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1 Introduction

Over the very recent past much effort has been devoted to the study of supersymmetric

gauge theories on general spaces. Part of this interest has been triggered by the devel-

opment of computational methods allowing to exactly compute certain (supersymmetric)

observables, such as the supersymmetric partition function (starting with the seminal pa-

per [1]), indices or Wilson loops. This program has been very successfully applied to the

cases of 4d and 3d gauge theories, and it is only very recently that the 5d case has been

considered (e.g. [2–7]). On the other hand, it has become clear that the dynamics of 5d

gauge theories is in fact very interesting, as, contrary to the naive intuition, at least for

the case of supersymmetric theories, they can be at fixed points exhibiting rather amusing
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behavior as pioneered in [8]. In particular, these theories often show enhanced global sym-

metries which can be both flavor-like or spacetime-like. The key observation is that vector

multiplets in 5d come with an automatically conserved topological current j ∼ ⋆F ∧F un-

der which instanton particles are electrically charged. These particles provide extra states

needed to enhance perturbative symmetries, both flavor or spacetime — such as what it

is expected to happen in the maximally supersymmetric case, where the theory grows one

extra dimension and becomes the (2, 0) 6d theory. In fact, very recently the underlying

mechanism for these enhancements has been considered from various points of view [9–12].

Five-dimensional gauge theories have a dimensionful Yang-Mills coupling constant

which is irrelevant in the IR. Hence they are non-renormalizable and thus a priori naively

uninteresting. However, as raised above, at least for supersymmetric theories the situation

is, on the contrary, very interesting as, by appropriately choosing gauge group and matter

content, the gYM coulpling which plays the role of UV cut-off can be removed in such a way

that one is left with an isolated fixed point theory [8]. From this perspective, it is natural to

start with the fixed point theory and think of the standard gauge theory as a deformation

whereby one adds a g−2
YMF 2 term. In fact, the g−2

YM can be thought as the VEV for a scalar

in a background vector multiplet. Hence, for any gauge theory arising from a UV fixed

point1 we can imagine starting with the conformal theory including a background vector

multiplet such that, upon giving a non-zero VEV to the background scalar, it flows to the

desired 5d gauge theory. This approach singles out 5d conformally coupled multiplets as

the interesting objects to construct.

As described above, on general grounds considering the theory on arbitrary manifolds

is very useful, as for example, new techniques allow for exact computation of supersym-

metric observables. The first step in this program is of course the construction of the

supersymmetric theory on the given (generically curved) space, which is per se quite non-

trivial. However, the approach put forward by [13] greatly simplifies the task. The key

idea is to consider the combined system of the field theory of interest coupled to a suitable

supergravity, which, by definition, preserves supersymmetry in curved space. Then, upon

taking a suitable rigid limit freezing the gravity dynamics, we can think of the solutions to

the gravity sector as providing the background for the dynamical field theory of interest.

Note that, since the combined supergravity+field theory is considered off-shell, both sec-

tors can be analyzed as independent blocks in the rigid limit, that is, one can first solve for

the supergravity multiplet and then regard such solution as a frozen background for the

field theory, where the supergravity background fields act as supersymmetric couplings.

Of course, the supergravity theory to use must preserve the symmetries of the field theory

which, at the end of the day, we are interested in. Hence, in the case of 5d theories, it

is natural to consider conformal supergravity coupled to the conformal matter multiplets

described above.

Following this approach, in this paper we will consider 5d conformal supergrav-

ity [14–16] coupled to 5d conformal matter consisting of both vector and hyper multiplets.

1Note that the theories outside of this class do require a (presumably stringy) UV completion. Hence the

class of theories which we are considering is in fact the most generic class of 5d supersymmetric quantum

field theories.
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As remarked above, the Yang-Mills coupling constant is dimensionful. Hence, the action

for the vector multiplets is not the standard quadratic one with a Maxwell kinetic term

but rather a cubic action which can be thought as the supersymmetric completion of 5d

Chern-Simons. As anticipated, in the rigid limit we can separate the analysis of the gravity

multiplet as providing the supersymmetric background for the field theory. One is thus

prompted to study the most generic backgrounds where 5d gauge theories with N = 1 su-

persymmetry can be constructed by analyzing generic solutions of the 5d N = 2 conformal

supergravity. Solutions to various 5d supergravities on (pseudo-) Riemannian manifolds

have been studied in different approaches in [17–23]. For N = 1 Poincaré supergravity,

the necessary and sufficient condition for the existence of a global solution is the existence

of a non-vanishing Killing vector. If one considers conformal supergravity this condition

becomes the existence of a conformal Killing vector (CKV).2 In this paper we analyze

Euclidean solutions of 5d conformal supergravity in terms of component fields. Our anal-

ysis proceeds along the lines of [24]. Interestingly, by studying the conditions under which

a VEV for the scalar in the background vector multiplets paying the role of g−2
YM can be

given in a supersymmetric way, we find that such vector must be in fact Killing. Hence in

this case we simply recover the results obtained using Poincaré supergravity.

Our results rely on some reality conditions satisfied by the supersymmetry spinors. In

the Lorentzian theory, the spinors generally satisfy a symplectic Majorana condition (A.3).

If one imposes the same condition in the Euclidean case, there are immediate implication

for the spinor bilinears (3.1) that play an important role in the analysis. Namely, the scalar

bilinear s is real and vanishes if and only if the spinor vanishes, while the vector bilinear

v — the aforementioned CKV — is real. One should note however that the symplectic

Majorana condition is not equivalent to these conditions for s and v. Instead, (A.3) is

slightly stronger, while our results only depend on the milder assumptions on the bilinears.

