ (QSJ − n̄sj · k2)

+ δ(e
(β)
3 )Θ

(
n · k2

n̄ · k2
− tan2 R

2

)
Θ

(
tan2 R

2
−n · k1

n̄ · k1

)
Θ

(
B − 1

2
n̄sj · k2

)
δ (QSJ − n̄sj · k1) ,

(B.21)
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where we have used the expression for the action of the e
(β)
3 measurement on a soft jet

state from eq. (A.7). Since we are considering the case where the out-of-jet scale B is lower

than the in-jet scale, we can multipole expand the constraint in the out-of-jet region as

Θ
(
B − 1

2
n̄sj · ki

)
→ Θ

(
− 1

2
n̄sj · ki

)
= 0 , (B.22)

which eliminates the second two terms in eq. (B.11). This implies that the jet boundary

effectively acts as a hard wall for radiation in the soft subjet jet function. For the jet modes

of the soft subjet, we can also multipole expand the jet function constraints

Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
Θ

(
tan2 R

2
− n · k2

n̄ · k2

)
→ 1 . (B.23)

The fact that this constraint can be multipole expanded follows from the power counting

in section 3.1, where we found that the angle between the soft subjet modes and the soft

subjet axis scales like θαcs ∼
e
(α)
3(

e
(α)
2

)2 , while the angle between the soft subjet axis and the jet

boundary satisfies ∆θsj � e
(α)
3(

e
(α)
2

)2 . This can also be seen from expanding the jet constraints

in the local soft subjet coordinates, where we find

tan2 R

2
− n · k
n̄ · k = tan2 R

2
− n · nsj
n̄ · nsj

+ 4
k⊥sj · n⊥sj

(n̄ · nsj)2n̄sj · k
+ . . . ,

= tan2 R

2
− tan2 θsj

2
+ 4

k⊥sj · n⊥sj
(n̄ · nsj)2n̄sj · k

+ . . . > 0 , (B.24)

where we have used that n⊥sj = −n̄⊥sj .
The ability to perform this multipole expansion relies crucially on the fact that we have

fully factorized the dynamics of the soft subjet into jet modes and boundary soft modes.

For the boundary soft modes, we cannot perform the above multipole expansion. This

implies that the soft subjet jet function will not depend on the factor tan2 R
2 − tan2 θsj

2 ,

as should be the case for a collinear function, while the boundary soft function carries

the entire dependence of the soft subjet dynamics on the difference tan2 R
2 − tan2 θsj

2 .

Since both particles are constrained to lie within the jet, and the jet boundary constraint

is multipole expanded, the phase space constraints for the soft subjet jet function are

identical as for the standard jet function for the variable e
(β)
3 , but for a gluon jet. The

explicit expression will be given shortly. Alternatively, it is possible to calculate the soft

subjet jet function without performing the multipole expansion on the jet constraint. In

this case one finds that the phase space for the jet function is corrected by a term which

depends on tan2 R
2 − tan2 θsj

2 , leading to a correction to the jet function depending on

tan2 R
2 − tan2 θsj

2 . However, we have explicitly checked that performing the appropriate

boundary soft zero bin subtraction entirely removes this correction, again emphasizing the

importance of this mode. We therefore stress the importance of a proper power counting

analysis when analyzing the effective theories for more complicated jet configurations. A

similar feature was also noted in ref. [87] for the calculation of different individual jet

functions with a jet algorithm constraint.
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We now give explicit expressions for the gluon jet function. Since the phase space

is identical to that given in eq. (B.13), but with the integration performed against the

splitting functions as indicated in eq. (B.20), we simply give the final result. Performing

the integrals as an expansion in ε and transforming to Laplace space, we find

J (1, div)
nsj (QJ , e

(β)
3 ) =

αs
2π


 βCA

(β − 1)ε2
+
β0

2ε
+

2CA logH
(
ẽ

(β)
3

)

(β − 1)ε


 , (B.25)

J (1, fin)
nsj (QJ , e

(β)
3 ) =

αs
2π




2CA log2H
(
ẽ

(β)
3

)

(β − 1)β
+

11CA logH
(
ẽ

(β)
3

)

3β
(B.26)

−
4nfTF logH

(
ẽ

(β)
3

)

3β
− π2βCA

12(β − 1)
− 67CA

9β
+

π2CA
3(β − 1)β

+
2π2CA

3β
+

67CA
9
− 2π2CA

3
+

26nfTF
9β

− 23nfTF
9


 ,

where β0 is defined with the normalization

β0 =
11CA

3
− 4nfTF

3
, (B.27)

and where ẽ
(β)
3 is the Laplace conjugate of e

(β)
3 . We have explicitly separated the finite and

divergent pieces. The argument of the logarithms is given by

H
(
ẽ

(β)
3

)
= 2−β/2eγE

Q2
sj

Q2

(
µ

Qsj

)β
NSJ ẽ

(β)
3 . (B.28)

Note that all zero bins for the soft subjet jet function vanish.

