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1 Introduction

The Higgs boson discovered at the LHC three years ago [1, 2] can offer a potential window

into physics beyond the standard model (SM). The existence of new interactions can bring

about modifications to the standard decay modes of the particle and/or cause it to undergo

exotic decays [3]. As LHC data continues to accumulate with increasing precision, they

may reveal clues of new physics in the Higgs couplings.

The latest LHC measurements of the Higgs, h, have started to expose its Yukawa

interactions with leptons. Particularly, the ATLAS and CMS Collaborations have observed

the decay mode h → τ+τ− and measured its signal strength to be σ/σSM = 1.44+0.42
−0.37 and

0.91 ± 0.28, respectively [4, 5]. In contrast, their direct searches for the decay channel

h → µ−µ+ have so far come up with only upper limits on its branching fraction, B(h →
µ−µ+) < 1.5 × 10−3 and 1.6 × 10−3, respectively [6, 7], at 95% confidence level (CL).

Overall, these results are still consistent with SM expectations.

There have also been searches for flavor-violating dilepton Higgs decays, which the

SM does not accommodate. In this regard, CMS recently reported [8] the interesting

detection of a slight excess of h → µ±τ∓ events with a significance of 2.4σ. If interpreted

as a signal, the excess implies a branching fraction of B(h → µτ) = B(h → µ−τ+) +

B(h → µ+τ−) =
(

0.84+0.39
−0.37

)

%, but as a statistical fluctuation it translates into the bound

B(h → µτ) < 1.51% at 95% CL [8]. In view of its low statistical significance, it is too soon

to draw a definite conclusion from this finding, but it would constitute evidence of new

physics if confirmed by future experiments.

This tantalizing, albeit tentative, hint of lepton flavor violation (LFV) outside the

neutrino sector has attracted a growing amount of attention, as the detection of such a

process would serve as a test for many models [9–22] and could have major implications

for upcoming Higgs measurements [22–28]. Subsequent to the h → µτ announcement by

CMS, its signal hypothesis was theoretically examined in the contexts of various scenarios

involving enlarged scalar sectors [29–43] or nonrenormalizable effective interactions [39–44].
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In this paper, we follow the latter line of approach which relies on effective opera-

tors to address LFV in Higgs decay. To handle the LFV pattern systematically without

getting into model details, we adopt the framework of so-called minimal flavor violation

(MFV). Motivated by the fact that the SM has succeeded in describing the existing data on

flavor-changing neutral currents and CP violation in the quark sector, the MFV principle

presupposes that Yukawa couplings are the only sources for the breaking of flavor and CP

symmetries [45–50]. However, unlike its straightforward implementation for quarks, there

is no unique way to extend the notion of MFV to leptons, as the minimal version of the SM

by itself, without right-handed neutrinos or extra scalar particles, does not accommodate

LFV. In light of the fact that flavor mixing among neutrinos has been empirically estab-

lished [51], it is attractive to formulate leptonic MFV by incorporating new ingredients

that can explain this observation [52]. Thus, here we consider the SM expanded with the

addition of three heavy right-handed neutrinos as well as effective dimension-six opera-

tors conforming to the MFV criterion.1 The heavy neutrinos are essential for the seesaw

mechanism to endow light neutrinos with Majorana masses.

In the next section, after briefly reviewing the MFV framework, we introduce the

effective dimension-six operators that can give rise to LFV in Higgs decay, only one of

which is relevant to h → µτ . In section 3, we explore the parameter space associated with

this operator which can yield B(h → µτ) ∼ 1%, as CMS may have discovered. At the

same time, we take into account various experimental restrictions on the Higgs couplings

proceeding from the operator. Specifically, we impose constraints inferred from the LHC

measurements described above as well as from the existing data on transitions with LFV

that have long been the subject of intensive quests, such as µ → eγ. We present several

sample points from the viable parameter space that can account for the CMS’ h → µτ

signal interpretation. We also discuss how future searches for µ → eγ and nuclear µ → e

conversion may offer further tests on the interactions of interest. Finally, we look at a few

other processes that can be induced by the same operator. Especially, we find that the

Z-boson decay Z → µτ can have a branching ratio that is below its current empirical limit

by merely less than an order of magnitude. We make our conclusions in section 4. An

appendix contains some additional information and formulas.