While the existence of the CKV is a necessary and sufficient condition many of the

backgrounds exhibit a more interesting geometric structure — that of a transversally holo-

morphic foliation (THF). These appeared already in the context of rigid supersymmetry in

three dimensions [25] and one can think of it as an almost complex structure on the space

transverse to the CKV that satisfies a certain integrability condition. A simple example of

a five manifold endowed with a THF is given by Sasakian manifolds. Here, the existence of

the THF was exploited in [26] in order to show that the perturbative partition function can

be calculated by counting holomorphic functions on the associated Kähler cone. Similar

considerations were used in [21] to solve the BPS equations on the Higgs branch. This

gives rise to the question whether such simplifications occur in localization calculations on

more generic five manifolds admitting rigid supersymmetry. This was addressed in [23] in

2This statement assumes the spinor — and thus the vector — to be non-vanishing. In the case of

Poincaré supergravity, this is always the case if the manifold is connected. After all, the relevant KSE is of

the form ∂µǫ
i = O(ǫi). If the spinor vanishes at a point, it vanishes on the whole manifold. For conformal

supergravity however, the KSE takes the form of a twistor equation, ∂µǫ
i − 1

4
γµν∂

νǫi = O(ǫi), which has

non-trivial solutions even if the right hand side vanishes. The simplest example of this is given by the

superconformal supersymmetry in R
5. See section 6.1. Here ǫi|xµ=0 = v|xµ=0 = 0, yet the global solution

is non-trivial. In such cases a more careful analysis is necessary.
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the context of 5d N = 1 Poincaré supergravity. Here it was shown that a necessary and

sufficient condition for such manifolds to admit a supersymmetric background is the exis-

tence of a Killing vector. If an su(2)-valued scalar in the Weyl multiplet is non-vanishing

and covarinatly constant along the four-dimensional leaves of the foliation it follows fur-

thermore that the solution defines a THF. Subsequently it was argued that the existence of

a THF (or that of an integrable Cauchy-Riemann structure) is sufficient to lead to similar

simplifications in the context of localization as in [21, 26].

With this motivation in mind we will address the question under which circumstances

generic backgrounds of the conformal supergravity in question admit THFs. Our results

are to be seen in the context of the very recent paper [22]. We will find that the necessary

and sufficient condition for the solution to support a THF is the existence of a global

section of an su(2)/R bundle that is covariantly constant with respect to a connection DQ

that arises from the intrinsic torsions parametrizing the spinor.

The outline of the rest of the paper is as follows. In section 2 we offer a lightning review

of the relevant aspects of superconformal 5d supergravity, with our conventions compiled

in appendix A and further details described in appendix B. In section 3 we turn to the

analysis of the general solutions of the supergravity, showing that the necessary condition

for supersymmetry is the presence of a conformal Killing vector. Moreover, we will see

that given a Killing spinor and the related CKV the general solution depends only on an

su(2)-valued ∆ij and a vector W that is orthogonal to the CKV. Both are determined

by solving simple ODEs that become trivial if one goes to a frame where the CKV is

Killing. In section 4 we study under which conditions it is possible to turn on a VEV for

scalars in background vector multiplets thus flowing to a standard gauge theory, finding

that the requirement is that the vector is not only conformal Killing but actually Killing.

In section 5 we derive the conditions for the existence of a THF. In section 6 we show how

some particular examples fit into our general structure, describing in particular the cases

of R × S4 relevant for the index computation of [5] and the S5 relevant for the partition

function computation of [2, 3]. We finish with some conclusions in section 7.

Note added. While this work was in its final stages we received [22], which has a sub-

stantial overlap with our results.

2 Five-dimensional conformal supergravity

Let us begin by reviewing the five-dimensional, N = 2 conformal supergravity of [15, 16].3

The theory has SU(2)R R-symmetry. The Weyl multiplet contains the vielbein eaµ, the

SU(2)R connection V
(ij)
µ , an antisymmetric tensor Tµν , a scalar D, the gravitino ψi

µ and

the dilatino χi. Our conventions are summarised in appendix A.

3A word on notation is in order here. We stress that we are discussing minimal supersymmetry in five

dimensions.
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The supersymmetry variations of the gravitino and dilatino are

δψi
µ = Dµǫ

i + ıγ · Tγµǫi − ıγµη
i, (2.1)

δχi =
1

4
ǫiD − 1

64
γ · R̂ij(V )ǫj +

ı

8
γµν /∇Tµνǫ

i − ı

8
γµ∇νTµνǫ

i − 1

4
γκλµνTκλTµνǫ

i

+
1

6
T 2ǫi +

1

4
γ · Tηi. (2.2)

Up to terms O(ψµ, χ
i),

Dµǫ
i = ∂µǫ

i +
1

4
ωab
µ γabǫ

i +
1

2
bµǫ

i − V ij
µ ǫj , (2.3)

R̂ij
µν(V ) = dV ij

µν − 2V
k(i
[µ V

j)
ν]k . (2.4)

In what follows we will set the Dilation gauge field bµ to zero.

As usual, taking the γ-trace of the gravitino equation allows to solve for the supercon-

formal parameters as ηi = − ı
5
/Dǫi + 1

5T · γǫi. Hence, we can rewrite the equations arising

from the gravitino and dilatino as

0 = Dµǫ
i − 1

4
γµνDνǫi + ıγµκλT

κλǫi − 3ıTµνγ
νǫi, (2.5)

0 =
1

128
ǫi(32D +R) +

1

15
TµνT

µνǫi +
1

8
DµDµǫ

i +
3ı

40
γκλµT

κλDµǫi +
11ı

40
γµTµνDνǫi

+
ı

4
γµκλ∇µT κλǫi +

ı

2
γµ∇νTµνǫ

i − 1

5
γκλµνTκλTµνǫ

i. (2.6)

Here, R is the Ricci scalar and the rewriting of the dilatino equation uses the gravitino

equation. One could also rewrite the latter using /D2
as in [24], yet we found the above

formulation to be more economical in this case.

3 General solutions of N = 2 conformal supergravity

General solutions to five-dimensional conformal supergravity have been constructed in [20]

using superspace techniques. In this section we will provide an alternative derivation of

the most general solutions to N = 2 conformal supergravity in euclidean signature using

component field considerations along the lines of [24]. Before turning to the details, let

us recall a counting argument from [24] regarding these solutions: in general the gravitino

yields 40 scalar equations. Eliminating the superconformal spinor ηi removes 8. As we will

see, the gravitino equation then also fixes the 10 components of the antisymmetric tensor

and 8 of the components of the SU(2) connection. This leaves us with 14, which is exactly

enough to remove the traceless, symmetric part of a two-tensor P which will appear in

the intrinsic torsion. Since the trace is undetermined we will find a CKV; the vector is

Killing if the trace vanishes. The remaining 7 components of the SU(2) connection and the

scalar in the Weyl multiplet will then be determined by the eight equations arising from

the dilatino variation.