B.5 Global soft function

In this section we calculate the one-loop global soft function. The soft function involves

three eikonal lines in the n, n̄, and nsj directions, since the angle between the soft subjet

axis and the n and n̄ axes is O(1), and is therefore resolved by the soft radiation. This

is distinct from the situation in the SCET+ factorization theorem of ref. [90]. We will see

the importance of the performing the appropriate zero bin subtractions, and the role of

the boundary soft mode. Indeed, the fact that the soft function has a non-trivial zero bin

is itself unusual.

The general form of the one-loop soft function is (see e.g. ref. [87])

S(1)(e
(β)
3 ) =

1

2

∑

i 6=j
Ti ·TjS

(1)
ij (e

(β)
3 ) , (B.29)

where Ti is the color generator of leg i, and the sum runs over all pairs of legs. The global

soft radiation is at a scale such that it can contribute to both the in-jet and out-of-jet

observables. Since we work only to one-loop in this appendix, the integral in the soft
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function is over the phase space for a single parton. We can therefore straightforwardly

separate the in and out-of-jet contributions through the measurement functions

in: Θ

(
tan2 R

2
− n · k
n̄ · k

)
, out: Θ

(
n · k
n̄ · k − tan2 R

2

)
, (B.30)

where k denotes the momentum of the soft parton. In this section we will split the cal-

culation into two pieces, considering first the in-jet contribution, and then the out-of-jet

contribution. This is important to emphasize that contributions to the soft function which

depend on large logarithms of tan2 R
2 −tan2 θsj

2 arise only from the out-of-jet region of inte-

gration. Although such logs naively appear in the in-jet contribution to the soft function,

they are removed by the boundary soft zero-bin subtraction.

To one-loop, the soft function for the exchange between the eikonal lines na and nb is

given by

S(1)
nanb

(e
(β)
3 ) =

∫
[ddk]+

2na · nb
na · k k · nb

Θ

(
tan2 R

2
− n · k
n̄ · k

)
δ

(
e

(β)
3 −NS

k0

Q

[
nsj · k
k0

n · k
k0

]β
2

)
,

(B.31)

for the in-jet region, and

S(1)
nanb

(B) =

∫
[ddk]+

2na · nb
na · k k · nb

Θ

(
n · k
n̄ · k − tan2 R

2

)
δ (B − n · k) , (B.32)

for the out-of-jet region. Following the decomposition in eq. (B.29), we have explicitly

extracted the color factor, so that it does not appear in these expressions. The dressed gluon

approximation holds for an arbitrary additive observable, B, for example, in section 4.2 we

used the mass as an example. Here, for simplicity we have chosen to measure the energy

in the out-of-jet region. Since the soft subjet soft function contains in its definition the

three eikonal lines n, n̄, nsj , we must sum over contributions from exchanges between all

possible pairs.

Näıve in-jet soft function. We begin by calculating the näıve (i.e. without zero-bin

subtraction) contributions to the in-jet soft function. For simplicity, we give only the finite

pieces, dropping ε-divergences. The anomalous dimensions will be given in appendix B.7.

The contributions from the exchange between the three possible pairs of eikonal lines are

given by

S̃
(1, fin)
n n̄ (ẽ

(β)
3 ) =

αs
π(1− β)

ln[T ]

(
ln[T ]− 2(1− β)ln

[
2

tan R
2

tan
θsj
2

])
+R

(1)
n n̄(θsj , R) + C

(1)
nn̄ ,

(B.33)

S̃(1, fin)
nnsj (ẽ

(β)
3 ) =

αs
π(1− β)

ln[T ]

(
2ln[T ]− (1− β)ln

[
4(n̄ · nsj)2

(
1− tan2 θsj

2

tan2 R
2

)])

+R(1)
nnsj (θsj , R) +B(1)

nnsj (θsj , R) + C(1)
nnsj , (B.34)
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S̃
(1, fin)
n̄ nsj (ẽ

(β)
3 ) =

αs
π(1−β)

ln[T ]


ln[T ]−(1−β)ln


(n̄ · nsj)2

(
1− tan2 θsj

2

tan2 R
2

)(
tan R

2

tan
θsj
2

)2





+R
(1)
n̄ nsj (θsj , R) +B

(1)
n̄ nsj (θsj , R) + C

(1)
n̄nsj . (B.35)