2 Operators with minimal lepton-flavor violaton

In the SM plus three right-handed Majorana neutrinos, the renormalizable Lagrangian for

lepton masses can be written as

Lm = −(Yν)klLk,Lνl,RH̃ − (Ye)klLk,LEl,RH − 1

2
(Mν)klν

c
k,Rνl,R +H.c. , (2.1)

where k, l = 1, 2, 3 are implicitly summed over, Yν,e denote Yukawa coupling matrices,

Lk,L stands for left-handed lepton doublets, νl,R and El,R represent right-handed neutrinos

and charged leptons, respectively, H̃ = iτ2H
∗ with τ2 being the second Pauli matrix and

H the Higgs doublet, Mν is the Majorana mass matrix of νl,R, and νck,R ≡ (νk,R)
c, the

1Various scenarios of leptonic MFV have been discussed in the literature [52–61].
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superscript referring to charge conjugation. For the nonzero elements of Mν taken to be

much greater than those of vYν/
√
2, the seesaw mechanism of type I is operational [62–70]

and generates the light neutrinos’ mass matrix mν = −(v2/2)YνM
−1
ν Y T

ν = UPMNSm̂νU
T
PMNS,

where v ≃ 246GeV is the Higgs’s vacuum expectation value, UPMNS denotes the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS [71, 72]) matrix, and m̂ν = diag
(

m1,m2,m3

)

contains the

light neutrinos’ eigenmasses. This suggests [73]

Yν =
i
√
2

v
UPMNSm̂

1/2
ν OM1/2

ν , (2.2)

where O in general is a complex 3×3 matrix satisfying OOT = 1, the right-hand side being

a unit matrix, and can be parameterized as

O = eiReR
′

, R
(′) =







0 r(′)

1 r(′)

2

−r(′)

1 0 r(′)

3

−r(′)

2 −r(′)

3 0






(2.3)

with r1,2,3 and r′1,2,3 being independent real constants. Hence nonvanishing r(′)

1,2,3 dictate

how the Higgs couples to the right-handed neutrinos in a nontrivial way according to

eq. (2.2). Hereafter, we concentrate on the possibility that the right-handed neutrinos are

degenerate, so that Mν = M1. In this particular scenario, only the eiR part of O matters

physically [53].

The MFV hypothesis [50, 52] then implies that Lm is formally invariant under the

global flavor group Gℓ = SU(3)L ×O(3)ν × SU(3)E . This entails that Lk,L, νk,R, and Ek,R

belong to the fundamental representations of their respective flavor groups,

LL → VLLL, νR → OννR, ER → VEER, (2.4)

where VL,E ∈ SU(3)L,E and Oν ∈ O(3)ν is an orthogonal real matrix [50, 52, 53]. Further-

more, under Gℓ the Yukawa couplings transform in the spurion sense according to

Yν → VLYνOT
ν , Ye → VLYeV

†
E . (2.5)

Due to the symmetry under Gℓ, we can work in the basis where Ye =√
2diag

(

me,mµ,mτ

)

/v and the fields ν̃k,L, νk,R, and Ek refer to the mass eigenstates.

Explicitly, (E1, E2, E3) = (e, µ, τ). We can then express Lk,L in relation to UPMNS as

Lk,L =

(

(UPMNS)klν̃l,L

Ek,L

)

. (2.6)

In the standard parametrization [51]

UPMNS=







c12c13 s12 c13 e−iδs13
−s12 c23 − c12 s23 s13 e

iδ c12 c23 − s12 s23 s13 e
iδ s23 c13

s12 s23 − c12 c23 s13 e
iδ −c12 s23 − s12 c23 s13 e

iδ c23 c13






diag

(

eiα1/2, eiα2/2, 1
)

,

(2.7)
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where δ and α1,2 are the CP -violating Dirac and Majorana phases, respectively, ckl =

cos θkl, and skl = sin θkl.

To put together effective Lagrangians beyond the SM with MFV built-in, one in-

serts products of the Yukawa matrices among the pertinent fields to assemble Gℓ-invariant

operators that are singlet under the SM gauge group [50, 52]. Of interest here are the

combinations

A = YνY
†
ν =

2M
v2

UPMNSm̂
1/2
ν OO†m̂1/2

ν U †
PMNS, B = YeY

†
e = diag

(

y2e , y
2
µ, y

2
τ

)

, (2.8)

where yf =
√
2mf/v. With these matrices, one can generally devise an object ∆ as an

infinite power series in them and their products, but it turns out to be resummable into

only 17 terms [74, 75]. To maximize the new-physics effects, we assume that the right-

handed neutrinos’ mass M is large enough to render the biggest eigenvalue of A equal to

unity, which conforms to the perturbativity requirement [59, 60, 74, 75]. Given that the

eigenvalues of B are at most y2τ ∼ 1×10−4, we may consequently drop from ∆ all the terms

with B, which would otherwise be needed in a study concerning CP violation [59–61].