– 5 –
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In order to study solutions of (2.5) and (2.6), we introduce the bispinors

s = ǫiCǫi,

v = (ǫiCγµǫi)dx
µ,

Θij = (ǫiCγµνǫ
j)dxµ ⊗ dxν ,

(3.1)

In what follows, we will assume the scalar s to be non-zero and the one-form v to be

real. These assumptions are implied if one imposes a symplectic Majorana condition such

as (A.3). Furthermore, note that v2 = s2.

The one-form then decomposes the tangent bundle into a horizontal and a vertical

part, with the former being defined as TMH = {X ∈ TM |v(X) = 0} and TMV as its

orthogonal complement. Due to the existence of a metric we use v to refer both to the

one-form and the correspoding vector and an analogous decomposition into horizontal and

vertical forms extends to the entire exterior algebra. In turn, the two-forms Θij are fully

horizontal and anti self-dual4 with respect to the automorphism ιs−1v⋆ : Λ2
H → Λ2

H :

ιvΘ
ij = 0, ιs−1v ⋆Θ

ij = −Θij . (3.2)

One finds that the spinor is chiral with respect to the vector s−1v,

s−1vµγµǫ
i = ǫi. (3.3)

Note that the sign here is mainly a question of convention. Had we defined v with an

additional minus sign, we would find the spinor to be anti-chiral and Θij to be self-dual.

One can see this by considering the transformation v 7→ −v. In addition, we define the

operator Πµ
ν = δµν − s−2vµvν which projects onto the horizontal space. A number of

additional useful identities involving Θij are given in appendix A.

Next, we parametrize the covariant derivative of the supersymmetry spinor using in-

trinsic torsions as in [19],

∇µǫ
i ≡ Pµνγ

νǫi +Qij
µ ǫj . (3.4)

Here, Pµν is a two-tensor while Qij
µ is symmetric in its SU(2)R indices. Rewriting the

torsions in terms of the supersymmetry spinor one finds

sPµν = ǫiγν∇µǫi =
1

2
∇µvν , sQij

µ = 2ǫ(i∇µǫ
j). (3.5)

3.1 The gravitino equation

We now turn to the study of generic solutions of (2.5) and (2.6) using the intrinsic torsions.

The reader interested in intermediate results and some technical details might want to

4Explicitly, the self-duality condition is

Θij
µν = −

1

2
s
−1

ǫµνκλρΘ
ijκλ

v
ρ
, ǫλµνστΘ

ijστ = −3!s−1Θij

[λµvν].

– 6 –
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consult appendix B. To begin, substituting (3.4) and contracting with ǫiγκ as well as ǫj

and symmetrizing in i, j one finds that (2.5) is equivalent to

0 =
5

4
s

(

P(µν) −
1

5
gµνP

λ
λ

)

+
3

4
s
(

P[µν] − 4ıTµν

)

+
1

4
ǫµνκλρ(P

[κλ] − 4ıT κλ)vρ

+
1

8
ǫµνρστ (Q− V )ρijΘστ

ij , (3.6)

0 =
1

2
s(Q− V )ijµ +

1

4
(Q− V )

ν(j
kΘ

i)k
µν +

1

8
ǫµκλστ (P − 4ıT )κλΘijστ . (3.7)

Clearly, the symmetric part in (3.6) has to vanish independently; so we find

P(µν) =
1

5
gµνP

λ
λ. (3.8)

This implies that v is a conformal Killing vector as can be seen using (3.5).

By contracting the two remaining equations with vµ, one finds

0 = 3svµ(P − 4ıT )[µν] − sΘij
νµ(Q− V )µij , (3.9)

0 = 2svµ(Q− V )ijµ − sΘij
µν(P − 4ıT )µν . (3.10)

Projecting (3.6) on the horizontal space, we find that Π(P − 4ıT ) is anti self-dual.

0 = (P − 4ıT )+. (3.11)

Contracting (3.10) with Θijκλ and using (A.5) gives us the horizontal, self-dual part.

(P − 4ıT )− = s−2Θijıv(Q− V )ij . (3.12)

By now we have equations for the self-dual, anti self-dual and vertical components of

(P − 4ıT )[µν], which means that all components of this two-form are determined. Putting

everything together, we find

s2(P − 4ıT )[µν] =
1

3

[

(v ∧Θij)µνρ + 2Θij
µνvρ

]

(Q− V )ρij . (3.13)

The only equation we have not considered so far is the horizontal projection of (3.7).

After using (A.6), (3.9) and (3.10) this simplifies to

sΠ ν
µ (Q− V ) i

ν j = −1

2
[(Q− V )ν ,Θµν ]

i
j . (3.14)

In summary, the gravitino is solved by (3.13) and (3.14).

Note that one can solve (3.14) by brute force after picking explicit Dirac matrices.

One finds that the equation leaves seven components of (Q − V ) unconstrained. Three

of these have to be parallel to v as they do not enter in (3.14). This suggests that it is

possible to package the seven missing components into a triplet ∆ij (three components)

and a horizontal vector Wµ (four) and parametrize a generic solution of the gravitino

equation as

(Q− V )ijµ = s−1
(

vµ∆
ij +W λΘij

λµ

)

s.t. v(W ) = 0,∆ij = ∆ji. (3.15)

Using (A.6) one can verify that (3.15) satisfies (3.14). The above implies that

Tµν =
ı

4

(

s−1Θij
µν∆

ij + s−1v[µWν] − P[µν]

)

. (3.16)

– 7 –
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3.2 The dilatino equation

We finally turn to the dilatino equation (2.6). To begin, we note that between ∆ij ,Wµ, D

there are eight unconstrained functions remaining while the dilatino equation provides

eight constraints. We can thus expect that there will be no further constraints on the

geometry. In this respect, similarly to [24], supersymmetry is preserved as long as the

manifold supports a conformal Killing vector v.