Here we have extracted the common factor

T = eγENS
ẽ

(β)
3 µ

Q tan1−β θsj
2

(
n · nsj

2

)β/2
(B.36)

as well as the functions R(1), B(1), and constants C(1). The functions R(1) depend only on

θsj and R, and are given by

R
(1)
n n̄(θsj , R) =

αs
π

(1− β)ln

[
tan R

2

tan
θsj
2

]
ln

[
4

tan R
2

tan
θsj
2

]
+ In n̄(θsj , R) , (B.37)

R(1)
nnsj (θsj , R) = −αs

2π
(1− β)

(
ln

[
tan R

2

tan
θsj
2

]
ln




(
tan R

2

tan
θsj
2

)3

(
1 +

tan R
2

tan
θsj
2

)6




− 2ln

[
n̄ · nsj

2

]
ln


4n̄ · nsj

(
tan R

2

tan
θsj
2

)2

(
1 +

tan R
2

tan
θsj
2

)


+3ln2

[
1 +

tan R
2

tan
θsj
2

]
+6Li2

[
−1

2

]

+ 3Li2

[
3

4

]
− 6Li2

[
1− tan

θsj
2

tan R
2

]
+ 6Li2

[
tan R

2

tan
θsj
2 + tan R

2

])

+ Innsj (θsj , R) , (B.38)

R
(1)
n̄ nsj (θsj , R) = −αs

2π
(1− β)

(
2ln
[ n̄ · nsj

2

]
ln


4n̄ · nsj

(
tan R

2

tan
θsj
2

)2

(
1 +

tan R
2

tan
θsj
2

)


+ ln2

[
1 +

tan R
2

tan
θsj
2

]

− ln

[
tan R

2

tan
θsj
2

]
ln


16

(
tan R

2

tan
θsj
2

)5(
1 +

tan R
2

tan
θsj
2

)2



− 2Li2

[
1− tan

θsj
2

tan R
2

]
+ 2Li2

[
tan R

2

tan
θsj
2 + tan R

2

])

+ In̄ nsj (θsj , R) . (B.39)
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Where the integrals I are given as:

In n̄(θsj , R) = −2αs
π

(1− β)

∫ umax

0
du

ln
[
1 + u2n·nb

n̄·nb

]

u
, (B.40)

Innsj (θsj , R) =
αs
π

(1− β)

(∫ 1/2

0
du

2ln
[
1 + u2n·nb

n̄·nb

]

(−1 + u)u(1 + u)

+

∫ umax

1
2

du

(
u(1 + u)ln

[
1 + n·nb

n̄·nb

]
− 2ln

[
1 + u2n·nb

n̄·nb

])

u (−1 + u2)

)
, (B.41)

In̄ nsj (θsj , R) =
αs
π

(1− β)

(∫ 1/2

0
du

2uln
[
1 + u2n·nb

n̄·nb

]

(−1 + u)(1 + u)

+

∫ umax

1
2

du

(
(1 + u)ln

[
1 + n·nb

n̄·nb

]
− 2uln

[
1 + u2n·nb

n̄·nb

])

−1 + u2

)
(B.42)

umax =
tan R

2

tan
θsj
2

. (B.43)

The functions B(1) contain singular dependence on the difference between θsj and R, that

is, the angle of the soft jet to the jet boundary, and are given as:

B(1)
nnsj (θsj , R) =

αs
2π

(1− β)

(
ln

[
1− tan2 θsj

2

tan2 R
2

]
ln

[
(n̄ · nsj)2

(
1− tan2 θsj

2

tan2 R
2

)])
, (B.44)

B
(1)
n̄ nsj (θsj , R) =

αs
2π

(1− β)

(
ln

[
1− tan2 θsj

2

tan2 R
2

]
ln

[
(n̄ · nsj)2

(
1− tan2 θsj

2

tan2 R
2

)(
tan R

2

tan
θsj
2

)4])
.