Accordingly, the relevant building block is [61]

∆ = ξ11+ ξ2A+ ξ4A
2, (2.9)

where in our model-independent approach ξ1,2,4 are free parameters expected to be at most

of O(1), one or more of which could be suppressed or vanish, depending on the underlying

theory. As Imξ1,2,4 are tiny [59, 60, 74, 75], we can further approximate ∆† = ∆.

One could then construct the desired Gℓ-invariant effective Lagrangians that are SM

gauge singlet. The one pertaining to h → ℓℓ′ at tree level is given by [52]

LMFV =
O

(e3)
RL

Λ2
+H.c., O

(e3)
RL = (DρH)†ĒRY

†
e ∆DρLL , (2.10)

where the mass scale Λ characterizes the underlying heavy new-physics and the covariant

derivatives DρH = ∂ρH + i
(

gτaW
ρ
a + g′Bρ

)

H/2 and DρL = ∂ρL + i
(

gτaW
ρ
a − g′Bρ

)

L/2

contain the usual SU(2)L×U(1)Y gauge fields W ρ
a and Bρ with coupling constants g and g′,

respectively, and Pauli matrices τa, with summation over a = 1, 2, 3 being implicit. There

are other dimension-six MFV operators involving H and leptons that have been written

down [52],

i
[

H†DρH − (DρH)†H
]

L̄Lγ
ρ∆LLLL , g′ĒRY

†
e ∆RLσρωH

†LLB
ρω ,

i
[

H†τaDρH − (DρH)†τaH
]

L̄Lγ
ρ∆′

LLτaLL , gĒRY
†
e ∆′

RLσρωH
†τaLLW

ρω
a ,

(2.11)

with ∆(′)
LL,RL being of the form of ∆ in eq. (2.9) and having their own coefficients ξj , but

these operators do not induce tree-level dilepton Higgs couplings. The same thing can be

said of the comparatively more suppressed i
[

H†DρH − (DρH)†H
]

ĒRγ
ρY †

e ∆RRYeER. In

the literature the operator H†HĒRY
†
e ∆H†LL is also often considered (e.g., [19]), but it

can be shown to be related to O
(e3)
RL and the other operators above. Explicitly, employing

– 4 –
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the equations of motions for SM fields [76], one can derive [61]

O
(e3)
RL +H.c. =

i

8

[

H†DρH − (DρH)†H
](

L̄Lγ
ρ
{

∆, YeY
†
e

}

LL + 4ĒRγ
ρY †

e ∆YeER

)

+
i

8

[

H†τaDρH − (DρH)†τaH
]

L̄Lγ
ρ
{

∆, YeY
†
e

}

τaLL

+
i

8

[

H†DρH + (DρH)†H
]

L̄Lγ
ρ
[

∆, YeY
†
e

]

LL

+
i

8

[

H†τaDρH + (DρH)†τaH
]

L̄Lγ
ρ
[

∆, YeY
†
e

]

τaLL

+
1

8

[(

4H†H/v2 − 2
)

m2
hĒRY

†
e ∆H†LL + 4L̄LYeERĒRY

†
e ∆LL

+ ĒRY
†
e ∆σρωH

†
(

g′Bρω + gτaW
ρω
a

)

LL + H.c.
]

(2.12)

plus terms involving quark fields and total derivatives.2 The third and fourth lines of this

equation, which have
[

∆, YeY
†
e

]

, also supply contributions to h → ℓℓ′, but they correspond

to small, O
(

m2
ℓ,ℓ′/m

2
h

)

, effects that will be ignored later in eq. (3.3).

3 Decay amplitudes and numerical analysis

One can express the effective Lagrangian describing the Higgs decays h → ℓ−ℓ′+, ℓ′−ℓ+ for

ℓ 6= ℓ′ as

Lhℓℓ′ = −Yℓℓ′ℓPRℓ
′ − Yℓ′ℓℓ

′PRℓ+H.c. , (3.1)

where Yℓℓ′,ℓ′ℓ denote the Yukawa couplings, which are in general complex. Hence the

combined rate of h → ℓ−ℓ′+, ℓ′−ℓ+ is

Γh→ℓℓ′ = Γh→ℓℓ̄′ + Γh→ℓ̄ℓ′ =
mh

8π

(

|Yℓℓ′ |2 + |Yℓ′ℓ|2
)

, (3.2)

where the lepton masses have been neglected compared to mh. The flavor-conserving decay

h → ℓ−ℓ+ has a rate of Γh→ℓℓ̄ = mh|Yℓℓ|2/(8π).
The MFV Lagrangian in eq. (2.10) contributes to both flavor-conserving and -violating

Higgs decays. Including the SM part, we can write for h → E−
k E

+
l

YEkEl
= δklYSM

EkEk
−

mEl
m2

h

2Λ2v
∆kl, (3.3)

where YSM
EkEk

= mEk
/v at tree level. It follows that |Yℓℓ′ | ≪ |Yℓ′ℓ| for ℓℓ′ = eµ, eτ, µτ and

Yℓℓ are real in our MFV scenario.