In what follows we will need to deal with terms involving derivatives of the spinor

bilinears (3.1). To do so we use the identities

∇µs = 2Pµνv
ν , (3.17)

∇µvν = 2sPµν , (3.18)

∇µΘ
ij
κλ = 3!s−1Θij

[κλvρ]P
ρ

µ − 2Θ
k(i
κλQ

j)
µk, (3.19)

∇[λPµν] = −s−1P[µν∇λ]s. (3.20)

Contracting (2.6) with ǫj and symmetrizing over the SU(2)R indices i, j one finds

0 =
1

8
ǫ(iDµDµǫ

j) +
3ı

40
ǫ(iγκλµT

κλDµǫj) +
11ı

40
ǫ(iγµTµνDνǫj)

+
ı

4
ǫ(iγκλµǫ

j)∇µT κλ. (3.21)

Substituting (3.15) and (3.16) one finds after a lengthy calculation5

£v∆
i
j = −2

5
sPµ

µ∆
i
j − [ιvQ+ P [µν]Θµν ,∆]ij . (3.22)

Contracting (2.6) with −ǫiγµ one obtains

0 = vµ

(

32D +R

128
+

1

15
TµνT

µν

)

+
1

8
ǫiγµDνDνǫi +

3ı

40
ǫiγµγκλνT

κλDνǫi

+
11ı

40
ǫiγµγ

κTκλDλǫi +
ı

4
ǫ νκλσ
µ vσ∇νTκλ +

ıs

2
∇νTµν −

s

5
ǫ κλστ
µ TκλTστ . (3.23)

The vertical component of this fixes the scalar D.

0 = 480sD + 15sR+ 48s(Pµ
µ)

2 − 130sW 2 + 60ǫκλµνρP
[κλ]P [µν]vρ − 160s∆ij∆ij

+100P[µν](sP
[µν] − 2vµW ν)− 200P [µν]Θij

µν∆ij + 48vµ∇µP
ρ
ρ − 120s∇µWµ. (3.24)

The horizontal part of (3.23) yields a differential equation for W

£vWκ =
1

50
Π λ

κ ( 3s2Pµ
µWλ − 34P ρ

ρP[λµ]v
µ − 20s∇λP

ρ
ρ). (3.25)

Note that the left hand side is horizontal since ιv£vW = ιvιvdW = 0.

Similar to the discussion in [24], we note that one can always solve (3.22) and (3.25)

locally. Moreover, after a Weyl transformation to a frame where v is not only conformal

Killing yet actually Killing, that is, setting Pµ
µ = 0, both equations simplify considerably.

5We found the Mathematica package xAct [27, 28] very useful.

– 8 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
8

All the source terms in the latter vanish which is now solved by W = 0 while the former

becomes purely algebraic,

0 = [ιvQ+ P [µν]Θµν ,∆]ij , (3.26)

and is solved by ∆ = s−1f(ιvQ + P [µν]Θµν) for a generic, possibly vanishing, function f

as long as £vf = 0. The factor s−1 is simply included here to render ∆ invariant under

ǫi → λǫi for λ ∈ C.

An alternative way to see that (3.22) and (3.25) can be solved globally is by direct

construction of the solution following the approach of section 5 in [23]. Thus, the existence

of a non-vanishing CKV is not only necessary, but also sufficient. See also footnote 2.

4 Yang-Mills theories from conformal supergravity

The solutions described above provide the most general backgrounds admitting a five-

dimensional, minimally supersymmetric quantum field theory arising in the rigid limit of

conformal supergravity. In the maximally supersymmetric case a more general class of

solutions is possible, since the R-symmetry of maximal supergravity is SO(5), one can

define supersymmetric field theories on generic five manifolds by twisting with the whole

SO(5). Such field theories were considered in [29]. An embedding in supergravity should

be possible starting from [30].

Of course, in the case at hand our starting point is conformal supergravity, so only

conformal multiplets can be consistently coupled to the theory. While the hypermultiplet is

conformally invariant per se, the vector multiplet with the standard Maxwell kinetic term

breaks conformal invariance as the Yang-Mills coupling has negative mass dimensions.

Therefore the action for the conformally coupled vector multiplet is a non-standard cubic

action which can be thought as the supersymmetric completion of 5d Chern-Simons. Such

action contains in particular a coupling of the form CIJK σI F J FK , where F I is the field

strength of the I-th vector multiplet, σI its corresponding real scalar and CIJK a suitable

matrix encoding the couplings among all vector multiplets (we refer to [15, 16] for further

explanations). Thus we can imagine constructing a standard gauge theory by starting

with a conformal theory and giving suitable VEVs to scalars in background abelian vector

multiplets. Of course, such VEVs must preserve supersymmetry. To that end, let us

consider the SUSY variation of a background vector multiplet. As usual, only the gaugino

variation is relevant, which, in the conventions of [16], reads

δΩi
B = − ı

2
/∇σB ǫi + Y i

B j ǫ
j + σB γ · Tǫi + σB ηi , (4.1)

where we have set to zero the background gauge field. The Y i
B j are a triplet of auxiliary

scalars in the vector multiplet. Contracting with ǫi it is straightforward to see that, in

order to have a supersymmetric VEV, we must have

£vσB +
2 s

5
Pµ

µσB = 0 , (4.2)
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while the other contractions fix the value of Y i
B j . The VEV of σB is g−2

YM, and as such one

would like it to be a constant. Therefore, equation (4.2) gives us an obstruction for the

existence of a Maxwell kinetic term; namely, that v is Killing and not only conformal Killing.

It then follows that all backgrounds admitting standard — i.e. quadratic — supersymmetric

Yang-Mills theories, involve a v which is a genuine Killing vector. They are thus solutions of

the N = 1 Poincaré supergravity — see e.g. [18, 19, 21, 23]. In particular, the case of R×S4

is of special interest as the partition function on this space in the absence of additional

background fields gives the superconformal index [5]. The relevant supersymmetry spinors

appearing in the calculation define a vector v which is conformal Killing; and therefore the

background is only a solution of conformal supergravity. As we will explicitly see below,

it is easy to check that such a solution, which can be easily obtained by a simple change

of coordinates in the spinors in [12], nicely fits in our general discussion above. If, on the

other hand, one studies supersymmetric backgrounds on S5 without additional background

fields, one finds v to be Killing (see below as well). Thus such backgrounds can be regarded

as a solution to conformal supergravity that are not obstructed by (4.2) and do thus admit

a constant σB. In fact, it is easy to check this nicely reproduces the results of [2].