(B.45)

Finally, we have the constants:

C
(1)
nn̄ =

αs
π

(
π2

8(1− β)
+ (1− β)ln[2]2

)
, (B.46)

C(1)
nnsj =

αs
4π(1− β)

(
π2 − 4ln[2]2 − 8(1− β)ln[2]2 + (1− β)2ln[4]ln

[
729

128

])
, (B.47)

C
(1)
n̄nsj =

αs
8π(1− β)

(
π2 − 8(1 + 2(1− β))ln[2]2

)
(B.48)

Boundary soft zero-bin of in-jet soft function. We now calculate the boundary

soft zero bin of the in-jet soft function. This is the only non-vanishing zero bin. Both

constraints in the soft measurement function can be expanded in the zero bin. The jet

boundary constraint can be expanded as

θ

(
tan2 R

2
− n · k
n̄ · k

)
→ θ

(
tan2 R

2
− tan2 θsj

2
+ 4

k⊥sj · n⊥sj
(n̄ · nsj)2n̄sj · k

)
, (B.49)

where we have used the expression given in eq. (B.24) for the expansion of the jet constraint.

Note importantly that for the boundary soft modes, this cannot be multipole expanded,
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unlike for the jet modes of the soft subjet, as was discussed in section B.4. For the

measurement function, we have the expansion

δ

(
e

(β)
3 −NS

k0

Q

[
nsj · k
k0

n · k
k0

]β
2

)

→ δ

(
e

(β)
3 − 2−1+β

2NS
n̄sj · k
Q

[
nsj · k
n̄sj · k

]β
2

(n · nsj)
β
2 (n̄ · nsj)1−β

)
. (B.50)

Furthermore, in the integrand we can make the following expansions in the zero bin

n · nsj
n · k k · nsj

→ 1

n̄sj · k k · nsj
,

n̄ · nsj
n̄ · k k · nsj

→ 1

n̄sj · k k · nsj
. (B.51)

Performing the integration, we find the the zero bin contribution arising from the exchange

between the n and n̄ Wilson lines vanishes

S̃
(1, b.s.b.)
n n̄ (ẽ

(β)
3 ) = 0, (B.52)

as should be expected, since it is not related to the boundary soft modes. However, there

is a non-vanishing contribution to the zero bin arising from the exchanges involving the

nsj Wilson line, which is given by

S̃(1, b.s.b.)
nsj n (ẽ

(β)
3 ) = S̃

(1, b.s.b.)
nsj n̄ (ẽ

(β)
3 )

=
αs
2π


π

2

6
+

π2

8(1− β)
− π2β

12
(B.53)

+
1

1− β ln2


2−1+β

2 eγEµẽ
(β)
3 Ns(n · nsj)

β
2

Q

(
tan2 θsj

2

tan2 R
2 − tan2 θsj

2

)1−β



 .

Here the superscript “b.s.b.” indicates that this is the contribution from the boundary soft

zero bin.

Zero bin subtracted in-jet soft function. We now give the expression for the in-jet

soft subjet soft function after performing the zero bin subtraction. The S̃n n̄ terms are

unaffected by the zero bin subtraction, however we include them so that we can rewrite

all contributions in a similar form. After zero bin subtraction, the contributions from the

three different exchanges are given by

S̃(1, fin)
nnsj (ẽ

(β)
3 ) =

αs
2π(1− β)

ln[T ]

(
3ln[T ]− 4(1− β)ln

[
n̄ · nsj

tan
θsj
2

tan R
2

])

+R(1)
nnsj (θsj , R) + δR(1)

nnsj (θsj , R) + B̃(1)
nnsj (θsj , R) + C(1)

nnsj , (B.54)

S̃
(1, fin)
n̄ nsj (ẽ

(β)
3 ) =

αs
2π(1− β)

ln[T ]
(

ln[T ]− 4(1− β)ln [n̄ · nsj ]
)

+R
(1)
n̄ nsj (θsj , R) + δR

(1)
n̄ nsj (θsj , R) + B̃

(1)
n̄nsj (θsj , R) + C

(1)
n̄nsj . (B.55)
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The R(1) functions and constants C(1) are as defined above. The boundary functions

sensitive to the angle of the soft jet to the boundary are modified as:

B̃(1)
nnsj =

αs
π

(1− β)ln

[
1− tan2 θsj

2

tan2 R
2

]
ln


n̄ · nsj

(
tan

θsj
2

tan R
2

)2

 (B.56)

B̃
(1)
n̄ nsj =

αs
π

(1− β)ln

[
1− tan2 θsj

2

tan2 R
2

]
ln [n̄ · nsj ] . (B.57)

In addition, one adds the terms:

δR(1)
nnsj (ẽ

(β)
3 ) =

αs
π

(
− 2(1− β)ln2

[
tan R

2

tan
θsj
2

]
− π2

(
3 + 2(1− β) + 2(1− β)2

)

48(1− β)

)
, (B.58)

δR
(1)
n̄ nsj (ẽ

(β)
3 ) =

αs
π

(
− 2(1− β)ln2

[
tan R

2

tan
θsj
2

]
− π2

(
3 + 2(1− β) + 2(1− β)2

)

48(1− β)

)
. (B.59)

We see that the potentially large logarithm of tan2 R
2 − tan2 θsj

2 , which was present

in the in-jet soft function before zero bin subtraction has been removed by the boundary

soft zero bin subtraction from the terms that contribute to the anomalous dimension,

again emphasizing its crucial role in the factorization theorem. We also emphasize that

the presence of a non-trivial zero bin for the soft function is an interesting feature of this

factorization theorem.