These couplings enter the amplitudes for a variety of lepton-flavor-violating processes,

such as µ → eγ, via one- and two-loop diagrams. Therefore, they are subject to the

pertinent empirical constraints [20–22], the most stringent of which we list here, assuming

that the impact of these loop contributions is not much reduced by other new-physics

2The formula for O
(e3)
RL +H.c. in the footnote 1 of ref. [61] has several terms missing and the wrong sign

in the dipole (σρω) part. These errors have been corrected here in eq. (2.12).
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effects. As we sketch in appendix A, the current bound B(µ → eγ)exp < 5.7 × 10−13 [51]

translates into
√

∣

∣

(

Yµµ + rµ
)

Yµe + 9.19YµτYτe

∣

∣

2 +
∣

∣

(

Yµµ + rµ
)

Yeµ + 9.19YeτYτµ

∣

∣

2 < 5.1× 10−7, (3.4)

where rµ = 0.29. From B(τ → eγ)exp < 3.3× 10−8 [51], one extracts [19, 22]

∣

∣Yττ + rτ
∣

∣

√

∣

∣Yτe

∣

∣

2 +
∣

∣Yeτ

∣

∣

2 < 5.2× 10−4 , (3.5)

where rτ = 0.03. In these inequalities, we have put more than two different couplings

together, as they are generally affected by LMFV at the same time, and dropped smaller

terms. The aforementioned CMS h → µτ result under the no-signal assumption implies [8]

√

∣

∣Yτµ

∣

∣

2 +
∣

∣Yµτ

∣

∣

2 < 3.6× 10−3 , (3.6)

which is ∼ 4 times stronger than the restraint [22] inferred from B(τ → µγ)exp < 4.4 ×
10−8 [51] and encompasses the range

2.0× 10−3 <
√

∣

∣Yτµ

∣

∣

2 +
∣

∣Yµτ

∣

∣

2 < 3.3× 10−3 (3.7)

implied by B(h → µτ) =
(

0.84+0.39
−0.37

)

% in the CMS signal hypothesis [8].

The information on h → µ+µ−, τ+τ− recently acquired by ATLAS [4, 6] and CMS [5, 7]

is also useful for restricting new physics in Yµµ,ττ . From the data described in section 1,

we may require

∣

∣Yµµ/YSM
µµ

∣

∣

2 < 6.5 , 0.7 <
∣

∣Yττ/YSM
ττ

∣

∣

2 < 1.8 , (3.8)

where YSM
µµ = 4.24×10−4 and YSM

ττ = 7.19×10−3 in the SM from the rates ΓSM
h→µµ̄ = 894 eV

and ΓSM
h→τ τ̄ = 257 keV [77, 78] for mh = 125.1GeV. These numbers allow one to see from

eqs. (3.4) and (3.5), where rµ and rτ represent the 2-loop effects [19, 22], that the 2-loop

contribution to µ → eγ is dominant in constraining Yeµ,µe, whereas the 1- and 2-loop effects

on τ → eγ are roughly comparable.

We now attempt to attain |Yµτ | ∼ 0.003 corresponding to the CMS hint of h → µτ by

scanning the coefficients ξ1,2,4 in ∆ = ξ11+ ξ2A+ ξ4A
2 which enter the Yukawa couplings

according to eq. (3.3) and consequently are subject to the restrictions in eqs. (3.4)–(3.6)

and (3.8). Given that in our MFV scenario Yℓℓ′ ∝ mℓ′ if ℓ 6= ℓ′, from this point on we

neglect Yµe,τe,τµ in comparison to Yeµ,eτ,µτ , respectively.

Since A in eq. (2.8) can be realized in many different ways, we consider first the

possibility that the orthogonal O matrix is real, in which case

A = YνY
†
ν =

2M
v2

UPMNSm̂νU
†
PMNS (3.9)

and the right-handed neutrinos’ Yukawa coupling matrix in eq. (2.2) simplifies to Yν ∝
UPMNSm̂

1/2
ν , somewhat similar to its Dirac-neutrino counterpart [61]. Although UPMNS has

dependence on the Majorana phases α1,2, as in eq. (2.7), they drop out of eq. (3.9).