Eq. (4.2) shows that backgrounds admitting only a conformal Killing vector cannot

support a standard gauge theory with a constant Maxwell kinetic term. As anticipated

above, and explicitly described below, this is precisely the case of R × S4, relevant for

the computation of the index. Of course it is possible to solve (4.2) if one accepts that

the Yang-Mills coupling is now position dependent. This way we can still think of the

standard Yang-Mills action as a regulator to the index computation.6 While this goes

beyond the scope of this paper, one might imagine starting with the Yang-Mills theory

on R
5 where (4.2) can be satisfied for a constant σB. Upon conformally mapping R

5 into

R × S4 the otherwise constant σB = g−2
YM becomes σB = g−2

YM eτ , being τ the coordinate

parametrizing R. In the limit g−2
YM → 0 we recover the conformal theory of [5]. One

can imagine computing the supersymmetric partition function in this background. As

the preserved spinors are just the same as in the g−2
YM → 0 limit, the localization action,

localization locus and one-loop fluctuations will be just the same as in the conformal case.

While we leave the computation of the classical action for future work, it is clear that the

limit g−2
YM → 0 will reproduce the result in [5].

5 Existence of transversally holomorphic foliations

We will now discuss under which circumstances solutions to equations (2.1) and (2.2) define

transversally holomorphic foliations (THF). Since we assumed s 6= 0 and v real, it follows

that the CKV v is non-vanishing and thus that v defines a foliation on M . Using (A.6)

one can show then that Θij defines a triplet of almost complex structures on the four-

6One might wonder that the cubic lagrangian theory is enough. However, in some cases such as e.g. Sp

gauge theories, such cubic lagrangian is identically zero.
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dimensional horizontal space TMH . Thus, given a non-vanishing section7 of the su(2)R Lie

algebra mij we can define an endomorphism on TM

(Φ[m])µν ≡ (detm)−1/2mij(Θ
ij)µν . (5.1)

This satisfies Φ[m]2 = −Π and thus induces a decomposition of the complexified tangent

bundle

TCM = T 1,0 ⊕ T 0,1 ⊕ Cv. (5.2)

Any such decomposition is referred to as an almost Cauchy-Riemann (CR) structure. If

an almost CR structure satisfies the integrability condition

[T 1,0 ⊕ Cv, T 1,0 ⊕ Cv] ⊆ T 1,0 ⊕ Cv, (5.3)

one speaks of a THF.8 Intuitively, mij determines how Φ is imbedded in Θij and thus how

T 1,0 is embedded in TMH . If one forgets about the vertical direction v for a moment,

the question of integrability of Φ is similar to the question under which circumstances a

quaternion Kähler structure on a four-manifold admits an integrable complex structure.

To address the question of the existence of an mij satisfying (5.3) we follow the con-

struction of [23] and define the projection operator

H i
j = (detm)−1/2mi

j − ıδij . (5.4)

One can then show that

X ∈ T 1,0 ⊕ Cv ⇔ XµH i
jΠ

ν
µγνǫ

j = 0, (5.5)

if the supersymmetry spinor ǫi satisfies a reality condition such as (A.3). Acting from the

left with DY for Y ∈ T 1,0 ⊕ Cv and antisymmetrizing over X,Y , one derives the spinorial

integrability condition

[X,Y ] ∈ T 1,0 ⊕ Cv ⇔ X [µY ν]Dµ(H
i
jΠ

ρ
νγρǫ

j) = 0. (5.6)

Note that H i
j satisfies H2 = −2ıH and has eigenvalues 0 and −2ı. Thus, H i

jǫ
j projects

the doublet ǫi to a single spinor that is a linear combination of the two. It is this spinor

that will define the THF.

To proceed, we first consider X,Y ∈ T 1,0. After substituting (3.4) and making repeat-

edly use of (5.5), one finds that the condition (5.6) reduces to the vanishing of

X [µY ν](∂µH
i
j + [Qµ, H]ij)γnǫ

j . (5.7)

7Since Φ is invariant under mij 7→ fmij for any non-vanishing function f : M → R it might be more

appropriate to think of mij as a ray in the three-dimensional su(2) vector space. From this point of view,

mij is a map

m : M → S
2 ⊂ su(2).

8The similar integrability condition [T 1,0, T 1,0] ⊆ T 1,0 defines a CR manifold.
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Similarly, the case X ∈ T 1,0, Y = v leads to the condition that

Xm(∂vH
i
j + [ιvQ,H]ij)γmǫj (5.8)

must be identically zero. Contracting both expressions with ǫj and symmetrizing over

SU(2) indices, we conclude that the integrability condition (5.3) can only be satisfied if

and only if

DQ
µ H

i
j ≡ ∂µH

i
j + [Qµ, H]ij = 0, (5.9)

i.e. iff the projectionH i
j is covariantly constant with respect to the connection defined byQ.

From the condition that H i
j be covariantly constant we derive the necessary condition

that it is also annihilated by the action of the corresponding curvature tensor:

[RQ
µν , H]ij = 0, (5.10)

where RQ
µν = [DQ

µ ,DQ
ν ]. Now, one can only solve (5.10) if the SU(2) curvature RQ lies in

a U(1) inside SU(2)R. Note that since the curvature RQ arises from the intrinsic torsions,

we can relate it to the Riemann tensor and Pµν using (3.4). The resulting expression is

not too illuminating however.

To conclude we will relate the integrability condition (5.9) to the findings of [23]. There

it was found that solutions of the N = 1 Poincaré supergravity of [31–33] define THFs if

mij = tij and ∀X ∈ TMH ,DXtij = 0. In other words, the unique choice for mij is the

field tij appearing in the Weyl multiplet of that theory and the latter has to be covariantly

constant (with respect to the usual SU(2)R connection V ij
µ ) along the horizontal leaves of

the foliation. To relate our results to this, consider the case where v is actually Killing. It

follows that we can assume £vH
i
j = 0 and thus the vertical part of (5.9) takes the form

of the first condition of [23], namely

[ιvQ,H]ij = 0. (5.11)

Moreover, our general solutions (3.22) and (3.25) are solved by W = 0; while this solution

is not unique, it makes the connection to [23] very eveident as it follows now that Π(Q)ij =

Π(V )ij and so the horizontal part of (5.9) reproduces the second condition from [23]:

∀X ∈ T 1,0 DXH i
j = Xµ(∂µH

i
j + [Vµ, H]ij) = 0. (5.12)

6 Examples

Let us now discuss some specific examples illustrating the general results from the previous

sections.