Out-of-jet contribution to soft function. In this section we calculate the contribution

to the soft function from out-of-jet radiation. While we have seen that for the in-jet

contribution the large logarithm of tan2 R
2 − tan2 θsj

2 was removed by the zero bin, this

will not be the case for the out-of-jet radiation. When performing the calculation we will

integrate over the entire out-of-jet region, except a region of radius RB around the axis of

the jet in the right hemisphere. This acts as a regulator, allowing us to calculate each of

the contributions to the soft function, S
(1, out)
ij (B) separately. For reference, we take the

out of jet measurement to be the cumulative energy deposited, however, we have explicitly

checked that using other out-of-jet measurements lead to the same dressed gluon anomolous

dimension as given in section 4.1.

We begin by calculating the näıve (non zero bin subtracted) soft function, whose

integrand was given in eq. (B.32). For the soft gluon exchanges between the three possible

pairs of Wilson lines, we find

S
(1, out)
nn̄ (B) = −αs

π

[
− ln

(
tan

RB
2

tan
θsj
2

)
ln

(
µ tan

θsj
2

2n · nsjB

)
+ Fnn̄

(
tan R

2

tan
θsj
2

)

− Fnn̄
(

1

tan RB
2 tan

θsj
2

)
− 2

∫ umax

umin

du

u
ln
(
nsj · n̄+ u2nsj · n

)]
,

(B.60)
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S(1, out)
nsjn (B) = −αs

π

[
ln

(
tan2 R

2 (1− tan2 RB
2 tan2 θsj

2 )

tan2 R
2 − tan2 θsj

2

)
ln

(
µ tan

θsj
2

2n · nsjB

)

+ Fnsjn

(
tan R

2

tan
θsj
2

)
− Fnsjn

(
1

tan RB
2 tan

θsj
2

)

+ 2

∫ umax

umin

du

u(1− u2)
ln
(
nsj · n̄+ u2nsj · n

)]
, (B.61)

S
(1, out)
nsj n̄ (B) = −αs

π

[
ln

(
1− tan2 RB

2 tan2 θsj
2

tan2 RB
2 (tan2 R

2 − tan2 θsj
2 )

)
ln

(
µ tan

θsj
2

2n · nsjB

)

+ Fnsj n̄

(
tan R

2

tan
θsj
2

)
− Fnsj n̄

(
1

tan RB
2 tan

θsj
2

)

+ Fnsjn

(
tan R

2

tan
θsj
2

)
− Fnsjn

(
1

tan RB
2 tan

θsj
2

)

+ 2

∫ umax

umin

duu

1− u2
ln
(
nsj · n̄+ u2nsj · n

)]
. (B.62)

To simplify the notation in these expressions we have defined the following functions

Fnn̄(x) = ln2 x , (B.63)

Fnsjn(x) =
1

2
ln(x2 − 1) ln

(
x2 − 1

x2

)
− 1

2
Li2

(
1

x2

)
, (B.64)

Fnsj n̄(x) = − 1

2

[
2 ln2(x)− ln2

(
1 + x

x

)
− ln2

(
x2 − 1

)

+ 2Li2

(
x− 1

x

)
+ 2Li2

(
x

1 + x

)]
. (B.65)

umax =
1

tan2RB
2 tan2 θsj

2

(B.66)

umin =
tan2R

2

tan2 θsj
2

(B.67)

Again, we see the explicit appearance of tan2 R
2 − tan2 θsj

2 in the out-of-jet contribution

to the soft function. Although RB is required as a regulator in each of the S
(1, out)
ij (B),

the sum of eqs. (B.60), (B.61), and B.62 are non-singular as RB → 0, and all anomalous

dimensions should be expanded in this limit. For a further discussion, see [87].