– 6 –
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α1

π

α2

π
r1 r2 r3

105ξ1/Λ
2 105ξ2/Λ

2 105ξ4/Λ
2 Yee

YSM

ee

Yµµ

YSM

µµ

Yττ

YSM

ττ

|Yeµ|

10−6

|Yeτ |

10−4

|Yµτ |

10−3(GeV−2) (GeV−2) (GeV−2)

NH

0 0 0.81 −1.7 −0.89 −6.3 6.2 5.4 1.5 1.2 0.89 1.7 0.3 3.1

0 0 −0.86 1.8 −0.92 −7.1 8.7 4.5 1.6 1.2 0.87 2.0 0.4 3.5

0 0.23 0.74 −0.80 −0.20 4.9 −6.7 −5.9 0.63 0.93 1.3 1.7 2.2 3.2

IH

0 0 0.04 0.63 −0.93 −7.9 8.8 2.6 1.5 1.2 1.1 2.1 2.8 3.2

0 0 0.02 −0.75 1.1 −5.7 3.8 8.1 1.4 1.1 0.90 2.4 1.3 3.3

0.79 1.3 −0.61 −0.79 1.4 −5.3 5.0 7.6 1.4 1.0 0.84 1.2 0.4 3.5

Table 1. Higgs-lepton Yukawa couplings corresponding to sample values of the Majorana phases

α1,2, the parameters r1,2,3 of the complex O matrix, and the coefficients ξ1,2,4 in the MFV building

block ∆ which can yield |Yµτ |& 3× 10−3. The calculation of the NH (IH) results also relies on the

measured neutrino mixing parameters in the case of normal (inverted) hierarchy of neutrino masses.

To proceed numerically, we employ the central values of neutrino mixing parameters

from a recent fit to global neutrino data [79]. Most of the numbers depend on whether

light neutrino masses have a normal hierarchy (NH), m1 < m2 < m3, or an inverted one

(IH), m3 < m1 < m2. Since experimental information on the absolute scale of m1,2,3 is

still far from precise [51], for definiteness we select m1 = 0 (m3 = 0) in the NH (IH) case.

With the preceding choices, after exploring the ξ1,2,4 parameter space, we find that

|Yµτ | can only reach somewhere in the range of (1-2)×10−4. This is caused by the constraint

in eq. (3.4), without which the upper bound |Yµτ | < 0.0036 could be easily saturated. Thus,

to reproduce the signal range in eq. (3.7), the form of A in eq. (3.9) is not sufficient, and

we instead need one with a less simple structure, to which we pay our attention next.3

A more promising possibility is that the O matrix in eq. (2.8) is complex, which leads to

A = YνY
†
ν =

2

v2
MUPMNSm̂

1/2
ν OO†m̂1/2

ν U †
PMNS . (3.10)

As mentioned in the previous section, one can express O = eiReR
′

with real antisymmetric

matrices R and R
′ defined in eq. (2.3). Accordingly, we have

OO† = e2iR = 1+ iR
sinh(2r̃)

r̃
− 2R2 sinh

2r̃

r̃2
, r̃ =

√

r21 + r22 + r23 , (3.11)

and so nonzero r1,2,3 can serve as extra free parameters that may allow us to achieve the

desired size of |Yµτ |. This can indeed be realized, as illustrated by the examples collected

in table 1. The flavor-violating Yukawa couplings quoted in the last three columns have

followed from their dependence on the elements of ∆ determined using the listed sets of α1,2,

r1,2,3, and ξ1,2,4/Λ
2 numbers, along with the central values of neutrino mixing parameters

from ref. [79], again with m1 = 0
(

m3 = 0
)

if the light neutrino masses have a normal

(inverted) hierarchy. The table includes a couple of instances with nonvanishing Majorana

phases α1,2, which are not yet measured and affect A, as OO† in eq. (3.10) is not diagonal.

In the table, we also collect the corresponding flavor-conserving Yukawa couplings

divided by their SM predictions, including Yee for completeness, with YSM
ee = me/v =

3A similar conclusion was drawn in ref. [44] from a semi-quantitative investigation focusing on an MFV

contribution that corresponds to the ξ2 term in our study.
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2.08× 10−6. It is obvious that Yℓℓ can be altered sizeably with respect to their SM values.

Therefore, measurements of h → µ+µ−, τ+τ− with improved precision in the future can

offer complementary tests on the new contributions.

Based on our numerical exploration, there are a few more remarks we would like to

make. First, we have noticed that the viable parameter ranges in the NH case are broader

than their IH counterparts. Second, in many trials we observe that |Yeτ |. 0.1|Yµτ | for the
hypothetical signal regions, as table 1 also shows. This pattern has implications that may

be checked empirically in the future. Third, in the absence of either ξ2 or ξ4 the maximal

|Yµτ | is somewhat lower than that when ξ1,2,4 are all contributing, but at least some or all

of the signal values in eq. (3.7) can be accommodated. However, if only ξ2, ξ4, or ξ2,4 are

nonzero, |Yµτ | cannot exceed ∼ 0.0018.