6.1 Flat R
5

Flat space admits constant spinors generating the Poincaré supersymmetries. In addition,

we can consider the spinor generating superconformal supersymmetries ǫi = xµγ
µǫi0, where
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ǫi0 is constant. Let us see how these fit into our general set-up. For the Poincaré supersym-

metries, it is clear that we just have Q = P = V = T = 0. For the superconformal spinors

on the other hand, the gravitino and dilatino equations are solved by

ηi = −ıǫi0, Tµν = V ij
µ = D = 0. (6.1)

The intrinsic torsions are

Qij
µ = − 2

sx2
xκΘ

ijκ
µ, P[µν] =

1

sx2
(x ∧ v)µν , P(µν) = s−1xκv

κδµν . (6.2)

Note that Θij
νρQ

ρ
ij = − 3s

x2Π
σ
νxσ and thus

2

3
2v[µΘ

ij
ν]ρQ

ρ
ij =

s

x2
(Πρ

µvν −Πρ
νvµ)xρ =

s

x2
(x ∧ v)µν = s2P[µν]. (6.3)

We don’t only see that (3.13) is satisfied, yet also that the only contribution to the right

hand side of that equation comes from 2
32v[µΘ

ij
ν]ρQ

ρ
ij while it is exactly the term that van-

ishes, Θij
µνvρQ

ρ
ij , that contributes in the in the Sasaki-Einstein case to be discussed below.

Note that the superconformal supersymmetries involve non-zero trace of P . Hence,

these supersymmetries are broken by the background scalar VEV corresponding to g−2
YM.

This just reflects the general wisdom that the 5d YM coupling, being dimensionful, breaks

conformal invariance.

6.2 R× S4

Consider now R × S4, with R parametrized by x5 = τ and v not along ∂
∂τ . As described

in [5] — where the explicit spinor solutions are written as well, the spinors satisfy

∇µǫ
q = −1

2
γµ γ5ǫ

q , ∇µǫ
s =

1

2
γµ γ5ǫ

s. (6.4)

Here ǫq, s generate Poincaré and superconformal supersymmetries respectively. It is

straightforward to see that these solutions fit in our general scheme with

Qij
µ = ± 1

2s
wκΘ

ijκ
µ, P[µν] = ∓ 1

2s
(w ∧ v)µν , P(µν) = ∓ 1

2s
wκv

κ gµν , (6.5)

where upper signs correspond to the ǫq while lower signs correspond to the ǫs. In addition

we have defined w = dτ . Note that the trace of P does not vanish, implying that v is

conformal Killing. Thus this is a genuine solution of superconformal supergravity that

cannot be embedded in N = 1 Poincaré supergravity. Moreover, as discussed above,

this implies that no (constant) Yang-Mills coupling can be turned on on this background

(see [34] for a further discussion in the maximally supersymmetric case).

6.3 Topological twist on R×M4

Manifolds of the form R × M4 can be regarded as supersymmetric backgrounds at the

expense of turning on a non-zero V such that the spinors are gauge-covariantly constant

Dµǫ
i = 0. (6.6)
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To show that we consider v = ∂τ , being τ the coordinate parametrizing R. Then, from (3.5),

it follows that Pµν = 0. Furthermore, by choosing V = Q — which translates into Wµ = 0,

∆ij = 0 and implies Tµν = 0 — all the remaining constraints are automatically solved.

This is nothing but the topological twist discussed in [12] (see also [35] for the maximally

supersymmetric case; twisted theories on five manifolds were also considered in [29]). Note

that since P = 0, in these backgrounds the Yang-Mills coupling can indeed be turned on.

6.4 SU(2)R twist on M5

If M5 is not a direct product, one can still perform an SU(2)R twist. For v Killing, the

details of this can be found in [23]. One can perform an identical calculation for the

conformal supergravity in question. In the case of a R or U(1) bundle over some M4 for

example, one finds T to be the curvature of fibration.

6.5 Sasaki-Einstein manifolds

For a generic Sasaki-Einstein manifold the spinor satisfies

∇µǫi = − ı

2
γµ(σ

3) j
i ǫj . (6.7)

It follows that

Pµν = − ı

2
s−1(σ3

ijΘ
ij)µν , Qij

µ = − ı

2
s−1vµ(σ

3)ij . (6.8)

Clearly

s2P[µν] = − ı

2
s(σ3

ijΘ
ij)µν = Θij

µνQ
ρ
ijvρ. (6.9)

Hence, upon taking V ij
µ = 0 = Tµν , we indeed have a solution of (3.13) and (3.14).

Note that the trace of P is vanishing, and hence in these backgrounds the Yang-Mills

coupling can be turned on. This holds also for Sasakian manifolds. Super Yang-Mills

theories on these were considered in e.g. [4].

6.6 S5

The S5 case is paticularly interesting as well, as it leads to the supersymmetric partition

function [2, 3]. Not surprisingly, since S5 can be conformally mapped into R
5, the solution

fits into our general discussion including two sets of spinors, one corresponding to the

Poincaré supercharges and the other corresponding to the superconformal supercharges.

Writing the S5 metric as that of conformally S5 as

ds2 =
4

(1 + ~x2)2
d~x2, (6.10)

we find for the Poincare supersymmetries

Qij
µ =

1

2s
xκΘ

ijκ
µ, P[µν] = − 1

2s
(x ∧ v)µν , P(µν) = − 1

2s
xκv

κ gµν . (6.11)

For the superconformal supercharges on the other hand, we find

Qij
µ = − 1

2sx2
xκΘ

ijκ
µ, P[µν] =

1

2sx2
(x ∧ v)µν , P(µν) =

1

2sx2
xκv

κ gµν . (6.12)
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Note that in both these cases the trace of P is non-zero, so neither of these spinors are

preserved if we deform the theory with a Yang-Mills coupling. Nevertheless it is possible to

find a combination of supercharges which does allow for that. This can be easily understood

by looking at the explicit form of the spinors, which in these coordinates is simply

ǫiq =
1√

1 + ~x2
ǫi0, ǫis =

1√
1 + ~x2

/xηi0, (6.13)

being ǫi0 and ηi0 constant spinors. Considering for instance /∇ǫiq ⊃ P[µν]γ
µγνǫiq + Pµ

µǫiq, we

see that the term with P[µν] involves a contraction /xǫiq which is basically ǫis. This suggests

that one might consider a certain combination of ǫq and ǫs for which the effective P -trace

is a combination of P[µν] and Pµ
µ which might vanish. Indeed one can check that this is

the case. Choosing for instance the Majorana doublet ξi constructed as

ξ1 = ǫ1q + ǫ2s, ξ2 = ǫ2q − ǫ1s, (6.14)

it is easy to see that it satisfies

∇µǫi = − ı

2
γµ(σ

2) j
i ǫj ; (6.15)

that is, the same equation as that for the Sasaki-Einstein case. Therefore, borrowing

our discussion above, it is clear that it admitts a Yang-Mills kinetic term. Indeed, this is

corresponds, up to conventions, to the choice made in [2, 3] to compute the supersymmetric

partition function.