Zero bin subtraction for out-of-jet contribution to soft function. Finally, we

consider possible zero bin subtractions for the out-of-jet soft function. Unlike the in-jet

soft function, all zero bin contributions to the out-of-jet soft functions vanish. To see this,

note that we are considering the case where the scale of out-of-jet radiation, B, is much

less than the in-jet scale. More precisely, we are considering the formal scaling

B ∼ e
(α)
3

e
(α)
2

∼
(
e

(α)
2

)2
. (B.68)
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In other words, B ∼ Qz2
s , with zs the energy fraction of the global soft radiation. All

other modes appearing in the factorization, in particular, the boundary soft, and soft sub-

jet modes, are parametrically more energetic. For all possible zero bins to the soft function

in the out-of-jet region, we can therefore multipole expand the measurement function ap-

pearing in eq. (B.32). Therefore, all such zero bins give a vanishing contribution. This

implies that the dependence on tan2 R
2 −tan2 θsj

2 is not zero bin subtracted in the out-of-jet

contribution to the soft function, unlike for the in-jet contribution. Therefore, while the

global soft function does depend on tan2 R
2 − tan2 θsj

2 , it comes entirely from the out-of-jet

region of integration. As we will see in appendix B.6, the boundary soft function also de-

pends on tan2 R
2 − tan2 θsj

2 . Indeed, tan2 R
2 − tan2 θsj

2 appears in the anomalous dimensions

for both these functions, but with opposite signs, as is required by the renormalization

group consistency of the factorization theorem.

B.6 Boundary soft function

In this section we calculate the boundary soft function. In the multi-stage matching of

section 3 which gave rise to the boundary soft mode, the boundary soft modes were decou-

pled from the soft subjet collinear modes via a BPS field redefinition. The boundary soft

function therefore has the form of a global soft function, in particular it is calculated with

eikonal Feynman rules, but it only has Wilson lines in the nsj and n̄sj directions. This is

important, as it implies that the boundary soft function has the same color structure as the

soft subjet jet function. In this appendix we have assumed that the soft subjet is a gluon

jet. This can be understood intuitively since the boundary softs are a collinear soft mode,

and hence are genuinely boosted in the nsj direction, so all other Wilson lines collapse to

the n̄sj . Thus the color structure of the boundary soft modes is simply that of the dipole

formed by the soft subjet, and all other eikonal lines merged into one.

The one loop expression for the boundary soft function is given by

S
(1)
nsj n̄sj (e

(β)
3 ) = g2µ2εCA

∫
[ddk]+δ

(
e

(β)
3 −NBS

n̄sj · k
Q

[
nsj · k
n̄sj · k

]β
2

)

×Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
nsj · n̄sj

nsj · k k · n̄sj
. (B.69)

Here we have already multipole expanded away any possible out-of-jet contributions, since

the boundary soft scale is higher than the out-of-jet scale. We must again take care in

expanding the jet radius constraint. From eq. (B.24), we have

Θ

(
tan2 R

2
− n · k1

n̄ · k1

)
→ Θ

(
tan2 R

2
− tan2 θsj

2
+ 4

k⊥sj · n⊥sj
(n̄ · nsj)2n̄sj · k

)
, (B.70)

which, unlike for the soft subjet jet function, cannot be further expanded. The one loop
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expression for the boundary soft function is then given by

S
(1)
nsj n̄sj (e

(β)
3 ) = g2µ2εCA

∫
[ddk]+δ

(
e

(β)
3 −NBS

n̄sj · k
Q

[
nsj · k
n̄sj · k

]β
2

)

×Θ

(
tan2 R

2
− tan2 θsj

2
+ 4

k⊥sj · n⊥sj
(n̄ · nsj)2n̄sj · k

)
nsj · n̄sj

nsj · k k · n̄sj
.

(B.71)

We therefore see that the boundary soft contribution is identical to the soft subjet collinear-

bin of the global softs, given in (B.53), with the substitution n̄ → n̄sj , and changing the

normalization of the measurement function. We can therefore immediately write down the

one-loop boundary soft function

S̃
(1)
nsj n̄sj (ẽ

(β)
3 ) =

αsCA
2π


π

2

6
+

π2

8(1− β)
− π2β

12
(B.72)

+
1

1− β ln2


e

γEµẽ
(β)
3 NBS

Q

(
tan2 θsj

2

tan2 R
2 − tan2 θsj

2

)1−β



 ,

where for simplicity we have given only the finite pieces, dropping ε-divergences. We see

that the boundary soft mode carries the dependence of the soft subjet dynamics on the dif-

ference, tan2 R
2 −tan2 θsj

2 , which is completely factorized from the collinear dynamics of the

soft subjet. However, importantly, the color structure of the boundary soft is determined

by the color structure of the soft subjet, showing that it is indeed describing its dynamics.