Now, the six sample sets of parameter values in table 1 produce branching fractions of

µ → eγ and τ → µγ in the ranges of (1.4-5.4)×10−13 and (1.6-2.0)×10−9, respectively, if

other new-physics effects are negligible. The former numbers are within only a few times

below the present bound B(µ → eγ)exp, whereas the latter are at least a factor of 20 less

than B(τ → µγ)exp. They can be regarded as predictions testable by ongoing or future

experiments looking for these decays if the CMS’ indication of h → µτ is substantiated by

upcoming Higgs measurements and the signal range in eq. (3.7), or part of it, persists with

increased data. Especially, the planned MEG II experiment on µ → eγ, with sensitivity

expected to reach a few times 10−14 after 3 years of data taking [80, 81], will probe the

above predictions for it.

As it turns out, if the forthcoming search for µ → eγ still comes up empty, there

could yet remain viable, but narrower, signal parameter regions. We illustrate this in

table 2, assuming a possible future limit of B(µ → eγ) < 5× 10−14 [80], which amounts to

replacing the right-hand side of eq. (3.4) with 1.5×10−7, and also imposing the ratios 0.5 <

Γh→µµ̄/Γ
SM
h→µµ̄ < 1.5 and 0.8 < Γh→τ τ̄/Γ

SM
h→τ τ̄ < 1.2 based on LHC Run-2 projections [82,

83]. Since the examples in table 2 yield B(µ → eγ) = (1.2-4.4) × 10−14, they may be

out of reach of MEG II, and so to probe them one will likely need to rely on experiments

looking for nuclear µ → e conversion, which promise a greater degree of sensitivity in the

long run [81]. As discussed in appendix A, the existing data on µ → e conversion in nuclei

are not yet competitive to the current measured bound on µ → eγ in constraining the

Yukawa couplings. However, we also point out in the appendix that planned searches for

µ → e conversion, such as Mu2E and COMET [81], can be expected to test very well the

parameter space represented by the examples in tables 1 and 2.

Finally, we discuss the contributions of LMFV in eq. (2.10) to some other processes.

Expanding the operator, we have

O
(e3)
RL =

∆klmEk

v
ĒkPL

(

∂ηEl − ieAηEl + igLZηEl +
ig√
2
W−

η νl

)

∂ηh

+
∆klgmEk

v
ĒkPL

[

iZη∂ηEl

2cw
−
iW−

η ∂ηνl√
2

+

(

eA·Z
2cw

− gLZ
2

2cw
+
g

2
W+·W−

)

El

]

(h+v),

(3.12)
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α1

π

α2

π
r1 r2 r3

105ξ1/Λ
2 105ξ2/Λ

2 105ξ4/Λ
2 Yee

YSM

ee

Yµµ

YSM

µµ

Yττ

YSM

ττ

|Yeµ|

10−6

|Yeτ |

10−4

|Yµτ |

10−3(GeV−2) (GeV−2) (GeV−2)

NH
0 0 −0.53 0.73 −0.40 6.0 −0.7 −9.5 0.53 0.79 1.1 0.6 0.2 2.7

0 0.4 0.68 −0.80 −0.15 −5.4 −2.3 12 1.4 1.2 0.93 0.3 0.5 2.6

IH
0 0 0.0 −0.73 1.1 −4.7 −1.9 11 1.4 1.1 0.96 0.5 0.1 2.5

0.8 1.3 −0.60 −0.81 1.4 −6.5 9.4 1.1 1.5 1.2 1.0 0.1 0.5 2.9

Table 2. The same as table 1, except the µ → eγ and h → µµ̄, τ τ̄ constraints are replaced with

their projected future experimental limits, as described in the text.

where gL = g
(

s2w − 1/2
)

/cw and cw =
√

1− s2w = gv/(2mZ) = mW /mZ . Evidently, LMFV

not only induces the already addressed h → ℓℓ̄′ couplings, but also contributes to the two-

body decays of the weak bosons, Z → ℓℓ̄′ and W → τνl, as well as to three- and four-body

modes, such as h → ℓℓ̄′γ, νℓW+, ℓℓ̄′γZ. Since the latter are more suppressed by phase

space, we deal with only the two-body Z and W decays. The other operators in eq. (2.11)

can also affect Z → ℓℓ̄′ and W → τνl, but here we entertain the possibility that their

impact is comparatively unimportant. Accordingly, from eq. (3.12) we derive

MZ→EkĒl
= ūEk

[

δkl/εZ
(

gLPL + gRPR

)