7 Conclusions

In this paper we have studied general solutions to N = 2 conformal supergravity. In

the spirit of [13], these provide backgrounds admitting five-dimensional supersymmetric

quantum field theories. The starting point of our analysis, being conformal supergravity,

requires that such quantum field theories must exhibit conformal invariance. In particular,

the action for vector multiplets must be the cubic completion of 5d Chern-Simons term

instead of the standard quadratic Maxwell one. However, since the Yang-Mills coupling

can be thought as a VEV for the scalar in a background vector multiplet, we can regard

gauge theories as conformal theories conformally coupled to background vector multiplets

whose VEVs spontaneously break conformal invariance. From this perspective it is very

natural to consider superconformal supergravity as the starting point to construct the

desired supersymmetric backgrounds.

We have described the most generic solution to N = 2 five-dimensional conformal

supergravity (see also [20]). By expanding spinor covariant derivatives in intrinsic torsions

we have been able to find a set of algebraic equations (3.8), (3.15), (3.16), (3.24) together

with a set of differential constraints (3.22), (3.25) characterizing the most general solu-

tion. Interestingly, the solutions admit transverse holomorphic foliations if the SU(2)R
connection RQ “abelianizes” by lying along a U(1) inside SU(2)R, in agreement with the

discussion in [22].

– 15 –



J
H
E
P
0
9
(
2
0
1
5
)
1
1
8

On general grounds, the only obstruction to the existence of supersymmetric back-

grounds is the requirement of a conformal Killing vector. On the other hand we have

showed that only when the vector becomes actually Killing a constant VEV for background

vector multiplet scalars can be turned on. This shows that all cases where a Yang-Mills

theory with standard Maxwell kinetic term can be supersymmetrically constructed are in

fact captured by Poincaré supergravity. On the other hand, on backgrounds admitting

only a conformal Killing vector we can still turn on a Yang-Mills coupling at the expense of

being position-dependent. While this is certainly non-standard, in particular this allows to

think of the quadratic part of the Yang-Mills action as the regulator in index computations.

Having constructed all supersymmetric backgrounds of N = 2 superconformal su-

pergravity, the natural next step would be the computation of supersymmetric partition

functions. In particular, it is natural to study on what data they would depend along the

lines of e.g. [36]. For initial progress in this direction see [19, 23]. We postpone such study

for future work.
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A Conventions

We use the standard NE-SW conventions for SU(2)R indices {i, j, k, l} with ǫ12 = ǫ12 = 1.

The charge conjugation matrix C is antisymmetric, hermitian and orthogonal, i.e. C∗ =

CT = −C = C−1. Its action on gamma matrices is given by (γa)∗ = (γa)T = CγaC−1.

In general we choose not to write the charge conjugation matrix explicitly; thus ǫiηj =

(ǫi)TCηj . Antisymmetrised products of gamma matrices are defined with weight one,

γa1...ap =
1

p!
γ[a1 . . . γap], (A.1)

yet contractions between tensors and gamma matrices are not weighted.

γ · T = γµνTµν . (A.2)

In general, symmetrization T(µ1...µp) and antisymmetrization T[µ1...µp] are with weight one

however.
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One can impose a symplectic Majorana condition

ǫij(ǫj)∗ = Cǫi, (A.3)

yet as we mentioned in the main body of this paper it is generally sufficient for us to assume

s to be non-vanishing and v to be real.

Using Fierz identities, one finds the following identities involving the spinor bilin-

ear Θij :

Θij
µνΘ

klµν = s2(ǫikǫjl + ǫilǫjk), (A.4)

Θij
κλΘ

µν
ij =

s2

2
(Πµ

κΠ
ν
λ −Πν

κΠ
µ
λ)−

s

2
ǫ µνρ
κλ vρ (A.5)

Θij
µρΘ

klρν = −s2

4
(ǫikǫjl + ǫilǫjk)Π ν

µ +
s

4
(ǫjkΘil + ǫikΘjl + ǫjlΘik + ǫilΘjk) ν

µ . (A.6)

B Details of the computation

In this appendix we summarize the most relevant details of the computation that lead us

to the two equations (3.13) and (3.14) and to the three differential equations (3.22), (3.24)

and (3.25), that allow to determine ∆ij , the scalar D and the vector Wκ.

B.1 Gravitino equation

In this subsection we furnish further details for the derivation of the equations (3.13)

and (3.14). As explained in section 3 we rewrite the covariant derivative acting on the

spinor ǫi as

Dµǫ
i = ∇µǫ

i − V ij
µ ǫj = Pµνγ

νǫi + (Q− V )ijµ ǫj . (B.1)

Inserting this expression for the covariant derivative in the gravitino equation (2.5) we

obtain

0 =
3

4
P[µν]γ

νǫi +
1

8
ǫµκλστP

[κλ]γστ ǫi +
5

4
P(µν)γ

νǫi − 1

4
γµP

ν
νǫ

i

+(Qij
µ − V ij

µ )ǫj −
1

4
γµν(Q

νij − V νij)ǫj −
ı

2
ǫµκλστT

κλγστ ǫi − 3ıTµνγ
νǫi

=
5

4

(

P(µν) −
1

5
gµνP

λ
λ

)

γνǫi + (Q− V )ijµ ǫj −
1

4
γµν(Q− V )νijǫj

+
3

4
(P[µν] − 4ıTµν)γ

νǫi +
1

8
ǫµκλστ (P

[κλ] − 4ıT κλ)γστ ǫi. (B.2)

We manipulate the previous expression, as discussed in section 3, multiplying it from the

left by ǫiγκ. In this way we obtain the equation (3.6). While we obtain the equation (3.7)

multiplying the equation (B.2) by ǫj and symmetrizing in the indices i and j.