The difference tan2 R
2 − tan2 θsj

2 therefore appears in both the boundary soft function, and

in the out-of-jet contribution to the soft function, as seen in appendix B.5. The fact that

it appears in both these functions is required for the renormalization group consistency of

the factorization theorem.

B.7 Anomalous dimensions

In this section we collect the one-loop anomalous dimensions for all the functions calculated

in this appendix. The two hard functions satisfy multiplicative renormalization group

equations. For the dijet production hard function, we have

µ
d

dµ
lnH(Q2, µ) = 2Re

[
γC(Q2, µ)

]
, (B.73)

with

γC(Q2, µ) =
αsCF

4π

(
4 log

[−Q2

µ2

]
− 6

)
. (B.74)

For the soft subjet production hard function, we have

µ
d

dµ
lnHsj

nn̄(zsj , nsj , µ) = −αsCA
π

ln

[
2µ2n̄ · n

Q2
sjn · nsj nsj · n̄

]
− αs

π
β0 . (B.75)
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The jet, boundary soft, and global soft functions satisfy multiplicative renormalization

group equations in Laplace space, which are given by

µ
d

dµ
ln Jnsj

(
ẽ

(β)
3

)
= − 2

αsCA
π(1− β)

ln

[
2−β/2ẽ

(β)
3 eγE

Q2
sj

Q2

µβ

Qβsj

]

− 2
αsCA

π(1− β)
ln

[
2−3+βQhj

Q
(n · nsj)β

]
+
αs
π
β0 , (B.76)

µ
d

dµ
lnSnsj n̄sj

(
ẽ

(β)
3 ;R

)
=

αsCA
π(1− β)

ln

[(n · nsj
2

)β/2
ẽ

(β)
3 eγE

µ

Q

]

+
αsCA

π(1− β)
ln

[
QhjQsj

4Q2
(n · nsj)β/2

]
− αsCA

2π
ln

[
n̄ · nsj
n · nsj

tan4 R

2

]
(B.77)

− αsCA
π

ln

[
1− n · nsj

n̄ · nsj tan2 R
2

]
,

µ
d

dµ
lnSnsj n n̄

(
ẽ

(β)
3 , B;R

)
=

αsCA
π(1− β)

ln

[(n · nsj
2

)β/2
ẽ

(β)
3 eγE

µ

Q

]

+
αsCA

π(1− β)
ln

[
QhjQsj

4Q2
(n · nsj)β/2

]
− αsCA

2π
ln

[
(n̄ · nsj)(n · nsj)3

tan4 R
2

]

+
αsCA
π

ln

[
1− n · nsj

n̄ · nsj tan2 R
2

]
+ CF terms (B.78)

For consistency of our soft subjet factorization theorem, the sum of the anomalous di-

mensions listed above should cancel. Indeed, one can explicitly check that, up to terms

proportional to CF ,

µ
d

dµ
lnHsj

nn̄(zsj , nsj , µ) + µ
d

dµ
ln Jnsj

(
ẽ

(β)
3

)

+ µ
d

dµ
lnSnsj n̄sj

(
ẽ

(β)
3 ;R

)
+ µ

d

dµ
lnSnsj n n̄

(
ẽ

(β)
3 , B;R

)
= 0 .

(B.79)

The terms in the anomalous dimension of the global soft function proportional to CF will

cancel when added with the anomalous dimensions of the hard function H(Q2, µ) and the

hard jet functions Jn(QJ , e
(β)
3 ) and Jn̄(QJ , B).

We again emphasize that the contribution to the global soft radiation’s anomalous

dimension that is sensitive to the soft subjet’s angle to the boundary comes purely from

the region of integration where the soft gluon is out of the jet. Performing the appropriate

zero bin subtractions removes any dependence from the in-jet region of integration, as was

discussed in detail in appendix B.5. The terms in the anomalous dimensions involving the

soft subjet’s angle to the boundary cancel between the boundary soft and global soft func-

tion, as required for renormalization group consistency. Also, for the global soft function,

we have only shown the contributions proportional to CA, as required for the dressed gluon

approximation.
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For the functions defining the dressed-gluon approximation, as presented in section 4.1,

the one-loop renormalization group equations are

µ
d

dµ
lnWnn̄(zsj , nsj ;R) = −αsCA

π
ln

(
1− n · nsj

n̄ · nsj tan2 R
2

)
, (B.80)

µ
d

dµ
lnGnn̄nsj (B;R) =

αsCA
π

ln

(
1− n · nsj

n̄ · nsj tan2 R
2

)
. (B.81)