+
∆klmZ

Λ2v

(

mEk
PLεZ · pEl

−mEl
PRεZ · pEk

)

]

vEl
,

MW→τν
l
= ūτ

(

δ3lg√
2

/εW +

√
2∆3lmτmW

Λ2v
εW · pτ

)

PLvν
l
. (3.13)

where gR = gs2w/cw and we have included the SM terms in these amplitudes. Hence,

neglecting lepton masses compared to mZ , we arrive at

ΓZ→µē = ΓZ→µē ≃
∣

∣∆12mµ

∣

∣

2
m5

Z

192Λ4πv2
=

∣

∣Yeµ

∣

∣

2
m5

Z

48πm4
h

(3.14)

and similarly for Z → eτ, µτ . Thus, for, say,
∣

∣Yeµ

∣

∣ = 2.1 × 10−6,
∣

∣Yeτ

∣

∣ = 2.8 × 10−4, and
∣

∣Yµτ

∣

∣ = 0.0032 from table 1, we get

B
(

Z→e±µ∓
)

=6.0× 10−13, B
(

Z→e±τ∓
)

=1.1× 10−8, B
(

Z→µ±τ∓
)

=1.4× 10−6.

(3.15)

For comparison, the experimental limits are [51]

B
(

Z → e±µ∓
)

exp
< 1.7× 10−6 , B

(

Z → e±τ∓
)

exp
< 9.8× 10−6 ,

B
(

Z → µ±τ∓
)

exp
< 1.2× 10−5 (3.16)

at 95% CL. We see that the predicted B(Z → µτ) is below its experimental bound by only

less than a factor of 10. Therefore, Z → µτ is potentially more testable than Z → eµ, eτ ,

and the quest for it can provide a complementary check on LMFV.
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Neglecting lepton masses compared to mW,Z , we also obtain from eq. (3.13)

ΓZ→EkĒk
=

mZ

24π

(

g2L + g2R +
∆2

kkm
2
Ek

m4
Z

4Λ4v2

)

,

ΓW→τν =
mW

48π

(

g2 +
∆2

33m
2
τm

4
W

2Λ4v2

)

+

(

|∆31|2 + |∆32|2
)

m2
τm

4
W

96Λ4πv2
, (3.17)

where in the W → τν formula we have summed over the 3 neutrino flavors. For the

parameter values in table 1, the nonstandard terms in ΓZ→EkĒk
and ΓW→τν are tiny, being

smaller than the SM parts by more than 4 orders of magnitude.

Before ending this section, we would like to note that all the preceding analysis can

be repeated within the context of the type-III seesaw model [84] with MFV, which is very

similar to the type-I case addressed in this study if the triplet leptons in the former are

as heavy as the right-handed neutrinos in the latter [61]. However, in the type-II seesaw

model [85–88] with MFV, the Yukawa coupling matrix of the triplet scalars does not possess

the special feature that Yν has with regard to the O matrix [61] that allows Yµτ to become

large enough to explain the CMS h → µτ signal hypothesis.

4 Conclusions

We have explored the possibility that the slight excess of h → µτ events recently detected in

the CMS experiment has a new-physics origin. Adopting in particular the effective theory

framework of MFV, we consider the SM extended with the type-I seesaw mechanism and an

effective dimension-six operator responsible for the flavor-violating dilepton Higgs decay.

We demonstrate that to account for the tentative h → µτ signal, with a branching fraction

of order 1%, the Yukawa coupling matrix of the right-handed neutrinos needs to have a

nontrivial structure because of the stringent empirical constraints. To illustrate this, we

present several benchmark points that have survived the restrictions from the existing

µ → eγ, τ → eγ, and h → µµ̄, τ τ̄ data. The viable parameter space can be probed further

by upcoming LHC measurements and future quests for charged-lepton-flavor violation.