In order to recover the equation (3.13) we have to determine (P−4ıT )+ and (P−4ıT )−.

Therefore we project the equation (3.6) on the horizontal space using the projector operator

Πµ
ν = δµν − s2vµvν . We find

0 =
5

8
Πκ

µΠ
λ
ν

[

(P − 4ıT )[κλ] +
1

2
ǫκλστρ(P − 4ıT )στvρ

]

=
5

4
(P − 4ıT )+. (B.3)
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This means that Π(P − 4iT ) is anti-self dual. On the other hand contracting the equa-

tion (3.10) with Θijκλ and using the identity (A.5) we get

0 = s3
(

ΠκµΠλν −
1

2
s−1ǫκλµνρv

ρ

)

(P − 4ıT )[κλ] − 2sΘijκλ(Q− V )ijρ v
ρ. (B.4)

Solving the previous expression we obtain (P − 4ıT )− = s−2Θijıv(Q − V )ij . Therefore

we know all the components of (P − 4iT ), since we have an equation for (P − 4iT )+, an

equation for (P −4iT )− and finally an equation for ıv(P −4ıT ). Putting these information

together we recover the equation (3.13).

In order to determine the equation (3.14) we evaluate the projection of the equa-

tion (3.7), using the identities (3.9) and (3.10) we get

0 =
1

2
sΠν

µ(Q− V )ijν +
1

4
(Q− V )

ν(j
kΘ

i)k
µν +

1

6
s−1Θij

µνΘ
νρ
kl (Q− V )klρ . (B.5)

Using the identity (A.6) the previous expression becomes

0 = sΠ ν
µ (Q− V ) i

ν j +
1

2
[(Q− V )ν ,Θµν ]

i
j . (B.6)

Obtaining in this way the equation (3.14).

B.2 Dilatino equation

In this subsection we furnish further details regarding the derivation of the equa-

tions (3.22), (3.24) and (3.25). The most involved terms that appear in the equa-

tion (2.6) are

DµDµǫ
i =

1

5
/∇Pµ

µǫ
i − γµ∇νP[µν]ǫ

i +
1

5
(Pµ

µ)
2ǫi + P[µν]P

[µν]ǫi

−∇µ(Q− V ) i
µ jǫ

j − V i
µ j(Q− V )µjkǫ

k + (Q− V ) i
µ jQ

µj
kǫ

k

+
2

5
P κ

κγ
µ(Q− V )ijµ ǫj − 2γµP[µν](Q− V )νijǫj (B.7)

and

γκλµT
κλDµǫi = γκλµνT

κλP [µν]ǫi +
3

5
P κ

κTµνγ
µνǫi − 2P[µκ]T

κ
νγ

µνǫi

+γκλµT
κλ(Q− V )µijǫj , (B.8)

γµTµνDνǫi = −P[µν]T
µνǫi − P[µκ]T

κ
νγ

µνǫi +
1

5
P κ

κTµνγ
µνǫi + γµTµν(Q− V )νijǫj . (B.9)

The symmetric contraction. Multiplying the equation (2.6) by ǫj and symmetrizing

in i and j we obtain

0 =
1

8
ǫ(iDµDµǫ

j) +
3ı

40
ǫ(iγκλµT

κλDµǫj) +
11ı

40
ǫ(iγµTµνDνǫj)

+
ı

4
ǫ(iγκλµǫ

j)∇µT κλ. (B.10)

– 18 –
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The individual components are

ǫ(iDµDµǫ
j) =

s

2

[

∇µ(Q− V )ijµ + (Q+ V )
(i

µ k(Q− V )µj)k
]

+
1

5
P κ

κvµ(Q− V )µij − vµP[µν](Q− V )νij , (B.11)

ǫ(iγκλµT
κλDµǫj) =

3

5
P κ

κT
µνΘij

µν − 2P[µκ]T
κ
νΘ

ijµν +
1

2
ǫ νρ
κλµ T κλΘk(i

νρ (Q− V )
µj)

k, (B.12)

ǫ(iγµTµνDνǫj) = −P[µκ]T
κ
νΘ

ijµν +
1

5
Pµ

µT
κλΘij

κλ +
1

2
vµT

µν(Q− V )ijν , (B.13)

ǫ(iγκλµǫ
j)∇µT κλ = −1

2
ǫ νρ
κλµ Θij

νρ∇µT κλ. (B.14)

Putting the various terms together we recover the expression (3.22).

The vector contraction. Multiplying the equation (2.6) with ǫiγµ and contracting we

obtain

0 = vµ

(

32D +R

128
+

1

15
TµνT

µν

)

+
1

8
ǫiγµDνDνǫi +

3ı

40
ǫiγµγκλνT

κλDνǫi

+
11ı

40
ǫiγµγ

κTκλDλǫi +
ı

4
ǫ νκλσ
µ vσ∇νTκλ +

ıs

2
∇νTµν −

s

5
ǫ κλστ
µ TκλTστ . (B.15)

The most involved terms are given by

ǫiγµDνDνǫi =
s

5
∇µP

κ
κ − s∇νP[µν] −

2

5
P κ

κΘ
ij
µν(Q− V )νij + 2Θij

µνP
[νρ](Q− V )ρij

+vµ

[

1

5
(P κ

κ)
2 + P[µν]P

[µν] − 1

2
(Q− V )ijν (Q− V )νij

]

, (B.16)

ǫiγµγκλνT
κλDνǫi = sǫµκλστT

κλP [στ ] +
6

5
P κ

κTµνv
ν − 2(P[µρ]T

ρ
ν − P[νρ]T

ρ
µ)v

ν

−(Q− V )µijΘ
ij
κλT

κλ − 2TµνΘ
ijνρ(Q− V )ρij , (B.17)

ǫiγµγ
κTκλDλǫi = −vµP[κλ]T

κλ − (P[µρ]T
ρ
ν − P[νρ]T

ρ
µ)v

ν +
2

5
P κ

κTµνv
ν

−Θij
µκT

κλ(Q− V )λij . (B.18)

Finally putting the various terms together and projecting on the vertical component we

recover the equation (3.24). While projecting on the horizontal component we recover the

equation (3.25).
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