Importantly, the sum of these anomalous dimensions vanishes, so that the product

Wnn̄(zsj , nsj ;R)Gnn̄nsj (B;R) is indeed renormalization group invariant, as stated in sec-

tion 4.1. Furthermore, we explicitly see that there is no dependence on ẽ
(β)
3 . As discussed

in section 4.2.3, we conjecture that the anomalous dimensions of the Wnn̄(zsj , nsj ;R) and

Gnn̄nsj (B;R) functions are given to all orders in perturbation theory by

µ
d

dµ
lnWnn̄(zsj , nsj ;R) = −CA Γcusp ln

(
1− n · nsj

n̄ · nsj tan2 R
2

)
, (B.82)

µ
d

dµ
lnGnn̄nsj (B;R) = CA Γcusp ln

(
1− n · nsj

n̄ · nsj tan2 R
2

)
. (B.83)

It would be interesting to explicitly verify this conjecture by performing the two-loop

calculation.

C Factorization for two strongly ordered soft jets

We use the factorization ansatz of eq. (4.18) to write down the factorization structure for

two soft subjets added to a dijet factorization for e+e− collisions. We write the result

assuming all measurements are in their conjugate (Laplace) space form, so that we can

avoid convolutions. We start with the standard dijet factorization theorem

dσ

dẽ
(α)
2 dB̃

= H(Q2)Jn(ẽ
(α)
2 )Jn̄(B̃)Snn̄(ẽ

(α)
2 ; B̃) . (C.1)

With a single jet, e
(α)
2 is the appropriate resolution measurement. Applying eq. (4.18), and

trading the resolution measurement for e
(α)
3 , we find

dσ

dzp dΩp dẽ
(α)
3 dB̃

= H(Q2)Jn̄(B̃)Jn(ẽ
(α)
3 )J̃p(ẽ

(α)
3 ;R)Hnn̄(zp,Ωp)

×
(
Snn̄p(ẽ

(α)
3 ; B̃)

Snn̄(ẽ
(α)
3 ; B̃)

)
Snn̄(ẽ

(α)
3 ; B̃) . (C.2)

Recall, that we use p to label the more energetic of the soft subjets. We have used the

tilde notation of eq. (3.14) to indicate that the jet function for the soft subjet must be

refactorized into jet function and a boundary soft function. Once this refactorization is

performed, and we cancel the nn̄ soft function, eq. (C.2) is the same as the factorization

theorem given in eq. (3.10).
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Now we can add another soft subjet, strongly ordered with respect to the first and

denoted by q, by performing a tree level matching. At tree level, only dipoles can contribute

to the production of the soft subjet, q. This softest subjet can be produced from the initial

nn̄ dipole, or from either of the na or n̄a dipoles formed from the previous soft subjet.

Applying eq. (4.18) to each of the soft functions in eq. (C.2), and trading for the correct

resolution variable e
(α)
4 gives,

dσ

dzpdΩpdzqdΩqdẽ
(α)
4 dB̃

= H(Q2)Jn̄(B̃)Jn(ẽ
(α)
4 )J̃p(ẽ

(α)
4 ;R)J̃q(ẽ

(α)
4 ;R)Snn̄(ẽ

(α)
4 ; B̃)

×Hnn̄(zp,Ωp)

(
Snn̄p(ẽ

(α)
4 ; B̃)

Snn̄(ẽ
(α)
4 ; B̃)

){(
CF −

CA
2

)
Hnn̄(zq,Ωq)

(
Snn̄q(ẽ

(α)
4 ; B̃)

Snn̄(ẽ
(α)
4 ; B̃)

)

+
CA
2
Hnp(zq,Ωq)

(
Snpq(ẽ

(α)
4 ; B̃)

Snp(ẽ
(α)
4 ; B̃)

)
+
CA
2
Hn̄p(zq,Ωq)

(
Sn̄pq(ẽ

(α)
4 ; B̃)

Sn̄p(ẽ
(α)
4 ; B̃)

)
+ . . .

}
.

(C.3)

With four jets, there is a non-trivial basis of possible color structures, which must be

included in the factorization theorem. We have explicitly indicated the tree level matching’s

color factors for the soft subjet production. Again, both the q, and p soft subjet jet

functions must be refactorized into boundary soft and jet functions to achieve a complete

factorization of the soft subjet dynamics. Finally, the . . . terms in eq. (C.3) denote terms

which involve all three eikonal lines n, n̄, and p in the production of the second soft subjet.

These terms do not appear in the tree-level matching.
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