Lastly, we examine a few other transitions that arise from the same dimension-six operator,

among which Z → µτ can have a predicted branching ratio merely less than 10 times below

its current empirical limit and hence potentially also testable in near-future searches.
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A Constraints from µ → eγ decay and µ → e conversion

The effective Lagrangian for µ → eγ can be expressed as

Lµ→eγ =

√
απmµ

4π2
eσρω

(

CLPL + CRPR

)

µFρω , (A.1)
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where α = 1/137 is the fine structure constant, PL,R = (1∓ γ5)/2, and Fρω is the electro-

magnetic field strength tensor. This leads to the decay rate

Γµ→eγ =
αm5

µ

64π4

(

|CL|2 + |CR|2
)

, (A.2)

The Wilson coefficients CL,R receive contributions from Higgs-mediated one-loop and two-

loop [89] diagrams, CL,R = C1loop
L,R + C2loop

L,R . Given that Yℓℓ is real and |Yee| ≪ |Yµµ|, one
finds [22]

C1loop
R ≃

YµµYeµ

2m2
h

(

log
mh

mµ

− 2

3

)

+
mτYeτYτµ

2mµm
2
h

(

log
mh

mτ

− 3

4

)

,

C2loop
R ≃

0.055mτYeµ

mµm
2
h

(A.3)

and C1loop,2loop
L obtainable from C1loop,2loop

R with the replacements Yℓℓ′ → Y∗
ℓ′ℓ. Here we

suppose that there are no other new-physics contributions that can bring about destructive

interference with these coefficients. Thus, putting together these formulas with the latest

experimental bound [51] B(µ → eγ)exp < 5.7 × 10−13, we arrive at eq. (3.4) for mh =

125.1GeV, which is consistent with the most recent measurement [90].

The effective Lagrangian for µ → e conversion in nuclei is [91]

Lµ→e =

√
απmµ

4π2
eσρω

(

CLPL + CRPR

)

µFρω − 1

2

∑

q
e
(

gqLSPR + gqRSPL

)

µq̄q , (A.4)

where q runs over all quark flavors, we have displayed only the most important terms for

our purposes, and, if Yℓℓ′ are the only LFV sources, CL,R are already written down in the

preceding paragraph and [22]

gqLS =
−2mqY∗

µe

m2
hv

, gqRS =
−2mqYeµ

m2
hv

. (A.5)

The µ → e conversion rate in nucleus N is then given by [91]

B(µN → eN ) =
m5

µ

ωN
capt

∣

∣

∣

∣

√
απ CLDN

8π2
− g̃

(p)
LSS

(p)
N − g̃

(n)
LSS

(n)
N

∣

∣

∣

∣

2

+ (L → R) , (A.6)

g̃
(N)
LS =

∑

q

gqLS
mq

f (N)
q mN =

−2mNY∗
µe

m2
hv

∑

q
f (N)
q , f (N)

q =
〈N |mq q̄q|N〉

mN

, N = p, n, (A.7)

where DN and S
(p,n)
N are dimensionless integrals representing the overlap of electron and

muon wave functions forN and ωN
capt is the rate of muon capture inN . Based on the current

experimental limits on µ → e transition in various nuclei [51, 92] and the corresponding

overlap integral and ωN
capt values [91], one expects that the N = Au and Ti data may

supply the most consequential restrictions. The evaluation of B(µN → eN ) for these two

nuclei, respectively, requires DAu = 0.189, DTi = 0.087, S
(p)
Au = 0.0614, S

(n)
Au = 0.0918,

S
(p)
Ti = 0.0368, S

(n)
Ti = 0.0435, ωAu

capt = 13.07 × 106/s, and ωTi
capt = 2.59 × 106/s [91], as
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well as the latest determination of the sum of the nucleon matrix elements, Σqf
(p,n)
q =

0.305 ± 0.009 [93],4 which lies around the lower end of the ranges from some of earlier

estimates [95, 96].

If we impose the measured bound B(µAu → eAu)exp < 7 × 10−13 [51], instead of

eq. (3.4), but still apply eqs. (3.5), (3.6), and (3.8), we end up with |Yeµ| < 1.6 × 10−5,

which is compatible with the finding of ref. [97]. If we use N = Ti with B(µTi → eTi)exp <

6.1×10−13 [92], instead of N = Au, we get the somewhat stricter |Yeµ| < 1.3×10−5. These

limitations are roughly 5 to 13 times higher than the range of results |Yeµ| = (1.2-2.4)×10−6

quoted in table 1, demonstrating that the present data on nuclear µ → e conversion are

not yet competitive to B(µ → eγ)exp in restricting especially Yeµ, which is also known in

the literature [20–22, 97]. Nevertheless, the leading planned searches for µ → e conversion,

Mu2E and COMET, which utilize aluminum as the target material [81], will likely be able

to probe the parameter space represented by the examples in both tables 1 and 2. More

precisely, from the sets of sample numbers in these tables, together with the aluminum

parameters DAl = 0.0362, S
(p)
Al = 0.0155, S

(n)
Al = 0.0167, and ωAl

capt = 0.7054 × 106/s [91],

we obtain B(µAl → eAl) = (0.1-9.0)×10−15, which are within reach of Mu2E and COMET,

expected to have sensitivity levels under 10−16 or better after several years of running [81].
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